

Bayesian network structure learning in

the presence of latent variables

Kiattikun Chobtham

Bayesian Artificial Intelligence research lab,

Machine Intelligence and Decision Systems (MInDS) research group,

 School of Electronic Engineering and Computer Science

A Thesis submitted for the degree of

Doctor of Philosophy

i

DECLARATION

I, Kiattikun Chobtham, declare that the research included in this thesis is my own work

or that where it has been carried out in collaboration with, or supported by others, this is duly

acknowledged, and my contribution indicated. Previously published material is also

acknowledged. I further acknowledge any previously published material used in this work. It

is affirmed that reasonable care has been exercised to ensure that the work is original and does

not violate any UK law, infringe any third party’s copyright or other Intellectual Property

Rights, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the

electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Submission date: 12 July 2023

Examination date: 10 October 2023

Revised version: December 2023

ii

The material presented in this thesis is based on the set of papers listed below.

LIST OF PUBLICATIONS

K. Chobtham and A. C. Constantinou. Bayesian network structure learning with causal effects in the

presence of latent variables. In M. Jaeger and T. D. Nielsen, editors, Proceedings of the 10th

International Conference on Probabilistic Graphical Models, volume 138 of Proceedings of Machine

Learning Research, pages 101–112. PMLR, 23–25 Sep 2020.

K. Chobtham, A. C. Constantinou, and N. K. Kitson. Hybrid Bayesian network discovery with latent

variables by scoring multiple interventions. Data Mining and Knowledge Discovery, volume, 37: pages

476–520, 2023. doi: 10.1007/s10618-022-00882-9.

K. Chobtham and A. C. Constantinou. Discovery and density estimation of latent confounders in

Bayesian networks with evidence lower bound. In Proceedings of the 11th International Conference on

Probabilistic Graphical Models, volume 186 of Proceedings of Machine Learning Research, pages

121–132. PMLR, 05–07 Oct 2022.

K. Chobtham and A. C. Constantinou. Tuning structure learning algorithms with out-of-sample and

resampling strategies, arXiv preprint arXiv:2306.13932, 2023.

A. C. Constantinou, Y. Liu, K. Chobtham, Z. Guo, and N. K. Kitson. Large-scale empirical validation

of Bayesian network structure learning algorithms with noisy data. International Journal of

Approximate Reasoning, Vol. 131: pages 151–188, 2021. ISSN 0888-613X. doi:

https://doi.org/10.1016/j.ijar.2021.01.001.

A. C. Constantinou, Y. Liu, N. K. Kitson, K. Chobtham, and Z. Guo. Effective and efficient structure

learning with pruning and model averaging strategies. International Journal of Approximate Reasoning,

151: pages 292–321, 2022.

N. K. Kitson, A. C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of Bayesian network

structure learning. Artificial Intelligence Review, 2023. ISSN 1573-7462. Doi: 10.1007/s10462-022-

10351-w.

A. C. Constantinou, N. K. Kitson, Y. Liu, K. Chobtham, A. Hashemzadeh, P. A. Nanavati, R. Mbuvha,

and B. Petrungaro. Open problems in causal structure learning: A case study of COVID-19 in

the UK, Expert Systems with Applications, Vol. 234, 2023, 121069, ISSN 0957-4174.

https://doi.org/10.1016/j.ijar.2021.01.001

iii

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Dr Anthony Constantinou, Head of Machine

Intelligence and Decision Systems research group for guiding me throughout my four-year PhD

journey. I am very grateful to him for his kindness, patience, and valuable advice in scientific

thinking, effective communication, and my English writing, not only about the research but

also about my professional career and life. Dr Constantinou is a talented researcher and

lecturer, and he consistently provides prompt responses to my inquiries. I am very lucky to

have had the opportunity to learn from him.

I am very grateful to my collaborator Dr Ken Kitson for his extremely helpful comments in our

publications. Furthermore, I would like to extend my appreciation to my previous supervisor,

Dr Athasit Surarerks, for providing a recommendation letter of support. A big thanks to my

colleagues that made this journey more pleasant, Yang Liu and Buckley.

I would like to thank Thailand’s Office of Civil Service Commission (OCSC) and Hydro-

Informatics Institute for supporting me with a Royal Thai Government scholarship for my

doctoral studies.

