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Abstract

Motivation: Cell type identification plays an important role in the analysis and interpretation of single-cell data and
can be carried out via supervised or unsupervised clustering approaches. Supervised methods are best suited where we
can list all cell types and their respective marker genes a priori. While unsupervised clustering algorithms look for groups
of cells with similar expression properties. This property permits the identification of both known and unknown cell
populations, making unsupervised methods suitable for discovery. Success is dependent on the relative strength of the
expression signature of each group as well as the number of cells. Rare cell types therefore present a particular challenge
that are magnified when they are defined by differentially expressing a small number of genes.
Results: Typical unsupervised approaches fail to identify such rare sub-populations, and these cells tend to be absorbed
into more prevalent cell types. In order to balance these competing demands, we have developed a novel statistical
framework for unsupervised clustering, named Rarity, that enables the discovery process for rare cell types to be more
robust, consistent and interpretable. We achieve this by devising a novel clustering method based on a Bayesian latent
variable model in which we assign cells to inferred latent binary on/off expression profiles. This lets us achieve increased
sensitivity to rare cell populations while also allowing us to control and interpret potential false positive discoveries. We
systematically study the challenges associated with rare cell type identification and demonstrate the utility of Rarity on
various IMC data sets.
Availability: Implementation of Rarity together with examples are available from the Github repository (https://
github.com/kasparmartens/rarity).
Contact: christopher.yau@wrh.ox.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
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Background

High-dimensional molecular analysis of single cells with highly-

multiplexed imaging allows the simultaneous measurement of

the expression of multiple proteins while retaining information

about their spatial origin within the tissue section. Technologies

such as imaging mass cytometry (IMC) [Giesen et al.,

2014] and multiplexed ion beam imaging (MIBI) [Angelo

et al., 2014] use antibodies conjugated with heavy metals

to stain tissues, which is followed by laser ablation and

mass spectrometry to quantify expression of around 40

pre-determined molecular markers. Immunofluorescence-based

microscopy such as multiplexed immunofluorescence [Gerdes

et al., 2013] and cyclic immunofluorescence (CyCIF) [Lin

et al., 2018], allow the multiplexed detection of proteins using

standard microscopy.

A high-throughput single cell analysis using such technologies

can therefore lead to molecular profiles of tens of thousands

of cells. For instance, Damond et al. [2019] used IMC to

analyse and characterise the pathogenesis and progression of

Type 1 Diabetes in human patients, while Bortolomeazzi

et al. [2020] integrated multi-regional whole-exome, RNA and

T-cell receptor sequencing as well as IMC to examine the

tumor microenvironment of hypermutated colorectal cancers

in response to anti-PD1 immunotherapy. MIBI-TOF [Keren

et al., 2018] was used to profile 36 immune-related proteins

(including PD1, PD-L1, and IDO) in 41 triple-negative breast

cancer patients to reveal mixed and compartmentalized tumors
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2 Märtens et al.

that coincided with cell type and location specific expression of

key markers.

A standard step in single cell analysis is cell type

identification and classification in which cells (data points) are

sorted into phenotypically distinct groups (clusters). This can

be accomplished via supervised [Abdelaal et al., 2019, Geuenich

et al., 2021, Cui et al., 2023] or unsupervised [Levine et al.,

2015, Van Gassen et al., 2015] clustering approaches. A number

of computational packages are now available to simplify the use

of such analysis [Eling et al., 2020, Opzoomer et al., 2021].

However, typically clustering algorithms are not specifically

designed for the exploration of rare cell populations. A review

of eighteen clustering methods in [Weber and Robinson, 2016],

including FlowSOM [Van Gassen et al., 2015] and PhenoGraph

[Levine et al., 2015], across six high-dimensional single cell flow

and mass cytometry data demonstrated a wide variation in

performance in rare cell population detection.

Figure 1 illustrates the challenges using a synthetic dataset

(see Methods for simulation details) containing three known

and two unknown cell populations — the former (cell types

A–C) are present at a high prevalence (49%, 33% and 12%

of cells respectively) whereas the latter (cell types D–E) are

rare (with prevalence below 1%). Figure 1A highlights how the

UMAP dimensionality reduction has not recognised cell type D

as a recognisably distinct cluster, instead it is mixed with the

more prevalent cell types A and B. When applying a supervised

model Astir [Geuenich et al., 2021] after specifying the marker

genes for the known cell types A–C, Astir assigns both rare

cell types to an “Other” category (Figure 1B) but does not

provide functionality for any further analysis of these cells.

When applying an unsupervised model Phenograph [Levine

et al., 2015] (Figure 1C), we identify 15 clusters but the true

rare cell type D is split across four clusters.

In this article we describe Rarity, a hybrid semi-supervised

framework for cell type identification that has been specifically

developed to enable user-controlled sensitivity to rare sub-

populations. We demonstrate that Rarity is able to identify

putative rare cell populations that existing clustering methods

do not identify and cannot be visualised with high-dimensional

visualisation techniques such as t-SNE [Van der Maaten and

Hinton, 2008] and UMAP [Becht et al., 2018, McInnes et al.,

2018] (for further details, see Supplementary Information,

Section A). Further, through the use of a binary latent

feature model, we illustrate how Rarity assigns a simple and

interpretable binary marker signature to each cluster making

post-hoc examination, filtering and verification of clusters

substantially easier.

