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Abstract

The resolution of complex problems is widely seen as the next challenge for

hybrid human-AI teams. This paper uses experiments to assess whether there

is a difference in the quality of human reasoning depending on whether they

interact with humans or algorithms. For this purpose, we design an interactive

reasoning task and compare the performance of humans when paired with other

humans and AI. Varying the difficulty of the task (i.e. steps of counterfactual

reasoning required), we find that for simple tasks subjects perform much better

if they play with other humans, while the opposite is true for difficult problems.

Additional experiments, in which subjects play with human experts, show that

the differences are driven by the knowledge that AI reasons correctly rather

than that it is non-human.
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“Organizations that use machines merely to displace workers through

automation will miss the full potential of AI. Such a strategy is misguided

from the get-go. Tomorrow’s leaders will instead be those who embrace

collaborative intelligence [. . . ]” (Wilson and Daugehrty, 2018, p. 123).

1 Introduction

An important purpose of AI is to help humans make better decisions. Traders

often make their decisions after interacting with AI-based investment research tools

combining their “hot cognition” with AI’s “cold cognition” (Buczynski et al., 2021).

In our everyday life we encounter more and more AI-based digital assistants (like

Siri, Google Home, or Alexa). Information systems engineers have accepted the

challenge to provide answers to the question of how users and AI can best interact

according to the task at hand (Maedche et al., 2019).

The arguably biggest challenge for AI designers is the design of systems, where

humans and AI collaboratively solve complex problems. Memmert and Bittner

(2022) review the emerging literature with respect to the direction taken. The pre-

dominant research questions addressed by experiments with game-like environments

in AI, systems science, and engineering are the determinants of human acceptance of

AI and its perceived likeability, humanness, and trustworthiness (Tabrez et al., 2019;

Ashktorab et al., 2020; Liang et al., 2019; Wang et al., 2016; Merritt and McGee,

2012). Only in some studies where there is an objective performance measure is

joint performance evaluated (Geraghty et al., 2020; Gao et al., 2020). The impor-

tant question of whether human reasoning quality differs depending on whether they

interact with humans or with AI has only received limited attention. Knowing the

factors that determine whether interacting with humans or AI leads to better rea-

soning is important for the decision of which problems should be solved by groups

of humans and which by mixed human-AI teams.

The mentioned studies are not suitable for answering this important question.

The main contribution of this paper is the design of experiments that provide an

answer to this question. For this, we exploit the methodological advantages of

experimental economics. While the experiments described above are very rich and

sophisticated with respect to the game environment and the AI algorithms used, they

suffer from lack of control. The complexity of the environment makes it virtually

impossible to measure the quality of reasoning. Furthermore, human participants
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are not incentivized and deception is used regularly.1 Our novel experiments are

designed to cleanly measure the reasoning performance of our subjects conditional on

the difficulty of the task and on being paired with humans or algorithms. To achieve

this, we need a well-defined group task that allows a clean measure of individual

reasoning quality.

We use a logical puzzle commonly referred to as the Red-Hat Puzzle or the

Dirty-Faces Game (Littlewood, 1953), which has recently been used to test itera-

tion abilities in humans (Weber, 2001; Bayer and Renou, 2016b,a). We develop two

versions of this puzzle, one where a subject plays with other humans, and one where

a subject plays with algorithms. The structure of the game and the decision inter-

face for the two versions are identical. Both conditions present the puzzle framed

as a game with either other humans or infallible AI players. The structure of the

Red-Hat Puzzle allows us to vary the difficulty of the puzzles as measured by the

steps of counterfactual reasoning required. We employ four different difficulty levels

in both conditions. We find that humans reason better when paired with humans

in easy tasks (i.e., two steps of iterative reasoning required), while interacting with

algorithms yields better reasoning in difficult tasks (four steps required). We con-

jecture that the human mode of reasoning differs depending on with whom they

play.

The two main differences between the two treatments are a) participants facing

humans or machines and b) that the humans’ opponents might make mistakes while

the algorithms are always correct. Therefore, our initial experiments cannot cleanly

attribute the observed treatment effect to either of these two differences. In an

additional experiment, we pair our subjects with expert humans, where it is common

knowledge that they are able to solve the puzzles. The reasoning quality in this

expert condition is virtually identical to the reasoning quality in the AI condition,

while it is significantly different from the behavior in the human condition. We

conclude that knowing that you are playing with humans who also have to figure

out how to solve the puzzle and therefore are in the same boat as yourself activates

a different cognition mode.

We conjecture that subjects who are paired with humans in the same situation

are building mental models of their own situation and the situation that other

1In most of these studies participants always interact with the AI, and treatment variations
consist of either being correctly informed of this fact or being wrongly told that their partner was
human.
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humans face (see Johnson-Laird, 2006, for an introduction to mental-model theory).

For simple tasks, this is a very successful mode of reasoning, as it is easy to put

yourself in the shoes of the other humans. For difficult tasks, the number of mental

models a human needs to hold in her memory becomes prohibitive. When playing

with algorithms or experts who know the underlying algorithm, humans do not build

mental models but try to understand the pattern in the algorithmic behavior. This

is more difficult in general, but once it is accomplished, it still works in difficult

situations.

2 Human-AI interaction experiments in business, eco-

nomics, and psychology

There is a quickly growing literature in organizational decision making that develops

frameworks for how to best organize human-AI interaction (e.g, Shrestha et al., 2019;

Murray et al., 2021; Kellogg et al., 2020). In the experimental business literature, the

determinants of distrust in algorithmic advice are a very prominent research topic.

Studies carried out in experimental psychology in general find that humans are to a

certain degree algorithm-averse (Dietvorst and Bharti, 2020; Dietvorst et al., 2015;

Efendić et al., 2020; Hertz and Wiese, 2019). This is also the case in a variety of

different business domains such as accounting (Cao et al., 2021; Commerford et al.,

2021), management (Chen et al., 2021), or finance (Filiz et al., 2022).2 Factors

that have been found to mitigate algorithm aversion are time pressure (Jung and

Seiter, 2021), feedback on poor past performance when ignoring AI advice (Dargnies

et al., 2022), the possibility to modify the algorithmic advice (Kawaguchi, 2021),

tournament incentives and AI advice framed to contain human expertise (Greiner

et al., 2022).

