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Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme
Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has
also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here,
we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II
(PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over
during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where effi-
cient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to
the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of
chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a
moderate delay in the onset of PSII damage. Based on measurements of DpH formation and cyclic electron flow, we pro-
pose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI
damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution
during short-term responses to light.

Introduction

Electrons excited at photosystem I (PSI) reduce ferredoxin
(Fd), and the majority of these are used by the enzyme

Fd:NADP(H) oxidoreductase (FNR) to generate NADPH
(Shin et al., 1963), which is required for CO2 fixation. In
Angiosperms, FNR is tightly bound to the thylakoid mem-
brane tethers thylakoid rhodanase-like (TROL) protein and
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translocon at the inner envelope of chloroplasts 62 (Tic62)
in the dark (Juric et al., 2009; Benz et al., 2010; Yang et al.,
2016), but this association is weakened at higher pH in vitro,
and in the light (Alte et al., 2010). Association of FNR with
PSI is also reported (Andersen et al., 1992; Marco et al.,
2019), and based on immunogold labeling it was proposed
that FNR released from the Tic62/TROL tethers in the pres-
ence of light could be localized at PSI (Kramer et al., 2021).
Oxidized PSI is re-reduced with electrons from plastocyanin
(Hippler and Drepper, 2006), which shuttles them through
the thylakoid lumen from the cytochrome b6f complex (Cyt
b6f). The Cyt b6f is reduced in turn by plastoquinol (PQH2),
which is the electron acceptor at photosystem II (PSII). This
plastoquinone (PQ) reduction and oxidation drives forma-
tion of DpH, which is used by the thylakoid ATPase to syn-
thesize ATP.

Photoexcitation of PSI can alternatively be used to form
DpH by returning electrons from Fd to PQ through at least
two cyclic electron flow (CEF) pathways (Munekage et al.,
2004). One Fd:PQ reductase is a homolog of respiratory com-
plex I, known as the NDH (Burrows et al., 1998; Shikanai
et al., 1998; Yamamoto and Shikanai, 2013), while the mecha-
nism of the other Fd:PQ reductase, which is inhibited by anti-
mycin A (AA), remains enigmatic (Munekage et al., 2002;
Fisher and Kramer, 2014; Nawrocki et al., 2019). Proposed
mechanisms involve the function of the proton-gradient regu-
lation 5 (Pgr5) and Pgr5 like 1 (PgrL1) proteins (Munekage
et al., 2002; Hertle et al., 2013) and/or direct electron dona-
tion from Fd or even FNR to PQ at the Cyt b6f (Zhang et al.,
2001; Nawrocki et al., 2019; Sarewicz et al., 2021). FNR has
also been co-purified with the Cyt b6f (Clark et al., 1984;
Zhang et al., 2001) and interaction is reported with PgrL1
(DalCorso et al., 2008). We have recently reported that FNR
binding to the thylakoid through either the TROL or Tic62
membrane tethers is necessary for CEF when Arabidopsis
(Arabidopsis thaliana) plants are transferred from the dark to
the light (Kramer et al., 2021), a condition in which CEF is
upregulated (Joliot and Joliot, 2006).

Production of damaging reactive oxygen species (ROS)
increases in the absence of acceptors at either photosystem.
If PQ availability at PSII is limiting, excitation is transferred
from triplet-state chlorophyll to O2, producing dangerous sin-
glet oxygen (1O2) (Telfer et al., 1994; Krieger-Liszkay, 2005).
This occurs even at very low light, and the reaction center
subunit of PSII (D1) is constantly turned over to ensure func-
tional PSII (Fufezan et al., 2002). To minimize such damage,
excitation at PSII can be dissipated through non-
photochemical quenching (NPQ) mechanisms induced by
acidification of the thylakoid lumen (Ruban, 2016; Ruban and
Wilson, 2020). Upregulation of this thermal dissipation in vivo
requires the PsbS protein and de-epoxidation of the xantho-
phyll pigment violaxanthin into zeaxanthin, both of which are
triggered by the formation of DpH (Ware et al., 2015; Sacharz
et al., 2017; Steen et al., 2020; Saccon et al., 2020a, 2020b).

If oxidized Fd availability at PSI is limiting, excited elec-
trons are passed from the iron–sulfur (FeS) clusters at the

stromal side of PSI to oxygen, forming superoxide (O2
•–)

(Allen and Hall, 1974), which is rapidly dismutated enzymat-
ically to hydrogen peroxide (H2O2) (Asada, 1999). This H2O2

can be converted to hydroxyl radicals (•OH) through Fenton
chemistry, a process catalyzed by the PSI FeS clusters in their
reduced state, resulting in their rapid destruction by the
resulting •OH (Sonoike et al., 1995; Sonoike, 2011).
Degradation of the PSI reaction center subunits quickly fol-
lows (Ivanov et al., 1998; Tjus et al., 1998) and this requires
costly reconstruction of the entire photosystem, which can
take days (Kudoh and Sonoike, 2002; Lima-Melo et al.,
2019a, 2019b). In angiosperms, this is prevented by restrict-
ing electron donation to PSI, maintaining the P700 active
center and FeS clusters in an oxidized state (Shimakawa and
Miyake, 2019; Storti et al., 2020). PSI donor limitation is pro-
moted either through downregulation/damage to PSII
(Ivanov et al., 1998; Tikkanen et al., 2014; Chaux et al., 2015),
or through “photosynthetic control” in which PQH2 oxida-
tion at the Cyt b6f is limited by high DpH (Tikkanen et al.,
2015; Colombo et al., 2016). It has been reported that the
role of CEF in photoprotection is related to enhanced gener-
ation of DpH to induce protective mechanisms, rather than
providing alternative PSI acceptors (Rantala et al., 2020).

