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Human visual experience usually provides ample
opportunity to accumulate knowledge about events
unfolding in the environment. In typical scene
perception experiments, however, participants view
images that are unrelated to each other and, therefore,
they cannot accumulate knowledge relevant to the
upcoming visual input. Consequently, the influence of
such knowledge on how this input is processed remains
underexplored. Here, we investigated this influence in
the context of gaze control. We used sequences of static
film frames arranged in a way that allowed us to
compare eye movements to identical frames between
two groups: a group that accumulated prior knowledge
relevant to the situations depicted in these frames and a
group that did not. We used a machine learning
approach based on hidden Markov models fitted to
individual scanpaths to demonstrate that the gaze
patterns from the two groups differed systematically
and, thereby, showed that recently accumulated prior
knowledge contributes to gaze control. Next, we
leveraged the interpretability of hidden Markov models
to characterize these differences. Additionally, we report
two unexpected and interesting caveats of our
approach. Overall, our results highlight the importance
of recently acquired prior knowledge for oculomotor
control and the potential of hidden Markov models as a
tool for investigating it.

Introduction
Individuals use knowledge about recently passed

events to guide their behavior. For example, we do
not touch a dish knowing that it has just been taken
out of a hot oven. Although situations in which
knowledge accumulation occurs are omnipresent,
it remains unclear how this recently accumulated
knowledge (what we call prior knowledge) guides
further information-seeking. In particular, relatively
little is known about how it affects how humans acquire
visual information by means of shifting their gaze.
To examine this issue, we conducted an eye-tracking
study in which we used unique stimuli: sequences of
static film frames that allowed for the accumulation of
knowledge about unfolding events.

Typical experimental procedures used to study
visual exploration involve presenting participants with
sequences of images that are unrelated to each other.
These procedures are usually conducted in laboratory
conditions and, as a consequence, guarantee good
control over most aspects of the experiments. They
are also versatile, because they allow for presenting
almost any set of images as stimuli. Owing to these
features, these procedures have been used to tackle
a wide range of research problems. To name a few,
they allowed to characterize factors influencing
oculomotor behavior while viewing emotionally laden
images (Pilarczyk, Schwertner, Wołoszyn, & Kuniecki,
2019; Pilarczyk, Kuniecki, Wołoszyn, & Sterna, 2020;
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Pilarczyk & Kuniecki, 2014) or images depicting people
(Birmingham, Bischof, & Kingstone, 2008; Cerf, Paxon
Frady, & Koch, 2009; End & Gamer, 2017; Flechsenhar
& Gamer, 2017), as well as to uncover idiosyncrasies in
gaze behavior of individuals (Broda & de Haas, 2022;
De Haas, Iakovidis, Schwarzkopf, & Gegenfurtner,
2019; Linka & de Haas, 2020; Zangrossi, Cona, Celli,
Zorzi, & Corbetta, 2021) and create robust methods
of predicting fixation locations (Kümmerer, Bethge, &
Wallis, 2017; Kümmerer, Wallis, Gatys, & Bethge, 2022).

An assumption embedded in the procedures
described is that viewing any image is independent
of viewing the other images. Participants are usually
shown images presented in random order to ensure that
this assumption is met. Consequently, typical image
viewing experiments do not allow for investigating
the influence of recently acquired knowledge on
oculomotor behavior. In these experiments, participants
do not have the opportunity to accumulate information
relevant to upcoming images and, therefore, view each
image without prior knowledge about its content.
This situation starkly contrasts with a typical real
world experience, where the visual input is usually
continuous—people observe events as they unfold,
so the current visual input is usually related to the
input that immediately preceded it. This continuity
enables the accumulation of information about the
current environment and what is happening with it. As
a result, almost all visual input the individuals receive is
embedded in prior knowledge relevant to it. However,
owing to the above-mentioned methodological reasons,
the consequences of possessing that knowledge for
oculomotor behavior during static image viewing
remain underexplored. Only a handful of studies have
investigated them, and they either used contrived stimuli
(Król & Król, 2018; Pedziwiatr, von dem Hagen, &
Teufel, 2023) or relied only upon a very limited number
of images (Dorr, Martinetz, Gegenfurtner, & Barth,
2010; Hutson, Chandran, Magliano, Smith, & Loschky,
2022). What these studies have in common is that they
investigated how the gaze is affected by information
that is inaccessible via eye movements at a given
moment. This property distinguishes them from the
typical image viewing experiments in which information
accumulation occurs exclusively while viewing a
particular image. For example, in a visual search
task, participants may inspect a certain location and
determine that it does not contain the target, accumulate
that information, and inspect this location again if
they wish to. This possibility to acquire previously
accumulated information again by re-inspecting
an image region makes that kind of knowledge
accumulation distinct from the kind we are interested in
here.

Nevertheless, there are at least two important strands
of research that touch on how the different types of
continuity of visual input—a necessary condition for

knowledge accumulation—affect eye movements. The
first strand investigates real-world tasks that extend
over time, such as putting up a tent (Sullivan et al.,
2021), making a sandwich (Hayhoe, Shrivastava,
Mruczek, & Pelz, 2003), or walking in various settings
(Bonnen et al., 2021; Ghiani, Van Hout, Driessen, &
Brenner, 2023; Matthis, Yates, & Hayhoe, 2018; Patla
& Vickers, 2003; Rothkopf, Ballard, & Hayhoe, 2016).
These studies highlighted the interactions between
eye movements and processes that require knowledge
accumulation, such as planning, representing the
environment, manual actions, or navigation (Tatler
& Land, 2011). The second strand of research that
explicitly acknowledges the importance of continuity
of visual input explores how people process and
understand visual narratives, such as comics (Foulsham
& Cohn, 2021; Foulsham, Wybrow, & Cohn, 2016;
Hutson, Magliano, & Loschky, 2018; Kirtley et al.,
2018) and films (Kirkorian & Anderson, 2018; Loschky,
Larson, Magliano, & Smith, 2015, Loschky, Larson,
Smith, & Magliano, 2020; Rider, Coutrot, Pellicano,
Dakin, &Mareschal, 2018; Smith, 2012; Valuch, König,
& Ansorge, 2017; Wang, Freeman, Merriam, Hasson,
& Heeger, 2012). In these media, a high-level narrative
continuity is ensured by the plot and, especially in film,
preserved even in the presence of abrupt changes in
visual input, such as cuts and camera position shifts.
The studies cited above demonstrated that following a
plot—which requires accumulating information—has
consequences for the oculomotor behavior of
viewers.

