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Evidence integration is a normative algorithm for choosing between alternatives with noisy 

evidence, which has been successful in accounting for vast amounts of behavioural and 

neural data. However, this mechanism has been challenged by non-integration heuristics, 

and tracking decision boundaries has proven elusive. Here we first show that the decision 

boundaries can be extracted using a model-free behavioural method termed decision 

classification boundary, which optimizes choice classification based on the accumulated 

evidence. Using this method, we provide direct support for evidence integration over non-

integration heuristics, show that the decision boundaries collapse across time and identify 

an integration bias whereby incoming evidence is modulated based on its consistency with 

preceding information. This consistency bias, which is a form of pre-decision confirmation 

bias, was supported in four cross-domain experiments, showing that choice accuracy and 

decision confidence are modulated by stimulus consistency. Strikingly, despite its seeming 

sub-optimality, the consistency bias fosters performance by enhancing robustness to 

integration noise. 
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Decisions often require the integration of multiple, potentially contradictory, pieces of 

evidence. Consider, for example, a judge deliberating over whether a defendant is guilty or 

not, or a medical doctor diagnosing a patient's disease. Extensive research has converged 

on the proposition that integration of evidence to a decision boundary is a normative 

mechanism for such evidence-based decisions. This mechanism provides the fastest mean 

response time (RT) for a target accuracy rate1–4 and accounts for an impressive amount of 

behavioural and neural choice data (see ref.5 for a review). For instance, integration-to-

boundary models1,6–11 provide a parsimonious account for the shape of choice-RT 

distributions of correct and incorrect responses as a function of stimulus difficulty, as well 

as for the well-known speed accuracy trade-off12 stating that people can improve their 

decision accuracy by sampling more information, and vice versa. Moreover, integration-

to-boundary models are supported by the monitoring of neural activation in brain decision 

areas during choice tasks13,14 (but see ref.15). 

Despite this strong support, the evidence integration framework has been challenged by 

alternative non-integration mechanisms, such as heuristics based on the detection of a 

single high-value sample, which can account for many of these choice-patterns as well16 

(see also discussion in ref. 17). Moreover, research within the evidence-integration 

framework has suggested that, in many decision-environments, reward-rate is optimized 

when the choice threshold varies (for example, collapses) as a function of time18,19. 

Evidence for such time-varying boundaries have been found in both humans and non-

human primates20,21 (but see ref. 22). These studies, however, have estimated the boundary 

whilst assuming arbitrary functional assumptions (for example, that the boundary decays 

according to a Weibull function). Thus, it is important to validate the integration 

assumption, and to monitor the decision boundary without imposing such assumptions.  

A second aspect of the normative model is that the evidence (construed as the increase in 

the log likelihood of the two hypotheses) is integrated without biases or distortions. 

However, recent findings indicate a variety of biases in the sampling and weighting of 

evidence. Attentional biases, for example, affect the relative weighting assigned to 

simultaneous pieces of evidence23–26. Another type of decision biases are history biases, 

such as the confirmation bias27–31, according to which committing to a categorical choice 

distorts the interpretation of subsequent information. Potential biases of this kind need to 
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be taken into account when assessing whether evidence is accumulated and when 

estimating decision boundaries. In turn, the decision bound can interact with the estimation 

of the bias itself. 

Here, we addressed these issues by using a novel behavioural method, which is agnostic to 

the (temporally) functional shape of the boundary and which we term decision 

classification boundary (DCB). The DCB extracts the decision-boundary (at each time 

frame) by optimizing the classification of the agent's behaviour (that is, terminating the 

trial by choosing alternative A, terminating the trial by choosing alternative B or sampling 

more evidence), based on the evidence accumulated to this time point. When evidence 

integration is perfect (that is, free of distortions and biases), the DCB recovers the decision 

boundary. More broadly, however, DCBs provide a novel behavioural signature — a 

benchmark for evaluating biases in evidence-integration — and also allow us to derive a 

simplified behaviourally approximate bias-free model, which compensates for integration 

biases, via a change in the classification curve only (see Results section for further details 

and an example). Applying this method to data from experiments across choice domains 

(numerical cognition and perception), we find strong support for evidence integration over 

heuristic non-integration models. Furthermore, we demonstrate an important new factor 

modulating evidence accumulation, viz. stimulus consistency, corresponding to an 

increased relative weighting of pieces of evidence preceded by information supporting the 

same choice alternative, resulting in a type of momentary confirmation-bias28,30,31, which 

operates during (rather than after) a decision. Importantly, this mechanism contributes to 

decision performance, by increasing the robustness to late (non-encoding) noise32,33. 

We start with a description of our experimental design (showing it is possible to extract 

behavioural signatures of integration to boundary), followed by a computational section 

that presents the DCB method. We then apply this method to the data from two cross-

domain experiments, focusing on the dependency of the DCB on stimulus consistency, and 

resort to computational modeling to specify the stimulus-consistency mechanism. We then 

present the results of two additional experiments designed to validate the predictions of 

this mechanism. Finally, we examine if and under which conditions the stimulus-

consistency mechanism can foster performance. 
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Figure. 1. Experimental paradigms and behavioural signature of integration to bound-

ary. (A-B) Experimental paradigms. Participants are presented with pairs of numerical 

values (A, experiment 1) or bars (B, experiment 2) sampled from two overlapping Nor-

mal distributions, and are asked to choose which sequence was drawn from a distribu-

tion with a higher mean value (experiment 1) or greater mean length (experiment 2). The 

presentation is terminated by the decision of the participant (that is, free response pro-

tocol). (C) The accumulated evidence of all participants (thick blue line) as a function 

of decision time. Thin blue lines correspond to accumulated evidence of individual par-

ticipants. Dashed black, green and magenta lines correspond to the random time model, 

and to the value and difference heuristics, respectively. (D) As in (C) but for experiment 

2. (E-F) The collapsing boundaries obtained in experiment 1 (E) and 2 (F). Thick purple 

lines correspond to the boundaries generated using the group mean parameters, grey 

lines correspond to the boundaries of individual participants. 

Results 

Experimental design and signature of integration to boundary. In two experiments 

(experiment 1, reported in ref. 34 and experiment 2, novel data), participants were 

presented with sequences of pairs of stimuli (two digit numbers or bars, respectively; 

Figure 1A-B) sampled from two overlapping Normal distributions (see Experimental 

methods). The sequences were presented at a rate of 2 pairs per second (numbers) and 5 

pairs per second (bars), and were terminated by the participant's response. The task was 

to select the sequence that corresponded to the generating distribution with the higher 

mean (red Gaussian in Figure 1A-B). In experiment 2, participants also reported their 

degree of confidence for each choice. Between trials, we manipulated stimulus difficulty 

by varying the separation between the Normal distributions (see Experimental methods 

for further details). In total, 27 participants performed 500 trials in experiment 1 and 30 

participants performed 480 trials in experiment 2.  

In previous work, we showed that the choices in experiment 1 (numerical evidence) support 

integration of evidence to a collapsing boundary and excluded a set of non-integration 

models34. Here, we extend this analysis to the data in the perceptual domain (experiment 

2). The thick blue lines (group data) and thin grey lines (individual subjects) in Fig. 1C-D 

are obtained by integrating the trial-by-trial stimulus evidence (that is, computing the 

cumulative sum of differences between the sequence pairs of samples) until the decision 

moment, and averaging across trials for each RT. These lines show a mildly decreasing 

pattern (Figure 1C: b = -2.86, tagainst 0 = -7.08, p < 0.001, 95% CI -3.65 to -2.07 and Figure 
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1D: b = -0.86, tagainst 0 = -3.18, p = 0.001, 95% CI -1.40 to -0.33), which is the behavioural 

signature of integration to a collapsing boundary (for further details, see ref. 34 and 

Supplementary Figure 1). These results are consistent with previous findings that 

accumulated evidence decreases with RT35–37, as well as with model fitting results using a 

Weibull parametrization of the boundary38, which also indicates a collapsing boundary 

(Figure 1E-F). Critically, the descending slopes of integrated evidence rule out non-

integration strategies, such as: (1) random-timer, in which the response time is determined 

by a process that is exogenous to the integration of evidence (whose prediction is indicated 

by the dashed black line), (2) value-cutoff, in which observers choose the sequence in 

which a number exceeding some predetermined threshold first appears (whose prediction 

is indicated by the dashed green line), and (3) difference-cutoff, in which observers choose 

based on the first frame in which the difference between the numbers exceeds a 

predetermined threshold (whose prediction is indicated by the dashed magenta line). All of 

these non-integration models predict that the integrated evidence increases (rather than 

decreases) with the number of samples (see Computational methods for further details 

about these strategies). This is because, if the stopping rule is independent of the integrated 

evidence, longer decision trials necessarily accumulate more evidence. Whilst these results 

provide support for integration to boundary, the actual shape of the boundary (Figure 1E-

F) is only extracted via model fitting (note that the actual boundary are not linearly 

decreasing with time), as the evidence-integration lines (Figure 1C-D, blue and thin grey 

lines) are systematically biased by the accumulation of noise during the trial34. In the 

following, we present a model-free method to estimate the decision boundary via a 

classification boundary curve, which is more robust to accumulation noise and reconstructs 

the actual shape of the decision boundary. 

Model-Free extraction of decision boundaries. We simulated synthetic data based on the 

experimental task we used in our experiments (Figure 1A-B and Computational methods), 

in which sequences of values are sampled from two overlapping Normal distributions. It is 

assumed that the subjects integrate a noisy version of the evidence at each frame, according 

to the following difference equation: 
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𝑋(𝑡) = 𝑋(𝑡 − 1) + 𝜇(𝑡) + 𝜀(𝑡), 𝜀~ 𝑁(0, 𝜎2) 

Eq. (1) 

where X(t) is the accumulated differences between the sequences at time t, 𝜇(𝑡) is the 

difference between the samples at time t and 𝜀(𝑡) is a temporally independent random 

internal Gaussian noise, which is independent from the evidence-sampling noise (Figure 

1A-B). Note that, unlike 𝜀(𝑡),  𝜇(𝑡) is directly available to the experimenter. We also 

assumed that a response is triggered when the integrated noisy evidence reaches one of two 

symmetric decision boundaries. Two types of boundaries were used in these simulations: 

fixed and collapsing38. For the collapsing boundary, we follow ref. 38 and parameterize the 

boundary using Weibull functions (see Computational methods). In each simulation, we 

ran 10,000 trials in which values sampled from the two distributions were integrated with 

additional internal noise. For each trial, we recorded the choice, as well as the input 

sequences (without the internal noise) sampled until a decision was made.  

Based on this data, we reconstruct the boundary at each time frame using a method based 

on linear discriminant analysis39,40 (LDA), which generates boundary classification curves. 