Experiments on transgenic Nicotiana tabacum (tobacco),
with FNR either over-expressed or knocked down by anti-
sense, showed that FNR abundance corresponded with tol-
erance to high light and oxidative stress, and considerable
damage at PSII was detected when FNR contents were low
(Palatnik et al., 2003; Rodriguez et al., 2007). It was hypothe-
sized that FNR could be affording protection through its
role as a PSI acceptor, preventing build-up of electrons in
the thylakoid and possibly acting as a diaphorase to remove
radical species. We previously found that FNR could gener-
ate considerable O2

•– during turnover, and that stress reme-
diation pathways were upregulated in Arabidopsis over-
expressing FNR (Kozuleva et al., 2016). We interpreted this
as indicating the enzyme might confer stress tolerance by
“priming” the plant to induce increased abundance of pro-
teins involved in protective mechanisms, such as superoxide
dismutation, prior to stress exposure. FNR:membrane com-
plex associations are also implicated in stress responses. It
has been shown that FNR is released from the thylakoid
during oxidative stress (Palatnik et al., 1997), and plants
with different FNR:membrane associations also vary in stress
responses (Lintala et al., 2009, 2012; Kozuleva et al., 2016).

There has been much recent research on PSI photoinhibi-
tion, a considerable amount relating to how processes in
the post-PSI electron transfer cascade can relieve acceptor
limitation and prevent damage (Shimakawa and Miyake,
2018a, 2018b; 2019; Lima-Melo et al., 2019a, 2019b; Leister,
2020; Storti et al., 2020). However, there are no reports of
how this might relate to FNR abundance or location, despite
the fact that FNR abundance strongly corresponds to stress
tolerance (Palatnik et al., 1997, 2003; Rodriguez et al., 2007;
Kozuleva et al., 2016). In the work presented here, we dissect
the impact of changing FNR content and sub-chloroplast
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location on PSI and PSII. We find that when plants with per-
turbed FNR:membrane interactions are exposed to sudden
high light, there is specific photoinactivation of PSI. Dark re-
covery after illumination shows that PSI damage correlates
with this inactivation. Surprisingly, over the same timescale,
PSII is slightly less photodamaged than in the wild-type
(WT) as measured by fluorescence quenching in the dark
(qPd). Protection of PSI correlates with CEF capacity, the
rate of proton gradient (DpH) generation and is AA depen-
dent, but PsbS-mediated NPQ has a minimal effect on PSI
photoprotection. It is suggested that protection at PSI may
contribute to the stress tolerance conferred by FNR.

Results

Estimating PSI photoinactivation and PSII
photoinhibition during illumination
In order to differentiate between impact at PSII and PSI dur-
ing the illumination period, we first established high light
treatment protocols. To estimate the onset of damage at
PSII, we measured PSII capacity as Y(II) (Schreiber and
Klughammer, 2009) and the value of photochemical qPd,
which incorporates a comparison between actual and theo-
retical F0 values (Ruban and Murchie, 2012; Ruban, 2017) to
identify the early stages of PSII photodamage. We also de-
fined a protocol to estimate PSI capacity during illumination.
Although measurement of PSI capacity in plants following
dark adaptation (Pm) is well established (Yamori et al., 2016;
Shimakawa and Miyake, 2018a, 2018b; Rantala et al., 2020),
this is hard to accurately determine during illumination. We
followed the protocol of Klughammer and Schreiber (2008),
by briefly turning off the actinic light while applying a 10 s
far-red (FR) light pulse prior to a saturating flash. Here, we
call this transient P700 maximum (tPm) to help differentiate
it from the Pm values calculated following prolonged dark
adaptation/recovery.

To examine whether decreases in PSI capacity measured
during illumination (tPm) translate into photodamage as
calculated by Pm, we compared A. thaliana WT with a clas-
sic genetic model prone to PSI damage, the pgr5 mutant
(Takagi and Miyake, 2018; Rantala et al., 2020; Storti et al.,
2020). The tPm is relatively similar in pgr5 and the WT for
the first 5 min of high light (Figure 1), as it drops from 1 to
around 0.78. Thereafter, the WT stabilizes at around 0.75,
while pgr5 continues by decreasing further to around 0.35.
Some recovery is seen in both genotypes following 30 min in
the dark (to 0.85 for the WT and 0.4 for pgr5), indicating a
component of the decrease in tPm is not related to PSI
damage. For this reason, throughout the text, we refer to
decreases in tPm as PSI photoinactivation, as it contains a
recoverable component, while decreases in Pm following
dark relaxation are described as photodamage. A significant
�0.4 difference between WT and pgr5 values is consistent
between the final tPm and the dark recovered Pm. This con-
firms the predisposition of pgr5 to PSI photodamage, and
indicates that differences between WT and pgr5 tPm values
are predominantly due to PSI damage. Therefore, at least in

these conditions, tPm can provide an estimate of real-time
PSI photodamage, and this also confirms that damage to PSI
(a decrease in PSI activity by �15% after dark recovery) can
be achieved in WT Arabidopsis through the application of
15 min of high light.

FNR abundance and location are related to PSI
inactivation
As a first step to investigating the relationship between FNR
and photoinactivation at PSI and PSII, we analyzed the fnr1
knockout mutant of FNR1 in Arabidopsis, which has in-
creased susceptibility to high light stress (Kozuleva et al.,
2016). This was done over gradually increasing light intensity
to allow induction of PSII photoprotective mechanisms
(Wilson and Ruban, 2019, 2020). Measurements of tPm
(Figure 2A) showed greater photoinactivation of PSI in fnr1,
both at low and high light intensities. The PSI quantum
yield, Y(I), was decreased in fnr1 relative to the wt at lower
light intensities (Figure 2B). As expected for a mutant lack-
ing �50% of FNR (a component involved in acceptor regen-
eration at PSI), the fnr1 genotype showed significantly
greater acceptor limitation, Y(NA), than the WT (Figure 2C).
Surprisingly, the fnr1 genotype shows slightly less photodam-
age to PSII, as indicated by higher qPd and Y(II) values than
WT plants (Figure 2, D and E), although only Y(II) showed
statistical significance.

