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Abstract

We study different quantum geometries using the Quantum Riemannian Geometry
(QRG) formalism, constructing some quantum gravity and cosmological models over them.
First, we fully solve the quantum geometry of Zn as a polygon graph for a moduli of metrics
with square-lengths on the edges. The classical limit for n → ∞ is analysed and, corre-
lation functions are numerically calculated for Euclidean quantum gravity for 3 ≤ n ≤ 6.
An FLRW model is analysed adding ‘classical’ time, finding the same expansion rate as
for the classical flat FLRW model in 1+2 dimensions, i.e. a dimension jump. We ap-
ply the adiabatic particle creation method on R × Zn. Also, a Schwarzschild black hole
model is proposed with classical time and radius where the Laplacian and the classical
limit Zn → S 1 are studied.

Using the quantum geometry of a fuzzy sphere as a base space, it is constructed an
FLRW and a spherically-symmetric black hole adding classical coordinates of time and
radius as appropriate. The Schwarzschild black hole model with static-spherical solutions
for Ricci = 0 is developed. A dimension jump is also found in this model with solutions
having the time and radial form of a classical 5D Tangherlini black hole.

Finally, we solve for quantum Riemannian geometries on the finite lattice interval
•−•− · · · −• with n nodes (the Dynkin graph of type An) and find that they are necessarily
q-deformed with q = e

ıπ
n+1 . Specifically, we discover a novel ‘boundary effect’ whereby,

in order to admit a quantum-Levi Civita connection, the ‘metric weight’ at any edge is
forced to be greater when pointing towards the bulk compared to towards the boundary.
The Laplacian and QFT are studied under this geometry as quantum gravity for n = 3.

Although, the models are constructed using different geometries, the techniques used
for constructing and solving them are analogous and show some similarities which ap-
parently are always present. It is needed to construct more examples to identify which
similarities are general.
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Introduction

Quantum gravity (QG) has been one of the most important problems in theoretical
physics for more than one hundred years. It would be the reconciliation of the theory of
general relativity (GR) and the quantum mechanic, two of the most successful formalism
in physics, that would explain the nature of space-time itself.

Historically speaking, Matvei Petrovich Bronstein was one of the first to try to apply
quantum mechanics to the gravitational field [57]. He used the ideas of Bohr and Rosen-
feld for quantizing the electromagnetic field [58]. After that, many formalisms have been
created to achieve this purpose. Before to explain the generalities of the approach followed
here, we will sketch the problem.

The most accepted formulation of the space-time is the General Relativity (GR) cre-
ated by Einstein in 1915 which uses as mathematical language differential geometry. It
says that mass curves space-time, producing the gravity that is experienced by the objects
that are inside of this space-time. Under this approach, the metric is one of the most im-
portant elements, and it is required to obey by the Einstein’s equations

Gµν = 8πGNTµν

where GN is the Newton’s constant, Gµν,Tµ,ν are the Einstein and mass-energy tensors
respectively. One of the best-known consequences is the creation of black holes. This
happens when enough quantity of mass is concentrated in a reduced volume of space. The
black-hole gets bigger as more mass fall down into it, according to the relation

rBH =
GN M

c2 ,

where c is the constant of light, M represents the total mass of the black hole and the scale
of rBH is twice the radius of Schwarzschild in the case of a spherical symmetric black hole.

On the other hand, one of the discoveries that provoked the creation of quantum me-
chanics was the fact that some waves, as light, are ‘packed’ in quanta of energy which is
proportional to their frequency and inversely proportional to their wave length as follows

E = hω =
hc
λ
,

where h is the Plank’s constant. Using the celebrated relation of special relativity E = mc2,
it is possible to relate the energy E to the effective mass m of the particle. This energy

9
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Figure 1. The big picture and the Planck scale from [33, 14].

also affects the space-time. Here we loosely understand m as energy-mass. Owing to de
Broglie’s work, it is known that all particles have some wave properties. This was used by
Compton to develop a relation that relates the wavelength with the mass of a particle in the
following way

o =
ℏ

mc
,

where o = λ/2π is the reduced wavelength and, ℏ = h/2π is the reduced Plank’s constant.
We have explained the relation between the mass and the geometry of the space-time

through GR. But the way we actually see the geometry of the space-time is by using parti-
cles that travel along geodesics interacting with the elements of the geometry. In order to
have more detail of the structure of the geometry, it is required finer wavelengths, which
result in an increase in the resolution of the observation. However, according to Compton
wavelength, this will require a bigger mass. Eventually, the mass will start to affect the
structure of the space-time until the point a black hole is created. This point is pointed by
the orange arrow in Figure 1 and happens when rBH and o are of the same order. In the
case when both are equal and M = m we have the so-called Plank’s scale

λP =

√
GNℏ

c3 .

Then resolution of space-time under this scale is intrinsically impossible. This implies that
the continuum hypothesis which allows space-time to be infinite divisible can be wrong.
Moreover, there are some problems that can be tracked back to the continuity principle like
dark energy and the non-renormalizable infinities in QG.

The continuum hypothesis is deep inside current physics, because it is assumed in the
differential calculus. However, this is just a special differential structure where the differ-
entials commute with functions. A possible way to overcome this problem is to remove
this feature.
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Since the first days of quantum theory, a hypothesis was proposed that could be the
key for solving QG:

Quantum spacetime hypothesis: space-time could be better modelled due to quan-

tum gravity effects by non-commutative coordinates or ‘quantum space-time’.

Nowadays it is widely accepted and many models have been constructed guided by it.
An early specific model was by Snyder [45] and then in the 1990s emerged other models
[26] such as θ-spacetime suggested by Snyder’s model and by string theory, κ-Minkowski
spacetime [39] motivated by quantum Poincaré symmetry [32] and q-Minkowski spacetime
[20] from q-Lorentz symmetry. These models were largely flat and mainly constructed in
an ad-hoc manner.

To truly address issues of the unification of quantum theory and gravity there was
therefore a need for curved models and a systematic framework for Quantum Riemannian
Geometry (QRG). That was developed in the last 10 years in a constructive form growing
out of quantum groups, particularly by Beggs and Majid [14] using bimodule connec-
tions, a particularly nice type of connection first introduced by Dubois-Violette, Michor
and Mourad [27, 22]. This is the approach used in our work.

While the mathematical picture here is well-developed, physical model building using
it is still in its early stage. First of all, a bimodule connection ∇ on the 1-forms Ω1 over a
(possibly noncommutative) coordinate algebra acts on a metric g ∈ Ω1 ⊗ Ω1 firstly on the
first factor then on the second, but a braiding map σ that depends on ∇ is needed to make
sense of this action on the second factor. As a result, the equation ∇g = 0 is quadratic in the
connection. That makes it hard to solve and much of our work has been to develop methods
to solve for the quantum Levi-Civita connection (QLCs), which was done for the first time
for significant moduli of metrics. Before our work only the square and the line Z could be
solved for general metrics[11, 12]. The generalities about this approach are explained in
chapter 1 from a practical point of view, and for a mathematically formal explanation of
the theory, we refer to [14]. First, we start considering an algebra A on which we define a
first-order calculus; this is the base for constructing geometrical structures such as metric,
Quantum Levi-Civita connection (QLC), Riemann curvature tensor, etc. Afterward, we
specialize the theory to the case of inner calculus and the particular case of the calculus
of an algebra of k-valued functions over a finite set or a finite group. The majority of the
results and proofs of the background in this chapter are given in [14, 15].

We apply the machinery of inner calculus in chapter 2 to the group Z as a Cayley graph
with generators {1,−1} which is a polygon graph with arbitrary metric square-lengths on
the edges, finding a unique ∗-preserving QLC for n , 4. Others non ∗-preserving solutions
were found, but are never used in any of our models, hence they are reported for complete-
ness in the Appendix. Next, it is considered the classical limit n → ∞ of the polygon and
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this is identified as a central extension in the sense of [36, 7] of the classical calculus on
a circle, with an extra ‘normal’ direction Θ0. After, we make our first application of the
geometry by calculating the correlation functions of Euclidean quantum gravity. It is found
that for finite n, it is totally solvable for n ≤ 6 depending only on computing power. The
second main result in the chapter is then a detailed study of the FLRW model on R × Zn

with R classical, including cosmological particle creation following the approach of Parker
[63, 64, 65, 66]. For this model, we find that quantum metrics on R×Zn are forced to have
the block form g = µdt ⊗ dt + habea ⊗ eb (forced by the centrality of the metric) and, more-
over, hab has to have a specific form where the time dependence enters uniformly in the
spatial metric. In the case of the FLRW cosmology of a uniform metric on Zn expanded by
a time-dependent factor R(t), we have

g = −dt ⊗ dt − R2(t)(e+ ⊗ e− + e− ⊗ e+).

The negative sign in the second term is required given that the inverse metric is
negative definite in the sense that for a definite positive function a the inner product is
(e+, e+∗) = − 1

a < 0, and we then find that the Friedmann equations for R(t) in our discrete
case actually come out the same as for the usual flat FLRW model in two spatial dimen-
sions, which is in line with our cotangent bundle on Zn being necessarily 2-dimensional,
not 1-dimensional. Some elementary checks for QFT in the constant R case are provided,
then we cover the cosmological particle creation for varying R(t). Next, we consider the
classical geometry case of R × S 1, which sets up the formalism, then the modifications for
R×Zn. Of interest are the adiabatic no particle creation possibilities for R(t) aside from the
obvious constant R case; for R × S 1 there is a further possibility for the infinite mass limit
m → ∞, but for R × Zn we find a second further possibility with m → 0. The particle cre-
ation calculation itself is done only for ‘in’ and ‘out’ regimes of constant R, with results a
little different in the Zn case due to the periodic nature of the spatial momentum compared
to the S 1 case. Next, we look for a 3D black hole model with the S 1 in polar coordinates
replaced by Zn. The latter is not flat but Ricci flat (which can not happen classically in 3D)
and has a naked singularity rather than a horizon. The chapter concludes with the R2 × Zn

black hole-like model where β = −rH/r which is as for a usual black hole but without the
constant term. This therefore approximates the metric inside a Schwarzschild black hole of
infinite mass (so that the missing 1 factor is negligible). We also cover the case β(r) = rH/r

of interest in its own right. This model has no horizon but a naked singularity. We describe
the Zn → S 1 limit where S 1 retains a 2D noncommutative differential structure, and the
classical projection to the usual calculus on S 1 where the metric is no longer Ricci flat, i.e.
this is a purely quantum-geometric solution of the vacuum Einstein equations.

In chapter 3 we use the same ideas of the previous chapter but using a fuzzy sphere as
base space, constructing FLRW and black hole models. A dimension jump is also observed
in the classical limit λp → 0, an extra ‘normal’ direction θ′ for the sphere embedded in R3.
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This time the dimension jump means that the radial-time sector matches to the closed (pos-
itively curved) 4D FLRW model. For the black hole model, the dimension jump means we
land on radial and time behaviour matching the 5D Tangherlini black hole[46] when we
use the fuzzy sphere. Here the β(r) = 1 − rH/r factor in the familiar Schwarzschild metric
case for horizon radius rH is now a factor β(r) = 1 − r2

H/r
2. This gets asymptotically flat

faster than the Schwarzschild case and the effective gravity in the Newtonian limit is an
inverse cubic force law. In chapters 2 and 3 a Klein-Gordon equation in the noncommu-
tative background is studied with the corresponding geometry. We introduce the notion
of a Schroedinger-like equation for an effective quantum theory relative to an exact solu-
tion in the same manner as usual quantum mechanics for a free particle can be obtained
as a non-relativistic limit of the Klein-Gordon equations for solutions of the form e−ımtψ

with ψ slowly varying. The novel feature will be to replace e−ımt by an exact reference
solution of the Klein-Gordon equation, and we explain first how this looks for a classical
Schwarzschild black hole. This appears to be rather different from well-known methods
of quantum field theory on a curved background [54, 66, 67] but fits with the general idea
that a quantum geodesic flow is actually a Schroedinger-like evolution.

The previous noncommutative models are theoretical and we are not aware of an im-
mediate application, but they do indicate an unusual phenomenon which has a purely quan-
tum origin in an extra ‘normal direction’ θ′ required for an associative differential calculus
in our examples. We also began to explore some of the physics in our noncommutative
backgrounds.

In chapter 4, we explore the quantum Riemannian geometry of the finite line graph
• − • − · · · − • with n nodes (the Dynkin graph of type An) as well as the half-line with
nodes the natural numbers N. Our result is that for the An graph with n > 2 and for N
there is no edge-symmetric QRG. We are forced to introduce a ‘direction coefficient’ ϕ on
edges to measure the ratio of the inbound arrow (towards the bulk) length compared to the
outbound arrow length and find for N that these have to be a specific rational numbers as
shown in Figure 4 in order to admit a quantum-Levi Civita connection. This ratio decays
rapidly from 2 at the endpoint down to 1 in the bulk. As long as we keep these ratios,
we are free to vary the actual metric coefficients or ‘square-lengths’ as we please, so the
moduli of QRGs is the same as classically – a single ‘square-length’ on every link – but the
new effect is that if we consider this as the outbound one then the inbound one is a multiple
ϕ of it, namely twice at the first link from the end, 3/2 at the link which is one in from the
end, etc.

The situation for An is similar and we again find a canonical choice of quantum-Levi
Civita connection provided ϕi at edges i = 0, · · · , n − 1 are now given by q-integers

ϕi =
(i + 1)q

(i)q
, q = e

ıπ
n+1 , (i)q =

qi − q−i

q − q−1
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deforming the canonical QRG for N. The second result of the chapter is therefore that
a finite-lattice interval is intrinsically q-deformed in its quantum Riemannian geometry,
without a quantum group in sight. Next, we extrapolate from this to general formulae
for An and N with a uniform solution for the QRG with the freely chosen metric weights
{hi}, sign parameter ϵ in the metric and modulus 1 parameter s in the quantum Levi-Civita
connection. The physical case for all metric coefficients positive requires ϵ = 1 and if we
want the Christoffel symbols to also be real then we are forced to s = ±1. We only use
these values for the rest of the chapter. After finding this canonical form for the QRGs,
we then study scalar field theory on them. The effect of the direction dependence ϕi on
N translates to a derivative term correction to the Laplacian which alternates with a (−1)i

factor preventing a straightforward continuum limit. However, this is suppressed as 1/i so
that as the lattice spacing tends to zero, this complication is pushed to the boundary at 0. A
secondary effect of the ϕi factor is that the overall metric factor β−1 in front of the Laplacian
has a correction compared to the same choices of hi on Z. We analyse this for the case of
constant hi as something like a 1

x2 force towards the origin. Some partition functions for
scalar field theory on the A3 graph are also computed as proof of concept with respect to a
measure for integration on the A3 graph.

We note that there is a popular approach to noncommutative geometry by Connes’
[25], particularly with the starting point of the notion of spectral triplets, generalizing the
properties of Dirac operators. Meanwhile, as mentioned before, QRG starts with a bimod-
ule of differential forms over an algebra A and constructs the rest of the geometry based
on this. However, it is also possible to construct spectral triplets in QRG with a bimodule
connection and a Clifford action on a spinor bundle, see [14, Chap. 8.5].

We take c, ℏ = 1 throughout. The results of chapter 2 were published in [2, 3]. The
results of chapter 3 were published in [3]. The results of chapter 4 were published in [10].
Also, we note a conference proceeding [9] that includes an overview of the models of
chapters 2 and 3. This last work also reports a preliminary analysis of Kaluza-Klein theory
for an algebra with a central basis not included in this thesis.



CHAPTER 1

Fundamentals

In terms of differential geometry, a differential structure on a manifoldM with local
coordinates xi defines the derivates of real-valued functions on every chart by ∂

∂xi . The
collection of all the possible linear combinations of these defines the tangent bundle TM.
Besides, a local dual base dxi can be defined for every chart; thus, the cotangent bundle
T ∗M is defined analogously. Both structures work over the algebra of real-valued functions
of the local coordinates of every manifold chart. The fact that the differential structure
works over this algebra of functions suggests that it is possible to construct an algebraic
version of differential geometry over a general algebra, not just an algebra of functions.
The majority of the content of this chapter is from [14, 15] except the lemma 1.6 which
was published in [2].

1. Quantum Riemannian Geometry generalities

In the QRG approach, instead of focusing on the manifold, we work over an algebra,
the so-called coordinate algebra. However, there is no restriction about whether it is an
algebra of functions. Even it is possible that there is no manifold related to the algebra.
Of course, if we work over a commutative algebra of functions over M, it is possible
to recover the usual results of the standard differential geometry. Next, we describe the
formalism.

We consider an associative unital ∗-algebra A, which we call a coordinate algebra.
This will eventually define space-time. From now on, every time we refer to an algebra,
we mean this setup. It does not matter if the algebra is commutative or not; the formalism
works anyway. In order to construct a geometry over A, a differential structure is needed.
A bimodule Ω1 of 1-forms over A fulfills this role, given the fact that, in general, the space
of 1-forms has a natural bimodule structure. The bimodule structure says for ω ∈ Ω1 and
a, b ∈ A, that

(aω)b = a(ωb).

Definition 1.1. A first-order differential calculus (Ω1, d) over an algebra A is an A−A-
bimodule Ω1 with a linear map d : A → Ω1 that acts as an exterior derivative which must
respect the Leibniz rule of the product, i.e., d(ab) = (da)b+ adb for all a, b ∈ A. Moreover,
the bimodule must have a surjectivity behavior such that Ω1 = span{adb | a, b ∈ A}.

15



16 1. FUNDAMENTALS

Optionally, the calculus can be connected i.e., ker d = k.1, where 1 denotes the unity in A.
Also, it is possible to call this structure a differential algebra (A,Ω1, d).

In general, the previous definition is the minimum for defining a differential structure
over an algebra. Nevertheless, it is usual to require to extend Ω1 to a differential graded

algebra (DGA) of forms Ω = ⊕n
i=0Ω

i (where Ω0 = A) with an exterior product ∧. Using
the exterior derivative as d : Ωi → Ωi+1 where it has to accomplish d2 = 0 and the graded
Leibniz rule with respect to the graded product as

d(ωγ) = dω ∧ γ + (−1)iω ∧ dγ,

for ω ∈ Ωi and γ ∈ Ω. Extending the surjective property, Ω has to be generated by A, dA as
it would be in the classical case. If there is a top degree, it is called the volume dimension.
In general Ω is a quotient of the tensor algebra over A with a graded product ∧.

Generally speaking, there is not a unique calculus given an algebra A and, it is the first
choice that has to be made for constructing a model. However, it is known that every alge-
bra A has always a first-order connected differential calculus, called the universal calculus,
given by

Ω1
uni = ker(·) ⊆ A ⊗ A, dunia = 1A ⊗ a − a ⊗ 1A,

where 1A is the unit of the algebra and · : A ⊗A A→ A denotes the product in A. Then, the
elements of the universal calculus, have the form a ⊗A b for all a, b ∈ A such that ab = 0.
Thus, the left action of an element c ∈ A over Ω1 is c(a ⊗A b) = (ca) ⊗A b, meanwhile the
right action is (a⊗A b)c = a⊗A (bc), showing explicitly that the actions by the left and right
are in general distinct. A last remark about the universal calculus is that any other calculus
over the algebra A is isomorphic to a quotient of the universal one, i.e for any differential
calculus, there is a sub-bimodule N ⊆ Ω1

uni, such that Ω1 is isomorphic to Ω1
uni/N . The

proofs of these statements can be consulted in [14].
Regardless, in order to construct physical applications, we need to extend the anti-

linear ∗-map of the algebra to the calculus.

Definition 1.2. A first degree ∗-differential calculus is a differential calculus (Ω1, d)
plus an extension of the anti-linear map of the algebra to the bimodule ∗ : Ω1 → Ω1, which
is compatible with the bimodule structure in the sense that (aω)∗ = ω∗a∗ for all a ∈ A, ω ∈

Ω1. Also, the map has to commute with the exterior derivative, i.e ∗(da) = d(∗a). A natural
consequence is (adb)∗ = (db)∗a.

For an algebra of operators in a Hilbert space, the ∗-map indicates which operators are
hermitian, which are the observables in quantum mechanics. In our case, it plays a similar
role. We want our geometrical structures to be compatible with this map to distinguish
‘real-valued’ elements of the algebra as criteria for ‘reality’.

Now, we are ready to define the concepts related to distance in geometry, the metric
and the inverse metric (inner product). Consider a bimodule map that acts as inner product
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(, ) : Ω1 ⊗Ω1 → A, which is a well defined map on Ω1 ⊗A Ω
1, this means

(ωa, η) = (ω, aη), (aω, η) = a(ω, η), (ω, ηa) = (ω, η)a,

For this map to be compatible with the ∗-algebra, it is imposed the following relation

(ω, η)∗ = (η∗, ω∗).

It is desired that this inner product be nondegenerate or, in the best of cases, to be an
inverse metric of a tensor in the following way.

Definition 1.3. Let (A,Ω1, d) be a differential calculus, a generalized quantum metric

is a tensor g ∈ Ω1 ⊗A Ω
1, which is invertible in the sense that exists an inner product such

that for all ω ∈ Ω1 holds
((ω, ) ⊗ id)g = (id ⊗ (, ω))g.

A consequence of these conditions is that a metric g has to be central in the algebra A, i.e.,
ag = ga for all a ∈ A (see Chapter 1.3, [14]).

At this point, it is useful to define the antilinear map † : Ω1 ⊗AΩ
1 → Ω1 ⊗AΩ

1, which
works as follows

(ω ⊗ aγ)† = γ∗a∗ ⊗ ω∗ = γ∗ ⊗ a∗ω∗ = (ωa ⊗ γ)†,

for any ω, γ ∈ Ω1 and a ∈ A. Now, a generalized metric is called real if g† = g.
Our next step is to introduce connections or covariant derivatives under our approach.

For this purpose, it is noticed that a section of a bundle can be multiplied by elements of
the algebra from the left, behaving as a (left) module over the algebra. Thus, we have a
left connection ∇E : E → Ω1 ⊗A E on the left A-module E. This is the general setup (see
Chapter 3, [14]). However, for the rest of this work, we are interested in the case when E

is the bimodule Ω1.
Now consider a differential algebra (A,Ω, d), whereΩ is well defined at least to degree

two. A left connection over the bimodule Ω is a map ∇ : Ω1 → Ω1 ⊗A Ω
1 which obeys the

Leibniz rule
∇(aω) = da ⊗ ω + a∇ω, a ∈ A, ω ∈ Ω1

A bimodule connection is a left connection that obeys the twisted right Leibniz rule
∇(ωa) = (∇ω)a + σ(ω ⊗ da) for some bimodule map σ : Ω1 ⊗ Ω1 → Ω1 ⊗ Ω1 called
generalized braiding which is unique, in case it exists. The braiding map is totally defined
for the connection

σ(ω ⊗ da) = da ⊗ ω + ∇[ω, a] − [∇ω, a],

and the other way around. Then, it is possible we refer to the braiding mapping as the
connection.



18 1. FUNDAMENTALS

One of the first and most useful operators we can construct now is the Laplacian

□ = (, )∇d

which just needs the inverse metric and the connection. In analogy with the classical case,
the connection has curvature and torsion defined as

R∇ = Ω1 → Ω2 ⊗A Ω
1, R∇ = (d ⊗ id − id ∧ ∇)∇

T∇ : Ω1 → Ω2, T∇ = ∧∇ − d

where ∧ : Ω1⊗Ω1 → Ω2 is the exterior product between forms. Remember thatΩn denotes
the space of n-forms of a DGA, (see the annotation after definition 1.1). The connection
just needs that the calculus is defined until first order, the definition of the curvature and
the torsion need order two, which is also the minimum order for constructing the Laplacian
operator, which is very important for the physical applications over the geometrical models
that we are interested.

Another tensor that can be constructed from the connection and the metric g is the
cotorsion

coT∇ ∈ Ω2 ⊗A Ω
1, coT∇ = (d ⊗ id − id ∧ ∇)g.

A weak Levi-Civita connection is a connection which is torsion-free and cotorsion-
free, i.e., T∇ = 0, coT∇ = 0. The models presented do not use this type of connection.
Instead, we use another type of connection, which is more restrictive. Before defining it,
we need to extend the application of the connection to Ω ⊗Ω.

Using the braiding map, it is possible canonically extend the connection to act as
∇ : Ω1 ⊗A Ω

1 → Ω1 ⊗A Ω
1 ⊗A Ω

1 where the explicit way is

∇(ω ⊗ η) = (∇ω) ⊗ η + (σ ⊗ id)(ω ⊗ ∇η), ω, η ∈ Ω1

Then it makes sense to ask for a connection that is metric-compatible in the sense of
∇g = 0 for some metric g ∈ Ω1 ⊗Ω1, in analogy with the classical case.

Definition 1.4. A Quantum Levi-Civita connection (QLC) is a connection that is met-
ric compatible and torsion-free, i.e. ∇g = 0, T∇ = 0, respectively.

This is the connection that we are interested in for constructing our models.

Definition 1.5. A ∗-preserving connection is a bimodule connection that accomplishes

σ ◦ † ◦ ∇ = ∇ ◦ ∗

This condition may be too strong; then we have a weaker condition in which case, we call
it ∗-compatible connection

† ◦ σ = σ−1 ◦ †.

As is expected, the first condition implies the second one.



1. QUANTUM RIEMANNIAN GEOMETRY GENERALITIES 19

The Ricci tensor is constructed using the quantum metric, the Riemannian curvature
and introducing a lift bimodule map i : Ω2 → Ω ⊗A Ω as additional data. It has the
following form

Ricci = ((, ) ⊗ id ⊗ id)(id ⊗ i ⊗ id)(id ⊗ R∇)g.

In general, it does not exist the notion of anti-symmetry in non-commutative geometry
as in the classical case. That is why, a lift map i, that obeys ∧ ◦ i = id, is introduced
as a generalization of the map of the 2-forms to the anti-symmetric tensor product of 1-
forms. In the case of the ∗-calculus, it can be required the map i to be “real” in the sense
† ◦ i = −i ◦ ∗. There exists the possibility that this definition does not give a unique Ricci
tensor, but a moduli space of them. A possible condition for overcoming this situation
is imposing the condition ∧Ricci = 0. The reality condition will be Ricci† = Ricci.
An important remark is that this construction produces a factor of −1/2 compared to the
classical Ricci tensor.

The construction of the Ricci tensor presented above is not considered the final for-
malism for constructing it, a more general approach could replace this one with more ex-
perience and information. However, it gives a good point to start and so far has produced
good results for the models.

The Ricci scalar is defined analogously to the classical case using the inner product as
S = (, )Ricci. It also inherits the dependence of the choice of i and, in the case the Ricci
tensor accomplishes the reality condition, satisfies S = S ∗.

Finally, we make some remarks about the notion of integration
∫

: A → C over the
‘manifold’ underlying A. Even though there are a lot of open problems related to this
topic, making some assumptions about the measure, we can achieve some good results.
Classically, it would be given in a local coordinate chart by the Lebesgue measure times a
covariant factor

√
det(g) but how this is defined for a quantum metric is unclear. Consid-

ering the reality conditions we could require

(1.1)
∫

a =
∫

a∗,
∫

a∗a ≥ 0

with equality if and only if a = 0. This is a non-degenerate positive linear functional in
the sense of ∗-algebras, typically a maximally impure state used to define integration on
the algebra. We also want compatibility with the metric and classically this can be done
via the divergence of vector fields. The corresponding analog to the divergence in QRG
approach then will be

div(ω) = ( , )∇ω.

In that case a natural divergence condition on
∫

motivated by [18] is

(1.2)
∫

a div(ω) = −
∫

(da, ω)
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for all a ∈ A and ω ∈ Ω1. We note that this is compatible with the Leibniz rule:∫
(ab)div(ω) =

∫
a( , )(b∇ω) =

∫
a( , )∇(bω) −

∫
a(db, ω)

= −

∫
(da, bω) −

∫
a(db, ω) = −

∫
(d(ab), ω)

but not necessarily with ∗. For that, it would be natural to impose a further condition

(1.3)
∫

( , )(id − σ) = 0.

In fact (1.2)-(1.3) are too strong in most cases and this is an area for further development,
e.g., in connection with quantum geodesics[18].

2. Calculus Over Finite Sets

Here, the material of the previous section is put into context of the finite set and graphs,
which turns out to be an inner calculus. Starting with the well-known fact that given a finite
set V , a differential structures over the algebra A = k(V), for some field k, are in one-to-
one correspondence with digraphs which have the vertex set V . Thus, a digraph represents
a differential structure over an algebra A of functions. What we mean with a digraph is
G = (V, E) where E ⊂ V × V\diagonal is the set of edges, where the ones that start and
end in the same vertex are not allowed. The Kronecker delta-functions δx, with value 1A at
x ∈ V and zero elsewhere, is used as a central basis of A, which satisfies 1A =

∑
x δx, where

the index x runs over all the elements of V . Thus, an arbitrary element f ∈ A has the form
f =

∑
x f (x)δx.

We denote x → y for (x, y) ∈ E and x, y ∈ V . Then the differential structure has the
form

f .ωx→y = f (x)ωx→y, ωx→y. f = ωx→y f (y), d f =
∑
x→y

( f (y) − f (x))ωx→y

for all f ∈ A and ωx→y ∈ Ω
1. The basis elements of Ω1 have the form δx ⊗ δy for any

x, y ∈ V such that x → y ∈ E, reason why the arrows in E define the differential structure
and the other way around.

An undirected graph can be seen as a “bi-directed” graph where for each edge (x, y) ∈
E exists the inverse (y, x) ∈ E, this implies they are arrows in both directions for each edge.
This characteristic produces a symmetric calculus.

A calculus over A is called left\right parallelisable with cotangent dimension m\n if
and only if the graph is m-left\n-right regular in the sense that the number of going out\in
arrows are the same for each vertex. In fact choosing a colouring of the outgoing arrows
from a fixed pallet of colours i = 1, 2, . . .m means choosing a left-parallelisation, which
allows to define partial derivatives as ∂i f (x) = f (y) − f (x) where y represents the vertex
obtained for moving along the arrow coloured i starting from x.
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Any bimodule inner product for a directed graph (Ω1(V)) calculus takes the form
(ωx→y, ωy′→x′ ) = λx→yδx,x′δy,y′δx for some arrow weights {λx→y} and where δx,x′ is 1 when
x and x′ represent the same vertex and zero otherwise. The elements {δx} are projectors of
the central basis of A which is 1 in x and zero elsewhere. These projectors sum to unity.
If and only if the calculus is symmetric and all the elements λx→y are non zero there is a
generalized quantum metric

g =
∑
x→y

gx→yωx→y ⊗ ωy→x, gx→y = 1/λy→x.

The case when gx→y = gy→x is called edge symmetric and, even though it is not mandatory
for the models or the formalism, brings some physical meaning.

If the calculus over the finite set is symmetric and ωx→y
∗ = −ωy→x then there is a ∗-

differential calculus. Besides, the reality conditions for the inner product are accomplished,
if and only if, the coefficients λy→x are real.

When we want to find a QLC for a metric, we depend on Ω2 and here there are four
canonical choices for Ω in the sense that they are defined for any graph. They are all
quotients of the path algebra which in degree n consists of the n-step paths ωx0→x1 ⊗ · · · ⊗

ωxn−1→xn ∈ Ω
1 ⊗A · · · ⊗A Ω

1 (this is the tensor algebra of Ω1 over A). We quotient this by
the quadratic relations[14, Prop. 1.40]∑

y:p→y→q

ωp→y ∧ ωy→q = 0

for all fixed p, q that obey one of the four conditions below. This leads to the four exterior
algebras forming a diamond:

Ωmax

↙ ↘

Ωmed Ωmed′

↘ ↙

Ωmin

where the conditions are all p, q such that

Ωmin : all p, q

Ωmed : p , q

Ωmed′ : p→| q

Ωmax : p , q, p→| q.

Three of these were explicitly discussed in [14, 47] while Ωmed′ was used in [19]. The
chosen definition of the external derivative, which extends Ω1 to high ranks, has to be
consistent with the selected quotient. This consistency depends on the graph itself.
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One of the most useful characteristics of the first-order calculus on graphs is that
they are inner; this means there exists a 1-form Θ such that d f = [Θ, f ], for any f ∈ A.
Sometimes, it is possible to extend this to forms of higher degree η ∈ Ωn using the graded
commutator as dη = [Θ, η} = Θ ∧ η − (−1)nη ∧Θ, where n is the degree of η. Then for the
differential algebra (A,Ω1, d) of finite sets there always exist the inner formΘ =

∑
x→y ωx→y

where the sum includes all the arrows of the graph. In the case of the ∗-differential calculus,
if the calculus is also symmetric, the inner form satisfies Θ∗ = −Θ.

When the calculus is inner, some of the geometrical structures take a specific form,
see [14] . For example, the connection is

(1.4) ∇ = Θ ⊗ () + α − σΘ; σΘ = σ(() ⊗ Θ),

for some bimodules maps α : Ω1 → Ω1 ⊗ Ω1, σ : Ω1 ⊗ Ω1 → Ω1 ⊗ Ω1 and ω ∈ Ω1. The
curvature is

(1.5) R∇ω = Θ ∧ Θ ⊗ ω − (∧ ⊗ id)(id ⊗ (α − σΘ))(α − σΘ)ω.

It is important to point out that the QLC has a one-to-one relation with the maps α and σ,
which means those maps completely define the connection. The torsion condition is

T∇ = − ∧ (() ⊗ Θ + σΘ − α),

and a connection is torsion-free if and only if ∧α = 0 and ∧σ = −∧. Finally, the metric
compatible condition is

(1.6) θ ⊗ g + (α ⊗ g) + (σ ⊗ id)(id ⊗ (α − σθ))g = 0

for the metric g ∈ Ω1 ⊗Ω1. In the case the ∗-algebra is over the field of complex numbers,
the connection is ∗-preserving if and only if

(1.7) † ◦ σ = σ−1 ◦ †, σ ◦ † ◦ α = α ◦ ∗

2.1. Calculus over finite groups. Finally, we specialize to the case when a finite set
G has a group structure. First, we select a subset C ⊂ G\e of so-called generators that
do not include the group identity e. The reason for excluding the identity e is does not
have arrows that start and end in the same vertex. Thus for a group G the vertexes are
the elements of the group and the edges are defined as E = {x → xa|x ∈ G, a ∈ C}. The
resulting Cayley graph is left regular with C as the colouring pallet. A direct consequence
is that the first-order calculus is parallelisable and with the form Ω1 = k(G)Λ1 as a free
module over a vector space Λ1 of left-invariant 1-forms with basis

(1.8) ea =
∑
x∈G

ωx→xa.
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for each a ∈ C. The commutation relation and the exterior derivative then are

(1.9) ea f = Ra( f )ea, d f =
∑
a∈C

(Ra( f ) − f )ea,

where f ∈ k(G) and Ra( f ) = f (()a). A quantum metric exists if and only if C has inverses,
to be central, and has the form

(1.10) g =
∑
a∈C

caea ⊗ ea−1
, (ea, eb) =

δa−1,b

Ra(ca−1 )
,

where ca ∈ k(G) are nowhere zero. The edge-symmetry condition is accomplished if
Ra(ca−1 ) = ca and the inner form is Θ =

∑
a∈C ea. For the ∗-differential calculus, the

elements of the basis ofΛ1 obey ea∗ = −ea−1
. Meanwhile, when k = C, the reality condition

for the metric imposes that the coefficients ca have to be real.
The QLC for this case is also completely defined for the bimodule maps σ and α,

which need to accomplish σa,b
m,n = 0 unless ab = mn in the group and α(ea) = αa

m,nem⊗en

needs αa
m,n = 0 unless a = mn in the group, see [14, Chap. 8.2.2][15]. The indices here

range over elements of the generating set C of the calculus and are not being multiplied
in the 4-index and 3-index tensors σa,b

m,n, α
a

m,n. A more explicit form is given in the
following lemma.