These curves are obtained by applying LDA to the integrated evidence excluding the 

random internal noise, defined as:  

 
𝑌(𝑡) = 𝑌(𝑡 − 1) + 𝜇(𝑡) 

Eq. (2) 

The LDA was applied to the integrated-evidence (Y(t)) of the observer at each time frame, 

so as to classify the action at each time frame to one of three categories: choose alternative 

A (Figure 2A-B, blue distributions), choose alternative B (Figure 2A-B, green 

distributions) or continue sampling (Figure 2A-B, pink distributions). The classification 

boundary curve (Figure 2A-B, red line) best separates the different classes (Computational 

methods section). Note that, for each time frame (t), the LDA was applied to all trials in 

the experiment that were not terminated before the t-th frame. In addition, note that in the 

absence of internal noise, the true decision boundary would separate these categories 

perfectly. However, in the presence of internal noise, which may increase the values of 

integrated evidence that lie below the boundary (blue areas), or vice versa (pink areas above 

the boundary), there is some unavoidable overlap.  
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Figure 2. Model-free extraction of the decision boundaries. (A-B) Illustration of the 

boundary extraction for a decision simulated using a diffusion model with fixed (A) or 

collapsing boundary (B). The dashed black line corresponds to the original boundary 

with which the model was simulated and the red lines correspond to the model-free best-

fitted DCB. The pink distributions correspond to data points within each trial in which 

the simulated participant continued sampling, whilst the blue and green distributions 

correspond to frames in which trials were terminated. The total area under the pink, blue 

and green distributions was normalized for each frame. (C-D) Same as (A-B), only for 

data that were simulated using the value cut-off (C) and difference cut-off heuristics (D). 

(E-F) Experimental data of a representative subject who participated in the numerical 

(E) and perceptual (F) experiments. Dashed black line corresponds to the model-based 

best-fitted boundaries, and the red lines correspond to the model-free best-fitted bound-

aries of the experiments. (G-H) Correlations between the area under the DCB and the 

mean RTs across participants in experiment 1 (G; r = 0.96, p < 0.001) and  experiment 

2 (H; r = 0.8, p < 0.001). 

The results are illustrated in Figure 2A-B, which shows that the DCBs (solid red lines) 

recover quite accurately the generating boundaries (dashed black lines). In particular, the 

extracted boundary is temporally constant or decreases as a function of time, when the 

generating boundary is flat or collapsing, respectively. Notably, the quantitative agreement 

between the generating and recovered boundaries is high. Note that the model-free 

boundary extraction method makes no a priori parametric assumptions about the shape of 

the model boundary. As shown in Figure 2C-D, for synthetic data generated using the non-

integration-to-boundary (that is, value or difference cutoff heuristics), the three 

distributions of evidence (trials in which the model continues sampling (pink) and trials in 

which response has been made (blue and green)) show substantial overlap. Consequently, 

the decision classification curve algorithm fails to correctly classify the three classes of 

trials based on the integrated evidence. Thus, the presence of an accurate boundary 

classification curves (Figure 2A-B) provides strong support against (non-integration) 

cutoff models.  

In both our datasets, we find stable classification curves (see Figure 2E-F, red lines, for 

representative example subjects) that imply a collapsing boundary, which are consistent 

with model fitting (Figure 2E-F, dotted black line), but make no parametric assumption on 

the form of this boundary (see Supplementary Figures 2 & 3 for the DCB of all 

participants). Finally, we linked the DCB to the basic behavioural measures of RT and 

accuracy. We found a high correlation between the area under the DCB and mean RT 
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across participants, in both experiment 1, r = 0.96, p < 0.001 (Figure 2G) and experiment 

2, r = 0.8, p < 0.001 (Figure 2H). Correlations between the area under the DCB and 

accuracy were also found. However, they were weaker and less consistent (experiment 1: 

r = 0.41, p = 0.03, and experiment 2: r = 0.29, p = 0.1) (Supplementary Figure 4). Note 

that, although the correlation between RT and DCB is high, they are not interchangeable. 

An increased RT could also be caused by a reduction of the drift rate or by an increase in 

boundary without a time-collapsing shape. 

So far, we have illustrated that the DCB can accurately reconstruct the decision boundary 

in the case of perfect evidence-integration. In the next section, we extend these results to 

the case in which the integration process is biased. We will show that, even then, the DCB 

can achieve three targets: (1) to indicate the presence of a bias, (2) to determine the simplest 

bias-free behaviourally equivalent model (see Supplementary Figure 5 for an illustration 

for the case of leaky integration, in which the DCB compensates for the evidence loss by a 

change only in the decision classification line) and (3) to obtain the actual boundary in the 

case of biased integration process, by selecting between a family of DCBs based on 

maximizing their classification performance metrics (see Supplementary Figure 6 for 

further details).  

Evidence integration is modulated by stimulus consistency. A more detailed 

examination of the choice data in both experiments shows that stimulus consistency, 

operationalized as the absolute value of the difference between the number of frames with 

evidence favouring each alternative divided by the total number of frames in the trial 

(denoted as the difference in evidence directions (DED)), has a critical impact on choices 

and RT, above and beyond the effect of total evidence. To illustrate this, consider two trials 

with the same total evidence: trial 1 (2, 3, 1, 4, total evidence = 10) and trial 2 (6, -1, 8, -3, 

total evidence = 10). Whilst both trials have a total evidence of 10 in favour of one of the 

alternatives, the evidence stream is more consistent in trial 1 (consistency measure of 
4−0

4
=

1) compared with trial 2, where half of the evidence favouring one alternative whereas the 

other half favors the other (consistency measure of  
2−2

4
= 0).  
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Table 1. Beta coefficients for predicting accuracy, RT and confidence in experiment 1 and 

2. 

 β (S.E.) t p 95% CI 

Experiment 1     

     

   Accuracy     

      Evidence 1.72 (0.06) 28.03 <0.001 [1.60, 1.84] 

      Stimulus Consistency 0.26 (0.05) 5.69 <0.001 [0.17, 0.35] 

     

   RT     

      Evidence -0.26 (0.01) -28.23 <0.001 [-0.28, -0.24] 

      Stimulus Consistency -0.14 (0.01) -14.90 <0.001 [-0.16,-0.12] 

     

Experiment 2     

     

   Accuracy     

      Evidence 0.56 (0.03) 16.91 <0.001 [0.49, 0.62] 

      Stimulus Consistency 0.27 (0.03) 9.40 <0.001 [0.21, 0.33] 

     

   RT     

      Evidence -0.16 (0.008) -20.42 <0.001 [-0.18,-0.15] 

      Stimulus Consistency -0.14 (0.008) -16.78 <0.001 [-0.15,-0.12] 

     

   Confidence     

      Evidence 0.13 (0.01) 12.14 <0.001 [0.11, 0.15] 

      Stimulus Consistency 0.15 (0.01) 13.96 <0.001 [0.12, 0.17] 

Results of mixed-model logistic regression for predicting accuracy (experiments 1 and 2) 

and mixed-model linear regressions for predicting RT (experiments 1 and 2) and 

confidence (experiment 2) using accumulated evidence and stimulus consistency as fixed 

factors and participants as random intercepts. 

Previous research has shown that stimulus consistency modulates decision confidence41. 

Here, we examine its impact also on accuracy and RT. To this end, we conducted several 

mixed-model regression analyses (logistic for accuracy and linear for RT and confidence), 

in which we predicted trial by trial choice accuracy, RT and confidence, using accumulated 

evidence and stimulus consistency (defined based on the evidence stream up to subject-

initiated trial completion) as fixed factors and participants as random intercepts. The results 
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(Table 1) indicate that stimulus consistency improves accuracy and confidence and reduces 

RT, independent of the accumulated evidence. 

Note that the DED is only one measure of stimulus consistency. More complex forms that 

include temporal factors can also be constructed. For example, the consistency bias may 

correspond to the size of the larger temporal cluster (LTC) with evidence in the same 

direction (that is, the largest cluster of evidence; see Supplementary Table 1 for analysis 

showing that such an LTC measure also predicts differences in accuracy, RT and confidence 

independent from total evidence).  

DCB modulation by stimulus consistency and model comparison. Motivated by the 

results above, we examined whether stimulus-consistency (DED) modulates the DCB. To 

this end, we extracted the DCB of each frame whilst including the consistency measure 

(DED) as a predictor in the LDA model. Similar to the regression models above, we also 

included the mean evidence as a predictor in the model. We predicted that, if participants 

overweight consistent pieces of evidence, then less evidence will be required to reach a 

decision as consistency increases. Figure 3A-B show that this was indeed the case in 

experiments 1 and 2: as the consistency of the evidence increased, the DCB decreased (blue 

line), compensating for the bias in the evidence-integration process by setting a 

classification curve which is lower than the original boundary (orange line).  

Note that this analysis does not provide a causal explanation for how consistency affects 

the evidence-integration process, but rather shows that it was biased by stimulus-

consistency (see Discussion for details). This is because, the DCB as we showed so far, 

provides us with a behaviourally approximate (simpler, that is, without bias) model 

(Supplementary Figure 5). To provide a more mechanistic account, we will use two 

complementary methods and show that they converge to the same result. We will first rely 

on conventional model comparisons techniques to the select a model that provides the best 

fit for the data. Second, we will use a method developed to extract the decision-boundary 

using the DCB in case of biased integration process (Supplementary Figure 6). Using this 

method, we compare between a model assuming consistency-bias and a model which does 

not. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 3. Results of experiments 1 and 2. (A-B) Modulation of the DCB as a function of 

consistency in experiment 1 with numerical stimuli (A) and experiment 2 with perceptual 

stimuli (B). In the case of a stimulus-consistency bias, the weight of consistent evidence 

is increased, thus less evidence is required to reach a decision. The DCB (dashed blue 

line) compensates for that by decreasing the classification curve with consistency, and 

having lower values compared to the original boundary (in orange). Note that, here, we 

used an arbitrary boundary value for illustration purposes and that the modulation of 

the DCB is averaged across participants. (C) Upper panel: The AIC group scores of the 

full-integration (orange), preference-consistency (yellow), SI (light blue) and stimulus-

consistency (dark blue) models in experiment 1 with numerical stimuli. Lower panel: 

model probabilities for the individual participants. Colour coding is the same as in the 

upper panel.  (D) As in (C) only for experiment 2 with perceptual stimuli. 

First, to specify the evidence-integration mechanism, we carried out a quantitative model 

comparison for each participant, using the Akaike Information Criterion (AIC) as a 

measure of fit, to include a model-complexity cost. We started with the perfect integration 

model (which assumes no systematic distortion of the evidence a subject integrates in each 

frame, that is, integration is only corrupted by additive noise). Next, we examined a 

selective-integration (SI) mechanism that amplifies or diminishes, respectively, the 
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stronger or weaker evidence within each frame across the two evidence streams33,42 (see 

Computational methods). Critically, we also examined several variants of a stimulus-

consistency model. In the simplest variant, the evidence is modulated solely based on 

whether evidence from the preceding frame is consistent (that is, it points in the same 

direction) with the current frame. In a slightly more complex variant, the modulation 

magnitude increases linearly with the number of consistent frames and resets to baseline 

(no modulation) with every swap (here, we report only the results of the more complex 

version, which provided better fit for the data). Finally, we also examined a preference-

consistency model, wherein incoming evidence is modulated based on consistency with 

the total integrated evidence (thus reflecting momentary preference) up to that time point 

(see Computational methods for details).  