The fnr1 plants not only lack around 50% of the WT FNR,
but also additionally show a change in the location of the
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Figure 1 Suitability of the tPm parameter to follow PSI inactivation
during the light. Timing of the changes in light intensity is indicated
above the graph: The grey bar indicates a step-wise increase to first
543, then 692 mmol photon m–2s–1 (1 min each). The white bar indi-
cates continuous illumination at 1,385 mmol photon m–2s–1, and the
black bar indicates a dark relaxation period. WT (black squares) and
pgr5 (open right-pointing triangles). tPm was measured upon illumi-
nation. Absolute Pm was determined after 30 min of dark adaptation.
Data shown are mean ± SEM (n5 3 individuals per genotype).
Differences attributed by post hoc honest significant difference
Tukey’s test. P values are indicated as “***” 5 0.001, “**” 5 0.01, “*”
5 0.05, “.” 5 0.1.
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remaining enzyme (Lintala et al., 2007; Hanke et al., 2008),
due to low interaction with Tic62 and TROL (Benz et al.,
2010). To understand whether the phenotype of fnr1 is due
to decreased FNR content or altered FNR interactions, we an-
alyzed the tic62/trol double mutant, which lacks both
FNR:membrane tether proteins. The tic62/trol mutant retains
higher levels of FNR than the fnr1 mutant, although still less
than the WT (Lintala et al., 2014). Relative to the WT, tic62/
trol and fnr1 show a similar decrease in tPm (Figure 3A),
which becomes significant at higher light intensities, although
the PSI acceptor limitation is much lower in tic62/trol (Figure
3C). Similar increases in qPd and Y(II) are also seen between
the genotypes (Figure 3, D and E). To compare real-time pho-
toinactivation at PSI and photodamage to PSII, we plotted
qPd against tPm (Figures 2, F and 3, F). Although there
appears to be a negative correlation between tPm and qPd,
this is unlikely to be causative, because the parameters show
poor correlation in the WT, fnr1 and tic62/trol genotypes
(R 2= 0.330, 0.451, and 0.512, respectively).

Both fnr1 and tic62/trol plants have disrupted FNR:tether
protein interaction and decreased total FNR content. To try
and distinguish the impact of FNR interactions from FNR
abundance, we exploited plants in which the fnr1 mutant
was complemented with genes for FNR proteins that specifi-
cally interact with TROL (ZmFNR1), Tic62 (ZmFNR2) and
only show weak interaction with either tether (ZmFNR3)
(Twachtmann et al., 2012; Kramer et al., 2021). Chloroplasts
of these plants previously showed equivalent FNR immunos-
taining to the WT (Kramer et al., 2021). We aimed to use
the fnr1:ZmFNR3 line to establish whether WT levels of en-
zyme, weakly bound to the Tic62/TROL tethers could pre-
vent the decreased tPm seen in fnr1 and tic62/trol. Because
antigenicity of iso-proteins may vary, we confirmed that
NADPH dependent Fd reduction activity of leaf crude
extracts was roughly equivalent between WT (0.26mmol–1

mg protein–1 s± 0.002 SD) and fnr1:ZmFNR3 (0.24mmol–1 mg
protein–1 s± 0.014 SD). On increasing light intensities, the PSI
parameters of fnr1:ZmFNR3 did not fully recover to WT
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Figure 2 A comparison of PSI and PSII inactivation over increasing light intensity in WT (black squares) and fnr1 (open circles). A, tPm. B,
Effective quantum yield of PSI (Y(I)). C, acceptor limitation at PSI (Y(NA)). D, photochemical quenching of PSII in the dark (qPd). E, Effective quan-
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levels, although this was not statistically significant, and de-
veloped significantly higher Y(II) values (Supplemental Figure
S1). This similar profile of fnr1:ZmFNR3 to tic62/trol and fnr1
indicates that membrane tether association might indeed be
related to the relationship between FNR and stress toler-
ance. By contrast, Supplemental Figure S1 shows that
fnr1:ZmFNR1 and fnr1:ZmFNR2, which interact strongly
with TROL and Tic62, respectively, were almost identical to
the WT in terms of tPm, Y(I), qPd, and Y(II).

PSI photoinactivation is partly independent of
acceptor limitation
To further probe the relationship between stress tolerance
and FNR:membrane tether interactions, we selected three
specific genotypes for further experiments: WT; the tic62/
trol mutant, which lacks FNR:membrane tether interactions;
and the fnr1:ZmFNR1 line, which contains WT levels of FNR
and increased FNR:TROL interaction (Kramer et al., 2021).

Interaction of FNR with TROL is stronger than Tic62 (Alte
et al., 2010), so fnr1:ZmFNR1 has exaggerated FNR:tether
binding in comparison to the WT.

