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Abstract 

Elevated vascular disease risk associates with poorer cognitive function, but the mechanism for 

this link is poorly understood. A leading theory, the structural-functional model argues that 

vascular risk may drive adverse cardiac remodelling, which in turn leads to chronic cerebral 

hypoperfusion and subsequent brain structural damage. This model predicts that variation in 

heart and brain structure should associate with both greater vascular risk and lower cognitive 

function. This study tests that prediction in a large sample of the UK Biobank (N=11,962). We 

assemble and summarise vascular risk factors, cardiac magnetic resonance radiomics, brain 

structural and diffusion MRI indices, and cognitive assessment. We also extract ‘heart-brain 

axes’ capturing the covariation in heart and brain structure. Many heart and brain measures 

partially explain the vascular risk – cognitive function association, like left ventricular end-

diastolic volume and grey matter volume. Notably, a heart-brain axis, capturing correlation 

between lower myocardial intensity, lower grey matter volume, and poorer thalamic white matter 

integrity, completely mediates the association, supporting the structural-functional model. Our 

findings also complicate this theory by finding that brain structural variation cannot completely 

explain the heart structure – cognitive function association. Our results broadly offer evidence 

for the structural functional hypothesis, identify imaging biomarkers for this association by 

considering covariation in heart and brain structure, and generate novel hypotheses about how 

cardiovascular risk may link to cognitive function. 

Keywords: heart-brain axis, cognitive decline, cardiovascular disease, ageing, structural MRI, 

imaging-derived phenotypes 
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Introduction 

With ageing populations throughout the world, cognitive decline now affects an increasingly 

large portion of society and contributes to significant financial burden and death (Gorelick et al., 

2017; Wimo et al., 2013). Of the drivers of age-related cognitive decline, neurovascular health 

has gained attention due to its widespread impact and relative ease of intervention (Gorelick et 

al., 2011; Iadecola et al., 2016; Qiu & Fratiglioni, 2015; Sweeney et al., 2018). 

Substantial work has shown diverse associations between vascular disease risk factors (VRFs, 

such as diabetes, high body mass index (BMI), and hypertension) and cognitive function (CF). 

Greater vascular risk in middle and old age associates with both poorer cognitive function and 

accelerated cognitive decline (Jefferson et al., 2010; Knopman et al., 2001; Lyall et al., 2017; 

Samieri et al., 2018; Yaffe et al., 2014), and controlling vascular risk factors can lead to a 

decrease in onset of mild cognitive impairment (SPRINT MIND Investigators for the SPRINT 

Research Group et al., 2019).  

Better understanding of the mechanism of this heart-brain axis will facilitate biomarker 

development and treatment discovery for neurovascular health. Several mechanistic theories 

exist but lack evidence (Jensen et al., 2023; M. Wang et al., 2016; Zenger et al., 2023). One 

popular model, the structural-functional model, argues that VRFs might drive pathologic cardiac 

and cerebrovascular remodelling, which could then result in chronic cerebral hypoperfusion, 

brain structural damage, and poorer CF (de la Torre, 2012a, 2012b; Pasha et al., 2017; Qiu & 

Fratiglioni, 2015; van Buchem et al., 2014). Direct evidence for this theory has remained unclear 

but could be found by simultaneously measuring vascular risk factors, cognitive function, and 

heart and brain structure.  

Cardiac and brain imaging derived phenotypes (IDPs) have become popular methods for 

measuring heart and brain structure due to their minimally invasive nature and widespread use. 

Both are strong candidate biomarkers of the modest but well-replicated association between 

elevated vascular risk and lower cognitive function in middle and older age (Ferguson et al., 

2020; Lyall et al., 2017). However, to-date, most of our knowledge about associations between 

1) VRFs, 2) cardiac structure, 3) brain structure, and 4) cognitive measures come from separate 

reports, which only simultaneously consider two phenotypes of interest (Cox, Lyall, et al., 2019; 

https://paperpile.com/c/MY2cGe/WENLi+SUeHv
https://paperpile.com/c/MY2cGe/WENLi+SUeHv
https://paperpile.com/c/MY2cGe/R2bF6+00AQA+3Qoob+dtAG8
https://paperpile.com/c/MY2cGe/R2bF6+00AQA+3Qoob+dtAG8
https://paperpile.com/c/MY2cGe/MAUrt+EhqHw+OO0E0+Qc6no+ZdcSr
https://paperpile.com/c/MY2cGe/MAUrt+EhqHw+OO0E0+Qc6no+ZdcSr
https://paperpile.com/c/MY2cGe/8bSev
https://paperpile.com/c/MY2cGe/8bSev
https://paperpile.com/c/MY2cGe/vvTsi+x0qSZ+ldmlt
https://paperpile.com/c/MY2cGe/kYdYt+cxE4D+mLRYr+dtAG8+BWnJ1
https://paperpile.com/c/MY2cGe/kYdYt+cxE4D+mLRYr+dtAG8+BWnJ1
https://paperpile.com/c/MY2cGe/MAUrt+2iosZ
https://paperpile.com/c/MY2cGe/MAUrt+2iosZ
https://paperpile.com/c/MY2cGe/UyfQS+gxecM+MAUrt+9P8t6+Rcna8
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Lyall et al., 2017; McCracken et al., 2021; Raisi-Estabragh, Jaggi, et al., 2021; Raisi-Estabragh, 

M’Charrak, et al., 2021). Several recent works have indicated the value in extending analyses 

across three of the four phenotype categories above (Bai et al., 2020; McCracken et al., 2022; 

Newby et al., 2021; Shen et al., 2020); for example, lower grey matter volume can explain part 

of the association between hypertension, greater BMI, and lower performance on some UK 

Biobank cognitive exams (Ferguson et al., 2020). Most recently, a large scale study has revealed 

that cardiac imaging features, brain imaging features, and neuropsychiatric disease all share a 

common genetic influences, motivating further work in exploring how these systems may 

interact physiologically (Zhao et al., 2023). However, none of these studies have specifically 

studied how inter-relations between cardiac and brain structural variation could explain the 

vascular risk - cognitive function association.  

We hypothesise that, for the structural-functional model to adequately explain the VRF-CF 

association, separate heart and brain structures should associate with both greater vascular risk 

and lower cognitive function. In other words, heart and brain structural variation should mediate 

the VRF-CF association (Bai et al., 2020; McCormick et al., 2022). Additionally, heart mediators 

should associate with brain mediators. Finally, for all steps of the structural-functional model to 

be supported by the data, heart structural variation should mediate the VRF - brain structure 

association, and brain structural variation should mediate the heart structure - CF association. 

The extent to which these associations all align in a cohort of subjects modelled together is 

understudied (Ferguson et al., 2020; Gorelick & Sorond, 2018; Newby et al., 2021). 

Furthermore, the relative strength of the association between cardiac and brain structural features 

and the disease endpoints (vascular risk and cognitive decline) is unknown. Along with 

validating the structural functional hypothesis, this comparative approach could identify novel 

biomarkers associated specifically with the VRF-CF association (rather than each dataset alone) 

and guide future decision-making comparing and prioritising organ-specific interventions in 

vascular and cognitive health (Banus et al., 2021; Gorelick et al., 2011, 2017; Gorelick & 

Sorond, 2018). 

To test the structural-functional hypothesis, in this work, we measure the extent that variation in 

heart and brain structure explains the association between vascular risk and cognitive function in 

the UK Biobank. We gather vascular risk factors, cognitive exam performance, cardiac magnetic 

https://paperpile.com/c/MY2cGe/UyfQS+gxecM+MAUrt+9P8t6+Rcna8
https://paperpile.com/c/MY2cGe/UyfQS+gxecM+MAUrt+9P8t6+Rcna8
https://paperpile.com/c/MY2cGe/u3X1g+RWaRj+oiL5o+sC5D0
https://paperpile.com/c/MY2cGe/u3X1g+RWaRj+oiL5o+sC5D0
https://paperpile.com/c/MY2cGe/2iosZ
https://paperpile.com/c/MY2cGe/YIm1u
https://paperpile.com/c/MY2cGe/u3X1g+AlVHh
https://paperpile.com/c/MY2cGe/oiL5o+2iosZ+vCe4t
https://paperpile.com/c/MY2cGe/SUeHv+00AQA+vCe4t+HQstx
https://paperpile.com/c/MY2cGe/SUeHv+00AQA+vCe4t+HQstx
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resonance imaging (CMR) radiomics features, and brain MRI IDPs for 11,962 UK Biobank 

participants. We perform dimensionality reduction on all datasets separately. We discover novel 

measures of the heart-brain axis by capturing correlated variance in heart and brain imaging. We 

compute single and multiple mediation models asking how well imaging latent variables explain 

the VRF - CF association. We then measure how well imaging latent variables explain 

associations between individual VRFs and cognitive exams. We finally explore how well 

individual heart and brain structural measures mediate the VRF - CF association. Along with 

myriad smaller mediating effects, we find that myocardial intensity, grey matter volume, and 

thalamic white matter tract integrity all associate with each other, and a joint factor capturing 

their variability most strongly associates with both elevated vascular risk and poorer cognitive 

function.  

Methods 

Acquisition and Processing 

Assessment  

This work utilises clinical and imaging data from the United Kingdom (UK) Biobank via access 

application 2964 (Ukbb-Prot-, n.d.). The UK Biobank is a large-scale longitudinal dataset 

derived from 500,000 volunteers recruited between 2006 and 2010 from across the UK. At visits, 

participants completed both a touchscreen questionnaire and medical history interview with a 

nurse. The project recorded information regarding participants’ health, lifestyle, and family 

history and collected physical measurements, biological samples, and genome. Moreover, since 

2015, over 50,000 participants have received CMR and brain MR imaging at followup imaging 

visits.  