There is also a large body of literature at the intersection of economics and

finance, where trading algorithms are used in market experiments. The recent liter-

ature is reviewed in Bao et al. (2022). Several studies compare humans to algorithms

and assess their relative performance (e.g., Das et al., 2001; Gjerstad, 2007; Luca

and Cliff, 2011; Akiyama et al., 2017; Tai et al., 2018; Hanaki et al., 2018; Aldrich

and Vargas, 2019; Peng et al., 2020; Ashktorab et al., 2020). In general, algorithms

perform better, while humans better adjust to crashes or periods of high volatility.

2An exception in finance is Germann and Merkle (2019), who do not find algorithm-aversion.
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Our study is related to this literature, since performance in a market is related to

reasoning performance. The main difference is that we study cooperative problem

solving, while market environments are competitive.

The use of computer players in experiments has a long tradition in experimental

economics. March (2021) surveys the literature and concludes that computer players

are used predominantly as methodological tools.3 Direct investigations of the impact

of the human-AI interaction on behavior and outcomes are rare. March concludes

that it is still possible to draw a few conclusions about human-AI interactions from

this literature. The two insights most relevant to our paper are that humans behave

differently when paired with computer players and that their cognition changes

when interacting with computer players. Our experiments further strengthen these

points. Our setting ensures that there is no incentive to behave differently for our

participants if paired with humans or AI, regardless of what they believe about how

their partners play. Hence, our finding that behavior differs across playing with

humans and AI, shows that there is a direct link between the changed mode of

reasoning and behavior.

3 The Red-Hat Puzzle and its experimental implemen-

tation

Picture the following situation. There are n players in a room wearing white or

red hats. Each player sees the hat color of all the other players but not his own.

Everyone’s task is to find out one’s own hat color. It is commonly known that at

least one person has a red hat. A moderator comes along tells players that at least

on person wears a red hat and asks the players about their hat color. Players can

answer “I have a red hat with certainty”, “I have a white hat with certainty” or “I

can’t possibly know.” Once everyone has answered, the responses of all players are

made public. Once everyone has learned the previous responses, the moderator asks

again. This continues until everyone has deduced his hat color.

Although at first sight it seems unclear how people could deduce their hat color,

some counterfactual reasoning soon reveals that it is possible. Start with the case

where there is only one person with a red hat. Then this person sees no other red

3The typical methodological purpose of the use of computer players are the removal of social
preferences, the elimination of strategic uncertainty, noise reduction, or the inducement of types of
players.
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hats and therefore should be able to infer, taking one step of reasoning, that she

must have a red hat. She announces “I have a red hat with certainty.” All other

players see one red hat, ex ante cannot possibly know their hat color, and should

answer accordingly. In the next round, though, they can infer their hat color by

looking at what the person with the red hat has said the first time round. The two

steps of counterfactual reasoning for this are as follows: “This person said that she

has a red hat. She could only have inferred this if she did not see any other red

hats. Therefore, she did not see any red hats and I must have a white hat.”

Now suppose that we have a situation with two red hats. The players with the

red hats see one red hat each, the others see two. In the first round of answers,

nobody can possibly know their hat color. Then in round two, the players with red

hats can know their hat color. The reasoning (using two steps) is as follows: “The

person I see wearing a red hat would have inferred having a red hat if she had not

seen anyone else with a red hat, but she announced that she did not know her hat

color. So she must have seen another red hat. As I don’t see anybody else with a

red hat I must have one.” Consequently, in the second period the two players with

red hats will announce “I have a red hat with certainty” while the others cannot

possibly know. In the next round, though, the white-hatted players can deduce their

hat color by making three steps of counterfactual reasoning: “the two red-hatted

players inferred that they have red hats, realizing that the other player could not

infer their hat color in the first round. But in order to infer that, they could not

have seen a third person wearing a red hat. So I must have a white hat.”

This logic extends to more and more complex situations with more and more

red hats. In general, it is always possible to solve the puzzle. If m is the number of

red hats a person sees, then the number of counterfactual reasoning steps necessary

to solve the puzzle is m + 1. There is one complication, which we exploit in our

design. An individual has to rely on the other players’ announcements stemming

from correct reasoning in all but the simplest case (where they only see white hats).

Playing this game with other humans or algorithms causes strategic uncertainty of

different kinds. Playing with humans might help improve decision-making, as it

provides a cue to put oneself in the shoes of others, which is one way of solving the

puzzle. Playing with computers (or experts who are always correct), on the other

hand, might provide a cue to think about a rule or algorithm, which is another way

of solving the puzzle.

For our experiments, we chose to restrict the number of hat carriers to four.
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Then, from the point of view of a player, there are seven logically distinct situations.

The situations differ in how many red hats the player sees and if she wears a red

hat herself or not. Table 1 lists the situations where the level of difficulty, measured

in necessary steps of reasoning, is equal to the number of red hats seen plus one.

Red hats seen 0 1 1 2 2 3 3
Reasoning steps required 1 2 2 3 3 4 4
Having a red hat yes no yes no yes no yes

Table 1: The seven distinct situations

4 Experiment 1: AI and human condition

In what follows, we explain the two conditions that are designed to test the impact of

playing with humans or AI on the quality of reasoning. In both conditions, subjects

face strategic uncertainty. If paired with humans they cannot be sure how they

will behave. If paired with AI, strategic uncertainty is only removed if the humans

perfectly understand the structure of the puzzle. However, as we will show, there

is always a unique logically correct choice for any history regardless of how it has

been reached. Therefore, differences in beliefs about the game of the opponent are

irrelevant for someone who fully understands the structure of the problem. The way

a person reasons is likely to depend on the source of strategic uncertainty, though.

If playing with humans, a participant is likely to be prompted to think about what

the other humans see and how they decide what to answer in each round. Instead, if

paired with infallible AI players, a participant is likely to be prompted to determine

the algorithm the AI players are using. Moreover, we are careful to make sure that

the conditions have as few differences as possible and that there is no incentive in

the human condition to not follow the logically correct solution path.