In each model, we allowed for collapsing boundaries, which, as illustrated in Figure 2C-D, 

capture well the shape of the decision boundary (and provide much better fits to the data 

compared to fixed boundaries34). Figure 3C-D shows the group and individual participant 

fit measures for four models: full integration, selective integration, preference consistency 

and stimulus-consistency in experiments 1 and 2. As illustrated, the most successful of the 

models was the stimulus-consistency version in which evidence increased at each 

consecutive frame in the same direction, followed by the SI-model.  

Finally, we developed a method to extracted the boundary using the DCB in the case of 

biased integration process (Supplementary Figure 6). This method uses a mixture of 

parametric and non-parametric methods. The former is used to characterize the biased 

integration process (but not the decision boundary), whilst the latter is used to extract the 

boundary using the DCB. To apply this method, a candidate biased integration model (for 

example, stimulus-consistency bias) is first selected. Then, instead of using the actual 

(unbiased) evidence to estimate the DCB, it is extracted based on the biased evidence 

(generated by simulating the biased integration model with different values of the bias 

parameter). For each level of the bias parameter, the DCB as well as a classification 

performance metric (for example, F1-score) are computed. This results in a family of DCB 

curves, one for each value of the bias parameter. The bias-parameter and corresponding 

DCB which maximizes accuracy (or any other performance metrics) comprise the estimate 



15 

 

(see Supplementary Figure 6 for further details and simulations). A bias-parameter that 

equals to 0 indicates that there was no bias in the evidence integration process (that is, full 

integration model), whereas a parameter higher than 0 indicates that the integration process 

was biased. Using this method, we found that the bias-parameter was higher than 0 for 81% 

of the participants in experiment 1 (mean bias parameter 2.26, 95% CI 1.70–2.86), and for 

90% of the participants in experiment 2 (mean bias parameter 4.23, 95% CI 2.76–5.90), 

suggesting that in both experiment 1and 2, the integration process was biased by the 

consistency of the evidence. 

Experiments 3 and 4: testing the stimulus-consistency effects. Because in our first two 

experiments participants’ choices terminated the information stream, trial consistency 

depended, at least partially, on participants’ responses and was not completely orthogonal 

to the integrated evidence. To address this limitation, and to directly test the impact of 

stimulus consistency on evidence-based choice and on decision confidence, two additional 

experiments were designed. In both, the number of samples was fixed and the stimulus 

consistency was manipulated completely independently from the total evidence. In 

experiment 3, sequences of eight number pairs were presented at a rate of 2Hz (as in 

experiment 1) and participants were instructed to choose at the end of the presentation the 

sequence with higher average (see Figure 4A). For each set of samples, we generated two 

paired trials, which consisted of the very same evidence content (across the eight time 

frames) for each sequence and differed only in temporal order of the values (that is, the 

paired trials varied in how the values on each side were shuffled). In the consistent trial 

condition (Figure 4C, bottom panel), one evidence stream provided stronger evidence in 

seven out of the eight frames, whereas in the inconsistent trial condition (Figure 4C, upper 

panel), each stream provided stronger evidence in four frames. In addition to consistency, 

the difficulty of the trials was also manipulated by sampling values from X~N(52, 102) and 

Y~(48, 102) for the difficult condition and from X~N(52, 102) and Y~N(44, 102) for the easy 

condition. In experiment 4, the stimulus-consistency effect was generalized to a much 

faster presentation rate of 12.5Hz and to a single stream of evidence (presented in the centre 

of the screen). Participants were presented with a sequence of eight arrays of red and blue 

dots (Figure 4B), and were instructed to determine whether more of the blue or the red dots 

were presented in total (see ref. 43 for similar paradigm). The number of dots presented in 
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each frame was sampled from a Normal distribution (corresponding to the differences 

between the left and right distributions in experiment 3): X~N(2, 202) for the difficult trials 

and X~N(5, 202) for the easy trials.  As in Experiment 3, in the consistent condition, seven 

out of the eight frames provided support for one of the alternatives and in the inconsistent 

condition each alternative was supported by four of the frames. Critically, consistency and 

difficulty were manipulated completely orthogonally. 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 4. Experimental paradigms in experiments 3 and 4. (A) Participants in experi-

ment 3 were presented with pairs of numerical values sampled from two overlapping 

Normal distributions (as in experiment 1), and were asked to choose which sequence 

was drawn from a distribution with a higher mean. The presentation was terminated 

after eight pair values (that is, an interrogation protocol). (B) Participants in experiment 

4 were presented with a single stream of eight arrays of blue and red dots, and were 

asked to indicate whether more blue or red dots were presented in total. The dashed 

black line indicates a value of 0. (C) Illustration of consistent and inconsistent trials in 

experiment 3. Note that both trials have exactly the same amount of evidence. 'L' and 'R' 

symbols correspond to momentary advantages of the left or right sequences, respec-

tively. (D) Illustration of consistent and inconsistent trials in experiment 4. 'R' and 'B' 

symbols correspond to red and blue samples, respectively. As in experiment 3, both trials 

have exactly the same amount of evidence. 

44 25

32 87

52 63



17 

 

As shown in Figure 5A-D, the participants were both more accurate and more confident in 

consistent trials than in inconsistent trials, for both the easy and difficult conditions, in 

experiment 3 (accuracy/easy: permutation test p < 0.001, Cohen's d = 1.26, 95% CI 0.06 – 

0.13,  accuracy/difficult, permutation test p < 0.001, Cohen's d = 1.40, 95% CI 0.11 – 0.20, 

confidence/easy: permutation test p < 0.001, Cohen's d = 1.11, 95% CI 0.07 – 0.14, 

confidence/difficult: permutation test p < 0.001, Cohen's d = 0.94, 95% CI 0.04 – 0.10) and 

experiment 4 (accuracy/easy: permutation test p < 0.001, Cohen's d = 1.69, 95% CI 0.12 – 

0.18, accuracy/difficult: permutation test p < 0.001, Cohen's d = 2.19, 95% CI 0.22 – 0.31, 

confidence/easy: permutation test p < 0.001, Cohen's d = 1.56, 95% CI 0.11 – 0.19, 

confidence/difficult: permutation test p < 0.001, Cohen's d = 1.49, 95% CI 0.11 – 0.19).  

Interestingly, in both experiments, the modulation of the confidence responses was 

different for correct and incorrect responses. Whereas for correct responses, confidence 

increases with stimulus consistency in experiment 3 (correct/easy: permutation test p < 

0.001, Cohen's d = 0.94, 95% CI 0.05 – 0.13, correct/difficult, permutation test p < 0.001, 

Cohen's d = 0.80, 95% CI 0.03 – 0.10) and experiment 4 (correct/easy: permutation test p 

< 0.001, Cohen's d = 1.58, 95% CI 0.11 – 0.18, correct/difficult, permutation test p < 0.001, 

Cohen's d = 1.41, 95% CI 0.11 – 0. 18), this pattern was not obtained for incorrect trials in 

experiment 3 (incorrect/easy: permutation test p = 0.53, Cohen's d = -0.14, 95% CI -0.05 – 

0.02, incorrect/difficult: permutation test p = 0.96, Cohen's d = 0.01, 95% CI -0.03 – 0.03) 

or experiment 4 (incorrect/easy: permutation test p = 0.19, Cohen's d = -0.29, 95% CI -0.14 

– 0.01, incorrect/difficult: permutation test p = 0.37, Cohen's d = -0.20, 95% CI -0.11 – 

0.03). These findings indicate that meta-cognitive accuracy (confidence-resolution = 

confidencecorrects – confidenceerrors) increases with stimulus consistency in experiment 3 

(resolution/easy: permutation test p < 0.001, Cohen's d = 0.82, 95% CI 0.05 to 0.16, 

resolution/difficult: permutation test p = 0.01, Cohen's d = 0.59, 95% CI 0.02 to 0.11) and 

experiment 4 (resolution/easy: permutation test p < 0.001, Cohen's d = 0.82, 95% CI 0.10 

to 0.29, resolution /difficult: permutation test p = 0.001, Cohen's d = 0.73, 95% CI 0.09 to 

0.27). As shown in Figure 5C-D (see also Supplementary Figure 11), this effect can also 

be accounted for by the stimulus-consistency model by applying a signal-detection 

confidence approach. 
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(A) 

 

(B) 

 
(C) 

 

(D) 

 
(E) 

 

(F) 

 
Figure 5. Results of experiments 3 and 4. (A) Choice accuracy in experiment 3 as a 

function of difficulty (separation between the sampling distributions: easy versus diffi-

cult) and consistency (difference in the directions of the evidence: consistent versus in-

consistent). The red, green and blue lines correspond to the predictions of the full/leaky-

integration, SI and stimulus consistency models, respectively. The thin grey lines corre-

spond to individual participants (n = 22 participants). (B) Same as (A) for experiment 4. 

Note that, here, the predictions of the SI model were not included as only one stream of 

evidence was presented (n = 25 participants). (C) Confidence as a function of difficulty 

and consistency for correct (blue lines) and incorrect (red lines) responses. Data are 
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shown with solid lines and circle symbols. Model predictions are shown with dashed 

lines and diamond symbols (n = 22 participants). (D) Same as (C) for experiment 4 (n 

= 25 participants). (E) Model comparison for experiment 3. The stimulus consistency 

model outperformed the leaky and SI models. (F) Model comparison results for experi-

ment 4. As in experiment 3, the stimulus consistency model outperformed the integration 

model. Data are presented as mean values ± standard error of the mean. 

 

We conducted quantitative model comparison for the several types of integration models 

using the data from experiments 3 and 4. Since the data of experiment 3 showed a recency 

pattern, we used leaky10,44,45 instead of full integration as our default model for that 

experiment (Computational methods). Overall, we compared the following models: (1) 

leaky/full-integration models, in which there is no distortion of the integrated evidence 

other than the decaying temporal weights, (2) SI model, which, additional to integration 

leak, gives higher weight to high values compared to low values, within each frame (note 

that as only one stream of evidence was presented in experiment 4, the SI model (which 

assumes weighting based on the comparison between pairs of samples) was excluded from 

the model comparison of that experiment) and (3) stimulus-consistency model (from 

experiment 1-2; Figure 3C-D). The results show that the stimulus-consistency model 

outperformed the other models, in both experiment 3 and in 4, and provides the best 

account for the data at group levels as well as for the majority of participants (Figure 5E-

F). 

