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Supplemental Material I: Macdonald index, arc
space and the 4D theory

We begin by briefly reviewing the Macdonald index.
This observable counts operators that obey the relations
in (11) and (12) of the main text. These operators sit

in B̂R, DR,(0,j̄), D̄R,(j,0), and ĈR(j,j̄) multiplets in the
nomenclature of [1]. One can often find a closed-form
expression for the Macdonald index. For example, in
the N = 2 free massless hypermultiplet, one finds the
following freely generated answer

IFree hyper
M =

1

(z
√
t, q)∞(

√
t

z , q)∞
, (A.1)

where (a, q)n :=
∏n−1

k=0(1−aqk), and z is a flavour fugac-
ity.

Next, our goal is to explain the equality in (21) of the
main text. For ease of reference, we reproduce it here

HSRMAD
∞

(q, T ) = IMAD
M (q, T ) . (A.2)

Recall from the discussion below (14) of the main text
that ∂+ contributes q, and J contributes q2T to the
righthand side of this equation. The lefthand side is the
Hilbert series that counts operators in RMAD

∞ . We will
give a precise definition of this quantity below.

If (A.2) holds, then IMAD
M can be obtained from words

built out of J and the derivative ∂+, subject to the con-
dition J2 = 0. This is because RMAD

∞ defined in (20) of
the main text contains all such operators. Therefore, we
would like to check whether

IMAD
M (q, T ) =

∞∑
k=0

qk
2+k

(q)k
T k

?
=

∞∑
n,k=0

dimVn,k (q2T )kqn

=
∞∑

n,k=0

dimVn,k q
2k+nT k . (A.3)

Here Vn,k is the set of operators built from k J ’s and
n derivatives ∂+ (subject to J2 = 0), which, in general,
take the form (we have suppressed complex coefficients
in front of each term in the sum for simplicity)

∞∑
n1,··· ,nk=0∑

ni=n

∂n1J ∂n2J · · · ∂nkJ , (A.4)

and dimVn,k is the dimension of each such linearly inde-
pendent subspace.

As a result, to prove (A.2), we need to show that

∞∑
n,k=0

dimVn,k q
npk

?
=

∞∑
k=0

qk
2−k

(q)k
pk , (p = q2T ) . (A.5)

Interestingly, the RHS can be identified with a q-
hypergeometric series [? ]
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2−k

(q)k
pk = rφr+1

[ a1, · · · , ar
a1, · · · , ar, 0

; q, p
]

= 1 + p+ pq +
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p+ p2

)
q2

+
(
p+ p2

)
q3 +

(
p+ 2p2

)
q4 + · · · .

(A.6)

for arbitrary r and ai, where we have also explicitly writ-
ten the perturbative expansion for the first few orders.

It is easy to compute dimVn,k numerically to high or-
der and verify this statement. Below, we will also prove
it analytically.

To do so, it is useful to introduce the concept of an
arc space. An arc space is a special kind of topological
space that is intimately connected with the singularities
of algebraic varieties. In the context of QFT, such spaces
have appeared in various places (e.g., see [17, 19, 26]). In
our case, the arc space encodes the operators in the Schur
sector, and one can characterize the Schur spectrum from
the associated arc space Hilbert series.

Here we follow [19] and start with the affine scheme

X = Spec R , R = C[x1, · · · , xN ]/〈f1, · · · fl〉 , (A.7)

where fi ∈ C[x1, · · · , xN ] are polynomial relations.

From this structure, we have the jet scheme, Xm,
which can be thought of as a generalization of the no-
tion of a tangent space. It is given by

Xm = Spec Rm ,

Rm = C[x
(i)
1 , · · · , x(i)

N ]/〈f (i)
1 , · · · f (i)

l 〉 , 0 ≤ i ≤ m . (A.8)

In writing the above ideals, we introduced a derivation,

D, such that D(x
(i)
j ) = x

(i+1)
j if 0 ≤ i < m and D(x

(i)
j ) =

0 if i = m. This definition then specifies the action of

D on all C[x
(i)
1 , · · · , x(i)

N ]. In particular, f
(i)
j := Di(fj) is

also a polynomial.