Finally, I would also like to express my gratitude to my parents, my sister and my best friends

for their love and encouragement during my time in the UK.

iv

ABSTRACT

A causal Bayesian Network (BN) is a probabilistic graphical model that captures causal or

conditional relationships between variables, and enables causal reasoning under uncertainty.

Causal reasoning via graphical representation in turn enables interpretability and full

transparency in decision-making, and this makes causal BNs suitable for modelling critical

real-world problems that require explainability, such as in healthcare, environmental sciences,

government policy and economics.

Learning accurate causal structure from data represents a notoriously difficult task, and

this difficulty increases with any imperfections present in the input data. For example, real data

tend not to capture all relevant variables needed for causal representation, and these missing

variables are referred to as hidden or latent variables. If some of the latent variables are latent

confounders (i.e., missing common causes), they would confound the effect variables, thereby

leading to spurious relationships in the learnt structure that could be misinterpreted as causal

relationships. While the relevant literature includes structure learning algorithms that are

capable of learning causal structure from data with latent variables, it is fair to say that accurate

structural discovery from real data remains an open problem.

This thesis studies structure learning algorithms that recover graphical structure from

data, and primarily focuses on the problem of latent variables. It investigates new solutions,

including structure learning algorithms that learn from both observational and interventional

data, approaches for density estimation that can be used to recover the underlying distribution

of possible latent confounders, and techniques for hyperparameter optimisation of structure

learning algorithms. The thesis explores this set of new approaches by applying them to a range

of synthetic and real datasets of varying size, dimensionality, and data noise, and concludes by

highlighting open problems and directions for future research.

v

LIST OF FIGURES

Figure 2.1 An example of a serial connection……………………………………………… 6

Figure 2.2 An example of a divergence connection. ……………………………………… 6

Figure 2.3 An example of a converging connection. ……………………………………… 7

Figure 2.4 An illustration of the mechanisms of Perfect, Imperfect, and Uncertain

interventions, where the square box represents the target node(s), ΘX|Y
0 , ΘY

0 are the

parameters for nodes X and Y respectively when I = 0 (representing no intervention), and

ΘX|Y
1 , ΘY

1 are the parameters for nodes X and Y respectively when I = 1 (representing an

external imperfect or an uncertain intervention). …………………………………………..

8

Figure 2.5 An example where G is unfaithful to its joint probability distribution P. …….. 9

Figure 2.6 (a) Latent confounder B in grey causes A and C. Definition 1 indicates that A

and C are statistically dependent, leading to spurious directed edges in (b) and (c). The

bidirected edge in the ancestral graph in (d) represents confounding. ………………………

12

Figure 2.7 A causal DAG with observed variables {V, W, X, Y, Z} ∪ latent variables {L1, L2}

in grey, with two examples of Markov equivalent MAGs, and the Markov equivalent PAG

of MAGs. …………………………………………………………………………………..

14

Figure 3.1 The overall decrease in accuracy of F1 and BSF and the corresponding increase

in SHD are observed across all algorithms in each noisy experiment. These observations

are made in comparison to the results of the experiment N conducted with clean data.……

26

Figure 4.1 Average Precision and Recall scores of the algorithms (variances for CCHM)

for each combination of variable size and max in-degree settings (50 graphs per

combination). The results are based on synthetic data with sample size 10k and assume that

10% of the variables are latent. …………………………..…………………………………

37

Figure 4.2 Average computation time of the algorithms for each combination of variable

size and max in-degree settings (50 graphs per combination). The results are based on

synthetic data with sample size 10k and assume that 10% of the variables are latent. ………

38

Figure 4.3 Average number of edges, SHD and BSF scores of the algorithms (variances of

BSF for CCHM) for each combination of variable size and max in-degree settings (50

graphs per combination). The results are based on synthetic data with sample size 10k and

assume that 10% of the variables are latent. ……………..…………………………………

39

Figure 4.4 The SHD scores of the top three algorithms in each of the four Gaussian BNs,

over three different input settings for hyperparameter α. The results are based on synthetic

data with sample size 10k. ……………..……………………………………………………

40

Figure 5.1 (a) Three Markov equivalent DAGs that entail the CI statement A ⊥ B | C, and

(b) the corresponding modified DAGs when assuming a perfect intervention on C, where

the square box represents the target node for intervention. …………………………………

42

Figure 5.2 (a) The undirected graph produced by the CI tests given DOBS, (b)-(d) and the

three CPDAGs learnt by FGS from observational and interventional data (DOBS , DINT1
and