Vascular Risk Factors  

We analysed hypercholesterolemia, diabetes, hypertension, smoking pack years, blood pressure, 

and anthropomorphic measures (BMI and waist-to-hip ratio, WHR) (Cox, Lyall, et al., 2019; de 

https://paperpile.com/c/MY2cGe/e10RW
https://paperpile.com/c/MY2cGe/cxE4D+kYdYt+mLRYr+tHiTn+R2bF6+gxecM
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la Torre, 2012a, 2012b; Haley et al., 2018; Pasha et al., 2017; Sweeney et al., 2018). All vascular 

risk factors were collected at the baseline visit and prepared as reported previously (Cox, Lyall, 

et al., 2019; Raisi-Estabragh, Jaggi, et al., 2021). We summarise the process here. Diagnosis of 

diabetes, hypertension, and hypercholesterolemia was established via a combination of self-

report, biochemistry, and linked hospital episode statistics (HES) data (Supplementary 

Methods) (Raisi-Estabragh, Jaggi, et al., 2021). Participants provided information on cigarette 

smoking in the touchscreen questionnaire, and smoking pack years were computed from this data 

(Cox, Lyall, et al., 2019). Blood pressure was collected twice, moments apart, using an Omron 

705IT monitor. Mean systolic and diastolic blood pressure were computed. Anthropometric 

measures were taken after participants had removed bulky clothing and shoes. Waist and hip 

measurements were conducted to provide WHR. BMI was computed by dividing weight by 

squared height. 

Cognitive Exams  

Cognitive testing was performed at both the UK Biobank baseline and imaging sessions; we 

examined four tests from the  imaging visit cognitive assessment. The complete battery and 

assessment of its repeatability and reliability have been detailed previously (Fawns-Ritchie & 

Deary, 2020; Lyall et al., 2016, 2017). We used the four tests commonly used in analysis and 

dimensionality reduction of the baseline cognitive assessment: the fluid intelligence task (verbal 

numerical reasoning, VNR), the visual memory task (vismem), the reaction time task (RT), and 

the prospective memory task (prosmem) (Lyall et al., 2016). As previously reported (Lyall et al., 

2016), the reaction time scores were positively skewed, so we applied a natural log 

transformation (LN). Additionally, the visual memory scores were zero-inflated and positively 

skewed, so we applied a LN+1 transformation.  

Cardiac Imaging 

Cardiac imaging acquisition and preparation discussed in Supplementary Methods. Using the 

CMR images and their corresponding segmentations, we performed radiomics phenotyping 

based on the open-source python-based pyradiomics library (van Griethuysen et al., 2017). 

Radiomics extracts features quantifying myocardial and ventricular structure (shape radiomics), 

myocardial imaging intensity (first-order radiomics), and myocardial visual textures (texture 

https://paperpile.com/c/MY2cGe/cxE4D+kYdYt+mLRYr+tHiTn+R2bF6+gxecM
https://paperpile.com/c/MY2cGe/UyfQS+gxecM
https://paperpile.com/c/MY2cGe/UyfQS+gxecM
https://paperpile.com/c/MY2cGe/UyfQS
https://paperpile.com/c/MY2cGe/gxecM
https://paperpile.com/c/MY2cGe/o2N4q+MAUrt+0n0pI
https://paperpile.com/c/MY2cGe/o2N4q+MAUrt+0n0pI
https://paperpile.com/c/MY2cGe/o2N4q
https://paperpile.com/c/MY2cGe/o2N4q
https://paperpile.com/c/MY2cGe/o2N4q
https://paperpile.com/c/MY2cGe/XJtwP
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radiomics) (Raisi-Estabragh et al., 2020). In total, 212 features per region were extracted at end-

diastole and end-systole. Right and left ventricular cavity first-order and texture features were 

excluded from analysis because they do not encompass clinically relevant information. We also 

incorporate alternative traditional and advanced CMR indices into the matching analysis and 

final mediation by individual features, computed as previously reported (detailed in 

Supplementary Methods) (Bai et al., 2020; McCracken et al., 2021; Raisi-Estabragh, 

McCracken, et al., 2021; Raisi-Estabragh, M’Charrak, et al., 2021; Zhao et al., 2023). 

Brain Imaging 

Brain imaging acquisition and preparation is discussed in Supplementary Methods. The global 

tissue volumes and white matter tract-averaged water molecular diffusion indices were processed 

by the UK Biobank team and made available to approved researchers as imaging-derived 

phenotypes (IDPs); the full details of the image processing and QC pipeline are available in an 

open access article (Alfaro-Almagro et al., 2018). The IDPs in this study included total brain 

volume, grey matter volume, subcortical volumes, and tract-averaged white matter 

microstructural measures. A detailed list of volumes, white matter tracts, and white matter tract 

measures is provided in Supplementary Methods. 

Analysis 

Workflow 

We began with 19408 subjects with completed CMR radiomics analysis of their short-axis 

imaging from the UK Biobank Imaging Extension. We downloaded and prepared the vascular 

risk factor, cognitive testing, brain imaging data, heart imaging, and covariates for these subjects 

(see Acquisition and Preparation). For each dataset separately, we dropped all subjects without 

complete data, merged all datasets, and selected only subjects without cardiovascular or brain 

disease (defined in Supplementary Methods). We then performed dimensionality reduction on 

each data type separately. We performed joint factorization of the heart and brain imaging data. 

We regressed out imaging confounders from the latent factors (Supplementary Methods). We 

merged the latent factors and performed all downstream analyses. We corrected all comparisons 

https://paperpile.com/c/MY2cGe/YkZeJ
https://paperpile.com/c/MY2cGe/9P8t6+Rcna8+4iWF8+u3X1g+YIm1u
https://paperpile.com/c/MY2cGe/9P8t6+Rcna8+4iWF8+u3X1g+YIm1u
https://paperpile.com/c/MY2cGe/Z1IbM
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for multiple hypothesis testing with a Benjamini-Hochberg False Discovery Rate (BH-FDR) 

correction. Entire pipeline with number of subjects retained at each step reported in 

Supplementary Figure 1 and population statistics reported in Supplementary Table 1. For 

every analysis, we present both raw and deconfounded results as paired Supplementary Tables, 

but we only discuss deconfounded results in the text. All code was open-sourced, see Data and 

Code Availability; the list of packages and settings used is in Supplementary Methods. 

Dimensionality Reduction 

Latent Variables for Vascular Risk (gVRF) 

First, we derived an aggregate measure of vascular risk for each individual, counting instances of 

diagnosis of hypertension, diabetes, or hypercholesterolaemia, having ever smoked, having a 

BMI >25, and having a high WHR (>0.85 for females and >0.90 for males) (Cox, Lyall, et al., 

2019; Hamer & Batty, 2019). This factor is useful for clinical translation and also defining 

simple high and low risk groups. 

We derived an additional latent factor of general vascular risk (gVRF) following prior work in 

this and other cohorts, using confirmatory factor analysis (CFA) in structural equation modelling 

(Cox, Lyall, et al., 2019; Wardlaw et al., 2014). This latent measure captures the tendency for 

VRFs to co-occur. gVRF was derived from smoking pack years, diastolic and systolic blood 

pressure, BMI, WHR, diagnosis of hypertension, diabetes and hypercholesterolaemia. The model 

fit the data well, though loadings were inconsistent (range 0.189–0.745), with the factor more 

strongly loaded towards BMI and WHR (Supplementary Figure 2, Supplementary Table 2). 

Because the aggregate measure of vascular risk relies on arbitrary cutoffs and there is high 

correlation between the aggregate measure and gVRF, we focus on gVRF in our discussion of all 

mediation analyses.  

Latent Variables for Cognitive Function (general intelligence, g)  

As previously reported (Lyall et al., 2017), we performed a CFA of the four cognitive tests. We 

hypothesised that the four tests would correlate moderately-highly (with intercorrelations of r > 

0.40) and would form a single latent general factor (labelled g in prior literature) across the four 

https://paperpile.com/c/MY2cGe/gxecM+pICim
https://paperpile.com/c/MY2cGe/gxecM+pICim
https://paperpile.com/c/MY2cGe/9RAGX+gxecM
https://paperpile.com/c/MY2cGe/MAUrt
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tests with good fit to the data (Cox, Ritchie, et al., 2019; Deary et al., 2010; Lyall et al., 2016). 

We found this to be the case (Supplementary Figure 3, Supplementary Table 3).  

Latent Variables for Heart Structure  

Since principal component analysis (PCA) is commonly used in radiomics to extract lower 

dimensional representations of the data (Antonopoulos et al., 2021; Raisi-Estabragh et al., 2020; 

Truhn et al., 2019; Zhang et al., 2017), we performed PCA on the z-scored radiomics. We chose 

the number of principal components using cross validation, detailed in the Supplementary 

Methods. We kept the first 3 unrotated PCs (Supplementary Figure 4, Supplementary Table 

4). We extracted the scores of these components for each subject and used them for downstream 

analyses.  

Latent Variables for Brain Structure  

We isolated brain volume (‘atrophy’ after controlling for head size), grey matter volume, and 

total white matter hyperintensity volume (Cox, Lyall, et al., 2019). Latent measures of general 

white matter fractional anisotropy (gFA) and mean diffusivity (gMD) were derived using CFA, 

as previously reported in this cohort (Cox et al., 2016; Cox, Lyall, et al., 2019). The CFA models 

fit well with the lowest loadings for the corticospinal tracts and cingulate gyri and the highest 

loadings for the thalamic radiata and fasciculi (Supplementary Figure 5, Supplementary Table 

5) .  