Both these research strands demonstrate that prior
knowledge matters for how visual input is sampled
using eye movements. However, they both rely on very
different stimuli and/or experimental settings than
typical image viewing experiments. Therefore, relating
findings from these two strands to the experiments
that rely on viewing static images is nontrivial. To
illustrate, consider that real-life tasks usually require
manual action (which results in visible changes in
the environment), often accompanied by head or
body motion (which changes the available field of
view), so in this case participants do not inspect the
environment as a fixed static snapshot that would
be equivalent to a single static image displayed in
a laboratory-based experiment. Comics, in turn,
usually consist of simplified drawings that contain
specific graphical elements (e.g., speech balloons)
across multiple panels and, therefore, are considerably
different from typical scenes. Finally, films are obviously
different because they contain motion. Overall, it is
challenging to directly relate insights into the role
of prior knowledge gained from the experiments
on real-world tasks, comics, and films to static
image viewing. Hence, the effects of recently gained
prior knowledge manifesting in this context remain
underexplored.
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To examine these differences, we recently created
a unique stimulus set comprising 80 sequences of
static frames from films directed by Alfred Hitchcock
(Pedziwiatr, Heer, Coutrot, Bex, & Mareschal,
2023). The sequences were arranged in such a
way that participants viewed identical frames after
acquiring knowledge that was either relevant to the
content of these frames or not. Thus, we retained
the well-controlled nature of typical image viewing
experiments while creating conditions that enabled
knowledge accumulation. We found that participants
who had accumulated relevant prior knowledge
exhibited less exploratory gaze behavior than those
who did not. Our conclusion was based on the
analysis of seven characteristics of eye movements: the
number of fixations, average fixation duration, average
interfixation distance, interobserver consistency, the
probability of blinking, first saccade latency, and
heatmap entropy. This fine-grained approach, however,
had its limitations. First, all of our metrics largely
ignored the temporal order of fixations. Each scanpath
(i.e., a raw gaze trace of an individual participant on
an individual frame) generated in a 2-second trial was
collapsed over time into one number per metric (e.g.,
average fixation duration). Second, our metrics were
decoupled from the spatial distributions of fixations on
the frames. For example, they all could have identical
values for two sets of fixations inspecting different
regions of a frame. Third, relying on the metrics
requires extracting fixations from the raw eye trace. This
step involves researcher degrees of freedom (Simmons,
Nelson, & Simonsohn, 2011; Wicherts et al., 2016),
that is, analytical decisions, such as selecting a fixation
extraction algorithm out of many available (Birawo
& Kasprowski, 2022) and fine tuning its parameters,
which might inadvertently affect the results. Fourth,
although our approach was well-suited for testing
hypotheses, it left little space for the exploration
of the spatiotemporal structure of the rich data we
collected.

To bypass these limitations, we analyzed the same
data using a very different approach. Specifically,
we modeled individual scanpaths as hidden Markov
models (HMMs) and applied machine-learning
techniques to them. An HMM is a mathematical
construct describing—in a probabilistic fashion—a
temporal evolution of a system with a finite number of
possible states. It generates probable trajectories of the
system’s behavior that are expressed as the sequences
of system’s states. Modelling a scanpath as an HMM
involves assuming that each data sample belongs to
one state and finding HMM’s parameters for which
the HMM is most likely to generate the sequence of
states constituting the scanpath. Methods based on this
modelling have proven insightful and are commonly
used in various research contexts (Chuk, Chan, &
Hsiao, 2014; Coutrot, Binetti, Harrison, Mareschal,

& Johnston, 2016; Coutrot, Hsiao, & Chan, 2018;
Haji-Abolhassani & Clark, 2014; Hsiao, Lan, Zheng, &
Chan, 2021, Hsiao, Liao, & Tso, 2022; Liu et al., 2013).

Using the HMMs has several advantages over
the more traditional approach based on multiple
oculomotor metrics we have used previously. First,
HMMs offer a succinct way to holistically capture
both the spatial and temporal dynamics of a scanpath.
Second, analyses combining HMMs and machine
learning algorithms (classifiers) offer data-driven ways
of measuring the relative importance of different
aspects of scanpaths for distinguishing between
conditions in which they were recorded (e.g., see
Coutrot et al., 2018). Third, HMMs can be analyzed
in multiple ways, which facilitates sophisticated data
exploration. Fourth, HMMs can be fit to raw data,
which eliminates the researcher aforementioned degrees
of freedom related to fixation extraction. However,
using HMMs does not eliminate the problem of these
degrees of freedom completely. Therefore, we have
guarded against this concern by preregistering the
general outline of our HMMs analysis.

To foreshadow our results, we found that an
off-the-shelf linear classifier could distinguish between
HMMs fitted to scanpaths of participants who viewed
identical frames in different conditions: either with
or without prior knowledge relevant to the frames’
content. An exploratory analysis of the classification
results revealed the link between this content and the
variability in eye movements along the horizontal
dimension to which the classifier was sensitive. In
addition to these main results, we also describe two
methodological caveats we have encountered when
working with HMMs: one related to the role of data
dimensionality reduction in the classification analysis
and one related to the influence of a random number
generator on the outcomes of the HMMs fitting
procedure. To our knowledge, these caveats have not
yet been described in the literature on modelling gaze
patterns with HMMs.