4.1 The AI condition

In the AI condition, subjects were paired with three computer players. Subjects were

informed in the instructions that at any stage of the game only one of the following

three answers was logically correct: “I have a red hat with certainty”, “I have a white

hat with certainty” or “I can’t possibly know.” Furthermore, subjects were informed

that computers will always choose the logically correct answer. Subjects saw the hat
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colors of the three computers on the computer screen. Their own hat color was shown

as a question mark. In a pregame test subjects had to answer control questions

that showed if they understood the screen and its immediate implications for the

information the computers have. After each round of announcements, the subject

sees all previous own and the computers’ announcements. Each subject played only

one randomly determined puzzle out of the seven distinct puzzles. All subjects who

participated in the AI condition entered a draw for two prizes worth 300 Australian

dollars (approximately $US 200) each if they solved their puzzle correctly. Note

that subjects were told that solving a puzzle correctly meant choosing the logically

correct answer until the correct color of their hat was determined.

4.2 The human condition

For the human condition our aim is to produce an environment as close as possible

to the computer environment, where all players are human. In particular, we are

interested in an environment that generates the same incentives as the AI condition,

which are robust to other-regarding preferences. In other words, we are looking

for an environment where subjects have an incentive to follow the logical path of

reporting in order to determine their hat color. We replace all the computer players

with humans. Now four humans are playing in one group. Instructions and test

questions are identical, up to the few changes necessary to accommodate groups

consisting entirely of human subjects. The only difference on the decision screen

was that the word “computer” was replaced by “human.” Again, we stressed in

the instructions that there is a logically correct solution to the puzzle. We add the

information that a group has the necessary number of announcement rounds to find

all their hat colors. Our aim is to give the same incentives to subjects in the human

condition as in the AI condition. For this purpose, we have to adjust the payment

rules. In the human condition, a subject in a group gets a ticket for the lottery of

two prizes of AUD 300 if she and the other three subjects of the group correctly

determine their hat color.

There are multiple reasons for making the payment contingent on the whole

group’s success rather than on individual behavior alone. One rationale is related to

the possibility that a subject makes a mistake early on, which “spoils” the game for

the others. Say a person who sees two red hats in the first round already wrongly

announces “I have a white hat.” In this case the other players observe a clear

contradiction and realize that someone made a mistake. Hence, it is not possible
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anymore for these players to logically deduce what their hat color is. Consequently,

it is not possible to individually determine if this person is correct and to decide if

this person deserves a ticket or not if an individual payment rule is used. Under the

collective payment, in this case no one gets a ticket. We stopped the game whenever

someone made a mistake, and other players cannot logically deduce anything from

the other players’ answers. Note that not all mistakes lead to logical inconsistencies.

To see this, assume that a participant sees one other red hat and correctly reports “I

cannot possibly know” in period one. The person with a red hat should declare “I

have a red hat”, or “I cannot possibly know” depending on whether or not she sees

another red hat. Both answers, regardless of whether the correct one was chosen,

still allow the other player to draw conclusions. Therefore, it is not necessary to

stop the game in this situation, even if a mistake was made. Stopping the game

for any mistake regardless of whether it caused a logical inconsistency or not would

have exacerbated the problem that some participants’ decisions are not observed,

which causes a selection problem (see Section 4.4 for details).

An additional benefit of the collective payment is that distributional motives

(like maximizing the payoff difference to other players or maximizing the total group

profit) that could lead to different behavior do not change incentives, since all players

in the group have the same payoff by construction. This design provides an environ-

ment with incentives that are as similar to the AI condition as possible. However,

it does not remove strategic uncertainty. A subject who fully understands how the

puzzle should be solved by all players cannot be sure that the other players will

follow the path to the solution. However, despite the strategic uncertainty, there

is no incentive for a subject to deviate knowingly from the solution path.4 This

enables us to compare the reasoning quality of humans in situations that differ only

with respect to the partner being human or AI, as long as the reasoning effort is not

different between treatments.

One possible concern with the joint payment rule is that subjects might exert

less effort to solve the puzzle than when they are solely responsible for payment.

We are quite confident that the high prize and the intrinsic motivation to solve the

puzzle together are enough to induce maximum effort under both conditions. A

comparison of the time subjects take across the two conditions will provide evidence

4Any deviation from the logical path is weakly dominated by following the path. Any positive
probability placed on the other players following the logical path makes following the path as well
the unique best response.
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for this hypothesis.

In conclusion of this section, we briefly want to comment on an alternative design

that we considered but decided against. One could have told the subjects that the

game is stopped as soon as a player deviates from the logically correct path. This

would have removed strategic uncertainty in the interim. Subjects would have known

that their human partners have not made a mistake up to the period in which they

are in. In this case, the only strategic uncertainty points to the future. Then giving

a ticket to all individuals who had not made a mistake up to the point where the

game stops also gives rise to a dominant strategy equilibrium. We decided against

this design because social preferences would come into play. Making a mistake early

might not be too bad for some players anymore, since it gives the other three group

members a lottery ticket. With social preferences that include a social efficiency

motive (Charness and Rabin, 2002; Andreoni and Miller, 2002), many types of play,

including deliberately making a mistake early, become rationalizable.

4.3 Experimental procedures

This study follows the standard rules for economic experiments: no deception, fully

scripted instructions, and monetary incentives (Hertwig and Ortmann, 2001). We

recruited our participants using ORSEE (Greiner, 2015) from our subject pool,

which contains undergraduate and postgraduate students from different disciplines

and from different universities in Adelaide together with some non-students. The

experiments were conducted at AdLab, the Adelaide Laboratory for Experimental

Economics, prizes were drawn among the eligible subjects once all sessions were

completed, and the prize monies were paid out in private.5 The actual treatments

were programmed in z-Tree (Fischbacher, 2007). The situations subjects could face

differed with respect to the number of counterfactual reasoning steps that are nec-

essary to determine the color of their own hat. One situation requires one step

of reasoning, while in two situations each, two, three, and four steps are required.

Table 2 reports the number of subjects in situations with one, two, three and four

steps of reasoning in the two conditions. 6

5The data for Experiment 1 stem from a broader long-running research project on cognitive
abilities, counterfactual reasoning and behavior in strategic situations and were collected between
November 2009 and August 2010 but remained unused for a prolonged period of time.

