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Tracking genome evolution in single cell clones reveals the rates and features of copy 

number alterations generated by ongoing chromosomal instability in cancer. 
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Abstract 

Cancer genomes exhibit extensive chromosomal alterations caused by ongoing Chromosomal 

Instability (CIN). The ensuing cell-cell heterogeneity facilitates evolution and cancer cell plasticity that 

can drive therapy resistance, yet cancer CIN driver mechanisms remain essentially uncharacterised. 

This lack of knowledge presents an untapped opportunity to target vulnerabilities associated with 

ongoing CIN for therapy. Existing methods to investigate the cellular mechanisms responsible for CIN 

rely on laborious functional assays, or inference from genomic alteration patterns from sequencing 

data.  Current bulk sequencing derived copy number alteration pattern signatures lack the cell-cell 

resolution that would reveal recent genomic alterations caused by CIN. Large-scale single cell 

sequencing of cancer cell populations is now emerging. However, it is not known whether the effects 

of selection still obscure the spectrum of genomic alterations caused by recent CIN. To address this, 

we employed a single-cell whole-genome sequencing (scWGS) clonal outgrowth technique, that 

allows us to track the real-time evolution of cancer genomes at the single-cell level. Single cancer cells  

surprisingly re-establish heterogeneity that matches their parental population within ~22 generations. 

By comparing the features of copy number alterations at different evolutionary timepoints we reveal 

that some alteration types are likely under negative selection and are thus only apparent in the most 

recent cell divisions, and not in the parental population. In one cell line we identify a particular 

chromosome subject to recurrent chromosomal deletions, and validated that this chromosome was 
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involved frequently in mis-segregation events during anaphase using fluorescence In-Situ 

hybridisation. 

 

Introduction 

Chromosome Instability (CIN) is a complex and poorly understood hallmark of cancer, characterised 

by continuous gains and losses of whole or parts of chromosomes during cell division, leading to highly 

diverse tumour populations. We and others have previously demonstrated using functional assays in 

cancer cell lines that multiple mechanisms can drive CIN. For example, replication stress and deviant 

microtubule dynamics have been observed in colorectal and high grade serous ovarian cancers (Burrell 

et al., 2013; Tamura et al., 2020b; Ertych et al., 2014; Thompson and Compton, 2011; Bakhoum, 

Genovese and Compton, 2009). However, cell biological assays are limited in their resolution, meaning 

precise mechanisms of CIN remain elusive.  

 

Chromosomal instability results from disregulation of essential genome stability pathways, leaving 

cancer cells vulnerable to synergistic therapies. For example, ATR inhibitor AZD6738 is effective against 

high replication stress cancer cells, while PARP inhibitors act upon tumours with homologous 

recombination deficiency (HRD) (Forment and O'Connor, 2018; Bryant et al., 2005; Farmer et al., 2005; 

Ubhi and Brown, 2019). Recent studies have unveiled characteristic genomic alteration patterns 

resulting from chromosomal instability processes (Shaikh et al., 2022b), offering an opportunity for 

tailored cancer treatments based on individual tumour genomic alterations. HRD genomic "scars" in 

BRCA-deficient tumours serve as a prime example, guiding the use of PARP inhibitors in clinical 

decisions. 

 

Two significant challenges hinder the extension of this principle to new successful cancer treatment 

strategies. First, our understanding of chromosomal instability mechanisms in cancer remains 

incomplete and is currently limited to low-throughput functional analyses in cancer cell lines. Second, 

pinpointing the specific CIN mechanism at work in a patient's tumour remains elusive. Recent studies 

have attempted to identify CIN drivers in cancer through computational "CIN signatures" based on 

DNA copy number alteration (CNA) patterns observed in bulk whole genome sequencing of tumours 

(Davies et al., 2017; Nik-Zainal et al., 2016; Macintyre et al., 2018; Ng et al., 2012; McBride et al., 2012). 

These represent a parallel to the single base substitution (SBS) signatures which revolutionised our 

ability to infer ongoing mutational mechanisms at the base-pair scale. However, current CIN signatures 

rely on correlations with mutations to determine driver mechanisms, potentially leading to 

inaccuracies. Moreover, they often reflect ancestral CIN mechanisms imprinted in the tumour genome 
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detectable by bulk sequencing. Yet, CIN mechanisms may have evolved during tumourigenesis and can 

vary within the tumour or after treatment with genome-destabilizing therapies. Thus, decoding 

ongoing CIN mechanisms is crucial for effective therapy synergy. 