Results

Rarity: A hybrid clustering framework for detecting
rare cell populations
Rarity combines the benefits of supervised and unsupervised

approaches to cell type identification in a hybrid probabilistic

framework and is designed to be sensitive to rare subpopulations,

including those which differ from other cell types in the

expression of even a single marker. To achieve this level of

sensitivity without sacrificing interpretability, we condition

upon a statistical modelling assumption - the continuous

marker expression values associated with each cell have an

underlying binary on/off state. We model these unobserved

on/off states as binary latent variables. Every cell with the

same binary signature across the features is then assigned to

the same cluster (Figure 2A). The cluster space contains 2P

possible clusters, where P is the number of features, which

are each associated with one of the 2P possible combinations

of on/off states across the P features. Known cell types can

therefore be specified by a priori specifying the appropriate

binary expression pattern.

Rarity is implemented within a variational autoencoder

framework (Figure 2B). As a result, our implementation also

scales favourably to a large number of cells. We employ

inference amortisation, an approximate inference technique

which introduces an encoder neural network as a form of

parameter sharing [Kingma and Welling, 2014, Rezende et al.,

2014] across cells. As a result, even though the binary

expression signatures are inferred for every cell individually,

the number of learnable parameters is fixed and does not grow

with the number of cells in our data. Moreover, having a

trained model, we can employ it on new cells without additional

training.

Code and use case examples for Rarity are available from a

Github repository https://github.com/kasparmartens/rarity.

Self-consistency clustering experimental procedures
and metrics
To investigate the sensitivity of existing IMC clustering

methods for detecting cell types present at various prevalence

levels in a controlled setting, we use (semi-)synthetic simulation

experiments with ground-truth labels. Our experiments involve

applying a clustering algorithm to a simulated or real data

set to derive clusters corresponding to cell types. We then

down-sample one of the identified clusters to create a new

dataset with fewer cells of that type and re-cluster using the

same method to measure how similar (or different) the inferred

clusters from the down-sampled data set will be from the

original one. A desirable property of a clustering method is

self-consistency, i.e. the ability to allocate cells in the same

cluster regardless of the prevalence of each cluster (such as after

down-sampling).

To quantify the quality of the inferred clustering, we adopt

two metrics that capture different aspects of self-consistency.

First we measure homogeneity, i.e. the property of the inferred

clusters to contain only a distinct cell type. Second, we measure

completeness, i.e. the property of grouping all cells of a

particular type in only one cluster [Rosenberg and Hirschberg,

2007]. Since our focus lies in the identification of rare cell types,

in our down-sampling experiments we measure these two scores

conditional on the down-sampled cluster. We refer to these

conditional scores as conditional homogeneity and conditional

completeness, both with values between 0 and 1, higher

scores being better (see Methods for more details). To further

summarise these two scores with a single summary statistic, we

use the harmonic average of the two, the conditional V-measure

[Rosenberg and Hirschberg, 2007].

The behaviour of these metrics is illustrated in Figure

3 for four different clustering scenarios (Clustering 1-4).

Suppose a clustering method identifies three cell types (red,

yellow and blue) from the original data. We then reduce the

number of blue cells to create a down-sampled data set. In

the first scenario (Clustering 1), the method identifies two

clusters (green/purple) from the down-sampled dataset. The

completeness is high as all cells in each of the original clusters

map to only one of the new clusters (orange to green, red to

purple). However, homogeneity is low as the purple cluster

contains both blue and red cells. In contrast, in the second
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Rarity 3

Fig. 1. Comparison of supervised and unsupervised workflows for cell type identification on a synthetic dataset highlights their drawbacks motivating

our hybrid modelling framework. (A) The synthetic dataset comprises five different cell populations (cell types A-E), two of which are rare and unknown

to us a priori (cell types D and E). The UMAP plot is coloured by ground truth cell type labels. The zoomed-in panel shows a close-up of the two

rare cell types (note that the UMAP visualisation has failed to recognise cell type D as a distinct cluster). (B) In the supervised case (here shown for

Astir (Geuenich et al. 2021)), our capabilities to detect cell types are limited to the pre-specified cell types and their characteristic markers. The rare

cell types are either merged with other known cell types or assigned to a separate “Other” cluster. (C) In the unsupervised case, the workflow involves

running a clustering algorithm (here shown for Phenograph), followed by manual inspection of marker genes in order to label (and potentially merge)

the inferred clusters. (D) The proposed hybrid approach Rarity can help in identifying both pre-specified cell types (as shown on the left UMAP) as well

as rare novel cell populations (as shown on the right UMAP). The identified clusters are interpretable in terms of their differential expression profile —

the identified rare clusters are shown in the heatmap.
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4 Märtens et al.