Since principal component analysis has been used to capture variation in brain imaging in 

previous work and since we are using it to summarise the heart imaging in this work (Alfaro-

Almagro et al., 2021; Elliott et al., 2018; Liang et al., 2021; Miller et al., 2016), we also 

computed PCA over all z-scored brain IDPs and selected the number of principal components to 

retain as before (Supplementary Methods). We kept three PCs (Supplementary Figure 6, 

Supplementary Table 6). We extracted their scores for each subject and utilised them in 

downstream analyses. Because both CFA and PCA are widely used in the field and there is no 

definitive reason for preferring one to the other, we will include both in all downstream analyses 

to ensure that our findings are not dependent on the method of latent feature definition (John et 

al., 2012). 

https://paperpile.com/c/MY2cGe/fjVgs+o2N4q+bnPZL
https://paperpile.com/c/MY2cGe/YkZeJ+zaFM4+tYIjU+5DC2S
https://paperpile.com/c/MY2cGe/YkZeJ+zaFM4+tYIjU+5DC2S
https://paperpile.com/c/MY2cGe/gxecM
https://paperpile.com/c/MY2cGe/gxecM+2r3LW
https://paperpile.com/c/MY2cGe/c35mv+pzwgQ+ZnNVU+jUmpP
https://paperpile.com/c/MY2cGe/c35mv+pzwgQ+ZnNVU+jUmpP
https://paperpile.com/c/MY2cGe/CEIks
https://paperpile.com/c/MY2cGe/CEIks
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Joint Heart-Brain Factor Analysis 

Along with the factor analysis of the individual datasets described above, we also sought to 

derive latent factors that captured the main modes of correlated variation between heart and brain 

structural imaging. That is, we aimed to identify components of brain structure and components 

of heart structure that were maximally correlated. Through canonical correlation analysis (CCA) 

on the z-scored heart radiomics and brain IDPs, we derived ten modes (Miller et al., 2016). Each 

mode consists of two components: (1) a linear combination of heart radiomics features and (2) a 

separate linear combination of brain IDPs that have highly similar variation in the population. 

The modes are ranked by the amount of correlation between the heart and brain components. We 

chose the number of modes to keep via cross validation (Supplementary Methods), kept three 

modes (Supplementary Figure 7, Supplementary Table 7), extracted the component scores for 

each subject in each dataset, and used them in downstream analyses.  

Descriptive Statistics and Associations 

We conducted descriptive analyses, testing the association of age and sex with all of our latent 

variables using linear regression. We then examined the pairwise linear association between all 

latent variables by linearly modelling each latent variable as a function of sex, age, and each 

other latent variable. See Supplementary Methods for modelling details and how additional 

R^2 is computed. Results reported for both raw and deconfounded imaging latents.  

Propensity Score Matching 

Since all other analyses are performed on corrected, standardised, and latent measures of the 

data, we performed propensity score matching to yield real-units measurements of the 

differences between subjects with and without VRFs. We matched subjects with four or more 

VRFs with their nearest neighbour with no VRFs, requiring an exact match for sex 

(Supplementary Methods). We then performed repeated t-tests to compare the cognitive exam 

performance, CMR measures, and brain IDPs of the matched groups of subjects.  

https://paperpile.com/c/MY2cGe/pzwgQ
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Mediation Modelling 

To measure how well heart and brain structural features explain the VRF-CF association, we 

perform a series of mediation analyses (Bai et al., 2020; Ferguson et al., 2020; McCormick et al., 

2022; Wardlaw et al., 2014). This method allows us to directly quantify the degree to which any 

identified associations between vascular risk and cognitive function are accounted for by brain or 

heart-based measures. The primary outcome is therefore the % of the gVRF-g association that is 

mediated when brain/heart measures are included in the model. In more complex models with 

more than one mediator, one can also identify which mediator is contributing the largest unique 

mediating effect. Thus, these analyses offer an elegant quantitative solution for identification of 

important heart and brain biomarkers underpinning VRF-cognitive associations. We report a 

more complete description of the mediation model in the Supplementary Methods. 

We first performed mediation models on solely the latent representations of each data set. We 

found the association between gVRF and g and then modelled how well each imaging latent 

variable mediated this association (more details in Supplementary Methods). At first, we only 

modelled one imaging latent at a time, calling this the ‘Latent Single Mediation Model.’ Then we 

performed both parallel and sequential multiple mediation analyses, fixing heart PC2 as the first 

mediator and then adding brain latents as the second mediator, called ‘Latent Multiple Mediation 

Model.’ Next, we replaced the gVRF-g association with pairs of individual VRFs and cognitive 

exams, testing imaging latents one at a time again, calling this ‘Latent Single Mediation 

Modelling of VRF-Cognitive Pairs.’ Given the high association between the VRFs 

(Supplementary Figure 2, Supplementary Table 2), we control each VRF-exam association 

for all other VRFs to identify unique associations between each VRF and cognitive exam.  

To explore the role of individual imaging features in explaining the association between VRFs 

and CF, we returned to the gVRF-g association and performed mediation modelling for each 

imaging feature individually, calling this the ‘Individual Feature Single Mediation Model.’ We 

perform modelling as described in Supplementary Methods and always control for age and sex.  

Given that all latent measures across domains (vascular risk, heart, brain and cognitive) were 

standardised, reported coefficients are standardised regression coefficients (i.e. β range [-1 ,1]) 

throughout, allowing direct comparison of effect magnitudes across modalities.  

https://paperpile.com/c/MY2cGe/AlVHh+u3X1g+9RAGX+2iosZ
https://paperpile.com/c/MY2cGe/AlVHh+u3X1g+9RAGX+2iosZ
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Results 

Quantifying Heart Brain Axes 

After our data preparation pipeline yielded 11,962 subjects (Supplementary Figure 1, 

Supplementary Table 1), we quantified key axes of variation in all four of our datasets. We 

extracted latent measures of vascular risk (gVRF), cognitive function (g), and brain structure as 

reported previously (see Methods) (Cox, Lyall, et al., 2019; Cox, Ritchie, et al., 2019; Ferguson 

et al., 2020; Lyall et al., 2016, 2017). Along with traditional measures, we performed PCA of 

heart and brain imaging separately and a novel CCA to capture correlated variability in heart and 

brain structure (Figure 1). For cardiac radiomics, the first three PCs explain 25, 20, and 12% of 

the variance and represent myocardial size, intensity, and textural complexity respectively 

(Supplementary Figure 4, Supplementary Table 4). For brain MRI indices, the first three PCs 

explain 30, 12, and 8% of the variance and represent high FA and low MD of the fasciculi and 

thalamic radiata, high FA and low MD  of the corticospinal tract, and brain volume respectively 

(Supplementary Figure 6, Supplementary Table 6). For the joint heart brain axes, the first 

three modes have a Pearson correlation of 0.71, 0.48, and 0.32 respectively (Supplementary 

Figure 7, Supplementary Table 7). Based on the loadings, we interpreted that the heart brain 

axes correspond to 1) heart and brain volume, 2) end-systolic myocardial intensity, grey matter 

and thalamic volume, and thalamic radiation WM integrity, and 3) end-diastolic myocardial 

intensity and low FA and high MD of many tracts (more details in Supplementary Methods).  

Descriptive Statistics 

Nearly all latent variables have a significant association with age and sex (Supplementary 

Figure 8, Supplementary Tables 8, 9). Older subjects show lower aggregate performance on 

cognitive exams (β=-0.183) and greater vascular risk (β=0.171) (Cox, Lyall, et al., 2019; Lyall et 

al., 2017). Among the heart structural latents, old age associates with slightly greater myocardial 

volume (CMR PC1, β=0.035), lower myocardial intensity (PC2, β=-0.173), and lower 

myocardial textural complexity (PC3, β=-0.109) (Rouch et al., 2022).  

https://paperpile.com/c/MY2cGe/fjVgs+2iosZ+gxecM+MAUrt+o2N4q
https://paperpile.com/c/MY2cGe/fjVgs+2iosZ+gxecM+MAUrt+o2N4q
https://paperpile.com/c/MY2cGe/MAUrt+gxecM
https://paperpile.com/c/MY2cGe/MAUrt+gxecM
https://paperpile.com/c/MY2cGe/Rg8Tz
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Figure 1: Latent Factors 

A schematic illustrating all of the extracted latent factors and a simple interpretation of their 

meaning. The loadings for all the factors can be found in the Supplementary Tables and more 

detailed interpretations of the meaning of each factor can be found in the Supplementary 

Methods.   

Among the brain structural latents, old age associates with lower total and grey matter volume, 

lower white matter integrity (β range -0.363 to -0.249), and greater white matter hyperintensity 

volume (β=0.353). Age also strongly negatively associates with the components of the second 

CCA mode, representing lower myocardial intensity, grey matter and thalamic volume, and 

thalamic white matter integrity (β range -0.591 to -0.441).  