Unfortunately, most available genomic alteration data comes from bulk sequencing of single end-point 

tumour samples from which detecting ongoing rates or types of CIN is not possible. While single-cell 

DNA sequencing is now emerging and reveals cell-cell heterogeneity in CNAs, it is still challenging to 

identify ongoing CIN-related copy-structural variations in static samples such as tumours, because 

determining which CNAs are recent or shaped by selection is ambiguous. Some progress has been 

made using computational approaches; a recent study measured the underlying tumour evolutionary 

processes to account for the effect of selection when quantitatively measuring CIN (Lynch et al. 2022). 

An alternative strategy to detect CNAs caused by chromosome mis-segregation events from large-scale 

single cell sequencing of cancer cell lines is to identify clones of cells based on similar CNA profiles. 

CNAs differing from the consensus within the clone are then assumed to be the consequence of recent 

CIN (Laks et al. 2019; Funnell et al. 2022). Previously, it has been demonstrated that whole 

chromosome missegregation events lead to whole copy-number alterations (CNAs) and that chromatin 

bridges can lead to sub chromosomal CNAs (Bolhaqueiro et al., 2019; Bollen et al., 2021). However, 

the contributing factor or deficit within the cell that results in these errors and CNAs is yet to be fully 

understood. Low numbers of cells, CNAs, and organoid samples precluded the detailed analysis of CNA 

features that could shed light on the causative mechanisms. 

 

To determine in a controlled setting which CNAs were generated by ongoing cancer CIN, we devised a 

"Clone-Seq" workflow to track genomic evolution in single cancer cells as they form small populations 

by characterising newly-arising genomic alterations. Here, we track the evolution of two high grade 

serous ovarian cancer cell lines, which exhibit extreme rates of CIN. We show that both cell lines rapidly 

re-establish cell-cell heterogeneity to the level seen in the original parental population within 22 

generations. We derive a workflow to extract the newly-arising copy number alterations from single 

cell genome sequencing data, and to time their occurrence to early, or late in the evolution of the 

population. We observe that some categories of CNA (chromosome arm-level losses and gains) appear 

to be under negative selection, and that others (focal amplifications) are more frequent in ancestral 

populations. In one cell line we observe one chromosome that is subject to a high rate of copy number 

alterations and functionally verify that this represents a chromosome undergoing extensive continual 

mis-segregation in mitosis. 
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Results 

Single chromosomally unstable cancer cells re-establish genomic heterogeneity equivalent to 

parental populations within 22 generations.  

We chose two cell lines originating from high grade serous ovarian carcinoma (HGSOC); Kuramochi and 

OCM66. Kuramochi is a legacy cell line validated as being of HGSOC origin (Domcke et al., 2013) and 

previously characterised by our laboratory using functional genomics (Tamura et al., 2020b). OCM66 

is one of a series of newly generated ovarian cancer models (OCMs) by the Taylor laboratory (Nelson 

et al., 2020). Both cell lines exhibit high rates of chromosome segregation errors during anaphase 

visible with microscopy (Figure 1b-d, and (Tamura et al., 2020b)). Typically, low density seeing, or 

FACS-based sorting of HGSOC cells results in a very poor viability. We therefore used the CellenONE 

microfluidics platform to seed single cells into individual wells of a 96 well plate, resulting in high 

efficiency of clone formation. We grew clones until they were near confluency in a 24 well plate, before 

sampling the final population using single cell DNA sequencing using either tagmentase-based 

(DLP+(Zahn et al., 2019)) or PCR-based(Bakker et al., 2016) workflows. We also sampled the originating 

(parental) populations. Parental populations and clones displayed visible cell-cell heterogeneity in 

terms of copy number profiles (Figure 1e). Despite this heterogeneity, pseudobulk analysis of the single 

cell data revealed that clones retained similar bulk karyotypic copy number alteration (CNA) profiles 

to parental populations (Figure 1f, Figure S1a,b). To quantify the cell-cell heterogeneity in the clonal 

populations we used two different metrics. First, we applied the phylogenetic tool MEDICC2, and 

calculated the average branch length – a measure of genomic evolutionary distance - between each 

individual final sampled cell and the inferred ancestor cell (Figure 1g). For both cell lines, cells from the 

newly derived clones exhibited equal evolutionary distance on average to those sampled from the 

parental populations, indicating that an equal level of genomic heterogeneity had been created by one 

single cell during clone growth. OCM66 cells showed a higher rate of diversification than Kuramochi 