DINT2
) generated based on the DAG shown in Figure 2.7 of Chapter 2, with variables

targeted for intervention T1={V}, T2={W} shown in the square boxes. ……………………

50

Figure 5.3 The overall process of the mFGS-BS algorithm that iteratively processes

datasets and calculates posterior probabilities of directed edges to generate a PAG. ………

51

Figure 5.4 The boxplots show the BSF and F1 scores of mFGS-BS from 20 random

interventional data orderings generated from the Alarm network, assuming one intervened

variable and 5% latent variables per dataset, over two sample sizes and two numbers of

interventional datasets. The boxplots report the average values (the symbol x in the box)

vi

along with the median (the middle line of the box), and the maximum and minimum scores

(the whiskers of the box). The lower edge of the boxplot represents the first quartile, while

the higher edge of the boxplot represents the third quartile. ………………………………..

54

Figure 5.5 Average performance of the algorithms when applied to synthetic data generated

from the Asia network, assuming one intervened variable and 10% latent variables per

dataset, over two sample sizes. ………………………………………………

56

Figure 5.6 Average performance of the algorithms when applied to synthetic data generated

from the Sports network, assuming one intervened variable and 10% latent variables per

dataset, over two sample sizes. ………………………………………………

58

Figure 5.7 Average performance of the algorithms when applied to synthetic data generated

from the Alarm network, assuming one intervened variable and 5% latent variables per

dataset, over two sample sizes. ………………………………………………

59

Figure 5.8 Average performance of the algorithms when applied to synthetic data generated

from the Property network, assuming one intervened variable and 5% latent variables per

dataset, over two sample sizes. ………………………………………………

60

Figure 5.9 Average performance of the algorithms when applied to synthetic data generated

from the Property network, assuming five intervened variables and 5% latent variables per

dataset, over two sample sizes. The runtime of COmbINE at 1k sample size is not shown in

the charts, because its runtime is much higher. ……………………………

62

Figure 5.10 Average performance of the algorithms when applied to synthetic data

generated from the Alarm network, assuming five intervened variables and 5% latent

variables per dataset, over two sample sizes. ……………………………………………….

63

Figure 6.1 A PAG (a) along with one of its MAGs (b), and three DAGs (c, d, e) with

different latent confounders (grey nodes) derived from the given MAG, where A ⊥/ B, A ⊥/ C

and B ⊥/ C. ………………………………………………………………………………….

70

Figure 6.2 The p-ELBO scores produced at Step 4 by the two algorithms, where ● indicates

the highest score achieved by the specified algorithm. The results in a) and b) are based on

the Property network with variable ‘otherPropertyExpenses’ being the latent confounder

and in c) and d) are based on the Alarm network with variable ‘INTUBATION’ being the

latent confounder, and assume the input PAG is produced by GFCI. ………………………

74

Figure 7.1 The F1 scores over different hyperparameter values for BDeuiss and EBICγ. The

illustration is based on the HC algorithm and synthetic ALARM data with a sample size

10k. ……………………………………………………………………………………

80

Figure 7.2 The average F1 scores with and without hyperparameter tuning. Untuned

algorithms assume Default A configuration and tuned algorithms assume OTSL with

EBICnormalised γ as the tuning score. The average scores are derived over four structure

learning algorithms (excluding MCMC that does not support EBICγ), and six synthetic case

studies. The boxplots represent the highest and lowest F1 scores with outliers, × is the mean

and ‒ is the median. The lower edge of the boxplot represents the first quartile, while the

higher edge of the boxplot represents the third quartile. Figure (a) depicts the scores for

datasets with sample size 1k, and (b) with sample size 10k. ………………………………

84

Figure 7.3 The average F1 scores with and without hyperparameter tuning. Untuned

algorithms assume Default B configuration and tuned algorithms assume OTSL with

BDeuiss as the tuning score. The average scores are derived over five structure learning

algorithms, and six synthetic case studies. The boxplots represent the highest and lowest F1

scores with outliers, × is the mean and ‒ is the median. The lower edge of the boxplot

represents the first quartile, while the higher edge of the boxplot represents the third quartile.

Figure (a) depicts the scores for datasets with sample size 1k, and (b) with sample size 10k.