Methods
Stimuli, experimental design, and eye
movements data

All analyses reported here were conducted on data
from a study described in our earlier article (Pedziwiatr,
Heer et al., 2023), and full details of how these data
were collected can be found there. The preregistration
of our study (outlining the HMMs analysis reported
here), the data, and a script for downloading our stimuli
are available at the following link: https://osf.io/et7mr/
?view_only=6f86dc8211d845c7b2c09ef6f45baf64.

https://osf.io/et7mr/?viewonly6f86dc8211d845c7b2c09ef6f45baf64
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Figure 1. Schema of the experimental procedure. Participants viewed N-element sequences of film frames (N varied between trials; in
the Figure, different colors indicate different films). Depending on the condition, frames from 1 to N – 1 either preceded the Nth
frame in the film from which it was extracted (continuous condition) or originated from a different film (discontinuous condition; see
colors in the Figure). Consequently, participants in the continuous condition viewed the final frames of the sequences, called the
critical frames, while having knowledge of events that led to the situations shown in them, whereas participants in the discontinuous
condition had knowledge of different, unrelated events. In our analyses, we compared the eye movements registered on the critical
frames in these two conditions to reveal the influences of prior knowledge on gaze behavior.

The stimuli set in our study consisted of 80 sequences
of static frames extracted from films directed by
Alfred Hitchcock. It was manually assembled from
frames available on the 1000 Frames of Hitchcock
project website (https://the.hitchcock.zone/wiki/
1000_Frames_of_Hitchcock). The frames in the
sequences were spaced several seconds apart. In each
sequence, the final frame was called the critical frame,
while all frames preceding it—the context frames. Our
experimental procedure had two conditions which
differed only in the context frames; the critical frames
were identical in both (Figure 1). The two contexts
paired with a given critical frame always had the same
lengths, but these lengths differed for different critical
frames (mean length was 5.35 frames, with a standard
deviation of 1.16 frames). In the continuous condition,
the context frames were extracted from the same film
as the critical frame and depicted a course of events
from which the situations depicted in the critical frames
naturally followed. In the discontinuous condition,
the context frames depicted a coherent course of
events but were extracted from a different film and
were unrelated to the critical frame’s content. As a
consequence, participants viewing the context frames
in both conditions accumulated knowledge about the
unfolding events. However, this knowledge was relevant
to the situation depicted in the critical frames only
in the continuous condition. Therefore, in our study,
different groups of participants viewed identical critical
frames while possessing prior knowledge that was either
relevant or irrelevant to the frames’ content. We were
interested in comparing gaze patterns on these frames
between the two groups.

We conducted two similar experiments that relied on
this concept. We focus on the results of experiment 1;

results of key analyses for data from experiment 2 are
reported in the Main results for data from experiment
2. Participants contributed data to our dataset from
experiment 1. All were instructed to carefully look
at the images to be presented and then viewed our
sequences. Each participant viewed all 80 critical frames
(one-half in each condition, counterbalanced between
groups). We discarded 1.25% of that data based on
prespecified criteria (see Pedziwiatr, Heer et al., 2023 for
details). We presented an attention check question after
each critical frame to keep the participants engaged.
The questions pertained to the frames’ content and
were tailored for each frame individually. All frames
were presented for 2 seconds, had a size of 28.4° × 16.0°
of visual angle, and were preceded by a gaze-compliant
fixation dot. Throughout the procedure, participants’
eye movements were recorded using a Tobii 4c eye
tracker with a sampling frequency of 90 Hz. Analyses
we report here pertain only to gaze traces recorded on
the critical frames.

HMMs

We modelled individual scanpaths from our data
as HMMs. An HMM is a type of Markov model—a
mathematical construct often used for modelling
systems that switch between several different states
over time. A Markov model consists of three elements
(Figure 2). Here, they all have interpretations specific to
our application of these models. First, states—a set of
regions of interest (ROIs) within an image. Changes
of an HMM’s state correspond to gaze shifts between
these ROIs. Second, a transitions matrix—a matrix
specifying the probabilities of transitioning between

https://the.hitchcock.zone/wiki/1000FramesofHitchcock
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Figure 2. Elements of an HMM fitted to an individual scanpath. (A) ROIs corresponding to three states (ellipses) and a modelled
scanpath consisting of individual samples registered by an eye tracker (dots). (B) Transition matrix, determining the probabilities of
transitioning between each two states. High values at the diagonal indicate that at any given time, staying in the same state (fixating
the ROI) is more probable than moving to a different state (making a saccade). (C) Prior, determining for each state the probability
that a sequence of states generated by the HMM starts from it. Note that this Figure presents a contrived illustration, not an HMM
fitted to real data. HMM = hidden Markov model; ROI = region of interest.

states. It is assumed that at each transition, the next
state depends only on the current state and not on
the past states. This feature of these models is called
the Markov property. Third, a prior—a probability
distribution over states specifying how likely each of
them is to be an initial state of the model. In other
words, the prior specifies for each ROI (state) its chance
of being attended first. The difference between the
Markov model and a HMM is that in the latter, the
states are not observable directly. Instead, they are
inferred from the data and modelled as probability
distributions. The process of fitting an HMM to a
scanpath assumes that each point belonging to the
scanpath has originated from one of these distributions
(states) that are not accessible directly. This difference is
important from a mathematical standpoint. However,
for the sake of simplicity, we equate the states with
ROIs in the descriptions of our analyses provided here.

To model our scanpaths as HMMs, that is, find
HMMs that were most likely to generate the scanpaths
recorded on the critical frames, we used the SMAC
with HMM toolbox (Coutrot et al., 2018; see also
Chuk et al., 2014). This toolbox first uses a variational
approach (McGrory & Titterington, 2009) to determine
ROIs constituting states. This approach assumes that
each state is a two-dimensional Gaussian distribution
and determines the values of the four parameters
defining it: two coordinates of its center (horizontal
and vertical) and two coefficients of its symmetrical
covariance matrix. The remaining parameters
of an HMM are determined once the states are
known.