(Figure 1h), suggesting higher rates of CIN. To examine diversity using an independent metric we 

devised a ‘dissimilarity score’ (see Methods). The cell-cell ‘dissimilarity score’ was also similar between 

clones and parental populations (Figure 1i). Together, these data demonstrate that high rates of CIN 

in both OCM66 and Kuramochi facilitate a rapid diversification in terms of copy number alterations 

from a single cell. Interestingly, this high rate of heterogeneity did not result in meaningful change in 

the bulk karyotype between clones and the parent population (Figure 1f), illustrating the importance 

of assessing the chromosomal alterations that occur ‘under the radar’, rather than bulk genomic 

alteration patterns. The interesting exception to this observation is an 11q gain which was lost from 

OCM66 clone 1 (Figure 1f), presumably due to the original seeding cell being one of the few in the 

parental population that did not carry this gain. Similarly in Kuramochi cells, we noted a copy number 
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gain within chromosome 10q present in the parental population has been lost from Kuramochi clone 

2, and a chromosome 5q monosomy lost from both clones (Figure S1a,b).   
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Figure 1: Single chromosomally unstable cancer cells re-establish genomic heterogeneity equivalent to 

parental populations within 22 generations. A) Schematic outlining the experimental strategy of single-cell 

outgrowth. B) Immunofluorescence images of OCM66 anaphase cells probed with antibodies to CREST 

(magenta; centromere) and RPA (green; ultra-fine bridge) and yH2AX (blue; DNA damage) and DAPI (grey; DNA) 

exhibiting a chromosome bridge and an ultrafine bridge. Scale bar: 5μm. C) OCM66 Chromosome segregation 

error rates quantified from fixed cell microscopy. D) Anaphase segregation errors from (C) classified according 

to error type. E) Low-pass whole genome sequencing copy number heatmaps, each row represents a single cell, 

each column a chromosome and the colour (indicated by key) represents a different copy number. F) Pseudobulk 

copy number profiles, created by merging reads from all single cells to produce a bulk copy number profile. G) 

Copy-number based phylogenetic trees produced using MEDICC2 of HGSOC single cells from parental and clonal 

populations as indicated. H) Average branch lengths from analysis in (G). I) Dissimilarity score (see methods) 

calculated for each cell-cell pair in each indicated parent or clone population. 

 

Extracting the most recent copy number alterations from single cell clones highlights a specific 

unstable chromosome. 

We next focused on uncovering the most recent copy number alterations that had arisen during clonal 

outgrowth. Given that cancer cells typically deviate from diploidy, we first calculated each cell’s copy 

number profile relative to the inferred ancestral (the originating single cell of the clone) genome. To 

define the ancestral genome, we derived a reference genome comprised of the modal copy number 

state across binned regions of all cells in the clone, reasoning that alterations present in the originating 

cell would most often be retained as the most frequent (the mode) alteration in any subsequent 

daughter cell populations (Figure 2a). We then calculated all CNAs that deviated from the ancestral 

cell reference (Figure 2b). We noted that all cells within the clones accumulated new breakpoints at a 

similar rate during clonal outgrowth, implying a consistent rate of CIN among individual cells in the 

parental population, a measure that has been difficult to assess in previous studies (Figure 2b). 