These genotypes were then subjected to a sudden applica-
tion of high light (as in Figure 1) to promote rapid PSI dam-
age. Figure 4A shows that tPm values were significantly
lower in the tic62/trol mutant over the high light treatment
(Figure 4A). This is despite the fact that Y(NA) values indi-
cate acceptor limitation does not vary between WT and
tic62/trol (Figure 4C). In contrast to the pgr5 mutant (Figure
1), PSI inactivation occurred rapidly during the initial part of
the treatment. Importantly, the statistically significant �0.1
difference between WT and tic62/trol tPm values over illu-
mination is also seen in the Pm values, measured after a 30-
min dark recovery. This indicates that the difference be-
tween WT and tic62/trol tPm values is due to increased
photodamage at PSI. Although FNR content in the tic62/trol
mutant is greater than the fnr1 mutant, it is still decreased
in comparison to the WT (Lintala et al., 2014). As a further
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control to distinguish between the impact of decreased total
FNR dose and decreased FNR:Tic62/TROL interactions, we
also tested the fnr1 mutant line complemented with maize
FNR3, which has a low affinity for TROL and Tic62.
Interestingly, treatment of fnr1:ZmFNR3 with sudden high
light resulted in significantly decreased tPm values relative
to WT within 1 min (Figure 4D). As in the case of the tic62/
trol mutant, there was no difference in PSI acceptor limita-
tion as measured by Y(NA) for either fnr1:ZmFNR3 (Figure
4F) or the fnr1 mutant (Supplemental Figure S2). This con-
firms that the impact of FNR:tether interactions on PSI pho-
todamage is at least partly independent of acceptor
limitation.

FNR abundance and location are important for CEF
and DpH generation
Apart from preventing acceptor limitation at PSI, another
mechanism by which FNR could prevent photoinactivation
is through a role in CEF, to restrict electron supply to PSI.
We have recently shown that short-term induction of CEF
on transfer from dark to light is dependent on FNR:tether
interactions (Kramer et al., 2021). This data showed that the
fnr1 mutant lost CEF capacity, and that this could be res-
cued by expression of ZmFNR1 (strong TROL binding) but
not ZmFNR3 (weak tether interactions). We, therefore, com-
pared relative CEF capacity of WT and the tic62/trol mutant
following either dark adaptation, or light acclimation (Figure
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to first 543, then 692 mmol photon m–2s–1 (1 min each). The white bar indicates continuous illumination at 1,385mmol photon m–2s–1, and the
black bar indicates a dark relaxation period. A and D, tPm was measured over illumination. Absolute Pm was determined after 30 min of dark ad-
aptation. B and E, Effective quantum yield of PSI (Y(I)). C and F, Acceptor limitation at PSI (Y(NA)). A–C, Data shown are means± SEM (n5 3 indi-
viduals per genotype). Significant differences were attributed by post-hoc honestly significant difference Tukey Test and P values 50.05 are
indicated as the following letters: “a” for WT, fnr1:ZmFNR1 6¼ tic62/trol; “b” for WT 6¼ tic62/trol. D–F, Differences from WT attributed by Student’s
t test. P values indicated by “***”50.001, “**”50.01, “*”50.05, “.”50.1.
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5A). CEF is elevated in the WT after dark adaptation as pre-
viously reported (Kramer et al., 2021), but not in the tic62/
trol mutant. CEF has the capacity to accelerate generation
of DpH and we therefore compared the rate at which DpH
is generated at the onset of light. Initially, 312mmol photon
m–2 s–1 was used, and we confirmed that this light intensity
was saturating by repeating the experiment at 586mmol
photon m–2 s–1 (Figure 5B). Dark-adapted chloroplast prepa-
rations from WT, fnr1:Zm-FNR1, and tic62/trol, had equiva-
lent Fv/Fm values of 0.74± 0.01, 0.72± 0.04, and 0.70± 0.03,
respectively, indicating that chloroplasts were of equivalent
quality. We found no significant difference between the am-
plitude of fluorescence quenching of the three genotypes.
However, we observed a �30% increase in the half time to
reach maximum fluorescence quenching in tic62/trol com-
pared to the WT and fnr1:ZmFNR1 (Figure 5C) at both irra-
diance intensities. As the same genotype shows an inability
to upregulate CEF on dark adaptation, caused by disruption
of FNR:tether interactions, it is highly likely that the de-
creased rate of DpH development upon transitions from
darkness to light is due to a missing contribution of CEF to
proton pumping. To further investigate whether an inability
to upregulate CEF on transition to higher light results in the
decreased tPm values measured in the tic62/trol and
fnr1:ZmFNR3 plants, we examined the impact of the classical
CEF inhibitor AA on tPm. Figure 5D shows that infiltration
of leaves with 5mM AA is sufficient to eliminate the differ-
ence in tPm between WT and fnr1:ZmFNR3, while the differ-
ence between WT and tic62/trol ceases to be significant.
Infiltration with methyl viologen (MV), which should com-
pete with FNR for reduced electrons, also eliminates this dif-
ference but only on a longer timescale.

Faster development of DpH might accelerate PSI oxida-
tion, and therefore protection, by inducing PsbS-dependent
NPQ to limit the flux of electrons from PSII (Tikkanen et al.,
2014; Chaux et al., 2015). We, therefore, compared how
NPQ induction over increasing light intensities influenced in-
activation of PSI (tPm). Figure 6 shows that there is no sig-
nificant difference in NPQ values between the genotypes,
and that tPm does not correlate with NPQ development
over increasing light intensity. To further evaluate whether
PsbS-dependent NPQ might play a role in protecting PSI
from photoinactivation in Arabidopsis, we also measured
genotypes with enhanced NPQ (L17) (Li et al., 2002), or
compromised NPQ (npq4) (Havaux and Niyogi, 1999; Figure
6), confirming that, under these conditions at least, there is
no relationship between NPQ and tPm. We further treated
these genotypes with the sudden high light protocol
(Supplemental Figure S3, C–E) which resulted in similar tPm
and final Pm values for WT, L17, and npq4. This result sug-
gests that NPQ does not limit PSI re-reduction in either
condition measured here.