Fig. 2. Overview of Rarity model specification and implementation. (A)

Rarity projects single cell marker intensity vectors (illustrated for three

markers and three cells, top panel) onto binary expression signatures (in

the middle panel). Note that the active latent signatures cover only a

subset of all possible binary combinations in the cluster space (in the

bottom panel). (B) Tractable inference for Rarity is implemented as

a structured autoencoder, where an encoder neural network is used in

combination with continuous relaxations to project expression vectors to

binary expression signatures.

scenario (Clustering 2), the method finds four clusters. The

result is homogeneous as all the original orange cells are in their

own new cluster (green) and all red cells are in another new

cluster (purple). However, the blue cells are split into new blue

and yellow clusters so completeness is low. Alternatively, the

method could discover three clusters (Clustering 3) but under a

different configuration of labelling. While all orange cells map

to the green cluster, the blue and red cells map to two new

clusters (purple/yellow) which partition across the original blue

and red clusters. Thus homogeneity and completeness scores

are low. Only in the perfect scenario (Clustering 4) where the

method perfectly reclassifies on the down-sampled data would

all metrics have value 1.0.

We provide further simulation examples in Supplementary

Information, Sections H,I.

Existing unsupervised clustering methods fail to
reliably detect rare cell populations
We examined how effective existing commonly used unsupervised

clustering methods (PhenoGraph and FlowSOM) were at

detecting rare cell populations against the performance of

Rarity. We generated artificial data sets consisting of five cell

types (Figure 4A) with three common (cell types A, B, C) and

two rare (cell types D, E) where the latter were down-sampled

Fig. 3. Downsampling simulation experiments and benchmark metrics

to quantify self-consistency. Schematic showing how the downsampling

experiments were conducted, and how different outcome scenarios affect

the clustering performance metrics.

from an initial 5% of the cell population, to 1% and then 0.5%.

Using PhenoGraph (with the number of nearest neighbours

set to the default value 30), we observed that common cell

populations had the tendency to be fragmented into multiple

clusters by the algorithm while the ability to detect rare

populations diminished as the population size decreased (Figure

4B). With Rarity, common and rare cell populations were more

reliably and consistently identified even with the decreasing

rare cell population size (Figure 4C). For comparison, we also

assigned cell types with a supervised method, Astir, providing

the marker information for all five cell types. Rarity (Figure

4D) showed consistently superior performance compared to

both PhenoGraph and Astir even though the latter is given

the cell type profiles. While PhenoGraph maintains relatively

high completeness, signifying that it tends to merge rare

cell types into one cluster, homogeneity is low, as more

than one cell type can be mapped to the same cluster.

This illustrates the need for dual metrics to understand the

complexities of interpreting clustering output where the entire

cluster structure may alter under different conditions. Details of

further simulation experiments under different noise conditions

are given in Supplementary Information, Section B.

Breast cancer IMC data
We next considered a breast cancer IMC dataset [Jackson

et al., 2020] and conducted an analysis using PhenoGraph and

FlowSOM [Van Gassen et al., 2015] specifically looking at their

ability to identify novel rare sub-populations before considering

the utility of Rarity. Both PhenoGraph and FlowSOM possess

algorithmic parameters which can be modified to enable these

methods to produce different numbers of output clusters -

including potentially those corresponding to putative small

subpopulations. Figure 5 shows how the number of clusters

reported by PhenoGraph (Figure 5A) and FlowSOM (Figure

5B) varies with these parameters.

When the PhenoGraph hyperparameter corresponding to

the number of neighbours is reduced from 50 to 20 (Figure

5A), the number of clusters discovered increases from 48 to

62 and there is an increase in the number of clusters which
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Rarity 5

Fig. 4. The less prevalent a cell type is, the more challenging it is to be reliably identified with unsupervised clustering methods. A. Similarly to Figure

1, ground truth data contains three common and two rare cell types. The three panels represent scenarios with varying extent of rarity: 0.5%, 1%,

and 5% prevalence of rare cell types. B. Unsupervised clustering with Phenograph (clusters shown in colour, highlighting the clusters which have the

largest overlap with rare cell types) works well when the rare clusters are present at the 5% fraction, however it has failed to identify one of the rare

subpopulations at 1% presence, and has only partially grouped the two rare cell types together at 0.5% prevalence. C. Hybrid clustering with Rarity

(clusters shown in colour) has correctly identified the two rare groups in all three scenarios. D. To quantify clustering performance for (i) supervised

(Astir), (ii) unsupervised (Phenograph) and (iii) hybrid (Rarity) methods, we display the conditional completeness, homogeneity, and V-measure scores

(higher is better). An expanded version of this figure is given in Supplementary Information, Section D.

represent less than 1% of the total population from 24 to 35.

In contrast, in FlowSOM we can explicitly control the number

of clusters reported and we demonstrate this when increasing

this number from 20 to 50 (Figure 5B). This change led to an
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6 Märtens et al.

Fig. 5. Unsupervised clustering algorithms have hyperparameters which let us either directly (FlowSOM) or indirectly (Phenograph) control the number

of clusters, but clusters obtained under different hyperparameter configurations are not consistent to one another. (A) When we decrease the number

of nearest neighbours in Phenograph from 50 (on the left) to 20 (on the right), we effectively increase the number of clusters, however the mapping

between the two sets of clusters (shown in the alluvial diagram in the middle) is highly complex and indicates inconsistency, as many clusters are both

split and merged. (B) Similarly for FlowSOM, when we increase the number of clusters from 20 (on the left) to 50 (on the right), we observe both

cluster splitting as well as merging.

increase in the number of clusters which represent less than 1%

of the total population from 3 to 30. In general, hyperparameter

adjustment alone does not allow these clustering approaches to

become more sensitive to rare clusters in a readily interpretable

way (see Supplementary Information, Section C.)