 

We also calculated the fraction of genome altered (FGA), a frequently-used metric to infer CIN (Zhou 

et al. 2019) in two ways. First, we calculated FGA in the standard manner; assessing deviation from 

the normal (diploid) genome, which revealed that most of the genome is altered across all cells (Figure 

2c), which is unsurprising given the highly rearranged nature of these genomes. Second, we calculated 

FGA since clone outgrowth, as an additional metric to assess the extent of genomic diversification 

during clone growth. Strikingly this analysis revealed that, during clonal outgrowth, OCM66 cells 

altered over 20% of their genomes on average, while Kuramochi cells altered ~15% of their genomes 

(Figure 2d).  
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Next, we aimed to uncover those most recent CNAs, reasoning that these would most represent the 

alterations occurring due to ongoing CIN with the lowest interference from potential selection 

pressures. We achieved this by considering CNAs bounded by at least one unique breakpoint (among 

other cells in the clone) and occurring in only one cell within the clone population, and termed these 

‘unique’ alterations (see scheme in Figure 2e). To visualize the frequency and distribution of these 

most recent CNAs across the genome, we created ‘pileups’ of all ‘unique’ alterations across a given 

clone plotted on a single ideogram (Figure 2f; Figure S2b). Intriguingly, in both OCM66 clones, we 

observed a high rate of recent alterations on chromosome 3 (Figure 2f,g), suggesting that this 

chromosome was unstable during clonal outgrowth of both clones, and therefore was likely to have 

been unstable in the parental population. To test this, we conducted a similar analysis of unique CNAs 

from the parental population, despite this population having been generated over much longer 

periods of time. Once again, chromosome 3 emerged as one of the most altered chromosomes in 

recent unique events (Figure 2h) though this could not be as clearly detected when considering all 

CNAs since clonal outgrowth (Figure 2g). 
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Figure 2: Extracting the most recent copy number alterations from single cell clones highlights a specific 

unstable chromosome. A) Copy number heatmaps for OCM66 clones 1 and 2, indicating the difference from 

inferred ancestral karyotype (modal) reference (see methods), with the corresponding ancestral reference 

above each heatmap. Heatmaps show the modal copy number in grey and copy number gains and losses in red- 
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and blue-scale respectively according to the colour key. B) Total number of copy number alterations 

accumulated per cell that differ from the modal (ancestral) genome. C) Fraction of the genome altered (total 

length of altered regions/total genome length). D) Fraction of the genome altered after modal analysis (i.e. since 

clonal outgrowth). E) Schematic outlining the classification of unique CNAs, displaying a modal chromosome 

with CNAs that has shared and unique breakpoints. F) Diagram showing unique CNAs in each clonal populations 

after modal analysis and CNA filtering, red corresponds to CNA gains and blue to CNA losses, orange indicates 

the chromosome centromere. G) Graphical representation of the number of subclonal and unique CNAs per 

chromosome for each clonal population. H) Modal analysis (top) and unique CNAs (bottom) from parental 

population analysis. 

 

Chromosome 3 in OCM66 cells is undergoing continual mis-segregation. 

We sought to investigate whether chromosome 3 indeed exhibited recurrent instability during cell 

division in OCM66 cells. To assess this, we performed Fluorescence In-Situ Hybridisation (FISH) on the 

parental OCM66 population using specific chromosome and centromere probes. We analysed the 

proportion of chromosome mis-segregation events that involved chromosome 3, comparing this to 

rates of mis-segregation of chromosomes 6 or 12 which serve as negative controls (low rates of CNAs; 

Figure 2). Strikingly, we observed that chromosome 3 was present in mis-segregating chromatin in 

over 35% of the cells analysed, most often in chromatin bridges, but also in lagging 

chromosome/chromosome fragments (Figure 3a,b). We then assessed the total contribution of this 

unstable chromosome to all mis-segregation events. Chromosome 3 accounted for almost one fifth of 

all chromosome segregation errors, compared to an expected 4.3% (expected frequency per 

chromosome). These data show that the clone-seq approach can identify specific chromosomes under 

particularly high rates of current instability, and demonstrate that cancer chromosomal instability can 

act in a highly biased nature towards specific chromosomes, as suggested previously (Shaikh et al., 

2022a; Worrall et al., 2018; Klaasen et al., 2022). 
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Figure 3: Chromosome 3 in OCM66 cells is under continual high rates of CIN. A) Representative 

microscopy images of OCM66 cells probed with fluorescence-in-situ hybridisation (FISH) probes for 

specific chromosomes and centromeres.  Green: specific chromosome paint; grey: DAPI (DNA), 

magenta: chromosome specific centromere probe. Scale bar = 5μm. B) Quantification of the 

percentage of anaphase errors that are positive for chromosome indicated. C) Quantification of 

percentage of all errors that are positive for chromosome indicated. 
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Analysis of most recent CNAs permits the detection of CNAs under negative selection. 