We set the number of states in each HMM to three,
following Coutrot et al. (2018). This resulted in each of

our HMMs being a vector of 24 numbers: 6 coordinates
of state’s centers, 6 coefficients of states’ covariance
matrices, three values for a prior, and 9 coefficients of
a covariance matrix. Instead of providing the number
of states a priori, we could have also determined it
in a data-driven way for each scanpath (see Coutrot
et al., 2018 for details). However, preliminary data
analyses indicated that, although this solution would
make our analyses significantly more complicated, it
was unlikely to provide additional insight into our data
or lead to qualitatively different results. Therefore, we
discarded it.

Classification analysis

We expected that if the gaze patterns registered on
the critical frames differed between the continuous
and discontinuous conditions, then the HMMs fitted
to the scanpaths would capture these differences
and, consequently, differ between the conditions as
well. To test this prediction, we used a supervised
machine-learning approach. Broadly speaking, such
approaches assume that if two sets of data samples
belong to different categories (classes) that differ
from each other in a systematic fashion, a classifier
should be able to capture these differences (for an
extensive overview, see Hastie, Tibshirani, & Friedman,
2009). A typical analysis based on this approach
has two phases. First, the classifier is trained—it
processes samples for which the class is known and
attempts to learn to distinguish between different
classes. Second, novel samples are presented to the
classifier—if it has learned the properties differentiating
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between the classes, it should correctly assign the
novel samples to their classes. Methods based on
machine learning often offer an attractive alternative
to more traditional analytical approaches and have
already been proven useful for providing insights
about human oculomotor behavior (e.g., see Borji &
Itti, 2014; Coutrot et al., 2016; and Kümmerer et al.,
2017).

Here, we tested whether an off-the-shelf classifier
could correctly assign the HMMs to the two conditions
at the above-chance level. Given that we were interested
in the effects of prior knowledge that manifest as
differences in scanpaths registered on the same frames,
we did this for each critical frame separately. Our
classification analysis closely followed an approach
introduced by Coutrot et al. (2018) and largely relied on
MATLAB code from their SMAC with HMM toolbox.
We used a default classifier from this toolbox—a linear
classifier based on the linear discriminant analysis.
We chose it because it is simple and does not require
adjusting any parameters. Before being passed to
the classifier, all values constituting the HMMs for
a given critical frame were first normalized to have
zero mean and unit standard deviation (within each
condition separately) and then jointly regularized with
the parameter lambda set to 0.00001 (see Coutrot et al.,
2018 for details).

To assess how well the HMMs could be classified,
we relied on a leave-one-out cross-validation procedure.
Specifically, we designated each HMM, in turn,
as left out, trained the classifier on the remaining
HMMs (each time anew), and then tested if that
newly trained classifier could correctly classify the
left-out HMM. The proportion of left-out HMMs
classified correctly amounted to the classifier accuracy,
which served as a measure of classifier performance
for a given critical frame. This performance was
always compared with a chance level performance,
that is, the accuracy expected when the data used
to train the classifier did not contain information
that allowed to distinguish between the conditions.
To calculate the chance level performance values
for each critical frame, we randomly shuffled the
pairing of HMMs and conditions from which
their corresponding scanpaths originated and then
conducted the cross-validation again. Repeating this
procedure 2,000 times resulted in 2,000 chance level
performance values for each critical frame. We averaged
these values per frame to derive the chance level
accuracies.

Note that, in each of the 2,000 repetitions of the
above-mentioned procedure, we obtained a set of 80
chance level values (one per critical frame). Averaging
these values per set resulted in 2,000 values of average
(for all the frames) classifier performance in cases in
which the pairing between HMMs and conditions
was random within each frame. These 2,000 values

served as a null distribution for a permutation test we
conducted to assess the statistical significance of our
classification results at the level of the whole dataset
(similarly as in Coutrot et al., 2018). Specifically,
we calculated a p value for the mean classification
accuracy as a fraction of all values from the null
distribution that were higher than this mean. In this
test, we adopted 0.05 as the threshold of statistical
significance.

Results
Experiment 1: Main results

We found that our classifier could distinguish
between HMMs fitted to scanpaths registered in
different experimental conditions better than at
chance (obtained accuracy: M = 73.93%, SD = 13.64;
chance level accuracy: M = 68.85%, SD = 1.28;
percent of frames classified above chance: 56.25%)
(Figure 3A). This result was statistically significant
(p < 0.001) and indicated that HMMs captured
information differentiating scanpaths from the different
conditions.

While working on this analysis, we noticed two
phenomena that are worth highlighting because they
constitute caveats one needs to be mindful of when
using HMMs. First, our chance level classification
accuracies were surprisingly high. Second, the
seed of the random number generator set before
fitting the HMMs often had large downstream
effects on the classification results. We dedicate the
subsequent two sections to these caveats. To the best
of our knowledge, these have not been described
previously in the literature on using HMMs to model
scanpaths.

HMMs and classification: Caveat one—chance levels
To illustrate this caveat, consider the critical frame

marked on all panels of Figure 3 with a red circle.
The classification accuracy for this frame amounted
to 83.33% (see Figure 3A). Given that for this frame,
the number of HMMs was equal in both conditions,
a theoretical chance level classification accuracy for it
was 50%. Based on these two pieces of information,
one could judge that the classifier performed reasonably
well. However, the empirical chance level that we
calculated (see the Classification analysis section)
was 69.93%—almost 20% higher than the theoretical
50%, which changes the evaluation of the classifier
performance. This phenomenon, although explained
within the context of a single frame, was pervasive
throughout our dataset (Figure 2A). We hypothesized
that it stemmed from a high feature-to-sample ratio
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Figure 3. Results from the different variants of the classification analysis. Dots on all panels represent individual critical frames. The
results for HMMs before and after their dimensionality has been reduced by retaining only their first principal component are shown
on, respectively, (A and B). Notice that the dimensionality reduction leads to lower chance levels and an increase in the percent of
frames classified above chance. For details, see the section HMMs and classification: Caveat one—chance levels. (C) For each frame,
the highest and the lowest classification accuracy obtained in 10 repetitions of the classification analysis, where each repetition was
conducted on HMMs fitted after initializing the random number generator with a different seed (number). For details, see the section
HMMs and classification: Caveat two—a random number generator. Note that the ordering of frames is different on each panel:
on (A and B), they are ordered by the increasing obtained accuracy, whereas on (C) they are ordered by the increasing lowest
accuracy. Red circles on all panels indicate results for the same critical frame. On the left-hand side of each panel, marginal density
plots are presented. HMM = hidden Markov model.