We next sought to understand how the underlying cluster

structure alters as cluster number changes. Figure 5 illustrates

how individual cell cluster assignments vary with output cluster

number for FlowSOM and PhenoGraph. As cluster number

changes, there are substantial cluster structure alterations

with some clusters merging and splitting as more clusters are

returned. For PhenoGraph, there was an average of 11 parents

from the original clustering for each of the 62 clusters, while

each of the 50 FlowSOM clusters had 7 parents. This indicates

that for both methods, increases in the number of clusters

did not increase sensitivity and the detection of small rare

populations, instead it led to fundamental changes in clustering

structure.

When examining how particular clusters are split in terms

of marker expression levels, Figure 6A shows an illustrative

example focusing on epithelial luminal cells, where PhenoGraph

has generated two daughter clusters from a parent cluster.

Each daughter cluster differs from the other only via a subtle

change in the expression of two markers. For a similar group
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Fig. 6. Increasing the number of clusters in unsupervised clustering methods does not typically help with identifying subclusters with distinct expression

signatures. In all panels (A–C), we show the largest epithelial luminal cluster identified by (A) Phenograph, (B) FlowSOM, (C) Rarity, both on the UMAP

plot as well as on the corresponding expression values boxplot. When increasing granularity (the clusters shown in the right column), the subpopulations

identified by Phenograph are both extremely similar. For FlowSOM, a subpopulation expressing moderate levels of various markers (Vimentin, SMA,

Ki67) emerges. In contrast, Rarity is the only method, where increase in granularity is directly interpretable in terms of expressing/not expressing a

marker. The split illustrates how a Ki67+ subpopulation of epithelial luminal cells can be identified with Rarity.
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8 Märtens et al.

Fig. 7. (A) Hamming Ball query with radius r = 1 illustrated: given a reference signature that expresses the CD45 marker, the query returns a set

of binary signatures that differ from this reference at one (r = 1) or two (r = 2) markers. Panels (B-E) show the results for a Hamming Ball query

with the same reference but now r = 2. (B) The number of cells in each cluster within the Hamming Ball. (C) The binary signatures for all clusters

within the Hamming Ball, and (D) the corresponding observed intensities heatmap (for visual aid, we display a subset of the two largest clusters on

the heatmap). (E) Selected marker intensity boxplots (CD68, CD3, CD20, CD31) for the identified clusters (shown for all clusters that express CD45)

are in concordance with the binary profiles shown in (C) and highlight how every cluster has a unique interpretation in terms of differential expression

signatures.
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of epithelial luminal cells, FlowSOM partitions the cluster

into two daughter clusters with entirely different expression

signatures (Figure 6B). These outputs are challenging to

interpret as cluster structure and properties fundamentally

alter as greater sensitivity is encouraged.

The hybrid approach of Rarity leads to a different approach

to cluster interpretation. Since IMC profiles are mapped to

latent binary expression vectors, we can select cells that match

a particular expression pattern to determine clusters. Here,

we were able to select a group of epithelial luminal cells by

interrogating all cells that were mapped by Rarity to any latent

binary vectors that express E-Cadherin and pan-Cytokeratin,

but do not express e.g. CD45 or CD3 (Figure 6C, full list of

markers provided in Supplementary Table 5). We can then

examine this set of cells and ask which cells among these do and

which do not express Ki-67 by creating a more refined query for

binary expression vectors, now additionally accounting for the

presence and absence of Ki-67 expression.

With Rarity, each cell is mapped onto a cluster with a

clear latent binary expression pattern, where each cluster (by

definition) must at least differ by the expression of one marker

(Figure 6C, Figure 7) and leads to a natural hierarchy of

clustering assignments.

Next we demonstrate further how Rarity can help us identify

a more granular clustering which can give insights into finding

putative rare cell sub-populations. One way to explore the

sub-populations identified by Rarity is via what we call the

“Hamming Ball query” (Figure 7A) where we search for binary

expression signatures that deviate from the signature of a

reference cell type no more than a given number of markers

(i.e. their Hamming distance from the reference signature does

not exceed a given radius). For example, Figure 7A illustrates

a query where the reference signature corresponds to cells that

express the CD45 marker. This query would let us identify

various immune cells, for example the Hamming Ball with

radius r = 1 would contain macrophages, i.e. a signature where

both CD45 and CD68 markers are expressed.

This functionality shows how Rarity can complement the

cell type identification with a supervised method such as Astir

[Geuenich et al., 2021] where all the cell types of interest

have to be pre-specified a priori. In the case of Astir, there

is an additional “Other” cluster that will consist of a mix of

unrecognised cell types. Figure 7 shows how Rarity has found

substructure within this “Other” group of cells. Specifically,

we aim to distinguish between different classes of stromal

cells: immune cells, endothelial cells, smooth muscle and

fibroblasts. We have conducted analysis starting from the

reference signature with CD45 as the main immune cell marker

(binary expression signature shown in the top row of panel of

Figure 7C), and considering all cell type signatures within the

Hamming Ball with radius r = 2. For example, the first (and

largest) cluster does not express the CD45 marker but does

express Fibronectin, suggesting that it corresponds to a set of

cells from the connective tissue. Clusters that co-express both

CD45 and Fibronectin/Vimentin (i.e. clusters 10, 11, 13, 14,

22, 32, etc) are likely to be immune cells that are located

within the stroma, e.g. cluster number 13 would correspond

to such T cells. Zooming in to clusters which express CD68

(i.e. clusters 22, 38, 68) helps us identify macrophages. Rarity

has also identified a group of vascular cells (clusters 56 and 63

which express the CD31 marker). The heatmap (Figure 7D) and

boxplots (Figure 7E) confirm that indeed the inferred binary

signatures are indicative of the actual intensity levels, and thus

aiding interpretability.