Since each cell we sequenced from clonal populations had undergone an average of 22 cell divisions, 

its genome serves as a comprehensive record of cumulative genomic evolution over that period. This 

allows us to explore potential differences in the spectrum of copy number alterations that occurred 

during the evolution from a single cell into a population. One particular question we sought to answer 

was whether we could identify evidence of negative selection against certain classes of CNAs. In 

traditional cancer genomics, measuring negative selection is challenging (one cannot observe events 

that are not there). We set out to compare the frequencies of specific CNA classes across different 

evolutionary timescales, ranging from early to mid-evolution and late evolution. We divided all the 

CNAs observed since clonal outgrowth into two categories; ‘subclonal’; any CNA observed since clonal 

outgrowth (excepting unique alterations), and ‘unique’; occurring in only one cell. We reasoned that 

alterations present in multiple cells are likely to have occurred earlier in clone evolution and thus are 

present in multiple cells. CNAs ranged in size, from focal (0.8 – 11.8 Mb) to chromosome arm-scale 

(>11.8 Mb – the length of the shortest chromosome arm (22p)), and size distributions were not 

different between subclonal or unique fractions (Figure 4a,b). We then analysed the proportions of 

focal vs chromosome-scale, and loss vs. gain, producing four CNA classes in combination. We 

performed a fold-change analysis of the proportion distributions between the subclonal, and unique 

CNAs for each clone (Figure 4c,d). Notably, unique CNAs from OCM66 clones exhibited an enrichment 

of chromosome-scale losses, while unique CNAs from Kuramochi clones displayed an enrichment of 

large gains, when compared to the subclonal alterations (Figure 4c,d). This suggests that chromosome-

scale CNAs do occur at an appreciable rate, but are not maintained in the population, indicative of 

negative selection. We also observed that focal gains were depleted in unique CNAs; occurring less 

frequently than in the subclonal fraction. This suggests that focal gains may not occur very frequently, 

but are positively (or neutrally) selected when they do occur. Overall, these analyses suggest that it 

can be important to assess the CNAs occurring most recently in order to avoid selection effects.  
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Figure 4: Analysis of most recent CNAs permits the detection of CNAs under negative selection. A) Scatter plot 

distribution of all CNA sizes that occurred since outgrowth split at 11.8 Mb (the smallest chromosome arm) B) 

Scatter plot of distribution of only unique CNA sizes, split at 11.8 Mb. C-D) Heatmaps showing the proportions 

of the types of CNA in each clonal population of OCM66 (C) and Kuramochi (D). CNAs have been classified as 

subclonal (top) or unique (middle), and fold changes between unique and subclonal CNAs (bottom). 

 

Clonal outgrowth may provide more information than simply single cell sequencing parental 

populations. 

Our results above indicated that analysing the most recent CNAs from clonal outgrowth could be more 

informative of ongoing CIN-induced alterations. Such outgrowth experiments are not feasible in 

tumour samples however, so we sought to determine whether a similar approach in parental 

populations (analysis of the ‘unique’ CNAs) could be as informative. To test this, we performed a 

similar analysis as in Figure 4, but this time comparing the proportions of the four CNA classes in 

unique CNAs between parental, and clonal populations. We observed that the proportions differed 
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substantially between parental, and clonal unique CNAs (Figure 5a,b), suggesting that the spectrum 

of CNAs extracted even from the ‘most recent’ events in parental populations may not fully capture 

all types of CNAs caused by ongoing CIN. 

 

 

 
 

Figure 5: Clonal outgrowth may provide more information than simply single cell sequencing parental 

populations. A,B) Heatmaps showing fold changes between CNA sizes and types between parental populations 

and clones for OCM66 (A) and Kuramochi (B). 

 

Discussion 

Here, we set out to design the optimal experimental strategy to define the genomic alterations caused 

by ongoing cancer CIN. Our ambition is to support and complement studies involving high through-

put single cell sequencing of tumour samples and cancer cell lines, by rigorously testing whether 

sampling static populations can identify the full spectrum of CNAs generated by CIN.  