Given this discussion, we can consider the inverse limit
and obtain the arc space

X∞ = lim
←
Xm ' Spec R∞ ,

R∞ = C[x
(i)
1 , · · · , x(i)

N ]/〈f (i)
1 , · · · f (i)

l 〉 , i ≥ 0 . (A.9)

In [17, 19, 26], the above construction arises in the
context of 2d VOAs, and R = RV is the associated Zhu’s
C2 algebra. Roughly speaking, this is a commutative 2d
algebra obtained by getting rid of all operators containing
derivatives in the VOA V

RV = V/C2(V) , C2 := Span {a−ha−1b|a, b ∈ V} .
(A.10)
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When the 4d SCFT has a Higgs branch, Zhu’s C2 alge-
bra enables one to reconstruct this moduli space [26]. In
the case of the MAD theory, there is no Higgs branch.
However, Zhu’s C2 algebra still contains important infor-
mation about this theory. Indeed, from (18) of the main
text, it is easy to see that

RVirc=−22/5
= C[x]/〈x2〉 . (A.11)

Constructing the arc space associated with (A.11) and
showing that its operators are counted as in (A.3) is
strong evidence for the fact that the arc space undoes
the twisting of the MAD theory that led to the Lee-Yang
VOA. At a physical level, the arc space therefore pro-
vides an inverse map from 2d to 4d for the case at hand
(and also for the generalizations we discuss in section III
of the Supplemental Material).

To prove (A.3), we considerN = 1 and x1 = J in (A.9).
The derivation, D, can be regarded as the derivative act-

ing on local operators. Then we can identify x
(i)
1 = ∂i+J .

The ideal is generated by f
(0)
1 = J2 and, more generally,

all f
(i)
1 = ∂i+(J2). As a result, the above arc space is ex-

actly the space describing operators made out of J and
derivatives in (A.4) subject to the constraint J2 = 0. In
other words, R∞ → RMAD

∞ , and we need to consider

XMAD
∞ = Spec RMAD

∞ , RMAD
∞ = C[x(i)]/〈(x2)(i)〉, i ≥ 0 ,

(A.12)
or, as described around (20) of the main text using phys-
ical operators

RMAD
∞ = C[J, ∂+J, ∂

2
+J, · · · ]/〈J2, ∂+(J2), · · · 〉 . (A.13)

This ring is bi-graded, and we can assign weights (i, 1) to
x(i) = ∂i+J . These weights correspond to the (E−3R,R)
quantum numbers of operators in 4d.

To complete the proof, we need to first define the as-
sociated Hilbert series

HSRMAD
∞

(q, p) :=

∞∑
n,k=0

dim(RMAD
∞ )n,k q

npk , (A.14)

where dim(RMAD
∞ )n,k is the dimension of the subring with

weight (n, k). As a result, we have dim(RMAD
∞ )n,k =

dimVn,k for the number of such linearly independent op-
erators.

The remaining goal is to compute the Hilbert series in
(A.14). Fortunately, this has been done in [20]. Indeed,
from (7.1) in that reference, we learn that

HSRMAD
∞

(q, p) =

∞∑
n,k=0

dim(R∞)n,k q
npk

=

∞∑
n,k=0

dimVn,k q
npk

=

∞∑
k=0

qk
2−k

(q)k
pk . (A.15)

This discussion thus proves the identity (A.5). Therefore,
operators made out of J and derivatives in (A.4) subject
to the constraint J2 = 0 reproduce all the Schur opera-
tors and (upon the substitution p→ q2T ) the associated
Macdonald index as in (A.2).

Supplemental Material II: Leading ideals and a
basis for the arc space

In this section, our goal is to show that the states in
(22) of the main text form a basis for RMAD

∞ . For ease of
reference, we reproduce these states here

∂n1
+ J ∂n2

+ J · · · ∂nk
+ J , 0 ≤ n1 < n2 < · · · < nk ,

ni+1 − ni ≥ 2 ,

k∑
i=1

ni = n , n ∈ Z≥0 . (A.16)

For a given k and n, we wish to show that the above
states form a basis for the space Vn,k.

To prove this statement, we first note that, following
theorem 6.3 of [25] (see also proposition (5.2) of that
reference), we have

HSC[x,··· ]/I = HSC[x,··· ]/LT(I) , (A.17)

where LT(I) is the so-called “leading ideal” of I. In the
case of the MAD Schur ring, RMAD

∞ , I is given in (A.12).
The corresponding leading ideal is then

LT(〈(x2)(i)〉) := 〈
(
x(i)
)2

, x(i)x(i+1)〉 . (A.18)

In terms of the ∂i+J operators, this statement implies
that (A.16) forms a basis for the space Vn,k.