Lemma 1.6. Let Ω(G) be a Cayley graph calculus and (cf. [14, 15]), write a bimodule

connection on Ω1 in the form

σa,b
m,n = δ

a
nδ

b
m + δ

b
a−1mnτ

a
m,n, Γa

b,c = τ
a

b,c − δ
a

bcαb,c

for coefficient functions τa
b,c = 0 unless a−1bc ∈ C and αb,c = 0 unless bc ∈ C.

(1) For G abelian, the condition for torsion freeness is that the indexes b, c in τa
b,c and

αb,c must be symmetric.

(2) The conditions for ‘reality’ of the connection (to be ∗-preserving) are

αb,c + Rbc(αc−1,b−1 ) +
∑

n

Rnbcn−1 (αc−1b−1n−1,n)τn−1

b,c = 0,

τa−1

c,d + Rcd(τa
c−1,d−1 ) +

∑
n

Rcd(τa
c−1d−1n,n−1 )τn

c,d = 0

for all a, b, c, d.

(3) The conditions for metric compatibility with an edge-symmetric metric are

hm,nαm,n + Rn(hn−1αm,n−1m−1 ) −
∑

a

Ra−1 (haαamn,n−1m−1 ) − Rn(hn−1τn−1

m,n−1m−1 ) = 0,

δp
n−1∂mhn = hp−1τp−1

m,n −
∑

a

Ra−1 (haτ
a

amn,p)τa−1

m,n

for all m, n, p.

Proof. (1) The first formula displayed is basically in [15] (or see [14, Chap. 8.2.2])
in the inner case with Θ =

∑
a ea, merely put in terms of the components of Γ and after
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subtracting off the flip map from σ and imposing the bimodule properties of the maps α, σ
(hence written in terms of τ). It is easy to see that ∧α = 0 and ∧(id + σ) = 0 for the
Grassmann algebra case reduce to symmetry in the lower indices (this technique is used in
[14] but is in any case straightforward). Note that e < C so Γa

b,c has value −αb,c := −αb,c

when a = bc and τa
b,c := τa

b,c otherwise. We omit the commas when there are only two
elements not being multiplied.

(2) The condition for α is immediate from σ ◦ † ◦ α = α ◦ ∗ evaluated on ea with
ea∗ = −ea−1

. The condition σ◦†◦σ = † is easily seen (as in the proof of [14, Lemma 8.17]
for α = 0) to be

(1.11)
∑
m,n

Rn−1m−1 (σa,b
m,n)σn−1,m−1

c,d = δ
b−1

cδ
a−1

d,

which we now evaluate for the stated form of σ.
(3) Metric compatibility is

(1.12) ∇(habea) ⊗ eb − σ(habea ⊗ Γb
cdec) ⊗ ed = 0,

which expands out using the Leibniz rules and the form of the metric to

(1.13) δp,n−1∂mhn − hp−1Γp−1

m,n − haRa(Γa−1

b,p)σa,b
m,n = 0

In the edge-symmetric case, this becomes

(1.14) δp,n−1∂mhn − hp−1Γp−1

m,n − Ra(ha−1Γa−1

b,p)σa,b
m,n = 0.

We now insert the form of Γ, σ to obtain the condition stated in the mutually exclusive cases
p = n−1m−1 and p , n−1m−1 (where the terms shown do not contribute when p = n−1m−1

due to the conditions on τ and e < C, so we do not need to write that this p is excluded). □

In the Cayley graph case of Lemma 1.6, there is a canonical Ω with ea as Grassmann
algebra generators and with a canonical i in [14, Lem. 8.18], which for an abelian group is
just

(1.15) i(ea ∧ eb) =
1
2

(ea ⊗ eb − eb ⊗ ea)

extended as a bimodule map. The rest of the geometric structures are the same as developed
before.



CHAPTER 2

QRG of Polygons and Application to Cosmological Models
and Quantum Gravity

The results of the first two sections of this chapter were published in [2] and the ones
of the last section were published in [3].

The standard concepts of General relativity and cosmology as Einstein equations, dust
pressure, stress-energy tensor, etc., can be consulted in [23]. We refer to the specific mate-
rial when it is considered adequate.

1. Quantization of Zn

Here we consider the general theory of chapter 1 for the case of an n-gon for n ≥ 3.
A metric is a free assignment of a ‘square-length’ to each edge and Section 1.1 solves the
quantum Riemannian geometry to find the quantum Levi-Civita connection. Section 5 then
constructs Euclidean quantum gravity on the polygon.

1.1. Quantum Riemannian geometry on Zn. Just as it is useful in classical geom-
etry to use local coordinates where the differential structure is the standard one for Rn,
it is similarly useful to regard the n-gon as the group G = Zn for its differential struc-
ture as explained in Section 1. Here the calculus Ω1(Zn) for generators C = {1,−1} has
corresponding left-invariant basis e+, e− given by

(2.1) e+ =
n−1∑
i=0

ωi→i+1; e− =
n−1∑
i=0

ωi→i−1,

where i ∈ Zn runs over the vertices.
Since the e± are a basis over the algebra, a bimodule invertible quantum metric must

take the central form

(2.2) g = ae+ ⊗ e− + be− ⊗ e+

for non-vanishing functions a, b ∈ R(Zn), with inverse metric

(2.3) (e+, e+) = (e−, e−) = 0, (e+, e−) = 1/R+(b), (e−, e+) = 1/R−(a).

We write R± = R±1 for the shift operators. We also have an inner element Θ = e+ + e−

and the canonical ∗-structure (e+)∗ = −e−; (e−)∗ = −e+. On the other hand, from the
graph perspective, the relevant Cayley graph of Zn with the above generators is a polygon

25
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n − 1

01

i i + 1

2

a(i) = gi→i+1
b(i+ 1) = gi+1→i

a(0) = g0→1
b(1) = g1→0

Figure 1. A quantum metric on Zn is given by metric coefficient func-
tions a, b or equivalently by directed edge weights gi→i±1. Figure as in
[2].

of n sides where the values of the functions a, b are directed edge weights according to
Figure 1. From this, it is clear that the edge-symmetric case, where each side of the polygon
has weight independent of the direction, requires b = R−a. Proceeding in this case, the
quantum metric is therefore

(2.4) g = ae+ ⊗ e− + R−(a)e− ⊗ e+, (e+, e−) =
1
a
, (e−, e+) =

1
R−a

as governed by one nonzero function a. For convenience, we define functions on Zn,

(2.5) ρ =
R+(a)

a
.

Proposition 2.1. For n ≥ 3, there is a ∗-preserving QLC for any given edge-symmetric

metric (2.4) on Ω1(Zn). This is the unique for n , 4 and coincides with the restriction to

periodic metrics mod n of the unique such connection on Z in [38], namely

σ(e+ ⊗ e+) = ρe+ ⊗ e+, σ(e+ ⊗ e−) = e− ⊗ e+,

σ(e− ⊗ e+) = e+ ⊗ e−, σ(e− ⊗ e−) = R2
−ρ
−1e− ⊗ e−

with the geometric structures

∇e+ = (1 − ρ)e+ ⊗ e+, ∇e− = (1 − R2
−ρ
−1)e− ⊗ e−,

R∇e+ = ∂−ρe+ ∧ e− ⊗ e+, R∇e− = −∂+(R2
−ρ
−1)e+ ∧ e− ⊗ e−,

Ricci =
1
2

(
∂−(R−ρ)e− ⊗ e+ − ∂−ρ−1e+ ⊗ e−

)
,

S =
1
2

(
−
∂−ρ

−1

a
+
∂−(R−ρ)

R−a

)
, □ f = −

R−ρ + 1
a

(∂+ + ∂−) f .

(For n = 4, there is a second ∗–preserving QLC given below.)
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Proof. Due to the grading restrictions for a bimodule map, the most general σ for
n , 4 has the form

σ(e+ ⊗ e+) = σ0e+ ⊗ e+, σ(e+ ⊗ e−) = σ1e+ ⊗ e− + σ2e− ⊗ e+,

σ(e− ⊗ e+) = σ3e+ ⊗ e− + σ4e− ⊗ e+, σ(e− ⊗ e−) = σ5e− ⊗ e−(2.6)

(where the σi are functional parameters) while for n = 4 we can have additional terms
leading to another solution (given below). Similarly, for n , 3 we can only have the
map α = 0 while for n = 3 we may have additional terms leading to non ∗-preserving
solutions in the Appendix. Taking the displayed main form ofσ and α = 0, torsion freeness
∧(id + σ) = 0 amounts to

(2.7) σ2 = σ1 + 1, σ3 = σ4 + 1,

while metric compatibility is

R+(a) = aR+(σ3)σ0, a = aR+(σ4)σ1 + R−(a)R−(σ0)σ3,

R−(a) = aR+(σ5)σ2 + R−(a)R−(σ1)σ4, R2
−(a) = R−(a)R−(σ2)σ5,

0 = aR1(σ5)σ1 + R−(a)R−(σ1)σ3, 0 = aR+(σ4)σ2 + R−(a)R−(σ0)σ4.(2.8)

It is then a matter of solving these, which was done using SAGE[55]. Among the solutions,
we find a unique one that is ∗-preserving. The others are described for completeness in the
Appendix. Note that the form of □ in comparison to the usual lattice Laplacian makes it
clear that a has units of length2 [38, 11]. □

That the restriction of the unique ∗-preserving QLC on Z in [38] to periodic metrics
gives a ∗-preserving QLC is not surprising, but that this gives all ∗-preserving solutions
for n , 4 is a non-trivial result of solving the equations as described. For n = 4, similar
methods lead to a further 2-parameter moduli of ∗-preserving connections of the form

σ(e+ ⊗ e+) = γe− ⊗ e−, σ(e+ ⊗ e−) = −e+ ⊗ e−,

σ(e− ⊗ e+) = −e− ⊗ e+, σ(e− ⊗ e−) =
R+a

R−(aγ)
e+ ⊗ e+,

where γ = (γ0, γ1, γ̄
−1
0 , γ̄−1

1 ) specifies a function on the four points of Z4 (in order) in terms
of two complex parameters γ0, γ1, such that R2

+γ = γ̄
−1. The associated quantum geometric

structures are

∇e+ = e+ ⊗ e+ + e− ⊗ e+ + e+ ⊗ e− − γe− ⊗ e−,

∇e− = e− ⊗ e− + e+ ⊗ e− + e− ⊗ e+ − re+ ⊗ e+,

R∇e+ = (R−r − 1) e+ ∧ e− ⊗ e+, R∇e− = (1 − r) e+ ∧ e− ⊗ e−,

Ricci =
1
2

(R+r − 1) e+ ⊗ e− +
1
2

(
R2
+r − 1

)
e− ⊗ e+,
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S =
1
2a

(
(R−ρ)(R2

+r − 1) + R+r − 1
)
,

□ f = 0,

where we use the shorthand

(2.9) r :=
R+(a)
R−(a)

|γ|2.

This is the ∗-preserving case of the general n = 4 solution (i) in the Appendix.

1.2. The circle limit of the Zn quantum geometry. We now turn to the matter of the
classical limit n→ ∞ of the quantum geometry on Zn. Given thatΩ1(Zn) is 2-dimensional,
we can not expect exactly a classical circle in the limit.

To put the quantum geometry in a more convenient form, we first use the Fourier
transform to change a new variable s, where s ∈ C(Zn) is defined by

(2.10) s(i) = qi, q = e
2πı
n , C(Zn) � CZn := C[s]/(sn − 1)

We will see in proposition 2.2 how the differential calculus is re-defined using these new
variables. In this new description, our same algebra A is generated by s with the relation
sn = 1. Also note that

(2.11) ds−1 = −s−1(ds)s−1

depends on the commutation relations of ds with s. We thus define two left-invariant 1-
forms

(2.12) f + := s−1ds, f − := sds−1.

For the n → ∞ limit, we can now just drop the sn = 1 relation so that A = C[s, s−1],
the algebraic circle with s∗ = s−1. One can think of this as s = eıθ in terms of an angle
coordinate θ. Its classical differential calculus has ds central and hence one left-invariant
1-form f̄ + = ıdθ = − f̄ −, and the standard constant metric is

(2.13) dθ ⊗ dθ = − f̄ + ⊗ f̄ +.

Comparing this metric with the one in proposition 2.2, it is clear that we are not in this
classical case. We set [m]q := (1 − qm)/(1 − q) as the usual q-deformed integer.

Proposition 2.2. In these new coordinates, the f ± form a Grassmann algebra and

f −s = −s f +, f +s = s( f −+(q+q−1) f +), dsm = −
q[m]qsm

(q + 1)

(
q[−1 − m]q f + + [1 − m]q f −

)
,

while the ∗-operation and the element that makes the calculus inner are

f ±∗ = − f ±, Θ =
q

(q − 1)2Θ0; Θ0 = f + + f −
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and the constant a = 1 metric g = e+ ⊗ e− + e− ⊗ e+ is

g =
g0

(q − q−1)2 ; g0 = −2 f + ⊗ f + + Θ0 ⊗ f + + f + ⊗ Θ0 +
2q

(q − 1)2Θ0 ⊗ Θ0.

Moreover, the above does not require sn = 1, i.e. applies equally well to the algebraic

circle C[s, s−1] with q a real or modulus 1 free parameter.

Proof. Working in our original calculus Ω(Zn) and s, q the function and the root of
unity specified in (2.10), we compute that

(2.14) f − = sds−1 = (q−1 − 1)e+ + (q − 1)e−, f + = s−1ds = (q − 1)e+ + (q−1 − 1)e−

which inverts for n > 2 as

(2.15) e± =
q f ± + f ∓

(q − q−1)(q − 1)
.

As they are linear combinations, the f ± are closed and form a Grassmann algebra since
the e± do. We have e±s = R±(s)e± = q±1se± which implies the relations shown for f ±.
Finally, dsm = (∂+sm)e+ + (∂−sm)e− = (qm − 1)e+ + (q−m − 1)e− which translates to the
formula shown in terms of f ±. The ∗ structure also matches but is in any case required by
f +∗ = (s−1ds)∗ = (ds−1)s = s−1 f −s = − f + and similarly for f −. We also have Θ = e+ + e−

and g as stated when written as above in terms of f ±. The quantum Levi-Civita connection
now appears equivalently as ∇ f ± = 0.

Moreover, these formulae do not directly reference n and one can check directly that
they give a ∗-differential calculus even without the relation sn = 1, i.e. on the algebraic
circle. Now q is a free parameter but a check shows that we still need it real or modulus
one for a ∗-calculus. □

The end result of Proposition 2.2 is a novel, 2-dimensional, q-deformed calculus on
the algebraic circle. In the q real case, we can quotient it by a relation such as f + = −q f −,
which is equivalent to the relation e− = 0 and gives the standard 1-dimensional q-deformed
calculus on the circle [14, Ex 1.11] with ds.s = qsds or dsm = [m]qsm−1ds. In this quotient,
we would have g = 0 (this quotient calculus in fact admits no quantum metric due to the
centrality requirement, making it unsuitable for our purposes).

Corollary 2.3. In the limit q → 1, the above q-deformed calculus on the circle alge-

bra C[s, s−1] tends to a noncommutative 2D calculus with

f −s = −s f +, f +s = s( f − + 2 f +), dsm =
msm

2
(
(m + 1) f + + (m − 1) f −

)
, f ±∗ = − f ±

In this limit, the 1-form Θ0 is closed and graded-central and the classical calculus on S 1 is

then given by the quotient where we set Θ0 = 0. Conversely, this 2D calculus is a central

extension in the sense of [36, 7] of the classical calculus on S 1 by Θ0.
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Proof. Most of this is immediate. For the last sentence, note that if f is a function of
s then we can write the differential in the corollary equivalently as

(2.16) d f = s
d f
ds

f + +
s2

2
d2 f
ds2 Θ0,

where the first term is the expected left-invariant derivative associated to f + and the second
is a higher-order derivative associated to an ‘extra direction’ Θ0. This has the structure of
a central extension of the classical calculus on S 1 in the sense of [14, Prop. 1.22][36, 7]
according to the canonical Riemannian structure of S 1 and a second-order operator with
respect to it. The central extension here is defined by a deformed • product where s •

f̄ + = s f̄ + is undeformed for left multiplication on the classical left-invariant 1-form f̄ + =

s−1ds = ıdθ. From the other side, we set f̄ + • s = f̄ +s + ( f̄ +, ds)Θ0 = s f̄ + + s( f̄ +, f̄ +)Θ0 =

s • f̄ + + sΘ0, which is the stated commutation relation for f + if we take the classical
constant metric on S 1 with normalisation ( f̄ +, f̄ +) = 1. As Θ0 commutes with functions,
this determines the correct commutation relation for f − also. The second order operator
defines d and here is s2 d2

ds2 , which is the Laplacian plus a vector field as an example of the
general set up [14, Thm 8.23][36]. □

Next, we note that the rescaled metric g0 in Proposition 2.2 has a part with a q → 1
limit plus a singular term proportional to Θ0 ⊗ Θ0. Hence, if πclass denotes taking q → 1
and simultaneously projecting to the classical calculus, we have

(2.17) πclass(g0) = −2 f̄ + ⊗ f̄ + = 2dθ ⊗ dθ,

provided that in this process, the killing of Θ0 takes precedence over setting q → 1 in the
singular term. It is not clear how to make this precise (one cannot simply set Θ0 = 0 first
without destroying the structure of the q-deformed calculus). Aside from this technical
detail, we still have the trivial flat QLC ∇ f ± = 0 and the projection is covariantly constant
with respect to this and the usual classical connection. We have focussed here on the limit
of the constant metric on Zn, but one can similarly analyse general metrics. Also, in the
q → 1 limit as in Corollary 2.3, one can directly analyse the possible generalised (not
necessarily quantum-symmetric) metrics, e.g. the ones with constant coefficients have the
form

(2.18) g = Re(z)( f + ⊗ f + + f − ⊗ f −) + z f + ⊗ f − + z̄ f − ⊗ f +

for a complex parameter z in order to be central and obey the reality condition. If we
then impose quantum symmetry, we are forced to a real multiple of Θ0 ⊗ Θ0, which is
indeed the only component of the flat metric g if we fully scale out the singularity visible
in Proposition 2.2 and then set q→ 1. This is a ‘purely quantum’ metric in the 2D calculus
in Corollary 2.3, in that it projects to zero in the classical calculus on S 1.

We have already seen that the extra direction Θ0 of the calculus in Corollary 2.3 arises
as the residue of the element Θ that makes the q-deformed calculus on the circle inner,
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which is a purely quantum phenomenon. It can also be viewed as defining a central exten-
sion of the classical calculus on S 1 with the associated ‘partial derivative’ Θ0, the second-
order operator in (2.16). A third point of view is given by moving to ‘cartesian coordinates’

(2.19) x =
1
2

(s + s−1), y =
1
2ı

(s − s−1); x2 + y2 = 1

from which we compute

(2.20) 2(xdx + ydy) = s−1ds + sds−1 = Θ0.

Thus, Θ0 can be thought of as something like the normal to the circle viewed in the plane,
similar to the picture for the extra direction for the 3D calculus on the fuzzy sphere in [31].

Finally, in cohomological terms, one can check that the noncommutative de Rham
cohomology ring HdR(Zn) is the Grassmann algebra generated by e± i.e. dimensions 1 :
2 : 1 and spanned by e± in degree 1. The same is true in terms of the f ± for finite n,
which latter description holds also for n → ∞; HdR(Z) is generated by f ± in the case of
the corollary. This is the same as the cohomology of a torus, so it is tempting to think of
the quantum geometry as a circle thickened into a torus, at least in a cohomological sense.
The geometric picture, as we have seen, is a little like this with an extra direction related
to the normal to the circle (rather than an actual torus).

1.3. Euclidean quantum gravity on Zn. As for the integer line graph [38], the two-
dimensional cotangent bundle on Zn required by the quantum geometry now admits the
possibility of curvature. We envision that there could be various applications of such
curved discrete geometries, but here we focus on just one, namely Euclidean quantum
gravity on Zn. The approach used in this section is to construct the Hilbert-Einstein action,
which is the integral of the Ricci scalar with a certain measure, that in the commutative
case is

√
|det g|. The action is quantized using the path integral approach, see [59].

In our case, the Hilbert-Einstein action is the sum over Zn with the Ricci scalar given
in proposition 2.1. In general, there is no way to choose a measure as in the commutative
case, then we use a , which has the merit that produce the next action

(2.21) S g = aS =
1
2

∑
Zn

(R−ρ∂−R−ρ) =
1
2

∑
Zn

ρ∂−ρ =
1
2

∑
Zn

ρ∂+ρ =
1
4

∑
Zn

ρ(∂+ + ∂−)ρ,

where ∂+ + ∂− is the usual lattice double-differential on Zn and ρ is defined in equation
2.5. This has the same form as for a scalar field except that ρ is a positive function, as
already observed for Z in [38]. To quantize, i.e. solve the path integral, we consider
two approaches, depending on what we regard as our underlying field, and in both cases
maintaining Zn symmetry in the result.

(i) First Approach. The action 2.21 only depends on ρ, which suggests we can take

(2.22) ρ0 =
a(1)
a(0)

, · · · , ρn−2 =
a(n − 1)
a(n − 2)

, ρn−1 =
a(0)

a(n − 1)
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as n dynamical variables subject to the constraint ρ0 · · · ρn−1 = 1. We think of the con-
straint as a hypersurface of positive real numbers in Rn

>0, which induces a metric gρ on the
hypersurface, and we use the Riemannian measure in this. Thus, we can take ρ0, · · · , ρn−2

as local coordinates and measure Dρ = (
∏n−2

i=0 dρi)
√

det
(
gρ

)
for the path integral. The

measure here maintains the Zn symmetry as ultimately independent of the choice of coor-
dinates.

Explicitly, for n = 3, we take ρ0, ρ1 as coordinates and the constrained surface in R3
>0

is ρ2 = 1/(ρ0ρ1). The coordinate tangent vectors and induced metric are

(2.23) v0 = (1, 0,−
1

ρ2
0ρ1

), v1 = (0, 1,−
1

ρ0ρ
2
1

);

(2.24) gρ = (vi · v j) =

1 + 1
ρ4

0ρ2

1
ρ3

0ρ
3
1

1
ρ3

0ρ
3
1

1 + 1
ρ2

0ρ
4
1

 , det
(
gρ

)
= 1 +

1
ρ4

0ρ
2
1

+
1

ρ2
0ρ

4
1

.

Hence the partition function is

(2.25) Z =
∫ ∞

0
dρ0

∫ ∞

0
dρ1

√
det

(
gρ

)
e−

1
2G (ρ2

0+ρ
2
1+ρ

2
2−ρ0ρ1−ρ1ρ2−ρ2ρ0); ρ2 :=

1
ρ0ρ1

These integrals can be done numerically and appear to converge for all values G > 0 of the
coupling constant (the numerical results need G not too small for working precision but
this case can be analysed separately). We are interested in expectation values ⟨ρi1 · · · ρim⟩,
where we insert ρi1 · · · ρim in the integrand and take the ratio with Z.

Some results obtained from this theory for n = 3 are plotted in Figure 2. Numerical
evidence is limited due to numerical convergence accuracy issues, but it seems clear that
expectation values of products of ρi tend to 1 and hence ∆ρi = (ρi+1 − ρi) → 0 as G → 0,
as might be expected. As in [11], this should be thought of as the weak gravity limit given
that fluctuations expressed in ρ enter the action relative to G. Meanwhile, it appears as
G → ∞ that

(2.26)
∆ρi

⟨ρi⟩
∼ 1.11,

⟨ρ2
i ⟩

⟨ρi⟩
2 ∼ 2.23,

⟨ρiρ j⟩

⟨ρi⟩⟨ρ j⟩
∼ 0.845

for i , j. The asymptotic values here are from plotting out to G = 500, but would need
to be confirmed analytically due to potential numerical convergence issues. The first of
these limits, if confirmed, would be a similar phenomenon of the uniform relative metric
uncertainty in [11] in the ‘strong gravity’ limit. The correlations are real and relative
correlation between two distinct vertices of the triangle is lower than the relative self-
correlation, which is in line with the n = 3 case of the relative quantisation in Figure 3.

(ii) Second approach. We can take (as more usual) the metric coefficients as the un-
derlying field, so in our case the edge ‘square-lengths’ a = (a0, · · · , an−1) ∈ Rn

>0. Assuming
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⟨ρi⟩

Δρi = ⟨ρ2
i ⟩ − ⟨ρi⟩2

⟨ρiρj⟩i≠j
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Figure 2. Euclidean quantum gravity on Z3 for variables ρ. Figure as in [2]

Lebesgue measure, the partition function is

(2.27) Z =
∫ ∞

0
(
∏

i

dai)e
S g
G =

∫ L

0
(
∏

i

dai)e
1

2G
∑
Zn ρ∂+ρ

and we introduce a field strength upper bound L to control divergences as in [11]. One can
then look at ratios independent of L or indeed consider a formal renormalisation process.

On the other hand, the divergences of the path integral come from the global scaling
symmetry ai 7→ λai for λ ∈ R>0 of the action (since this depends only on the ratios ρ)
and therefore another approach would be to ‘factor out’ the geometric mean as a new
variable which we do not integrate over, keeping only the ratios relative to this as the
dynamic degrees of freedom. This is again in the spirit of [11], except that we proceed
multiplicatively. Thus, we let A = (

∏
i ai)

1
n be the geometric mean and bi := ai/A, which

by construction obeys b0 · · · bn−1 = 1. These are similar to the ρi variables in forming
the corresponding hypersurface in Rn

>0, but the action is different and the measure is also
different since it is inherited from the Lebesgue measure on the ai.

Again, we will look at this explicitly for n = 3. Then the action is

(2.28) S g =
1
2

(
b0

b1
+

b1

b2
+

b2

b0
− (

b1

b0
)2 − (

b2

b1
)2 − (

b0

b2
)2
)

; b2 =
1

b0b1
,

while the Jacobean for the change of variables from a0, a1, a2 to b0, b1, A gives us

(2.29) da0 da1 da2 =
3A2

b0b1
db0 db1 dA.

Omitting the now decoupled integration over A as an (infinite) constant, we have effectively

(2.30) Z =
∫ ∞

0
db0

∫ ∞

0
db1

1
b0b1

e
1

2Gb2
0b4

1
(−1+(1+b3

0)b3
1+(−1+b3

0−b6
0)b6

1)
.

The graphical expectation values against G look qualitatively similar to those of ρi in Fig-
ure 2, but one also has ⟨bi⟩ = ⟨bib j⟩ for i , j, albeit this is specific to n = 3.

Larger n > 3 can proceed entirely similarly and one has 1 < ⟨bi⟩ < ⟨bibi+1⟩. One can
also then see that the i-step correlations ⟨b0bi⟩ (or between any two points differing by i)
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Figure 3. Euclidean quantum gravity correlations ⟨b0bi⟩ plotted against
i for 3 ≤ n ≤ 6 and suitable G. Figure as in [2]

decrease as i increases from i = 0 to reach a minimum (as expected) half way around the
polygon. This is based on numerical data for small n as shown in Figure 3. The data for
n = 6 are already noisy due to numerical convergence issues but suggest that for large n

the ⟨b0bi⟩ may be approximated by α − β sin
(
πi
n

)
for positive α > β depending on G and

n. This is broadly similar to the form of correlation functions for a scalar field ⟨ϕ0ϕi⟩ in a
lattice box in [38], but without the overall ı there.

The results in Figure 3, are somewhat similar to correlations for a scalar field lattice
box in [38], but now in a real positive version, which both reassures us that the model is
giving reasonable answers and gives a flavour of what to expect for quantum gravity in our
approach. Clearly, more baby models should be computed to develop our intuition further.
As discussed in [11], our approach is not immediately comparable with other computable
approaches such as [60, 4, 61, 62].

2. Quantum geometric cosmological models on R × Zn

In this section, we first start with an analysis of quantum metrics and QLCs on R×Zn,
where R is a classical time and Zn is the background space given for the polygon geometry.
We find that the full ‘strongly tensorial’ bimodule properties for an invertible quantum
metric force us to the block diagonal case, without taking this as an assumption. The
existence of a QLC further dictates its form, again without taking this as an assumption,
and we then find a unique ∗-preserving one. We then focus on the case where the Zn

geometry is flat (modeling an actual geometric circle) but possibly time-dependent as in
FLRW cosmology.

2.1. Quantum metric and QLC on R × Zn. We consider a general metric on the
product R × G where R has a variable t and we are interested in the finite group G = Zn

with ea = e±, but we do not need to specialize at this stage. We consider the most general
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metric, which has the form

(2.31) g = µdt ⊗ dt + habea ⊗ eb + na(ea ⊗ dt + dt ⊗ ea)

for µ, hab, na in A = C∞(R) ⊗ C(G) but note right away that if we take the tensor product
calculus where the continuous variable and its differential t, dt graded commute with func-
tions and forms on G then centrality of the metric needed for a bimodule inverse dictates
that na = 0. To see this is enough notice

(dt ⊗ ea). f (i) = f (i + a)dt ⊗ ea , f (i).(dt ⊗ ea) = f (i)dt ⊗ ea,

and similarly for (ea ⊗ dt). In general, the term dt ⊗ ea is different of zero reason why
na = 0. We therefore proceed in this case.

Similarly, we look for general the most general QLCs

(2.32) ∇dt = −Γdt ⊗ dt + ca(ea ⊗ dt + dt ⊗ ea) + dabea ⊗ eb,

(2.33) ∇ea = −Γa
bceb ⊗ ec + γa

b(eb ⊗ dt + dt ⊗ eb) + f adt ⊗ dt

and note that for the tensor form of calculus along with the natural choice whereσ(dt⊗ ), σ(⊗dt)
are the flip on the basic 1-forms dt, ea, requiring the above to be a bimodule connection
compatible with the relations of each algebra, like Leibniz rule and ∇(e± f ) = ∇(R±( f )e±),
forces us to

(2.34) ca = 0, f a = 0, γa
b = γaδa,b, da,b = daδa,b−1

for some functions γa. We therefore proceed in this case.
Next, for zero torsion, we need that

(2.35) dab = dba, Γa
bc = Γ

a
cb, ∧(id + σ)(ea ⊗ eb) = 0

(which means σ restricted to the {ea} has the form studied before for a torsion-free bimod-
ule connection on an inner calculus, but note the calculus as a whole is not inner). And
for ∇g = 0, we obtain 8 equations which we compute under our assumptions above for a
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central metric and bimodule connection, with µ̇ = ∂
∂tµ,

dt⊗3 :
µ̇

2
− µΓ = 0,(2.36)

dt ⊗ dt ⊗ ea : 0 = 0,(2.37)

dt ⊗ ea ⊗ dt : 0 = 0,(2.38)

ea ⊗ dt ⊗ dt : ∂aµ = 0,(2.39)

dt ⊗ ea ⊗ eb : hcbγ
c

a + hacRa(γc
b) + ḣab = 0,(2.40)

ea ⊗ dt ⊗ eb : hcbγ
c

a + µdab = 0,(2.41)

ea ⊗ eb ⊗ dt : µdab + hmpRm(γp
n)σmn

ab = 0,(2.42)

em ⊗ en ⊗ ep : ∂mhnp − hapΓ
a

mn − hacRa(Γc
bp)σab

mn = 0.(2.43)

The first and last of the 8 equations are just that Γ is a QLC on the line and σ,Γa
bc a QLC on

G. The 4th equation tells us that µ is constant on G. If we write the metric as hab = haδa,b−1

for functions ha etc., then the 6th equation tells us

(2.44) da = −
haγa

µ

and the 5th and 7th equations reduce to

(2.45) ḣa + haγa + Ra(ha−1γa−1 ) = 0,
∑

p

Rp−1 (hpγp)σp−1,p
a,b = haγaδa,b−1 .

Finally, we impose ∗-structure dt∗ = dt and suppose that the connection on G is also ∗-
preserving for ea∗ = −ea−1

as usual. The extended metric then obeys the quantum reality
condition if µ is real, which we suppose henceforth, and the metric on G is ‘real’ in the
required sense (which amounts to ha real-valued). Then the additional condition for our
extended ∇ to be ∗-preserving comes down to Γ real and

(2.46) γ̄a = Raγa−1 ,
∑

a

d̄aσ(ea ⊗ ea−1
) =

∑
a

da−1 ea−1
⊗ ea,

where the 1st part comes from ∇ea∗ and the 2nd from ∇dt∗. Next, we use (2.44) and that
ha are real and edge-symmetric to deduce from the 1st part that d̄a = Rada−1 . Then since da

are constant on G, we have d̄a = da−1 and our condition to be ∗-preserving is

(2.47) γ̄a = Raγa−1 ,
∑

a

da−1 (σ(ea ⊗ ea−1
) − ea−1

⊗ ea) = 0.

Since µ has to be a constant on G, it is some function of t alone. Generically, we can
absorb this in a change of the variable t, so we proceed for simplicity with µ = −1 for
a FLRW type solution (see [23, Chap. 8.2]). In the next theorem, the quantities with a
super-index Zn denote quantities of the polygon geometry.
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Theorem 2.4. For σ,∇Zn the ∗-preserving QLC on Zn in Proposition 2.1, a quantum

metric on R × Zn admitting a ∗-preserving QLC has the form

g = −dt ⊗ dt − ae+ ⊗ e− − R−ae− ⊗ e+

up to a choice of the t parametrization, such that ∂−ȧ = 0, i.e., a has the form

a(t, i) = α(t) + β(i)

for some functions α, β with
∑

i β(i) = 0. In these terms, there is a unique ∗-preserving

QLC with scalar curvature and Laplacian

2S = − α̈
(

1
α + β

+
1

α + R−β

)
+
α̇2

4

(
1

(α + β)2 +
1

(α + R−β)2

)
+

s
(α + β)2(α + R+β)

+ R−

(
s

(α + β)2(α + R−β)

)
,

□ f = − ∂2
t +

(
1

α + β
+

1
α + R−β

)
(−
α̇

2
∂t f + □Zn f ),

where

s := (α + R+β)(α + R−β) − (α + β)2 = α(□Znβ) + (∂+β)∂−β − β2

in terms of the usual Laplacian □Znβ = (∂+ + ∂−)β = R+β + R−β − 2β on Zn.