Interestingly, whereas both of the bias models are able to account for the modulation of 

accuracy by stimulus consistency in experiment 3 (Figure 4C), the stimulus-consistency 

model accounts for subtler temporal clustering effects in the data. For example, unlike the 

SI model, the stimulus-consistency model predicts that accuracy is modulated by the size 

of the largest cluster of evidence consistent with the correct choice (LTC; see 

Supplementary Table 1 for the impact of this measure in experiments 1 and 2 and 

Supplementary Figure 10 for data showing an association between the LTC-enhancement 

and the advantage of stimulus-consistency over the SI model in experiment 3).  
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Stimulus-consistency and normativity. Why do participants increase the relative 

weighting of pieces of evidence that are consistent with previous ones? At face value, this 

distortion introduces a gap between the accumulated and ‘real’ evidence and should reduce 

task performance. Indeed, this is the case in the absence of (or for low) integration noise. 

As illustrated in Fig, 6A-B, however, in the presence of high integration noise, the 

consistency modulation makes the mechanism more robust to the corrupting impact of this 

noise (see cross-over between red and light blue lines in Figure 6A, so that, for each level 

of noise, there is a consistency-modulation that optimizes performance; black dots in 

Figure 6B and dark blue line in Figure 6A). A similar robustness effect due to selective 

integration was reported for the SI-model33,42 (see also ref. 42). In both cases, the integration 

mechanism distorts the actual evidence by shifting the distribution of accumulated 

evidence towards the correct side (see centre of the blue/red Gaussians in Figure 6C-D, 

whilst also making this distribution broader). Whilst for low noise this is detrimental to 

performance, for high noise it is beneficial, as the shift helps to make the effect of additional 

noise less pronounced. Note that, since we are looking at normative considerations, the 

current simulations exclude integration leak. Adding it to all models does not change any 

of the results. 

Discussion 

In the present study, we examined the mechanism that human observers deploy when 

making decisions on rapid streams of (perceptual and numerical) stochastic evidence. 

Using a behavioral model-agnostic method (the DCB curve), we showed that decision 

making is well characterized by integration to boundary rather than by non-integration 

heuristics, and that the boundary collapses with the passage of time (Figure 2E-F; see also 

ref. 46). Furthermore, we found that DCB curves constitute an informative behavioral 

benchmark for evaluating biases in evidence-integration. In particular, they provide a 

simplest bias free evidence integration model that approximates a biased integration model 

(Supplementary Figure 5). The covariation of the DCB with stimulus-consistency (Figure 

3A-B) indicates a consistency bias in the evidence integration. 
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(B) 

 

(A) 

 

(D) 

 

(C) 

 

Figure 6. Stimulus-consistency and normativity. (A) accuracy (that is, robustness to 

noise) as a function of noise, separately for the full integration (red line) and stimulus 

consistency models (blue lines). The accuracy of the stimulus-consistency model is pre-

sented for the model simulated using a fixed consistency parameter value of 10 (light blue) 

and for the model simulated using the optimal consistency parameter for each noise level 

(dark blue; see also B). (B) Accuracy of the stimulus-consistency model as a function of 

the consistency-modulation strength, for different levels of noise (σ curves). Black circles 

indicate consistency-values that maximize accuracy for a given level of accumulation 

noise. One can see that, as the level of the noise increases (red to blue lines), so does the 

level of the consistency modulation needed to achieve optimal performance (black cir-

cles). (C-D) The distributions of the total accumulated evidence at the moment of response 

for the full integration model (blue) and stimulus-consistency model (red). The accuracy 

of the full integration model is higher than that of the stimulus-consistency model for low 

noise simulations (C), but the stimulus-consistency model is more accurate for high-noise 

simulations (D). 
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The DCB receives as input the integrated evidence excluding internal noise (Eq. 2). As a 

result, its success in recovering the decision boundary is limited to experimental designs in 

which stimulus variability is high enough compared to internal noise. Consequently, the 

DCB method becomes less reliable when the presentation rate becomes closer to the 

integration time constant (which we assume to correspond to about 30ms47,48). 

Supplementary Figure 7 shows the results of a simulation examining the accuracy of the 

DCB method as a function of presentation time of each frame. As shown, the boundary 

reconstruction error increases as the presentation time of each frame decreases. This occurs 

because, when the evidence samples are presented close to the visual integration time scale, 

the neural responses to consequent sample become fused and the therefore stimulus 

variability is decreased. Whilst this could make the method difficult to apply to some 

prominent tasks such as the randomly moving dots49,50, we believe than a rate of 5-12.5 Hz 

(as used here) is a reasonable one to most ecological tasks in which subjects make decisions 

based on stochastic sequences of evidence43,51 and which sets the evidence integration at 

the cognitive rather than perceptual level.    

Motivated by previous studies, we examined here two types of evidence-integration biases. 

The first is an attention bias, which affects the relative weight of evidence given to 

temporally simultaneous sources of evidence26. In the SI model, for example, the higher of 

the two values presented on each frame, receives a higher weight than the lower one23,52,53. 

The second bias involves the sequential impact of a frame on subsequent frames, whereby 

evidence that is consistent with previous frames receives higher weight than inconsistent 

evidence. Model comparisons, supported the consistency bias in accounting for our data. 

Notably, consistency affected not only decision accuracy, but also decision confidence41, 

such that consistent evidence facilitated high decision confidence even after controlling for 

the total amount of evidence. Critically, consistency did not merely exert a biasing 

influence on confidence but improved participant’s meta-cognitive performance as 

measured by the resolution of confidence (that is, the correlation between confidence and 

choice correctness). Indeed, confidence as a function of consistency increased for correct 

choices but remained constant for incorrect choices. An open question for future studies is 

whether the effects that consistency exerts on choice accuracy and meta-cognition are 

dissociable.  



23 

 

Previous research has reported sequential effects operating at the trial level. For example, 

a choice biases the interpretation of evidence in subsequent trials54–56. Similarly, a 

preliminary decision biases processing of additional post-choice evidence towards 

confirming the initial decision28,31,57, and decisions bias the strength-evaluation of pro-

choice evidence that led to it58–60. Common to these studies is the assumption that these 

biases are triggered by the formation of a decision. Our findings, however, extend this 

notion by suggesting that a similar micro-level evidence integration bias operates during 

decision formation, before committing to a choice (see also refs. 61,62). In particular, we 

found that the best-fitting model was one in which the evidence is boosted for consistent 

evidence frames (this boost increases with the number of consecutive consistent frames) 

and is reset to baseline when the first inconsistent piece of evidence is encountered. Despite 

its evidence distortion, we have shown that this mechanism has an adaptive function in the 

presence of integration noise. Since evidence samples that are consistent with their 

predecessors are more likely to carry stronger evidence in favour of the correct alternative, 

inflating their weight provides extra protection from the corrupting effect of accumulation 

noise, resulting in increased decision accuracy (Figure 6). This ‘normativity hypothesis’ 

predicts that, to the extent that consistency-based evidence integration is a controlled and 

adjustable strategy, consistency sensitivity effects will increase as a function of integration 

noise, for example, when one is performing a dual task or when working memory is loaded. 

We leave this interesting question for future studies (see ref. 32 for a parallel investigation 

in relating to selective-integration). 

Our findings raise the intriguing hypothesis that confirmation biases are a form of 

consistency bias, whereby post-choice evidence inconsistent with pre-choice evidence is 

integrated less effectively than post-choice consistent evidence. Future studies should 

investigate whether, to what extent, and how consistency and confirmation biases are 

related, by measuring both biases within participants and using a unified paradigm. Another 

interesting possibility is that the consistency of evidence supporting a decision might affect 

the extent of a confirmation bias. For example, choices that are based on more consistent 

evidence may likely be more prone to confirmation bias, for example, due to the mediating 

effect of decision confidence30. Future studies could also beneficially examine whether and 

how consistency bias is related to a broad range of individual traits such as the need for 
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cognitive closure63, political radicalism57 and dogmatism64, or to psychiatric conditions 

such as OCD65. Consistency bias may be also related to higher-level judgments such as 

legal decisions, in which overweighting of consistent evidence may lead to erroneous 

decisions. We believe our paradigm provides an important advantage over current 

confirmation bias paradigms by addressing these questions. In current confirmation bias 

paradigms, which probe one’s ability to revise initially wrong decisions, validity might be 

jeopardized by demand characteristics (for example, presenting oneself in a self-consistent 

manner). In contrast, the current approach eschews these concerns, since participants are 

not required to contradict or confirm their previous decisions. 

In conclusion, our methods allowed us to validate critical aspects of the evidence 

accumulation process and to unravel the biases that affect it. Our findings contribute to a 

growing literature speaking to the notion that self-inflicted distortions of evidence are 

ironically adaptive in that they act to increase choice veracity by making it robust to noise. 

A critical next step is to study how these strategies are acquired and how they relate to 

puzzling behaviors such as confirmation bias, and to better characterize the environmental 

and psychological variables that affect strategy selection. 

Methods 

Experimental methods. Participants. The participants in experiments 1, 2 and 3 were 

undergraduates from Tel Aviv University: n = 27 (22 female, age 21–28 years) in 

experiment 1 (data taken from ref. 34), n = 30 (22 female, age 18–35 years) in experiment 

2 and n = 22 (17 female, age 21–30 years) in experiment 3. The participants in experiment 

4 were recruited via Prolific (https://prolific.ac/), n = 25 (12 female, age 18–32 years). All 

participants reported having normal or corrected-to-normal vision. The participants in 

experiments 1, 2 and 3 received course credit in exchange for taking part in the 

experiments, as well as a bonus fee ranging from 15 to 25 ILS, which was determined by 

their task performance. The participants in experiment 4 received £4 in exchange for 

participation. All experiments were approved by the ethics committee of Tel Aviv 

University. 

 

https://prolific.ac/
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Stimuli. The stimuli consisted of pairs of numerical values (experiments 1 and 3) or bars 

(experiment 2) which were presented simultaneously (Figure 1A-B), at a rate of 2 Hz 

(500ms per frame, experiment 1 and 3) or 5 Hz (200ms per frame, experiment 2). In 

experiment 4, the stimuli consisted of a single stream of red and blue arrays of dots (Figure 

4B) presented at a rate of 12.5 Hz (80ms per frame). Displays in experiments 1 and 3 were 

generated by an Intel I7 personal computer attached to an Asus 24'' 248qe monitor with a 

refresh rate of 144 Hz, using the 1920×1080 resolution graphics mode. Displays in 

experiment 2 were generated by an Intel I3 personal computer attached to a ViewSonic 19'' 

Graphics Series G90fB CRT monitor with a refresh rate of 60 Hz using the 1024×768 

resolution graphics mode. Experiment 4 was designed in PsychoPy366 and hosted online 

using Pavlovia (http://www.pavlovia.org/). Responses were collected via the computer 

keyboard. The viewing distance was approximately 60 cm from the monitor. 