85

Figure 7.4 (a) Overall runtime (structure learning and tuning) and (b) tuning runtime,

summed over all six synthetic datasets and two sample sizes, across all five structure

learning algorithms. ………………………………………………………………………..

88

vii

Figure 7.5 The DAG learnt by MMHC for the ForMed dataset with OTSL tuning (Table

7.7). ………………………………………………………………………………………..

91

Figure 7.6 The DAG (sampled from the learnt CPDAG) learnt by FGS for the COVID-19

dataset with OTSL tuning (Table 7.8). ……………………………………………………

92

Figure 7.7 The DAG (sampled from the learnt CPDAG) learnt by FGS for the Diarrhoea

dataset with OTSL tuning (Table 7.9). ……………………………………………………..

93

Figure 7.8 The DAG learnt by MMHC for the Weather dataset with OTSL tuning (Table

7.10). The vertices of the world map superimposed over the DAG represent latitude and

longitude locations on 10x10 degree grids. …………………………………………………

94

Figure 8.1 The F1 scores produced by each average graph with reference to the knowledge

graph. ……………………………………………………………………………………….

100

Figure A1 Average performance of the algorithms when applied to synthetic data generated

from the Formed network, assuming one intervened variable and 5% latent variables per

dataset, over two sample sizes. ………………………………………………

101

Figure A2 Average performance of the algorithms when applied to synthetic data generated

from the Pathfinder network, assuming one intervened variable and 5% latent variables per

dataset, over two sample sizes………………………………………………

102

Figure A3 Average performance of the algorithms when applied to synthetic data generated

from the Formed network, assuming five intervened variables and 5% latent variables per

dataset, over two sample sizes. ………………………………………………

103

Figure A4 Average performance of the algorithms when applied to synthetic data generated

from the Pathfinder network, assuming five intervened variables and 5% latent variables

per dataset, over two sample sizes……………………………………………...…

104

viii

LIST OF TABLES

Table 3.1 The properties of the six real-world networks. …………………………………. 22

Table 3.2 The 16 experiment codes for different types of noise where N denotes no noise,

M represents missing values, I represents incorrect values, S represents merged states, L

represents latent variables, and c represents combo. ……………………………………….

23

Table 3.3 The properties of the 15 structure learning algorithms considered for evaluation. 24

Table 3.4 The penalty weights used for evaluation, where o-o and o→ are learnt edges by

structure learning algorithms under the assumption of causal insufficiency. ………………

24

Table 3.5 The average and overall ranked performance for each algorithm over all case

studies and sample sizes, and over all the 15 noisy-based experiments, as determined by

each of the three metrics, where Δ represents the relative difference in performance

compared to noise-free experiments N. Green and red rankings indicate increased and

decreased relative ranked performance respectively. ………………………………………

25

Table 3.6 The graphical accuracy of MAHC relative to the other seven algorithms. The

percentages represent the number of times the score of MAHC was better, worse, or the

same relative to each of the other algorithms, across all case studies, sample sizes, and noisy

experiments. The best performance is shown in bold. ………………………………………

29

Table 3.7 The percentages represent the average normalised BIC scores, where higher

percentages correspond to a better score. An average of 100% indicates that the algorithm

obtained the highest average BIC score across all experiments. ……………………………

30

Table 5.1 Overview of the relevant structure discovery algorithms that assume causal

insufficiency, and learn graphs from multiple interventions. ……………………………….

44

Table 5.2 How the probabilities of directed edges of Factor 2 are calculated, given the

unshielded triple V − X − Y in Example 1 and with reference to Figure 5.2a. …………….

50

Table 5.3 An example of calculating the relative change in the local BDeu scores as

described in Example 1 and with reference to Figure 5.2c and Figure 5.2d. ……………….

50

Table 5.4 Examples of the calculation of the prior probability of directed edges with

reference to Example 1, Figure 5.2, Table 5.2 and Table 5.3. ………………………………

51

Table 5.5 The edge and orientation penalty scores used by the scoring metrics, where ⇢

represents one of the output edges of COmbINE. ………………………………………….