Proof. We use the general analysis above applied in the specific case of Zn. Also, for
the purpose of the proof, it is convenient to have a shorthand notation a+ = a and a− = R−a,
so that h± = a± for our particular metric. Then the 2nd of (2.45) holds automatically as
σ(e± ⊗ e∓) = e∓ ⊗ e± and a±γ± = d±(t) are constants on Zn for a solution, while the 1st of
(2.45) is that ȧ± = −d+ − d−, which requires ∂−ȧ = 0 as stated. We assume the QLC on
Zn at each t for the metric functions a = a(t, i). The flip form of σ(e± ⊗ e∓) for this also
means that the 2nd part of (2.47) is automatic and we just need γ̄± = R±γ∓, or equivalently
d̄± = d∓, for a ∗-preserving connection. This means that

(2.48) d+ = −
ȧ
2
+ ıb, d− = d̄+ = −

ȧ
2
− ıb; γ± = −

ȧ
2a±
±
ıb
a±

for any real-valued function b(t). The unique solution with real coefficients for ∇ in our
basis is b = 0 and gives the ∗-preserving QLC

(2.49) ∇dt =
ȧ
2

(e+ ⊗ e− + e− ⊗ e+), ∇e± = ∇Zn e± −
ȧ

2a±
(e± ⊗ dt + dt ⊗ e±).
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The σ for this when one argument is dt is the flip. We then proceed to compute the curva-
ture of this QLC,

R∇e± = RZn
∇

e± −
(
Γ̇±ab − Γ

±
abRa(

ȧ
2ab

) +
ȧ

2a±
Γ±ab

)
dt ∧ ea ⊗ eb − Γ±abRa(

ȧ
2ab

)ea ∧ eb ⊗ dt

± (
ȧ

2a±
)2a±e+ ∧ e− ⊗ e± −

ȧ
2
∂b(

1
a±

)eb ∧ e± ⊗ dt +
ȧ
2
∂b(

1
a±

)dt ∧ eb ⊗ e±

−

(
∂

∂t
(

ȧ
2a±

) + (
ȧ

2a±
)2
)

dt ∧ e± ⊗ dt,

R∇dt =
ä
2

dt ∧ (e+ ⊗ e− + e− ⊗ e+) +
ȧ
2

e+ ∧ Γ−−be− ⊗ eb +
ȧ
2

e− ∧ Γ++be+ ⊗ eb

+
∑
±

(
ȧ

2a±
)2a±e± ∧ (e∓ ⊗ dt + dt ⊗ e∓),

in terms of the Christoffel symbols on Zn. The Ricci tensor and the Ricci scalar S are then

Ricci = RicciZn +
ä
4

(e+ ⊗ e− + e− ⊗ e+) +
1
2

(
R+(Γ̇−−−) −

ȧ
2

(R+(Γ−−−) + 1)∂−

(
1
a

))
dt ⊗ e−

+
1
2

(
R−(Γ̇+++) −

ȧ
2

(R−(Γ+++) + 1)∂+

(
1
a−

))
dt ⊗ e+ +

ȧ
4

(
(R−(Γ++−) + 1)∂−

(
1
a−

))
e− ⊗ dt

−
ȧ
4

(
(R+(Γ−+−) + 1)∂−

(
1

R+(a)

))
e+ ⊗ dt +

1
2

∂t

(
ȧ

2a
+

ȧ
2a−

)
+

( ȧ
2a

)2
+

(
ȧ

2a−

)2 dt ⊗ dt,

S = − S Zn −
ä
2

(
1
a
+

1
a−

)
+

1
2

( ȧ
2a

)2
+

1
2

(
ȧ

2a−

)2

(where we have used that Γ±+− = Γ
±
−+). We now insert values for the QLC in Proposition 2.1

to obtain

R∇e± = ±

−∂± (
a±
a∓

)
+

(
ȧ

2a±

)2

a±

 e+ ∧ e− ⊗ e± +
ȧ

2a2
±

∂± (a±) dt ∧ e± ⊗ e±

+
ȧ
2
∂∓

(
1
a±

)
(e± ∧ e∓ ⊗ dt + dt ∧ e∓ ⊗ e±)

+

− ä
2a±
+

(
ȧ

2a±

)2 dt ∧ e± ⊗ dt,(2.50)

R∇dt =
∑
±

 ä
2a±
−

(
ȧ

2a±

)2 a±dt ∧ e± ⊗ e∓ +
∑
±

ȧ
2a±

∂−(a)e+ ∧ e− ⊗ e∓

+
ȧ2

4
∂−

(
1
a2

)
e+ ∧ e− ⊗ dt(2.51)
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and as a result,

Ricci =
1
2

∑
±

(( ä
2
+ ∂±

(a∓
a±

))
e± ⊗ e∓ −

ȧ
2a2
∓

∂±(a∓)dt ⊗ e± +
ȧ
2
∂±

( 1
a±

)
e± ⊗ dt

)

−
1
2

− ä
2

(
1
a
+

1
a−

)
+

( ȧ
2a

)2
+

(
ȧ

2a−

)2 dt ⊗ dt,(2.52)

S =
1
2

−ä
(

1
a
+

1
a−

)
+

( ȧ
2a

)2
+

(
ȧ

2a−

)2

−
1
a
∂+

(a−
a

)
−

1
a−
∂−

(
a
a−

) .(2.53)

We now note that the requirement ∂−ȧ = 0 is equivalent to a being of the form stated.
Clearly, such a form obeys this condition as ȧ = α is constant on Zn. Conversely, given
a(t, i) obeying the condition, we let α(t) = 1

n
∑

i a(t, i) be the average value and β = a − α.
The latter averages to zero and has zero time derivative by the assumption on a, hence
depends only on i. We now insert this specific form into the curvature calculations to
obtain

Ricci =
(
α̈

4
−

s
(α + β)(α + R+β)

)
e+ ⊗ e− +

(
α̈

4
− R−

(
s

(α + β)(α + R−β)

))
e− ⊗ e+

−
α̇

4
R−

(
∂+β

(α + β)2

)
dt ⊗ e+ −

∂+β

(α + β)(α + R+β)
e+ ⊗ dt

−
α̇

4
∂−β

(α + β)2 dt ⊗ e− − R−

(
∂−β

(α + β)(α + R−β)

)
e− ⊗ dt

+

(
α̈

4

(
2α + β + R−β

(α + β)(α + R−β)

)
+
α̇2

4

(
(α + β + R−β)2 − (α2 + 2βR−β)

(α + β)2(α + R−β)2

))
dt ⊗ dt(2.54)

and the scalar curvature as stated. Without loss of generality, we have fixed
∑

i β(i) = 0
since this could be shifted into the value of α. We also have the geometric Laplacian

(2.55) □ f = −□Zn f −
(

1
a
+

1
a−

)
ȧ
2
∂t f − ∂2

t f = −
(

1
a
+

1
a−

)
(
ȧ
2
∂t f − □Zn f ) − ∂2

t f ,

which simplifies as stated. We are using □Zn for the Laplacian in Proposition 2.1 and □Zn

with lower label for the standard finite difference Laplacian. □

The coefficient a(t, i) = α(t) + β(i) usually plays the role of the ‘radius’ that depends
on time. However, in this theorem, α(t) > 0 is the average ‘radius’ of the Zn geometry,
evolving with time, while β(i) as a fluctuation as we go around Zn and we see that this
has to be ‘frozen’ (does not depend on time) in order for the metric to admit a quantum
geometry. It is striking that this includes the FLRW-type models studied in the remaining
section in the class forced by the quantum geometry. Note that we also need to restrict to

(2.56) miniβ(i) > −inftα(t)

so that a(t, i) is everywhere positive.
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2.2. Equations of state in FLRW model on R × Zn. Here, we focus on the cosmo-
logical FLRW model case. For details of the standard FLRW model see [23, Chap. 8]. We
use the result of the theorem 2.4 where a = R2(t) with no fluctuation β(i) over Zn and hence

(2.57) g = −dt ⊗ dt − R2(t)e+ ⊗s e−,

where e+ ⊗s e− = e+ ⊗ e− + e− ⊗ e+. In this case, the results above simplify to

∇dt = RṘe+ ⊗s e−, ∇e± = −
Ṙ
R

e± ⊗s dt,(2.58)

R∇e± = −
R̈
R

dt ∧ e± ⊗ dt ±
(

Ṙ
R

)2

R2e+ ∧ e− ⊗ e±, R∇dt = R̈Rdt ∧ e+ ⊗s e−,(2.59)

Ricci =
R̈
R

dt ⊗ dt +
1
2

(
Ṙ2

R2 +
R̈
R

)
R2e+ ⊗s e−, S = −2

R̈
R
−

(
Ṙ
R

)2

.(2.60)

Although a general scheme for a noncommutative Einstein tensor is not known, we
define it as

(2.61) Eins = Ricci −
1
2

S g = −
1
2

(
Ṙ
R

)2

dt ⊗ dt −
RR̈
2

e+ ⊗s e−.

In the present model, it seems sufficient to define it in the usual way because it is conserved,
i.e. it has divergence zero. This is proved in the next lemma.

Lemma 2.5. The divergence ∇· = (( , ) ⊗ id)∇ of a 1-1 tensor of the form

T = f dt ⊗ dt − pR2e+ ⊗s e−

defined by functions f , p on R × Zn, and for metric defined as above by R(t), is

∇ · T = −
(

ḟ + 2
Ṙ
R

( f + p)
)

dt + ∂b peb.

In particular, the Einstein tensor (2.61) is conserved in the sense ∇ · Eins = 0.

Proof. The Leibniz rule for the action of the connection produces

∇( f dt ⊗ dt − pR2e+ ⊗s e−)

= d f ⊗ dt ⊗ dt − dp ⊗ R2e+ ⊗s e− + f∇(dt ⊗ dt) − p∇(R2e+ ⊗s e−)

= d f ⊗ dt ⊗ dt − dp ⊗ R2e+ ⊗s e− + ( f + p)∇(dt ⊗ dt)

= ḟ dt ⊗ dt ⊗ dt − ṗdt ⊗ R2e+ ⊗s e− + ∂b f eb ⊗ dt ⊗ dt + ∂b peb ⊗ R2e+ ⊗s e−

+ RṘ( f + p)
(
e+ ⊗s e− ⊗ dt + e− ⊗ dt ⊗ e+ + e+ ⊗ dt ⊗ e−

)
(2.62)

on using metric compatibility whereby ∇(dt ⊗ dt) = −∇(R2e+ ⊗s e−) and then evaluating
the former with σ =flip on dt. Now applying (, ) ⊗ id with the inverse metric, we arrive at
the stated result for the divergence.

For Eins in (2.61), the coefficients just depend on time, and then they are constant on
Zn, so there is no e± term in ∇·Eins. For the dt term it is easy to verify that ḟ +2 Ṙ

R ( f +p) = 0
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automatically for the effective values of the specific coefficients f , p in (2.61) defined by
R(t). □

Next, recall from chapter 1 that our formulation of Ricci is -1/2 of the usual value,
hence Einstein’s equation for us should be written as

(2.63) Eins + 4πGT = 0

and from (2.61) we see that this holds if T has the form for dust of pressure p and density
f (see [23, Chap. 8.3]), namely

(2.64) T = pg + ( f + p)dt ⊗ dt = f dt ⊗ dt − pR2e+ ⊗s e−

for pressure and density

(2.65) p = −
1

8πG

(
R̈
R

)
, f =

1
8πG

(
Ṙ
R

)2

.

Note that T is automatically conserved by the same calculation as for the Einstein tensor
and this does not give any constraint on R(t). Setting

(2.66) H :=
Ṙ
R
,

conservation is equivalent to the continuity equation

(2.67) ḟ = −2H( f + p),

which also holds automatically. The standard consideration in cosmology at this point is
to assume an equation of state p = ω f for a real parameter ω, in which case the continuity
equation becomes d f

dR = −2 f (1 + ω) so that f ∝ R−2(1+ω). Given this form of the density f ,
our assumption p = ω f can be solved for ω , −1 to give

(2.68) R(t) = R0

(
1 +

√
8πG f0(1 + ω)t

) 1
1+ω

for initial radius and pressure R0, f0. Here ω > −1 leads to an expanding universe. Recall
that one usually takes ω = 0, 1/3 for cold dust and radiation respectively, see [23, Chap.
8.3 and 8.4].

If we add a cosmological constant so that Eins − 1
2 gΛ + 4πGT = 0, this is equivalent

to a modified stress-energy tensor given as before but with modified

(2.69) fΛ = f +
Λ

8πG
, pΛ = p −

Λ

8πG
= ω fΛ −

1 + ω
8πG

Λ.

The effective equation of state now leads to

(2.70) R(t) = R0


cosh

(
arccosh(

√
− Λ

8πG f0
) +
√
Λ(1 + ω)t

)
√
− Λ

8πG f0


1

1+ω
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with reasonable behaviour for f0 > 0 (with f remaining positive) and real Λ but a limited
range of t when Λ < 0.

For comparison, note that the classical Einstein tensor on R × S 1 with g = −dt ⊗

dt + R2(t)dx ⊗ dx vanishes as for any 2-manifold and T = f dt ⊗ dt + pR2(t)dx ⊗ dx =

pg + ( f + p)dt ⊗ dt admits only zero pressure and density if we want Einstein’s equation.
One can also add a cosmological constant, in which case we need p = − Λ8πG and f = Λ

8πG

and ω = −1. This is therefore not the right comparison.

Proposition 2.6. The results (2.68)-(2.70) for R(t) (as well as for f (t)) for the FLRW

model on R × Zn are the same as for the classical flat FLRW-model on R × R2.

Proof. The flat FLRW model in 1+2 dimensions is an easy exercise starting with the
metric g = −dt⊗dt+R2(t)(dx⊗dx+dy⊗dy) to compute the Ricci tensor (in our conventions,
which is − 1

2 of the usual values) as

(2.71) Ricci =
R̈
R

dt ⊗ dt −
1
2

(
R̈
R
+

Ṙ2

R2

)
R2(dx ⊗ dx + dy ⊗ dy)

and the same scalar curvature S as in (2.60). The Einstein tensor is therefore

(2.72) Eins = −
1
2

(
Ṙ
R

)2

dt ⊗ dt +
RR̈
2

(dx ⊗ dx + dy ⊗ dy)

by a similar calculation as for (2.61). The stress tensor for dust being similarly f dt ⊗ dt +

pR2(dx⊗dx+dy⊗dy) means that the Einstein equations give p, f by the same expressions
(2.65) as before. The Friedmann equations are therefore the same as we solved. □

This is perhaps not too surprising given that Ω1 on Zn is 2-dimensional, indeed −e+ ⊗s

e− plays the same role as the classical spatial metric dx ⊗ dx + dy ⊗ dy. We also recall
by way of comparison that the standard k = 0 Friedmann equations for the FLRW model
R × R3 have the well-known solution,

(2.73) R(t) = R0(1 +
√

6πG f0(w + 1)t)
2

3(w+1)

without cosmological constant and can also be solved with it, as

(2.74) R(t) = R0


cosh

(
arccosh

(√
− Λ

8πG f0

)
+

√
3Λ
4 (w + 1)t

)
√
− Λ

8πG f0


2

3(w+1)

.

See [23, Chap. 8.3]. As usual, the case of R(t) independent of time is a solution for the
Einstein vacuum equation with Ricci = 0. It is easy to see that there are no other solutions
of interest with Ricci ∝ g or Eins ∝ g. On the other hand, we do have the following.
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Proposition 2.7. The equation Ricci− λS g = 0 with time-varying R(t) and constant λ

has a unique solution of the form

λ =
1
3
, R(t) = R0eµt

for some growth constant µ , 0 and initial R0 > 0.

Proof. Considering the equation Ricci = λgS , where λ is an arbitrary real constant,
we have two equations; one related to e± ⊗ e∓ is

(2.75)
R̈
R
+

(
2λ

1 − 4λ
+ 1

) (
Ṙ
R

)2

= 0

and other related to dt ⊗ dt is

(2.76)
R̈
R
+

(
λ − 1

1 − 2λ
+ 1

) (
Ṙ
R

)2

= 0.

This requires λ = 1
3 and R̈

R =
(

Ṙ
R

)2
, which has the solution claimed. □

2.3. Quantum field theory on R × Zn. Here we consider quantum field theory in
the flat case where R is a constant. To construct the Klein-Gordon equation, we need the
corresponding Laplacian operator. In this case, is obtained taking α = R2(t) and β = 0 from
the theorem 2.4, which are the same consideration for the metric as the previous section.
Thus we have

(2.77) □ =
2

R2 (∂+ + ∂−) − ∂2
t ; (−□ + m2)ϕ = 0.

We write q = e
2πı
n , where ı denotes the imaginary unit, and Fourier transform on Zn

by considering solutions of the form ϕ(t, i) = qike−ıwk t, where i denotes the position in Zn.
This is labelled by a discrete momentum k = 0, · · · , n − 1 with associated ‘mass on-shell’
expression

(2.78) w2
k =

8
R2 sin2

(
π

n
k
)
+ m2.

We then consider the corresponding operator-valued fields starting with

(2.79) ϕi =

n−1∑
k=0

1
√

2wk
(qikak + q−ika†k),

where now ak, a
†

k are self-adjoint operators and ak |0⟩ = 0, with |k⟩ eigenvectors of the
corresponding Hamiltonian

(2.80) H =
n−1∑
k=0

wk(aka†k +
n
2

).

In our formalism we do not have a way to calculate the Hamiltonian, then we assume the
Hamiltonian form in the same way as the usual QFT approach.
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From the commutators [H, ak] = −wkak and [H, a†k] = wka†k , and using the Heisenberg
representation for the time evolution of the field, we obtain

(2.81) ϕi(t) = eıHtϕie−ıHt =

n−1∑
k=0

1
√

2wk
(qik−ıwk tak + q−ik+ıwk ta†k)

with the time-ordered correlation function

(2.82) ⟨0|T [ϕi(ta)ϕ j(tb)] |0⟩ =
n−1∑
k=0

1
wk

cos
(

2π
n

k(i − j)
)
e−ıwk |ta−tb |.

Next, we check that we obtain the same correlation function via a formal path integral
approach with the ıϵ-prescription. The partition functional integral Z[J] with source J is
defined as

(2.83) Z[J] =

∫
Dϕ e

1
β S [ϕ]+ 1

β

∫ ∑n−1
i=0 Ji(t)ϕi(t)∫

Dϕ e
1
β S [ϕ]

=

∫
Dϕ e

1
2β

∫
dt

∑n−1
i=0 (ϕi(t)(□−m2+ıϵ)ϕi(t)+2Ji(t)ϕi(t))∫

Dϕ e
1

2β

∫
dt

∑n−1
i=0 (ϕi(t)(□−m2+ıϵ)ϕi(t))

,

where β is a dimensionless coupling constant. We diagonalize the action S [ϕ] using Fourier
transform to write

(2.84) ϕi(t) =
n−1∑
k=0

∫ ∞

−∞

dw
2π
ϕ̃k(w)qikeıwt; Ji(t) =

n−1∑
k=0

∫ ∞

−∞

dw
2π

J̃k(w)qikeıwt,

which produces the action

(2.85) S [ϕ̃] =
∫ ∞

−∞

dw
2π

1
2β

n−1∑
k=0

ϕ̃′−k(−w)(−w2 + w2
k)ϕ̃′k(w) + J̃−k(−w)

1
−w2 + w2

k

J̃k(w)
 ,

where ϕ̃′k(w) = ϕ̃k(w) − (−w2 + w2
k)−1 J̃k(w). The first term in terms of the new variables

gives a Gaussian integral, which we ignore as an overall factor independent of the source.
Using

(2.86) J̃k(w) =
1
n

∫
dt

n−1∑
i=0

Ji(t)q−ikeıwt,

the functional integral becomes

(2.87) Z[J] = e
1
β

∫
dt′dt′′Ji(t′)ı∆ f (i,t′; j,t′′)J j(t′′),

where the Feynman propagator is

∆ f (i, t′; j, t′′) =
n−1∑
k=0

qk(i− j)
∫

dw
2π

e−ıw(t′−t′′)

(−w + wk − ıϵ)(w + wk + ıϵ)

=

n−1∑
k=0

1
wk

cos
(

2π
n

k(i − j)
)
e−ıwk |ta−tb |.(2.88)
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Finally, by construction, we have

(2.89) ⟨0|T [ϕi(ta)ϕ j(tb)] |0⟩ =
β2

ı2
∂

∂Ji(ta)
∂

∂J j(tb)
Z[J] = ∆ f (i, t′; j, t′′),

which therefore gives the same result as obtained by Hamiltonian quantisation. This is as
expected, but provides a useful check that our methodology makes sense at least in the flat
case of constant R.

2.4. Particle creation in FLRW model on R × Zn. Here we follow the procedure
developed by Parker [63, 64, 65, 66] to study cosmological particle creation, adapted now
to an FLRW model on R × Zn with an expanding quantum metric (2.57).

In general, the assumptions that we make in this section are the standard ones in the
particle creation procedure. A steady universe that goes through a process of expansion,
and ends in another steady state. This justifies the form of 2.126. A number operator |Nk⟩

which ‘counts’ the particles of frequency k before and after the expansion is defined and
finally, we use the approximation that all the time-derivatives of the metric smoothly go to
zero.

2.4.1. Model case of R × S 1. We start with the classical background geometry case
of R × S 1, which is presumably known but sets up the procedure and our notations. Here
the metric has the usual 2D FLRW form

(2.90) g = −dt ⊗ dt + R2(t)dx ⊗ dx,

where R(t) is an arbitrary positive function. Thus the Klein-Gordon equation for the field
ϕ is

(2.91)
(
gµν∇µ∇ν − m2

)
ϕ = 0

or in explicit form

(2.92) ϕ̈ +
Ṙ
R
ϕ̇ −

1
R2 ∂

2
xϕ + m2ϕ = 0.

We impose the periodic boundary condition ϕ(t, x+L) = ϕ(t, x), where L is a dimensionless
parameter for the normalisation of the box geometry. We then expand the field in terms of
a Fourier series

(2.93) ϕ(t, x) =
∑

k

(Ak fk(t, x) + A∗k f ∗k (t, x)),

where

(2.94) fk(t, x) =
1
√

LR
eıxkhk(t)
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and k = 2lπ/L for l an integer. Here k/R is the physical momentum and l the corresponding
‘integer momentum’ on a circle. Then ϕ obeys (2.92) provided

(2.95) ḧk(t) +
(

k2

R2 + m2
)

hk(t) +

1
4

(
Ṙ
R

)2

−
1
2

R̈
R

 hk(t) = 0

for each momentum mode. We will be particularly interested in the adiabatic limit, where
R varies slowly with respect to the time in such way that Ṙ/R→ 0, R̈/R→ 0. The solutions
to (2.95) in this approximation are

(2.96) hk(t) ∼ (wk)−
1
2

(
αkeı

∫ t
wk(t′)dt′ + βke−ı

∫ t
wk(t′)dt′

)
,

where αk and βk are complex constants that satisfy

(2.97) |αk |
2 − |βk |

2 = 1

and

(2.98) wk(t) =

√
m2 +

k2

R2(t)
.

In order to have an exact solution, we now let αk and βk be functions of time such that

(2.99) hk(t) = (wk(t))−
1
2

(
αk(t)eı

∫ t
wk(t′)dt′ + βk(t)e−ı

∫ t
wk(t′)dt′

)
and

(2.100) |αk(t)|2 − |βk(t)|2 = 1

for all t. Equivalently, we can rewrite the expansion of the field as

(2.101) ϕ(t, x) =
∑

k

(ak(t)gk(t, x) + a∗k(t)g∗k(t, x)),

where now

(2.102) gk(t, x) =
R−

1
2

√
Lwk

eı(xk−
∫ t

wk(t′)dt′)

and

(2.103) ak(t) = αk(t)∗Ak + βk(t)A∗k.

In order to follow the usual procedure of canonical quantisation, we next define the
conjugate momentum as

(2.104) π(t, x) = Rϕ̇(t, x),

promote the field ϕ(t, x) and the momentum π(t, x) to operators ϕ̂(t, x), π̂(t, x) respectively,
and impose the commutators relations

(2.105) [ϕ̂(t, x), ϕ̂(t, x′)] = [π̂(t, x), π̂(t, x′)] = 0, [ϕ̂(t, x), π̂(t, x′)] = ıδ(x − x′).
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This requires that Ak and A∗k in (2.103) are promoted to operators Ak and A†k with the usual
commutation relations

(2.106) [Ak′ , Ak] = [A†k , A
†

k′ ] = 0, [Ak′ , A
†

k] = δk,k′ .

It then follows from these and a conserved quantity (see [63]), that the operator versions
of (2.103) obey

(2.107) [ak(t), ak′ (t)] = [a†k(t), a†k′ (t)] = 0, [ak(t), a†k′ (t)] = δk,k′ .

Now note that for any function Wk(t) with at least derivatives to second order, the
function

(2.108) H(t) := Wk(t)−
1
2 (αkeı

∫ t
dt′Wk(t′) + βke−ı

∫ t
dt′Wk(t′))

for any constants αk, βk is an exact solution of the equation

(2.109) Ḧ(t) +
[
W2

k −W
1
2

k
d2

dt2 W−
1
2

k

]
H(t) = 0.

Hence, if we can solve for Wk(t) such that

(2.110) W2
k = W

1
2

k
d2

dt2 W−
1
2

k + w2
k + σ

holds, where

(2.111) σ =
1
4

(
Ṙ
R

)2

−
1
2

R̈
R
,

then H(t) provides exact solutions hk(t) of (2.95) for each k.
We can then expand Wk as a sum of terms

(2.112) Wk = w(0) + w(1) + w(2) + . . . ,

where the superfix denotes the adiabatic order. Putting this into (2.110) and just keeping
the elements of order zero, we have w(0) = wk. Just keeping the elements of first order tell
us that w(1) = 0, while for elements of second adiabatic order we require

(2.113) w(2) =
(w(0))−

1
2

2
d2

dt2

(
(w(0))−

1
2

)
+

σ

2w(0) .

We can continue this procedure to any desired order to find odd w(i) = 0 and even w(i)

determined from lower even ones. The form of the functions αk(t) and βk(t) can be obtained
when we impose (2.100). From its temporal derivative, one is led to the ansatz

(2.114) αk(t) = −β̇k(t)e−2ı
∫ t

dt′Wk(t′), βk(t) = −α̇k(t)e2ı
∫ t

dt′Wk(t′)

as justified by consistency with (2.95), given (2.110). For a more explicit form of these
coefficients, see [48].
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A special case of interest here is when the w(i)
k vanish for all the orders bigger than zero

(and all k). In this case, the operator ak(t) defined in (2.103) is independent of time, the
number of particles is constant and there is no particle creation. From the above remarks,
it is sufficient that w(2)

k = 0, which amounts to

(2.115)
1
4

m2
(
4 k2

R2 − m2
)

(
k2

R2 + m2
)2

(
Ṙ
R

)2

+
1
2

m2

( k2

R2 + m2)

R̈
R
= 0.

The only way that this can hold for all time and k is in the infinite mass limit m → ∞ (cf.
[63]), where it reduces to an FLRW-like equation

(2.116)
1
2

R̈
R
=

1
4

(
Ṙ
R

)2

with solution R ∝ t2. As well as the obvious flat Minkowski case of constant R, this
represents a further possibility for no particle creation.

For an actual particle creation computation, it is convenient to move to a new time
variable η such that

(2.117) dη =
dt

R(t)
,

in which case our metric becomes conformally flat as

(2.118) g = C(η)(−dη ⊗ dη + dx ⊗ dx),

where C(η) = R2(t) is now regarded as a function of η. Following the same steps as before
but using this metric puts the wave equation (2.95) on spatial momentum modes in the
simpler form

(2.119)
d2hk(η)

dη2 + wk(η)hk(η) = 0,

where

(2.120) wk(η) =
√

C(η)m2 + k2

as a modification of (2.98).
We now consider particle creation under the assumption that R and hence C has a

constant constant value C(η) = R2
in for early times η < ηin, say, and a constant value

C(η) = R2
out for late times η > ηout, with ηin < ηout. For these early and late times, we let

(2.121) win
k =

√
R2

inm2 + k2; wout
k =

√
R2

outm2 + k2

as functions of k. The fields at early and late times behave exactly as flat Minkowski space-
time with the corresponding frequency or effective mass, with solutions of (2.119) at early
and late times provided by

(2.122) hin
k (η) = (win

k )−
1
2 eıw

in
k η, hout

k (η) = (wout
k )−

1
2 eıw

out
k η.
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Now suppose that we start with hin
k (η) at early times, i.e. hk(η) for αk(ηin) = 1 and βk(ηin) =

0 in the analogue of (2.99), and extend this by solving (2.119) to late times. There we
expand it as the Bogolyubov transformation

(2.123) hin
k = αkhout

k + βkhout
k
∗

valid at late times and for some complex constants αk, βk. Comparing with the analogue of
(2.99) at late times, these constants up to phases are just the evolved values αk(ηout), βk(ηout)

in the general scheme. (The phases come from eı
∫ ηout
ηin

wk(η)dη and are not relevant in what
follows.)

Finally, we fix a vacuum |0⟩ as characterised by Ak |0⟩ = 0 and consider the number
operator Nk(η) = a†k(η)ak(η), which evolves in time, where we use the analogue of (2.103)
as our solution evolves. Starting now with αk(ηin) = 1, βk(ηin) = 0 in defining ak, a

†

k , we
have of course

(2.124) ⟨0|Nk(ηin) |0⟩ = 0

at early times, but in this same state at late times we have the possibility of particle creation
according to

(2.125) ⟨Nk⟩ := ⟨0|Nk(ηout) |0⟩ = |βk(ηout)|2 = |βk |
2.

This completes the general scheme, which is also well-known from several other
points of view. To proceed further we need to fix a particular C(η), and the standard choice
for purposes of calculation is to interpolate the initial and final values as

(2.126) C(η) =
R2

in + R2
out

2
+

R2
out − R2

in

2
tanh(µη),

where µ is a positive constant parameter. Equation (2.119) can then be solved with hyper-
geometric functions that have the correct asymptotic limit for late and early times. Com-
parison with (2.123) gives (see [54]),

αk =

wout
k

win
k

1/2 Γ(1 − ıwin
k
µ

)Γ(−ıwout
k
µ

)

Γ(−ıw+k
µ

)Γ(1 − ıw+k
µ

)
,(2.127)

βk =

wout
k

win
k

1/2 Γ(1 − ıwin
k
µ

)Γ(ıwout
k
µ

)

Γ(ıw−k
µ

)Γ(1 + ıw−k
µ

)
,(2.128)

where

w±k =
1
2

(wout
k ± win

k ).(2.129)
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These values result in

|αk |
2 =

sinh2
(
π

w+k
µ

)
sinh (πwin

k
µ

) sinh (πwout
k
µ

)
, |βk |

2 =

sinh2
(
π

w−k
µ

)
sinh (πwin

k
µ

) sinh (πwout
k
µ

)
,(2.130)

which, as one can check, obeys the unitarity condition (2.100). Figure 4 includes a plot of
⟨Nk |Nk⟩ = |βk |

2 as a function of k, or rather of the associated integer momentum l.
2.4.2. Adaptation to R×Zn. We now repeat the previous analysis for the polygon case

with n sides and time-varying metric (2.57). We have the Laplacian

(2.131) □ = −∂2
t − 2

Ṙ
R
∂t +

2
R2 (∂+ + ∂−)

from Theorem 2.4 with β = 0. The Klein-Gordon equation (−□ + m2)ϕ = 0 is

(2.132)
(
−

2
R2 (∂+ + ∂−) +

1
R2 ∂t(R2∂t) + m2

)
ϕ = 0.

Next, we expand the field in terms of a Fourier series

(2.133) ϕ(t, i) =
∑

k

(Ak fk(t, i) + A∗k f ∗k (t, i))

in place of (2.93), where now

(2.134) fk(t, i) =
1

R(t)
qikhk(t)

and k is an integer mod n. For the modes fk to obey (2.132), the hk have to solve

(2.135) ḧk(t) +
(
m2 +

8
R2 sin2

(
π

n
k
))

hk(t) −
R̈
R

hk(t) = 0.

The corresponding on-shell frequency is therefore

(2.136) wk(t) =

√
m2 +

8
R2(t)

sin2
(
π

n
k
)

instead of (2.98). We again consider an exact solution of the form

(2.137) hk(t) = (wk(t))−
1
2

(
αk(t)eı

∫ t
wk(t′)dt′ + βk(t)e−ı

∫ t
wk(t′)dt′

)
.

Analogously to the previous case, we can re-write the expansion of the field as

(2.138) ϕ(t, i) =
∑

k

(ak(t)gk(t, i) + a∗k(t)g∗k(t, i)),

where

(2.139) gk(t, i) =
R−1

√
wk

qike−ı
∫ t

wk(t′)dt′

and the operator ak(t) has the same form as (2.103). The quantisation procedure and anal-
ysis then proceed as before. Our previous expressions for Wk(t), αk(t), αk are still valid, but
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we have to take into account that the zero adiabatic order term wk is different and that now

(2.140) σ = −
R̈
R

as the factor in (2.135).
For our first result, we look at when the w(2)

k correction vanishes so that there is no
particle creation. In place of (2.115), we now require

(2.141)
4

R2 sin2
(
π
n k

)
( 4

R2 sin2
(
π
n k

)
+ 3m2)(

8
R2 sin2

(
π
n k

)
+ m2

)2

(
Ṙ
R

)2

+

4
R2 sin2

(
π
n k

)
+ m2(

8
R2 sin2

(
π
n k

)
+ m2

) R̈
R
= 0.

This can happen for all time and all k in the infinite mass limit m→ ∞ if

(2.142) R̈ = 0

with solution R ∝ t. However, we also have a new possibility when m→ 0, with

(2.143)
R̈
R
= −

1
2

(
Ṙ
R

)2

and solution R ∝ t
2
3 . Thus we have not one but two additional possibilities for no particle

creation beyond the constant Minkowski metric case.
For our second result, we want to analyse particle creation for the R × Zn model in

an analogous way to the case when space is a circle. Thus, we make the same change of
variable (2.117) in the metric (2.57) to write

(2.144) g = C(η)(−dη ⊗ dη − e+ ⊗s e−),

where C(η) = R2(t), and the corresponding connection is

∇dη =
Ṙ
R

(−dη ⊗ dη + e+ ⊗s e−), ∇e± = −
Ṙ
R

e± ⊗s dη.(2.145)

Using the quantum geometric Laplacian for this connection, we require

(2.146)
d2hk(η)

dη2 +

(
C(η)m2 + 8 sin2

(
π

n
k
))

hk(η) = 0

analogously to (2.119), but now in place (2.120) we have

(2.147) wk(η) =

√
C(η)m2 + 8 sin2

(
π

n
k
)
.