(Vabalas, Gowen, Poliakoff, & Casson, 2019, esp.
Figure 6; see also Combrisson & Jerbi, 2015). Recall
that each HMM constituting an individual sample in
our classification procedure consisted of 24 numbers,
and each number was a value of a single feature.
Given that 48 scanpaths were registered on the frame
considered here (and, in consequence, 48 HMMs
were fitted), the feature-to-sample ratio for that frame
amounted to 1

2 . It is known that feature-to-sample
ratios of that magnitude lead to discrepancies
between theoretical chance levels and empirical chance
levels (Combrisson & Jerbi, 2015; Vabalas et al.,
2019).

To confirm empirically that the high chance levels
resulted from the high feature-to-sample ratios, we
reduced the dimensionality of our data and conducted
the classification analysis again. The reduction lowered
the feature-to-sample ratios (because it decreased the
number of features while preserving the number of
samples), and consequently, we expected to observe
lower chance levels. To perform the reduction, we used
principal component analysis (implemented in Matlab
function pca). We applied it separately to each set of
HMMs fitted to scanpaths registered on a single critical
frame. Then, in each set, we discarded all principal
components but the first. Thereby, we reduced the
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number of values describing an individual HMM from
24 (Figure 2) to one. The first principal components
we retained could, on average, explain 40.21% of the
variance (SD = 7.85) in the data.

In line with our expectations, this time, the
classification analysis yielded lower chance levels, as
well as lower accuracies (obtained accuracy: M =
53.84%, SD = 11.85; chance level accuracy: M =
49.88%, SD = 0.42) (Figure 3B). The average decrease
in the chance level between the full data and the
dimensionality-reduced data amounted to 18.97% (SD
= 1.4), whereas the average decrease in the obtained
accuracy—to 20.09% (SD = 17.85). The classification
result remained statistically significant (p = 0.008)
and interestingly, the percent of frames for which the
obtained accuracy exceeded the chance level increased
(from 56.25% for the data before the dimensionality
reduction to 82.5% here).

HMMs and classification: Caveat two—a random
number generator

The second caveat we want to highlight pertains to
the dependence of the HMM-fitting procedure—and, in
consequence, results of the classification analysis—on
an algorithm generating random numbers used in
this procedure. Computer-generated random numbers
are, in fact, pseudo-random (L’Ecuyer, 2012). That is,
they meet the mathematical criteria of being random
but are generated by a deterministic algorithm. In
most programming languages, such algorithms are
called random number generators, irrespective of their
specifics. Many, if not all, of these generators require
initialization with a number called the seed. For a
given seed, they always produce the same sequences
of (pseudo)random numbers. Here, we observed that

initializing a random number generator with different
seeds and then fitting HMMs to the scanpaths resulted
in different HMMs each time. This observation was
perhaps unsurprising, given that the procedure of
fitting the models relies on this generator. What
was surprising, however, was the magnitude of the
downstream effects the seed had on the classification
results. We discovered this phenomenon by accident
and investigated it systematically afterward.

To this end, we fitted HMMs to our scanpaths
10 times, each time initializing the random number
generator with a different seed (using the Matlab
function rng with default settings that indicated using
Mersenne Twister generator). We made an arbitrary
choice to use the first 10 unique Fibonacci numbers
as the seeds. Having obtained 10 distinct sets of
HMMs, we conducted the classification analysis with
dimensionality reduction described in the previous
section on each set separately.

The summary results of these 10 analyses are
reported in Table 1. We observed that mean chance
level classification accuracy and median obtained
classification accuracy remained stable across the
10 repetitions, while mean obtained accuracy and
the percent of frames classified above chance were
more variable. This variability was accompanied by
differences in the outcomes of the statistical test—the
results were statistically significant in seven out of 10
cases (see the p value for the mean column).

Additionally, for each critical frame, we compared
the highest and the lowest classification accuracy
obtained in the 10 repetitions of the classifications
analysis (see Figure 3C). This comparison revealed that
the lowest accuracies (M = 37.72%; SD = 22.1) varied
between frames much more than the highest accuracies
(M = 60.72%; SD = 4.92).

Seed

Mean obtained
classification
accuracy (SD)

Mean chance level
classification
accuracy (SD)

Median obtained
classification
accuracy (IQR)

Percent of frames
classified above

chance
p value for
the mean

0 50.29 (17.05) 49.93 (0.38) 56.25 (10.42) 75 0.421
1 52.8 (14.88) 49.99 (0.37) 56.25 (8.29) 78.75 0.042
2 51.94 (15.23) 49.97 (0.36) 55.9 (10.42) 77.5 0.124
3 53.49 (12.44) 49.93 (0.37) 56.25 (7.87) 81.25 0.013
5 54.3 (10.31) 49.92 (0.4) 56.25 (7.98) 78.75 0.002
8 53.18 (13.57) 49.92 (0.35) 55.9 (8.84) 81.25 0.019
13 54.08 (12.55) 49.95 (0.36) 56.25 (8.33) 83.75 0.003
21 52.26 (14.83) 49.97 (0.4) 56.25 (8) 81.25 0.084
34 53.66 (13.2) 49.92 (0.38) 56.39 (8.33) 83.75 0.011
55 53.2 (14.2) 49.96 (0.39) 56.25 (9.35) 83.75 0.021

Table 1. Results of the classification analysis with dimensionality reduction conducted on the 10 sets of HMMs fitted to the same
scanpaths but differing regarding the seed of a random number generator used in the fitting procedure. IQR = interquartile range;
SD = standard deviation. Each p < 0.05 is printed in bold.
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Figure 4. Absolute values of loadings of HMM coefficients in the first principal components. Each boxplot shows the distribution of
these values across all critical frames. Colors (see plot legend) encode elements of HMMs to which different coefficients (labelled on
the x-axis and explained in the text) belong. Note that here, unlike in Figure 2, we treat the centers of ROIs (states) and their
covariance matrices as separate elements of HMMs and indicate them with different colors. HMM = hidden Markov model;
ROI = region of interest.