Associations Between Vascular Risk, Heart, Brain, and Cognition 

Associations among each pair of latent variables were modelled separately, controlling for age 

and sex (Figure 2, Supplementary Tables 10, 11). There is a small but significant negative 

association between gVRF and g (β=-0.036), consistent with prior reports (Ferguson et al., 2020; 

Lyall et al., 2017). Many imaging latents across heart and brain associate with both greater gVRF 

and lower g: lower latent myocardial intensity, lower total and grey matter volume, lower white 

matter tract integrity, and greater white matter hyperintensity volume. (Figure 2, 

Supplementary Table 11).  

https://paperpile.com/c/MY2cGe/MAUrt+2iosZ
https://paperpile.com/c/MY2cGe/MAUrt+2iosZ
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Figure 2: Pairwise Latent Associations 

We modelled the association between every pair of latent variables. (A) A schematic diagram of 

the modelling process. Every latent variable (e.g.VRF agg) is linearly modelled as a function of 

another latent variable (e.g. gVRF), sex, and age. The derived coefficients for the example first 

model are illustrated. We repeat this for every variable, and the coefficient from these analyses 

compose the first row of the adjacent heatmap. (B) Heatmap of standardised coefficients from all 

342 separate pairwise linear models. Each row lists the dependent variable, and each column lists 

the independent variable in the linear models. (C) With gVRF set as the dependent variable, we 

compare the R-squared of the linear model for each latent grouped by whether it was derived 

from the heart or brain imaging. (D) With g set as the dependent variable, we compare the R-

squared of the linear model for each latent grouped by whether it was derived from the heart or 

brain imaging. All model estimates reported in Supplementary Table 11. 
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All of the heart PCs explained at least an order of magnitude more variance in gVRF (additional 

R2: 0.002–0.166) than in g (aR2: 0–0.004) (Figure 2). Similarly, the brain volume latents 

(atrophy, grey matter volume, PC3) explained at least an order of magnitude greater variance in 

g (aR2: 0.012–0.027) than in gVRF (aR2: 0.0006–0.003). Interestingly, the second joint factor 

(CC2) explains more similar amounts of variance in both g (aR2: 0.009–0.013) and gVRF (aR2: 

0.089–0.164), and it explains at least an order of magnitude more variance in both g and gVRF 

than the white matter latents. This suggests that leveraging information from both heart and brain 

structure is useful in deriving factors that explain a relatively large and equal amount of variance 

in both vascular risk and cognitive function.  

Matched Analysis 

Aware that the latent measures are all in arbitrary units, we used propensity score matching to 

provide more practically interpretable information on how those with high and low vascular risk 

differ across heart, brain and cognitive measures, in native units. We assembled two groups of 

425 subjects matched by sex, age, head size, and BSA (Supplementary Table 12). On average, 

when compared to matched individuals with no VRFs, subjects with 4 or more VRFs have 13.09 

mL (8.29%) lower LVEDV, 7.56 mL (11.50%) lower LVESV, and 5.52 mL (5.99%) lower 

LVSV. Consistent with mild ventricular hypertrophy, the subjects with 4 or more VRFs have 

1.51% (2.58%) greater ejection fraction. We find lower average intensities of the myocardium in 

end- systole (23.53%) and diastole (19.65%). We also find greater uniformity of the myocardial 

tissue appearance (5.25–8.37%). These subjects also have 14,357 mm3 (2.31%) less grey matter 

volume and additionally lower subcortical volumes. They have greater white matter 

hyperintensity volume (62.34%). They also have lower FA in many tracts (range 0.96% and 

1.92%). Compared to matched healthy controls, subjects with 4 or more VRFs also score on 

average 0.48 (6.67%) fewer points on verbal-numerical reasoning. These subjects also have 

notable differences in their latent measures, like greater myocardial size, poorer white matter 

tracts, and lower second heart-brain axis (myocardial intensity, grey matter volume, thalamic 

WM tract integrity). Simply summing risk factors correlates with gVRF (Figure 2, 

Supplementary Table 11), and this matched analysis shows that the sum manifests with 
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clinically observable phenotypes in heart imaging, brain imaging, and cognitive exam 

performance.  

Latent Single Mediation Modelling 

Initially, we asked the degree to which each brain or heart measure, in isolation, mediates the 

association between vascular risk and CF. Results are presented in Figure 3, Supplementary 

Tables 13, 14. Consistent with prior reports, measures of brain structure - irrespective of how 

they were measured - only modestly mediated the association (4.97–38.12%), with white matter 

measures being the smallest, but still significant, mediators. However, latent myocardial intensity 

(heart PC2) and the heart-brain axis capturing myocardial intensity, grey matter volume, and 

thalamic white matter integrity (CC2) all completely mediate the gVRF-g association (117%-

150%; attenuated to be indistinguishable from β =0 in each case). For example, one standard 

deviation (SD) lower gVRF associates with 0.55 standard deviation lower latent myocardial 

intensity. This 0.55 SD lower intensity associates with 0.043 SD lower cognitive function.  

As a control, we address two possible counterarguments: (1) that the BMI - cognitive function 

association is the only VRF well explained by myocardial intensity and (2) that latent myocardial 

intensity is just a proxy for myocardial size. First, since gVRF most strongly weights BMI and 

WHR (Supplementary Table 2), it’s possible that the gVRF-g association is driven primarily by 

BMI and that latent myocardial intensity only mediates the BMI - g association. However, 

covarying for BMI partly attenuated, but did not remove, myocardial intensity’s mediation of the 

gVRF-g association (40.18%) (Supplementary Table 15). Second, since latent myocardial 

intensity and myocardial volume are associated (Supplementary Table 11), it is possible that 

latent myocardial intensity is just a measure of myocardial size not well adjusted by regressing 

out BSA. However, we show that latent myocardial intensity associates with BMI independent of 

body and myocardial size (Supplementary Table 15). Therefore, latent myocardial intensity’s 

mediation of the gVRF-g association is not just explained by the BMI - g association and, 

furthermore, the BMI - latent myocardial intensity association is not just due to the myocardium 

being larger.  
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Figure 3: Latent Single Mediation Modelling 

We performed serial mediation modelling of the gVRF-g association, testing each imaging latent 

as a potential mediator. (A) Schematic for the CMR radiomics modelling procedure. gVRF and g 

were maintained as the known association, and we iterated over all CMR imaging latent factors. 

Equations demonstrate the derivation of the direct and indirect effect. (B) Schematic for the brain 

MRI modelling procedure. (C) Example computation of the measured effects. Confidence 

intervals reported in Supplementary Table 14. (C) The estimates for the direct and indirect 

effects for all potential mediators, sorted by indirect effect size, closed circles are significant 

(p<0.05) and open are not. Error bars derived from bootstrapping (see Supplementary 

Methods). 

Latent Multiple Mediation Modelling 

The structural functional model argues that heart structural variation impacts cognitive function 

via its impact on brain structure. To model this within our data, we constructed two related 

multiple mediation models (Figure 4). In the first model, we performed ‘parallel’ multiple 

mediation that does not account for the heart-brain association. In the second model, we 

performed ‘sequential’ multiple mediation that does account for the heart-brain association.  
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Figure 4: Latent Multiple Mediation Modelling 

We performed both parallel and sequential multiple mediation modelling of the gVRF-g 

association, including heart PC2 as the first mediator and then considering all brain latents as 

second mediators. (A) Schematic of the parallel modelling procedure with a single direct effect 

and two indirect effects, one for each potential mediator. We list values from an example 

mediation effect in which grey matter volume was the second mediator. Confidence intervals 

reported in Supplementary Table 17. The direct effect is fixed for all mediators at 0.009. (B) 

Analogous schematic for the sequential modelling procedure. Values reported from an example 

model with grey matter as the second mediator. Full data in Supplementary Table 19. (C) A 

bar chart of the estimates for the indirect effect for heart PC2 when each brain latent was used, 

closed is significant (p<0.05) and open is not. (D) A bar chart of the estimates for the indirect 

effect for each brain latent when either using parallel (left) or sequential (right) mediation. 
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We performed this analysis for latent myocardial intensity paired with every brain latent since 

latent myocardial intensity was the only significant heart mediator. Comparing the heart indirect 

effects between the single mediation (Figure 3) and the parallel multiple mediation (Figure 4C, 

Supplementary Tables 16, 17) allows us to assess the impact of brain structure on the heart-

cognitive function association. The heart indirect effect slightly decreases when accounting for 

brain volumes but not brain white matter measures. Therefore, brain volume variation can 

explain some but not all of the association between latent myocardial intensity and cognitive 

function. Comparing the brain indirect effects between the parallel and sequential mediation 

allows assessment of the impact of latent myocardial intensity on the VRF-brain association. In 

this case, the brain volume measure indirect effects go to zero but the white matter indirect 

effects do not decrease (Figure 4D, Supplementary Tables 18, 19). Thus, latent myocardial 

intensity variation can explain all of the association between VRFs and brain volume but not 

VRFs and white matter intensity.  

Latent Single Mediation Modelling of Individual VRF-Cognitive Pairs 

Recent work has noted the potential for spurious mediations when modelling with composite 

measures; for example, false ‘interrupted mediators’ occur when one component of a composite 

mediator associates with only the causal variable and one component associates with only the 

outcome. To confirm that our results are robust to this concern, we spend the next two sections 

analysing mediation using individual measures. We first consider pairs of individual VRFs and 

cognitive exams (Supplementary Figure 9, Supplementary Tables 20, 21). We found that 

pack years and VNR (β =-0.028), WHR and VNR (β =-0.061), and WHR and RT (β =0.032) all 

had independent associations in the expected directions. Brain volumetric latents most strongly 

mediated the pack year - VNR association (12.11–47.64%) while myocardial intensity associated 

latents most strongly mediated the WHR-VNR association (27.33–42.76%). The myocardial 

intensity features are also the only significant mediators of the WHR-RT association (34.75–

49.52%). Likely because they capture some relevant variation in brain volumes, white matter 

tracts, and myocardial intensity, the components of the second joint factor strongly mediate both 

the pack-year and WHR cognitive exam associations (21.63–49.52%).  
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Individual Feature Mediation Modelling 

Continuing our controls for spurious mediation from composite measures, we next turn to 

individual imaging measures. Although the latent imaging features capture large amounts of the 

variance in the imaging datasets (Supplementary Figure 4, Supplementary Figure 6), each 

imaging dataset contains many features and much variance beyond the latents used in the 

previous analyses. To offer a comprehensive picture of how heart and brain structure mediate the 

gVRF-g association, we perform single mediation analysis for every individual imaging feature 

(Figure 5, Supplementary Tables 22, 23, 24, 25).  