The rest of the procedure follows in the same way with the same considerations, and in
particular (2.130) is still valid but with (2.147) instead of (2.120). Figure 4 shows the
expected value of the number operator ⟨Nk |Nk⟩ as a function of k as well as comparing to
the circle case. The big difference of course is that the Zn has to be periodic in k since
this is only defined mod n. As last remark here, we pointing out that a usual procedure of
quantization leads to the equations (2.130), however, we would not to be able to determine
the no particle creation conditions.
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Figure 4. Number operator for Z100 against k compared to S 1 with
length scale factor L = 100/

√
2, plotted against integer momentum l

where k = 2πl/L. In both cases, Rin m = 1, Rout m =
√

5 and µ = 100 for
the interpolation parameter. Figure as in [2]

3. Black hole with the discrete circle

We now consider the spacetime metric of a symmetric static black hole with S 1 in
polar coordinate replaced by the discrete group Zn. Now the spacetime coordinate algebra
is A = C∞(R × R>0) ⊗ C(Zn) with t, r for the time and radial classical variables, and we
consider a static Schwarzschild-like metric of the form

(2.148) g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr − αab(r, i)ea ⊗ eb.

Invertibility of the metric requires centrality, which dictates αab(r, i) = αa(r, i)δab−1 for
some real-valued functions αa. We also require edge-symmetry αa = Ra(αa−1 ) so that the
length of each edge •i − •i+1 for the Zn at radius r is the same in either direction, namely
given by some real function a(r, i) according to

(2.149) α+(r, i) = a(r, i), α−(r, i) = R−a(r, i).

We limit attention to this form of metric.
We take analogous conditions on the tensor product calculus as in the previous section,

in the sense that the functions of the time t, radius r as well as dt, dr are classical and
graded-commute with everything. In view of this, we make the simplifying assumption

that the connection braiding σ among the differentials dr, dt and between them and e± is

just the flip map. In this case, the most general form of a potential bimodule connection,
removing the terms that make the connection not compatible with the algebra (similar to
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the previous section), turns out to be

∇ea = −Γa
bceb ⊗ ec + νa

bdt ⊗s eb + γa
bdr ⊗s eb,

∇dt = ξabea ⊗ eb + bdt ⊗ dt + cdr ⊗ dr + hdr ⊗s dt,

∇dr = Aabea ⊗ eb + Bdt ⊗ dt +Cdr ⊗ dr + Ddr ⊗s dt,

where the coefficients are elements of the algebra A and of the form

(2.150) νa
b = νaδa,b−1 , γa

b = γaδa,b−1 , Aab = Aaδa,b−1 , ξab = ξaδa,b−1 .

We now analyse when such a bimodule connection is a QLC. The requirement to be
torsion-free comes down to

(2.151) Aab = Aba, ξab = ξba, Γa
bc = Γ

a
cb, ∧(id + σ)(ea ⊗ eb) = 0,

while to be metric compatible comes down to the 13 equations:

dr ⊗ dt ⊗ dt : ∂rβ + 2βh = 0,

dr⊗3 : ∂rH + 2HC = 0,

dt⊗3 : 2βb = 0,

dr ⊗ dt ⊗ dr/dr ⊗ dr ⊗ dt : −βc + HD = 0,

dt ⊗ dt ⊗ dr/dt ⊗ dr ⊗ dt : −βh + HB = 0,

dt ⊗ dr ⊗ dr : 2HD = 0,

dr ⊗ ea ⊗ eb : −∂rαab − αcbγ
c
a − αacRa(γc

b) = 0,

ea ⊗ eb ⊗ dt : −βξab − αcdRc(νd
f )σc f

ab = 0,

ea ⊗ dt ⊗ eb : −βξab − αcbν
c

a = 0,

ea ⊗ eb ⊗ dr : HAab − αcdRc(γd
f )σc f

ab = 0,

ea ⊗ dr ⊗ eb : HAab − αcbγ
c

a = 0,

ea ⊗ eb ⊗ ec : −∂aαbc − αdcΓ
d

ab − αd f Rd(Γ f
gc)σdg

ab = 0,

dt ⊗ ea ⊗ eb : −αcbν
c

a − αacRa(νc
b) = 0.

The 1st and 2nd equations give h,C respectively, and these together with the 5th equation
give B, as

(2.152) h = −
1

2β
∂rβ, C = −

1
2H

∂rH, B = −
1

2H
∂rβ.

The 3rd, 6th, and 4th equations imply that c = b = D = 0. Next, the 9th and 11th equations
tell us that

(2.153) νa = −
βξa

αa
, γa =

HAa

αa
,
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while, given the edge-symmetry, the 13th and 7th equations reduce to

(2.154) νa + Ra(νa−1 ) = 0, γa + Ra(γa−1 ) = −
∂rαa

αa
.

Given that the 12th equation for metric compatibility and the torsion-freeness condi-
tions are the same as for the polygon in the previous section, we are led to take Γa

bc at each
radius r the same as for the QLC ∇Zn on the polygon found there. This has

∇Zn e+ = (1 − ρ)e+ ⊗ e+, ∇Zn e− = (1 − R2
−ρ
−1)e− ⊗ e−, ρ(r, i) =

a(r, i + 1)
a(r, i)

and its braiding obeys σ(e± ⊗ e∓) = e∓ ⊗ e±, in which case the 8th and 10th metric com-
patibility equations become

(2.155) Ra(νa−1 ) = −
β

αa
ξa−1 , Ra(γa−1 ) =

HAa−1

αa
.

Using the first of (2.153) and (2.155) in (2.154) leads us to ξa = −ξa−1 , which together
with the second half of the torsion-freeness conditions (2.151) requires ξa = 0, and as
consequence νa = 0. Similarly, inserting the second half of (2.153) and (2.155) in (2.154)
produces

(2.156) −Aa − Aa−1 =
∂rαa

H
.

In summary, for a QLC, it only remains to solve for Aa, γa subject to such residual equa-
tions, with the other coefficients zero or determined. It also remains to impose reality in
the form of ∇ ∗-preserving.

Proposition 2.8. Assuming a static edge-symmetric central metric (2.148) and σ the

flip on generators involving dr, dt leads to a ∗-preserving QLC if and only if ∂−∂rαa = 0
(which needs the underlying a(r, i) to be the sum of a function of r and a function of i). The

∗-preserving QLC with real coefficients is then unique and given by

∇dt = −
1

2β
∂rβdr ⊗s dt

∇dr = −
1

2H
∂rHdr ⊗ dr −

∂rα+
2H

e+ ⊗ e− −
∂rα−
2H

e− ⊗ e+ −
1

2H
∂rβdt ⊗ dt

∇e± =∇Zn e± −
1
r

dr ⊗s e±.

Proof. The ∗-preserving conditions for ∇ include conditions on Γ which coincide at
each r with those for a QLC on Zn, for which the solution is unique, so we are forced to
this choice for Γ. The remaining ∗-preserving conditions require B,C, h to be real-valued,
which already holds because they are functions of the metric coefficients, together with the
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conditions ∑
a

(Aa−1σ(ea−1
⊗ ea) − Aaea ⊗ ea−1

) = 0, γa = Ra(γa−1 ),(2.157) ∑
a

(ξa−1σ(ea−1
⊗ ea) − ξaea ⊗ ea−1

) = 0, νa = Ra(νa−1 ).(2.158)

The conditions (2.158) are trivially fulfilled, while the second half of (2.157) implies Aa =

Aa−1 , which together with the form of the braiding map σ solves the first half of (2.157). In
this case, (2.156) takes the form

(2.159) −Aa − Aa =
∂rαa

H
.

The second halves of (2.153) and (2.155) together with the edge-symmetric condition, tell
us that Aa = Ra−1 (Aa) and hence that Aa is independent of the discrete variable, i.e., just
function of r. In this case, we must have

A± = −
∂rα±
2H
± ıy(r), γ± = −

∂rα±
2α±

± ı
Hy(r)
α±

for some function real-valued function y(r). It is natural at this point to set y(r) = 0 so
as to keep coefficients real. Another consequence of A± being constant in the polygon is
∂±A± = 0, which leads us to ∂±∂rαa = 0. This corresponds to restricting underlying metric
function a(r, i) in (2.149). □

This is a general result, but we now restrict attention to the Zn-invariant metric where
a(r, i) is independent of i and moreover of the expected radial form.

Theorem 2.9. The static Zn-invariant Schwarzschild-like metric

g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr − r2e+ ⊗s e−

has a canonical ∗-preserving QLC,

∇dt = −
1

2β
∂rβdr ⊗s dt,

∇dr = −
1

2H
∂rHdr ⊗ dr −

r
H

e+ ⊗s e− −
1

2H
∂rβdt ⊗ dt,

∇e± = −
1
r

dr ⊗s e±

with the corresponding Ricci scalar and Laplacian

S =
1

2Hβ
∂2

rβ −
1

4Hβ2 (∂rβ)2 −
1

4H2β
∂rH∂rβ −

1
rH2 ∂rH +

1
rHβ

∂rβ +
1

r2H
,

□ =
2
r2 (∂+ + ∂−) −

1
β
∂2

t +
1
H
∂2

r +

(
2

rH
−

1
2H2 ∂rH +

1
2Hβ

∂rβ

)
∂r.

This is Ricci flat if and only if

(2.160) H(r) =
1
β(r)

, β(r) =
rH

r
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for some constant rH of length dimension.

Proof. Taking α± = r2 in the preceding proposition immediately gives the canonical
QLC stated. Its associated curvature comes out as

R∇dt =
1

2β

(
∂2

rβ −
1

2β
(∂rβ)2 −

1
2H

∂rH∂rβ

)
dt ∧ dr ⊗ dr −

r
2Hβ

∂rβdt ∧ e+ ⊗s e−,

R∇e± = −
∂rH
2rH

e± ∧ dr ⊗ dr −
1

2rH
∂rβe± ∧ dt ⊗ dt −

1
H

e± ∧ e∓ ⊗ e±,

R∇dr =
1

2H

(
1

2H
∂rβ∂rH − ∂2

rβ +
1

2β
(∂rβ)2

)
dr ∧ dt ⊗ dt −

1
2

r∂rβdr ∧ e+ ⊗s e−.

Taking the antisymmetric lift of products of basic 1-forms and tracing gives the associated
Ricci tensor

2Ricci =

 1
2β
∂2

rβ −

(
∂rβ

2β

)2

−
1

4Hβ
∂rH∂rβ −

1
rH

∂rH

 dr ⊗ dr(
−

r
2Hβ

∂rβ +
r

2H2 ∂rH −
1
H

)
e+ ⊗s e−

+

(
1

4H2 ∂rβ∂rH −
1

2H
∂2

rβ +
1

4Hβ
(∂rβ)2 −

∂rβ

rH

)
dt ⊗ dt

The Ricci scalar and Laplacian follow on application of the inverse metric. We then solve
for Ricci = 0. The calculations are straightforward and are omitted. □

The quantum geometric structures in the ‘discrete black hole’ Ricci-flat case are

g = −
rH

r
dt ⊗ dt +

r
rH

dr ⊗ dr − r2e+ ⊗s e−,(2.161)

(dt, dt) = −
rH

r
, (dr, dr) =

r
rH
, (e±, e∓) = −

1
r2 ,(2.162)

∇dt =
1
2r

dr ⊗s dt,(2.163)

∇dr = −
1
2r

dr ⊗ dr − rHe+ ⊗s e− +
r2

H

2r3 dt ⊗ dt,(2.164)

∇e± = −
1
r

dr ⊗s e±,(2.165)

R∇dt =
1
r2 dt ∧ dr ⊗ dr +

rH

2r
dt ∧ e+ ⊗s e−,(2.166)

R∇dr = −
r2

H

r4 dr ∧ dt ⊗ dt +
rH

2r
dr ∧ e+ ⊗s e−,(2.167)

R∇e± = −
1

2r2 e± ∧ dr ⊗ dr +
r2

H

2r4 e± ∧ dt ⊗ dt ∓
rH

r
e+ ∧ e− ⊗ e±,(2.168)

□ = −
r

rH
∂2

t +
rH

r
∂2

r +
rH

r2 ∂r +
2
r2 (∂+ + ∂−).(2.169)
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To keep the signature, we can take rH > 0 and we will analyse this case first. However,
to approximately match the inside of a black hole, we should also analyse the case rH =

−2GM < 0 with the physical roles of r, t interchanged.
We also note that β = H = 1 leads to

g = −dt ⊗ dt + dr ⊗ dr − r2e+ ⊗s e−, Ricci = −
1
2

e+ ⊗s e−, S =
1
r2 ,

□ = −∂2
t + ∂

2
r +

2
r
∂r +

2
r2 (∂+ + ∂−),

which is more like the spacetime Laplacian in 3 spatial dimensions, again showing the
dimension jump and the constant curvature at each fixed radius and time. Here S 1 behaves
more like S 2 in polar coordinates, just with 2(∂+ + ∂−) in the role of the angular Laplacian.

3.1. Klein-Gordon equation on the discrete-circle black hole for β(r) > 0. Here,
we analyse the case of the length scale rH > 0 in the Laplacian (2.169) found for the
discrete black hole above in ‘polar coordinates’ form. The eigenvalues of the angular
Laplacian ∂+ + ∂− are labelled by l ∈ Zn and given by

λl = ql + q−l − 2 = 2(cos
(

2πl
n

)
− 1) = −4 sin2(

πl
n

); q = e
2πı
n

with eigenfunctions qil. We first consider the ‘quantum mechanical’ solutions of Klein-
Gordon equations □ϕ = m2ϕ of the form

ϕ = e−ımtψl(t, r)

of orbital angular momentum l and slowly varying in t. The idea here is described more in
chapter 3 including how it works for a usual black hole. Such a form of ϕ is not particularly
justified from the form of the metric but leads to

ıψ̇ = −
rH

2mr

(
□r +

2λl

r2

)
ψl + (1 −

rH

r
)
m
2
ψl; □r =

rH

r2 ∂r(r∂r).

The mass term has not been canceled from the Klein-Gordon equation due to the rH/r

factor in the dt ⊗ dt term in the metric, except in the vicinity of r ≈ rH .
Here it makes more sense to look in the ‘comoving’ case where we start with an l = 0

solution of the Klein-Gordon equation of the form

ϕ = e−ıωtϕω; ϕ′′ω +
1
r
ϕ′ω + (

r2

r2
H

ω2 −
r

rH
m2)ϕω = 0.

A generic solution for ω = m = rH = 1 is shown in Figure 5, which illustrates that we can
have an extended region where ϕω is approximately constant, here with boundary condition

ϕ′ω(r0) = 0, ϕω(r0) = 1; r0 := rH
m2

ω2 .

This results in ∣∣∣∣∣ϕ′ω(r)
ϕω(r)

∣∣∣∣∣ < m
|ω|rH

, r ≈ r0
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Figure 5. Solution of Klein-Gordon equation for l = 0 and ω = m =
rH = 1, with Cauchy boundary condition at r0 = rH

m2

ω2 .. Image as in [3]

for a reasonable range around the central value, as illustrated in the second half of the
figure 5. An obvious choice would be ω = m and hence r0 = rH , but we can choose other
ω to have other central values r0.

Next, we use this as a reference and look for solutions of the Klein-Gordon equations
of the form ϕ = e−ıωtϕω(r)ψl(t, r) with ψl in the λl eigenspace and slowly varying in t.
Discarding ψ̈l terms, we have

ıψ̇l = −
rH

2ωr

(
□r +

2ϕ′ω
ϕω

rH

r
∂r +

2λl

r2

)
ψl

and hence in any regime where the ϕ′ω/ϕω term can be neglected, we have approximately

ıψ̇l ≈ −
rH

2ωr

(
□r +

2λl

r2

)
ψl

as an effective Schroedinger-like equation. We still have an expected scale factor out front,
but now the unwanted mass terms are absent, i.e. this looks more like free motion as
expected.

We can go further and replace r by a new variable

ρ(r) =
r2

2rH
,

∂

∂r
=

r
rH

∂

∂ρ
,

∂2

∂r2 =
∂

∂r

(
r

rH

∂

∂ρ

)
=

r2

r2
H

∂2

∂ρ2 +
1
rH

∂

∂ρ
,

in which case

ıψ̇l ≈ −
1

2ω

 ∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

2λl

(2ρ)
3
2 r

1
2
H

ψl.

This absorbs the β2 = r2
H/r

2 factor in front of the radial double derivative so as to look
more like flat space quantum mechanics, but has an unusual radial power for the angular
contribution. Here ω plays the role of the effective mass and determines the central value

ρ0 =
rH

2

(m
ω

)4

around which we wish our approximation to hold.
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3.2. Continuum limit of the discrete black hole. Here we use the classical limit of
section 1.2 of this chapter for having S 1 instead of Zn. We now work on A = C∞(R ×
R>0)⊗C[s, s−1] with t, r, dt, dr classical and graded-commuting with the s, f ±. We take the
metric

g = −
rH

r
dt ⊗ dt +

r
rH

dr ⊗ dr + r2gS 1

and we look for QLCs with σ assumed to be the flip on the basic 1-forms.

Proposition 2.10. The metric g has a canonical Ricci flat ∗-preserving QLC and as-

sociated geometry

∇dt =
1
2r

dr ⊗s dt, ∇dr = −
1
2r

dr ⊗ dr +
r2

H

2r3 dt ⊗ dt + rHgS 1 , ∇ f ± = −
1
r

dr ⊗s f ±,

R∇dt =
1
r2 dt ∧ dr ⊗ dr −

rH

2r
dt ∧ gS 1 , R∇dr = −

r2
H

r4 dr ∧ dt ⊗ dt −
rH

2r
dr ∧ gS 1 ,

R∇ f ± = −
1

2r2 f ± ∧ dr ⊗ dr +
r2

H

2r4 f ± ∧ dt ⊗ dt +
rH

r
f ± ∧ gS 1 ,

□ = −
r

rH
∂2

t +
rH

r
∂2

r +
rH

r2 ∂r +
1
r2□S 1 , □S 1 = −

4(1 + (q − 1)s∂q)
(q + 1)2 (s∂q)2,

where ∂q is the standard q-derivative so that □S 1 on modes sl has eigenvalue

λl = −
4ql[l]2

q

(q + 1)2 , [l]q :=
1 − ql

1 − q
.

Proof. First, we can redo the discrete black hole model with a(r, i) = ar2 for any
constant factor a for the angular term gZn = −ae+ ⊗s e− in the metric. This same factor
enters in the connection in the ∇dr as gZn there. The same happens for R∇ in the term
where e+ ⊗s e− entered. We then replace gZn by gS 1 to get the connection as stated, noting
that f ± are a linear combination of e± so expressions linear in these have the same form.
This version is constructed so as to be isomorphic to the discrete black hole when q = e

2πı
n

and sn = 1 are imposed, but these properties do not enter into the computations for a QLC,
so this also holds for generic q, and likewise for Ricci flatness and for being ∗-preserving
when |q| = 1. One can also do a direct check of these features and see that ∇ is ∗-preserving
also when q is real, as a consequence of gS 1 being real in the required sense.

For Ricci, the antisymmetric lift i( f + ∧ f −) = 1
2 ( f + ⊗ f − − f − ⊗ f +) of

f + ∧ f − =
(

q − 1
q + 1

)
(q − q−1)2e+ ∧ e−

is equivalent to that of e+ ∧ e− when we use the correspondence (2.15). We also use the
inverse metric which on the f ± comes out as

( f ±, f ±) = −
4q

r2(q + 1)2 , ( f ±, f ∓) = 2
q2 + 1

r2(q + 1)2 .
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For the Laplacian, we use dsl from proposition 2.2 and the inverse metric to compute
□sl = ( , )∇dsl = −

4q2+l

r2(q+1)2 [l]2
qsl, which we write as stated since s∂qsl = [l]qsl for the

standard q-derivative ∂q f (s) = ( f (qs)− f (s))/((q−1)s). The other values of □ on functions
of r, t are unchanged from the discrete case. In the classical case with s = eılθ, we have
s ∂
∂s = −ı

∂
∂θ

as the limit of s∂q. □

This is a joint process q → 1 and f + = − f −, with the latter taking precedence so that
gS 1 → − f + ⊗ f + = dθ ⊗ dθ as classically in our normalisation of gS 1 . In this way, one
arrives as the classical 1+2-dimensional curved metric

gclass = −
rH

r
dt ⊗ dt +

r
rH

dr ⊗ dr + r2dθ ⊗ dθ,

which is not, however, Ricci flat. One finds in our conventions (which are −1/2 of the
usual ones)

Ricci = −
1
2

 r2
H

2r4 dt ⊗ dt −
1

2r2 dr ⊗ dr +
rH

r
dθ ⊗ dθ

 , S = 0,

□ = −
r

rH
∂2

t +
rH

r
∂2

r +
1
r2

∂2

∂θ2 .

The Laplacian agrees with the limit of the q-deformed geometry but Ricci does not. This
is due to the 4D cotangent bundle in the quantum model, since the trace gives a different
result from the trace in the quotient, where we impose f + = − f −. Moreover, the dropped
terms in the metric that are singular as q → 1 contribute in the calculation of Ricci = 0 in
the quantum model.

3.3. Discrete black hole model for β(r) < 0. Here we briefly analyse the case where
rH < 0 in our previous presentation of the discrete black hole. More precisely, we still
define rH = 2GM > 0 but replace rH by −rH and we also replace t by r and r by t in all the
formulae (2.161)-(2.169) in order to match the signature. Thus, the quantum metric and
resulting quantum geometry are now

g = −
t

rH
dt ⊗ dt +

rH

t
dr ⊗ dr − t2e+ ⊗s e−,

∇dr =
1
2t

dr ⊗s dt, ∇dt = −
1
2t

dt ⊗ dt +
r2

H

2t3 dr ⊗ dr − rHe+ ⊗s e−,

∇e± = −
1
t

dr ⊗s e±, □ = −
rH

t
∂2

t +
t

rH
∂2

r −
rH

t2 ∂t +
2
t2 (∂+ + ∂−)

with a curvature singularity now at t = 0. We next make a change of variable

t = (
3τ
2

)
2
3 r

1
3
H = η(τ)2rH , η(τ) =

(
3τ

2rH

) 1
3
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in order to have a constant term in the ‘time’ coefficient of the metric, so that the quantum
geometric structures become

g = −dτ ⊗ dτ + η−2dr ⊗ dr − η4r2
He+ ⊗s e−,

∇e± = −
2
3τ

dτ ⊗s e±, ∇dτ = −
1

3η2τ
dr ⊗ dr − ηrHe+ ⊗s e−,

∇dr =
1
3τ

dr ⊗s dτ, □ = −∂2
τ +

1
3τ
∂τ + η

2∂2
r +

2
η4r2

H

(∂+ + ∂−).

We now do the parallel analysis to Section 3.1. Using the above Laplacian for the
Klein-Gordon equation, we first look for solutions of the form ϕ = e−ımτψl(τ, r) where ψl

is slowly varying in τ and with eigenvalue λl for the angular sector. Ignoring ψ̈l, we have

ıψ̇l = −
η2

2m − ı
3τ

(
∂2

r +
8λl

9τ2

)
ψl,

where dot denotes ∂τ. If we assume that we are very far from the τ = 0 singularity in the
sense

τ >>
1
m

(i.e. at macroscopic times much larger than the Compton wavelength in time units), we
have

(2.170) ıψ̇l ≈ −
η2

2m

(
∂2

r +
8λl

9τ2

)
ψl.

This looks, as expected, a bit like quantum mechanics, not in the presence of a point source
potential but rather with an overall time-dependent expansion factor and a time-dependent
contribution of the angular momentum. Note that e−ımτ does not itself obey the Klein-
Gordon equation.

Next, we look for the ‘comoving’ behaviour, noting that solutions of the Klein-Gordon
equation of mass m and l = 0 are in fact given by Hankel functions, of which we focus on
the first type,

ϕm(τ) = τ
2
3 H(1)

2
3

(mτ).

Here, the real and imaginary parts (Bessel J, K functions respectively) oscillate, ϕm(0) is
a nonzero (imaginary) value, and |ϕm|

2 gradually increases with time. This therefore plays
the role of an exact plane wave. Relative to this, we look for solutions of the form

ϕ(τ, r) = ϕm(τ)ψl(τ, r)

with ψl slowly varying in τ, leading to a Schroedinger-like equation

ıψ̇l = −
η2h(mτ)

2m

(
∂2

r +
8λl

9τ2

)
ψl,
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Figure 6. Function h(mτ) in definition of Schroedinger-like equation for
discrete black hole metric and evolution of a Gaussian centred at r =
10rH at τ = 1/m, for rH = m = 1 and l = 0. The essentially zero initial
values at r = 0, 20rH are held fixed. Figure as in [3]

where

h(s) = ı
H(1)

2
3

(s)

H(1)
− 1

3
(s) − 1

6s H(1)
2
3

(s)
≈ 1

for large s, as shown on the left in Figure 6. Here, one can see that h(mτ) approaches
1 very rapidly as τ >> 1/m. In other words, the behaviour near the τ = 0 singularity is
different but for larger τ the effective Schroedinger-like equation is now much more sharply
approximated by (2.170) than before.

The numerical solution for the real part of this equation is shown on the right in Figure
6, where we used the exact function h(mτ) and set the initial Gaussian at mτ = 1. The
evolution becomes noticeably constant in r compared to regular quantum mechanics. Some
of the noise in the picture comes from the numerical approximation.



CHAPTER 3

Cosmological Models over the Fuzzy Sphere

There is a general procedure for constructing a first-order calculus over an enveloping
algebra. This construction can be found in [14, Chap. 1.6.1], where the main ingredients
are theorem 1.41 and example 1.44. The quantum geometry of the fuzzy sphere is devel-
oped in [31], which we just include for completeness in the first section of this chapter.
The rest of the results of the chapter are new and were published in [3].

1. Generalities of the fuzzy sphere and its classical limit

We start considering the angular momentum enveloping algebra U(su2) with basis
{e1, e2, e3} and relations [ei, e j] = ϵi jkek. Besides, we introduce the hermitian generators
xi = 2ıλpei, where λp is a real dimensionless parameter, supposed to be of the order of the
Planck scale relative to the actual sphere size.

A representation ρ : U(su2)+ → Λ1 is considered, where U(su2)+ is the enveloping
algebra without constant terms and Λ1 is the space expanded by the Pauli matrices σi plus
the unity matrix. Then, a first-differential calculus can be constructed, where Λ1 is the
bimodule, the exterior derivative is dxi = ρ(xi) = λpσi and the bimodule structure is

xi.ω = xiω, ω.xi = xiω + ωρ(xi),

where ω ∈ Λ1. Nevertheless, we use a different calculus here, which uses this set up as a
starting point. More details about this calculus can be found in [14, Chap 1.6.1]

The unit fuzzy sphere A = Cλ[S 2] in the sense of [30, 14, 31] just means the en-
veloping algebra U(su2) with an additional relation giving a fixed value of the quadratic
Casimir. This is the standard coadjoint quantisation of the unit sphere with its Kirillov-
Kostant bracket known since the 1970s, and in our conventions takes the form

[xi, x j] = 2ıλpϵi jk xk,
∑

i

x2
i = 1 − λ2

p

The conventions are chosen so that the standard spin- j representation descends to a rep-
resentation of the the fuzzy sphere if λp = 1/(2 j + 1), but we are not restricted to these
discrete values.

The more novel ingredient in [14, 31] is a rotationally invariant differential calculus in
the sense of an exterior algebra (Ω, d) given by central basic 1-forms si ∈ Ω1 and exterior

63
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derivative

dxi = ϵi jk x jsk, dsi = −
1
2
ϵi jk s j ∧ sk,(3.1)

with associated partial derivatives defined by d f (x) = (∂i f )si in this basis (they act in the
same way as orbital angular momentum). The si are preferable as they graded commute
with everything, but they can be recovered in terms of the dxi by [31]

si =
1

1 − λ2
p

(xiθ′ + ϵi jkdx jxk); θ′ = xisi =
xidxi

2ıλp
.(3.2)

The basis {si} is central, then the commutators are xis j = s jxi. However, it is possible to
obtain the commutators in the dxi basis, which are

[θ′, xi] = 2ıλpdxi, [xi, dx j] = 2ıλp(δi jθ
′ −

x j

1 − λ2
p

(xiθ
′ + ϵimn(dxm)xn)).(3.3)

These commutation relations are just a consequence of the equations 3.1, 3.2, and the
centrality of the basis. Also, the centrality of the si elements can be proved from these
commutation relations. There is also a ∗-operation with x∗i = xi and si∗ = si. Then ∗
commutes with d and θ′∗ = θ′.

A metric on the fuzzy sphere from the point of view of quantum Riemannian geometry
means g ∈ Ω1⊗AΩ

1 subject to certain conditions and is shown in [14, 31] to be necessarily
of the form

g = gi jsi ⊗ s j

for a real symmetric matrix gi j. Here g, in order to have a bimodule inverse, needs to be
central and this forces the gi j to be constants. Quantum symmetry in the sense ∧(g) = 0
requires the matrix to be symmetric and reality in the sense flip(∗ ⊗ ∗)(g) = g then requires
gi j to be real-valued. We also need non-degeneracy in the sense of a bimodule map ( , ) :
Ω1 ⊗A Ω

1 → A inverting g in the obvious way. Here ‘bimodule map’ means commuting
with the product by elements of a from either side, i.e. fully tensorial from either side. In
our case this is (si, s j) = gi j, the inverse matrix to gi j. The rotationally invariant ‘round
metric’ is gi j = δi j or g = si ⊗ si (sum over i understood).

The new result in [31] was to find a quantum Levi-Civita connection ∇ : Ω1 → Ω1 ⊗A

Ω1 in the sense of torsion-free and metric compatible. This can be solved for the fuzzy
sphere under the assumption that the coefficients are constant in the si basis, giving[31]

∇si = −
1
2
Γi

jk s j ⊗ sk, Γi
jk = gil(2ϵlkmgm j + Tr(g)ϵl jk).

Moreover, as classically, we can just take the map i to be the antisymmetric lift, so

i(si ∧ s j) =
1
2

(si ⊗ s j − s j ⊗ si).
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The resulting Ricci curvature on the fuzzy sphere are in [31] but in the round metric case
one has

∇si = −
1
2
ϵi jk s j ⊗ sk, Ricci = −

1
4

g, S = −
3
4
.

The curvatures here are not the values you might have expected for a unit sphere even
allowing for our conventions. Nor does the Einstein tensor (at least, if defined in the usual
way) vanish as would be the case for a classical 2-manifold.

To understand this last point better, which is a small new result of this preliminary
section, we look more carefully at the classical limit λp → 0. By the Leibniz rule and the
values above, we have for the round metric

∇(θ′) = xi∇si + dxi ⊗ si = −
1
2
ϵi jk xis j ⊗ sk + ϵi jk x jsk ⊗ si =

1
2
ϵi jk xis j ⊗ sk

=
1

2(1 − λ2
p)2 ϵi jk(x jθ

′ + ϵ jmn(dxm)xn) ⊗ (xkθ
′ + ϵkab(dxa)xb)

=
1
2
ϵi jkdxi ⊗ (dx j)xk + O(λp).

This means that we cannot just set θ′ = 0 in the classical limit for the given quantum
geometry. From the commutator relations (3.3), we see that the calculus is commutative
and xidxi = 0 in the classical limit λp → 0 as expected for the unit sphere, but θ′ itself
does not need to vanish, and we have seen that it cannot if we want to have a limit for ∇.
Rather, we consider the classical limit as the classical sphere plus a single remnant θ′ which
graded-commutes with everything and (in the classical limit) does not arise from functions
and differentials on the sphere. Indeed, this limit is not a strict differential calculus but a
generalised one for this reason, but there is no such problem in the quantum case, where

θ′ =
1

2ıλp
xidxi

shows its origin as ‘normal’ to the sphere as embedded in R3. We now note that the round
metric has the limit

g = si ⊗ si = (xiθ
′ + ϵimn(dxm)xn) ⊗ (xiθ

′ + ϵiab(dxa)xb)

= (1 − λ2
p)θ′ ⊗ θ′ + ϵimnxiθ

′ ⊗s (dxm)xn + (δmaδnb − δmbδna)(dxm)xn ⊗ (dxa)xb

= θ′ ⊗ θ′ + dxi ⊗ dxi + O(λp)

since the calculus is commutative to O(λp). Thus we see that the rotationally invariant
‘round’ metric actually has an extra direction required by the calculus. We can recover the
completely classical S 2 by the limit λp → 0 and projecting θ′ = 0, but traces taken for the
Ricci curvature before we do this will remember the extra ‘normal direction’ and not map
onto the classical values.
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2. Expanding fuzzy sphere FLRW model

Here we work with the coordinate algebra A = C∞(R)⊗Cλ[S 2] where the R has a clas-
sical time t variable with classical dt graded commuting with t, dt and with the generators
xi, si of the exterior algebra of the fuzzy sphere.

We first consider a general metric of the form

(3.4) g = βdt ⊗ dt + ni(dt ⊗ si + si ⊗ dt) + gi jsi ⊗ s j

where gi j is a symmetric 3 × 3 matrix of coefficients and β, ni further coefficients, a priori

all valued in A. The condition in definition 1.3 of chapter 1 forces the ni = 0 and, the
centrality of the metric makes the remaining coefficients to be in the center of Cλ[S 2],
which is trivial. Hence gi j, β are functions only of the time t. The reality condition for
quantum metrics forces them to be real-valued.

Next, a general QLC for the calculus has the form

∇si = −
1
2
Γi

jk s j ⊗ sk + γi
js j ⊗s dt + τidt ⊗ dt(3.5)

∇dt =µ jk s j ⊗ sk + η js j ⊗s dt + Γdt ⊗ dt(3.6)

again with Γi
jk, γ

i
j, τ

i,Γ, η j, µ jk ∈ A. However, given that the spatial metric gi j are functions
only of t, it is natural to assume this also for the spatial Christoffel symbols Γi

jk just as is
done for the fuzzy sphere alone in [31]. In this case, compatibility of ∇ with the relations
of commutativity of dt, si with t, x j and the natural assumption that the associated braiding
σ has the classical ‘flip’ form when one of the arguments is dt, conditions needed for a
bimodule connection, require that γi

j, τ
i,Γ, η j, µ jk are also functions of time alone.