Loadings of the first principal components: Analysis and
interpretation

Given that the first principal component alone
was sufficient for classifying our scanpaths to the
two conditions with the above-chance accuracy, we
investigated what information was carried by it. This
information was likely crucial for the classification
accuracy and, therefore, provided insights into the
nature of the differences in gaze behavior between
our conditions. Importantly, these insights are
complementary to the insights gained in our previous
article (Pedziwiatr, Heer et al., 2023) because here,
owing to the interpretability of the HMM coefficients,
they would take the spatiotemporal properties of
scanpaths and their relationship to the frames’ content
into account.

However, retrieving any information from the
principal components first required deciding on the data
from which to retrieve it, that is, selecting a specific set
of HMMs for each critical frame out of the 10 we fitted
using different seeds of a random number generator.
We already knew that this selection might affect our
findings, so we conducted it in a principled manner.
Specifically, we guided it using our previous results and
for each frame we opted for the HMMs fitted using
the seed for which the classification accuracy was the
highest. Therefore, here, the HMMs we selected for
different frames could be fitted using any 1 of the 10
seeds, but all HMMs fitted to scanapths registered on a
given frame were always fitted using the same seed. We
decided to select these HMMs because we assumed that
they best captured the differences between conditions
within each frame.

Recall that each HMM consists of 24 numbers
(coefficients) that define its three elements (Figure 2):

ROIs corresponding to the states (each was defined
by the coordinates of its center and the coefficients
of its covariance matrix), a transition matrix, and a
prior. Calculating the principal components of a set of
HMMs involved calculating the weights given to each
HMM coefficient in each component. These weights
are called “loadings.” The absolute value of a given
loading determines the importance of its corresponding
coefficient to a given principal component. Therefore,
the analysis of loadings can reveal which coefficients are
responsible for the majority of variance in the data—the
loadings of these coefficients have high absolute values
in the initial principal components. Given that the
loadings for each critical frame were calculated for
HMMs fitted to scanpaths from both conditions, the
variability in the data they characterize is expected to
stem from the differences in eye movements between
conditions.

Figure 4 shows the absolute values of loadings for
each HMM coefficient in the first principal components
of all sets of HMMs fitted to the scanpaths (see
the Supplemental Material for the analogical plot
presenting loadings for all principal components).
Examining this Figure provides several insights into
the specifics of the gaze patterns we registered. The
coefficients of the covariance matrices that determine
variance along the horizontal dimension in each ROI (in
other words, ROI width) had the highest absolute values
of loadings (cov1X, cov2X, and xov3X in the plot).
Therefore, the eye movements along this dimension
were the aspect of gaze behavior that varied between
observers the most, and given that we observed the
identical pattern in the loadings from the components
from two to seven, it was the primary source of variance
in the data. This phenomenon can be considered jointly
with the low importance of the state (ROI) centers
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(c1X, c1Y, c2X, c2Y, c3X, and c3Y). Then, both can be
meaningfully interpreted if one considers that frames
were wider than taller and that many depicted several
characters with heads located at similar heights but
spread horizontally. Social information strongly attracts
fixations (Birmingham et al., 2008; Cerf et al., 2009;
End & Gamer, 2017; Flechsenhar & Gamer, 2017), so
most participants likely fixated frame regions showing
the heads, which resulted in the low variability in
ROI center locations. However, the high variability in
ROIs widths indicated the degree to which different
participants were shifting their gaze within and around
regions occupied by heads or other key scene elements
was variable. The direction along which this variability
occurred (horizontal) likely resulted from the aspect
ratio of the frames and the distribution of content in
them.

Next, the low importance of the transition matrix
determining the probabilities of transitioning between
the ROIs (whose coefficients are marked in the plot as
tm11, tm12, and so on) might seem difficult to reconcile
with the observation that there was high variability in
the eye movements along the horizontal direction, but
this is not the case. The states (ROIs) usually covered
the locations of multiple fixations, so although the
variance resulting from fixating different regions within
ROIs was high between observers, the order in which
the different ROIs were inspected (and the ROI center
locations) could remain relatively stable.

Finally, upon closer inspection of Figure 4, one
can notice that cov2X has a lower loading in the first
component than cov1X and cov3X. This difference
likely stems from the second state usually being in
the middle of the frame—it, therefore, captured
the initial eye tracker samples that landed on the
central frame region overlapping with where the
fixation dot preceding each frame was displayed (it
captured other samples as well). This issue might also
explain the low importance of the prior (probability
distribution determining how likely each state is to
be fixated first; p1, p2, and p3 in the plot) —it was
likely similar between participants because all of them
were starting frame exploration from the same central
position.

To summarize, the two conditions differed mainly
regarding the degree of horizontal spread of the
eye movements around the clusters of key elements
of the scenes (mainly, but not exclusively, human
heads) that were usually aligned along the horizontal
direction. This result dovetails with findings from
our previous article (Pedziwiatr, Heer et al., 2023), in
which we showed that in the discontinuous condition,
participants exhibited slightly more exploratory
gaze behavior than in the continuous condition.
Therefore, while our previous work revealed the
nature and direction of the effects of prior knowledge
on gaze behavior, here we gained insights into the

relationship between these effects and specific image
content.