As expected, many individual features associated with myocardial intensity show complete 

mediation (Figure 5, Supplementary Tables 22, 23). However, a number of CMR measures 

showed mediating effects that were previously difficult to appreciate via latent modelling. While 

the latent measure of myocardial volume did not mediate the association (Figure 3), both the 

right and left ventricular volumes partially mediated the association (32.5–61.1%). Although the 

latent measure of myocardial tissue complexity was just below significance (Supplementary 

Table 14), some measures of local nonuniformity and local homogeneity partially mediated the 

association (32.5–48.5%). Greater local nonuniformity associated with lower vascular risk (β = -

0.347– -0.284) and greater cognitive function (β = 0.051–0.054), and measures of local 

homogeneity show the opposite associations (Supplementary Table 23).  

Compared to the heart, the brain IDPs show an order of magnitude lower indirect effects and 

proportionally lower percent mediation (Figure 5,  Supplementary Tables 24, 25). Of the brain 

IDPs, volumes have the largest mediating effect, particularly grey matter (38.1%) and thalamic 

volume (35.9–36.4%). The largest white matter microstructural mediating effects are from the 

thalamic radiation tracts (Supplementary Figure 10). For example, MD of all the thalamic 

radiation tracts significantly mediates the association (5.17–8.26%), and the FA of the left 

posterior thalamic radiation tract has the greatest mediation of all the white matter 

microstructural mediating effects (18.3%).  

For both the VRF-Cognitive exam pairs and the individual mediators, the existence of significant 

mediation for individual features argues against potential spurious mediation due to composite 

measures (McCormick et al., 2022). 

https://paperpile.com/c/MY2cGe/AlVHh
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Figure 5: Individual Feature Single Mediation Modelling 

We performed serial mediation modelling for all individual imaging features. (A) Schematic for 

the modelling procedure for CMR IDPs. Same as Figure 3, except all potential mediators are 

now individual features (IDPs) instead of latent variables. (B) Schematic for Brain IDPs. (C) 

Example mediation model for an individual feature with the left thalamic volume (Volume 

Thalamus) as a potential mediator. Confidence intervals reported in Supplementary Table 25. 

(D) Direct and indirect effects for all tested CMR radiomics grouped by cluster and brain MRI 

IDPs grouped by their feature type. For visualisation, we grouped the brain IDPs by their IDP 

categories and the CMR radiomics by previously reported clusters extracted from imaging of 

healthy individuals (Raisi-Estabragh, Jaggi, et al., 2021). We also include conventional CMR 

indices as a separate cluster.  

Lastly, we considered whether an expanded set of CMR indices including myocardial strain, 

myocardial thickness, aortic dilation, and other advanced shape-based features could mediate the 

vascular risk - cognitive function association (Bai et al., 2020; Zhao et al., 2023). After 

controlling for body surface area, none of these advanced shape measures are significant 

mediators of the vascular risk - cognitive function association (Supplementary Table 26).  

 

https://paperpile.com/c/MY2cGe/UyfQS
https://paperpile.com/c/MY2cGe/u3X1g+YIm1u
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Discussion 

Interpretation 

This study supports the structural-functional model for the link between vascular risk and 

cognitive function. Many heart and brain structural measures separately mediate the vascular risk 

- cognitive function association (Figure 3, 6). Despite these initial results, it was still possible 

that the mediating measures from the heart and brain shared no inter-associations. This would 

violate the structural-functional model’s claim that vascular risk causes vascular and cardiac 

remodelling, which in turn causes cerebral damage. Our results argue against this possible 

negative result in three ways. First, we find significant associations among the separate heart and 

brain mediators, like between heart PC2 and grey matter volume (Figure 2). Second, we find 

that these associated mediators have partially overlapping mediating effects (Figure 4). Third, 

we find that one of the major axes of covariance between heart and brain structure (CC2) 

significantly mediated the VRF-CF association (Figure 3). Therefore, the heart and brain do 

indeed share mediating effects, indicating that their variation may be linked via the structural-

functional model.  

Our results also complicate the structural functional model. When comparing the multiple 

mediation models (Figure 4), we found that latent myocardial intensity variation can fully 

explain the VRF-grey matter association, but grey matter variation cannot fully explain the latent 

myocardial intensity - cognitive function association. This suggests that heart structural variation 

can associate with cognitive function in ways independent of brain structural variation. This 

violation of the structural functional model could be explained by brain changes not well 

captured by our metrics (e.g. smaller cortical grey matter changes). Additionally, we found that 

latent myocardial intensity cannot explain the VRF-white matter integrity association (Figure 4). 

Therefore, the brain associates with risk factors in manners independent of cardiac variation. 

Mechanisms for this break in the model could be explained by direct impact of metabolic 

hormonal dysregulation on the brain or brain vasculature, without affecting heart structure.  

Consistent with prior reports, considering brain structural measures alone only accounted for a 

minority of the VRF-CF association (Ferguson et al., 2020). Although important features from 

https://paperpile.com/c/MY2cGe/2iosZ
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these brain latents all have relatively large coefficients in the second heart-brain CCA mode 

(Supplementary Table 7), these latents alone show much smaller indirect effects than the 

second heart-brain CCA mode (Supplementary Table 14). The strong alignment of the second 

CCA mode with the VRF-CF association suggests that leveraging the association between heart 

and brain structure is informative to deriving a brain imaging latent factor that associates with 

both vascular risk and cognitive decline. In other words, without considering vascular risk or 

cognitive function in their derivation, one can discover brain biomarkers that better explain the 

VRF-CF association by using the heart-brain structural association.  

Focusing on the brain structures identified, this work unifies separate findings that have shown 

that lower grey matter and thalamic volume associates with greater vascular risk and lower 

cognitive function (Bai et al., 2020; Cox, Lyall, et al., 2019; Cox, Ritchie, et al., 2019; Ferguson 

et al., 2020). Furthermore, this work supports the association of deteriorating thalamic tract white 

matter microstructure with elevated vascular risk and poorer cognitive function (Cox, Lyall, et 

al., 2019; Cox, Ritchie, et al., 2019). Previous work has argued that the thalamus is both central 

to integrative signalling in the brain and potentially susceptible to changes in cerebrovascular 

perfusion (Bohlken et al., 2014; Cox et al., 2016; Payabvash et al., 2011; Rikhye et al., 2018). 

Crucially, this works links variation in these structures to myocardial intensity. Why exactly 

thalamic volume and thalamic white matter integrity associate with myocardial intensity is still 

unknown and will be of interest in future work.  

Our analyses of individual VRFs and cognitive exams revealed subtle trends not apparent in our 

more global/latent results, where brain and heart had differential importance. For example, 

whereas brain volumes more strongly mediate the pack year - VNR association than the WHR-

VNR association, myocardial intensity exhibited the reverse pattern (Figure 5, Supplementary 

Table 21). This result highlights the utility of a comparative approach between heart and brain 

structural variation. However, the individual VRF cognitive exam analysis also revealed the 

complexity in some of these phenotypes, replicating a previous finding of a positive association 

between BMI and visual memory (Supplementary Table 21) (Ferguson et al., 2020). 

Beyond supporting findings from the latent analysis, the individual gVRF-g mediation analysis 

of imaging features revealed that lower right and left ventricular volume for body size associates 

with greater vascular risk and lower cognitive function (Figure 6, Supplementary Table 23). 

https://paperpile.com/c/MY2cGe/fjVgs+gxecM+2iosZ+u3X1g
https://paperpile.com/c/MY2cGe/fjVgs+gxecM+2iosZ+u3X1g
https://paperpile.com/c/MY2cGe/fjVgs+gxecM
https://paperpile.com/c/MY2cGe/fjVgs+gxecM
https://paperpile.com/c/MY2cGe/PlSpz+WaVdv+S3Ujs+2r3LW
https://paperpile.com/c/MY2cGe/2iosZ
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This result could point to a simple mechanistic step in the structural-functional hypothesis in 

which lower stroke volume for body size decreases cerebral perfusion (Rouch et al., 2022). 

Analysis of the individual brain features highlights grey matter, some subcortical volumes, and 

thalamic white matter tract measures as most mediating the gVRF-g association (Figure 6, 

Supplementary Table 25). This provides independent support from the joint analysis that these 

specific brain structures are key to the heart-brain axis.  

Lower myocardial intensity has previously been associated with specific vascular risk factors and 

greater red meat consumption, and, here, we quantify its association with both greater aggregate 

vascular risk and lower cognitive function (Cetin et al., 2020; Raisi-Estabragh, Jaggi, et al., 

2021; Raisi-Estabragh, McCracken, et al., 2021). Lower myocardial intensity strongly associates 

with higher vascular risk in a manner not explained by body or heart size (Supplementary 

Table 15). Additionally, myocardial thickness cannot explain the vascular risk - cognitive 

function association (Supplementary Table 26). These findings suggest that myocardial 

intensity is a myocardial size-independent biomarker for vascular risk. Lower myocardial 

intensity could have several biological interpretations. Previous imaging studies have detected 

myocardial fibrosis in cohorts of patients with vascular risk factors, suggesting that the low 

intensity features common to vascular risk and cognitive decline could be signs of a common 

myocardial fibrotic pathology driven by vascular risk factors (Mavrogeni et al., 2017; Ng et al., 

2012; Turkbey et al., 2015). We also found some mediation via greater myocardial textural 

uniformity (Supplementary Table 23), which could also associate with the speculated fibrosis. 

Alternatively, since blood appears bright in CMR, lower myocardial intensity could suggest 

lower myocardial perfusion, compromising cardiac function and cerebral circulation. These 

results motivate further work to confirm these hypotheses through detailed imaging and tissue 

pathology.  