The non trivial conditions for ∇ to be torsion-free are

(3.7)
1
2

(−Γi
jk + ϵ

i
jk)s j ⊗ sk = 0, µ jk = µk j,

since d(dt) = 0. The conditions ∇g = 0 for metric compatibility then produces

dt ⊗ si ⊗ s j : ġi j + gilγ
l

j + gl jγ
l
i = 0,

dt ⊗ dt ⊗ dt : β̇ + 2βΓ = 0,

sl ⊗ sm ⊗ s j : −
gi j

2
Γi

lm −
gin

2
Γn

p jσ
ip

lm = 0,

sl ⊗ dt ⊗ s j : gi jγ
i
l + βµl j = 0,

dt ⊗ dt ⊗ s j : gi jτ
i + βη j = 0,

sn ⊗ sp ⊗ dt : gi jγ
j
lσ

il
np + βµnp = 0,

dt ⊗ si ⊗ dt : gi jτ
j + βηi = 0,

sm ⊗ dt ⊗ dt : 2βηm = 0.
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It is clear from the third of these and the first of (3.7) that Γi
jk is indeed the Christoffel

symbol for the fuzzy sphere QLC as solved uniquely in the ∗-preserving case with constant
coefficients in [31]. Also, the last equation implies that ηm = 0, and using this together
with the fifth or seventh equation, we get τi = 0. The second equation makes Γ = −β̇/(2β).
Using gikγ

k
j = γi j and the symmetry of gi j in the first equation we get the value of γi

j, then
this together with the 4th equation gives µi j, resulting in

(3.8) γi
j = −

1
2

ġ jkgik, µi j =
ġi j

2β
.

Note that µi j is proportional to the time derivative of the metric, which implies that it is
also symmetric if the metric is, solving the second half of (3.7). Because γi

j and µi j just
depend on real functions, they are also real-valued functions. This leads to a reasonably
canonical QLC.

Theorem 3.1. Up to a reparametrisation of t, a quantum metric on the algebra C∞(R)⊗
Cλ[S 2] has to have the form

g = −dt ⊗ dt + gi jsi ⊗ s j,

where gi j is a time-dependent real 3 × 3 symmetric matrix. Moreover, this admits a canon-

ical ∗-preserving QLC

∇dt = −
1
2

ġi jsi ⊗ s j, ∇si = −
1
2
Γi

jk si ⊗ s j −
1
2

gkiġ jk s j ⊗s dt,

where Γi jk = 2ϵikmgm j+Tr(g)ϵi jk as for the fuzzy sphere in [31]. The associated Ricci scalar

and Laplacian are

2S = −gi jg̈i j − Tr(g) +
1
2

(Tr(g))2 − δi j −
1
4

(
gmlgi jġmlġi j + gklgmnġnkġlm

)
,

□ f =
(
g ji∂ j∂i −

1
2

(
gi jġi j

)
∂t − ∂

2
t

)
f .

Proof. The analysis for the metric was done above and we were forced by the re-
quirement for the metric to be central (in order to be invertible) to ni = 0 and β(t), gi j(t) in
(3.4). We add the ∗-reality of the metric in the form flip(∗ ⊗ ∗)g = g to find β and gi j real.
Quantum symmetry also requires the latter to be symmetric. By a change of t variable, we
can generically assume β = −1, but we do not need to do this.

Now substituting the obtained values so far in the analysis of the general form of the
QLC (3.5), we have the connection

(3.9) ∇dt =
1

2β
ġi jsi ⊗ s j −

1
2
β̇

β
dt ⊗ dt; ∇si = −

1
2
Γi

jk s j ⊗ sk −
1
2

gkiġ jk s j ⊗s dt

for some unknown Γi
jk(t), where we assumed that this does not depend on fuzzy sphere

variables (which is reasonable given that the metric can not). The requirement of being
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∗-preserving yields

(3.10) ġ jk(s j ⊗ sk − σ(sk ⊗ s j)) = 0, Γi
jk s j ⊗ sk − Γ

i
k jσ(sk ⊗ s j) = 0.

with the second of these the same as for the fuzzy sphere in [31] at each fixed time. Here
we used dt∗ = dt. Thus all the equations for Γi

jk are the same as in [31] and hence there is a
unique solution for it in terms of gi j(t), as stated, under the assumption of no fuzzy sphere
dependence. In this case, we know from [31] that σ =flip on s j ⊗ sk and hence the first of
(3.10) is empty, as is the 6th of the metric compatibility equations in our previous analysis.
The rest of the ∗-preserving conditions require Γ, ηi, γ

i
j to be real-valued functions, which

already holds as we have solved for them.
The curvature for the connection (3.9) is

R∇dt =
(

1
2β

g̈i j −
β̇

4β2 ġi j −
1

4β
gmlgilg jm

)
dt ∧ si ⊗ s j

+
1

4β

(
−ġlkϵ

l
i j + ġilΓ

l
jk

)
si ∧ s j ⊗ sk +

1
4β

glmġ jlġimsi ∧ s j ⊗ dt

R∇si =

(
1
4
Γi

jlgmlġkm −
1
4
Γl

jkgmiġlm

)
dt ∧ s j ⊗ sk +

(
1
4

gliġmlϵ
m

jk −
1
4
Γi

jlgmlġkm

)
s j ∧ sk ⊗ dt

+

(
1
4
Γi

mlϵ
m

jk −
1
4
Γi

jmΓ
m

kl +
1

4β
gmiġ jmġkl

)
s j ∧ sk ⊗ sl

+

(
−

1
2

(ġkiġ jk + gkig̈ jk) +
β̇

4β
gkiġ jk −

1
4

gkigmlġlkġ jm

)
dt ∧ s j ⊗ dt,

For this connection we have the Ricci tensor as follows

2Ricci =
(

1
2β

(
g̈i j −

β̇

2β
ġi j − gklġilġ jk

)
+

1
2
Γl

m jϵ
m

li −
1
4
Γl

lmΓ
m

i j +
1

4β
gmlġmlġi j

+
1
4
Γl

imΓ
m

l j −
1

4β
gmlġimġl j

)
si ⊗ s j

−

(
−

1
2

(
ġklġlk + gi jg̈i j

)
+
β̇

4β
gi jġi j −

1
4

gklgmnġnkġml

)
dt ⊗ dt

+

(
1
2

gnlġmnϵ
m

il −
1
4
Γl

lmgnmġin +
1
4
Γl

imgnmġln

)
si ⊗ dt

+

(
−

1
4
Γl

lmgnmġin +
1
4

gnlġmnΓ
m

li

)
dt ⊗ si
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Now taking β = −1, and the explicit value of Γi
jk, the Ricci tensor follows as

2Ricci =
(
−

g̈i j

2
+

1
2

gklġilġ jk −
1
4

gmlġmlġi j − gi j − δi j +
1
2

Tr(g)gi j

)
si ⊗ s j

−

(
−

1
2

(
ġklġlk + gi jg̈i j

)
−

1
4

gklgmnġnkġml

)
dt ⊗ dt

+

(
1
2

gnlġmnϵ
m

il −
1
2
ϵkl

mgnmgklġin +
1
4

(2ϵkl
mgik + Tr(g)ϵ l

im)gnmġln

)
si ⊗ dt

+

(
−

1
2
ϵkl

mgklgnmġin −
1
4

gnlġmn(2ϵkm
igkl + Tr(g)ϵm

li)
)

dt ⊗ si

Making the contraction with the inverse metric we recover the required Ricci scalar.
The Laplacian for a function f = f (t, xi) follows as

□ f = (, )∇(d f ) = (, )∇(∂i f si + ḟ dt) = gi j∂i∂ j f − ∂2
t f −

1
2

gi jġi j∂t f −
1
2

g jkΓi
jk∂i f ,

where the last term vanish when we take into account the explicit form of Γi
jk, recovering

the required Laplacian. □

The QLC here is unique under the reasonably assumption is in [31] that the Γi
jk are

constant on the fuzzy sphere, given that the gi j have to be. The theorem applies somewhat
generally but now we take the expanding round metric gi j = R2(t)δi j for the spatial part, so
the metric, non-zero inverse metric entries, QLC, curvature and Laplacian are

g = −dt ⊗ dt + R2(t)si ⊗ si, (dt, dt) = −1, (si, s j) =
δi j

R2 ,(3.11)

∇dt = −RṘsi ⊗ si; ∇si = −
1
2
ϵ i

jk s j ⊗ sk −
Ṙ
R

si ⊗s dt,(3.12)

R∇dt = −RR̈dt ∧ si ⊗ si,(3.13)

R∇si =

(
1
4
ϵ pi

nϵpkm − Ṙ2δi
mδnk

)
sm ∧ sn ⊗ sk +

R̈
R

dt ∧ si ⊗ dt,(3.14)

Ricci = −(Ṙ2 +
1
2

RR̈ +
1
4

)si ⊗ si +
3
2

R̈
R

dt ⊗ dt, S = −3
(

Ṙ2

R2 +
R̈
R
+

1
4R2

)
,(3.15)

□ =
1

R2

∑
i

∂2
i − 3

Ṙ
R
∂t − ∂

2
t .(3.16)

Also of interest is the Einstein tensor and, in the absence of a general theory, we
assume as before the ‘naive definition’ Eins = Ricci − S

2 g, which works out as

(3.17) Eins =
(
R̈ +

1
2

Ṙ2 +
1
8

)
si ⊗ si −

3
2

(
1

4R2 +
Ṙ2

R2

)
dt ⊗ dt

and is justified by checking that

(3.18) ∇ · Eins = 0.
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Here, if we have any tensor for the form T = f dt ⊗ dt + pR2si ⊗ si, then the divergence is

∇ · T = (( , ) ⊗ id)∇T = −
(

ḟ + 3( f + p)
Ṙ
R

)
dt + ∂i psi

and we use this now for the particular form of the Einstein tensor to establish (3.18). We
also assume this form of T for the energy-momentum tensor of dust with pressure p and
density f , in which case the continuity equation ∇ · T = 0 for p a function only of t is

ḟ + 3( f + p)
Ṙ
R
= 0

as usual, and Einstein’s equation Eins + 4πGT = 0 in our curvature conventions is

4πG f =
3
2

(
Ṙ2

R2 +
1

4R2

)
, 4πGp = −

R̈
R
−

1
2

Ṙ2

R2 −
1

8R2 = −
R̈
R
−

4πG
3

f

These are identical to the classical FLRW equations, see e.g.[23, Chap. 8], for a 4D closed
universe with curvature constant κ = 1/(4R2

0) in the classical FLRW metric

−dt ⊗ dt + R(t)2
(

1
r2(1 − κr2)

dr ⊗ dr + gS 2

)
,

where gS 2 is the metric on a unit sphere, R0 is a normalisation constant with dimension of
length, and we have adapted R(t) to include r in order to match our conventions.

3. Black hole with the fuzzy sphere

We assume a similar framework as in the previous section, but now with a 4D metric
of a static form in polar coordinates. Thus, we add a radial variable r with differential dr

and consider the Schwarzschild-like metric

(3.19) g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr + r2gi jsi ⊗ s j.

The algebra of functions here is A = C∞(R × R>0) ⊗ Cλ[S 2] with classical variables and
differentials t, r, dr, dt for the R×R>0 part (so these graded commute among themselves and
with the functions and forms on the fuzzy sphere). The coefficients gi j define the metric
on the fuzzy sphere, and centrality and reality of the metric dictates that these are constant
real values. Thus, gi j is a real symmetric invertible 3 × 3 matrix (it should also be positive
definite for the expected signature) and β(r),H(r) are real-valued functions.

We start with the general form of connection on the tensor product calculus,

∇si = −
1
2
Γi

jk s j ⊗ sk + αidt ⊗ dt + γidr ⊗ dr + ∆idr ⊗s dt + ηi
jdt ⊗s s j + τi

jdr ⊗s s j,

∇dt = ai jsi ⊗ s j + bdt ⊗ dt + cdr ⊗ dr + ddr ⊗s dt + e jdr ⊗s s j + f jdt ⊗s s j,

∇dr = hi jsi ⊗ s j + θdt ⊗ dt + Rdr ⊗ dr + ϕdr ⊗s dt + ν jdt ⊗s s j + ψ jdr ⊗s s j.
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Assuming that σ(dt⊗), σ(⊗dt), σ(dr⊗), σ(⊗dr) are the flip on the 1-forms dr, dt, si and the
natural restrictions needed for a bimodule connection, one finds that all the coefficients are
functions of t and r alone (constant on the fuzzy sphere).

The torsion freeness conditions for ∇dt,∇dr and ∇si are

(3.20) ai j = a ji, hi j = h ji, Γi
jk − Γ

i
k j + 2ϵ i

jk = 0,

respectively, and the conditions needed for the compatibility with the metric are

dr ⊗ dt ⊗ dt : ∂rβ + 2βd = 0,

dr⊗3 : ∂rH + 2HR = 0,

dr ⊗ sl ⊗ s j : 2rgl j + r2gi jτ
i
l + r2glmτ

m
j = 0,

sm ⊗ sn ⊗ dt : −βmn + r2gi jη
j
lσ

il
mn = 0,

dt⊗3 : −2βb = 0,

dr ⊗ dr ⊗ dt/dr ⊗ dt ⊗ dr : −βc + Hϕ = 0,

dt ⊗ dr ⊗ dr : 2Hϕ = 0,

si ⊗ dt ⊗ dr/si ⊗ dr ⊗ dt : −βei + Hνi = 0,

dr ⊗ s j ⊗ dt/dr ⊗ dt ⊗ s j : −βe j + r2gi j∆
i = 0,

si ⊗ dt ⊗ dt : −2β f j = 0,

dt ⊗ dt ⊗ s j/dt ⊗ s j ⊗ dt : −β f j + r2gi jα
i = 0,

si ⊗ dt ⊗ s j : −βai j + r2gl jη
l
i = 0,

dt ⊗ dr ⊗ dt/dt ⊗ dt ⊗ dr : −βd + Hθ = 0,

dr ⊗ dt ⊗ dt : ∂rβ + 2βd = 0,

sm ⊗ sn ⊗ dr : Hhmn + r2gi jτ
j
lσ

il
mn = 0,

dt ⊗ dr ⊗ si/dt ⊗ si ⊗ dr : Hνi + r2gi j∆
j = 0,

dr ⊗ dr ⊗ si/dr ⊗ si ⊗ dr : Hψi + r2gi jγ
j = 0,

si ⊗ dr ⊗ dr : 2Hψi = 0,

si ⊗ dr ⊗ s j : Hhi j + r2gl jτ
l
i = 0,

sp ⊗ sq ⊗ sm : glmΓ
l
pq + gi jΓ

j
lmσ

il
pq = 0,

dt ⊗ si ⊗ s j : gl jη
l
i + gilη

l
j = 0.

We immediately note that b = ϕ = f j = ψi = 0 for the 5th, 7th, 10th, and 18th equations
respectively. In this case, we have that αi = ϕ = γi = 0 by the 11th, 6th and 17th
equations respectively. Also, solving simultaneously the 8th, 9th, 16th equations, we obtain
∆i = ei = νi = 0. The value of d and R is deduced for the 1st and 2nd equations respectively,
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while θ comes from 13th and 1st equations, with result

(3.21) d = −
∂rβ

2β
, R = −

∂rH
2H

, θ = −
∂rβ

2H
.

The 3rd equations together with the symmetry of gi j lead to τi
j = −

1
r δ

i
j. Now, we can

solve the 19th equation as

(3.22) hi j =
r
H

gi j.

The 21st equation gives the condition ηi j − η ji = 0, where we used ηk
jgki = ηi j. But the

12th equation produces ai j =
r2

β
ηi j so that ai j is anti-symmetric, which together with the

torsion freeness conditions imply that ai j = η
i
j = 0.

Theorem 3.2. The static Schwarzschild-like metric with spatial part a fuzzy sphere,

g = −β(r)dt ⊗ dt + H(r)dr ⊗ dr + r2gi jsi ⊗ s j,

where gi j is a real symmetric matrix with entries constant on the fuzzy sphere, has a canon-

ical ∗-preserving QLC given by

∇dt = −
1

2β
∂rβdr ⊗s dt, ∇dr = −

1
2H

∂rHdr ⊗ dr +
r
H

gi jsi ⊗ s j −
1

2H
∂rβdt ⊗ dt,

∇si = −
1
2
Γi

jk s j ⊗ sk −
1
r

dr ⊗s si,

where Γi jk = 2ϵikmgm j + Tr(g)ϵi jk is the fuzzy sphere QLC from [31]. The corresponding

Ricci scalar and Laplacian are

S =
1

2Hβ
∂2

rβ −
1

4Hβ2 (∂rβ)2 −
1

4H2β
∂rβ∂rH +

3
2r2

+
1

4rH
(3 + Tr(g))

(
∂rβ

β
−
∂rH
H

)
+

Tr(g)
r2H

(1 −
H
2

) +
(Tr(g))2

4r2 ,

□ = −
1
β
∂2

t +
1
H
∂2

r +

(
3

rH
−
∂rH
2H2 +

∂rβ

2Hβ

)
∂r +

gi j

r2 ∂i∂ j.

Proof. Most of the analysis was done above. The torsion-freeness and metric com-
patibility conditions for Christoffel symbol Γ of the fuzzy sphere part are the same as in
[31] as is the second half of the ∗-preserving conditions

hi jsi ⊗ s j − h jiσ(s j ⊗ si) = 0, Γi
jk s j ⊗ sk − Γ

i
k jσ(sk ⊗ s j) = 0

coming from ∇dr and ∇si respectively, with (si)∗ = si, dr∗ = dr and dt∗ = dt. There is
therefore a unique solution for Γ under the assumption that it consists of constants accord-
ing to [31], and we use this solution. This has σ the flip on the si and hence Γ real. In
this case, the other condition for ∗-preserving requires hi j to be hermitian, which already
holds because hi j is real and symmetric for (3.22). The 4th and 15th metric compatibility
equations also then hold. The connection stated is then obtained by substituting into the
general form of the connection. This completes the analysis for the canonical QLC.
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The curvature for this connection comes out as

R∇si =

(
1
4
Γi

jkϵ
j
mn −

1
4
Γi

mlΓ
l
nk +

1
H

gnkδ
i
m

)
sm ∧ sn ⊗ sk

−
1

2rH
∂rHsi ∧ dr ⊗ dr +

1
2r

(
ϵ i

jk − Γ
i
jk

)
s j ∧ sk ⊗ dr −

1
2rH

∂rβsi ∧ dt ⊗ dt

R∇dt =

∂2
rβ

2β
−

(
∂rβ

2β

)2

−
1

4βH
∂rβ∂rH

 dt ∧ dr ⊗ dr +
r

2Hβ
∂rβgi jdt ∧ si ⊗ s j

R∇dr = −
r

2H2 gi j∂rHdr ∧ si ⊗ s j +
r

2H
(gmlΓ

l
n j − gi jϵ

i
mn)sm ∧ sn ⊗ s j

+

(
1

4H2 ∂rβ∂rH −
1

2H
∂2

rβ +
1

4βH
(∂rβ)2

)
dr ∧ dt ⊗ dt +

gi j

H
si ∧ s j ⊗ dr.

Taking the antisymmetric lift of products of the basic 1-forms and tracing gives the associ-
ated Ricci tensor

4Ricci = (
∂2

rβ

β
−

3
rH

∂rH −
1

2βH
∂rβ∂rH −

1
2

(
∂rβ

β

)2

)dr ⊗ dr

+
1
H

(
1

2H
∂rβ∂rH − ∂2

rβ +
1

2β
(∂rβ)2 −

3
r
∂rβ

)
dt ⊗ dt

+ (
r

Hβ
gi j∂rβ −

r
H2 gi j∂rH + 4

gi j

H
− 2gi j − 2δi j + Tr(g)gi j)si ⊗ s j.

This gives the Ricci scalar as stated. The Laplacian is also immediate from ∇ and the
inverse metric. □

The QLC here is unique under the reasonable assumption as in [31] that the Γi
jk are

constant on the fuzzy sphere, given that the gi j have to be. To do some physics we focus
on the static rotationally invariant case where gi j = kδi j, for a positive constant k. In this
case, it follows from the above that Ricci = 0 if and only if

H(r) =
1
β(r)

, β(r) =
1
2

(
1
k
+ 1) −

3
4

k +
c1

r2 ,

where c1 is an arbitrary constants. The values

(3.23) k =
1
3

(
√

7 − 1), c1 = −r2
H

give the form of β for the Tangherlini black hole metric of mass M, see [68, 69], namely

(3.24) β(r) = 1 −
r2

H

r2 , r2
H =

8
3

G5M,

but note that the latter only makes sense in 5D spacetime due to an extra length dimension
in the Newton constant G5. We are thinking of our model as 4D so we will not take this
value but just work with rH as a free parameter. A different value of k can be absorbed in
different normalisation of the t, r variables while rH is more physical.



74 3. COSMOLOGICAL MODELS OVER THE FUZZY SPHERE

The quantum geometric structures in this ‘fuzzy black hole’ Ricci flat case are

g = −(1 −
r2

H

r2 )dt ⊗ dt + (1 −
r2

H

r2 )−1dr ⊗ dr + r2ksi ⊗ si,(3.25)

(dt, dt) = −
r2

r2 − r2
H

, (dr, dr) = 1 −
r2

H

r2 , (si, s j) =
δi j

kr2 ,(3.26)

∇dt = −
r2

H

r(r2 − r2
H)

dr ⊗s dt,(3.27)

∇dr =
r2

H

r(r2 − r2
H)

dr ⊗ dr −
r2

H

r3

1 − r2
H

r2

 dt ⊗ dt + rk
1 − r2

H

r2

 si ⊗ si,(3.28)

∇si = −
1
2
ϵ i

jk s j ⊗ sk −
1
r

dr ⊗s si,(3.29)

R∇dt = −
3r2

H

r2(r2 − r2
H)

dt ∧ dr ⊗ dr +
( rH

r

)2
kdt ∧ si ⊗ si,(3.30)

R∇dr =
( rH

r

)2
kdr ∧ si ⊗ si + 3r2

H
r2 − r2

H

r6 dr ∧ dt ⊗ dt,(3.31)

R∇si =

−1
4
+ k

1 − r2
H

r2

 si ∧ s j ⊗ s j +

( rH

r

)2 1
r2 − r2

H

si ∧ dr ⊗ dr

+
r2

H

r6 (r2
H − r2)si ∧ dt ⊗ dt,(3.32)

□ = −

1 − r2
H

r2

−1

∂2
t +

3
r
−

r2
H

r3

 ∂r +

1 − r2
H

r2

 ∂2
r +

1
kr2

∑
i

∂2
i .(3.33)

For comparison, the classical Tangherilini 5D black hole metric has the form

g = −
1 − r2

H

r2

 dt ⊗ dt +
1 − r2

H

r2

−1

dr ⊗ dr + r2gS 3

with the Laplacian

□ = −

1 − r2
H

r2

−1

∂2
t +

3
r
−

r2
H

r3

 ∂r +

1 − r2
H

r2

 ∂2
r +

1
r2□S 3

where gS 3 denotes the metric element on a unit S 3. We see that this has just the same form
as our metric and Laplacian except that our unit fuzzy sphere Laplacian

∑
i ∂

2
i is replaced

by the unit S 3 Laplacian

□S 3 =
1

sin2 ψ
∂ψ(sin2 ψ∂ψ) +

1
sin2 ψ sin θ

∂θ(sin θ∂θ) +
1

sin2 ψ sin2 θ
∂2
ϕ

in standard angular coordinates.
We will also be interested in the spatial geometry of the fuzzy black hole as a time

slice with respect to the t coordinate. This is easily achieved in our formalism.
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Proposition 3.3. Defining the spatial geometry of the fuzzy black hole as a slice of the

4D geometry by setting dt = 0, gives

g = β−1dr ⊗ dr + kr2si ⊗ si,

∇dr =
r2

H

r3β
dr ⊗ dr + krβsi ⊗ si, ∇si = −

1
2
ϵ i

jk s j ⊗ sk −
1
r

dr ⊗s si,

R∇dr = k(
rH

r
)2dr ∧ si ⊗ si, R∇si = (kβ −

1
4

)si ∧ s j ⊗ s j +
r2

H

r4β
si ∧ dr ⊗ dr,

Ricci =
3r2

H

2r4β
dr ⊗ dr +

k(1 −
r2

H

2r2 ) −
1
4

 si ⊗ si, S =
3
r2 (1 −

1
4k

)

using the antisymmetric lift as usual and β = 1 − r2
H

r2 . The spatial Einstein tensor Eins =
Ricci − S

2 g comes out as

Eins =
3

2r2β
(

1
4k
− β)dr ⊗ dr +

1
2

(
1
4
− k(1 +

r2
H

r2 ))si ⊗ si

and is conserved in the sense ∇ · Eins = 0.

Proof. That setting dt = 0 gives a QLC for the reduced metric and its curvature fol-
lows on general grounds but can be checked explicitly. The computation of Ricci is a trace
of R∇ as usual: we apply this to the second factors of g and then apply (dr, dr) = β−1,
(si, s j) = δi j

kr2 (and other cases zero) to the first two tensor factors. The Ricci scalar S and
Einstein tensor then follow. For its divergence, we first compute ∇Eins by acting with ∇
on each tensor factor but keeping its left-most output to the far left,

∇Eins =
1
2

(
1
4
− k(1 +

r2
H

r2 ))(−
1
r

si ⊗ si ⊗ dr) + d(
3

2r2β
(

1
4k
− β)) ⊗ dr ⊗ dr

+
3

2r2β
(

1
4k
− β)(

2r2
H

r3β
dr ⊗ dr ⊗ dr + krβsi ⊗ si ⊗ dr) + · · ·

where · · · refers to terms that involve dr ⊗ si or si ⊗ dr in the first two tensor factors. The
terms in ∇(si ⊗ si) with s’s in all tensor factors cancel. We then define ∇ ·Eins by applying
( , ) to the first two tensor factors to give

∇·Eins =
− 3

2r3k
(
1
4
− k(1 +

r2
H

r2 )) + β(
1
4
− k(1 +

r2
H

r2 ))′ +
3

2r2 (
1
4k
− β)

2r2
H

r3β
+

9
2r3 (

1
4k
− β)

 dr

from the displayed terms taken in order. We then check that the function in brackets van-
ishes. □

3.1. Motion in the fuzzy black hole background. In terms of physical implications,
since the radial form for the fuzzy black hole is the same as that of the Tangherilini solution,
we can apply the usual logic that g00 = −(1 + 2Φ) to first approximation contains the
gravitational potential Φ per unit mass governing geodesic motion for a mass m in the
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weak field limit, see [23, Chap. 4.1]. Therefore in our case, this should be

(3.34) Φ = −
r2

H

2r2

but, because we are thinking of this as a 4D model, we do not set rH to be the same as a
Tangherilini 5D black hole. Rather, we think of rH as the physical parameter and equate it
for purpose of comparison with rH = 2GM so that the horizon occurs at the same r as for
a Schwarzschild black hole of mass M. The weak field force law is no longer Newtonian
gravity, having an inverse cubic form in r according to Φ = −2G2M2/r2. This is rather
different from modified gravity schemes such as MOND for the modelling of dark matter
[42] but could still be of interest.

To properly justify the above, we should study geodesics, which is possible but not
easy on quantum spacetimes. Here, we instead reach the same conclusion from the point
of view of quantum mechanics as the non-relativistic limit of the Klein-Gordon equation

□ϕ = m2ϕ.

We already used this point of view in Section 3 of chapter 2. For the reference, we first do
it for for a Schwarzschild black hole where we have the standard value β(r) = 1 − rH

r , see
[23, Chap. 5]. The Laplacian is

□S ch = −
1
β

∂2

∂t2 + ∆r +
1
r2∆S 2 ; □r :=

1
r2

∂

∂r
(βr2 ∂

∂r
)

and □S 2 is normalised to have eigenvalues λl = −l(l + 1) on the spherical harmonics of
degree l ∈ N ∪ {0} for the orbital angular momentum. We focus on waves of fixed l and
look for solutions of the form

ϕ = e−ımtψl(t, r)

with ψl slowly varying in t. Accordingly neglecting its double time derivative, the Klein-
Gordon equation becomes the Schroedinger-like equation

(3.35) ıψ̇l = −
β

2m

(
□r +

λl

r2

)
ψl + (β − 1)

m
2
ψl,

where β(□r +
λl
r2 ) is a modification by β of the R3 Laplacian on ψl in polars, which we think

of as the square of a modified momentum (the difference is anyhow suppressed at large
r), and (β − 1)m/2 = −GMm/r is the expected Newtonian potential for Schroedinger’s
equation in the presence of a point source of mass M.

Note that e−ımt is not itself a solution of the Klein-Gordon equation. Repeating the
above but with reference to an actual solution would be analogous to finding the forces
experienced by a particle in geodesic motion, where one only sees tidal forces. Continuing
in the Schwarzschild case, we first solve (numerically) for spherical l = 0 solutions of the
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Figure 1. Radial solution ϕm(r) for the Klein-Gordon equation around a
black hole shown for m = 2/rH , rH = 1 and asymptotic form of ϕ′m/ϕm

shown dashed. Figure as in [3]

form

(3.36) ϕ = e−ıωtϕω(r); (
ω2

β
− m2)ϕω + ∆rϕω = 0

with initial conditions specified at large r. We then look for a Schroedinger-like equation
relative to ϕω by solving the Klein-Gordon equation for solutions of the form

(3.37) ϕ = e−ıωtϕω(r)ψl(t, r)

with ψl of orbital angular momentum labelled by l and slowly varying in t. This time we
obtain

(3.38) ıψ̇l = −
β

2ω
(□r +

λl

r2 + 2β
ϕ′ω
ϕω

∂

∂r
)ψl

with a new velocity-dependent correction but without the gravitational point source poten-
tial, as expected.

The natural choice for reference field here to focus on the case ω = m. For large r,
we can neglect β′ relative to 2/r in □r and in this case one has an exact solution for ϕm in
terms of Bessel I, K functions: we choose conditions which match to Bessel I, say, at large
r. We assume m > 1/rH so that the Compton wavelength is less than rH . Then ϕ′m/ϕm is
barely oscillatory for larger m and decays gradually as r → ∞ according to

(3.39)
ϕ′m
ϕm
≈ ım

√
rH

r − rH
, r >> rH .

The actual numerical solution as illustrated in Figure 1 is similar, although more oscil-
liatory. We see that in this ‘comoving frame’ from a Klein-Gordon point of view, we do
not experience the main force of gravity but we do see a novel radial velocity term in the
effective Schroedinger-like equation approximated as

(3.40) ıψ̇l ≈ −
β

2m
(∆r +

λl

r2 )ψl − ıβ
3
2

√
2GM

r
ψ′l



78 3. COSMOLOGICAL MODELS OVER THE FUZZY SPHERE

r t

r = rH
horizon

initial Gaussian

Figure 2. Schroedinger-like evolution relative to the ϕm in Figure 1. We
see an initial Gaussian centred at r = 5rH evolving much as in quantum
mechanics but decaying over time, with the essentially zero initial values
at r = 1.1rH , 10rH held fixed. Figure as in [3]

far from the horizon. Nearer the horizon, one needs to use the actual ϕ′m/ϕm to avoid an
instability coming in from the horizon. A numerical solution for ψl at l = 0 using the actual
values is in Figure 2, showing an initial Gaussian centered at r = 5rH evolving much as in
regular quantum mechanics but, unlike the latter, decaying over time. Some of the noise in
the picture comes from the numerical approximation.

The above is for a regular black hole, but one can make a similar analysis for the
different radial equations for our fuzzy black hole and thereby justify (3.34), provided we
know something about the Laplacian operator in the fuzzy sphere,

∑
i ∂

2
i .

Proposition 3.4. 1
2
∑

i ∂
2
i on the fuzzy sphere has eigenvalues λl = −l(l + 1) as for the

classical □S 2 , with eigenspaces

Hl = {xi1 xi2 · · · xil fi1···il | f totally symmetric and traceless}.

Proof. Here, as vector spaces, C[x1, · · · , xn] = C[su∗2] � U(su2) by the Duflo map
(as for any Lie algebra). This sends a commutative monomial in the xi to an average of
all orderings of its factors (it is an isomorphism because, although there are nontrivial
commutation relations in the enveloping algebra, these are strong enough to reorder at the
expense of lower degree.) This map is covariant for the coadjoint and adjoint actions, in
our case, of su2, and therefore descends to an isomorphism between polynomial functions
on the classical sphere in cartesian coordinates on one side, and the fuzzy sphere Cλ[S 2]
on the other side. Moreover, ∂k xi = ϵi jk x j for our differential calculus on the latter acts as
orbital angular momentum. Hence

∑
i ∂

2
i acts as the quadratic Casimir and can be computed

on the classical sphere, where it decomposes the polynomial functions into the spherical
harmonics of each degree l. These then correspond to the Hl as stated. One can check this
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Figure 3. Radial solution ϕm(r) for the Klein-Gordon equation around a
fuzzy black hole shown for m = 4/rH , rH = 1, and function ϕ′m(r)/ϕm(r).
Figure as in [3]

directly on the fuzzy sphere on low degrees by hand, to fix the normalisation. For example,
on degree l = 1, we have

∑
k ∂

2
k xi = ∂kϵi jk x j = ϵ jmkϵi jk xm = −2xi. □

Thus, we can solve the Laplacian and look at the non-relativistic limits by the same
methods as we illustrated for the Schwarzschild black hole. The only difference is that the
functions have values ψl(t, r) ∈ Cλ[S 2], but the differential equations themselves in t, r are
purely classical according to

∆ f uz = −
1
β

∂2

∂t2 + ∆r +
2

kr2 λl; ∆r :=
1
r3

∂

∂r
(βr3 ∂

∂r
)

with β = 1−r2
H/r

2. Taking e−ımt as reference gives the same form as (3.35) but with 2λl
kr2 in a

modified effective spatial Laplacian. Then (β−1)m/2 = −2G2M2m/r2 for the gravitational
potential energy in agreement with (3.34).

Next, for the ‘comoving’ version, the l = 0 solutions of the Klein-Gordon equation are
given by solving (3.36) as before and relative to this, slowly-varying ψl defined by (3.37)
obey the Schroedinger-like equation (3.38) but now with 2λl

kr2 in place of λl
r2 . Focussing

on the ω = m case, the main difference now is that ϕm decays more rapidly and in first
approximation, if we leave out the β′ term in ∆r, is now solved by

ϕm(r) ∝

(
r2 − r2

H

) 1
2±

1
2

√
1−m2r2

H

r2 .