In this study, we examined two cancer cell lines originating from high grade serous ovarian cancer, 

revealing these lines are capable of extremely rapid genomic re-diversification after only a few cell 

cycles. It will be very interesting to expand this study to additional cancer types. Previous experimental 

studies in colorectal cancer organoids did not detect such rapid re-diversification, perhaps due to a 

lower rate of CIN in these samples, or perhaps due to different resolution of single cell sequencing 

approaches used. To date, we have observed high rates of visible chromosome segregation errors in 

many different cancer types ((Tamura et al., 2020a; Burrell et al., 2013); our unpublished data), but it 

is likely that the majority of CNAs detected with single cell sequencing would be undetectable by 
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microscopy, since we observed higher proportions of focal compared to chromosome-scale CNAs. 

Therefore, rates of CIN may not be accurately determined using microscopy alone. 

 

We were able to detect frequent chromosome-scale alterations on chromosome 3 in OCM66 cells 

which correlated with this chromosome being consistently unstable during mitosis in the parental 

populations. Interestingly, these frequent alterations on chromosome 3 were mostly chromosome-

scale deletions, suggesting loss of chromosomal material perhaps through loss of genetic material 

from the nucleus, such as into micronuclei.  

 

When we compared the proportions of CNAs between subclonal and unique CNAs, we noted that 

across both cell lines and all clones, chromosome-scale alterations appeared to be under negative 

selection. This is perhaps not surprising since many of the large deletions are associated with absolute 

(not relative to modal karyotype) copy number of 1 (monosomy), which is very poorly tolerated in 

non-transformed cells (Chunduri et al., 2021). Paradoxically however, recurrent monosomy is 

observed in several chromosome regions in these cell lines. For example, chromosomes 8p and 13q in 

OCM66 cells, and Xq in OCM66 clone 1 (Figure 1b)), and chromosomes 5q, 18 and X in Kuramochi 

(Figure S1a). This suggests that spontaneous large deletions are generally detrimental, even to cancer 

cells with highly rearranged genomes, unless they are associated with a fitness benefit. It will be 

important to delve into the potential reasons why these specific chromosomal regions are tolerated, 

given the overall negative fitness of large deletions in general. 

 

Although our study suggests that recent outgrowth of cancer cells provides the most accurate picture 

of CIN-induced genome evolution, we believe that these findings can be integrated into analysis of 

cancer sequencing from static samples. For example, building a complete picture of which alterations 

tend to be under negative selection can help the interpretation of CNAs from single cell sequencing of 

tumours.  

 

Methods 

 

Cell Lines 

Kuramochi cells were purchased from the Japanese Collection of Research Bioresources and 

maintained in RPMI (Gibco) supplemented with 10% FBS and 100 U penicillin/streptomycin. OCM66 

was a kind gift from Prof Stephen Taylor (University of Manchester). OCM66 was maintained in OCMI 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.27.559836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559836


 15 

(Ince et al., 2015). OCMI is made using a 50:50 mix of Nutrient Mixture Ham’s F12 (Sigma Aldrich) and 

Medium 199 (Life Technologies) supplemented with 5% Hyclone FBS (GE Healthcare), 0.5 ng/ml 17 β-

oestradiol, 5 μg/ml all-trans retinoic acid, 0.012 μg/ml ascorbic acid, 0.003 μg/ml α-tocopherol 

phosphate, 1.25 mg/ml BSA, 0.025 μg/ml calciferol, 25 ng/ml cholera toxin, 0.05 μg/ml cholesterol, 

3.5 μg/ml choline chloride, 0.01 μg/ml EGF; 2 mM glutamine (Sigma Aldrich), 0.33 μg/ml folic acid, 10 

mM HEPES at pH7.4, 0.5 μg/ml hydrocortisone, 1.75 μg/ml hypoxanthine, 4.5 μg/ml i-inositol, 20 

μg/ml insulin, 0.05 μg/ml lipoic acid, 5 μg/ml o-phosphoryl ethanolamine, 0.0125 μg/ml para- 

aminobenzioic acid, 100 U/ml penicillin/streptomycin (Sigma Aldrich), 0.125 μg/ml ribose, 8 ng/ml 

selenious acid, 0.08 μg/ml thiamine HCL, 10 μg/ml transferrin, 0.2 pg/ml Tridothyronine, 0.075 μg/ml 

uracil, 0.35 μg/ml vitamin B12, 0.085 μg/ml xanthine (all from Sigma). Cells are routinely tested for 

presence of mycoplasma using MycoAlert PLUS Mycoplasma Detection Kit (LT07-710, Lonza). 