Any mechanistic role of FNR in CEF remains unclear. To
compare the impact of FNR:Tic62/TROL interaction with the
classical pathways of CEF, we used the same protocol to
check whether a similar response could be measured in pgr5

(a mutant of the Pgr5/PgrL1 pathway, as shown in Figure 1)
and crr2 (an assembly factor mutant of the NDH complex).
In Figure 7, neither of these mutants show a similar pattern
of PSI inactivation to tic62/trol, fnr1, or fnr1:ZmFNR3 plants.
On sudden high light illumination of pgr5, tPm is initially
higher than in WT and then gradually decreases over the
time course, to much lower values than other genotypes
(Figure 7A), while crr2 also shows higher initial tPm values
than WT, but does not decrease below WT values. Y(NA)
values indicate increased acceptor limitation relative to wt
for both pgr5 and crr2 (Figure 7C). Interestingly, when these
genotypes are subject to an increasing light protocol
(Supplemental Figure S4) crr2 plants present higher tPm val-
ues than the WT up to light intensities of 1,096mmol pho-
tons m–2 s–1.

FNR impact on PSI photoinactivation upon
fluctuating light
It has been frequently reported that fluctuating light exacer-
bates the damage to PSI caused by perturbation of CEF
(Suorsa et al., 2012, 2013; Kono et al., 2014; Huang et al.,
2018; Nikkanen et al., 2018), and we therefore repeated our
experiment using a fluctuating light environment. This com-
prised three phases of high light (1385 lmol photon m–2 s–1)
intensity illumination alternating with total darkness (Figure
8). Following the first light treatment, tPm values were lower
for the tic62/trol mutant throughout the illumination proto-
col (Figure 8A). When measured during illumination periods,
genotype had no effect on PSI yield and acceptor limitation
(Figure 8B, Figure 8C). There were significantly lower Y(I) and
higher Y(NA) values for tic62/trol following the dark steps.
The final Pm values were lower after this fluctuating light rou-
tine (Figure 8A) relative to those obtained after continuous
high light (Figure 4A) in all the genotypes. Interestingly, the
dark recovery of Pm only decreased by �9% in fnr1:Zm-FNR1
which, unlike the WT, retained a significant difference from
tic62/trol.

Discussion
We hypothesized that, as FNR is a critical component of
the post-PSI electron transfer cascade, its abundance,
and/or location on the membrane (close to PSI), might
contribute to PSI protection. This could be analogous to
the impact of the flavodiiron proteins (Shimakawa et al.,
2017; Alboresi et al., 2019), or photorespiration
(Allahverdiyeva et al., 2011; Hanawa et al., 2017; Takagi
et al., 2017), providing excess sinks to maintain P700 in a
protected, oxidized state. Because differences in electron
transport induced by altered FNR content or location
are most pronounced in the early stages of illumination
following dark adaptation (Twachtmann et al., 2012;
Kramer et al., 2021), it was critical to estimate PSI inacti-
vation during the early stages of illumination, for which
we used the tPm parameter (Figure 1). This revealed
that, over the relatively short high light stress applied
here, FNR content and membrane association specifically
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impact on photoinactivation of PSI. Interestingly, the in-
creased PSI photoinactivation in fnr1, fnr1:ZmFNR3, and
tic62/trol mutants occurs at the same time as a small,
but significant improvement in PSII protection.

PSI acceptor limitation is associated with O2
•– generation

(Takahashi and Asada, 1988; Kozuleva et al., 2014), and FNR
can also generate O2

•– during catalysis (Kozuleva et al.,
2016). Perhaps surprisingly, detection of light-dependent free
radical evolution in antisense tobacco leaves indicated that
decreased FNR content resulted in no difference in O2

•–, but
rather an increase in 1O2 (Palatnik et al., 2003), a radical nor-
mally associated with PSII damage. In addition, spin-trapping
of O2

•– produced by chloroplasts from Arabidopsis single
trol knockout plants was previously shown to be lower than
in WT in both light and dark (Vojta et al., 2015). The results
in tobacco prompted the suggestion that PSII was acceptor
limited, due to back up of electrons through the whole elec-
tron transport chain (Palatnik et al., 2003). This might not
be contradictory to our data, as the light stress applied to
tobacco FNR antisense plants prior to measurement was for
much longer time scales than used in our study. Our data
(Figures 2–4 and 8; Supplemental Figures S1 and S2) indi-
cate that the FNR associated PSI photoinactivation occurs
early in illumination. In the absence of correct FNR:tether in-
teraction, poor initial regulation of events around PSI on illu-
mination, or an increase in light intensity, may therefore
cause a temporary increase in O2

•– (and therefore •OH) pro-
duction relative to the WT. PSI damage would then progress
from the destruction of FeS clusters to protein subunits at a
small percentage of PSI complexes, resulting in 1O2 produc-
tion from triplet state chlorophyll at damaged PSI (Sonoike
et al., 1995; Tjus et al., 1998). PSII is highly sensitive to 1O2

(Krieger-Liszkay, 2005) and so a small amount of PSI damage
could result in considerable PSII damage (Sonoike, 2011).
The small, short-term improvement in PSII tolerance to high
light stress seen in plants with disrupted FNR:tether interac-
tions might have a number of causes. These include second-
ary effects to decrease light harvesting or increase PQ

acceptor availability at PSII in response to the direct impact
at PSI, and are beyond the scope of this study.