53

Table 5.6 The impact of Factors 1, 2 and 3 (refer to subsection 5.2.2) on graphical

performance, where mFGS-BS considers all of the three factors (default version), mFGS-

BS-1 considers Factor 1 only, mFGS-BS-12 considers Factors 1 and 2 only, etc. The results

represent average performance over multiple experiments with synthetic Alarm network

data, as described in subsection 5.4.2. ………………………………………………………

55

Table 5.7 Average performance across all experiments in which a single variable is targeted

for intervention per dataset, where M indicates out-of-memory error, and T indicates failure

to complete learning within the four-hour runtime limit. The best performance values are

shown in bold. ………………………………………………….…………………………...

61

Table 5.8 Average performance across all experiments in which five variables are targeted

for intervention per dataset, where M indicates out-of-memory error, and T indicates failure

to complete learning within the four-hour runtime limit. The best performance values are

shown in bold. …………………………………………………..

64

Table 6.1 The properties of the four real-world networks considered for evaluation.………. 73

Table 6.2 The p-ELBO scores for each algorithm and dataset combination and across both

sample sizes, where Memory indicates out-of-memory error in enumerating the possible

ix

MAGs, and Timeout indicates failure to complete learning within the 12-hour time limit.

The best scores are indicated in bold. ………………………………………………………

75

Table 7.1 The properties of the 10 case studies. …………………………………………… 82

Table 7.2 The algorithms tested for hyperparameter optimisation, along with the set of

hyperparameters optimised. Brackets indicate the hyperparameter defaults. The size of the

separation-set for CI tests is set to -1 to allow for an unlimited size of conditioning sets. …

82

Table 7.3 The change in average F1 and SHD scores for each algorithm, after randomising

their hyperparameters and after tuning them with OTSL. The experiments consider all six

synthetic case studies and both 1k and 10k sample sizes. The hyperparameter defaults are

α = 0.05 for Chi2 test and γ = 0 for EBICγ (Default A). The best performance values are

shown in bold. ……………………………………………… ……………………………..

86

Table 7.4 The change in average F1 and SHD scores for each algorithm, after randomising

their hyperparameters and after tuning them with OTSL. The experiments consider all six

synthetic case studies and both 1k and 10k sample sizes. The hyperparameter defaults are

α = 0.05 for Chi2 test and γ = 0 for BDeuiss (Default B). The best performance values are

shown in bold. …………………………………………… …………………………………

86

Table 7.5: The average change in F1 and SHD scores due to hyperparameter tuning by the

specified tuning method. The averages are derived from all six synthetic case studies and

over both sample sizes. The structure learning algorithms assume Default A hyperparameter

configuration (Chi2 test with α = 0.05, and EBICγ with γ = 0). The highest improvements

in graphical accuracy are shown in bold. …………………………………………………..

86

Table 7.6 The average change in F1 and SHD scores due to hyperparameter tuning by the

specified tuning method. The averages are derived from all six synthetic case studies and

over both sample sizes. The structure learning algorithms assume Default B hyperparameter

configuration (Chi2 test with α = 0.05, and BDeuiss with iss = 1). The highest improvements

in graphical accuracy are shown in bold. …………………………………………………..

87

Table 7.7 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the

graphs learnt by the specified structure learning algorithms when applied to the ForMed

dataset, with OTSL tuning. The best performance values are shown in bold. ……………..

90

Table 7.8 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the

graphs learnt by the specified structure learning algorithms when applied to the COVID-19

dataset, with OTSL tuning. The best performance values are shown in bold. …………….

91

Table 7.9 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the

graphs learnt by the specified structure learning algorithms when applied to the Diarrhoea

dataset, with OTSL tuning. The best performance values are shown in bold. ……………..

92

Table 7.10 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the

graphs learnt by the specified structure learning algorithms when applied to the Weather

dataset, with OTSL tuning. The best performance values are shown in bold. ……………..

93

Table B1 All scores for each algorithm and dataset combination with sample size of 10k,

where Memory indicates out-of-memory error in enumerating the possible MAGs, and

Timeout indicates failure to complete learning within the 12-hour time limit. The best

scores are indicated in bold. …………….…………….…………….…………….………..

105

Table B2 All scores for each algorithm and dataset combination with sample size of 1k,

where Memory indicates out-of-memory error in enumerating the possible MAGs, and

Timeout indicates failure to complete learning within the 12-hour time limit. The best

scores are indicated in bold. …………….…………….…………….…………….………..