 

Immunofluorescence 

OCM66 cells were grown on coverslips coated with collagen and fixed with PTEMF (PIPES (pH 6.8), 

0.2% Triton, 0.01M EGTA, 1mmol/L MgCl2, 4% Formaldehyde). Coverslips were blocked with 3% BSA 

and incubated with primary antibodies (RPA - ab79398, H2AX - Millipore-05-636, CREST - Antibodies 

incorporated - 15-234-0001). Then secondary antibodies (goat anti-rabbit AlexaFluor (AF)488, goat 

anti-mouse AF594 (Invitrogen - A11008, A11001) and goat anti-human AF647 (Stratech 109-606-088-

JIR)) DNA was then stained with DAPI (Roche) and coverslips mounted with Vectashield (Vector 

Laboratories - Vector H-1000).  

 

Chromosome Painting 

OCM66 cells were grown on microscope slides coated with collagen and fixed with 3:1 

Methanol:Acetic Acid then subject to sequential ethanol dehydration (2 minutes in 70%, 90% then 

100% ethanol) then air dried. Chromosome and centromere probes (Cytocell) were added to slides 

and then heated to 72℃ for 2 minutes, then left at 37℃ in a humid chamber overnight. Slides were 

then washed in 0.25 SSC at 72℃ for 2 minutes then in 2xSSC, 0.01% Tween at room temperature for 

30 seconds. Slides were then stained with DAPI and coverslips mounted with Vectashield.  

 

Microscopy 

Images were acquired using an Olympus DeltaVision RT microscope (Applied Precision, LLC) equipped 

with a CoolSnap HQ camera. 3D image stacks were acquired at 0.2µm intervals, using an Olympus 

100x 1.4 numerical aperture UPlanSApo oil immersion objective. Deconvolution and analysis was 

performed using SoftWorxExplorer (Applied Precision, LLC). 
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Single cell clonal outgrowth and sequencing 

Single cells were dispensed into 96 well plates using the CellenOne microfluidics system. Clonal 

populations were monitored until confluence or overlapping growth and moved to a 24-well plate 

until confluence at which time cells were counted and stored in freezing medium until sequencing. 

The number of cell generations that occurred since the starting cell (n) was estimated using the 

relationship 2n = final cell count. 

 

Single cells were dispensed into 384 Lo-bind DNA plates containing unique pairs of Nextera i5 and i7 

primers using CellenOne microfluidics. OCM66 library preparation followed the tagmentase based 

DLP+ method described previously (Zahn et al., 2019). Demultiplexing was performed based on 

unique-barcode identifiers using bcl2fastq (v1.8.4, Illumina). Demultiplexed reads were trimmed using 

trimmomatic using Nextera adaptors and length quality parameters and QC was performed using 

fastqc. Trimmed reads were aligned to GRCh38 genomic reference using bwa-mem, only reads over a 

map quality of 10 are used for downstream analysis. For Kuramochi, library preparation used a PCR 

based method where single nuclei were isolated and stained with 10 μg/mL propidium iodide and 10 

μg/mL Hoechst was used. Single nuclei with low Hoechst/PI fluorescence (G1 population) were sorted 

into 96-well plates containing freezing buffer using a FACSJazz (BD Biosciences). Pre-amplification-free 

single-cell whole genome sequencing libraries were prepared using a Bravo Automated Liquid 

Handling Platform (Agilent Technologies, Santa Clara, CA, USA), followed by size-selection and 

extraction from a 2% E-gel EX (Invitrogen). Single-end 84-nt sequence reads were generated using the 

NextSeq 500 system (Illumina, San Diego, CA, USA) at 192 single- cell DNA libraries per flow cell. 