6Note that in the human condition, subjects in the same group can have different levels of
difficulty, as the difficulty is determined by the number of red hats a subject sees, which differs
whenever two subjects have different hat colors.
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COMPUTER HUMAN
5 sessions 12 sessions

1 step 21 15

2 steps 40 69

3 steps 34 69

4 steps 34 75

Total 129 228

Table 2: Number of participants in the different conditions

4.4 Sample selection in the human condition

If a player in the group makes a mistake early, which stops the game if it creates a

logical inconsistency, then we do not observe if the other players are able to solve the

puzzle. This is unavoidable due to the structure of the puzzle and does not originate

from the collective payment rule. Similarly, some mistakes that are not ending the

game (such as delaying the announcement of a deducible hat color) either do not al-

low the other players to draw valid inferences or even imply a different logical course

of action. In anticipation, we ran more sessions in the Human treatment. Hence,

an easy solution to the limited observability could be to just drop all subjects that

cannot be classified as correct or wrong. Unfortunately, this procedure would lead

to biased results. To see this, imagine the following scenario: A player with a white

hat sees two red hats and makes a mistake in the first round to announce “I have a

red hat.” This player was clearly wrong and will be counted as such. Also, suppose

that the other players all announce “I cannot possibly know” in the first round,

which is logically correct. These three other players’ actions would not enter the

analysis, since the game ends after the mistake of the other subject. The informa-

tion that these subjects have completed the first round of answers without mistakes

is lost. Just dropping these observations leads to a downward biased estimate of the

success rate for all difficulty levels that require more than one step of counterfactual

reasoning.

In what follows, we demonstrate this with the help of an example. Suppose the

true distribution of abilities is such that for a given puzzle 3 out of 4 people can

solve the puzzle but the other quarter of subjects always makes a mistake in the

first round. The true probability of individual success is 3/4. If someone makes
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a mistake early, then we cannot observe whether the others are able to solve the

puzzle to the end or not. The average number of subjects we observe finishing the

puzzle correctly per group is 4 ∗ (3/4)4 ≈ 1.27, since correct answers would only be

observed in groups with four subjects that are able to solve the puzzle. In all other

cases we would only observe the subjects that are making mistakes, while those that

are not making mistakes in the first round would be missing observations. Taking

into account that the number of errors in a group is binomially distributed, we can

calculate the number of expected observed errors per group, which is 4∗1/4 = 1. By

just dropping all the missing observations, our estimated success probability would

be the number of successes observed divided by the number of successes and failures

observed. With the sample size going to infinity, our estimate would converge to the

expected number of observed successes per group divided by the sum of expected

successes and expected failures. In the example, this yields an estimated individual

success probability of 1.27/(1.27 + 1) ≈ 0.56, which is clearly lower than the true

success probability of 3/4.

4.5 Results

It will be necessary to correct for the selection bias in the human condition detailed

above. We assign the value “correct” to a subject if she solved her puzzle correctly.

The value “wrong” is assigned if the subject made a mistake. Finally, all subjects

who ended up in a situation where they had no possibility to infer their hat colors

due to mistakes of others are assigned the value “not observed.” Table 3 shows

the results of this classification (together with play in the AI condition). A first

look already reveals some interesting facts. Compared to the AI condition, subjects

in the human condition seem to do very well in the two-step puzzles, since 32 of

42 observed subjects (69.5%) solved the puzzle correctly, while a third of all the

subjects were not observed, which means that they were still on the correct path

when their game ended prematurely. In contrast, not a single person solved the

puzzle with four steps correctly, while still a fifth of subject did in the AI condition.

A more formal analysis needs to correct for the describe selection problem. For

this, we employ a sample-selection probit approach in the tradition of Heckman

(1979) in order to correct for the selection bias. These models contain two equations,

a selection equation that estimates the determinants for a subject being observed,

and a second equation that estimates the determinants of the variable of interest. In

the equation of interest, the results from the selection equation are used to correct
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HUMAN AI
1 step 2 steps 3 steps 4 steps 1 step 2 steps 3 steps 4 steps

correct 15 32 2 0 21 21 6 7
100.0% 46.4% 2.9% 0.0% 100% 52.5% 17.7% 20.6%

wrong 0 14 29 34 0 19 28 27
0.0% 20.3% 42.0% 45.3% 0% 47.5% 82.3% 79.4%

unobs. − 23 38 41 − − − −
− 33.3% 55.1% 54.7% − − − −

Total 15 69 69 75 21 40 34 34
100% 100% 100% 100% 100% 100% 100% 100%

Table 3: Play in the human and AI condition

for the non-random sample of observations. In our case, the variable of interest

(solving a puzzle correctly) is dichotomous. Therefore, we use probit models on

both stages by following the procedure first proposed in Van de Ven and Van Praag

(1981).

In order to obtain identification independently of the functional form of the pro-

bit, we require at least one variable in the selection equation that has no direct

influence on the performance of subjects. The intuition for this is as follows: The

results of the selection equation are used to form an additional variable in the equa-

tion of interest to control for subjects’ different likelihoods of being observed. For

the additional variable to contain any useful information for the equation of interest

beyond the functional form of the probit regression it was generated with, it needs

to contain at least one relevant variable that is not already contained in the equa-

tion of interest. Recall that a subject is not selected to be observed whenever other

players make mistakes early. We use a dummy for the number of male players that

a person plays with as an important variable, since males tend to make fewer mis-

takes in our puzzles. Furthermore, we use a dummy variable for the hat color of the

individual, since this is what the other players see of a subject. Similarly, we include

a set of dummies that indicates in which position (left, left-middle, right-middle, or

right) a subject’s answers were presented on-screen to the other subjects. Together,

these variables appropriately identify the selection equation. The coefficients of the

selection equation can be found in Appendix A. As a robustness check, we will in a

later Section compare what we observe in the human condition with what we would
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have observed if the play in the AI condition had occurred in groups of four.

It is straightforward to estimate the success rate of subjects in the AI condition

for the different number of steps required. The simplest way is just to take the

fraction of subjects that correctly solved the puzzles. A slightly more sophisticated

approach uses probit regression. In such a regression, the dichotomous dependent

variable takes the value of one if a puzzle was solved successfully and zero otherwise.

Individual characteristics such as mathematical background, gender, course of study,

and age can be controlled for. The most important independent variable is the

number of reasoning steps required for a puzzle. Then, using the regression results,

average predicted success rates for the different levels of difficulty and their standard

errors can be calculated. As mentioned above, we have to use a two-step selection

model in the human condition to correct for the selection error in order to arrive at

comparable estimates.