Task and Design. Each trial in the experiments began with a fixation display consisting of 

a black 0.2° × 0.2° fixation cross (+) that remained on the screen for 1s. Then, pairs of 

numerical values (experiments 1 and 3), bars (experiment 2) or arrays of dots (experiment 

4) were presented sequentially to the participants, who were asked to decide which 

sequence was drawn from a distribution with a higher mean value (experiment 1), greater 

mean length (experiment 2), which of the sequences has a higher mean (experiment 3) or 

whether more blue or red dots were presented in total (experiment 4). The presentation in 

experiments 1 & 2 was terminated by the participants' response (free response protocol), 

whilst the presentation in experiments 3 and 4 was terminated after eight samples 

(interrogation protocol). In experiment 1, trials in which the response was faster than 

250ms or was performed after more than 11 samples were presented were excluded from 

further analysis (less than 2% of the data). In experiment 2, trials in which the response 

was faster than 200ms, performed after more than 20 samples were presented, or in which 

choice or decision confidence were not recorded were excluded from further analysis (less 

than 5% of the data). Responses were given by pressing the arrow keys (experiments 1 and 

2; left/right arrow keys for the left/right sequences, respectively) or by using the computer 

mouse (experiments 3 and 4). In experiments 2, 3 and 4, after each choice, participants 

were also asked to indicate their choice confidence. In experiment 2, we used a continuous 

scale with end points labeled '50%' and '100%'. In experiment 3, we used a six-button radio 

http://www.pavlovia.org/
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scale with end points (that is, 1 and 6) labelled 'Not confident at all' and 'Very confident'. 

In experiment 4, we used a continuous scale with end points labelled 'Not confident at all' 

and 'Very confident'. Confidence scores were normalized using min-max normalization:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 − min (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

max (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)  − min (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
 

Experimental Conditions. In all the experiments, the samples were drawn from Gaussians 

distributions. Experiment 1 included two difficulty levels, which were manipulated by 

varying the separation between the Gaussians: in the easy trials the means of the Gaussians 

were: μ1=52 vs. μ2=44, σ=10, whilst in the difficult trials the means were: μ1=52 vs. μ2=48, 

σ=10. Experiment 2 also consisted of two difficulty levels with μ1 = 52.5 vs. μ2 = 47.5 and 

μ1 = 51.5 vs. μ2 = 48.5, as well as an orthogonal manipulation of the sequences variance 

with σ1 = 0.1167 vs. σ2 = 0.07. In experiment 3, we orthogonally manipulated the difficulty 

and the consistency of the evidence. Difficulty was manipulated by increasing the 

separation between the Gaussians from μ1=52 vs. μ2=48, σ=10 (difficult trials) to μ1=52 vs. 

μ2=44, σ=10 (easy trials). Consistency was manipulated by sampling eight values from the 

high, as well as from the low mean distributions. Then, to generate consistent trials, we 

paired these values such that, in seven out of the eight pairs, the stronger evidence was in 

favour of the higher-mean distribution (Figure 4C, lower panel). To generate inconsistent 

trials, we shuffled the temporal order of the same values and repaired them such that in 

only four out of the eight pairs was the stronger evidence in favor of the higher mean 

distribution (Figure 4C, upper panel). In experiment 4, difficulty and the consistency were 

also orthogonally manipulated. Difficulty was manipulated by decreasing the mean of the 

Gaussian from μ=5 to μ=2 (σ=20 in both conditions). Consistency was manipulated by 

generating two types of trials: consistent trials, in which seven out of the eight frames 

provided support for one of the alternatives (Figure 4D, lower panel), and inconsistent 

trials, in which each alternative was supported by four of the frames (Figure 4D, upper 

panel).  

Statistical analysis. Correlations and mean comparisons. Correlations were examined 

using Pearson correlation coefficient. Means were compared using permutation tests 

with105 random shuffles. All tests were two-sided. 
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Mixed effects models. The effect of accumulated evidence and stimulus consistency on 

accuracy, RT confidence in experiments 1 and 2 (Table 1) were estimated on a trial-by-trial 

basis using mixed model regression analyses. The regressions were implemented using 

MATLAB ‘fitlme’ and ‘fitglme’ functions with participants serving as random effects and 

with a free covariance matrix. The fixed effects variables were: (1) accumulated evidence, 

calculated as the sum of differences between the two streams of evidence at the moment of 

response, and (2) stimulus-consistency, calculates as the absolute value of the difference 

between the number of frames with evidence favouring the two alternatives, normalized 

by the length of trial. Both variables were normalized using z-score transformations.  

Choices in Experiment 1 & 2 (coded as 1 for correct and 0 for error) were predicted using 

logistic regressions, which in Wilkinson notation was: 

𝑙𝑜𝑔𝑖𝑡(𝑃𝐶ℎ𝑜𝑖𝑐𝑒𝑠) ~ (𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) + (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦)

+ (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)  

RTs (experiments 1 and 2) and confidence (experiment 2) were predicted using linear 

regressions, which in Wilkinson notation were: 

𝑅𝑇 ~  (𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) + (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ~  (𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) + (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   

The exact same pattern of results reported in Table 1 was obtained if the accumulated 

evidence and stimulus-consistency were also included as random effects. 

Computational methods. Model-free method. The validity of the model-free method was 

tested by simulating 10,000 synthetic decisions using known (fixed or collapsing) 

boundaries and examining the ability of the model-free method to accurately recover them. 

The values in all simulations (Figure 2A-D) were sampled from X~N(52, 152) and Y~N(46, 

152). The decision process in Figure 2A-B was based on Eq. 1 with either a fixed (Figure 

2A) or collapsing boundary (Figure 2B). The fixed-boundary was characterized by a single 

boundary parameter (c=50), and the collapsing-boundary was characterized by four 

parameters: intercept, shape, scale and asymptote (a=100, k=3, λ=4, a'=10; see Modelling 
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details and ref. 38). The decision process in Figure 2C-D was based on the value and 

difference cut-off heuristics with cut-offs of 70 and 20, respectively34. 

The decision boundaries in Figure 2A-D were extracted by applying the LDA algorithm39,40 

to the integrated evidence excluding internal noise (that is, Y(t), see Eq. 2). For each frame 

(t), each trial that was not terminated before t, was classified as one of the following 

categories: choose alternative A, choose alternative B or continue sampling. Then, using 

the LDA, we extracted the planes that optimize the separation between different classes for 

each frame. We assumed that the upper and lower boundaries are symmetrical and therefore 

averaged both.  

As mentioned in the main text, the internal noise causes an unavoidable overlap between 

the different classes. This overlap impairs the LDA ability to correctly extract the decision 

boundary and is particularly evident in slow trials due to the accumulation of internal noise 

across time67. Thus, to increase the robustness of the model-free method to internal noise, 

we constrained the boundary extraction of each frame by previous ones. To this end, we 

extracted the boundary based on two predictors: 𝑡 and Y(𝑡), 1 ≤ 𝑡 ≤ 𝑛, as illustrated in the 

table below: 

Table 2 Illustration of the data used by the LDA algorithm 

Y(t) t Response classification 

Ytrial 1 (t = n) n Choose B 

Ytrial 3(t = n) n Continue sampling 

… … … 

Ytrial 1 (t = n-1) n-1 Continue sampling 

Ytrial 2 (t = n-1) n-1 Choose A 

Ytrial 3 (t = n-1) n-1 Continue sampling 

… … … 

Ytrial 1 (t = 1) 1 Continue sampling 

Ytrial 2 (t = 1) 1 Continue sampling 

Ytrial 3 (t = 1) 1 Continue sampling 

… … … 

The LDA classifies each frame to one of three classes: terminating the trial by choosing 

alternative A, terminating the trial by choosing alternative B or continue sampling more 

evidence, based on the time point (t) and the evidence accumulated to this time point (Y(t)). 
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The LDA algorithm provide linear functions that separate the different classes from each 

other. To obtain the value of the boundary for the n-th frame, we computed the value of the 

separating linear functions for this frame.  

Modelling Details. Integration to boundary models. We examined several integration-to-

boundary models, all of them assumed integration of evidence based on the following 

formula: 

 𝑋(𝑡) = 𝑋(𝑡 − 1) + 𝜇(𝑡) + 𝜀(𝑡), 𝜀~ 𝑁(0, 𝜎2) Eq. (1) 

where X(t) is the accumulated differences at time t and 𝜀(𝑡) is a random Gaussian noise, 

which is independent from the evidence-sampling noise. The term 𝜇(𝑡) varied between the 

different models as follows: 

1) Full integration  

 𝜇(𝑡) = 𝑉𝐿(𝑡) − 𝑉𝑅(𝑡) Eq. (3) 

 

where 𝑉𝐿(𝑡) and 𝑉𝑅(𝑡) are the samples drawn from the left and right 

distributions at time t, respectively (note that 𝑉𝐿(𝑡) and 𝑉𝑅(𝑡) include the 

sampling noise).   

2) Stimulus consistency   

 𝜇(𝑡) = 𝑉𝐿(𝑡) − 𝑉𝑅(𝑡) +  𝑠𝑖𝑔𝑛(𝑉𝐿(𝑡) − 𝑉𝑅(𝑡)) ∙ 𝜃 ∙ 𝑖 Eq. (4) 

where 𝜃 is a free parameter representing the enhancement given to pieces of 

evidence that are consistent with previous ones and 𝑖 counts the run of 

consistent values (starting at 0). For example, if the differences between the 

values are: 15, 20, 8, -15 and -25, then 𝑖𝑡=1 = 0, 𝑖𝑡=2 = 1, 𝑖𝑡=3 = 2, 𝑖𝑡=4 = 0 

and  𝑖𝑡=5 = 1. 

3) Preference consistency  

 

𝜇(𝑡) = {
(𝑉𝐿(𝑡) − 𝑉𝑅(𝑡)) ∙ 𝜃, 𝑖𝑓 

𝑠𝑖𝑔𝑛 (𝑉𝐿(𝑡) − 𝑉𝑅(𝑡))

𝑠𝑖𝑔𝑛(𝑋(𝑡 − 1))
= 1

𝑉𝐿(𝑡) − 𝑉𝑅(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. (5) 
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where 𝜃 is a free parameter representing the enhancement given to pieces of 

evidence consistent with the total accumulated evidence at time 𝑡 − 1. 

4) Selective integration 

 
𝜇(𝑡) = 𝑉𝐿(𝑡) ∙

1

1 + 𝑒−𝜃(𝑉𝐿(𝑡)−𝑉𝑅(𝑡))
− 𝑉𝑅(𝑡) ∙

1

1 + 𝑒−𝜃(𝑉𝑅(𝑡)−𝑉𝐿(𝑡))
 

 

Eq. (6) 

 

where 𝜃 is a free parameter affecting the magnitude of the selective gating23. 