106

x

LIST OF ABBREVIATIONS

ACI Ancestral Causal Inference

AIC Akaike Information Criterion

ASP Answer Set Programming

BDeu Bayesian Dirichlet equivalent uniform

BDs Bayesian Dirichlet sparse score

BIC Bayesian Information Criterion

BN Bayesian Network

BSF Balanced Scoring Function

CCHM Conservative rule and Causal effect Hill-climbing for MAG

cFCI conservative rule Fast Causal Inference

CI Conditional Independence

CIL Constrained Incremental Learner

COmbINE Causal discovery from Overlapping INtErventions

CPDAG Completed Partially Directed Acyclic Graph

CPS Candidate Parent Sets

CPT Conditional Probability Table

DAG Directed Acyclic Graph

EBIC Extended BIC

ELBO Evidence Lower Bound

FCI Fast Causal Inference

FGS Fast Greedy equivalence Search

FN False Negative

FP False Positive

GBN Gaussian Bayesian Network

GES Greedy Equivalence Search

GFCI Greedy Fast Causal Inference

GIES Greedy Interventional Equivalence Search

GLSL Greedy Latent Structure Learner

HC Hill-Climbing

HCLC-V Hill-Climbing Latent Confounder search with VBEM

ILC-V Incremental Latent Confounder search with VBEM

IMAPs Independence MAPs

iss imaginary sample size

JCI Joint Causal Inference

KL Kullback-Leiber divergence

LL Log-Likelihood
MAG Maximal Ancestral Graph

MAHC Model Averaging Hill-Climbing

MAP Maximum A Posteriori

MB Markov Blanket

MCAR Missing Completely At Random

MCMC Markov Chain Monte Carlo

mFCI majority rule Fast Causal Inference

mFGS-BS majority rule and Fast Greedy equivalence Search with Bayesian

Scoring

MI Mutual Information
OCT Out-of-sample Causal Tuning

xi

OTSL Out-of-sample Tuning for Structure Learning

P Precision

PAG Partial Ancestral Graph

PDAG Partially Directed Acyclic Graph

poset partial ordered set

R Recall

RFCI Really Fast Causal Inference

RFCI-BSC Really Fast Causal Inference and Bayesian Scoring of Constraints

SAT boolean SATisfiability instances

Sepsets Separated sets

SEM Structural Equation Model

SHD Structural Hamming Distance

StARS Stability Approach to Regularization Selection

TN True Negative

TP True Positive

VAE Variational Autoencoder

VAEM VAE for heterogeneous Mixed type data

VBEM Variational Bayesian Expectation-Maximization

xii

CONTENTS

DECLARATION.. i

LIST OF PUBLICATIONS ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

LIST OF FIGURES .. v

LIST OF TABLES ... viii

LIST OF ABBREVIATIONS .. x

I Introduction .. 1

1.1 Problem statement and Research hypothesis ... 2

1.2 Structure of the thesis ... 3

II Background information and literature review ... 5

2.1 Bayesian networks .. 5

2.1.1 Markov property and Markov condition ... 7

2.1.2 Intervention ... 7

2.2 Structure learning ... 9

2.2.1 Constraint-based learning ... 9

2.2.1.1 Conditional Independence (CI) tests ... 10

2.2.1.2 Causally Insufficient Systems .. 12

2.2.1.3 Constraint-based algorithms ... 14

2.2.2 Score-based learning .. 16

2.2.2.1 Objective scores ... 16

2.2.2.2 Score-based algorithms ... 17

2.2.3 Hybrid learning .. 19

2.2.4 Evaluating structure learning algorithms .. 20

III Structure learning with imperfect data ... 21

3.1 Case studies.. 21

3.2 Generating imperfect data ... 22

3.3 Structure learning algorithms and evaluation setup ... 23

3.4 Results .. 24

3.5 Model averaging and pruning strategies for structure learning with imperfect data 27

3.5.1 The MAHC algorithm .. 28

3.5.2 Evaluation and results .. 29

3.6 Conclusions .. 31

IV Structure learning with causal effects in the presence of continuous data and latent variables

 .. 32

xiii

4.1 Conservative rule and Causal effect Hill-climbing for MAG (CCHM) 33

4.2 Evaluation .. 35

4.3 Empirical results ... 37

4.3.1 Results based on random Gaussian Bayesian Networks ... 37

4.3.2 Results based on real-world Gaussian Bayesian Networks .. 40

4.4 Conclusions .. 41

V Hybrid structure learning from multiple discrete datasets by scoring multiple interventions 42