Table 4 shows the results (average marginal effects) of the probit regression (AI

condition) and the second-stage probit of the sample selection regression (human

condition).

If subjects play with computers, on average the probability that subjects can

solve a puzzle with three or four steps is lower by about 30 percentage points than

that for solving a puzzle requiring two steps. The success rates for puzzles with three

or four steps are not significantly different. We did not obtain a coefficient for one

step, as everyone solved that problem. When playing with computers, medical stu-

dents tend to perform worse than other students. Their performance is significantly

worse than that of subjects classified as “others” (p < 0.05, Wald test, one-sided)

and as law students (p < 0.076). If subjects play with humans, then all one-step

problems are solved correctly. Similarly, when playing with humans subjects are less

likely to solve problems with three steps than with two steps. This time, we do not

obtain an estimate of the impact of four-step puzzles on likelihood, since remark-

ably all 34 observed subjects did not solve the level four puzzles when playing with

humans. More evidence that reasoning differed considerably across the two condi-

tions is that medical students performed far better than other students (p < 0.02,

one-sided Wald tests versus “Engineering/Science, “Law” and “arts / economics /

business”). Recall that in the AI condition, medical students performed poorly. Fi-

nally, as observed in other studies, we observe a gender effect that is robust between

conditions.

We are primarily interested in the performance of humans paired with humans
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AI HUMAN
Probit 2nd stage Probit

Prob{correct = 1}
Step dummies (2 steps is base)

3 steps −0.310∗∗ −0.524∗∗∗

(0.099) (0.062)
4 steps −0.291∗∗

(0.098)

Course dummies (Arts/Econ/Business is base)
Engineering/Science 0.155 −0.006

(0.106) (0.010)
Law 0.301 −0.092

(0.246) (0.105)
Medicine −0.062 0.247∗

(0.132) (0.103)
Other 0.335 −0.036

(0.201) (0.167)

Male 0.199∗ 0.190∗∗

(0.083) (0.064)

Controls (age, maths, control ok) not significant

LogL −51.376 −117.353
N 108 138

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Average marginal effects on success probabilities

versus those who faced computers. For this purpose we calculate the predictive

margins (averaged over the sample) for the different levels of difficulty from the two

regressions (probit for the AI condition and sample-selection probit for the human

condition). Figure 1 shows the predicted success probabilities (with error bars that

represent the 95 percent confidence interval) for the two treatments. This gives rise

to the central result of this paper.

Finding 1 Subjects have higher success rates in human groups if two steps of rea-

soning are necessary, while the success rate is higher playing with computers if four

steps are required.
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In order to establish the finding above, we constructed tests of proportions across

conditions for the different steps using the estimated success rates and their standard

errors from the estimation. The difference is highly significant for two steps (z-test,

p < 0.01, two-sided), but not significant for three steps (p > 0.42, two-sided).

For four steps, frequentist statistical tests are not very sensible as the predicted

probability in the human condition has no variation.7 Instead we used a Bayesian

approach, where we assume a flat prior for the true success probability of subjects

in both treatments and then update our prior according to the observed data. The

resulting posterior probability that the success rate in the human condition is at

least as high as in the AI condition is smaller than 0.004.8

1 Step 2 Steps 3 Steps 4 Steps
0

0.2

0.4

0.6

0.8

1
1

0.78

0.26

0

1

0.5

0.19 0.21

Human
AI

Figure 1: Success rates across difficulty levels in the human and AI conditions

Comparing the estimated success rates clearly shows that it matters if subjects

play with computers or humans. Before we can discuss the mechanism behind this

result, we need to make sure that the differences are not an artifact of the payment

rules inducing different levels of effort in the two conditions. A priori, it is unlikely

that effort differences drive performance differences in tasks like ours. Camerer

7Taking the frequentist approach seriously would yield a p-value of zero, as the estimated success
probability in the human condition is zero without error, and we observed at least one success in
the AI condition.

8Starting with a uniform prior for the success probability, the posterior after z successes in N
trials is given by the beta distribution with parameters z+1 and N − z+1. Denoting the posterior
densities as fAI and fH , the probability that the success rate in the human condition is at least as
high as in the AI condition is

∫ 1

0
fAI(p)(1− FH(p)) dp.
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and Hogarth (1999) show in their meta-analysis that switching from hypothetical to

incentivized experiments often improves performance and efforts, while the incentive

size has a small impact or no impact at all. Bonner et al. (2000) show in another

meta-analysis that incentive effects are particularly rare in problem-solving and

reasoning tasks. The predominant explanation is that intrinsic motivation induces

subjects to think as hard as they can for as long as they can sustain it.

A good proxy for the effective strength of incentives is the time that subjects take

to think about a decision. Note that we did neither have a time limit for decisions

nor displayed the time taken. Hence, subjects could think as long as they wanted

before each announcement. Table 5 reports the average and (in parentheses) the

median decision times for each problem and decision stage. The time that subjects

took to think about their decision is extremely similar in the two treatments. We

observe large differences in reasoning quality in problems with two steps, while the

average time taken in the two treatments is within a second at both decision stages.

In the human condition, not a single subject solved a four-step puzzle, while in the

AI condition about every fifth subject solved the puzzle correctly. Still, for the first

three decisions, the average thinking times are extremely similar. In the final and

therefore crucial decision stage, the average decision time in the human condition is

longer than in the AI condition, which is inconsistent with subjects exerting less

effort in the human condition.

decision 1 step 2 steps 3 steps 4 steps
human AI human AI human AI human AI

1st
15.5 14.2 17.8 18.7 20.6 18.6 22.3 23.1
(7.0) (11.0) (13.0) (16.0) (14.0) (14.5) (17.0) (17.0)

2nd
36.3 35.5 49.2 54.4 48.3 44.5
(26.5) (29.0) (40) (43.5) (35) (34)

3rd
50.7 90.9 57.6 58.12
(25) (69) (41.5) (28)

4th
90.2 65.9
(80) (38)

Table 5: Average (median) decision times by treatment, difficulty and decision

For more formal evidence, we tested whether the distribution of thinking times

for each difficulty and the answer round differed between AI and the human con-

dition. Although we did not correct for multiple hypotheses testing, we did not
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receive a single significant result on any of the ten tests. P-values ranged from 0.16

and 0.97 for Kolmogorof-Smirnov tests and from 0.11 to 0.72 for the slightly more

powerful Epps-Singleton tests. We conclude that efforts are extremely unlikely to

drive the better (worse) performance when playing with humans in two (four) step

problems.