All the integration models in experiments 1 and 2 assume integration to a collapsing-

boundary34, modelled using a Weibull cumulative distribution function38: 

 𝑢(𝑡) = 𝑎 − [1 − 𝑒𝑥𝑝 (− (
𝑡

𝜆
)

𝑘

)] ∙ (𝑎 − 𝑎′) Eq. (7) 

 

where ±u(t) are the upper/lower thresholds at time t, a/a' are the initial (intercept) and 

asymptotic values of the boundary, respectively, and λ and k are the scale and shape 

parameters of the Weibull function, respectively.   

In experiments 3 and 4, we used an interrogation paradigm, in which the probability of 

choosing each alternative was calculated using an exponential version of Luce’s choice 

rule68:  

𝑃(𝐿𝑒𝑓𝑡) =  
1

1 + 𝑒−(𝛽0+𝛽1(∑ 𝜇(𝑡)𝑛
𝑡=1 ))

 

𝑃(𝑟𝑖𝑔ℎ𝑡) = 1 − 𝑃(𝐿𝑒𝑓𝑡) 

Eq. (8) 

 

where 𝛽1 indicates the sensitivity of the model to the accumulated evidence, with an 

intercept of 𝛽0.  

In addition, we examined whether the participants in experiments 3 and 4 showed a recency 

bias, as reported in several previous studies which used an interrogation paradigm33,53. To 

this end, for each participant, we performed a temporal logistic regression analysis, in 

which we predicted the response of each trial based on the differences between 𝑉𝐿 and 𝑉𝑅 

at each frame, ranked by their temporal order. In 3xperiment 3, the mean weight of samples 

5-8 was significantly higher than that of samples 1-4 (permutation test p < 0.001, Cohen's 
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d = 2.09, 95% CI 0.30 – 0.45) indicating a recency bias. No such effect was found in 

experiment 4 (p = 0.09, Cohen's d = 0.35, 95% CI -0.01 – 0.10). This motivated us to 

include a leak term in experiment 310, which controls the extent to which earlier values are 

given less weight. Thus, Eq. 8 was extended to the following form in Experiment 3: 

 
𝑃(𝐿𝑒𝑓𝑡) =  

1

1 + 𝑒−(𝛽0+𝛽1((1−𝜆)𝑛−𝑡∙∑ 𝜇(𝑡)𝑛
𝑡=1 ))

 

𝑃(𝑟𝑖𝑔ℎ𝑡) = 1 − 𝑃(𝐿𝑒𝑓𝑡) 

Eq. (9) 

where 𝜆 is the leak term. 

Non-integration to boundary models. We examine three models that did not assume 

integration of evidence decision boundary (Figure 1C-D and Figure 2C-D). The first model 

is the value-cutoff heuristic, which assumes that observers choose based on the detection 

of a single high-value sample. For example, if a participant uses a cut-off value of 70, then 

they will choose the sequences in which a value higher than 70 first appears. The second 

heuristic is the difference-cutoff heuristic, which assumes that observers choose based on 

the first frame in which the difference between the numbers exceeds a predetermined 

threshold34. In addition to these two heuristics, we examined a third model which we 

labeled a random-timer model. This model assumes integration of evidence based on Eq. 

1, but the RT is determined by an exogenous process. The value cut-off heuristic was 

simulated using thresholds of 70 (experiment 1, Figure 1C), 80 (experiment 2, Figure 1D) 

and 70 (DCB analysis, Figure 2C). The difference cut-off heuristic was simulated using 

thresholds of 20 (experiment 1, Figure 1C), 25 (experiment 2, Figure 1D) and 20 (DCB 

analysis, Figure 2D). The RTs of the random timer model were sampled from an ex-

Gaussian distribution with μ = 3, σ = 0.5 and λ = 2/3 (experiment 1, Figure 1C) and μ = 6, 

σ = 1 and λ = 3 (experiment 2, Figure 2C). These values were chosen because they provided 

accuracy and RTs similar to the ones observed in the data of experiments 1 and 2. 

Optimization procedure. The free parameters of the computational models were fitted to 

the data (choices and decision times) of each participant in experiments 1 and 2 separately, 

using maximum likelihood estimation. For each trial, we simulated the different models 

1,000 times for a given set of proposal parameters and calculated the proportion of trials in 

which the model choice and decision time matched the empirical data. Denoting the 
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proportion of match between the simulated and empirical data by pi, we maximized the 

likelihood function 𝐿(𝐷|𝜃) of the data (D) given a set of proposal parameters (θ), by: 

𝐿(𝐷|𝜃)  = ∏ 𝑝𝑖

𝑁

𝑖=1

 

To find the best set of proposal parameters we first used an adaptive grid search algorithm 

(see ref. 69 for details) and then used the three best sets of proposal parameters as starting 

points to a Simplex minimization routine70. This data-fitting procedure showed good to 

excellent ability71 to recover the free parameters of the models (see Supplementary Figures 

8 & 9).    
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Supplementary Results 

Behavioral signature of integration to boundary 

We compared integration and non-integration models by using the method described in ref. 

1. Each model was simulated 100,000 times and the mean accumulated evidence was 

plotted as a function of RT (see black, green and magenta dashed lines in Fig. 1C-D). Next, 

for each participant in Experiment 1 & 2, the accumulated evidence excluding internal 

noise (both of correct and incorrect responses) was plotted as a function of response-time 

(see Supplementary Figure 1A-B). A mixed-effect linear regression models were fitted to 

the data of Experiment 1 & 2, with RT and participants serving as random effects and with 

a free covariance matrix (see thin gray and blue lines in Fig. 1C-D). The model in 

Wilkinson notation was: 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑎𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ~ 𝑅𝑇 +  (𝑅𝑇|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

The group level slope in both Experiment 1 & 2 showed a decreasing pattern (Fig. 1C: b = 

-2.86, tagainst 0 = -7.08, p < .001, 95% CI -3.65 to -2.07 and Fig. 1D: b = -0.86, tagainst 0 = -

3.18, p = .001, 95% CI -1.40 to -0.33), which is the behavioral signature of integration to 

a collapsing boundary. 

(A) 

 

(B) 

 

Supplementary Figure 1. Accumulated evidence as a function of RT. (A) Scatter-plot 

showing the accumulated evidence in individual trials (blue circles) as a function of 

decision time of a representative participant in Experiment 1 (B) Same as (A) but for a 

representative participant in Experiment 2. Red circles correspond to the average 

accumulated evidence at each RT, the gray solid line corresponds to linear regression 

fitted to the data, and the dashed gray line corresponds to the prediction of the random 

timer model (see Computational methods). 
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Regression analysis - Largest temporal cluster of the evidence 

The choice-accuracy, RT and confidence in Experiment 1 & 2 were analyzed using mixed 

model regression analyses (logistic for accuracy and linear for RT and confidence), using 

the accumulated evidence and the normalized stimulus-consistency as fixed factors and 

participants as random intercepts. The analysis was similar to one reported in Table 1 (see 

also Computational models), except that here we used the more complex measure of 

stimulus-consistency – larger temporal cluster of the evidence (LTC), in which we 

computed for each trial the largest temporal cluster that goes with the evidence and divide 

it by the number of samples (e.g., if the evidence are: 4, -5, 3, 4, 5, 2, -2, -6, then the LTC 

measure will be equal to: 
4

8
= 0.5). The results (Supplementary Table 1), are fully 

consistent with the ones obtained using the simpler consistency measure (Difference in 

Evidence-Directions), and show that LTC enhances accuracy and confidence and reduces 

RT, even whilst controlling for the accumulated evidence. 

 

Supplementary Table 1. Beta coefficients for predicting Accuracy, RT and confidence in 

Experiment 1 & 2.  

 β (S.E.) t p 95% CI 

Experiment 1     

   Accuracy     

      Evidence 1.80 (0.06) 32.17 <.001 [1.69, 1.91] 

      Stimulus Consistency (LTC) 0.20 (0.04) 4.85 <.001 [0.12, 0.28] 

     
   RT     

      Evidence -0.29 (0.008) -35.39 <.001 [-0.30, -0.27] 

      Stimulus Consistency (LTC) -0.14 (0.008) -16.97 <.001 [-0.15, -0.12] 

     
Experiment 2     

   Accuracy     

      Evidence 0.53 (0.03) 17.58 <.001 [0.47, 0.59] 

      Stimulus Consistency (LTC) 0.97 (0.04) 27.43 <.001 [0.90, 1.04] 

     
   RT     

      Evidence -0.19 (0.007) -28.12 <.001 [-0.20,-0.17] 

      Stimulus Consistency (LTC) -0.16 (0.007) -24.26 <.001 [-0.15,-0.12] 

     
   Confidence     

      Evidence 0.18 (0.009) 20.96 <.001 [0.16, 0.20] 

      Stimulus Consistency (LTC) 0.10 (0.009) 10.99 <.001 [0.08, 0.11] 
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Model based vs. Model free - Experiment 1 

 
Supplementary Figure 2. Decision Classification Boundaries (DCB) of the 

participants in Experiment 1. Black dashed lines correspond to the model-based 

boundary, and the red ones correspond to the model-free DCB. 
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Model based vs. Model free - Experiment 2 

 
Supplementary Figure 3. Decision Classification Boundaries (DCB) of the 

participants in Experiment 2. Black dashed lines correspond to the model-based 

boundary, and the red ones correspond to the model-free DCB. 
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Linking the DCB to behavioral measures  

The link between the DCB and several behavioral measures, such as response-times, 

accuracy and response bias, was examined using Pearson correlations. The correlation 

between the area under the DCB and the mean RT across participants was high and 

significant in both experiments, Experiment 1: r = .96, p < .001, Experiment 2: r = .8, p 

< .001 (Supplementary Figure 4A-B). There was also a correlation between the area under 

the DCB and the mean accuracy, however, it was weaker and less consistent – Experiment 

1: r = .41, p = .03 (Supplementary Figure 4C) and Experiment 2:  r = .29, p = .1 

(Supplementary Figure 4D). In the analysis of Experiment 2, one of the participant was 

considered an outlier (z-scored Mahalanobis distance > 4) and was excluded from the 

analysis. Finally, we examined the correlation between the DCB and response bias. To this 

end, we computed the asymmetry between the area under the boundaries (that is, difference 

between the area under the left and right boundaries) and correlated it with the probability 

to choose the left alternative over the right one (that is, response bias). The correlation 

between this two measures did not reach a statistical significance in Experiment 1: r = .25, 

p = .2 (Supplementary Figure 4E), but was significant in Experiment 2:  r = .55, p = .002 

(Supplementary Figure 4F). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

(A) 

 

(B) 

 
 

(C) 

 

(D) 

 
 

(E) 

 

(F) 