Limitations 

Although this study uses an exceptionally large dataset of adults across a wide range of middle- 

and older-ages, this work does not analyse longitudinal data. Therefore, we cannot disambiguate 

whether cardiovascular risk is causing decreased cognitive function, lower cognitive function is 

causing increased cardiovascular risk, or some mix of both effects. However, numerous 

https://paperpile.com/c/MY2cGe/Rg8Tz
https://paperpile.com/c/MY2cGe/UyfQS+RBbJj+4iWF8
https://paperpile.com/c/MY2cGe/UyfQS+RBbJj+4iWF8
https://paperpile.com/c/MY2cGe/vJJUl+OXA98+ixg0b
https://paperpile.com/c/MY2cGe/vJJUl+OXA98+ixg0b
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longitudinal studies in other cohorts support that cardiovascular risk associates with accelerated 

cognitive decline (Knopman et al., 2001; Rusanen et al., 2014; Samieri et al., 2018; SPRINT 

MIND Investigators for the SPRINT Research Group et al., 2019; W. Wang et al., 2022; Yaffe et 

al., 2014). Furthermore, without longitudinal imaging, we cannot assess the temporal relationship 

between cardiac and brain imaging phenotypes, vascular risk, and cognitive function. However, 

we argue that our results still offer novel cross-sectional support for the structural-functional 

model linking elevated vascular risk and poorer cognitive function.  

In this work, we focus on the structural functional model linking vascular risk and cognitive 

function. Importantly, the VRF - CF association could be equally well explained by unmeasured 

mechanisms (e.g. metabolic hormonal dysregulation could directly impact neuronal 

function)(Benedict et al., 2007) or by reverse causation (e.g. poor cognitive function could 

decrease healthy lifestyle maintenance) (Batty et al., 2007; Calvin et al., 2011). Testing these 

hypotheses adequately would require longitudinal and biochemical data not yet available via the 

UK Biobank (Jensen et al., 2023; M. Wang et al., 2016). The UK Biobank does offer numerous 

measurements of possible confounders (socioeconomic status, geography, lifestyle, etc.) that 

could be used to rule out potential sources of error in our estimates. Although this study attempts 

to control for several well-studied sources of biometric and imaging confounding, future work 

could survey the wide array of possible confounders to refine our initial estimates.  

We do not adjust for ethnicity in this study due to the low numbers of non-White British 

participants and the heterogeneity of those minority participants (Supplementary Table 1). 

Because the UK Biobank represents a relatively homogenous, well-educated, higher 

socioeconomic status, and predominantly Caucasian population, we emphasise the lack of 

generalizability of our findings to other populations. Neurovascular disease may differ 

significantly across populations of different ancestries and economies. Increased longitudinal 

biobanking of more diverse populations will be crucial to extending our findings to a more 

representative sample of the global population (Prictor et al., 2018; Ricard et al., 2023).  

Whereas some have questioned the reliability of the UK Biobank cognitive exams (Lyall et al., 

2016), recent work has supported their validity and psychometric properties (Fawns-Ritchie & 

Deary, 2020). Additionally, as reported in previous work, the effect sizes for the association 

between individual VRFs and cognitive exams is small, and we find no unique association for 

https://paperpile.com/c/MY2cGe/OO0E0+Qc6no+rsiLj+8bSev+kiq1T+ZdcSr
https://paperpile.com/c/MY2cGe/OO0E0+Qc6no+rsiLj+8bSev+kiq1T+ZdcSr
https://paperpile.com/c/MY2cGe/OO0E0+Qc6no+rsiLj+8bSev+kiq1T+ZdcSr
https://paperpile.com/c/MY2cGe/qPyTu
https://paperpile.com/c/MY2cGe/JuvX9+Bf87H
https://paperpile.com/c/MY2cGe/ldmlt+x0qSZ
https://paperpile.com/c/MY2cGe/pSFi4+5Qfga
https://paperpile.com/c/MY2cGe/o2N4q
https://paperpile.com/c/MY2cGe/o2N4q
https://paperpile.com/c/MY2cGe/0n0pI
https://paperpile.com/c/MY2cGe/0n0pI
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many VRFs and at least two associations pointing in the ‘opposite direction’ as hypothesised  

(Figure 5, Supplementary Tables 21) (Lyall et al., 2017). Results from the full UK Biobank 

study suggest that large studies are needed to consistently detect these small effects and future 

increases to the imaging subset will help refine our results (Ferguson et al., 2020; Newby et al., 

2021). We argue that the approach implemented here, via obtaining a latent measure g, 

minimises the impact of individual exam variability by obtaining an estimate of a robust, 

replicable, and test-invariant cognitive construct (Cox, Ritchie, et al., 2019; Fawns-Ritchie & 

Deary, 2020; Lyall et al., 2016).  

Conclusion 

The structural-functional model explaining the VRF-CF association rests on the argument that 

vascular risk drives changes in cardiovascular structure that lead to alterations in brain structure 

that lead to cognitive decline. Definitive support for the causal sequence of this model would 

require experimental or longitudinal work. However, our models (using cross-sectional data) are 

consistent with the hypothesis that vascular risk-associated cognitive ageing associates with 

distinctive variation in cardiac and brain structure. This is the first large-scale work to show that 

there is correlated variance in both heart and brain structure that mediates the association 

between vascular risk and cognitive function, providing a more extensive multi-modal 

framework to important prior work (Bai et al., 2020; Cox, Lyall, et al., 2019; Cox, Ritchie, et al., 

2019; Ferguson et al., 2020; Lyall et al., 2017; McCracken et al., 2021; Newby et al., 2021; 

Raisi-Estabragh, Jaggi, et al., 2021; Raisi-Estabragh, M’Charrak, et al., 2021). One of the many 

hypotheses generated from analysing these data together is the identification of a key link to 

explain: how myocardial hypointensity could associate with cerebrovascular hypoperfusion 

impacting particular subcortical structures, like the thalamus.  

 

 

 

https://paperpile.com/c/MY2cGe/MAUrt
https://paperpile.com/c/MY2cGe/oiL5o+2iosZ
https://paperpile.com/c/MY2cGe/oiL5o+2iosZ
https://paperpile.com/c/MY2cGe/o2N4q+0n0pI+fjVgs
https://paperpile.com/c/MY2cGe/o2N4q+0n0pI+fjVgs
https://paperpile.com/c/MY2cGe/9P8t6+Rcna8+UyfQS+gxecM+MAUrt+fjVgs+2iosZ+u3X1g+oiL5o
https://paperpile.com/c/MY2cGe/9P8t6+Rcna8+UyfQS+gxecM+MAUrt+fjVgs+2iosZ+u3X1g+oiL5o
https://paperpile.com/c/MY2cGe/9P8t6+Rcna8+UyfQS+gxecM+MAUrt+fjVgs+2iosZ+u3X1g+oiL5o
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Data and Code Availability 

UK Biobank Data is available via application. All code open-sourced here: 

https://github.com/akshay-jaggi/heart_brain_mediation.  
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Supplementary Methods 

Acquisition and Processing 

Vascular Risk Factors 

Diabetes diagnosis was confirmed by combining data from ‘Diagnosed by doctor,’ self-report, 

ICD10 codes, first HES recorded occurrences, recorded use of insulin, and blood glycated 

haemoglobin levels (HbA1c). Hypercholesterolemia was confirmed by combining data from 

ICD10 codes, first HES recorded occurrences, recorded use of cholesterol lowering agents, and 

blood cholesterol levels. Hypertension was confirmed by combining data from self-report, 

ICD10 codes, first HES recorded occurrences, recorded use of blood pressure medications, and 

an HES physician diagnosis of hypertension. In all cases, if one or more of these measures was 

consistent with the diagnosis, we considered the individual as having the diagnosis. Exact list of 

UK Biobank field IDs found in prior publication (Raisi-Estabragh, Jaggi, et al., 2021). 

Cardiac Imaging 

The UK Biobank acquired all images according to predefined standardised operating procedures 

(Petersen et al., 2016; Raisi-Estabragh, Harvey, et al., 2021). The relevant imaging comprised of 

a complete short axis stack covering the left and right ventricles acquired at one slice per breath 

hold using balanced steady- state free precession (bSSFP) sequences. Typical acquisition 

parameters are as follows: TR/TE = 2.6.1.1 ms, flip angle 80 degrees, Grappa factor 2, voxel size 

1.8mm × 1.8mm × 8mm. The actual temporal resolution of 32ms was interpolated to 50 phases 

per cardiac cycle (∼20 ms). With the exception of distortion correction, no signal or image 

filtering was applied.  

The first 5,000 UK Biobank CMR scans were manually segmented using CVI42 post-processing 

software (Version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Canada). The analysis 

protocol has been previously published.  

https://paperpile.com/c/2AQ6tl/6oGUq
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In brief, LV endocardial and epicardial borders were contoured in end-diastole and end-systole in 

the short axis stack images. End-diastole was defined as the first phase of the acquisition. End-

systole was selected as the cardiac phase at which the mid-ventricular LV intra-cavity blood pool 

appeared smallest by visual inspection. The right ventricular (RV) endocardial borders were 

segmented in end-diastole and end-systole. This manual ground-truth dataset was used to 

develop a fully automated image segmentation algorithm applied to the rest of the available UK 

Biobank CMR studies (Attar et al., 2019; Bai et al., 2018; Petersen et al., 2017). 

The segmentations from the short axis stack were then used to define three regions of interest for 

radiomics analysis: RV cavity, LV cavity, LV myocardium. Radiomics features are calculated 

from 3D volumes of these ROIs. On a high level, the shape features capture volume, maximal 

diameter, elongation, and related features of each structure; the intensity features capture global 

intensity statistics like mean MR intensity of each structure; and the texture features capture local 

patterns of MR intensity using methods like grey-level co-occurrence matrices. To reduce 

intensity level variations attributable to the acquisition process, we performed intensity 

normalisation of images through histogram matching, using as reference one of the studies from 

the dataset (Carré et al., 2020; van Timmeren et al., 2020). For grey level discretisation, we used 

a fixed bin width of 25 intensity values. Along with radiomics features, we also extracted 

traditional measures, including left ventricular end-systolic volume (LVESV), end-diastolic 

volume (LVEDV), stroke volume (LVSV), ejection fraction (LVEF), corresponding right-

ventricular values (RVESV, RVEDV, RVSV, RVEF), and left ventricular mass (LVM).  