We focus on the + case of the square root, which leads for m >> 1/rH to a fair approxima-
tion

ϕ′m
ϕm
≈ ım

rH

r(1 − r2
H

r2 )
, r >> rH

as illustrated in Figure 3. As a result, the long-range Schroedinger-like equation is

ıψ ≈ −
β

2m

(
∆r +

2λl

kr2

)
ψl − ıβ

2GM
r

ψ′l
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if we use the Schwarzschild value of rH , showing a coupling to the velocity term of the
same size as the usual gravitational potential per unit mass. As before, near the horizon we
need the actual ϕ′m/ϕm values for stability of the solutions. An initial Gaussian breaks up
and decays over time, looking much as before.

Finally, although we have used the Schwarzschild value of rH for purposes of com-
parison, since the geometry is asymptotically flat, we could naively try to define an actual
ADM mass (sometimes know as ADM energy, see [23, Chap. 6.4]), by copying its physi-
cal formulation in terms of the Einstein tensor of the spatial geometry[4, 24, 41], which in
spherical polar amounts to the limit r → ∞ of

M(r) =
2

G(n − 1)(n − 2)Ωn−1

∫
S n−1

r

Eins(r∂r,
√
β∂r)dn−1Ω

=
2

G(n − 1)(n − 2)
rn−1Eins(r∂r,

√
β∂r)

for a spatial geometry of dimension n. Here there is a factor −2 compared to the usual
definition because our Ricci and hence Einstein tensor conventions reduce in the classical
case to − 1

2 of the usual ones. Ωn−1 is the volume of a unit sphere of dimension n − 1 and
we integrate with measure dn−1Ω over the sphere S n−1

r at radius r. The conformal Killing
vector field in the general formula in [41] is just r∂r in our case and the unit outward normal
vector field is

√
β∂r given the form of the spatial metric. As everything is rotationally

invariant, the integration merely gives a factor rn−1Ωn−1. For a usual Schwarzschild black
hole of mass M, the Einstein tensor of the spatial geometry in our conventions can be
extracted from [14, Cor. 9.9] to find

EinsS ch(r∂r,
√
β∂r) =

1
2r
√
β

(1 − β), M(r) =
rH

2G
√
β
→

rH

2G

as expected for the Schwarzschild β(r) = 1 − rH
r . If we now use the fuzzy quantum black

hole spatial geometry in Proposition 3.3, the radial sector is completely classical so it
makes sense to read off Eins(∂r, ∂r) as the coefficient of dr ⊗ dr, resulting in our case in

Eins f uz(r∂r,
√
β∂r) =

3
2r
√
β

(
1
4k
− β),

which, since β(r) = 1 − r2
H

r2 and k , 1
4 , results in M(r) → ∞. If we took k = 1

4 then
we would not have a Ricci flat metric in the spacetime quantum geometry and we would
get M(r) → 0, which is not reasonable either. These problems are a consequence of the
dimension jump in the quantum model, evidently requiring a more sophisticated approach
to ADM mass. Indeed, if we were to set n = 4 and k = 1

4 then we would obtain M(r)→ r2
H

2G ,
which is rather close to the value (3.24) for a classical 5D black hole.



CHAPTER 4

QRG of the Discrete Interval

The results of this chapter are published in [10]. Beside, we use the graded commuta-
tor [ω, η} = ω ∧ η − (−1)mη ∧ ω where η, ω ∈ Ω, η ∈ Ωm.

1. Exterior algebras on An and preprojective algebras

The preprojective algebra of a graph is a quotient of the path algebra of the graph
viewed as bidirected (each edge is viewed as a pair of arrows, one in each direction). For
the Dynkin graph of type An with nodes numbered in order 1, 2, · · · , n, we denote the edges

ai = ωi→i+1, a′i = ωi+1→i = −a∗i , i = 1, · · · , n − 1.

In the maths literature, the notation a∗i is used for what we denote a′i ; the two differ by a
sign which just amounts to a different normalisation but is needed for our exterior algebras
to become ∗-exterior algebras when working over C. We also denote by δi the Kronecker
δ-functions at the nodes. The path algebra then has the relations that all products of these
generators are zero except

δ2
i = δi, δiai = ai = aiδi+1, δi+1a′i = a′i = a′iδi, aiai+1, a′i+1a′i , aia′i , a′iai

The dimension of the path algebra in degree 0 is n with basis δi. In degree 1 it is 2(n −
1)-dimensional with basis ai, a′i and in degree 2 it is 2(2n − 3)-dimensional with basis
aiai+1, a′i+1a′i for i = 1, · · · , n − 2 and aia′i , a

′
iai for i = 1, · · · , n − 1.

Proposition 4.1. For a Dynkin graph of type An, Ωmax = Ωmed is a quotient of the path

algebra by the relations

(4.1) aiai+1 = 0, a′i+1a′i = 0, i = 1, · · · , n − 2

and Ωmin = Ωmed′ is the further quotient by the relations

(4.2) a1a′1 = 0, a′n−1an−1 = 0, ai+1a′i+1 + a′iai = 0, i = 1, · · · , n − 2.

The latter case is inner with d = [θ, }, where θ =
∑

i(ai+a′i), and Ω2
min is n−2-dimensional

while Ωi
min = 0 for i ≥ 3.

Proof. The dimensions up to Ω2 are clear from the stated bases and quadratic nature
of the relations. In degree 3 we consider all 3-step paths and their image inΩ3

min. Since any
2-steps in the same direction vanish by (4.1), the only possible images in the quotient are

81
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Figure 1. A2 Graph

for zig-zag paths such as a′i+1ai+1a′i+1 = −a′i+1a′iai = 0 using (4.2) and then (4.1). Similarly
for zig-zag the other way, aia′iai = −aiai+1a′i+1 = 0. □

The preprojective algebra Πn has just the (4.2) relations and dimensions

n, 2(n − 1), 3(n − 2), ..., (n − 1)2, n.

We see that Ωmin is a quotient of this by (4.1). Also, later, we will need a bimodule ‘lifting’
map i : Ω2

min → Ω
1⊗AΩ

1 such that following this by ∧ is the identity. Given the description
above, the natural choice is

(4.3) i(aia′i) = −i(a′i−1ai−1) =
1
2

(ai ⊗ a′i − a′i−1 ⊗ ai−1), i = 2, 3, · · · , n − 1

where the product denotes wedge product. We take the same form of exterior algebra
relations and lift map for the half-line N, just without the upper bound on the indices i.
Also note from the form of the path algebra that we can only have zero for the bimodule
map α, i.e. bimodule connections ∇ are determined just from σ.

2. Explicit calculations for A2, A3, A4, A5

In this section, we give explicit geometries for small An. For n ≤ 4, these are manage-
able by hand and we show the details of the calculation. For n = 5, we used Mathematica
and Python (independently) and just list the final result.

2.1. A2 geometry. The result is known from [11] by a different method, but here
provides a warm up for the larger cases. We work over the directed graph G(V, E) with
vertices V = {1, 2} and directed edges or ‘arrows’ E = {a1, a′1} as in Figure 1. The products
distinct from zero inΩ1⊗AΩ

1 are a1⊗a′1, a
′
1⊗a1. The exterior algebraΩ2

max is 2-dimensional
with basis a1 ∧ a′1 and a′1 ∧ a1. We work with Ωmin where these are set to zero.

Using the graded commutator for the exterior derivatives given that the calculus is
inner with θ = a1 + a′1,

da = [θ, a1} = a′1 ⊗ a1 + a1 ⊗ a′1 = da′1,

We necessarily take α = 0 and the most general form of σ is

σ(a1 ⊗ a′1) = τ1a1 ⊗ a′1, σ(a′1 ⊗ a1) = τ′1a′1 ⊗ a1
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Figure 2. A3 Graph

The general form of the metric is

g = f1a1 ⊗ a′1 + f ′1a′1 ⊗ a1

where f1, f ′1 are in the field, and real if we work over C and impose the reality condition
for the metric.

The general form of the connection given that the calculus is inner is

∇a1 = a′1 ⊗ a1 − τ1a1 ⊗ a′1, ∇a′1 = a1 ⊗ a′1 − τ
′
1a′1 ⊗ a1

As we are working in Ωmin, there is no elements in Ω2 for this case. Then there are no
conditions for torsion freeness.

The metric compatibility conditions are

a1 ⊗ a′1 ⊗ a1 : f ′1 − f1τ1τ
′
1 = 0

a′1 ⊗ a1 ⊗ a′1 : f1 − f ′1τ1τ
′
1 = 0

These conditions imply that there is a sign ϵ = τ1τ
′
1 = ±1 with f ′1 = ϵ f1. The ∗-

preserving conditions
|τ1| = 1

with τ′1 = ϵτ
−1
1 . We see that there is one sign and one overall normalisation in the metric

g = h1(a1 ⊗ a′1 + ϵa
′
1 ⊗ a1)

which allows a QLC with one parameter τ1 = s in characteristic zero

∇a1 = a′1 ⊗ a1 − sa1 ⊗ a′1, ∇a′1 = a1 ⊗ a′1 − ϵs−1a′1 ⊗ a1.

and the further condition that h1 is real and |s| = 1 for the reality property of the metric and
for the connection to be ∗-preserving in the case over C. All the connections are flat since
Ω2 = 0.

2.2. A3 geometry. We work over the directed graph G(V, E) with vertices V = {1, 2, 3}
and directed edges E = {a1, a′1, a2, a′2} as in Figure 2. The products in Ω1 ⊗A Ω

1 different
from zero are those where the head of the first arrow connects to the tail of the second
arrow, giving the six non-zero elements a1 ⊗ a′1, a1 ⊗ a2, a′1 ⊗ a1, a2 ⊗ a′2, a

′
2 ⊗ a′1, a

′
2 ⊗ a2.

The exterior algebra Ωmax for the maximal prolongation has the relations

a1 ∧ a2 = a′2 ∧ a′1 = 0
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and we work with the quotient Ωmin of this where we add the further relations

a1 ∧ a′1 = a′2 ∧ a2 = 0, a′1 ∧ a1 + a2 ∧ a′2 = 0.

The dimensions of the vector spaces of Ωi are therefore 3:4:1.
The exterior derivative is given by the graded commutator d = [θ, } with the inner

element θ = a1 + a′1 + a2 + a′2 as

da1 = a′1 ∧ a1, da′1 = a′1 ∧ a1, da2 = −a′1 ∧ a1, da′2 = −a′1 ∧ a1.

The metric, as it has to be central, has to have the form

g = f1a1 ⊗ a′1 + f ′1a′1 ⊗ a1 + f2a2 ⊗ a′2 + f ′2a′2 ⊗ a2,

where f1, f ′1 , f2, f ′2 are in the field, and should be real if we work over C and impose the
reality condition † ◦ g = g.

Given the calculus is inner, the torsion free connections have the form

∇a1 = a′1 ⊗ a1 − τ1a1 ⊗ a′1 − σ1a1 ⊗ a2,

∇a′1 = a1 ⊗ a′1 + a′2 ⊗ a′1 − τ
′
1a′1 ⊗ a1 − (τ′1 + 1)a2 ⊗ a′2,

∇a2 = a1 ⊗ a2 + a′2 ⊗ a2 − τ2a2 ⊗ a′2 − (τ2 + 1)a′1 ⊗ a1,

∇a′2 = a2 ⊗ a′2 − σ
′
2a′2 ⊗ a′1 − τ

′
2a′2 ⊗ a2,

where the map α = 0 and the braiding map is given by

σ(a1 ⊗ a′1) = τ1a1 ⊗ a′1,

σ(a1 ⊗ a2) = σ1a1 ⊗ a2

σ(a′1 ⊗ a1) = τ′1a′1 ⊗ a1 + (τ′1 + 1)a2 ⊗ a′2,

σ(a2 ⊗ a′2) = τ2a2 ⊗ a′2 + (τ2 + 1)a′1 ⊗ a1,

σ(a′2 ⊗ a′1) = σ′2a′2 ⊗ a′1,

σ(a′2 ⊗ a2) = τ′2a′2 ⊗ a2.
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Metric compatibility ( see equation 1.6 in Chapter 1) then produces

a1 ⊗ a′1 ⊗ a1 : − f1τ1τ
′
1 + f ′1 = 0,

a1 ⊗ a2 ⊗ a′2 : − f1σ1(τ′1 + 1) + f2 = 0,

a′1 ⊗ a1 ⊗ a′1 : − f ′1τ1τ
′
1 − f2(τ2 + 1)σ′2 + f1 = 0,

a2 ⊗ a′2 ⊗ a2 : − f ′1σ1(τ′1 + 1) − f2τ2τ
′
2 + f ′2 = 0,

a′2 ⊗ a′1 ⊗ a1 : − f ′2(τ2 + 1)σ′2 + f ′1 = 0,

a′2 ⊗ a2 ⊗ a′2 : − f ′2τ2τ
′
2 + f2 = 0,

a2 ⊗ a′2 ⊗ a′1 : − f ′1τ1(τ′1 + 1) − f2τ2σ
′
2 = 0,

a′1 ⊗ a1 ⊗ a2 : − f ′1σ1τ
′
1 − f2(τ2 + 1)τ′2 = 0.

Under these conditions, we have two parameters and one sign in the metric as

g = h1(ϕa1 ⊗ a′1 + ϵa
′
1 ⊗ a1) + h2(

1
ϕ

a2 ⊗ a′2 + ϵa
′
2 ⊗ a2), ϕ =

√
2,

where the connection is

τ1 = s, σ1 =
h2s

h1ϵϕ(ϵϕs + 1)
, τ′1 =

1
ϵϕs

,

τ2 = −1 +
1

2 + ϵϕs
, σ′2 =

h1ϵϕ

h2
(s + ϵϕ), τ′2 = −

1
ϵϕ

(
1 +

1
1 + ϵϕs

)
for a free parameter s. Notice that only the combination ϵϕ enters. We do not consider
ϕ = −

√
2 in the metric as this would be equivalent to a redefinition of ϵ, h1, h2 by a change

of sign. Finally, the *-preserving condition for the connection just requires

|s| = 1(4.4)

with no further constraints on hi other than to be real.

2.3. A4 geometry. We again work with Ωmin which now has vector space dimensions
4 : 6 : 2 with Ωi = 0 for i ≥ 3. Here, the path algebra is 10-dimensional in degree 2, Ω2

max

adds 4 relations and then we add further relations for Ω2,

a1 ∧ a′1 = a′3 ∧ a3 = 0, a′1 ∧ a1 + a2 ∧ a′2 = 0, a′2 ∧ a2 + a3 ∧ a′3 = 0.

The metric, to be central, has to have the form

g = f1a1 ⊗ a′1 + f ′1a′1 ⊗ a1 + f2a2 ⊗ a′2 + f ′2a′2 ⊗ a2 + f3a3 ⊗ a′3 + f ′3a′3 ⊗ a3

where f1, f ′1 , f2, f ′2 , f3, f ′3 are in the field, and real for the reality condition † ◦ g = g when
working over C. We necessarily take α = 0 and the torsion free connection and bimodule
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braiding map have to have the form

∇a1 = a′1 ⊗ a1 − τ1a1 ⊗ a′1 − σ1a1 ⊗ a2,

∇a′1 = a1 ⊗ a′1 + a′2 ⊗ a′1 − τ
′
1a′1 ⊗ a1 − (τ′1 + 1)a2 ⊗ a′2,

∇a2 = a1 ⊗ a2 + a′2 ⊗ a2 − τ2a2 ⊗ a′2 − (τ2 + 1)a′1 ⊗ a1 − σ2a2 ⊗ a3,

∇a′2 = a2 ⊗ a′2 + a′3 ⊗ a′2 − σ
′
2a′2 ⊗ a′1 − τ

′
2a′2 ⊗ a2 − (τ′2 + 1)a3 ⊗ a′3,

∇a3 = a2 ⊗ a3 + a′3 ⊗ a3 − τ3a3 ⊗ a′3 − (τ3 + 1)a′2 ⊗ a2,

∇a′3 = a3 ⊗ a′3 − σ
′
3a′3 ⊗ a′2 − τ

′
3a′3 ⊗ a3,

σ(a1 ⊗ a′1) = τ1a1 ⊗ a′1,

σ(a1 ⊗ a2) = σ1a1 ⊗ a2,

σ(a′1 ⊗ a1) = τ′1a′1 ⊗ a1 + (τ′1 + 1)a2 ⊗ a′2,

σ(a2 ⊗ a′2) = τ2a2 ⊗ a′2 + (τ2 + 1)a′1 ⊗ a1,

σ(a2 ⊗ a3) = σ2a2 ⊗ a3,

σ(a′2 ⊗ a′1) = σ′2a′2 ⊗ a′1,

σ(a′2 ⊗ a2) = τ′2a′2 ⊗ a2 + (τ′2 + 1)a3 ⊗ a′3,

σ(a3 ⊗ a′3) = τ3a3 ⊗ a′3 + (τ3 + 1)a′2 ⊗ a2,

σ(a′3 ⊗ a′2) = σ′3a′3 ⊗ a′2,

σ(a′3 ⊗ a3) = τ′3a′3 ⊗ a3.
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The metric compatibility conditions are

a1 ⊗ a′1 ⊗ a1 : − f1τ1τ
′
1 + f ′1 = 0,(4.5)

a1 ⊗ a2 ⊗ a′2 : − f1σ1(τ′1 + 1) + f2 = 0,(4.6)

a′1 ⊗ a1 ⊗ a′1 : − f ′1τ1τ
′
1 − f2(τ2 + 1)σ′2 + f1 = 0,(4.7)

a2 ⊗ a′2 ⊗ a2 : − f ′1σ1(τ′1 + 1) − f2τ2τ
′
2 + f ′2 = 0,(4.8)

a2 ⊗ a3 ⊗ a′3 : − f2σ2(τ′2 + 1) + f3 = 0,(4.9)

a′2 ⊗ a′1 ⊗ a1 : − f ′2(τ2 + 1)σ′2 + f ′1 = 0,(4.10)

a′2 ⊗ a2 ⊗ a′2 : − f3(τ3 + 1)σ′3 − f ′2τ2τ
′
2 + f2 = 0,(4.11)

a3 ⊗ a′3 ⊗ a3 : − f3τ3τ
′
3 − f ′2σ2(τ′2 + 1) + f ′3 = 0,(4.12)

a′3 ⊗ a′2 ⊗ a2 : − f ′3(τ3 + 1)σ′3 + f ′2 = 0,(4.13)

a′3 ⊗ a3 ⊗ a′3 : − f ′3τ3τ
′
3 + f3 = 0,(4.14)

a2 ⊗ a′2 ⊗ a′1 : − f ′1τ1(τ′1 + 1) − f2τ2σ
′
2 = 0,(4.15)

a′1 ⊗ a1 ⊗ a2 : − f ′1σ1τ
′
1 − f2(τ2 + 1)τ′2 = 0,(4.16)

a3 ⊗ a′3 ⊗ a′2 : − f3τ3σ
′
3 − f ′2τ2(τ′2 + 1) = 0,(4.17)

a′2 ⊗ a2 ⊗ a3 : − f3(τ3 + 1)τ′3 − f ′2σ2τ
′
2 = 0.(4.18)

There are four metrics that allow one QLC each depending on a free parameter s.
Here, the metric is found to be of the form

g = h1(ϕa1 ⊗ a′1 + ϵa
′
1 ⊗ a1) + h2(a2 ⊗ a′2 + ϵa

′
2 ⊗ a2) + h3(

1
ϕ

a3 ⊗ a′3 + ϵa
′
3 ⊗ a3),

where ϵ = ±1 and

ϕ =
1 ±
√

5
2

.

We can chose either in what follows (so we have four metrics according to ϵ and the sign of
the
√

5). For any choices of these we now solve for the connection and find for any value
of s,

τ1 = s, τ2 = −1 +
1

ϕ + ϵs
, τ3 = −1 +

1
ϕ

ϕ + ϵs
(1 − ϵ)(ϕ + ϵs) + ϵ

,

τ′1 = ϵ
−1 + ϕ

s
, τ′2 = ϵ

(ϕ + ϵs)(1 − 1/ϕ)
−(ϕ + ϵs) + 1

, τ′3 =
ϵ

ϕτ3
, σ1 =

h2

h1ϕ

s
ϵ(−1 + ϕ) + s

,

σ2 =
h2

h3ϕ

1
τ′2 + 1

, σ′2 =
h1

h2
(ϕ + ϵs), σ′3 =

h2

h3
ϕ

(
1 − ϵ +

ϵ

ϕ + ϵs

)
.

Thus, for each metric we have a 1-parameter family of connections with parameter s. In the
∗-algebra case, reality of the metric demands hi real and ∗−preserving for the connection
is equivalent to

|s| = 1
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with no further constraints on hi. So, there is a still a 1-parameter moduli of connections
for each of our four metrics, now with |s| = 1.

2.4. A5 geometry. Now the path algebra has dimension 14 in degree 2 whileΩmin has
vector space dimensions 5 : 8 : 3 again with Ωi = 0 for i ≥ 3. Proceeding similarly, the
form of the braiding, connection, metric compatibility conditions and form of the metric
are

σ(a1 ⊗ a′1) = τ1a1 ⊗ a′1,

σ(a1 ⊗ a2) = σ1a1 ⊗ a2,

σ(a′1 ⊗ a1) = τ′1a′1 ⊗ a1 + (τ′1 + 1)a2 ⊗ a′2,

σ(a2 ⊗ a′2) = τ2a2 ⊗ a′2 + (τ2 + 1)a′1 ⊗ a1,

σ(a2 ⊗ a3) = σ2a2 ⊗ a3,

σ(a′2 ⊗ a2) = τ′2a′2 ⊗ a2 + (τ′2 + 1)a3 ⊗ a′3,

σ(a′2 ⊗ a′1) = σ′2a′2 ⊗ a1,

σ(a3 ⊗ a′3) = τ3a3 ⊗ a′3 + (τ3 + 1)a′2 ⊗ a2,

σ(a3 ⊗ a4) = σ3a3 ⊗ a4,

σ(a′3 ⊗ a3) = τ′3a′3 ⊗ a3 + (τ′3 + 1)a4 ⊗ a′4,

σ(a′3 ⊗ a′2) = σ′3a′3 ⊗ a′2,

σ(a4 ⊗ a′4) = τ4a4 ⊗ a′4 + (τ4 + 1)a′3 ⊗ a3,

σ(a′4 ⊗ a′3) = σ′4a′4 ⊗ a′3,

σ(a′4 ⊗ a4) = τ′4a′4 ⊗ a4;

∇a1 = a′1 ⊗ a1 − τ1a1 ⊗ a′1 − σ1a1 ⊗ a2,

∇a′1 = a1 ⊗ a′1 + a′2 ⊗ a′1 − τ
′
1a′1 ⊗ a1 − (τ′1 + 1)a2 ⊗ a′2,

∇a2 = a′2 ⊗ a2 + a1 ⊗ a2 − τ2a2 ⊗ a′2 − (τ2 + 1)a′1 ⊗ a1 − σ2a2 ⊗ a3,

∇a′2 = a2 ⊗ a′2 + a′3 ⊗ a′2 − τ
′
2a′2 ⊗ a2 − (τ′2 + 1)a3 ⊗ a′3 − σ

′
2a′2 ⊗ a1,

∇a3 = a′3 ⊗ a3 + a2 ⊗ a3 − τ3a3 ⊗ a′3 − (τ3 + 1)a′2 ⊗ a2 − σ3a3 ⊗ a4,

∇a′3 = a3 ⊗ a′3 + a′4 ⊗ a′3 − τ
′
3a′3 ⊗ a3 − (τ′3 + 1)a4 ⊗ a′4 − σ

′
3a′3 ⊗ a′2,

∇a4 = a′4 ⊗ a4 + a3 ⊗ a4 − τ4a4 ⊗ a′4 − (τ4 + 1)a′3 ⊗ a3,

∇a′4 = a4 ⊗ a′4 − σ
′
4a′4 ⊗ a′3 − τ

′
4a′4 ⊗ a4;
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a1 ⊗ a′1 ⊗ a1 : − f1τ1τ
′
1 + f ′1 = 0,

a1 ⊗ a2 ⊗ a′2 : − f1σ1(τ′1 + 1) + f2 = 0,

a′1 ⊗ a1 ⊗ a′1 : − f ′1τ1τ
′
1 − f2(τ2 + 1)σ′2 + f1 = 0,

a2 ⊗ a′2 ⊗ a2 : − f ′1σ1(τ′1 + 1) − f2τ2τ
′
2 + f ′2 = 0,

a2 ⊗ a3 ⊗ a′3 : − f2σ2(τ′2 + 1) + f3 = 0,

a′2 ⊗ a′1 ⊗ a1 : − f ′2(τ2 + 1)σ′2 + f ′1 = 0,

a′2 ⊗ a2 ⊗ a′2 : − f3(1 + τ3)σ′3 − f ′2τ2τ
′
2 + f2 = 0,

a3 ⊗ a′3 ⊗ a3 : − f3τ3τ
′
3 − f ′2σ2(τ′2 + 1) + f ′3 = 0,

a3 ⊗ a4 ⊗ a′4 : − f3τ3σ
′
3 + f4 = 0,

a′3 ⊗ a′2 ⊗ a2 : − f ′3(1 + τ3)σ′3 + f ′2 = 0,

a′3 ⊗ a3 ⊗ a′3 : − f ′3τ3τ
′
3 − f4(τ4 + 1)σ′4 + f3 = 0,

a4 ⊗ a′4 ⊗ a4 : − f ′3τ3σ
′
3 − f4τ4τ

′
4 + f ′4 = 0,

a′4 ⊗ a′3 ⊗ a3 : − f ′4(τ4 + 1)σ′4 + f ′3 = 0,

a′4 ⊗ a4 ⊗ a′4 : − f ′4τ4τ
′
4 + f4 = 0,

a2 ⊗ a′2 ⊗ a′1 : − f ′1τ1(τ′1 + 1) − f2τ2σ
′
2 = 0,

a′1 ⊗ a1 ⊗ a2 : − f ′1σ1τ
′
1 − f2(τ2 + 1)τ′2 = 0,

a3 ⊗ a′3 ⊗ a′2 : − f3σ′3τ3 − f ′2τ2(τ′2 + 1) = 0,

a′2 ⊗ a2 ⊗ a3 : − f3(τ3 + 1)τ′3 − f ′2σ2τ
′
2 = 0,

a4 ⊗ a′4 ⊗ a′3 : − f ′3(τ3 + 1)σ′3 − f4τ4σ
′
4 = 0,

a′3 ⊗ a3 ⊗ a4 : − f ′3τ3(τ′3 + 1) − f4(τ4 + 1)τ′4 = 0;

g = h1(ϕ1a1⊗a′1+ϵa
′
1⊗a1)+h2(ϕ2a2⊗a′2+ϵa

′
2⊗a2)+h3(

1
ϕ2

a3⊗a′3+ϵa
′
3⊗a3)+h4(

1
ϕ1

a4⊗a′4+ϵa
′
4⊗a4),

where
ϕ1 =

√
3, ϕ2 =

2
√

3
and ϵ is a sign. In the ∗-algebra case over C we need hi real and |s| = 1 for the reality of
the metric and for the connection to be ∗-preserving.

The solutions are then as follows. The parts which looks similar to the A4 case are

τ1 = s, σ1 =
h2ϵϕ2

h1(ϵϕ1 +
1
s )
, τ′1 =

1
ϵϕ1s

, τ2 = −1 +
ϵϕ2

ϵϕ1 + s
, σ′2 =

h1

h2ϵϕ2
(ϵϕ1 + s)

and the remainder explicitly are

τ3 =
−2ϵϕ1s + ϵϕ1 + s − 2
2ϵϕ1(s − 2) − 4s + 2

, τ4 =
ϵϕ1(s − 2) − 4s + 2
ϵϕ1(4 − 2s) + 6s − 3

,
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n dimΩi metrics with QLC QLC ∗-QLC
2 2:2:0:0 ϵ, h1 s |s| = 1
3 3:4:1:0 ϵ, h1, h2 s |s| = 1
4 4:6:2:0 ϵ, ϵ′, h1, h2, h3 s |s| = 1
5 5:8:3:0 ϵ, h1, h2, h3, h4 s |s| = 1
n n : 2(n − 1) : n − 2 : 0 ϵ, ϵ′, h1, ..., hn−1 s |s| = 1

Table 1. Summary of vector space dimensions of the exterior algebra
and the parameterisation of quantum Riemannian geometries found on
An for n ≤ 5.

τ′2 = −
ϵϕ1 + s

2(ϵϕ1s + 1)
, τ′3 =

ϵϕ1(s − 2) − 2s + 1
ϵϕ1(s − 2) − 6s + 3

, τ′4 =
2(ϵϕ1 − 1)s − ϵϕ1 + 4
ϵϕ1(s − 2) − 4s + 2

,

σ2 =
3h3(ϵϕ1s + 1)

2h2(ϵϕ1(2s − 1) − s + 2)
, σ3 =

h4(ϵϕ1(2s − 1) − s + 2)
h3(ϵϕ1(4s − 2) − 3s + 6)

,

σ′3 = −
2h2(ϵϕ1(s − 2) − 2s + 1)

3h3(ϵϕ1 + s)
, σ′4 =

h3(2ϵϕ1(s − 2) − 6s + 3)
h4(ϵϕ1(s − 2) − 2s + 1)

.

3. Canonical metrics and QLC for An and the half-line N

Here, we solve the system of equations for a quantum Riemannian geometry in gen-
eral, building on our experience for small n.

3.1. Summary of computer results for n ≤ 8. We summarise the results so far as
the first entries in Table 1, where hi are real variables for the reality conditions if we work
over C, ϵ a sign and ϵ′ is a discrete parameter (not necessarily a binary choice) indicating a
discrete moduli for certain numerical ‘direction coefficients’ {ϕi}. The results found so far
then fit the general format

(4.19) g =
n−1∑
i=1

hi(ϕiai ⊗ a′i + ϵa
′
i ⊗ ai); ϕn−1 =

1
ϕ1
, ϕn−2 =

1
ϕ2

etc., as depicted in Figure 3. This means that only the first ϕ1, · · · , ϕ⌊ n
2 ⌋

have to be specified,
the rest are inverse, and that in the even case ϕ2

n
2
= 1. We also note that

hi 7→ −hi, ϕi 7→ −ϕi, ϵ 7→ −ϵ

is a symmetry of the metric in the odd case. Hence, without loss of generality, we may
assume that ϕ n

2
= 1 in the even case and in the odd case we do not need to list both a

solution for {ϕi} and their negation. We then solved by computer for all remaining n ≤ 8
and found that all solutions fit this general format with {ϕi} summarised in Table 2. Due to
the above symmetry, for A2, A3, A5 we do not list a discrete moduli of {ϕi} as this can be
absorbed in a change of sign of the hi and ϵ, while in the other cases we list them as separate
rows. The solutions involve square roots (as we saw up to A5) or are roots of higher-order
polynomials. But with some work, we recognised all entries in a trigonometric form. For
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1 2 n − 1 n⋯h1ϕ1 h2ϕ2 hn−1/ϕ1hn−2/ϕ2

ϵh1 ϵh2 ϵhn−2 ϵhn−1

n
2

n
2 + 1

hn
2

ϵhn
2

⋯
h n

2 −1ϕ n
2 −1 h n

2 +1/ϕ n
2 −1

ϵh n
2 −1 ϵh n

2 +1

Figure 3. Metrics on An admitting a QLC have at the top square-lengths
hiϕi travelling inwards to half way then with the inverse of the ϕi when
travelling outward to the right. At the bottom, the square-lengths are ϵhi

with ϵ = 1 the physical choice. We show the case of even n; the odd case
is similar.

n ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

2 1
3 2 cos

(
π
4

)
1
ϕ1

4+ 2 cos
(
π
5

)
1 1

ϕ1

4− −2 cos
(

2π
5

)
1

5 2 cos
(
π
6

)
sec

(
π
6

)
1
ϕ2

1
ϕ1

6+ 2 cos
(
π
7

)
2 cos

(
2π
7

)
1 1

ϕ2

1
ϕ1

60 2 cos
(

3π
7

)
−2 cos

(
π
7

)
1

6− −2 cos
(

2π
7

)
−2 cos

(
3π
7

)
1

7+ 2 cos
(
π
8

) √
2 sin

(
3π
8

)
csc

(
3π
8

)
1
ϕ3

1
ϕ2

1
ϕ1

7− 2 cos
(

3π
8

)
−
√

2 sin
(
π
8

)
csc

(
π
8

)
8 (1) 2 cos

(
π
9

)
1 + 2 cos

(
4π
9

) 2 sin( 4π
9 )

√
3

1 1
ϕ3

1
ϕ2

1
ϕ1

8 (2) −2 cos
(

4π
9

)
1 + 2 cos

(
2π
9

) 2 sin( 2π
9 )

√
3

1

8 (3) −2 cos
(

4π
9

)
1 + 2 cos

(
2π
9

)
−

2 sin( 2π
9 )

√
3

1

8 (4) −2 cos
(

2π
9

)
1 − 2 cos

(
π
9

)
−

2 sin( π
9 )

√
3

1
Table 2. Table of allowed direction coefficients ϕi for n ≤ 8

example, in the 7− row√
2 −
√

2 = 2 cos
(

3π
8

)
,

√
1 −

1
√

2
=
√

2 sin
(
π

8

)
,

√
4 + 2

√
2 = csc

(
π

8

)
and so forth. From these ‘experimental’ results in Table 2, we make the following obser-
vations:

Remark 4.2. (1) In all cases in the table, we find

ϕi+1 = ϕ1 −
1
ϕi
, i = 1, 2, 3, 4, 5, 6, 7

except for 8(2) where this holds for i = 1 but not for i = 2, for example.
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Figure 4. The direction coefficient ϕ(i) = i+1
i at node i on the half-line

N. Metrics that admit a QRG have an arbitrary real number at each edge
but in the ratio shown for the inbound direction / outbound direction. Eg
at the first link the inbound length is twice the outbound, at the second
the ratio is 3:2, etc. The ratio tends rapidly to 1 as we enter the bulk
showing that this is an effect due to the endpoint boundary.

(2) For each n in the table, there is a unique solution with ϕi > 0, shown in the first
row. These are reproduced by the single formula

(4.20) ϕi =
sin

(
(i+1)π
n+1

)
sin

(
iπ

n+1

) = (i + 1)q

(i)q
; (i)q :=

qi − q−i

q − q−1 ; q = e
πı

n+1

in terms of symmetric q-integers. Here i = 1, 2, · · · , n − 1 and the values of ϕi obey

2 > ϕ1 > ϕ2 > ϕ3 > · · · > ϕ⌊ n
2 ⌋
≥ 1

with equality in the even case, i.e. ϕi decreases from ϕ1 at the endpoint towards 1 as we
approach the midpoint (and equals 1 at the midpoint in the even case). After that, the 1/ϕi

follows the same pattern going back up to the other endpoint.
This, along with ϵ = 1 and hi > 0, is the unique physical form of the metric for each

n in the sense of positive metric coefficients at each link. One might be able to give an
interpretation of negative values as Lorentzian[11] but this does not seem reasonable in the
present case where all the links are in a line. The metric coefficient or ‘square-length’ is
hiϕi going from i→ i + 1 and hi going from i + 1→ i, and the ‘direction coefficients’ ϕi is
the ratio of these. The above says that there is a longer ‘square length’ travelling into the
bulk compared to travelling outward and that this ratio is most at the endpoints and tends
to or is 1 in the middle.