We expected that the main impact of FNR abundance
and/or location on PSI damage would relate to acceptor
limitation. However, our results indicate that the effect is
more complex. Although acceptor limitation (as measured
by Y(NA)) is elevated on initial increases in light intensities
for the fnr1 mutant (Figure 2), this is not the case for the
tic62/trol mutant (Figure 3, Supplemental Figure S1) neither
for tic62/trol or fnr1:ZmFNR3 on sudden high light (Figure 4).
Moreover, infiltration of leaves prior to measurement with
MV, which eliminates acceptor limitation at PSI, does not
immediately diminish the difference in tPm between these
genotypes and the WT (Figure 5), suggesting that acceptor
limitation is not the predominant cause of their increased
PSI photoinactivation. The inhibition by MV later in the time
course presumably arises from superoxide production, and it is
interesting that it does not immediately impact on whatever
protective function FNR is performing in sudden high light.
This may be related to reports that MV is actually a relatively
weak inhibitor of electron transfer by Fd between PSI and FNR
(Setif, 2015), meaning that under the conditions used here suf-
ficient reduced Fd is probably still available to FNR.

The increasing light experiments (Figures 2 and 3) were
designed to distinguish damage at PSII from PSI in condi-
tions where NPQ was able to develop, while the sudden
light increase (Figure 4) tests PSI activity when electron flux
from PSII is maximum. The stronger binding of FNR to the
Tic62/TROL tether proteins in WT and fnr1:ZmFNR1 lines at
the onset of the high light period is therefore a more likely
explanation for their higher tPm values than in fnr1, tic62/
trol or fnr1:ZmFNR3, rather than differences in FNR abun-
dance. The data indicate that, without NPQ, PSI acceptors
are overwhelmed irrespective of any differences in FNR con-
tent seen between our genotypes. We included the
fnr1:ZmFNR1 plants in our study to examine whether tighter
binding to membrane tethers might enhance PSI protection.
In most experiments, this was not the case, but intriguingly
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Figure 6 Examining a role for NPQ in FNR dependent protection of PSI. Increasing actinic light intensity was applied to plants and tPm and NPQ
parameters calculated as described in “Materials and methods”. Genotypes in the left panel are WT (black squares), fnr1:ZmFNR1 (open upward-
pointing triangles), tic62/trol (open left-pointing triangles). Genotypes in the right panel are L17 (gray stars) and npq4 (open pentagons). Data
shown are means ± SEM (n5 3 individuals per genotype). Significant differences were attributed by post-hoc honestly significant difference Tukey’s
test. Only tPm differences are indicated on this Figure: P values are indicated as “***”50.001, “**”50.01, “*”50.05, “.”50.1. See Supplemental
Figure S3 for original NPQ and tPm values plotted against light intensity.
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Figure 7 Examining the contribution of NDH and pgr5 mediated CEF
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relaxation period. A, tPm was measured over illumination and absolute
Pm was determined after 30 min of dark adaptation. B, Effective quan-
tum yield of PSI (Y(I)). C, acceptor limitation at PSI (Y(NA)). Data shown
are means± SEM (n5 3 individuals per genotype). Significant differences
were attributed by post-hoc honestly significant difference Tukey’s test
and P values under 0.05 are indicated by are indicated as the following
letters: “a” for pgr5 and crr2 6¼WT; “b” for pgr5 and WT 6¼ crr2; “c” for
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Figure 8 Impact of FNR:tether interactions on PSI inactivation during
short-term light fluctuation. Timing of changes in light intensity is indi-
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fnr1:ZmFNR1 did show slightly higher Pm values than the
WT following dark recovery from the fluctuating light proto-
col (Figure 8).

As we previously reported an impact of FNR location on
CEF during the dark to light transition for the fnr1 and
fnr1:ZmFNR3 lines (in which FNR:membrane tether interac-
tions are disrupted) (Kramer et al., 2021), we confirmed that
this phenotype was also present in tic62/trol mutants (Figure
5A). The absence of this CEF might be expected to result in
slower generation of DpH, which is indeed the case for this
genotype (Figure 5B). We could not detect a significant dif-
ference in steady-state DpH, which might be expected as it is
subject to extensive regulation (Tikkanen et al., 2015;
Colombo et al., 2016; Yang et al., 2018). Many chloroplast
protective mechanisms are dependent on DpH, including
NPQ (Johnson and Ruban, 2011) and photosynthetic control
(Colombo et al., 2016). We found no evidence for a relation-
ship between NPQ and tPm or Y(I) in our genotypes (Figure
7; Supplemental Figure S3) and plants with enhanced or at-
tenuated NPQ also showed minimum impact on PSI photoi-
nactivation. This confirms previous reports that PSII
downregulation has little effect on PSI protection (Tikkanen
et al., 2015; Shimakawa and Miyake, 2018a, 2018b).

An inability to regulate electron donor supply by photo-
synthetic control has been proposed to cause the extreme
PSI damage reported in pgr5 mutants (Shimakawa and
Miyake, 2018a, 2018b; Lima-Melo et al., 2019a, 2019b) and
confirmed here (Figures 1 and 7). In this work, we did not
compare the dark-adapted and light acclimated CEF capac-
ity of pgr5 and crr2 plants, but the same technique has pre-
viously been used to show that, while NDH mutants are
relatively unaffected, dark-adapted Arabidopsis pgr5 mutants
have decreased total CEF capacity, as measured following
120 s illumination (Suorsa et al., 2016). As the tic62/trol
plants show lower rates of initial DpH generation (Figure 5,
B and C), it seems likely that a slower induction of photo-
synthetic control might also be responsible for the PSI inac-
tivation associated with decreased FNR content and
membrane tether interaction.