Lastly, in a subset of our cohort consisting of 7118 individuals, we computed 78 features as 

prescribed in Bai, et al. (Bai et al., 2020). Specifically, we generated wall thickness features from 

short axis images, including global mean wall thickness and the mean wall thickness of 16 

American Heart Association (AHA) segments (denoted as WT_AHA_1, …, WT_AHA_16). 

From long axis images, we generated LA maximum volume (LAV.max), LA minimum volume 

(LAV.min), LA stroke volume (LASV), LA ejection fraction (LAEF), RA maximum volume 

(RAV.max), RA minimum volume (RAV.min), RV stroke volume (RASV), and RA ejection 

fraction (RAEF). From aortic cine image features, we included AAo maximum area, AAo 

minimum area, AAo distensibility, DAo maximum area, DAo minimum area, and DAo 

distensibility. We computed circumferential and radial strains (Ecc and Err) globally and from 

https://paperpile.com/c/2AQ6tl/myzbv+zbfcm+YW8jq
https://paperpile.com/c/2AQ6tl/Ptexs+5tU4C
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the 16 AHA segments. Lastly, we compute peak longitudinal strains (Ell) globally and from six 

segments of the myocardial contour based on the long axis images: basal septal, basal lateral, 

mid septal, mid lateral, apical septal, and apical lateral.  

Brain Imaging 

All brain MRI data were acquired on the same model of 3T Siemens Skyra scanner, according to 

a freely available protocol (Alfaro-Almagro et al., 2018). All imaging parameters have been 

reported previously (Cox, Lyall, et al., 2019; Cox, Ritchie, et al., 2019). T1-weighted MPRAGE 

and T2-weighted FLAIR volumes were acquired in sagittal orientation at 1 × 1 × 1 mm and 

1.05 × 1 × 1 mm resolution, respectively. The dMRI acquisition comprised a spin-echo echo-

planar sequence with 10 T2-weighted (b ≈ 0 s mm−2) baseline volumes, 50 b = 1000 s mm−2 and 

50 b = 2000 s mm−2 diffusion weighted volumes, with 100 distinct diffusion-encoding directions 

and 2 mm isotropic voxels. 

The IDPs in this study included total brain volume, grey matter volume, subcortical volumes 

(accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus), and tract-averaged 

fractional anisotropy (FA), mean diffusivity (MD), intra-cellular volume fraction (ICVF), 

isotropic or free water volume fraction (ISOVF), orientation dispersion index (OD), diffusion 

principal axis strengths (L1-3), and diffusion tensor mode (MO) of the following white matter 

tracts: acoustic radiation, anterior thalamic, cingulum gyrus, and parahippocampal, corticospinal, 

forceps major and minor, inferior fronto-occipital, inferior longitudinal, middle cerebellar 

peduncle, medial lemniscus, posterior thalamic, superior longitudinal, superior thalamic, and 

uncinate.  

Analysis 

Workflow 

Heart Disease Filtering 

To filter out patients with severe cardiovascular pathology, we identified all patients with any 

ischaemic heart disease, non-ischaemic cardiomyopathy, valvular disease, or significant 

https://paperpile.com/c/2AQ6tl/B8x57
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arrhythmia. We derived these diagnoses through a combination of self-reported answers at 

baseline interview, UK Biobank algorithmically-computed outcomes, and linked HES data 

codes, reported in detail previously (Raisi-Estabragh, Jaggi, et al., 2021). 1311 of the 13709 

subjects that passed initial filtering for completeness had at least one of the above conditions.  

Brain Disease Filtering 

To align with previous studies and observe only non-pathological variation in cognitive function 

and brain structure (Cox, Lyall, et al., 2019), we removed all patients with the following diseases 

provided via self-report during the baseline UK Biobank session: dementia, parkinsons, other 

chronic/ neurodegenerative, Guillain-Barré, multiple sclerosis, other demyelinating, stroke, brain 

haemorrhage, brain/intracranial abscess, cerebral aneurysm, cerebral palsy, encephalitis, 

epilepsy, head injury, infection of nervous system, ischaemic stroke, meningioma (benign), 

meningitis, motor neuron disease, neurological injury/trauma, spina bifida, subdural haematoma, 

subarachnoid haemorrhage, transient ischaemic attack, brain cancer, and meningeal cancer. 524 

of the 13709 subjects that passed initial filtering for completeness had at least one of the above 

conditions.  

Dimensionality Reduction 

CMR Radiomics PCA  

To select the number of robust principal components to retain for downstream analysis, we ran 

10-fold cross validation over the dataset, computed principal components on the training data, 

computed the explained variance in the held-out data, plotted the explained variance, and found 

the elbow in this curve, the point after which the explained variance stops decreasing across PCs.  

Here we offer interpretations of the loadings of the principal components to understand their 

significance (Supplementary Table 4). The first PC has large weights for myocardial volume, 

surface area, and several global texture features correlated with myocardial size. The second PC 

has large weights for measures of the centre of the myocardial voxel intensity distribution (e.g. 

mean, median) with end-systolic intensities having higher weights relative to end-diastolic. The 

third PC has large negative weights for measures of the variability of the myocardial textures 

https://paperpile.com/c/2AQ6tl/6oGUq
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(e.g. entropy, contrast). Such that the value of the third PC correlates with complexity, we used 

the negative of its PC scores.  

Brain MRI IDP PCA Interpretation  

For the Factor Analysis, tract measures (left and right) were entered separately into this analysis, 

correlated residuals between the left and right of each tract and between some other tracts were 

allowed. 

We offer interpretations of the loadings of the first three unrotated principal components of the 

Brain MRI IDPs (Supplementary Table 6). The first PC has high weightings for ICVF and FA 

of the fasciculi and thalamic tracts. In previous literature, low FA and high MD have been 

associated with greater age, elevated vascular risk, and lower processing speed (Cox et al., 2016; 

Cox, Lyall, et al., 2019; Penke et al., 2010). The second PC has large negative weightings for FA 

of the corticospinal tracts. We took the negative of the second PC scores such that the second PC 

increases with greater FA. The third has high weightings for volumes, suggesting a factor 

capturing size.  

Heart-Brain Joint Factor Interpretation 

To choose the number of CCA modes to keep, we performed 10-fold cross validation on the 

subjects. For each training fold, we computed ten CCA modes and extracted their loadings. We 

then applied the loadings to the held-out testing data and found the correlation of the heart and 

brain components in the held-out data. We then plotted the correlation and chose the number of 

modes to the left of the elbow, or before the correlation in the modes levels off. Like the PCA 

method, this cross-validation method ensures that we choose a number of features with 

reasonable explained variance in unseen UK Biobank subjects.  

To assess what features are most important to each mode, we found the correlation of the 

component scores with the features of each dataset (Supplementary Table 7). We found that 

most interesting associations were negative for the first two modes, so we inverted the sign of 

their component scores for clarity. The scores of the first mode correlate with most volume 

measures from both the heart and brain imaging. The scores of the second mode correlate with 

myocardial intensity in end-systole and correlate with some measures of volume of the brain 

https://paperpile.com/c/2AQ6tl/gDOzE+CBMuv+ccy3i
https://paperpile.com/c/2AQ6tl/gDOzE+CBMuv+ccy3i
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image (notably grey matter volume) and many measures of white matter integrity (ICVF and FA) 

in the thalamic tracts. This mode also has a strong negative correlation with white matter 

hyperintensity volume. We expect both volumes to decrease and FA to decrease in neurovascular 

pathology, so this mode likely correlates with neurovascular health (Cox, Lyall, et al., 2019). The 

scores of the third mode correlate with myocardial intensity in end-diastole, and they also 

correlate with MD.  

Imaging Deconfounding  

Both of the imaging datasets generate features sensitive to the size of patients and their position 

in the scanner. To remove potential confounding on downstream analyses, we regressed all latent 

variables for the imaging datasets on the imaging confounders and performed future analyses on 

the residuals of this regression. For the cardiac imaging latents, we regressed each latent onto z-

scored body surface area (BSA). We regressed each brain imaging latent onto z-scored head size 

and the head position in the scanner (X, Y, and Z coordinates). We regressed the components of 

the joint factors on both the heart and brain imaging confounders because the joint analysis can 

induce correlations with imaging conditions from either dataset. In analyses that use individual 

imaging features, we perform this deconfounding on individual features rather than the latent 

features. Since the uncorrected values may be of interest in some contexts, we report both the 

uncorrected and corrected values for all analyses in the Supplementary Tables.  

Linear Models 

In Figure 3, Supplementary Tables 9, 10, we report the results of linearly modelling each latent 

measure as a function of each other latent measure controlling for sex and age. We report 

additional R^2 as the amount of variance that the independent latent measure explains in the 

dependent latent measure above what is already explained by the covariates. 

Mediation Modelling 

Since mediation modelling has been described in detail elsewhere (MacKinnon et al., 2007), we 

will provide a brief explanation of the procedure in the context of this study. We first regress a 

potential mediator, say grey matter, on gVRF. Label this coefficient a. We then regress g on both 

https://paperpile.com/c/2AQ6tl/ccy3i
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the mediator and gVRF. The coefficient for the mediator is b, and the coefficient for gVRF is c’. 

The indirect effect of gVRF on g via the mediator is a*b, and the direct effect of VRF on g is c’. 

The magnitude of the indirect effect indicates the degree to which a mediator explains the 

observed association between gVRF and g. The total effect is c=c’+a*b. The percent mediation 

is the ratio of the indirect effect and the total effect: a*b/(c’+a*b).  