(3) In the limit n → ∞, the physical choice in (2) tends to ϕ(i) = i+1
i as in Figure 4.

The values of ϕi for finite n approach these from below and we see that the finite n QRG is
a q-deformation (for q a root of unity) of the n→ ∞ theory.



3. CANONICAL METRICS AND QLC FOR An AND THE HALF-LINE N 93

(4) For each n, the unique positive value of ϕ1 are roots of a certain polynomial and ϕ2

determined by (1) are roots of a similar polynomial of the same degree. The other allowed
values of ϕ1, ϕ2 are then all joint solutions of (1) and these two polynomials, modulo the
global symmetry mentioned above.

(5) For every allowed quantum metric for n ≤ 8, i.e. for every row in the table, there
is a unique form of QLC up to the value of τ1 = s, which is a free parameter required to
obey |s| = 1 for the connection to be ∗-preserving.

It is expected that the above patterns hold up for all n. In particular, it is clear that
over C and with the required ‘reality’ structures, there should be a unique allowed form
of quantum metric with positive square-lengths given by free parameters h1, · · · , hn−1 > 0
and ‘direction coefficients’ prescribed by (4.20).

3.2. General solution for the An and N. We now solve for the quantum Riemannian
geometry in general An motivated by our experience for n ≤ 8, which also serves as a
check. We consider a general metric with coefficients

fi = ϕihi, f ′i = ϵhi, hi, ϕi , 0, ϵ = ±1

for the metric weights as in (4.19) for increasing and decreasing arrows respectively.
Next, the general form ofσ is forced by the bimodule map property and after including

the torsion equation, but not yet solving for metric compatibility, to be of the form

σ(ai ⊗ ai+1) = σiai ⊗ ai+1, i = 1, 2, · · · , n − 2,

σ(a′i ⊗ a′i−1) = σ′ia
′
i ⊗ a′i−1, i = 2, 3, · · · , n − 1,

(4.21)

σ(a1 ⊗ a′1) = τ1a1 ⊗ a′1,(4.22)

σ(ai ⊗ a′i) = τiai ⊗ a′i + (1 + τi)a′i−1 ⊗ ai−1, i = 2, · · · , n − 1,

σ(a′i ⊗ ai) = τ′ia
′
i ⊗ ai + (1 + τ′i)ai+1 ⊗ a′i+1, i = 1, · · · , n − 2,

(4.23)

σ(a′n−1 ⊗ an−1) = τ′n−1a′n−1 ⊗ an−1,(4.24)

where the 4(n − 2) + 2 parameters are organised into four families with n − 2 values each
for σi, σ

′
i and n − 1 values each for τi, τ

′
i as shown. The pattern here is that 2-steps in the

same line just have one constant as do the back-and-forth steps at the ends where one can
only step one way, but when one can go back-and-forth both to the left and to the right, σ
of one of these is a mixture of both possibilities.

We provide an inductive proof now that there is a QLC for all n, limiting attention to
metrics of the form (4.19) with ϕ1, · · · , ϕn−1 initially unknown and ϵ = ±1 arbitrary, and
solving for the connection coefficients. In fact, it pays to consider the equations of ‘A∞’ i.e.
the natural numbers N as a discrete half-line and obtain any An of interest by truncation.

Proposition 4.3. For any quantum metric on the natural numbers N described by hi, ϵ,

there is a 1-parameter moduli of allowed direction coefficients ϕi and a 1-parameter family
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of QLCs as defined iteratively by

ϕi+1 = ϕ1 −
1
ϕi
, τi+1 = −1 +

ϕi+1

ϕi + ϵτi

for arbitrary ϕ1, τ1 , 0. The other connection coefficients are then given by

σi =
hi+1ϕi+1

hiϕi(1 + τ′i)
, σ′i =

hi−1(ϕi−1 + ϵτi−1)
hiϕi

, τ′i = ϵ
ϕi − ϕi+1

τi
.

Moreover, for hi, ϕ1 real, the connection is ∗-preserving iff |τ1| = 1.

Proof. Writing out the equations for metric compatibility, these break down into
groups of increasing vertex. The first group is

− f1τ1τ
′
1 + f ′1 = 0

− f ′1τ1τ
′
1 + f1 − [ f2(τ2 + 1)σ′2] = 0

(this is the same as we saw for A2 except there we do not have the square bracket term
because we do not have f2, τ2, σ

′
2). The next group are 6 more equations for the 4 new

variables σ1, σ
′
2, τ2, τ

′
2 and 2 new parameters f2, f ′2

− f1σ1(τ′1 + 1) + f2 = 0

− f ′1σ1(τ′1 + 1) − f2τ2τ
′
2 + f ′2 = 0

− f ′2(τ2 + 1)σ′2 + f ′1 = 0

− f ′2τ2τ
′
2 + f2 − [ f3(τ3 + 1)σ′3] = 0

− f ′1τ1(τ′1 + 1) − f2τ2σ
′
2 = 0

− f ′1σ1τ
′
1 − f2(τ2 + 1)τ′2 = 0

(the equations so far are the same as we saw for A3 except that there we do not have the
square bracket term since there are no variables f3, τ3, σ

′
3). Similarly we have 6 more

equations for the 4 new variables σ2, σ
′
3, τ3, τ

′
3 and 2 new parameters f3, f ′3

− f2σ2(τ′2 + 1) + f3 = 0

− f ′2σ2(τ′2 + 1) − f3τ3τ
′
3 + f ′3 = 0

− f ′3(τ3 + 1)σ′3 + f ′2 = 0

− f ′3τ3τ
′
3 + f3 − [ f4(τ4 + 1)σ′4] = 0

− f ′2τ2(τ′2 + 1) − f3τ3σ
′
3 = 0

− f ′2σ2τ
′
2 − f3(τ3 + 1)τ′3 = 0

(the equations so far are the same as we saw for A4 except that there we do not have the
square bracket term since no variables f4, τ4, σ

′
4).
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The general induction step here is to add a set of six equations for the 4 new variables
σi−1, σ

′
i , τi, τ

′
i and 2 new parameters fi, f ′i ,

− fi−1σi−1(τ′i−1 + 1) + fi = 0

− f ′i−1σi−1(τ′i−1 + 1) − fiτiτ
′
i + f ′i = 0

− f ′i (τi + 1)σ′i + f ′i−1 = 0

− f ′i τiτ
′
i + fi − [ fi+1(τi+1 + 1)σ′i+1] = 0

− f ′i−1τi−1(τ′i−1 + 1) − fiτiσ
′
i = 0

− f ′i−1σi−1τ
′
i−1 − fi(τi + 1)τ′i = 0

(which to this point would be the equations for Ai+1, except for Ai+1 itself we would not
have the square bracket equations due to no fi+1, τi+1, σ

′
i+1). This covers the half-line case,

and we also noted for later how to extract the An solutions from the same analysis.
To solve the system, we rewrite the above ith step equations as

(τi + 1)σ′i =
f ′i−1

f ′i
, τiτ

′
i =

fi
f ′i
−

fi+1

f ′i+1
, σi−1(τ′i−1 + 1) =

fi
fi−1

fiσ′i − f ′i−1τi−1 = fi−1, f ′i−1σi−1 − fiτ′i = f ′i ,
fi
f ′i
−

fi+1

f ′i+1
=

f ′i
fi
−

f ′i−1

fi−1

If we write fi = hiϕi and f ′i = ϵhi for some unknown ϕi and ϵ = ±1 then the last equation
is

ϕi+1 = ϕi −
1
ϕi
+

1
ϕi−1

which, starting off without the ϕi−1 term, gives the iteration equation for ϕi as stated.
Also, from the first and 4th of these ith step equations, we get

τi+1 = −1 +
f ′i

f ′i+1σ
′
i+1
= −1 +

f ′i fi+1

f ′i+1( fi + f ′i τi)
= −1 +

ϕi+1

ϕi + ϵτi

as stated. Similarly, from the 3rd and the 5th, we get

τ′i =
f ′i−1σi−1 − f ′i

fi
=

f ′i−1

fi−1(1 + τ′i−1)
=

ϵ

ϕi−1(1 + τ′i−1)
−
ϵ

ϕi

as another (redundant) recursion relation. The 3rd, 4th and 2nd moreover give

σi−1 =
fi

fi−1(1 + τ′i−1)
, σ′i =

fi−1 + f ′i−1τi−1

fi
, τ′i = ϵ

ϕi − ϕi+1

τi

which can be used to determine σi−1, σ
′
i and obtain τ′i from τi as stated (the two sequences

are compatible with this relation).
The stated iterative equations have a unique solution given initial values of ϕ1, τ1. The

τ′1 is determined as

τ′1 =
1
τ1

(ϕ1 − ϕ1 +
1
ϕ1

) =
1

τ1ϕ1
.
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Figure 5. (a) ϕ1 ≥ 2 leads to ϕi asymptotically constant while ϕ1 < 2
leads to ϕi oscillatory. Here ϕ1 = 2 cos

(
π

n+1

)
is suitable for An and its ϕi

blows up at i a multiple of n+1. (b) Smaller ϕ1 including ϕ1 = 2 cos
(
π
3

)
=

1 and perturbations of it.

For the last part, for the connection to be ∗-preserving, we apply σ−1 ◦ † = † ◦ σ to
the relations (4.22) and (4.24) obtaining the conditions |τ1| = |τ

′
n−1| = 1. Applying the

∗-preserving conditions to (4.21), we require σi = 1/σ′i+1 which from their form in the
proposition holds if

|τi|
2 = 1 −

ϕi

ϕi−1
.

Here, we drop the last term for i = 1. This is solved with no conditions beyond |τ1| = 1, as
we prove by induction: if the condition holds for |τi|

2 then the recurrence relation for τi+1

implies that |τi+1|
2 = 1 − ϕi+1/ϕi as expected. Similarly, the ∗-preserving conditions for

(4.23) requires |∆i|
2 = 1, where ∆i = (1 + τi+1)(1 + τ′i) − τi+1τ

′
i . Using the form of τ′i , this

reduces to |τi|
2 = 1 − ϕi/ϕi−1 again. □

The iteration for ϕi here can be done in closed form. If ϕ1 = x, then

ϕi =
1
2

√x2 − 4

 1
1
2 −

1
2

(
−
√

x2 − 4 − x
)−i (√

x2 − 4 − x
)i − 1

 + x

 ,
ϕ2 = x −

1
x
, ϕ3 =

x
(
x2 − 2

)
x2 − 1

, ϕ4 =

(
x4 − 3x2 + 1

)
x
(
x2 − 2

) , ϕ5 =
x
(
x4 − 4x2 + 3

)
x4 − 3x2 + 1

,

etc., and we then use this solution to determine the recursion relations for τi. We see from
ϕ3 that demanding edge-symmetry where ϕi = 1 at all i, is not an option. Qualitatively, we
see from Figure 5 that there are two phases for the system:

(1) ϕ1 ≥ 2 (Open phase): Here ϕi decays rapidly to an asymptote 1
2

(√
ϕ2

1 − 4 + ϕ1

)
.

This case leads to solutions on the half-line graph N.
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(2) 0 < ϕ1 < 2 (Finite phase): Here ϕi is oscillatory, could have zeros and singulari-
ties and be periodic for certain ϕ1 (as illustrated). This case leads to solutions on
An as a subgraph of N.

The critical line started by ϕ1 = 2 between these two regions is particularly simple. It
can be approached from either side but more naturally from above.

Proposition 4.4. For the half-line graph N, the canonical choice of direction coeffi-

cients is given by ϕ1 = 2. If the metric hi and initial τ1 are rational then all coefficients of

the quantum geometry are rational. In particular, for initial τ1 = s = ±1 and ϵ = 1,

ϕi =
i + 1

i
, τi =

s(−1)i−1

i
; τ′i = −τi+1, σi =

hi+1

hi
(1 + τi+1), σ′i =

hi−1

hi

1
1 + τi

.

We refer to this as the canonical quantum Riemannian geometry of N.

Proof. Here ϕ1 = 2 is best approached for the analytic solution from above but one
can see directly that the ϕi stated has this initial value and solves the required recursion
relation. For τi, τ

′
i , (which are independent of the metric) the recursion has an analytic

solution using Pochhammer functions. For example

τ1 = s, τ2 = −
16s + 8

2(8s + 16)
, τ3 =

120s + 24
18(4s + 20)

, τ4 = −
2016s + 864

288(12s + 28)

etc. This simplifies greatly when |s| = 1, namely if s = eıθ, then

τi = −

(
6i + (−1)i + 3

)
eıθ + 2i + 3(−1)i + 1

i
((

(−1)i(2i + 1) + 3
)

eıθ + 3(−1)i(2i + 1) + 1
) .

We show the result when s = ±1 and also for this case the resulting τ′i , σi, σ
′
i . □

We are not claiming this as unique but it it represents by far the simplest solution.
Moreover, although we typically work over C in mathematical physics, it is striking that
this canonical quantum geometry on N works over the rational numbers Q. Finally, we
turn to the finite case as promised.

Corollary 4.5. For the finite interval graph An with metric defined by hi, ϵ, ϕi, there

is a quantum Riemannian geometry of the form in Proposition 4.3 provided ϕ1 is such that

the stated iteration leads to ϕn = 0 and all preceding ϕi , 0. In this case

ϕn−i =
1
ϕi
.

The physical choice where ϕi > 0 for i = 1, · · · , n − 1 is provided by ϕ1 = 2 cos
(

π
n+1

)
and

results in (4.20). E.g., if τ1 = s = ±1 and ϵ = 1 then

τi =
s(−1)i−1

(i)q
, q = e

ıπ
n+1
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n τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

2 1 -1
3 1 - 1

√
2

1

4 1 1
2 (1 −

√
5) −τ2 -1

5 1 − 1
√

3
1
2 τ2 1

6 1 − 1
2 cos( π

7 ) (−1)3/7 − (−1)4/7 −τ3 −τ2 −1

7 1 −

√
1 − 1

√
2

√
2 − 1 − 1

√
2

√
1 − 1

√
2

τ3 τ2 1

8 1 − 1
2 cos( π

9 )
1

1+2 cos( 2π
9 ) − 1

4 cos( π
9 ) cos( 2π

9 ) −τ4 −τ3 −τ2 −1

Table 3. Table of connection coefficients τi for An for n ≤ 8, s = 1 and
the canonical ϕ1. We adjoined τn according to the symmetry.

as a q-deformation of the solution on N in Proposition 4.4 with τ′i , σi, σ
′
i given in terms of

this by the same formulae as there. We refer to this as the canonical quantum Riemannian
geometry of An

Proof. We solve the iterative system as before but there is no fn etc for our truncated
graph, so we need

fn−1 = f ′n−1τn−1τ
′
n−1

in order that the relevant equation in the last group of 6 holds without that square bracketed
term. This is τn−1τ

′
n−1 = ϕn−1, which comparing with the general formula τn−1τ

′
n−1 needs

ϕn = 0. As the preceding ϕi should all be nonzero, this is the first time this should hap-
pen. Next, it follows from the inductive formula for ϕi in Proposition 4.3 that ϕ1 =

1
ϕn−1

.
Moreover, assuming ϕi = 1/ϕn−i as induction hypothesis and using the recursive relation
for ϕi+1 and ϕn−i gives

ϕi+1 = ϕ1 −
1
ϕi
= ϕ1 − ϕn−i =

1
ϕn−i−1

as required, proving the stated assertion. For ϵ = 1 as here, one can check that (4.20) obeys
this has has the required positivity provided we start with ϕ1 = 2 cos

(
π

n+1

)
.

To find τi for this choice of ϕ1, we iterated the recursion relation in Proposition 4.3
to fill out a table of τi values for small n values, see Table 3. Note that standard recursion
methods e.g. on Mathematica do not yield a general answer in closed form. We then
‘recognised’ the general formula as stated. Once found, it is easy enough to check that τi

obeys the recursion relation in Proposition 4.3 for ϕi = (i + 1)q/(i)q and compute the other
values. □

The canonical choice of ϕ1 is illustrated in Figure 5. It is also worth noting that for
s = ±1, the τi in this case enjoy symmetries similar to those of ϕi, namely for odd n:

τ1 = ±1, τn−1 = τ2, τn−2 = τ3, τ n−1
2
= τ n+3

2
, τ n+1

2
= (−1)

n−1
2 sin

(
π

n + 1

)
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and for even n:

τ1 = ±1, τn−1 = −τ2, τn−2 = −τ3, τ n
2+1 = −τ n

2
.

Similarly iterating for small n but general τ1 = s and computing the associated τi, τ
′
i , σi, σ

′
i

recovers for A2, · · · , A5 the explicit values reported in Section 2 for ϵ = 1.
More generally, without requiring positivity, one can start with ϕ1 = 2 cos

(
jπ

n+1

)
for

j = 1, 2, · · · , n−1, but some of these differ only by a sign so the solution they generate can
be absorbed in ϵ, and others can be excluded as some of the ϕi they generate vanish. Also,
for specific n there can be further ‘irregular’ solutions not generated by our method. For
example, if we set n = 8 then all the solutions for ϕ1 such that ϕ8 = 0 are given by

ϕ1 : ±2 cos
(
π

9

)
, ±2 cos

(
2π
9

)
, ±2 cos

(
3π
9

)
, ±2 cos

(
4π
9

)
of which the 3rd solution is just ±1 and can be excluded as not all the ϕ2, · · · , ϕ7 are
nonzero. The other three feature in Table 2 (we only listed one of the signs since the other
can be absorbed in the choice of ϵ). This explains the ‘regular’ part of the table but we also
see from row 8(2) that for specific n, we do not generate all the solutions by our method.
Indeed, row 8(2) has the same initial ϕ1 as row 8(3) while our method only gives one set
of ϕi for an initial ϕ1.

4. Laplacian and elements of QFT on A3

In the remainder of the paper, we work with only the canonical QRGs on N and An in
Proposition 4.4 and Corollary 4.5, with hi real, s = ±1 and ϵ = 1 there. Given this, we will
now repurpose ϵ > 0 as a lattice spacing for the continuum limit of the geometry on N. In
this section, we compute and study the Laplacian □ψ = ( , )∇dψ for a field ψ on An and N,
and in Section 5 the Ricci curvature. In both cases, we need the inverse metric, which now
looks like

(ai, a′i) =
δi

hi
, (a′i , ai) =

δi+1

hiϕi

for i = 1, · · · , n − 1 and is otherwise zero on basis elements.
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Lemma 4.6. The Laplacian operator □ f of a function f =
∑

i f (i)δi on the vertices of

the An graph with n ≥ 3 has the form

□ f =
n−1∑
i=1

( f (i + 1) − f (i))(, )(∇ai − ∇a′i)

=

(
( f (1) − f (2))

τ1 + 1
h1

)
δ1

+

n−1∑
i=2

(
( f (i) − f (i − 1))(τ′i−1 + 1) + ( f (i) − f (i + 1))(τi + 1)

) ( 1
hi
+

1
hi−1ϕi−1

)
δi

+ ( f (n) − f (n − 1))
(
τ′n−1 + 1
hn−1ϕn−1

)
δn

Proof. Because the calculus is inner, we have d f = [θ, f ] =
∑n−1

1 ( f (i+1)− f (i))(ai−a′i)
where θ =

∑n−1
1 ai + a′i . Using this in the definition of the Laplacian □ f = (, )∇d f for an

arbitrary function f we gives the first expression for the Laplacian.
Next, the general form for the connection corresponding to a1, an−1 and ai (valid only

for 1 < i < n − 1) using again that the calculus is inner, is

∇a1 = a′1 ⊗ a1 − τ1a1 ⊗ a′1 − σ1a1 ⊗ a2,

∇a′1 = a1 ⊗ a′1 + a′2 ⊗ a′1 − τ
′
1a′1 ⊗ a1 − (τ′1 + 1)a2 ⊗ a′2,

∇an−1 = an−2 ⊗ an−1 + a′n−1 ⊗ an−1 − τn−1an−1 ⊗ a′n−1 − (τn−1 + 1)a′n−2 ⊗ an−2,

∇a′n−1 = an−1 ⊗ a′n−1 − σ
′
n−1a′n−1 ⊗ a′n−2 − τ

′
n−1a′n−1 ⊗ an−1,

∇ai = a′i ⊗ ai + ai−1 ⊗ ai − τiai ⊗ a′i − (τi + 1)a′i−1 ⊗ ai−1 − σiai ⊗ ai+1,

∇a′i = ai ⊗ a′i + a′i+1 ⊗ a′i − τ
′
ia
′
i ⊗ ai − (τ′i + 1)ai+1 ⊗ a′i+1 − σ

′
ia
′
i ⊗ a′i−1.

Arranging the terms and applying the inverse metric, we recover the explicit form stated.
□

We also use this for the case of N but without the final values.

4.1. N and its continuum limit. The Laplacian for the connection of the Proposi-
tion 4.4 with general values of the metric hi comes out as

(□ f )(1) = ( f (1) − f (2))
1 + s

h1

(□ f )(i) =
(
−(∆Z f )(i) +

(−1)is
i

( f (i + 1) − f (i − 1))
)  1

hi
+

1
hi−1(1 + 1

i−1 )

 ; i > 1

in terms of the usual discrete Laplacian (∆Z f )(i) = f (i+1)+ f (i−1)−2 f (i). For the sake of
discussion, we now take s = 1 in order to avoid (□ f )(1) = 0 for all f . An alternative, which
amounts to ignoring the (−1)i term, would be to average the Laplacian between s = ±1.
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For reference,

(□h f )(i) = −( f (i + 1) + f (i − 1) − 2 f (i))(
1

hi−1
+

1
hi

)

was the Laplacian for an infinite line graph Z with metric weights hi as found in [2]. Com-
pared to this, we see two effects of the truncation to N, both going as 1/i so that they are
not visible far from the boundary at i = 1:

(1) The metric-dependent factor 1
hi−1
+ 1

hi
for Z decreases slightly as i→ 1;

(2) There is a derivative correction but with an alternating sign (−1)i.

We now look at both of these in the context of a lattice approximation of (0,∞) ⊂ R
sampled at x = ϵi, where i ∈ N and ϵ > 0 now denotes the lattice spacing. We consider a
function f as either f (x) or f (i) via this correspondence. We implement the lattice spacing
by a constant value hi = ϵ

2 in the inbound (increasing i direction), but one also has similar

results for the more symmetrical hi = ϵ
2
√

i
i+1 . Then the metric-dependent factor is

(4.25)
1
hi
+

1
hi−1(1 + 1

i−1 )
=

1
ϵ2 β

−1, β−1(i) = 1 +
1

1 + 1
i−1

= 2 −
1
i

(1) We first ignore the term with (−1)i as this clearly has no continuum limit and we
will argue that its effects are minimal. In this case, we have as ϵ → 0,

β(x) =
1
2
+

ϵ

4x
+ O(ϵ2),

1
ϵ2∆Z f =

d2 f
dx2 + O(ϵ2)

To interpret what happens at order ϵ we consider solving the time-independent Schroedinger
equation □ f = 4mE f for a mass m and energy E in our normalisation of □. We set ℏ = 1
for present purposes. Then to O(ϵ2), the equation we are solving is(

−
1

2m
d2

dx2 −
Eϵ
2x

)
f = E f .

This does not have an immediate parallel with quantum mechanics as the ‘potential’ term
is energy-dependent but we can see that energy E shifts by an amount which is Eϵ times a
‘potential’ − 1

2x , with eigenfunctions to O(ϵ2) obtained by solving this. One could therefore
think of this as like a 1

x2 force driving solutions towards the boundary as x = 0. We illustrate
this in Figure 6. This shows the solution to

□ f = 4mE f , f (1) = 1 − α, f (2) = 1 − 2α, α =
2mEϵ2

1 + 2mEϵ2

where the initial conditions are such that the linearly extrapolated value at the origin is
f (0) = 1 and 4mE f (1) = (□ f )(1) = 2( f (1) − f (2))/ϵ2 as required. The effect of the (−1)i

is to produce ripples in the solution which are less pronounced at larger x and which get
faster and smaller as ϵ → 0 (since there are more steps in the range (0, x) for any finite x).

(2) For a theoretical picture of the term with the (−1)i factor, we discuss two ways
to think about this, at least intuitively. One is to live with the lack of continuity and just
keep the (−1)i factor which in the limit of ϵ → 0 stands for an infinitely-rapidly alternating
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ϵ = 0.1
ϵ = 0.05
ϵ = 0.033
ϵ = 0.025

x

f(x)

corrected
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-1.0

-0.5

0.5

1.0

Figure 6. Numerical solutions of □ f = 4mE f at mE = 15 and different
values of hi = ϵ

2, converging to a smooth solution as ϵ → 0.

function of x = iϵ, but which makes sense for any finite ϵ > 0. In this case, the other parts
of the expression have a limit and we obtain

□ f = −2
d2 f
dx2 + (−1)i 4

x
d f
dx
+ O(ϵ)

in so far as this makes sense. The other approach is to sample our functions only at even
i and replace (−1)i 1

i by its average value at i and i + 1, i.e. by 1
2 ( 1

i −
1

i+1 ) = 1
2i(i+1) , which

tends to ϵ2

2x2 plus higher order in ϵ. In this case, one can say, again intuitively, that

□ f = (−
d2 f
dx2 +

ϵ

x2

d f
dx

)β−1(x) + O(ϵ2) = −(
d2 f
dx2 + 4β′

d f
dx

)β−1 + O(ϵ2)

where we recognise β′(x) = − ϵ
4x2 . This leads to a further term ϵ

2mx2 f ′ added to the effective
‘Hamiltonian’ in our previous analysis. This contribution no longer has the flavour of a
potential energy but rather of a coupling to an effective background gauge potential. Note
that the expression here is not quite β−1( d2

dx2 −
β′

2β
d
dx ), the classical Laplacian for metric

g = βdx ⊗ dx and connection ∇dx = − β′

2βdx ⊗ dx in our notations. (Namely, it differs by
a factor −4 in the β′ coefficient given that β ≈ 1/2.) We also recall that the limit of the
quantum geometry is more precisely a 2-dimensional noncommutative differential calculus
rather than a classical calculus.

The overall picture is that the direction-dependent quantum metric on N cannot be
avoided as we approach the i = 1 boundary and cannot be mapped to an effective contin-
uum limit, but we can begin to get a feel for its physical significance as something like
an effective force pushing solutions towards the boundary and possibly a further velocity
dependent force. This analysis was for constant metrics hi or similar. We will mention
another natural family of metrics in Section 5.
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4.2. QFT on a finite lattice interval An. The Laplacian from Lemma 4.6 for the An

geometry given for the Corollary 4.5 is

□ f (1) = ( f (1) − f (2))
s + 1

h1
, □ f (n) = ( f (n) − f (n − 1))

1 + (−1)ns
hn−1

(2)q,

□ f (i) =
(
−∆Z f (i) +

(−1)is
(i)q

( f (i + 1) − f (i − 1))
) (

1 +
hi(i − 1)q

hi−1(i)q

)
1
hi

for i = 2, · · · , n− 1. We used that (n)q = 1 and (n− 1)q = (2)q. It is convenient to write the
Laplacian in the form

□ f = (L f )β−1; β−1(1) =
1
h1
, β−1(n) =

(2)q

hn−1
, β−1(i) =

(
1 +

hi(i − 1)q

hi−1(i)q

)
1
hi
,

for i = 2, · · · , n − 1. Then for the free field QFT partition functions etc., we are interested
in

Z =
∫ n∏

i=1

dψ(i)dψ̄(i)e
ı
α

∑n
i=1 µiψ̄(i)((Lψ)(i)β−1(i)−m2ψ(i))

with α a real coupling constant and µi > 0 a measure of ‘integration’ (now a sum) on An.
This action is quadratic and hence can be evaluated as a determinant. This also applies in
the real scalar field case where we have

∏
i dψ(i).

As an example, we let n = 3 and s = 1. We have (2)q =
√

2 and (3)q = 1 and weights
µi, we have an action for a complex (or real) 3-vector ψ = (ψ1, ψ2, ψ3). In these terms, the
action is quadratic,

S [ψ] = ψ̄1µ1

(
2 (ψ1 − ψ2)

h1
− m2ψ1

)
+ ψ̄3µ3

(
−m2ψ3

)
+ ψ̄2µ2

((
1
h2
+

1
√

2h1

) ((
−

1
√

2
− 1

)
ψ1 +

(
1
√

2
− 1

)
ψ3 + 2ψ2

)
− m2ψ2

)
= ψ̄.B.ψ

for a matrix

B =


µ1

(
2
h1
− m2

)
−
µ12
h1

0

−µ2

(
1 + 1

√
2

) (
1
h2
+ 1
√

2h1

)
µ2

(
2
(

1
h2
+ 1
√

2h1

)
− m2

)
µ2

(
1
√

2
− 1

) (
1
h2
+ 1
√

2h1

)
0 0 µ3

(
−m2

)


now including the mass term. Hence, the partition function Z is again given as usual for a
Gaussian via the determinant

det(B) =
µ1µ2µ3m2

h2
1h2

2

(
h2

1h2m2
(
−h2m2 + 2

)
+

(√
2 + 2

)
h1h2

2m2

+
(√

2 − 2
)

h1h2 − h2
2

(√
2 − 1

) )
.

For the constant case h1 = h2, this simplifies to

det(B) = −
µ1µ2µ3m2

h2
1

(
h1m2

(
h1m2 −

√
2 − 4

)
+ 1

)
.
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One can similarly compute correlation functions.

5. Curvatures and elements of quantum gravity on n = 3

In this section, we compute the curvatures in terms of the hi real parameters and s = ±1
and ϵ = 1, i.e. for the canonical QRGs on N in Proposition 4.4 and on An by Corollary 4.5
with ϕ1 = 2 cos

(
π

n+1

)
. We then use the lifting map (4.3) to define the Ricci tensor as in [14]

and the Ricci scalar by S = ( , )(Ricci) where ( , ) is the inverse metric. Curvature tensors
will depend on the hi only through the ratio

ρi =
hi+1

hi
,

which we use throughout the section. We also repurpose ϵ as the lattice spacing in the case
of N.

In general, the Riemann curvature for our form of connection reduces to

R∇a1 = 0,

R∇a′1 = (τ′1(σ′2 − τ1) + σ′2)a′1 ∧ a1 ⊗ a′1 + (τ′1(τ′2 − σ1) + τ′2)a′1 ∧ a1 ⊗ a2,

R∇ai = (τi(σi−1 − τ
′
i) + σi−1 − σi(τi+1 + 1))ai ∧ a′i ⊗ ai + (τi(τi−1 − σ

′
i)

+ τi−1)ai ∧ a′i ⊗ a′i−1,

R∇a′i = (τ′i(σ
′
i+1 − τi) + σ′i+1 − σ

′
i(τ
′
i−1 + 1))a′i ∧ ai ⊗ a′i + (τ′i(τ

′
i+1 − σi)

+ τ′i+1)a′i ∧ ai ⊗ ai+1,

R∇an−1 = (τn−1(σn−2 − τ
′
n−1) + σn−2)an−1 ∧ a′n−1 ⊗ an−1

+ (τn−1(τn−2 − σ
′
n−1) + τn−2)an−1 ∧ a′n−1 ⊗ a′n−2,

R∇a′n−1 = 0

for i = 2, · · · , n − 2 on An and the same without the final cases on N.



5. CURVATURES AND ELEMENTS OF QUANTUM GRAVITY ON n = 3 105

5.1. Curvatures for N. The results for the canonical solution in Proposition 4.4 with
s = ±1 are as follows. For the Riemann curvature, we find

R∇a1 = 0,

R∇a′1 =
(
ρ1

(1 − 2s)
4

−
(1 + 2s)

6

)
a′1 ∧ a1 ⊗ a2 −

(
(s + 2)
ρ1(s − 2)

+
1
2

)
a′1 ∧ a1 ⊗ a′1,

R∇ai =

ρi−1

(
i − (−1)is

)2

i2
−
ρi

(
i + 1 + (−1)is

)2

(i + 1)2 −
1

i(i + 1)

 ai ∧ a′i ⊗ ai

+ (−1)is


(
i − (−1)is

)
(i − 1)i

+
1

ρi−1
(
i − (−1)is

)  ai ∧ a′i ⊗ a′i−1,

R∇a′i =

−
(
i + (−1)is

)
ρi−1

(
i − (−1)is

) + (
i + 1 − (−1)is

)
ρi

(
i + 1 + (−1)is

) − 1
i(i + 1)

 a′i ∧ ai ⊗ a′i

+
(−1)is
(i + 1)


(
i + 1 − (−1)is

)
(i + 2)

+ ρi

(
i + 1 + (−1)is

)
(i + 1)

 a′i ∧ ai ⊗ ai+1

for i ≥ 2. The Ricci tensor for the lift (4.3) is then

Ricci =
(
ρ1

(s − 2)s
4

−
s(s + 2)

6

)
a1 ⊗ a2 −

(
(s + 2)
ρ1(s − 2)

+
1
2

)
a1 ⊗ a′1

+
1
2

∑
i≥2

{
ϕi

−
(
i + (−1)is

)
ρi−1

(
i − (−1)is

) + (
i + 1 − (−1)is

)
ρi

(
i + 1 + (−1)is

) − 1
i(i + 1)

 ai ⊗ a′i

+
(−1)isϕi

(i + 1)


(
i + 1 − (−1)is

)
(i + 2)

+ ρi

(
i + 1 + (−1)is

)
(i + 1)

 ai ⊗ ai+1

+
1
ϕi

ρi−1

(
i − (−1)is

)2

i2
−
ρi

(
i + 1 + (−1)is

)2

(i + 1)2 −
1

i(i + 1)

 a′i ⊗ ai

+
(−1)is
ϕi


(
i − (−1)is

)
(i − 1)i

+
1

ρi−1
(
i − (−1)is

)  a′i ⊗ a′i−1

}
.