Fig. 8. Clustering scores (conditional completeness, homogeneity, and

V-measure) when downsampling the largest Epithelial (top row) or T-

cell (bottom row) cluster identified by the respective methods (Astir,

FlowSOM, Phenograph, Rarity, Seurat), varying the number of cells

retained after downsampling from 1000 to 250 to 100 (x-axis). The scores

quantity the goodness of the clustering w.r.t. the respective methods run

on the full dataset, thus quantifying self-consistency.

Downsampling experiments highlight how most
clustering methods are inconsistent
We next performed a down-sampling experiment using the same

breast cancer IMC data to further characterise the rare cell

detection capabilities of each method. We applied FlowSOM,

PhenoGraph, Louvain clustering implemented within Seurat

v3 [Stuart et al., 2019], as well as the supervised method

Astir together with Rarity to the data. Each method identified

different clustering configurations and hence different cell type

numbers. However, from the output of each method, we

identified the clusters most likely to correspond to epithelial

or T cells (using the expression of E-Cadherin and pan-

Cytokeratin for epithelial, and CD45, CD3 for T cells). For

Astir, these markers were used to pre-define the cell signature to

be identified as input. We then created down-sampled datasets.

First, down-sampling epithelial cells in one experiment and T

cells in the next. These cell types were reduced from the original

numbers to 1000, 250 and 100 cells respectively (Figure 8). The

clustering methods were then reapplied to the down-sampled

data to determine if the clustering labels from the full data

set are recapitulated. Thus, these experiments do not rely on

any “ground truth” cell type labels, they simply indicate how

consistent every method on its own is.

Rarity showed stable and superior clustering performance

to that of other unsupervised approaches (Figure 8). We

observed that the sensitivity of unsupervised methods did not

simply decline with decreasing numbers of cells, but that

the performance characteristics were more complex and there

was a dependency on cell type. This is due to the fact

that clustering output from the same method on original and

down-sampled data sets often exhibited significantly different

clustering output (similarly to the previous synthetic data

experiments) while in contrast Rarity’s design makes it less

susceptible to this. Intriguingly, while Astir is a supervised

method and is given target gene signatures as input, its

performance was also not always stable across down-sampled

datasets. This is due to the fact that certain model parameters

are inferred dynamically so its performance is also partially

data set dependent in this case with T cells.
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10 Märtens et al.

Rarity identifies CD4-negative and CD8-negative T
cells in colorectal cancer IMC data
We next examined the utility of Rarity for the discovery of

gamma-delta T cells in immunogenomic profiles of normal colon

mucosa in patients with multiple or single and familial or

sporadic colorectal cancer. IMC data was generated for sixteen

samples of non-cancerous colon mucosa were obtained from

six individuals who underwent surgical resection of colorectal

cancers (see Methods for full experimental details). The

imaging data was originally published as part of [Bortolomeazzi

et al., 2022], but now we have additionally made available the

processed single-cell data set [Märtens et al., 2022]. Gamma-

delta T cells were expected to constitute less than 10% of T

cells in human colon mucosa (Viney, MacDonald, and Spencer

1990), and their characteristic feature is that they are CD3-

positive but both CD4-negative and CD8-negative. However,

when using standard supervised and unsupervised methods

applied to this data set, no such clusters are identified. This

is not surprising in the light of our simulation study in Figure

4, even if those cell types were present. Therefore, we wanted

to see if the increased sensitivity in Rarity will identify any

potential candidates for such CD4– and CD8– double-negative

T cells.

After pre-processing steps (see Methods for details), our

colon mucosa data set contains a total of 40,364 cells. We used

Rarity to classify these cells into B cells, T cells, Macrophages,

Dendritic cells, Endothelial, Connective tissue cells, and other

cells, as illustrated in Figure 9A, using markers listed in

Supplementary Table 6. For selected markers and cell types,

Figure 9B shows the corresponding marker intensity boxplots.

Next, we turned to the analysis of T cells. That is, the

following analysis is restricted to the cells identified by Rarity

as CD45-positive and CD3-positive. Figure 9C displays the

UMAP when re-fitted on T cells only. We can see that CD4

intensity increases along the y-axis, CD8 intensity increases

along the x-axis, and the blob in the top left corner corresponds

to Regulatory T cells expressing FoxP3. The fourth sub-panel

highlights the set of T cells that were identified by Rarity as

CD4- and CD8- cells that could potentially be gamma-delta

T cells. In fact, Rarity identified four such clusters (clusters

number 80, 96, 127, 128). Heatmap in Figure 7D confirms

that these clusters have indeed low intensity levels of CD4 and

CD8, but it additionally provides insight into why there are four

clusters instead of a single one - these clusters are stratified by

CD45RO and CD45RA marker intensities indicating memory

and naive T cells respectively. In total, the putative gamma-

delta T cell clusters lacking CD4 and CD8 comprise 92 cells

(which corresponds to 0.2% of all cells and 1.0% of all T cells).