Distances-to-boundaries analysis
Finally, we exploited the fact that HMMs holistically

describe individual scanpaths—and thereby may
capture participant-specific characteristics of eye
movements—by investigating if our participants
exhibited any idiosyncratic patterns of oculomotor
behavior. Specifically, we examined if the strength
of the effects of prior knowledge on eye movements
was influenced by the individual characteristics of
participants. This issue is interesting because the
latter scenario would hint at the existence of yet
unknown individual differences in the reliance on prior
knowledge for gaze guidance. To address issue, we relied
on a geometrical interpretation of the classification
analysis conducted on the reduced-dimensionality data.
According to this interpretation, the classifier creates
a plane in a multidimensional space (classification
boundary) and points (scanpaths) belonging to different
conditions are on each side of the plane. In this
distances-to-boundaries analysis, we measured how
far from the classification boundary the scanpaths of
the individual participants were on average in each
condition and then tested if these averages were related
between conditions. However, because of our design,
these averages were, by necessity, calculated over
different sets of critical frames. This fact renders the
interpretations of the results—which were statistically
significant—challenging. Despite these interpretation
difficulties, we believe that our distances-to-boundaries
analysis may still hint at underexplored individual
differences in gaze control, so we report it in the
Supplemental Material.

Experiment 2: Main results

Recall that our study consisted of two similar
experiments, differing with respect to the placement
of the attention-check questions. In experiment 1—in
which the data presented in all the previous sections was
collected—these questions were shown to participants
after each critical frame. Given that in the discontinuous
condition the critical frames were noticeably different
from the context frames preceding them, it is possible
that they acted as warning signals about the upcoming
questions that prompted participants to adjust their
viewing strategy. This adjustment could not be made in
the continuous condition, in which the critical frames
belonged to the same films as the context frames
and were, therefore, inconspicuous. To ensure that
the predictability of the questions in one condition
but not in the other did not underlie the differences
between conditions that we attributed to the relevance
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Seed

Mean obtained
classification
accuracy (SD)

Mean chance level
classification
accuracy (SD)

Median obtained
classification
accuracy (IQR)

Percent of frames
classified above

chance
p value for
the mean

0 50.02 (15.46) 49.95 (0.32) 54.55 (8.71) 73.75 0.504
1 48.85 (16.8) 49.92 (0.37) 53.49 (11.82) 70 0.745
2 53.34 (12.76) 49.9 (0.32) 56.32 (7.91) 82.5 0.017
3 49.76 (17.37) 49.92 (0.3) 54.55 (7.98) 77.5 0.552
5 49.55 (17.86) 49.94 (0.36) 55.56 (9.31) 72.5 0.605
8 50.7 (14.95) 49.93 (0.34) 54.55 (7.98) 77.5 0.328
13 50.34 (16.58) 49.88 (0.35) 55.05 (10) 77.5 0.398
21 50.05 (17.03) 49.89 (0.32) 55.56 (9.22) 77.5 0.473
34 48.32 (18.02) 49.99 (0.36) 54.55 (9.09) 73.75 0.848
55 52.68 (13.22) 49.83 (0.37) 55.56 (8.04) 81.25 0.035

Table 2. Results of the same analysis as presented in Table 1 (classification analysis of 10 sets of HMMs differing regarding the seed of
a random number generator used when fitting them) for data from experiment 2. IQR = interquartile range; SD = standard deviation.
Each p < 0.05 is printed in bold.

of the participants’ prior knowledge to critical frames’
content, we conducted experiment 2. Fifty participants
took part in it. This experiment had an identical
structure and used identical stimuli as experiment 1 but,
crucially, the attention-check questions could appear
after any frame (see Pedziwiatr, Heer et al. [2023] for
details). Therefore, the occurrence of questions was
no longer predictable, and participants did not have
the opportunity to adjust their oculomotor behavior in
anticipation of them.

We repeated two key analyses reported in previous
sections on data from experiment 2. The first was the
classification analysis with the dimensionality reduction
for different seeds of a random number generator
(described in the section HMMs and classification:
Caveat two—a random number generator); see Table 2
for the results. In comparison with experiment 1,
for experiment 2 fewer outcomes were statistically
significant (two vs. seven) and the mean obtained
accuracies were lower. Interestingly, when we analyzed
metrics of oculomotor behavior calculated for the same
data, we found largely similar differences between our
conditions as in experiment 1 (Pedziwiatr, Heer et al.,
2023). This discrepancy indicates that HMMs are less
sensitive to our effects of interest than our previous
approach. The second analysis we repeated was the
analysis of loadings of the first principal components.
Its results were essentially identical as in experiment1
and we include them in the Supplementary Material.

Discussion
In our study, we investigated how recently

accumulated knowledge affects eye movements to
natural scenes. We used static film frames arranged in

sequences that differed regarding all frames except the
last one, called the critical frame. In the continuous
condition, frames presented before the critical frame
(called the context frames) were the frames preceding
it in a film from which it was extracted. In the
discontinuous condition, the context frames were
extracted from a different film. In consequence,
participants always viewed the critical frames after
acquiring knowledge of some unfolding events,
but, crucially, this knowledge was relevant to the
content of the critical frames only in the continuous
condition. In our previous article (Pedziwiatr, Heer
et al., 2023), we compared several characteristics of
gaze behavior between these two conditions and found
that in the discontinuous condition, participants’
eye movements were more exploratory than in the
continuous condition. Here, we analyzed the same
data using a novel approach, complementary to the
one we adopted previously, and investigated if the
information contained in the spatiotemporal patterns
of eye movements was sufficient to distinguish between
our conditions. To this end, we fitted a HMM to each
scanpath we recorded and, for each critical frame
separately, tested how well a simple classifier could
assign these HMMs to experimental conditions from
which their underlying scanpaths originated. We found
that this was the case and, additionally, identified two
interesting caveats of the HMMs-based approach. Next,
we explored the HMMs fitted to the data and found that
horizontal eye movements were likely the feature that
was the most important for the classification process
(see the Loadings of the first principal components—
Analysis and interpretation section for a detailed
discussion).

Our study draws from the tradition of typical image
viewing studies that involve showing multiple static
images to participants in well-controlled laboratory
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conditions. In the majority of such studies the images
are unrelated to each other and therefore, for any given
image, the information from images preceding it is
irrelevant to its content. In our study, in contrast, the
frames were related to each other. Importantly, this
relatedness was constituted by the unfolding of depicted
events, so it often extended beyond mere similarity in
the visual features of successive frames in a sequence.
These features often varied from frame to frame
substantially because the sequences often included
changes in camera position between the frames or
changes in the location of events (e.g., a man shown in
a car in one frame is shown on the street next to that
car in a subsequent frame, indicating that he got out
of it).