5 Experiment 2: Expert condition

Having established that humans reason differently when paired with other humans

still leaves room for two different potential drivers of the differences. It is possible

that just knowing that one plays with humans changes cognition. Alternatively, mere

knowledge of playing with humans might not be sufficient. It might be necessary that

cognition is only changed if a player knows that she faces other humans, who are in

exactly the same position as themselves. In other words, the question is whether the

driver of behavioral differences is the source of strategic uncertainty (AI vs. human)

or the kind of strategic uncertainty (group members know the same amount vs.

group members know how to solve the puzzle). An additional treatment, which

we call the expert condition, in which subjects are paired with human experts who

know how to solve the puzzle, allows us to discriminate between these two drivers.

We recruited an additional 144 subjects in eight sessions, who all played one

Red-Hat puzzle (21 with a difficulty of one, 59 with a difficulty of two, 34 with a

difficulty of three, and 30 with a difficulty of four reasoning steps). The sessions took

place in August and September of 2023. All subjects were paired with three experts.

It was made clear in the instructions (see Appendix 7) that the experts knew how to

solve the Red-Hat puzzle. This was made credible by the experts being introduced

with their credentials (like having a Ph.D. in economics) and by reminding subjects

that economic experiments never use deception. The only difference the subjects

experienced on their screens was that the other players were now named “Expert”

instead of “Computer” or “Group Member”.

5.1 Results

We ran the same probit regression as in the AI condition (see Appendix 9) and cal-

culated the average predicted success probabilities for the different difficulty levels.

Table 6 reports these success probabilities together with those estimated earlier for

the AI and human condition. Inspection shows that the probabilities in the expert
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condition are extremely similar to those in the AI condition. Z-tests reveal that they

are not significantly different (p > 0.55, p > 0.77 and p > 0.36 for two, three, and

four steps, respectively). The success probabilities differ significantly from those

in the human condition for two steps and four steps. For two steps, playing with

experts leads to lower success rates (p < 0.001). For four steps, the opposite is

true. The posterior probability that the underlying success rate is at least as high

in the human condition than in expert condition (if we start with flat priors for both

conditions) is smaller than 0.02.

Expert AI Human

1 step
1.00 1.00 1.00
(–) (–) (–)

2 steps
0.43 0.50 0.78
(0.06) (0.07) (0.04)

3 steps
0.21 0.19 0.25
(0.06) (0.07) (0.06)

4 steps
0.12 0.21 0.00
(0.05) (0.06) (–)

Table 6: Estimated success probabilities with standard errors in parentheses

Finding 2 Subjects’ success rates in the expert condition do not differ significantly

from those in the AI condition, but are lower for two steps and greater for four steps

than in the human condition.

This indicates that the kind of strategic uncertainty rather than the source of

strategic uncertainty drives differences in reasoning quality.

6 Robustness check

Before we interpret our results, we briefly present a robustness check we conducted.

Recall that in the human condition we had to use a statistical procedure (i.e. a

Heckman selection model) to correct for potential selection bias. As a robustness

check that the observed behavioral differences are not an artifact of sample selection,

we take the behavior of subjects in the two treatments without sample selection and

simulate what we would have observed if the same sample selection issue had existed.
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The sample selection issue in the human condition arises, as a subject’s behavior

might not be observed, as another subject in her group might make a mistake

before she either makes a mistake herself or solves her puzzle. In the AI and expert

conditions, this does not happen, as the other group members (computers or experts)

do not make mistakes. For both treatments without sample selection issues, we

randomly form 20,000 groups of observed human play and determine what would

have happened if they had played together.9 Comparing the simulation results in the

AI and expert conditions with the observed results in the human condition can show

if the observed behavior in the human condition can be generated by a combination

of individual behavior as observed in the other treatments and selection.

Table 7 Shows the simulated and real fractions of observed subjects and the

percentage of observed subjects who solved their puzzle correctly. We see that our

result that playing with humans increases the performance in problems with two

steps of reasoning is highly robust. The fraction of observed subjects that solve

the puzzle is about 25 percentage points higher in the human condition than in the

simulated groups with AI or experts.

1 step 2 steps 3 steps 4 steps

Human observed 100% 66.7% 44.9% 45.3%
correct if obs 100% 69.6% 6.5% 0.0%

AI observed 100% 65.1% 48.2% 45.1%
correct if obs 100% 44.7% 15.9% 8.2%

Expert observed 100% 77.0% 39.8% 56.9%
correct if obs 100% 45.1% 10.6% 8.8%

Table 7: Outcomes of simulated groups in the AI and expert conditions and actual
outcomes of human groups.

The other main result from above was that in the human condition, nobody

solved the puzzles with four steps, while in the AI and the expert condition still a

significant number of subjects managed to do that. Our simulations show that the

fraction of observed subjects in level four problems who solve them is still positive,

but below the fraction for all subjects. This implies that the result that playing

with humans yields worse outcomes for four-step problems is potentially less robust.

9In the human condition there are four possible different group compositions differing by the
distribution of hats. We simulated 5000 groups each.
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Finding a statistical test that establishes differences between the data from the

Human condition and the simulated data from the other treatments is tricky. A

reasonable approach is to treat the success fractions in the simulations as underlying

probabilities. It is then possible to test whether the observed successes and failures

are likely to have been generated by such probabilities. The appropriate test for

this is a two-sided binomial test.

For two steps, the Human data are very unlikely to have been generated by

the success probabilities resulting from the simulations (p < 0.001 for both AI and

Expert). This confirms our first main finding.

For three steps we cannot reject the hypotesis that the Human condition data

were generated from the success probabilities obtained from the simulations (p >

0.216 AI; p > 0.767 Expert).

For four steps, where we did not observe a single success in the Human condition,

we receive borderline significant results (p < 0.111 AI; p < 0.071 Expert).