 
Supplementary Figure 4. The links between the DCB and behavioral measures. (A-B) 

Correlations between the area under the DCB and the mean response times across 

participants in (A) Experiment 1 (r = .96, p < .001) and (B) Experiment 2 (r = .8, p 

< .001). (C-D) Correlations between the area under the DCB and the mean accuracy 

across participants in (C) Experiment 1 (r = .41, p = .03) and (D) Experiment 2 (r 

= .29, p = .1). (E-F) Correlation between the asymmetry of the area under the 

boundary and response bias in (E) Experiment 1 (r = .25, p = .2) and (F) Experiment 

2 (r = .56, p = .002). Solid lines correspond to linear least-squares fits, and the shaded 

areas to 95% confidence intervals. 
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DCB for biased evidence – bias free approximate model  

The DCB accurately extracts the decision-boundary when the evidence is integrated 

without loss or distortion (that is, full integration model). However, if this is not the case, 

the DCB does not recover the decision-boundary, but rather modulates the classification 

curve so as to produce a bias-free model of evidence integration which approximates the 

original model. To illustrate this point, we simulated three models: i) Leaky-integration 

model: 

Eq. (S1) 𝐷𝑉(𝑡) = (1 − 𝜑) ∙ 𝐷𝑉(𝑡 − 1) + 𝜇(𝑡) + 𝜀(𝑡), 𝜀~𝑁(0, 𝜎2)  

where DV(t) is the accumulated differences between the sequences at time t, 𝜇(𝑡) is the 

difference between the samples at time t, 𝜀(𝑡) is a temporally-independent random internal 

Gaussian noise, and 𝜑 is a leak parameter which controls the extent to which earlier values 

are given less weight2 and was set to 0.3 in this simulation. ii) Full integration model (that 

is, the leak was set to 0) with the same boundary parameters as of the previous leaky-

integration model, and iii) Full integration model with a boundary that was extracted by 

applying the DCB on the data of the leaky-integration model (model i). That is, the data of 

this model was generated by the extracting the DCB of the leaky–integration model first, 

and then a non-leaky model was simulated using the DCB values as decision boundary (all 

other parameters except of leak are the same as in the original model). Each model was 

simulated 10,000 times, using two difficulty condition: difficult trials, in which the values 

were sampled from X ~ N(52, 102) and Y ~ N(48, 102), and easy trials in which the values 

were sampled from X ~ N(52, 102) and Y ~ N(44, 102). In all models we assume integration 

to a collapsing-boundary characterized by intercept (a=150), shape (k=3), scale (λ=5) and 

asymptote (a'=10) parameters3 with noise level of σ = 15. Supplementary Figure 5A shows 

the Quantile Probability Plots (QPP) of the leaky-integration model and the full integration 

model (without leak) with the same boundary parameters. As expected, the QPPs of these 

models show large deviations from each other. By contrast, as shown in Supplementary 

Figure 5B, the QPPs of the leaky-integration model and the (full integration) DCB-based 

model are much more similar, indicating that the DCB compensate for the distorted 

integration by modulation of the classification curve to maintain similar choice and 

response-times patterns as of the leaky-integration model. 
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(A) 

 

(B) 

 
Supplementary Figure 5. Quantile Probability Plots (QPP) of the leaky integration 

model ('X' symbol), full integration model ('△' symbol) and DCB-based model ('○' 

symbol). The blue, orange, yellow, purple and green lines correspond to the 0.1, 0.3, 

0.5, 0.7 and 0.9 quantiles, respectively. (A) Comparison between the QPPs of the 

leaky and non-leaky integration models. (B) Comparison between the QPPs of the 

leaky and DCB-based integration models. 
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DCB for biased evidence – Estimation of the boundary 

We have showed that the DCB is able to accurately estimate the decision boundary when 

the integration process is not biased. Here, we demonstrate how the DCB method can be 

applied to estimate the boundary even in case of biased integration. To this end, a candidate 

biased integration model (e.g., stimulus-consistency bias) is first selected. Then, instead of 

extracting the DCB using the actual evidence, the DCB is applied on the evidence biased 

by the selected model. This procedure is repeated for different levels of the bias-parameter 

of the model (e.g., the different levels of the stimulus-consistency bias parameter). For each 

level, the corresponding DCB and a classification performance metric (e.g., accuracy) are 

computed. This results in a family of DCB curves – one for each value of the bias 

parameter. The bias-parameter and corresponding DCB which maximizes the performance 

metric comprise the estimate. Note that this method is based on a mixture of parametric 

(the proposed biased integration mechanism) and non-parametric methods (the DCB, 

which does not assume any functional form of the boundary). Thus, this method allows to 

extract the boundary without making any functional assumptions using the DCB, even the 

when evidence integration process is biased.  

To compute the DCB performance measure, the confusion matrix of the DCB response 

classification (aggregated across all frames) should be first defined. This is a 3X3 matrix 

for the classes: a) continue sampling, b) choosing alternative A, and c) choosing alternative 

B. The rows of the matrix correspond to the actual responses and the columns corresponds 

to the responses predicted by the DCB. The DCB classification performance measure can 

be obtained using standard metrics such as accuracy, F1-score4 or Matthews correlation 

coefficient5 (MCC). Note that instead of maximizes a performance metric, one can also 

minimize an error measure (e.g., the overlap between the 3 classes of distributions; see Fig. 

2).  
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Supplementary Table 2. The confusion matrix of the DCB.  

  Predicted response 

  Continue 

Sampling 

Choosing A Choosing B 

Actual 

Response 

Continue 

Sampling 

Correct 

Classification 

Incorrect 

Classification 

Incorrect 

Classification 

Choosing A Incorrect 

Classification 

Correct 

Classification 

Incorrect 

Classification 

Choosing B Incorrect 

Classification 

Incorrect 

Classification 

Correct 

Classification 
 

To validate this method, we simulated data using different stimulus-consistency bias 

parameters and examine the ability of the method to recover them. For each bias parameter, 

the model is simulated 1,000 times using collapsing-boundary characterized by four 

parameters: intercept, shape, scale and asymptote parameters (a=150, k=3, λ=5, a'=10; see 

ref. 3) and noise level of σ = 15. The evidence is sampled from X~N(52, 102) and Y~N(46, 

102). The consistency bias-parameters with which the data was generated ranged from 0 to 

15. For each parameter, we used a grid search over values between 0 and 20 with 

increments of 1.  

Supplementary Figure 6A-B show the generative stimulus-consistency bias-parameters 

plotted against the recovered parameters. The parameters were recovered using Matthews 

correlation coefficient (Supplementary Figure 6A) and F1-score (Supplementary Figure 

6B) metrics, which are better suited for imbalanced data. Supplementary Figure 6C shows 

an illustrative simulation in which the stimulus-consistency bias parameter was set to 6. As 

can be seen, the DCB assuming a biased evidence integration process (in blue) captured 

well the generative boundary with which the data was simulated (black lines). By contrast, 

a DCB assuming a bias of 0 (that is, unbiased integration; red lines) underestimates the 

generative boundary. Note that as shown in Supplementary Figure 5, a DCB assuming a 

bias of 0 compensates for the biased integration process by modulation of the classification 

curves, in order to maintain a similar choice and response-times patterns. In this case, as 

the stimulus-consistency bias increases the evidence, the DCB compensates by 

underestimating the generative boundary. Supplementary Figure 6D shows the boundary 

reconstruction error as a function of bias-parameter. Reconstruction error was quantified 

as the mean absolute deviation between the generative boundary and the DCB (that is, 

Error = < Σ|Generative boundaryi – Estimated DCBi|>). It was calculated both for the DCB 
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that minimizes the error (in blue) as well as for the DCB assuming unbiased integration (in 

red). As shown in Supplementary Figure 6D, the reconstruction error of the former is lower 

and does not depended on the magnitude of the bias (blue line), whereas the error of the 

latter is higher and increases with the magnitude of the bias-parameter (red line).  

(A) 

 

(B) 

 
(C) 

 

(D) 

 
Supplementary Figure 6. DCB for biased integration process. (A-B). The generative 

stimulus-consistency bias parameters plotted against the recovered parameters using 

the (A) MCC (r = .8, p < .001) and (B) F1-score (r = .82, p < .001) as a goodness of fit 

measures. Solid lines correspond to linear least-squares fits, and the shaded areas to 

95% confidence intervals. (C) Simulation illustrates that applying the DCB (blue line) 

whilst assuming a biased evidence integration process allows to recover the generative 

boundary with which the data was generated (black). The red line corresponds to a 

model that assumes an unbiased evidence integration and results in a poorer recovery 

of the generative boundary. (D) Reconstruction error as a function of bias-parameter 

(n = 160 simulations). Reconstruction error was quantified as the mean absolute 

deviation between the generative boundary and the DCB. It was calculated both for 

the DCB that maximizes performance measures (in blue) as well as for the DCB 

assuming unbiased integration (in red). As shown, the reconstruction error of the 

former is lower and does not depended on the magnitude of the bias, whereas the error 

of the latter is higher and increases with the magnitude of the bias-parameter. Red and 

blue dots correspond to the reconstruction error of each simulation. Data are 

presented as mean values ± standard error of the mean. 
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DCB error as a function of presentation rate  

The ability of the DCB to reconstruct the decision boundary for presentation rates of 

500ms/frame (Experiment 1) and 200ms/frame (Experiment 2) is described in the main 

text. Here, we theoretically examined (using simulations) the ability of the DCB to 

reconstruct the boundary also for faster presentation rates, which are closer to the visual 

integration time-constant (assumed here to correspond to a conservative estimation of τ = 

30ms6,7). To address this question, we simulated two types of models: a fixed-boundary 

model (c=50) and a collapsing-boundary model characterized by intercept, shape, scale and 

asymptote parameters (a = 150, k = 3, λ = 5, a' = 10; Hawkins et al., 2015). Each model 

was simulated 100 times with 10,000 trials in each simulation and using noise level of σ = 

15. The evidence in each simulation was sampled from X ~ N(52, 102) and Y ~ N(46, 102), 

as in our experiments. Critically, each simulation assumed five presentation rates of 10, 30, 

100, 200 and 500ms/frame. For the collapsing boundary model, we assumed that the scale 

parameter was scaled with the presentation times. For example, if λ = 5, then for 

presentation time of 200ms it would be equal to: 5·500/200 = 7.5 (the same pattern of 

results is obtained if we do not make this assumption, and assumed the same scale for all 

presentation rates). For each frame, we computed the convolution between a decaying 

exponential function with a time constant of τ = 30ms (Supplementary Figure 7A) and a 

step function with values Si = Xi – Yi over intervals equal to the size of the frame durations 

(that is, the inverse of presentation rates; Supplementary Figure 7B, upper panel). The 

results of this convolution were averaged for each frame and fed as an input to the DCB. 