Along with single mediation, we also performed and report parallel and sequential multiple 

mediation models. We considered two mediators in each multiple mediation model. The first 

mediator was always Heart PC2 (mediator 1), and we used the brain latents as the second 

mediator (mediator 2). In parallel multiple mediation, the mediator 1 is not explicitly considered 

as a predictor for mediator 2 while it is considered in sequential mediation. Therefore,  

c=c’+a1*b1+a2*b2 in parallel mediation, and c=c’+a1*b1+a2*b2+a1*m*b2 in sequential 

mediation, where m is the coefficient of the mediator 2 regressed on mediator 1. Comparing the 

indirect effect from the parallel multiple mediation to the single mediation allows for one to 

assess how unique the g associations for mediator 1 and mediator 2 are. Similarly, comparing the 

parallel multiple mediation and the sequential multiple mediation allows one to assess the 

uniqueness of the gVRF association for mediator 2. In other words, parallel multiple mediation 

measures how much mediator 1 mediates the association between gVRF and mediator 2.  

Packages 

For gVRF, g, gMD, and gFA extraction, we performed confirmatory factor analysis (CFA) using 

‘cfa’ from the lavaan R package (Rosseel, 2012). For PCA of the CMR radiomics and brain 

IDPs, we used prcomp of the base R stats package. We performed CCA using ‘CCA’ from the 

scikit-learn cross-decomposition module in Python (Pedregosa et al., 2011). We performed all 

linear modelling with lavaan in R and report bootstrapped estimates of confidence intervals, 

method previously reported (Rosseel, 2012). We control for multiple hypothesis testing across all 

linear models by performing a Benjamini-Hochberg False Discovery Rate (BH-FDR) adjustment 

for all latent variable p-values (Benjamini & Hochberg, 1995). We performed propensity score 

matching using ‘matchit’ (Ho et al., 2011). We used a logistic regression distance metric and a 

calliper of 0.05. We matched men and women separately and then recombined. For the 

mediation models, we performed fitting and bootstrapping via lavaan in R and report the direct 

https://paperpile.com/c/2AQ6tl/lGdQL
https://paperpile.com/c/2AQ6tl/Xfpf6
https://paperpile.com/c/2AQ6tl/lGdQL
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effect, indirect effects, total effect, and percent mediation (Rosseel, 2012). In all models, we 

adjusted for sex and age, report both raw and deconfounded results, and correct for multiple 

hypothesis testing via a BH-FDR correction.  
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Supplementary Figures 

Supplementary Figure 1 

 

Supplementary Figure 1: Data Preparation Workflow 

The flow of subjects and variables through data preparation. Each box represents the number of 

subjects and the number of variables after the most recent action was taken. We began with 

19408 subjects with complete CMR imaging and pulled their data for the other categories. We 

then dropped incomplete subjects for each category and removed all subjects with a severe 

cardiovascular or brain disease diagnosis. We then separately conducted factor analysis (and 

joint factor analysis not illustrated here for clarity) and finally merged all latent variables and 

covariates for downstream modelling. Characteristics of final cohort in Supplementary Table 1. 
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Supplementary Figure 2 

 

Supplementary Figure 2: CFA for Vascular Risk 

A correlation heatmap and factor loadings for all vascular risk variables. Fit measures reported in 

Supplementary Table 2. 
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Supplementary Figure 3 

 

Supplementary Figure 3: CFA for Cognitive Function 

A correlation heatmap and factor loadings for the cognitive exams. Fit measures reported in 

Supplementary Table 3. 
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Supplementary Figure 4 

 

Supplementary Figure 4: PCA for CMR Radiomics 

A correlation heatmap of CMR Radiomics features (sorted by a complete linkage dendrogram) 

with a colorbar for the original feature type. Percent variance explained of the top ten principal 

components of the features, error bars represent standard error over 10-fold cross validation. 

Individual feature loadings for each component are reported in Supplementary Table 4. 
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Supplementary Figure 5 

 

Supplementary Figure 5: CFA for FA and MD 

A correlation heatmap of FA and MD IDPs. Fit measures and variable loadings are reported in 

Supplementary Table 5. 
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Supplementary Figure 6 

 

Supplementary Figure 6: PCA for Brain IDPs 

A correlation heatmap of brain MR IDPs (sorted by a complete linkage dendrogram) with a 

colorbar for the original feature type. Percent variance explained of the top ten principal 

components of the features, error bars represent standard error over 10-fold cross validation. 

Individual feature loadings for each component are reported in Supplementary Table 6.  
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Supplementary Figure 7 

 

Supplementary Figure 7: CCA for Heart and Brain IDPs 

(A) A correlation heatmap of the CMR Radiomics (rows) and Brain IDPs (columns). The 

heatmap columns and rows have been ordered by the weight of each feature in the loadings of 

the first CCA mode. (B) The correlation between the first ten CCA modes for the heart and brain 

imaging data in held-out data. The errors represent standard error over 10-fold cross validation. 

(C) The variance explained in held-out data by the heart component of each CCA mode. (D) The 

variance explained in held-out data by the brain component of each CCA mode. Individual 

feature loadings are reported in Supplementary Table 7. 
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Supplementary Figure 8 

 

Supplementary Figure 8: Age Associations 

Plot of each latent measure against age. Each latent has been deconfounded from imaging 

parameters as described in Supplementary Methods. Linear model estimates reported in 

Supplementary Tables 8 and 9.  
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Supplementary Figure 9 

 

Supplementary Figure 9:  Latent Single Mediation Modelling of VRF-Cognitive Pairs 

We performed serial mediation modelling for all latent imaging measures for each VRF- 

cognitive exam pair. (A) Schematic for a mediation model using different VRFs as the 

independent variable rather than gVRF. We tested all VRFs. (B) Schematic for a mediation 

model using cognitive exams as the dependent variable rather than g. We tested all exams. (C) 

Example mediation model for an individual latent factor and an example pair of VRF and 

cognitive exam. Confidence intervals for all coefficient estimates in Supplementary Table 21. 

(D) Direct and indirect effects for three significant VRF-exam pairs. Latents ordered by indirect 

effect size and separated by organ. RT shows lower values for better performance while VNR 

shows higher values for higher performance. 
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Supplementary Figure 10 

 

Supplementary Figure 10: White Matter Tract Mediation Modelling 

We focus on serial mediation modelling for individual white matter tract quantifiers. (A) 

Schematic for the modelling procedure for the brain white matter tract quantifiers. (B) Example 

mediation model for an individual feature, fractional anisotropy of the posterior thalamic 

radiation. Confidence intervals reported in Supplementary Table 25. (C) Illustration of the key 

white matter tracts with large indirect effects for both FA and MD. (D) Indirect effects for all 

tested FA and MD measures. 
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Supplementary Table Captions 

Supplementary Table 1: Summary statistics of the final cohort  

Supplementary Table 2: Loadings and Fit Metrics for CFA of Vascular Risk Factors  

Supplementary Table 3: Loadings and Fit Metrics for CFA of Cognitive Exams 

Supplementary Table 4: PCA Loadings for CMR Radiomics 

Supplementary Table 5: Loadings and Fit Metrics for CFA of Fractional Anisotropy and Mean 

Diffusivity  

Supplementary Table 6: PCA Loadings for all Brain MRI IDPs 

Supplementary Table 7: CCA Loadings for CMR Radiomics and Brain MRI IDPs 

Supplementary Table 8: Association of each Latent Factor with Age and Sex, Raw 

Supplementary Table 9: Association of each Latent Factor with Age and Sex, Deconfounded 

Supplementary Table 10: Coefficients and Metrics for Pairwise Linear Modelling of all Latents, 

Raw 

Supplementary Table 11: Coefficients and Metrics for Pairwise Linear Modelling of all Latents, 

Deconfounded 

Supplementary Table 12: Propensity Score Matching t-tests  

Supplementary Table 13: Single Mediation Model Coefficients and Metrics for all Latents, Raw, 

lhs: left hand side, op: operation, rhs: right hand side, est.std: standardised estimate 

Supplementary Table 14: Single Mediation Model Coefficients and Metrics for all Latents, 

Deconfounded 

Supplementary Table 15: Association of BMI with Heart PC2 controlling for heart size, 

mediation of the BMI-VNR association by Heart PC2, and mediation of the gVRF-g association 

by Heart PC2 covarying for BMI 
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Supplementary Table 16: Multiple Parallel Mediation Model Coefficients and Metrics for all 

Latents, Raw 

Supplementary Table 17: Multiple Parallel Mediation Model Coefficients and Metrics for all 

Latents, Deconfounded 

Supplementary Table 18: Multiple Sequential Mediation Model Coefficients and Metrics for all 

Latents, Raw 

Supplementary Table 19: Multiple Sequential Mediation Model Coefficients and Metrics for all 

Latents, Deconfounded 

Supplementary Table 20: Single Mediation Model Coefficients and Metrics for all Latents and 

all significant VRF-cognitive pairs, Raw 

Supplementary Table 21: Single Mediation Model Coefficients and Metrics for all Latents and 

all significant VRF-cognitive pairs, Deconfounded 

Supplementary Table 22: Single Mediation Model Coefficients and Metrics for all individual 

CMR radiomics features, Raw 

Supplementary Table 23: Single Mediation Model Coefficients and Metrics for all individual 

CMR radiomics features, Deconfounded 

Supplementary Table 24: Single Mediation Model Coefficients and Metrics for all individual 

Brain MRI IDPs, Raw 

Supplementary Table 25: Single Mediation Model Coefficients and Metrics for all individual 

Brain MRI IDPs, Deconfounded 

Supplementary Table 26: Single Mediation Model Coefficients and Metrics for all Bai, et al. 

CMR features, Deconfounded 
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