There are no Ricci flat solutions but note that the only coefficients that do not decay O( 1
i )

for generic ρi are the coefficients of ai ⊗ a′i and a′i ⊗ ai, which asymptote to 1
ρi
− 1

ρi−1
and

ρi−1 − ρi respectively.
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Contracting with ( , ), the Ricci scalar is then

S(1) = −
1

2h1

(
1 +

2(s + 2)
ρ1(s − 2)

)
,

S(2) = −
1

8h2

(
1 −

6(s + 2)
ρ1(s − 2)

+
6(s − 3)
ρ2(s + 3)

)
,

S(i) = −
1

2hi

 1
i2
+ρi−1

(i − 1)
i3
−ρi−1ρi−2

(
i − 1 + (−1)is

)2

i2
+ρ2

i−1

(i − 1)2
(
i − (−1)is

)2

i4

+
(i + 1)

(
i + (−1)is

)
ρi−1i

(
i − (−1)is

) − (i + 1)
(
i + 1 − (−1)is

)
ρii

(
i + 1 + (−1)is

)  ,
with

S (i) = −
1

2hi

(
ρi−1(ρi−1 − ρi−2) +

1
ρi−1
−

1
ρi

)
+ O(

1
i

)

for generic hi. In the constant hi case, however, we have to look to the next order and then
one finds

S (i) = −
(1 + 4(−1)is)

h1i2
+ O(

1
i3

)

which has a non-continuum alternating term suppressed for large i, in line with such a term
term in the Laplacian in Section 4.

Alternatively, we can land exactly on S = 0, in fact on any prescribed function for
the curvature, provided we use an oscillatory hi which will then not have a classical limit
itself. We explore this option next.

Proposition 4.7. On N, there is a unique metric {hi} up to normalisation such that

S = 0, given by

s = 1 : h f lat
i = 2h1

(2⌊ i
2 ⌋ + 1)2

(i + 1)
= 2h1

i + 1 i even
i2

(i+1) i odd
,

s = −1 : h f lat
i = 2h1

⌈ i
2 ⌉

2

(i + 1)
=

h1

2


i2

(i+1) i even

i + 1 i odd
,

for any inital value h1.

Proof. From the form of S (i), it is clear that we can solve iteratively to find hi for any
initial h1. Doing this for s = ±1 gives the solutions shown. □

For the rest of the section, we focus on s = 1 but there is a similar story for s = −1.
First note that setting s = 1 and h1 = ϵ

3 for a small number ϵ > 0 and repeating the analysis
in Section 4, the metric-dependent factor in the Laplacian becomes

1
hi
+

1
hi−1(1 + 1

i−1 )
=

1
ϵ3 β

−1(i); β−1(i) =
1
i
+ O(

1
i2

)
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in place of (4.25). We can take the continuum limit with the leading order β−1(i) = 1
i =

ϵ
x

and do the parallel analysis to (1) in Section 4. Ignoring the (−1)i differential term as we
did before, gives that □ f = 4mE f becomes the Airy equation

(4.26)
d2 f
dx2 + 4mEx f = 0

with a real decaying cosine-wave-like solution if 4mE > 0 and, say, f (0) = 1, f ′(0) = 0. In
addition, we can expect ripples in the discrete solution visible for small i due to the even
values of β−1(i) and due to the (−1)i differential term as discussed in Section 4. Meanwhile,
the QFT action depends on the measure µi and if we take the obvious choice µi = hi then
this cancels the 1/x in the continuum limit and we obtain a multiple of the free field action
(again ignoring the suppressed (−1)i term in the Laplacian), which is perhaps reasonable
as the curvature is zero.

Next, we consider metrics near to the above flat one in a conformal sense,

hi = h f lat
i gi; ρi = ρ

f lat
i ηi; ηi =

gi+1

gi

with h f lat from Proposition 4.7 for s = 1. Then a calculation with h1 = ϵ
3 and i = x/ϵ as

above and working to leading order in ϵ, gives

S (x) = −
1

2h f lat
i gi

(
ηi−1(ηi−1 − ηi−2) +

1
ηi−1
−

1
ηi

)
= −

1
4ϵxg

(
1
η2+η)

dη
dx
,

where
ηi = 1 +

gi+1 − gi

gi
= 1 + ϵg−1 dg

dx
+ O(ϵ2).

Putting this in, we have to leading oder in ϵ,

S (x) = −
g−1

4x
d
dx

(g−1 dg
dx

) = −
e−ψ

4x
d2ψ

dx2

if we write g(x) = eψ(x) for a real scalar field ψ.
We briefly consider the Einstein-Hilbert action for such metric fluctuations near the

scalar-flat metric, expressed in ψ(x). We need to fix the measure µi in

S [h] =
∑

i

µiS (i)

and based on experience in [38] for Z, we take µi = hi = h f lat
i gi. The theory behind how

to choose this measure is not clearly understood, but we expect some power of the metric.
Classically, one would have

√
det(g) for the measure but in [38] it gave more reasonable

answers not to take a square root, related to Ω1 there being 2-dimensional. Our Ω1 is not
exactly a free module but is more like this far from the boundary. In this case,

S [ψ] =
∞∑

i=1

h f lat
i giS (i)→ −

ϵ

2

∫ ∞

0
dx

d
dx

(
dψ
dx

) =
ϵ

2
(
dψ
dx

)(0+)
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to leading order as ϵ → 0, given that h f lat
i = 2ϵ2x to leading order and assuming our fields

decay at ∞. The ϵ can be absorbed in µ or in a coupling constant in front of the action.
The action here is topological and appears to amount to a trivial theory on the boundary
at x = 0+ (approaching from the bulk), but could be more interesting before we take the
continuum limit and if we look more closely at the boundary.

5.2. Curvatures for An. We proceed from the general expression for the curvature
and put in the connection in Corollary 4.5. However, the τi, τ

′
i , σi, σ

′
i are exactly a q-

deformation of the formulae for N in the sense that all integers i − 1, i, i + 1, i + 2 are
replaced by (i − 1)q, (i)q, (i + 1)q, (i + 2)q respectively. With that change, the formulae for
R∇ for are exactly as before except that now R∇a′n−1 = 0 and R∇an−1 drops the term with
ρn−1. One can also simplify with (n)q = 1 and (n − 1)q = (2)q. Likewise R∇a1 = 0 and
R∇a′1 drops the term with 1/ρ0. Thus,

R∇a1 = 0, R∇a′1 = −
(

s + (2)q

ρ1(s − (2)q)
+

1
(2)q

)
a′1 ∧ a1 ⊗ a′1,

R∇an−1 =

ρn−2

(
(2)q + (−1)ns

)2

(2)2
q

−
1

(2)q

 an−1 ∧ a′n−1 ⊗ an−1, R∇a′n−1 = 0.

For the Ricci tensor the sum over i is q-deformed and truncated, but for the i = 1 term we
drop the 1/ρ0 in the coefficient of a1⊗a′1 and the a′1⊗ terms altogether, and for the i = n−1
terms we drop the ρn−1 in the coefficient of a′n−1 ⊗ an−1 and the an−1⊗ terms altogether.
Thus,

Ricci =
s
2

(
ρ1

s − (2)q

(2)q
−

(2)q + s
(3)q

)
a1 ⊗ a2 −

1
2

(
(2)q((2)q + s)
ρ1(s − (2)q)

+ 1
)

a1 ⊗ a′1

+
1
2

n−2∑
i=2

(q − def previous) +
1
2

(
ρn−2

((2)q + (−1)ns)2

(2)q
− 1

)
a′n−1 ⊗ an−1

−
(−1)ns

2

(
(2)q + (−1)ns

(3)q
+

(2)q

ρn−2((2)q + (−1)ns)

)
a′n−1 ⊗ a′n−2
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There are no Ricci flat solutions. The Ricci scalar is then

S(1) = −
1

2h1

(
1 +

(2)q(s + (2)q)
ρ1(s − (2)q)

)
,

S(2) = −
(3)q

2h2(2)q

(
1

(2)q(3)q
−

s + (2)q

ρ1(s − (2)q)
+

s − (3)q

ρ2(s + (3)q)

)
,

S(i) = −
(i + 1)q

2hi(i)q

(
1

(i)q(i + 1)q
+

((i)q + (−1)is)
ρi−1((i)q − (−1)is)

−
((i + 1) − (−1)is)
ρi((i + 1)q + (−1)is)

)
−

(i − 1)2
q

2hi(i)2
q
ρi−1

 1
(i − 1)q(i)q

− ρi−2
((i − 1)q + (−1)is)2

(i − 1)2
q

+ ρi−1
((i)q − (−1)is)2

(i)2
q

 ,
S(n − 1) = −

(3)2
q

2hn−2(2)2
q

(
1

(2)q(3)q
+ ρn−2

((2)q + (−1)ns)2

(2)q
− ρn−3

((3)q − (−1)ns)2

(3)q

)
,

S(n) = −
1

2hn−1

(
(2)q − ρn−2((2)q + (−1)ns)2

)
for n ≥ 3. For n = 3 we have S (2) = S (n−1) = 0. These formulae show how the geometry
of An q-deforms that of N. As with Proposition 4.7, there is again a unique metric h f lat up
to overall scale such that S = 0.

We conclude with a small example for n = 3, s = 1. Then (2)q =
√

2, (3)q = 1 and we
obtain

S =
 (3 + 2

√
2)

√
2h2

−
1

2h1

 {1, 0,−(3 − 2
√

2)}

at the three points. This vanishes at h2 = (4 + 3
√

2)h1. Next, if we write µ1 = h1, µ3 = h2

then get for the Einstein-Hilbert action

S [ρ] :=
∑

i

µiS (i) =
(3 + 2

√
2)

√
2ρ

+
(3 − 2

√
2)

2
ρ −

1
√

2
−

1
2

; ρ =
h2

h1

but note that we can get any coefficients for the two powers of ρ by scaling µi. Sticking
with the obvious values, if we ignore the constant then

Z =
∫

dh1dh2e−
1
G ( c

ρ+ρ)
=

∫ ∞

0
h1dh1

∫ ∞

0
dρe−

1
G ( c

ρ+ρ); c = 24 + 17
√

2

for a real positive coupling constant G. The first integral is an infinite volume which we
ignore, while the ρ integrals converge for the calculation of expectation values,∫ ∞

0
dρe−

1
G ( c

ρ+ρ)ρm = 2c
m+1

2 Km+1

(
2
√

c
G

)
as BesselK functions. These diverge as G → 0 and as G → ∞, but the expectation behave
like

⟨ρm⟩ →

c
m
2 G → 0

∞ G → ∞
,
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while, for example, the relative uncertainty increases from 0 to a limit

∆ρ

⟨ρ⟩
:=

√
⟨ρ2⟩ − ⟨ρ⟩2

⟨ρ⟩
→ 1;

⟨ρ2⟩

⟨ρ⟩2
→ 2

as G → ∞ (the ‘strong gravity’ limit). This looks quite reasonable for a theory of quantum
gravity on 3 points in the sense that it follows the same pattern as other models[11, 2, 31].



APPENDIX A

Non ∗-preserving solutions for Zn

In this appendix, we list the solutions overCwhich do not obey the unitarity or ‘reality’
condition, hence are not included in chapter 2 Section 1.1. Because we use symbolic
algebra these results are also valid at least for any field of characteristic zero. These could
be of interest in different contexts over other fields, for example, to obtain ‘digital’ quantum
geometries over F2 in the setting of [56] (in this case there could be other solutions also, as
the field then has non-zero characteristic).

For n ≥ 3 odd, there are two further independent solutions:

(i) σ(e+ ⊗ e+) = −ρe+ ⊗ e+, σ(e− ⊗ e+) = −e+ ⊗ e− − 2e− ⊗ e+,

σ(e+ ⊗ e−) = e− ⊗ e+, σ(e− ⊗ e−) = R2
−(ρ−1)e− ⊗ e−,

giving the geometric structures

∇e+ = (1 + ρ)e+ ⊗ e+, ∇e− = (1 − R2
−(ρ−1))e− ⊗ e− + 2(e+ ⊗ e− + e− ⊗ e+)

R∇e+ = −∂−(ρ)e+ ∧ e− ⊗ e+,

R∇e− = −∂−(R−(ρ−1))e+ ∧ e− ⊗ e− − 2(1 − R−(ρ))e+ ∧ e− ⊗ e+,

Ricci =
1
2

(
−∂−(R−(ρ))e− ⊗ e+ + 2(1 − ρ)e+ ⊗ e+ + ∂−(ρ−1)e+ ⊗ e−

)
,

S =
1
2

(
∂−(ρ−1)

a
−
∂−(R−(ρ))

R−a

)
,

∆ f =
1
a

(R− f − R+( f ))(R−(ρ) + 1).

For n = 3, we may freely add a map α given by α(e−) = λR+(a)e+ ⊗ e+ to ∇e− for a free
parameter λ, and α(e+) = 0, so no change to ∇e+. This agrees with the triangle analysis in
[14, Ex. 8.19] aside from a different definition of ρ.

(ii) σ(e+ ⊗ e+) = ρe+ ⊗ e+, σ(e+ ⊗ e−) = −2e+ ⊗ e− − e− ⊗ e+,

σ(e− ⊗ e+) = e+ ⊗ e−, σ(e− ⊗ e−) = −R2
−(ρ−1)e− ⊗ e−,
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giving the geometric structures

∇e+ = (1 − ρ)e+ ⊗ e+ + 2(e+ ⊗ e− + e− ⊗ e+), ∇e− = (1 + R2
−(ρ−))e− ⊗ e−,

R∇e+ = −∂−ρe+ ∧ e− ⊗ e+ + 2(1 − R−(ρ−1))e+ ∧ e− ⊗ e−,

R∇e− = −∂−(R−(ρ−1))e+ ∧ e− ⊗ e−,

Ricci =
1
2

(
−∂−(R−(ρ))e− ⊗ e+ + 2(1 − R2

−(ρ−1))e− ⊗ e− + ∂−(ρ−1)e+ ⊗ e−
)
,

S =
1
2

(
∂−(ρ−1)

a
−
∂−(R−(ρ))

R−a

)
,

∆ f =
1
a

(R+( f ) − R−( f ))(R−(ρ) + 1).

For n = 3, we may freely add a map α given by α(e+) = λR+(a)e− ⊗ e− to ∇e+ for a
free parameter λ, and α(e−) = 0, so no change to ∇e−. This again agrees with the triangle
analysis in [14] aside from a different definition of ρ.

For n ≥ 4 even, there are two further independent solutions each with a free nonzero
parameter q, from which we define a function

Q = q(−1)i
=


q

q−1

...

 .
Then

(i) σ(e+ ⊗ e+) = ρe+ ⊗ e+, σ(e+ ⊗ e−) = (Q − 1)e+ ⊗ e− + Qe− ⊗ e+,

σ(e− ⊗ e+) = e+ ⊗ e−, σ(e− ⊗ e−) = R2
−(ρ−1)Qe− ⊗ e−,

giving the geometric structures

∇e+ = (1 − ρ)e+ ⊗ e+ + (1 − Q)(e− ⊗ e+ + e+ ⊗ e−), ∇e− = (1 − R2
−(ρ−1)Q)e− ⊗ e−,

R∇e+ = ∂−(ρR+(Q))e+ ∧ e− ⊗ e+ + (R+(Q − 1)R−(ρ−1) − (Q − 1))e+ ∧ e− ⊗ e−,

R∇e− = ∂−(R−(ρ−1)R+(Q))e+ ∧ e− ⊗ e+,

Ricci =
1
2

(
∂−(R−(ρ)Q)e− ⊗ e+ + ∂+(R+(Q)R−(ρ−1))e+ ⊗ e− + ((Q − 1)R2

−(ρ−1) − R−(Q − 1))e− ⊗ e−
)
,

S =
1

2a

(
∂+(R+(Q)R−(ρ−1)) − R−(ρ)∂−(R−(ρ)Q)

)
,

∆ f = −
(

1
R−(a)

+
1
a

)
(∂− f + Q∂+ f ).

(ii) σ(e+ ⊗ e+) = ρQe+ ⊗ e+, σ(e− ⊗ e−) = R2
−(ρ−1)e− ⊗ e−,

σ(e+ ⊗ e−) = e− ⊗ e+, σ(e− ⊗ e+) = Qe+ ⊗ e− + (Q − 1)e− ⊗ e+,
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giving the geometric structures

∇e+ = (1 − ρQ)e+ ⊗ e+, ∇e− = (1 − R2
−(ρ−1))e− ⊗ e− + (1 − Q)(e+ ⊗ e− + e− ⊗ e+),

R∇e+ = ∂−(ρQ)e+ ∧ e− ⊗ e−,

R∇e− = (−R+(Q − 1)R−(ρ) + Q − 1)e+ ∧ e− ⊗ e+ + ∂−(QR−(ρ−1))e+ ∧ e− ⊗ e−,

Ricci =
1
2

(
∂−(R−(ρQ))e− ⊗ e− − (∂−(R+(Q)ρ−1)e+ ⊗ e− + (ρ(Q − 1) − R+(Q − 1))e+ ⊗ e+

)
,

S = −
1

2a
∂−(R+(Q)ρ−1),

∆ f = −
(

1
R−(a)

+
1
a

)
(Q∂− f + ∂+ f ).

For n = 4, we have a further more general form for the generalised braiding

σ(e+ ⊗ e+) = σ0e+ ⊗ e+ + σ6e− ⊗ e−, σ(e+ ⊗ e−) = σ1e+ ⊗ e− + σ2e− ⊗ e+,

σ(e− ⊗ e+) = σ3e+ ⊗ e− + σ4e− ⊗ e+, σ(e− ⊗ e−) = σ5e− ⊗ e− + σ7e+ ⊗ e+

for which the conditions for zero torsion are the same as before but metric compatibility
now has a more complicated form due to the two extra parameters σ6, σ7. The QLCs turn
out to fall into 10 families of which 3 are the ones with σ6 = σ7 = 0 already covered
above. In addition we have

(i) a 4-parameter solution with a free nonzero function γ = (γ0, γ1, γ2, γ3) and

σ(e+ ⊗ e+) = γe− ⊗ e−, σ(e+ ⊗ e−) = −e+ ⊗ e−,

σ(e− ⊗ e+) = −e− ⊗ e+, σ(e− ⊗ e−) = R−(γ−1)R+(ρ′)e+ ⊗ e+,

∇e+ = e+ ⊗ e+ + e− ⊗ e+ + e+ ⊗ e− − γe− ⊗ e−,

∇e− = e− ⊗ e− + e+ ⊗ e− + e− ⊗ e+ − R−(γ−1)R+(ρ′)e+ ⊗ e+,

where
ρ′ =

1
ρR+ρ

.

This is ∗-preserving if and only if γ has the 2-parameter form such that R2
+(γ) = γ̄−1 as in

the main text.
(ii) a 3-parameter solution with parameter β and functions

γ = (p, q, p, q), δ =
pq − 1

R+(γ) − 1
= (pq − 1)(

1
q − 1

,
1

p − 1
,

1
q − 1

,
1

p − 1
),

σ(e+ ⊗ e+) = ρ(1 − δ)e+ ⊗ e+ + β(γ − 1)ρ′e− ⊗ e−, σ(e+ ⊗ e−) = (γ − 1)e+ ⊗ e− + γe− ⊗ e+,

σ(e− ⊗ e+) = (1 − δ)e+ ⊗ e− − δe− ⊗ e+, σ(e− ⊗ e−) = −
δ

βR2
+ρ
′
e+ ⊗ e+ +

γ

R2
+ρ

e− ⊗ e−,

where
ρ′ = (

ρ0

ρ2
, ρ0ρ1, 1, ρ0ρ3),
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giving the QLC

∇e+ = (1 − ρ(1 − δ))e+ ⊗ e+ + (1 − γ)(e− ⊗ e+ + e+ ⊗ e−) + βρ′(1 − γ)e− ⊗ e−,

∇e− = (1 −
γ

R2
+ρ

)e− ⊗ e− + δ(e+ ⊗ e− + e− ⊗ e+) +
δ

βR2
+ρ
′
e+ ⊗ e+.

(iii) a 3-parameter solution with parameters β and functions

γ = (p, 0, q, 0), δ = (1,
q
p
, 1,

p
q

),

,

σ(e+ ⊗ e+) = R−

(
γ

γ − 1

)
ρe+ ⊗ e+ +

βδρ′

1 − R−(γ)
e− ⊗ e−,

σ(e+ ⊗ e−) = (γ − 1)e+ ⊗ e− + γe− ⊗ e+,

σ(e− ⊗ e+) = R+

(
γ

γ − 1

)
e+ ⊗ e− +

1
R+(γ − 1)

e− ⊗ e+,

σ(e− ⊗ e−) =
R−(δ)
βR2
+(ρ′)

(1 − γ)e+ ⊗ e+ + R2
+(
γ

ρ
)e− ⊗ e−,

where
ρ′ = (

ρ0

ρ2
, ρ0ρ1, 1, ρ0ρ3),

giving the QLC

∇e+ = (1 + R−(
γ

1 − γ
)ρ)e+ ⊗ e+ + (1 − γ)(e− ⊗ e+ + e+ ⊗ e−) −

βδρ′

1 − R−(γ)
e− ⊗ e−,

∇e− =
(
1 − R2

+

(
γ

ρ

))
e− ⊗ e− +

1
1 − R+(γ)

(e+ ⊗ e− + e− ⊗ e+) −
R−(δ)
βR2
+ρ
′
(1 − γ)e+ ⊗ e+.

(iv) a 3-parameter solution with parameters β and the functions

γ = (0, p, 0, q), δ = (
p
q
, 1,

q
p
, 1),

,

σ(e+ ⊗ e+) = ρR−(
γ

γ − 1
)e+ ⊗ e+ +

βδρ′

1 − R−(γ)
e− ⊗ e−,

σ(e+ ⊗ e−) = (γ − 1)e+ ⊗ e− + γe− ⊗ e+,

σ(e− ⊗ e+) = R+(
γ

γ − 1
)e+ ⊗ e− +

1
R+(γ − 1)

e− ⊗ e+,

σ(e− ⊗ e−) =
R−(δ)
βR2
+(ρ′)

(1 − γ)e+ ⊗ e+ + R2
+(
γ

ρ
)e− ⊗ e−,

where
ρ′ = (

ρ0

ρ2
, ρ0ρ1, 1, ρ0ρ3),
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giving the QLC

∇e+ = (1 + R−(
γ

1 − γ
)ρ)e+ ⊗ e+ + (1 − γ)(e− ⊗ e+ + e+ ⊗ e−) −

βδρ′

1 − R−(γ)
e− ⊗ e−,

∇e− = (1 − R2
+(
γ

ρ
))e− ⊗ e− +

1
1 − R+(γ)

(e− ⊗ e+ + e− ⊗ e+) −
R−(δ)
βR2
+ρ
′
(1 − γ)e+ ⊗ e+.

(v) a 2-parameter solution with parameter β and Q = (q, q−1, q, q−1) as usual,

σ(e+ ⊗ e+) = ρe+ ⊗ e+, σ(e+ ⊗ e−) = (Q − 1)e+ ⊗ e− + Qe− ⊗ e+,

σ(e− ⊗ e+) = e+ ⊗ e−, σ(e− ⊗ e−) = βρ′e+ ⊗ e+ + R2
+(ρ−1)Qe− ⊗ e−,

where
ρ′ = (1,−

ρ1ρ2

q
,
ρ2

ρ0
,−
ρ2ρ3

q
),

giving the QLC

∇e+ = (1 − ρ)e+ ⊗ e+ + (1 − Q)(e+ ⊗ e− + e− ⊗ e+),

∇e− = (1 − R2
+(ρ−1)Q)e− ⊗ e− − βρ′e+ ⊗ e+.

(vi) a 2-parameter solution with parameter β and Q = (q, q−1, q, q−1) as usual,

σ(e+ ⊗ e−) = e− ⊗ e+, σ(e− ⊗ e+) = Qe+ ⊗ e− + (Q − 1)e− ⊗ e+,

σ(e+ ⊗ e+) = ρQe+ ⊗ e+, σ(e− ⊗ e−) = βρ′e+ ⊗ e+ + R2
+(ρ−1)e− ⊗ e−,

where
ρ′ = (1,−

ρ1ρ2

q
,
ρ2

ρ0
,−
ρ2ρ3

q
),

giving the QLC

∇e+ = (1 − ρQ)e+ ⊗ e+,

∇e− = (1 − R2
+(ρ−1))e− ⊗ e− + (1 − Q)(e+ ⊗ e− + e− ⊗ e+) − βρ′e+ ⊗ e+.

(vii) a 2-parameter solution with parameter β and Q = (q, q−1, q, q−1) as usual,

σ(e+ ⊗ e+) = −ρ′ρQe+ ⊗ e+ + βρ′′e− ⊗ e−, σ(e+ ⊗ e−) = e− ⊗ e+,

σ(e− ⊗ e+) = −ρ′Qe+ ⊗ e− − (ρ′Q + 1)e− ⊗ e+, σ(e− ⊗ e−) = R2
+(ρ−1)e− ⊗ e−,

where
ρ′ = (ρ1ρ0, ρ

−1
0 ρ−1

1 , ρ1ρ0, ρ
−1
0 ρ−1

1 ), ρ′′ = (
ρ0

ρ2
q, 1, q,

ρ3

ρ1
),

giving the QLC

∇e+ = (1 + ρ′ρQ)e+ ⊗ e+ − βρ′′e− ⊗ e−,

∇e− = (1 − R2
+(ρ−1))e− ⊗ e− + (1 + ρ′Q)(e+ ⊗ e− + e− ⊗ e+).

Note that Z4 here is a different group from Z2 × Z2 treated in [11][14, Ex. 8.20], even
though in both cases the graph is a square. This means that, although Ω1 and the metric
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can be made to match up and hence the metric compatibility part of the QLC condition is
the same, Ω2 and hence the condition for torsion freeness are different. The Z2 case is also
treated in [11].



APPENDIX B

Generalities of Quantum field theory and Quantum
Gravity

This appendix has the purpose of presenting some generalities that help to read some
parts of the thesis. In the first section, we cover the basic structures of the path integral
approach, which can be consulted in a more general way in any QFT reference. We rec-
ommend the next one [59]. The second section gives a sort of algorithm for constructing
a quantum gravity model in our approach. It clarifies the process that we followed in the
models. The material of the second section was reported in [9] .

1. Quantum Field theory

In general, the starting point for QFT is to choose a time-space setting with a pseudo-
Riemannian manifold (M, g) with dimension d. Over this manifold, we define the ‘fields’
ϕ :M→ k, where k is some field like R,C, which is called target space. The next structure
is the configuration space C which is defined overM as all possible ‘states’ of a field ϕ,
i.e. each point in C represents a value of the target space assigned to each component of ϕ
onM. Usually this is an infinite dimensional space.

The next ingredient is a functional S : C → R called action. Then for each configu-
ration of ϕ, a real number is assigned. Usually, the action of a field ϕ is denoted as S [ϕ].
We are interested in the critical set Crit(S) = {ϕ0 ∈ C | δS [ϕ0] = 0}, where δ is the exterior
derivative that obeys δ2 = 0. Thus

δ =

∫
M

δϕ(x)
δ

δϕ(x)

where δϕ(x) is a 1-form in C and δ acts as

δ

δϕ(x)

∫
M

ddy ϕ(y)2 = 2ϕ(x),
δ

δϕ(x)
ϕ(y) = δd(x − y),

where the last term is a Dirac-delta in d dimensions.
For a scalar field, the set Crit(S) coincides with the space of solution of the Klein-

Gordon equation (−□ϕ + m2ϕ = 0) defined in the same time-space setting as the QFT.
When setting up our QFT, we often assume that the action is local, meaning that it can

be written as
Sϕ =

∫
M

dd x
√
|g| L(ϕ(x), ∂ϕ(x), . . . ),
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where the Lagrangian density L depends on the value of ϕ and finitely many derivatives at
just a single point inM. Also, in order to have a local action, each term of the Lagrangian
density must have the form∫

M

dd x λ(x) ∂q1ϕ(x), ∂q2ϕ(x), . . . , ∂qnϕ(x),

of a monomial of degree n in the fields with all fields and derivatives evaluated at the same
x ∈ M. We usually restrict the function λ : x → R to be constant, known as coupling
constant. Physically, each term is interpreted as an interaction, either between several
different fields or between a field and itself.

The path integral is defined as∫
C

[Dϕ] exp
{
−

1
G

S [ϕ]
}
,

where G is a real constant with dimensions as action related to the quantization. In the
usual path integral formulation G = ℏ. This integral is defined over the infinite space C
with a measure [Dϕ]e−

1
G S , that weights the contribution of each field configuration ϕ ∈ C

by e−S/G. Much of the work using the path integral is how to get finite quantities, even
when the integral is defined over infinite space.

The partition function is one of the most important object to compute, it has the form

Z(M,g)(λ, . . . ) =
∫
C

[Dϕ] exp
{
−

S [ϕ]
G

}
.

Note that Z does not depend on the fields itself. These are just dummy variables that
we have integrated out in computing the partition function. However, depends in all the
settings that we made before as the time-space (M, g) and the coupling constants.

After the partition function, the most important objects are the correlation functions.
These are path integrals with further insertions, of the general form∫

C

[Dϕ] exp
{
−

S [ϕ]
G

} n∏
i=1

Oi[ϕ]

where the insertions Oi are functions on C. We usually normalise the correlation functions
by the partition function as follows〈 n∏

i=1

Oi[ϕ]
〉
=

1
Z

∫
C

[Dϕ] exp
{
−

S [ϕ]
G

} n∏
i=1

Oi[ϕ]

The idea of this normalisation is both to ensure that ⟨1⟩ = 1 and to separate out the effect
of inserting the operator Oi into the path integral from effects that are there in the basic
partition function already. Mathematically, normalised correlation functions compute var-
ious moments of the probability distribution. These correlation functions correspond to
dynamical processes in the target space.
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Note that although the operator insertions depend on the values of the fields, the cor-
relation functions themselves do not. Rather, our correlators are functions

F(M,g)(x1, . . . , xn; λ, . . . ) =
〈 n∏

i=1

Oi[xi]
〉

that depend on all the same data as the partition functionZ together with some restrictions
we want to impose on the correlation.

Correlation functions and the partition function are very close because the operators
that can appear in the action. For example, assuming that the term λO is in the action, we
have that

−
G
Z

∂

∂λ
Z = ⟨O⟩.

Then, knowing all the correlation functions of the operators in the action is equivalent to
knowingZ as a function of the coupling constants in the action.

The operators that appear in the action are integrated over all ofM. It is convenient
to extend the idea above so as to obtain correlators of local operators Oi(x) that depend on
the value of (and perhaps finitely many derivatives) just at one point x ∈ M. To do this, we
include source terms such as

S[ϕ]→ S[ϕ] +
∫
M

dd x Ji(x) Oi(x)

in the action. The source Ji(x) is, like the field ,a function onM.
Really, this is just another case of the choices we made in picking our action, allowing

the coupling ‘constant’ λ→ λ(x) to still vary overM, but the name ‘source’ and use of the
letter J(x) is conventional. We do not integrate over J in performing the path integral, so
the partition function itself becomes a functionalZ → Z(M,g)[Ji] depending on the choice
of functions Ji in addition to the other data. Varying this partition function w.r.t. the value
of the source at some point x ∈ M ,we obtain formally

−
δ

δ Ji(x)
Z[Ji] =

∫
Dϕ e

1
β S [ϕ]+ 1

β

∫ ∑n
i=1 Ji(t)ϕi(t)

and thus
⟨O1(x1)O2(x2) . . .On(xn)⟩ =

(−G)n

Z

δnZ[J]
δJ(x1))δJ(x)) . . . J(xn)

∣∣∣∣
J=0

Relations such as these show the close connection between correlation functions and
the partition function. We see that correlators probe the response of the partition function
to a change in the background structures we chose in setting up the theory.

2. Quantum Gravity with Path Integral

The general idea is to quantize the gravitational field over a time-space (M, g). There
is no general theory or background to cover quantum gravity, each approach has different
philosophies and approaches. However, historically the action used is the Hilbert-Einstein
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action ∫
M

dx
√
|g| S ,

where S is the Ricci scalar of the geometry of the time-space and the rest is a covari-
ant measure, with |g| as the absolute value of the determinant of metric. Next, It is used
the Hilbert-Einstein action on the path integral for constructing a partition function and
calculating the correlation functions. We adapt this idea to our formalism, finding some
difficulties as choose a measure for the action.

After the development of the models in this thesis, we identify some steps that can be
followed to construct quantum gravity on a quantum spacetime as follows.

(1) Choose a unital ∗-algebra A.
(2) Make A into a ∗-differential algebra at least to order Ω2 (we can do without 3-

forms or higher for the pure gravity sector.)
(3) Choose a class of quantum metrics g ∈ Ω1 ⊗A Ω

1 to further quantise, nondegen-
erate in the sense of having an inverse ( , ) and preferably quantum symmetric
or subject to some other similar condition (such as edge-symmetric in the graph
case). Describe this moduli explicitly.

(4) Solve for the moduli of QLC’s ∇ : Ω1 → Ω1 ⊗A Ω
1 with associated ‘generalised

braiding’ σ : Ω1 ⊗A Ω
1 → Ω1 ⊗A Ω

1 for each quantum metric in the class is step
3. Among your solutions, try to identify a canonical choice that works across the
whole moduli of metrics.

– It may be that there is more than one but one is natural (e.g. in having a
classical limit).

– It may be that there is a moduli of QLCs but no preferred one. In that case
the quantum gravity theory has to be a functional integral over the joint moduli
of metric-QLC pairs, not just over metrics.

– Or it there may be that a QLC does not exist for the metrics in your class.
In that case go back to step 3.

(5) Compute the Riemann curvature for the moduli of QLCs in step 4.
(6) Choose a lifting map i : Ω2 → Ω1 ⊗A Ω

1 compatible with Ω2 and compute Ricci
with respect to it using the curvatures from step 5. Usually, there will be an
obvious choice of i.

– If not, apply some criterion such as that you want Ricci to have the same
quantum symmetry and ∗-properties as the metric.

– Or parameterise the possible i as a parameter to your quantum gravity
theory.

(7) Compute the Ricci scalar R = ( , )Ricci from Ricci in step 6.
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(8) Choose an integration map
∫

: A → C preferably obeying at least the positivity
of

(B.1)
∫

a =
∫

a∗,
∫

a∗a ≥ 0.

Similarly to i, there will often be an obvious choice or obvious ansatz which you
can search among according to what works well.

(9) Choose your measure of functional integration on the moduli of quantum metrics
as a classical manifold. Again, there will usually be an obvious choice or an
obvious ansatz suggested by the classical geometry of the moduli space.

(10) At this point, a candidate for quantum gravity in a functional integral formulation
has been constructed. Explore a bit to see if it looks sensible:

– Compute some expectation values, cutting off any UV or IR divergences
in the metric field strengths with parameters but remembering that only the ratio
of integrals enter into the expectation values.

– If these expectation values still diverge then look at the relative theory of
expectation values relative to field expectation values.

– If the theory does not look very physical then go back and revisit your
choices in reverse order (particularly your choice of

∫
and your choice of i).

– Also look at the relative theory where only fluctuations relative to a mean
or background metric are quantised (this tends to have more structure than the
fully integrated theory).
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