Given these borderline test results, we investigate further. It might be the case

that the way the subjects were paired in the human condition was just a bad draw.

Maybe there exist quite a few possible bad draws when randomly pairing the subjects

in the other two conditions, which also yield zero observed successes. In order to

test the likelihood of this occurring, we ran further simulations. These further, more

detailed simulations are designed to take into account correlations within groups,

which are ignored by the tests conducted above.

In the human condition, we had 30 groups involving subjects who required four

steps of reasoning to solve their puzzles. In 15 of these groups there were three red

hats, and the person without a red hat required four steps. In the other 15 groups

there were four red hats and all four subjects required four steps of reasoning.

In the simulation we randomly filled these 30 groups with subjects from the two

other conditions that faced exactly the same situation. We repeated this procedure

5,0000 times for both the expert and the AI condition, and counted how many sets

of thirty groups would produce zero correctly solved level four problems. It is very

unlikely that behavior under the expert condition would have led to the observation

of zero successes in four-step problems. The fraction of simulated sessions with zero

observed successes was 0.03. Observing zero successes was more likely in the AI

condition, with the fraction being 0.13. At least in the AI condition the simulated

fraction of zeros confirms the binomial test result. In order to further investigate

whether introducing selection in the AI condition could have plausibly produced the
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outcomes observed for four-step problems in the human condition, we compared the

fraction of observed subjects between runs with zero and runs with positive success

rate. The average fraction of observed subjects in the simulation runs with zero

successes is 39.7% and therefore lower than the fraction of observed subjects in the

human condition (45.3%), while the simulation fraction in runs where successes are

observed is 46.1% and closely matches the observed rate. Hence, it is implausible

that the behavior in the AI condition together with grouping could have led to both

zero successes and a selection rate of 45% as in the human condition.

7 Discussion

In the Wason Selection Task (Wason, 1966), a famous logic puzzle in psychology,

humans perform better if the task is framed in the sense of social relations and

norms rather than abstractly. The abstract version of the task goes like this: “You

are shown a set of four cards placed on a table, each of which has a number on one

side and a colored patch on the other side. The visible faces of the cards show 3, 8,

red and brown. Which card(s) must you turn over in order to test the truth of the

proposition that if a card shows an even number on one face, then its opposite face

is red?”

Less than 10 percent of subjects get it right and turn over the 8 and the brown

card. However, if one changes the context, then the number of people getting it right

increases considerably. An observation related to our results is that most people get

the task right if the context is about social rules and people like “People only drink

alcohol if they are older than 21 years” (Cosmides, 1989). Canessa et al. (2005) show

that the performance difference can be explained by the recruitment of additional

parts of the brain (in the right hemisphere) for social exchange tasks. If this effect

extends to our puzzle with humans, then ceteris paribus the Red-Hat Puzzle should

be easier if played with humans.

Mental Model Theory, which is sometimes used to explain performance differ-

ences in different versions of the Wason Selection Task, defines reasoning as “the

ability of humans to construct models from perception, description and knowledge

to formulate novel but parsimonious conclusions from these models, and to grasp the

force of counterexamples to these conclusions” (Johnson-Laird, 2006, p 249). This

theory is particularly good at explaining the variations in frequencies of correct de-

ductions, inductions, and abductions associated with different reasoning tasks. In
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the Red Hat Puzzle, it is easy to construct the two necessary own models, which

contain the hat colors of the other player, and the premise “there is at least one red

hat” and the two possible own hat colors (one for each model). For the case where

the subject sees only white hats, nothing else is necessary. It is easy to see for a

subject that the model containing a white hat for the subject is inconsistent with

the premise that there is at least one red hat. The conclusion “I have a red hat” is

an immediate and simple deduction.

All puzzles where a subject sees at least one red hat require a subject not only

to construct her own models, but also models about the models the other players

might construct. This is hard. As humans have problems holding many different

models in mind. It is also reasonable to expect that constructing a model of the

model someone else might construct is easier when the other person is known to be

similar to oneself. In other words, it should be easier to construct a model of the

models constructed by a similar human than by a computer or an expert with a

vastly better knowledge of the task. There are some studies (Baron-Cohen et al.,

1985; Leslie and Thaiss, 1992, e.g.) showing that autistic children have difficulty

with this kind of model construction, while they are able to solve equivalent tasks

about maps and pictures. Moreover, making sense of another player’s announcement

requires an induction on an explanation (sometimes called an abduction). Humans

are typically better at making sensible abductions if they have experience with the

object (Johnson-Laird, 2006, chapter 14). In our puzzles with humans, a subject

has to make an abduction on a human having faced the same problem as oneself,

which should be more familiar than making sense of what a computer or robot-like

expert has announced. In other words, putting oneself into the shoes of a similar

human should be easier than putting oneself into the shoes of a computer or of an

other human who differs significantly in knowledge from oneself. This should be

the case as long as a problem is simple enough to hold the required models in ones

mind.

Once the problem becomes harder, the strategic uncertainty becomes a real

problem if subjects indeed use mental models. The number of models of the own

mind and the models of the minds of others quickly surpasses the working memory

of humans. In the case of puzzles with difficulty four, the number of mental models

that a subject needs to hold in the working memory to solve the puzzle is so large

that the authors were not able to enumerate them all. Therefore, one would not

expect anyone using mental models to solve such a puzzle in the human condition.
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This is what we observe. This observation allows for a model-theoretic explanation

for why strategic uncertainty is so damaging in difficult puzzles, regardless of the

fact that nobody has an incentive to move away from the logically correct solution

path.

In contrast, playing with a computer might activate a different way of thinking.

Instead of trying to put oneself in the shoes of the other players (i.e. building mental

models of the situation as seen by other players), humans might search for a rule or

algorithm. The correct algorithm for the red hat puzzle is as follows: If you do not

see any red hats, announce “I have a red hat.” Otherwise anouncem times “I cannot

possibly know,” where m is the number of red hats you see. Then observe the last

announcement of the player(s) who have a red hat, announce “I have a white hat,”

if they declared red, and “I have a red hat” otherwise. The algorithm is difficult

to discover, but works for any level difficulty. The fact that we observe no drop

or only a modest drop in the success rate between difficulty three and four in AI

and expert condition suggests that successful subjects in the more difficult puzzles

in these conditions might have used algorithm-based reasoning. The absence of a

drop in success rates between difficulty three and four problems is confirmed within

subjects by a related experiment with AI (Bayer and Renou, 2016b), where subjects

play the seven situations.