We re-emphasise that these clusters were not identified

as a distinct set of cells on the UMAP visualisation, a

phenomenon that we already observed earlier in Figures 1

and 4. Furthermore, this set of cells would not have been

discovered by an unsupervised method like Phenograph. Figure

10E illustrates how cells in these CD4– and CD8– T cell

clusters are spread across multiple larger Phenograph clusters

– a behaviour consistent with our earlier findings.

We further explored the candidate gamma-delta T cell by

mapping these to their spatial locations and samples of origin.

We found that the 92 identified cells were uniformly spread

across biological samples with on average 6 cells per sample.

This confirms that the cells were not due to an experimental

artefact specific to a subset of samples. Figure 10 displays

the spatial location of the identified gamma-delta T cells in

Fig. 9. (A, B) Cell landscape UMAP plot, where we have highlighted

cells identified as B cells, T cells, Macrophages, Dendritic, Endothelial,

and Connective tissue cells, together with the corresponding marker

intensity boxplots. Next, panels (C–E) focus on analysing T cells only. (C)

UMAP plots of T cells showing expression of CD4, CD8 and FoxP3, and

highlighting the location of identified CD4– CD8– T cells (i.e. gamma-

delta T cell clusters) by Rarity. (D) Marker expression levels for the

identified CD4– CD8– T cell sub-groups (i.e. Rarity clusters 80, 94,

127, 128) show combinatorial co-expression of CD45RA and CD45RO.

(E) These double-negative T-cell clusters would not have been identified

by unsupervised clustering with Phenograph. In fact, Phenograph has

placed these cells into various larger clusters (e.g. clusters number 4, 11,

16 etc) as shown on the alluvial diagram (highlighting the four Rarity

clusters) and UMAP plots for selected Phenograph clusters (highlighting

the double-negative cells in yellow).

three samples. These were located in the sub-epithelial areas

of diffuse connective tissue of the lamina propria [Hayday and

Gibbons, 2008, Kurd and Robey, 2014] consistent with the

known distribution of such cells and their association with

intraepithelial sites.

Discussion

Our motivation for the development of Rarity stemmed from

the need to identify rare cell types from single-cell data. In

this work, we have systematically demonstrated how commonly
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Fig. 10. Examples of double-negative T cells identified by Rarity

displayed on the original IMC images. For a zoom-in of three samples

(soCRC1, soCRC2, syCRC1), the top row shows DNA (blue), E-cadherin

(green) and CD3 (red) marker intensities, and highlights T-cell outlines

(in white). The bottom row shows CD4 (magenta) and CD8 (cyan) marker

intensities, and highlights double-negative T cells (yellow outlines, also

indicated with arrows) among all T cells (in white).

used clustering methods fail to discover clusters that are rare

but yet distinct —- our down-sampling experiments showed

how the task of cell type identification becomes increasingly

difficult the less prevalent the cell type becomes. Our simulation

experiments also highlight a lack of self-consistency in current

unsupervised clustering algorithms.

Given the plethora of literature on clustering methods for

cell type detection, rare cell type identification has received

relatively much less attention. For example, both [Cron et al.,

2013, Naim et al., 2014] have used a variation of the Gaussian

mixture model, with different strategies for choosing the

number of clusters. An increased number of clusters will lead to

higher sensitivity towards rare sub-populations, however these

methods have not been inherently designed to recognise rare

groups specifically. As we have demonstrated in the paper,

simply increasing the number of clusters does not generally lead

to the desired outcome. Instead, increased sensitivity typically

leads to breaking existing large clusters down into smaller

ones with miniscule differences in their respective expression

signatures. Our findings are aligned with those highlighted by

[Weber and Robinson, 2016] who also found that clustering

results can be highly variable and e.g. sensitive to bootstrap

re-sampling.

With Rarity we have set out a bespoke approach for

delineating these cellular groups. This was based on the

idea of transforming the single-cell data into high/low binary

expression patterns which induces an implicit clustering of the

cells. We demonstrated how this approach led to a robust

system for identifying rare cell types and the use of binary

expression patterns provides a certain form of guarantee that

the clustering output is highly interpretable (i.e. that each

cluster must differ from the others by at least one molecular

feature). We recognise the limitation of this assumption is

that cell types that differ from others only via changes in

absolute levels of expression would not be identified by Rarity.

The limitations are explored in Supplementary Information,

Section F.

Conclusion

Rarity has complementary utility to existing cell type discovery

methods. Rarity makes stronger assumptions about the

expression patterns of distinct cell types, sacrificing sensitivity

to subtle differential expression patterns to reduce the number

of false positive cluster findings in order to maximise the chance

of finding rare, but distinctive, cell types. We believe this

construction makes Rarity particularly useful in an interactive

setting in which analysts are able to manually navigate the

clustering findings through Hamming Ball queries as illustrated

in the examples.