By using these stimuli, we bridged the gap between
studies that largely ignored knowledge accumulation,
and at least one branch of research that focused on
it: research on visual-narrative understanding. In
our previous article we argued that visual-narrative
understanding offers a useful framework for
interpreting our results (Hutson, Smith, Magliano,
& Loschky, 2017; Hutson et al., 2018; Hutson et al.,
2022; Loschky et al., 2020; Smith, 2012). It is based
on the assumption that accumulating knowledge
about events as they unfold leads to the formation of
a mental model that is constantly updated with the
upcoming information (Loschky, Larson, Smith, &
Magliano, 2020). According to this framework, the
differences in eye movements we observed between
our conditions reflect the fact that in the continuous
condition, but not in the discontinuous, information
from the critical frame could be incorporated into
the current mental model of events. Therefore, these
differences demonstrate that the recently accumulated
prior knowledge is being taken into account in gaze
guidance. Here it must be mentioned that this type
of knowledge is not the only type of knowledge that
contributes to gaze guidance. Another type of such
knowledge is general knowledge about the world and
regularities within it, for example, the knowledge about
typical contexts in which certain objects appear (e.g.,
tractors, but not octopuses, are typical for barnyards;
Loftus & Mackworth [1978]; see also Coco, Nuthmann,
& Dimigen [2020] and, for a review, Võ, Boettcher, &
Draschkow, [2019]). How the recently accumulated
prior knowledge interacts with it in gaze guidance
posits a research questions we intend to pursue in the
future.

The effects of prior knowledge—likely underpinning
the classification accuracy—were stronger in experiment
1 than in experiment 2. There are two points we would
like to make based on these observations. First, it
is noteworthy that in our previous analysis of the
same data, in which we compared multiple metrics of
oculomotor behavior between conditions, we found
similar effects in both experiments (Pedziwiatr, Heer et

al., 2023). This suggests that the classification analysis,
although it facilitates complex data exploration, is less
sensitive to the differences between conditions than
our previous approach. Second, these quantitative
differences between the results of our two experiments
likely stem from the differences between the two
experimental procedures. In experiment 1, an
attention-check question was asked after each critical
frame and therefore, in the discontinuous condition
only, the critical frames were reliable predictors
of the upcoming questions (because only in this
condition were these frames markedly different from
the preceding frames). This predictability could
lead to the anticipation of the questions potentially
eliciting an adjustment of eye movements. The
presence of this adjustment in one condition, but
not in the other, likely led to the higher classification
accuracy.

Although the obtained classification accuracy
differed between our experiments, it was rather low in
both. One factor that might explain this low classifier
performance is that critical frames usually contained
only several regions strongly attracting fixations
(usually human faces). Given that the scope of locations
likely to be fixated was limited, the variability in
scanpaths—and, in consequence, the variability in the
HMMs fitted to them—was limited too. Therefore,
the differences between conditions that the classifier
aimed to capture had a limited ‘space’ to manifest
themselves. An even more important reason why the
classification accuracy was rather low is that we did
not undertake any steps to maximize it (e.g., we did
not test multiple classifiers). This was because accuracy
maximization was not our goal. Rather, we wanted
to demonstrate the classification analysis as a proof
of concept and then use it as a springboard for data
exploration.

Nevertheless, although we did not strive to maximize
the classification accuracy, we identified two caveats
of our approach that influence it. First, we observed
that both chance level and obtained classification
accuracies depended on the feature-to-sample ratio,
that is, the ratio of the number of values describing
a single HMM (features) and a number of HMMs
being classified (samples). For our raw data, this
ratio was high enough to substantially inflate both
accuracies. A straightforward way to address this issue
was to reduce data dimensionality using principal
components analysis. This reduction not only made the
interpretation of results easier owing to the alignment
of empirically determined and theoretical (intuitively
expected) chance levels, but also increased the percent
of frames classified above chance. This caveat, known
in the machine learning literature (Combrisson & Jerbi,
2015; Vabalas et al., 2019), to our best knowledge has not
yet been highlighted in the context of eye-movements
modelling.
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The second caveat we identified was that the seed of
a random number generator used when fitting HMMs
to scanpaths can have a profound influence on the
results of classification analysis. Repeating this analysis
10 times, each time using HMMs fitted after initializing
the random number generator with a different seed,
lead to three interesting observations. First, we found
that out of several measures of classifier performance
we calculated for our set of frames (Table 1), median
obtained classification accuracy was the least variable
across the 10 repetitions, which suggests that this
measure is most robust to changes of the seed. Second,
the differences between the highest and the lowest
classification accuracies obtained for HMMs fitted
using different seeds were often substantial. Therefore,
our results suggest that in analytical settings similar to
ours, it is advisable to report classification accuracies
for a range of random seeds. Our third observation
was that the permutation-based statistical test that
we used did not yield homogenous results for our 10
different sets of HMMs, which suggests that caution
needs to be exercised whenever drawing conclusion
from its outcome. These three observations (and the
observations we made regarding the first caveat) do not
constitute an in-depth analysis of the consequences of
the caveats we found. Such analysis, while potentially
insightful, is beyond the scope of the present
article.

To summarize, we recorded the eye movements
of participants viewing static film frames (called
the critical frames) in two conditions. These
conditions differed regarding the prior knowledge
that could be accumulated before viewing these
frames. In one condition, this knowledge was
relevant to their content, in the other—it was not.
We modelled individual scanpaths as HMMs and
applied machine learning techniques to analyze
them. Although this approach enabled complex data
exploration, we found that it was not free from caveats.
Nevertheless, and most importantly, it shed light on
the underexplored factor contributing to the control
of eye movements, namely, recently accumulated
prior knowledge.

Keywords: eye movements, prior knowledge, scene
perception, individual differences
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