As shown in Supplementary Figure 7B (middle and lower panels), the output signal of the 

convolution was much more distorted for fast presentation rates compared to slow ones. 

To quantify the ability of the DCB to extract the generative boundary of each simulation, 

we computed the mean absolute difference between the DCB and the generative boundary 

(Error = <Σ|Generative boundaryi – Estimated DCBi|>). Supplementary Figure 7C-D show 

the mean reconstruction error of the DCB as a function of presentation rate for the fixed-

boundary and collapsing-boundary models, respectively. As can be seen, both panels show 

that the slower the presentation rate, the lower the error. These findings suggest that the 

DCB will be more reliable in paradigms in which the response time is not very fast (see 

also the discussion in the main text). 
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Note that in these simulations, we follow the normative task requirements of updating the 

evidence per sample (rather than per unit of time). This is because in our task, in which 

pairs of numbers from noisy distributions are presented, the likelihood changes with the 

samples rather than with the presentation time (that is, presenting a single sample twice as 

long is not equivalent with presenting two identical samples; we assume that the sampling 

noise is higher than the perceptual noise). We thus use the presentation frame as our 

updating simulation time steps. A similar normative algorithm is characteristic of tasks 

such as the weather prediction-task8 or legal decision making. However, it is also possible 

that as the time frame is reduced, the estimation error (that is, the internal noise) is 

increased. Here, we focus on how the time frame of evidence integration limits the accuracy 

of the boundary estimation, as a result of the temporal fusion between the information from 

different frames which is caused by visual integration that takes place at the percept rather 

than decision level. For that reason, we neglect the dependency of the estimation error (at 

each sample) on the duration of the presentation rate. Thus, the results obtained from this 

simulation provide an upper limit for the DCB accuracy at fast presentation rates.  
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(A) 

 

(B) 

 
(C) 

 

(D) 

 
Supplementary Figure 7. (A) A decaying exponential function with a time constant of 

30ms (τ), corresponding to the visual filter that transforms the signal on the retina to 

signals in the visual areas. (B) Upper panel: The sample values (Left sample – Right 

sample) which were presented in a representative trial as a function of time. Middle 

panel: the convolution between the decaying exponential function (τ=30ms) and the 

sampled values for presentation rate of 500ms/frame. Lower panel: same as the middle 

panel, but for presentation rate of 10ms/frame. (C-D) Both fixed and collapsing 

boundary model show that the mean reconstruction error of the DCB decreases with 

presentation rate (n = 100 simulations). Data are presented as mean values ± standard 

error of the mean. 
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Parameter recovery 

Parameter recovery was performed for the full integration model and for the stimulus-

consistency model (our best-fitting model). Each model was first simulated using the 

estimated parameters of each participant (generative parameters) and the same number of 

trials as there is in the data. Then, the full integration and stimulus-consistency models 

were fitted to the simulated data and the parameters of each model were extracted 

(recovered parameters). Supplementary Figure 8 & 9 show the generative parameters 

plotted against the recovered parameters for the full-integration and stimulus-consistency 

models, respectively. As can be seen, the quality of the parameter recovery ranges between 

good to excellent9. 
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(A) 

 

(B) 

 

(C) 

 
 

(D) 

 

Supplementary Figure 8. Parameter recovery for the full Integration model. The 

generative parameters of the full integration model plotted against the recovered 

parameters for the (A) noise (r = .95, p < .001) (B) intercept (r = .98, p < .001) (C) scale 

(r = .98, p < .001) and (D) asymptote parameters (r = .89, p < .001). Solid lines 

correspond to linear least-squares fits, and the shaded areas to 95% confidence 

intervals. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 
Supplementary Figure 9. The generative parameters of the stimulus consistency model 

plotted against the recovered parameters for the (A) noise (r = .90, p < .001), (B) 

intercept (r = .98, p < .001), (C) scale (r = .99, p < .001), (D) asymptote (r = .87, p < .001) 

and (E) consistency (r = .91, p < .001) parameters. Solid lines correspond to linear least-

squares fits, and the shaded areas to 95% confidence intervals. 
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Temporal clustering effects 

In Experiment 3 we generated consistent and inconsistent trials (Fig. 4A), by manipulating 

the difference between the number of frames with evidence favoring the two alternatives. 

This manipulation, however, is correlated with the number of frequent winners, which 

modulates choices in the selective-integration (SI) model10. Thus, although the stimulus-

consistency (SC) model provided better fit for the data (Fig. 5E), the consistency effect in 

Experiment 3 can also be accounted for by the SI model (Fig. 5A). To distinguish between 

the two models, we used another measure of consistency – LTC (larger temporal cluster of 

the evidence, see Supplementary Table 1). For each participant, we calculated the LTC 

measure of each trial, and divided the trials into high/low LTC trials by performing a 

median split. Then, to quantify the sensitivity of the participants to temporal clustering, we 

computed the difference in mean accuracy of high and low LTC trials (accuracyhigh LTC – 

accuracylow LTC). This difference should be higher for a participant whose bias mechanism 

is modulated by the consistency of each frame with previous ones, as presenting the 

positive evidence in an as large cluster as possible enhances the overall integrated evidence.  

Supplementary Figure 10A shows the differences in goodness of fit (Deviance = -

2∙LogLikelihood) between the SI and the SC models (positive values indicate a better fit of 

the SC model). As shown, the SC model outperformed the SI-model at the group level (see 

also Fig. 5E) and provided a better fit for the majority of participants. Supplementary 

Figure 10B shows the correlation between differences in the goodness of fit of the models 

and the effect of temporal clustering (each point represents a single participant). As shown, 

the SC model provide a better fit for the data, specifically for participants who showed 

higher sensitivity to temporal clustering. 
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(A) 

 

(B) 

 

Supplementary Figure 10. (A) Comparison between the SC and SI models across the 22 

participants in Experiment 3. (B) Correlation between differences in goodness of fit of 

the SI and the SC models and the effect of temporal clustering (r = .61, p = .002); each 

point represents a single participant. Solid lines correspond to linear least-squares fits, 

and the shaded areas to 95% confidence intervals. 
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Confidence-resolution  

In order to account for the differences in confidence resolution in Experiment 3 & 4 (Fig. 

5C-D), we simulated the stimulus-consistency model using pairs of consistent and 

inconsistent trials, that were created using the same generating distributions as in 

Experiment 3 (that is, with the same evidence content for each pair). Supplementary Figure 

11A shows 25 pairs of trials (blue – consistent vs. red – inconsistent), which were simulated 

using the mean fitted parameters: 𝜃𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 1.75. The stimulus-consistency 

model predicts that the bias in favor of consistent evidence would increase the accumulated 

evidence of consistent compared with inconsistent trials (even though both types of trials 

have the same evidence). Supplementary Figure 11B shows the distributions of 

accumulated evidence of consistent and inconsistent trials generated using the stimulus-

consistency model (using the mean internal noise obtained in the empirical data, 𝛽 = .05). 

The mean distance from the criterion (0) of correct consistent trials is higher than for 

correct inconsistent trials, t(98) = 5.44, p < .001, Cohen's d = 1.09, 95% CI 21.80 to 46.88. 

For inconsistent trials, however, the differences in the mean distances from the criterion of 

the incorrect consistent and incorrect inconsistent trials did not reach statistical, t(98) = -

0.17, p = .87, Cohen's d = -0.03, 95% CI -9.68 to 8.16. Based on the distributions presented 

in Supplementary Figure 11B we predicted the mean confidence response for each 

condition of the stimulus consistency (Supplementary Figure 11C-D). To this end, we 

computed the absolute mean value of the accumulated evidence (that is, distance from 0) 

of the correct and incorrect responses separately for consistent and inconsistent response. 

Then, using linear regression we mapped these values to the mean confidence level of each 

condition (dashed lines). 
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(A) 

 

(B) 

 
(C) 

 

(D) 

 
Supplementary Figure 11. Confidence-resolution in Experiment 3 & Experiment 4. (A) 

Twenty-five pairs of trials (consistent and inconsistent) were simulated using the same 

generating distributions as in Experiment 3 (without internal noise; blue – consistent 

trials, red - inconsistent). The stimulus-consistency model predicts that the bias in favor 

of consistent evidence would increase the accumulated evidence of consistent trials 

compared with inconsistent ones. (B) The distributions of accumulated evidence of 

consistent (blue) and inconsistent (red) trials simulated using the stimulus-consistency 

model (with internal noise) in Experiment 3. Solid blue and red vertical bars correspond 

to the mean of each distribution. (C) Confidence as a function of difficulty and 

consistency for correct (blue lines) and incorrect (red lines) responses in Experiment 3 

(n = 22 participants). Data are shown with solid lines and circle symbols and model 

predictions are shown with dashed lines and diamond symbols. (D) Same as (C) but for 

Experiment 4 (n = 25 participants).Data are presented as mean values ± standard error 

of the mean. 
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Supplementary Methods 

Estimation of non-decision time 

The presentation rate in Experiment 1 was 5 Hz (500ms/sample)1. Non-decision time (that 

is, perceptual encoding and response execution) in this experiment was estimated as 

250ms. Consequently, if response occurred less than 250ms after the presentation of the 

last sample, then this sample was excluded from the decision-time calculation. For 

example, if a participant responded 100ms after the presentation of the eight sample, then 

the decision-time was defined as seven samples. Additionally, trials in which the response 

was faster than 250ms, were excluded from further analysis (less than 1% of the data).  

The presentation rate in Experiment 2 was 5 Hz (200ms/sample). The higher temporal 

resolution in this experiment allowed us to estimate non-decision for each participant 

separately, using the procedure described in ref. 11. The evidence of the first frame before 

decision (that is, last frame of each trial) was regressed on choice (left or right alternative) 

using logistic regression model (hereafter actual-evidence model). The log-likelihood (LL) 

of the actual-evidence model was compared to the LL of a model in which the evidence 

was randomly sampled (hereafter random-evidence model). If the LL of the actual-

evidence model was lower than the LL of the random-evidence model (indicating a better 

fit of the former), we assumed that the evidence in the first frame before decision was taken 

into account whilst deciding. If not, we assumed that it did not affect choice. Evidence was 

defined as X(n) – Y(n), where X(n) and Y(n) are the last samples of each trial (that is, first 

samples before decision), drawn from the left and right distributions, respectively. The 

samples of the random model were drawn from the same generative distributions as in 

Experiment 2. We used a cut-off of 6 between the deviance values of the models 

(∆Deviance = 2∙LLactual-evidence model - 2∙LLrandom-evidence model), which is considered strong 

evidence in favor of the winning model. If the first frame before decision did not affect 

choice, the second frame before decision was examined, and so on until finding the frame 

in which the evidence was correlated with choice. Non-decision time was computed as the 

total number of frames before decision in which the evidence was not associated with 

choice. The average non-decision time was 194 ± 98ms (0.97 ± 0.49frames), similar to 

Experiment 1.    
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