Demultiplexing based on library-specific barcodes and conversion to fastq format was done using 

bcl2fastq (v1.8.4, Illumina). Duplicate reads were called using BamUtil (v1.0.3). Demultiplexed reads 

were aligned to the GRCh38 reference genome using bowtie (v2.2.4), and only uniquely mapped reads 

(MAPQ>10) were used for further analysis. To validate the comparison of the two sequencing methods 

we utilised previous data produced by the Taylor lab (Nelson et al., 2020) using the PCR-based method 

of OCM66 single cells, with our DLP+ data. Here we utilised the dissimilarity score to confirm there 

were no major dissimilarities or artifacts from the sequencing methods (Figure S3). Copy number 

analysis was performed using AneuFinder (v1.26.0) using 500kb bins, GC correction and blacklisting, 

then edivisive was used to determine the most likely copy number states. We only analysed cells 

between 0.5M-3M reads/cell, and verified even coverage along the genome in order to ensure an 

equal ability to detect CNAs across all cells and discarded any CNAs below 0.8 Mb for further analysis. 

Each sample was also analysed using the developer version of AneuFinder (GitHub) where the ground 
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ploidy was constrained between 2 and 3. Afterwards each sample was subject to modal normalisation, 

in 500kb sliding windows the modal copy number was calculated, creating a reference used to re-

analyse each cell. Any data that had less than 20 reads per bin were discarded.  

  

Heterogeneity and aneuploidy scoring  

To measure the unlikeness and distance between cell CNA profiles, we developed a dissimilarity score 

based on the combination of two similarity measures: cosine similarity and euclidean distance. Cosine 

similarity measures the cosine of the angle between two vectors and ranges from -1 to 1, where 1 

indicates identical directions, 0 indicates orthogonality (no similarity), and -1 indicates opposite 

directions. Cosine dissimilarities are measured by subtracting 1 from cosine similarities. The Euclidean 

distance measures the straight-line distance between two points in Euclidean space. It considers the 

magnitude of the vectors and provides a non-negative value. To have measures within the range of 0 

to 1, distances were max-normalized. Therefore, the resulting dissimilarity score ranges between 0 

and 1, where 0 indicates maximum similarity, and 1 indicates maximum dissimilarity. 

 

Let Sc  represent the cosine similarity between two vectors, and Se represent the normalized Euclidean 

distance between the same vectors. The dissimilarity score (D) can be defined as a function of Sc  and 

Se  as follows: 

𝐷	 =
1 − 𝑆𝑐 + * 𝑆𝑒

𝑚𝑎𝑥(𝑆𝑒)1

2
	

 

To calculate dissimilarity scores, genomes were divided in sliding windows of 500Kb with a step size 

of 1/3 the window size, having a total of 3 windows per 500Kb. The sliding windows were intersected 

with CNA profiles to calculate the mean total CN of each window. The dissimilarity scores were 

calculated from these vectors. 

 

Subsetting of clonal, subclonal and unique CNAs 

Any CNA removed by modal analysis was considered clonal. Those that remained were further filtered. 

A CNA was considered to be unique if at least one of the breakpoint locations did not overlap with any 

other CNA breakpoint, allowing for 1 Mb error. Any ‘unique’ breakpoints that occurred at either end 

of the chromosome were ignored to prevent mapping artefacts. CNA filtering and measurement 

scripts are available at https://github.com/MBoemo/clonalMasker and a variant of clonalMasker 

which filters via breakpoint rather than whole CNAs.  
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Supplementary Figures 

 
 

Supplementary Figure 1. A) Low-pass whole genome sequencing copy number heatmaps, each row 

represents a single cell, each column a chromosome and the colour (indicated by key) represents a different 
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copy number. B) Pseudobulk copy number profiles, created by merging reads from all single cells to produce a 

bulk copy number profile. 

 

 
 

Supplementary Figure 2. A) Copy number heatmaps indicating the difference from inferred ancestral 

karyotype (modal) reference (see methods), with the corresponding ancestral reference above each 

heatmap. Heatmaps show the modal copy number in grey and copy number gains and losses in reds 

and blues respectively according to the colour key. B) Diagram showing unique CNAs in Kuramochi 

clonal  populations after modal analysis and CNA filtering, red corresponds to CNA gains and blue to 

CNA losses, orange indicates the chromosome centromere C) Graphical representation of the number 

of subclonal and unique CNAs per chromosome for each clonal population. D) Modal analysis (top) 

and unique CNAs (bottom) from parental population analysis. 
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Supplementary Figure 3. A) Dissimilarity heatmap analysis of OCM66 parental population and original 

scWGS performed in (Nelson et al., 2020). B) Replotted copy number heatmap of original scWGS data 

from (Nelson et al., 2020). 
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