Rarity has been implicitly designed for use with targeted

molecular profiling technologies with data dimensions on the

order of 10-40 features. We believe that in such settings,

the measured molecular features will have been chosen to be

cell type markers which makes the latent binary expression

assumptions in Rarity more applicable. While, in principle, our

methodological framework is general and could be extended

to analyse single-cell RNA sequencing (scRNA-seq) data,

considerably more care is required with the definition of “rare”

cell types in high-dimensional settings. For instance, any small

similar group of cells which differs from any other cell type

by just a single gene could - in principle - be a candidate

rare cell type. Given that a whole transcriptome analysis will

yield 10,000s of genes, the possibility of large numbers of false

clusters is substantial.

While a number of approaches have been developed with

rare cell type identification capability for scRNAseq, including

RaceID3 [Grün et al., 2016], GiniClust2 [Tsoucas and Yuan,

2018], GapClust [Fa et al., 2021], CellSIUS [Wegmann

et al., 2019], FiRE [Jindal et al., 2018] and scAIDE [Xie

et al., 2020], like in single cell cytometry, these approaches

are predominantly for unsupervised discovery of larger cell

populations and therefore will be sensitive to many of the

issues we have discussed. Further research is required to

devise a general framework for defining clustering criteria

or (dis)similarity metrics that target specific cell phenotypic

properties. We leave this as an open challenge to the

community.

Methods

Conditional metrics for homogeneity and
completeness
Suppose we have C true cell types and K inferred clusters. Let

A be the contingency table where entry ack denotes the number

of cells corresponding to cell type c in cluster k, where the total

number of cells is N .

Analogously to [Rosenberg and Hirschberg, 2007], we now

define conditional homogeneity, completeness, and V-measure

metrics which would let us “zoom in” to the rare clusters of

interest as opposed to averaging across all clusters.

We first define the conditional entropies as follows:

H(K|C = c) = −
∑
k

ack∑
c ack

log
ack∑
c ack

,

H(K|K = k) = −
∑
c

ack∑
k ack

log
ack∑
k ack

,
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as well as the marginal entropies

H(C) = −
∑
c

∑
k ack

N
log

∑
k ack

N
,

H(K) = −
∑
k

∑
c ack

N
log

∑
c ack

N
,

We are now interested in defining conditional metrics to

quantify the quality of the clustering w.r.t. the (potentially

rare) cell type . We achieve this by defining the conditional

completeness

c-completeness := 1−
H(K|C = c)

maxH(K)

and the conditional homogeneity as

c-homogeneity := 1−
H(C|K = k∗)

maxH(C)

where k∗ = arg maxk ack and the latter is conditional on the

most likely cluster k∗ for cell type c. Finally we define the

conditional V-measure as the harmonic mean of the respective

conditional completeness and homogeneity scores.

Supplementary Information, Section G provides further

information about the importance of these metrics as supposed

to classification metrics.

Rarity model specification
Rarity has been designed to trade off sensitivity with respect

to small cell populations and interpretability. To achieve this

goal, Rarity relies on a modelling assumption that every gene is

either expressed or not, and these binary states are captured via

binary latent variables. Rarity implements inference for these

underlying binary states. Clustering is induced by these binary

signatures: cells with identical binary signatures are grouped

together.

We associate every observed gene expression vector xi ∈ RP

with an underlying latent variable zi ∈ {0, 1}P with binary

entries zig ∼ Bernoulli(· · · ), where zig = 1 corresponds to gene

g in cell i being expressed and zig = 0 to being not expressed.

We specify the likelihood conditional on the latent variable as

follows

p(xig|zig) = (1− zig)N(µ1, σ
2
1) + zigN(µ2, σ

2
2)

where the first component N(µ1, σ
2
1) represents the distribution

of markers that are “not expressed” and the second one

N(µ2, σ
2
2) those that are “expressed”.

To make inference for this binary latent variable model

tractable and scalable, we employ continuous relaxations for

the binary variables in the Variational Autoencoder framework.

That is, we reformulate the model as follows

zig ∼ RelaxedBernoulli(p = 0.5),

xig|zig ∼ (1− zig)N(µ1, σ
2
1) + zigN(µ2, σ

2
2)

and we perform amortised variational inference with the

approximate posterior q(zi) = RelaxedBernoulli(fφ(xi)) where

fφ is an encoder neural network with shared variational

parameters φ.

Synthetic data generation
For the synthetic IMC data example, we used the following

simulation scheme. We first generated the underlying binary

vectors

zcell type A = (1, 1, 1, 1, 0, 0, 0),

zcell type B = (1, 1, 1, 0, 1, 0, 0),

zcell type C = (1, 1, 1, 1, 0, 1, 0),

zcell type D = (1, 1, 1, 0, 0, 0, 0),

zcell type E = (1, 1, 0, 0, 0, 0, 0),

where “1” indicates that a marker is “on” and “0” that it

is “off”. Conditional on these binary signatures, we then

generated the observations as follows

xi|zci=k ∼ N(0.5zk + 0.05(1− zk), 0.18zk + 0.03(1− zk))

for cell type k ∈ {A,B,C,D,E} where the number of cells for

each cell type is respectively 4000, 3000, 1000, 60, and 40.

Colon mucosa image mass cytometry

Sample description

Sixteen FFPE blocks of non-cancerous colon mucosa (Supplementary

Table 3), were obtained from six individuals who underwent

surgical resection of colorectal cancers, and subsequently

reviewed by an expert pathologist. All patients provided

written informed consent in accordance with approved

institutional guidelines (University College London Hospital,

REC Reference: 20/YH/0088; Istituto Clinico Humanitas, REC

Reference: ICH-25-09).