We can check the consistency of this discussion with
(A.15) as follows. Define B(n) to be the partition of n
into arbitrary parts differing by at least two. Then we
have

B(n) =

∞∑
k=0

dimVn−k,k , (A.19)

where the shift in n arises from the fact that we can have
n1 = 0 in (A.16) while B(n) counts partitions with n1 >
0. Finally, we can consider the corresponding partition
function (e.g., see (5) of [27])

∞∑
n=0

B(n)qn =

∞∑
k=0

qk
2

(q)k
, (A.20)

which is consistent with (A.15) after setting p→ q [? ].

Supplemental Material III: Higher-rank theo-
ries
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In this section, we consider the (A1, A2r) SCFTs for
general r ≥ 1 [28]. When r = 1, we are back to the case
of the MAD theory (i.e., MAD ∼= (A1, A2)).

These SCFTs are all quite similar to the (A1, A2) the-
ory. Their Macdonald index is [12]

I(A1,A2r)
M (q, T ) =

∑
n,k

dimVn,kq
2k+nT k

=

∞∑
N1≥···≥Nr≥0

qN
2
1 +···N2

r +N1+···+Nr

(q)N1−N2
· · · (q)Nr−1−Nr

(q)Nr

TN1+···+Nr .

(A.21)

Explicitly for r = 1, 2, 3, we have

I(A1,A2) = 1 + Tq2 + Tq3 + Tq4 + Tq5

+
(
T + T 2

)
q6 + · · · ,

I(A1,A4) = 1 + Tq2 + Tq3 +
(
T + T 2

)
q4 +

(
T + T 2

)
q5

+
(
T + 2T 2

)
q6 + · · · ,

I(A1,A6) = 1 + Tq2 + Tq3 +
(
T + T 2

)
q4 +

(
T + T 2

)
q5

+
(
T + 2T 2 + T 3

)
q6 + · · · . (A.22)

Moreover, the associated chiral algebras are (2, 2r + 3)
Virasoro minimal models [22]

χ((A1, A2r)) = Vir
c=− 2r(5+6r)

3+2r
. (A.23)

Similarly to the case of the MAD theory (A.11), the cor-
responding Zhu’s algebra is now given by

RVir
c=− 2r(5+6r)

3+2r

= C[x]/〈xr+1〉 . (A.24)

Therefore, as described in the discussion section, since
the corresponding hidden symmetry (Virasoro) is related
to a conserved non-decoupling symmetry (SU(2)R), it
is natural to imagine that the bijection we saw between
MAD Schur operators and free vector operators in (10)
of the main text generalizes. Indeed, we will see this is
the case.

Since the rank of the (A1, A2r) theory is r, the natural
generalization of (4) of the main text is

Ĉ0(0,0) 3 J := J11
++̇ −→ Λr :=

r∑
i=1

λ1
i,+λ̄

1
i,+̇ ∈ Ĉ

(Free)×r

0(0,0) ,

(A.25)
and the natural generalization of our proposal in (10) of
the main text is

S(A1,A2r) 3 ∂i1+J · · · ∂
in
+ J

−→ ∂i1+ Λr · · · ∂in+ Λr

∈ S̃(Free Vector)×r ⊂ S(Free Vector)×r . (A.26)

It is straightforward to numerically check that (A.26)
correctly reproduces the states computed by the Macdon-
ald index. Since these are bosonic (as follows from the

identification (A.23)), this constitutes strong evidence of
the proposal. Here we will give some analytic evidence
as well.

Let us now argue for the map in (A.26). Our first
step is to understand the (A1, A2r) Schur ring. As in the
case of (18) of the main text, the (A1, A2r) theory has a
null vector involving T2d and its derivatives (except now
at h = 2(r + 1); this is the origin of (A.24)). The 4d
interpretation of this null relation generalizes (19) of the
main text

Jr(z)J(0) ⊃ Jr+1(0) = 0 . (A.27)

This can also be understood from (A.24). In the flow to
the IR, this null relation follows from (A.25) and Fermi
statistics.