Interestingly, during the first 5 min of high light stress, the
tPm values for pgr5 plants are higher than or equivalent to
WT (Figure 1), and only decrease drastically thereafter.
Those of tic62/trol and fnr1:ZmFNR3 (Figure 4), and fnr1

(Supplemental Figure S2) show the opposite trend, with
an immediate drop relative to WT, after which the relative
difference between the genotypes changes little. This is con-
sistent with disruption of a process in the initial stages of il-
lumination, such as the slower induction of DpH seen in
Figure 5, B and C. FNR has been found in complex with
PGR5 in algae (Iwai et al., 2010) and angiosperm PGRL1
was also reported to interact with FNR (DalCorso et al.,
2008). AA is the canonical inhibitor of FQR-dependent
CEF, and evidence supports a role for PGR5 in its mecha-
nism of action (Sugimoto et al., 2013), while AA also abol-
ishes FNR-dependent differences in tPm (Figure 5D).
Although our data do not rule out these proteins acting
in concert, they suggest that the mechanism disrupting

CEF induction during the dark to light transition is differ-
ent between the pgr5 mutant and the fnr1, tic62/trol, or
fnr1:ZmFNR3 genotypes.

One possible explanation for our data is therefore that, in
addition to acceptor limitation, the stress phenotype associ-
ated with decreased FNR content and tether association
could be due to increased donor arrival through slower in-
duction of photosynthetic control. This would explain the
specific, short-term inactivation of PSI seen in the fnr1 and
tic62/trol genotypes on exposure to high light.

Materials and methods

Plant material and growth conditions
Unless otherwise indicated, plants were grown in 12 h light
at 21�C, 12 h dark at 18�C, and in 0.12 L pots on a 6:6:1 ratio
of John Innes No. 3 soil, Levington M3 potting compost and
perlite (Scotts UK, Ipswich, UK). Arabidopsis (A. thaliana)
genotypes ecotype Columbia (WT) and fnr1 were as de-
scribed in (Hanke et al., 2008), Arabidopsis plants expressing
Zea mays FNR1, FNR2, and FNR3 in the fnr1 background
were as described previously (Kramer et al., 2021) and tic62/
trol (Lintala et al., 2014) was a kind gift of Paula Mulo. pgr5
(Munekage et al., 2002)) and crr2 (Hashimoto et al., 2003)
were a kind gift from Toshiharu Shikanai. The npq4 (Havaux
and Niyogi, 1999) and L17 (Li et al., 2002) were also used in
this work. Unless stated otherwise all measurements were
carried out on 6-week-old plants that showed no signs of
inflorescence or visible anthocyanin accumulation. Plants
were dark-adapted for 45 min before each measurement and
Fv/Fm was on average 0.78± 0.002 with no significant differ-
ence between genotypes.

Chlorophyll fluorescence and P700 absorption
measurements and parameters
Chlorophyll a fluorescence and P700 oxidation measure-
ments were performed simultaneously using a DUAL-KLAS-
NIR-PAM (Walz, Effeltrich, Germany). In this method, the
P700 redox state is monitored by deconvoluting the four ab-
sorption signals by differential model plots (Klughammer
and Schreiber, 2008).

An assessment of the true quantity of photoinactivated
PSII, as photochemical qPd, was calculated as described by
Ruban and Murchie (2012).

qPd ¼ ðFm0 � Fo0act:Þ=ðFm0 � Fo0calc:Þ

where Fm0 is the maximum fluorescence yield after exposure
to actinic light, Fo0act. and Fo0calc. are the actual and theoreti-
cal minimum fluorescence yields measured in the dark after
actinic light treatment, respectively. Fo0calc. is determined
according to the equation of Oxborough and Baker (1997),
as defined below.

Fo0calc: ¼ 1=ð1=Fo� 1=Fmþ 1=Fm0Þ

At lower actinic light levels, Fo0act.�Fo0calc. and qPd = 1.
However, as the intensity of actinic light rises, Fo0act. also
increases, which is an indicator of photoinactivation. The
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divergence between Fo0act. and Fo0calc. is due to permanent
closure of RCs and causes qPd51.

The effective ‘quantum yield’ of PSII (Y(II) is undermined
by two processes induced by excessive light: NPQ and pho-
toinactivation (qPd). The effect of each upon Y(II) was
therefore calculated as

YðIIÞ ¼ ðqPd � Fv=FmÞ=½1þ ð1� Fv=FmÞ � NPQ�

Fv/Fm represents the maximum Y(II), which is calculated as
(Fm–Fo)/Fm, with Fo and Fm being the minimum and
maximum fluorescence yields, respectively. The theoretical
Y(II) for a given NPQ is calculated with maximal values of
Fv/Fm and qPd as constants. Damage to PSI is usually quan-
tified as a change in the maximum photo-oxidisible fraction
of PSI (Pm), as measured following dark adaptation.
According to Klughammer and Schreiber (2008), Pm can be
determined during illumination by (1) measuring the maxi-
mal signal level induced by a saturating pulse (oxidisable
P700), and (2) measuring the signal level in the dark several
hundred milliseconds after the saturating pulse (baseline
level; P700 fully reduced). In this work, we have combined
these approaches to estimate activity of PSI during illumina-
tion. Actinic light is turned off, and far-red light is applied
for 10 s before measurement of Pm with a saturating pulse.
To avoid confusion, we refer to measurements following
dark adaptation/recovery as Pm (photodamage), while values
taken during illumination, from which PSI capacity partially
recovers (Figure 1), are termed “transient Pm” or tPm, and
reflect steady-state inactivation. Both Pm and tPm measure-
ments were normalized to an initial Pm measured following
45-min dark adaptation prior to illumination. Y(I) and Y(NA)
were calculated from the P700 traces according to published
protocols (Klughammer and Schreiber, 2008). Typical WT
chlorophyll fluorescence and P700 traces are shown in
Supplemental Figure S5. For vacuum infiltration experiments,
leaves of dark-adapted Arabidopsis plants were individually
vacuum infiltrated by placing a whole leaf inside a syringe
barrel containing 20 mL of buffer (330 mM sorbitol, 20 mM
HEPES, pH 7) with or without AA (5mM) or MV (250mM).
The narrow syringe opening was blocked and the plunger
was used to gently draw air out of the tissue until the leaf
lost buoyancy, at which point it was immediately measured.