The experimental and computational processing of the colon

mucosa IMC data was previously described in [Bortolomeazzi

et al., 2022]. Here we provide a brief summary of the staining

and image analysis steps:

Staining and IMC ablation

A microtome was employed to cut one 4µm-thick section

from each of the FFPE blocks from all samples. These

sections were stained with a panel of 26 antibodies, targeting

the main cell populations of the colon mucosa including

immune, stromal and epithelial cells (Supplementary Table

4). The optimal dilution for each antibody was selected by

a mucosal immunologist after reviewing the images generated

from the ablation and staining of FFPE appendix sections at

different concentrations (Supplementary Table 3). Before

staining, slides were incubated for one-hour at 60°C, dewaxed,

rehydrated and then underwent antigen retrieval. This was

performed in a pressure cooker with Antigen Retrieval Reagent-

Basic (R & D Systems). Then slides were blocked by incubating

them in a 10% BSA (Sigma), 0.1% Tween (Sigma), and 2%

Kiovig (Shire Pharmaceuticals) Superblock Blocking Buffer

(Thermo Fisher) blocking solution at room temperature for two

hours. The selected concentration of each antibody was added

to a primary antibody mix in blocking solution and incubated

overnight at 4°C. Then, the slides were washed twice in PBS

and PBS-0.1% Tween and incubated for 30 minutes with the

with the DNA intercalator Cell-ID™Intercalator-Ir (Fluidigm)

(containing the two iridium isotopes 191Ir and 193Ir) 1.25 mM

in a PBS solution. Subsequently the slides were washed once in

PBS and once in MilliQ water and air-dried.
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The Hyperion Imaging System (Fluidigm) imaging module

was used to obtain a light-contrast high resolution image of

approximately 4 mm2 of each stained slide. These images were

used to select the region of interest (ROI) in each slide. 1

mm2 ROIs were selected to contain the full thickness of the

colon mucosa in a longitudinal orientation, and ablated at a 1

µm/pixel resolution and 200 Hz frequency.

IMC image processing and data pre-processing

The ablation generated raw .txt and .mcd files from which 28

images from 26 antibodies (Supplementary Table 4) and

two DNA intercalators were extracted with imctools (https:

//github.com/BodenmillerGroup/imctools)). Pixel intensities for

each channel were normalised to the 99th percentile in all

samples with custom R scripts and background pixels were

removed by thresholding with CellProfiler 2 [Kamentsky et al.,

2011]. A mask for the lamina propria was manually drawn

for each sample using the vimentin channel as a guide, and

reviewed by a mucosal immunologist.

Cells segmentation was performed first by identifying nuclei

on a thresholded image derived from the multiplication of the

two DNA channels. The nuclei were then used as seeds for

propagation on a membrane mask derived from the sum of the

E-Cadherin, CD45, CD3, CD4, CD8, CD45RO, CD27, CD68,

CD34, and SMA channels. The resulting cells were then filtered

according to their overlap with the lamina propria mask. Only

cells overlapping the mask by more than 50% of their area were

retained, resulting in a total of 40364 cells. Finally the mean

pixel intensity of each marker was measured in each cell.

Ethics approval and consent to participate

Patient-derived colorectal IMC data was obtained after

written informed consent in accordance with approved

institutional guidelines (University College London Hospital,

REC Reference: 20/YH/0088; Istituto Clinico Humanitas, REC

Reference: ICH-25-09).

Availability of data and materials

The datasets analysed during the current study are available

from the Zenodo repository: (1) Breast Cancer (https:

//zenodo.org/record/4607374#.YgbYffXP2Lo) and (2) Colon

Cancer (https://zenodo.org/record/5545882#.Yh853RPP04g).

Competing interests

The authors declare no competing interests.

Funding

This work was supported by The Alan Turing Institute

under EPSRC grant EP/N510129/1 and the Francis Crick

Institute which receives its core funding from Cancer Research

UK (FC001002, FC001169, FC001745, FC001130), the UK

Medical Research Council (FC001002, FC001169, FC001745,

FC001130), and the Wellcome Trust (FC001002, FC001169,

FC001745, FC001130). CY is supported by a UKRI-

EPSRC Turing AI Fellowship (EP/V023233/1) and the UK

Medical Research Council (MR/P02646X/2). FC is supported

by Cancer Research UK (C43634/A25487), Guys and St

Thomas Charity (R170504), the European Union’s Horizon

2020 Research and Innovation programme under the Marie

Sk lodowska-Curie grant agreement No. CONTRA-766030, the

Cancer Research UK King’s Health Partners Centre at King’s

College London (C604/A25135), and the Cancer Research UK

City of London Centre (C7893/A26233).

Author contributions statement

FC and CY conceived the study and obtained funding. KM

developed methods. MB and KM analysed data. LM and JS

provided experimental support. MB, KM, FC, JS and CY

interpreted results. MB, KM, FC, JS and CY wrote and edited

the manuscript.

Acknowledgements

We thank Kieran R Campbell at the University of Toronto for

discussions and sharing of data and methods for Astir.

References

T. Abdelaal, V. van Unen, T. Höllt, F. Koning, M. J. T.
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