As in the MAD case, it is natural to conjecture that
the 4d Schur ring is generated by ∂i+J subject to the
constraint Jr+1 = 0. More precisely, the analog of (A.12)
is just

X(A1,A2r)
∞ = Spec R(A1,A2r)

∞ ,

R(A1,A2r)
∞ = C[x(i)]/〈(xr+1)(i)〉 , i ≥ 0 . (A.28)

The idea is to compare the Hilbert series associated
with (A.28) with the Macdonald index. However, unlike
the MAD case, the higher r Hilbert series are not known
in refined form. Instead, the unrefined case correspond-
ing to p = q is given by (see theorem 5.6 of [25])

HS(q, p = q) =
∑
n,k

dimVn−k,kq
n =

∑
n,k

dimVn,kq
n+k

=
∏

i>0, i 6=0,r+1,r+2 mod (2r+3)

1

1− qi
,

=


1 + q + q2 + q3 + 2q4 + · · · , r = 1

1 + q + 2q2 + 2q3 + 3q4 + · · · , r = 2

1 + q + 2q2 + 3q3 + 4q4 + · · · , r = 3
...

(A.29)

Therefore, we will need to compare this quantity with
a somewhat unorthodox fugacity slice of the Macdonald
index (A.21) gotten by setting T = 1/q (note that this is
not the Schur index, where we would instead set T = 1):

I(A1,A2r)
M (q, T = 1/q) =

∑
n,k

dimVn,kq
n+k

=

∞∑
N1≥···≥Nr≥0

qN
2
1 +···N2

r

(q)N1−N2 · · · (q)Nr−1−Nr (q)Nr

. (A.30)

Intriguingly, these quantities can be written in terms of
r-fold q-hypergeometric series [15]. It would be interest-
ing to understand if the refined index for r > 1 can be
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expressed in terms of a generalization of (A.6) (and to
understand the connection between these various types
of hypergeometric functions).

The equality of (A.29) and (A.30) follows from the
Andrews-Gordon identity. This is strong evidence that
the 4d Schur ring is as described in (A.28) (i.e., that it is
generated by ∂i+J subject to Jr+1 = 0).

We can then further conjecture the refined Hilbert se-
ries by setting T → p/q2 in the Macdonald index:

HS(q, p) =

∞∑
N1≥···≥Nr≥0

qN
2
1 +···N2

r−N1−···−NrpN1+···+Nr

(q)N1−N2
· · · (q)Nr−1−Nr

(q)Nr

.

(A.31)
At low orders, we have verified this conjecture explicitly
by enumerating the corresponding elements of the arc
space (A.28).

To make contact with the IR description and the pro-
posal in (A.26), we again use leading ideals to generate
a convenient UV basis for the arc space. To that end, we
have (see proposition 5.2 of [25])

LT(〈(xr+1)(i)〉) = 〈
(
x(j)

)s(
x(j+1)

)r+1−s〉 ,
j ≥ 0 , s = 0 , 1 , · · · , r . (A.32)

This discussion shows that a basis of operators is given
by

(∂n1J)Q1 (∂n2J)Q2 · · · (∂nsJ)Qs ,
s∑

i=1

Qini = n ,

s∑
i=1

Qi = k , (A.33)

where

0 ≤ n1 < n2 < · · ·ns , Qi ≤ r ,
Qi +Qi+1 ≤ r if ni+1 = ni + 1 . (A.34)

As a result, in (A.33), ni can repeat at most r times.
Moreover, ni and ni + 1 (if ni + 1 = ni+1) together can
repeat at most r times. From Gordon’s Partition Theo-
rem, the generating function of this partition is exactly
given by (A.29).

To show that the map in (A.25) does not affect the
counting of the basis of states (and that therefore (A.28)
holds), we define

P (i,m) := ∂b
m
2 cλ1

i,+∂
bm+1

2 cλ̄1
i,+̇ ∈ ∂

mJ . (A.35)

Then we have the following one-to-one correspondence

s∏
i=1

(∂niJ)Qi ↔
s∏

i=1

[
P (1, ni)P (2, ni) · · ·P (Qi, ni)

]Ai

×
[
P (r, ni)P (r − 1, ni) · · ·P (r −Qi + 1, ni)

]1−Ai

, (A.36)

where Ai = i mod 2, and Ai+1 = 1 − Ai. Note that
the fermionic expression on the righthand side is never
zero thanks to the condition (A.34). Therefore, as in the
MAD case, we have shown that we can also reproduce
the Macdonald index from r gauginos.
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