Chloroplast extraction and proton gradient
determination
The protocol was performed basically as described previ-
ously (Saccon et al., 2020a, 2020b). Briefly, Protoplasts were
obtained from the mesophyll layer of dark-adapted leaves
from Arabidopsis adult plants. To expose the chloroplast-
enriched leaf layer to the enzyme solution, the lower epider-
mis was removed with adhesive tape. Leaves were then
floated for 1 h on a solution containing 0.4 M Mannitol,
20 mM KCl, 20 mM MES, 10 mM CaCl2, 0.1% bovine serum
albumin (BSA) (pH 5.5) in the presence of 1.5% cellulase
OnozukaTM R-10 and 0.4% Macerozyme R-10 (Yakult, from
Serva, Heidelberg, Germany). The solution was then filtered
through a layer of muslin cloth and centrifuged twice

(3 min, 100 rcf, 4 C). The obtained protoplasts were resus-
pended in reaction buffer containing 0.5 sorbitol, 20 mM
HEPES, 20 mM MES, 20 mM Na-citrate, 10 mM NaHCO3,
15 mM MgCl2, 0.1% BSA (pH 8). Their intactness was
checked with a bright-field optical microscope and Fv/Fm
average values were confirmed.

DpH was determined from the measurement of 9-aminoa-
cridine (9-AA) fluorescence using the Dual-ENADPH and
Dual-DNADPH modules for the Dual-PAM-100 fluorimeter
(Walz, Effeltrich, Germany). Intact chloroplasts (35 lM chlo-
rophyll) were suspended in reaction buffer (as above) in the
presence of 5 lM 9-AA. The chloroplasts were treated using
312 or 586 lmolphotonm–2s–1 actinic light for 5 min, fol-
lowed by 5 min of darkness. The 9-AA quenching traces
were normalized to (fluorescence before illumination – fluo-
rescence after illumination)/fluorescence before illumination.
Half time of DpH induction (t1/2) was taken as the time for
the fluorescence level to reach half of the maximum value
of quenched fluorescence upon illumination.

CEF measurements
Measurements were performed basically as described previ-
ously (Kramer et al., 2021). In brief, plants were dark incu-
bated for 30 min before transfer into actinic light at
150 lmolphotonm–2s–1. After 20 s and 5 min of illumina-
tion, LEF and CEF were measured by following the relaxation
kinetics of the carotenoid electrochromic bandshift at
520 nm (corrected with the bandshift at 546 nm). Saturating
FR light (k4 720 nm), was used to fully excite PSI with min-
imum excitation of PSII and calculate the CEF only signal.
Electron flow was estimated from the amplitude of the elec-
trochromic shift (ECS) signal upon excitation with a saturat-
ing single turnover flash (5 ns laser pulse). Total electron
flow was measured with an actinic flash of 1,100 lmol
photon m–2 s–1 while CEF was measured with only FR light
at the maximum setting (estimated as 1,400 lmol photon
m–2 s–1 by the manufacturer). LEF was calculated by sub-
traction of CEF from total electron flow.

FNR activity
Crude leaf extracts were prepared from 6-week-old plants by
grinding with sand at 4�C in 50 mM Tris–HCl pH 7.5,
100 mM NaCl, 2 mM MgCl2, 1 mM pefabloc, 0.1% w/v polyvi-
nylpolypyrrolidone. The supernatant from a 2 min, 2,000 g
centrifugation at 4�C was taken. FNR in this sample was solu-
bilized by the addition of Triton X-100 to 1% (v/v), before fur-
ther centrifugation at 15,000 g at 4�C for 5 min. FNR activity
of this supernatant, equivalent to 30mg total protein, was
measured in the dark using a cytochrome c reduction assay in
the presence of 20mM Arabidopsis Fd 2 and an NADPH re-
generation system as described previously (Hanke et al., 2005).

Statistics
The t test Student’s, analysis of variance, and post-hoc analy-
sis Tukey’s tests were also performed in R version 3.5.3
(R_Core_Team, 2019).
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Accession numbers
Sequence data from this article can be found in The
Arabidopsis Information Resource database (https://www.ara
bidopsis.org/) or GenBank/EMBL databases under the follow-
ing accession numbers: maize FNR1, BAA88236; maize FNR2,
BAA88237; maize FNR3, ACF85815; Arabidopsis FNR1,
AT5G66190; Arabidopsis FNR2, AT1G20020; maize Tic62,
ACG28394.1; Arabidopsis Tic62, AT3G18890; maize TROL,
ACF79627.1; Arabidopsis TROL, AT4G01050.1; Arabidopsis
PsbS AT1G44575; Arabidopsis pgr5 AT2G05620; Arabidopsis
PgrL1 AT4G11960; Arabidopsis crr2 AT3G46790.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. The impact of FNR:tether inter-
action on PSI and PSII photoinactivation during increasing
light intensity.

Supplemental Figure S2. Additional experiments on the
impact of FNR:tether associations on PSI and PSII photoinac-
tivation during high light exposure in Arabidopsis.

Supplemental Figure S3. Impact of altered NPQ on PSI
inactivation over increasing light (A and B) and during sud-
den high light stress (C–E) in Arabidopsis.

Supplemental Figure S4. Impact of two different CEF
pathways on photoinactivation of PSI and PSII during a
gradual increase of light intensity.

Supplemental Figure S5. Example traces of the initial sec-
tion of a typical PSII chlorophyll fluorescence (red trace) and
P700 absorption (blue trace) simultaneous measurement.
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