8 Conclusion

Our results are of importance for theorists and AI designers alike. A general insight

from our study is that knowing how people solve problems interacting with humans

cannot easily be extrapolated to how good they will be at solving problems with

artificial intelligence. AI designers should keep this in mind. Theorists interested in

developing formal behavioural models can learn that bounded rationality depends

not only on the difficulty of a task but also on who we interact with.

Our specific results on the comparison of reasoning quality conditional on who

humans interact with is less general. To achieve clean identification, we used a very

specific task and a very stylized version of AI. The Red-Hat Puzzle is solvable by

round-based reasoning, where previous reasoning steps of the team members are used

as input. Therefore, the reasoning performances of individuals are complements,

and all members of the group have to reason correctly for a successful solution. We

cannot be sure that our findings generalize to tasks where individual performances
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are substitutes and the good performance of a team member can compensate for the

poor performance of another. It is possible that the change in cognition depending

on whether someone interacts with humans or an algorithm is specific to tasks with

complementarities.

In our experiments, AI consisted of a deterministic algorithm that always chooses

the logically correct option. In reality, most AI tools behave probabilistically and

sometimes make mistakes. Behavior in the AI condition is based on participants

knowing that their counterparts do not make mistakes. This knowledge eliminates

doubts of participants about the ability of computer players. Consequently, our

AI condition gives the subjects the best possible environment to succeed. This

has important implications for the generalizability of our results to the interaction

between humans and AI in real life. Our result that interacting with humans yields

better reasoning in relatively easy problems is likely to generalize as reasoning in

the AI condition was inferior despite the environment being more favorable than in

reality. Our second result is less likely to generalize. The relatively good performance

of participants in difficult problems when paired with computer might disappear

once they suspect that the computers make mistakes.

Finally, our results have implications for the methodology in experimental eco-

nomics and finance. The standard technique in experimentation of replacing some

human players by algorithms (e.g. computer buyers or traders) can be problematic,

as this might change the cognition of human subjects, even if the computer players

behave exactly as humans would.
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A Selection equation in the human condition

probit
coefficients

Selection equation

Red hat −0.829∗∗

(0.280)

Position in the group, 1 is the base
2 −0.336

(0.336)
3 −0.493

(0.363)
4 −0.891∗

(0.420)

Male −0.256
(0.209)

Number of males as group members, the base is 0
1 0.575

(0.389)
2 0.316

(0.379)
3 0.651

(0.379)

Constant 1.087
(0.588)

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: The selection equation



B Probit regression in the expert condition

Table 9: Average marginal effects in the expert condition

Expert condition

Prob{correct = 1}

Step dummies (2 steps is base)
3 steps −0.228∗∗

(0.0877)
4 steps −0.309∗∗∗

(0.0792)

Male −0.0393
(0.0755)

Step dummies (Arts/Econ/business is base)
Engeneering/Science 0.296∗

(0.126)
Law −0.00847

(0.104)
Medicine 0.284

(0.250)
Other −0.0961

(0.123)

Controls (age, maths, control ok) not significant

LogL −60.7079
N 123

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C Screenshots - not for publication



Figure 2: Screenshot from the AI condition

Figure 3: Screenshot from the human condition

D Instructions - not for publication



Figure 4: Screenshot from the human expert condition



Figure 5: Instructions for the human condition





Figure 6: Instructions for the AI condition





Figure 7: Instructions for the human expert condition

Instructions
 
 
Thank you for your participation in this experiment. If you read these instructions carefully 
and act upon them, you can earn real money. 
 
You are not allowed to communicate with other participants during the course of the 
experiment. If you do not follow this rule you may be excluded from the experiment. 
 
Your task 
Your task in this experiment is to determine the colour (red or white) of your hat. You will be 
paired with 3 other players which are Experts. These Experts are experienced with this 
decision task and fully understand how it works. You will be able to see the colour of the hats 
of the other players, but not the colour of your own hat. The experts in your group are in an 
equivalent situation. They observe your hat colour and the hat colours of the other group 
members, but not the colour of their own hat. However, everybody knows (you and all other 
group members) that at least one player has a red hat. The picture below shows a typical 
situation: 
 

 
 
You observe in this case that one of the experts has a red hat, while the other two have white 

ate that you do not know your hat colour.  
You are asked to decide what you can infer from the information you are given. There is one 
logically correct answer in every possible situation. Recall that the experts face the same 
problem as you do. They can see the hats of all the others but not their own. Therefore, in the 
above situation, Expert A knows that the hats of Experts B and C are white. Expert A also 
knows your hat colour. However, Expert A does not know her/his own hat colour. 



 
 
Above you can see a possible screen for your second decision. You again have to decide what 
you can infer about your hat colour. However, now you have the additional information about 
what the Experts announced in the decision round before. After you have made another 
decision, the game may end or continue. If the game continues, you will again be given the 
additional information of what the other group members inferred from the previous round. 
The Experts will get the same feedback.  
 
Once you have decided on y
be asked to make further announcements. If a group member has not participated in the 
previous round, as he/she has announced a hat colour before, then this group member s 
previous decision will be ---  
 
Note that the game will always go on for long enough such that a group can get to the correct 
answer provided that all group members make logically consistent announcements. Also note 
that the Experts will make the logically correct announcement at any stage. Also note that all 
participants face the same starting situation, and hence all participants play with the same 
three Experts. 
 
Payment 
You will play one of these games. If you make the correct announcement at all stages and 
therefore correctly deduce your hat colour, then you will be put in the draw for a prize of 
AUD 300. If you make an incorrect announcement at any stage, then you will not participate 
in the draw. The draw will be conducted later this year, when the whole series of experiments 
has been conducted. 
 
Introductory questions 
Before you start the actual game, we will ask you some questions about the game. These 
questions will be designed to test if you understand the instructions. Please make sure to read 
the instruction very carefully, as failing to answer the pre-game questions correctly may lead 
to exclusion from the experiment. 
 
Questions 
Do you have any questions? If yes please raise your hand and we will come and answer them 
in private. 