5.1 Related works .. 43

5.2 The mFGS-BS algorithm .. 45

5.2.1 Determining the probabilities of directed edges from a single observational dataset

 ... 45

5.2.2 Determining the probabilities of directed edges from both observational and

interventional datasets .. 46

5.2.2.1 Factor 1: Determining the probabilities of directed edges given the occurrence rates of

each directed edge over all learnt CPDAGs ... 47

5.2.2.2 Factor 2: Determining the probabilities of directed edges given the ratios of Sepsets

determining v-structures .. 48

5.2.2.3 Factor 3: Determining the probability of directed edges given the relative changes in

local BDeu scores .. 49

5.2.3 Algorithm mFGS-BS .. 51

5.3 Evaluation .. 53

5.4 Results .. 54

5.4.1 Assessing the sensitivity of the ordering of interventional datasets 54

5.4.2 Assessing the impact of Factors 1, 2, and 3 .. 55

5.4.3 Results based on one variable targeted for intervention per interventional dataset 56

5.4.4 Results based on five variables targeted for intervention per interventional dataset

 ... 61

5.5 Conclusions .. 65

VI Discovery and density estimation of latent confounders with evidence lower bound 67

6.1 Preliminaries ... 67

6.1.1 Conjugate-exponential family models .. 67

6.1.2 Variational Bayesian Expectation-Maximization (VBEM) .. 68

6.1.3 Related works .. 69

6.2 The two proposed algorithms for learning of latent confounders .. 69

6.2.1 Searching for MAGs and DAGs given a PAG input ... 70

6.2.2 Incremental Latent Confounder search with VBEM (ILC-V) 70

6.2.3 Hill-Climbing Latent Confounder search with VBEM (HCLC-V)............................ 72

6.3 Evaluation .. 72

6.4 Results .. 73

xiv

6.4.1 The difference in search space explored by ILC-V and HCLC-V 73

6.4.2 Performance of ILC-V and HCLC-V relative to other algorithms 75

6.5 Conclusions .. 76

VII Tuning structure learning algorithms with out-of-sample and resampling strategies 77

7.1 Preliminaries ... 77

7.1.1 Extended BIC .. 77

7.1.2 Related works .. 78

7.2 Out-of-sample Tuning for Structure Learning (OTSL) .. 78

7.2.1 Resampling with replacement with multiple training and test datasets 79

7.2.2 Tuning hyperparameters on test data... 79

7.2.3 The Out-of-sample Tuning for Structure Learning (OTSL) algorithm 80

7.3 Evaluation .. 81

7.4 Results .. 83

7.4.1 Results based on synthetic data ... 83

7.4.1.1 Impact of hyperparameter tuning on graphical structure ... 83

7.4.1.2 Assessing OTSL relative to existing tuning algorithms for structure learning 86

7.4.2 Applying OTSL to real data .. 88

7.5 Conclusions .. 94

VIII Conclusions and open problems .. 96

8.1 Concluding remarks ... 96

8.2 Open problems .. 98

Appendix A .. 101

Appendix B .. 105

Bibliography .. 107

Page 1 of 116

Chapter 1

Introduction

Machine learning is rapidly evolving in both academic and industry settings. Black-box

machine learning, and particularly deep learning, has proven to be effective in areas where

causal representation may not be essential, such as in Natural Language Processing (NLP),

machine vision, and sound information processing. However, the advancements in deep

learning have also highlighted the limitations of black-box machine learning in providing

interpretable solutions in critical real-world areas where decisions must be explained and

justified. Causal models such as causal Bayesian Networks (BNs) proposed by Pearl (1988),

do offer the interpretability that is necessary for transparency and explainability. A causal BN

achieves this through graphical representation that enables quantitative reasoning under causal

assumptions, where variables are represented by nodes and causal probabilistic dependencies

between variables are represented by directed edges.

Pearl and Mackenzie (2018) argue that there are three progressive levels of reasoning

needed for machines to achieve effective real-world decision making; namely predictive,

interventional and counterfactual reasoning. They call this "The ladder of causation".

Specifically, at Level 1, models are limited to establishing associational relationships and

generating predictions that are based exclusively on those relationships. For instance, they can

answer questions such as "What symptoms are most likely to be observed in the presence of

disease A?". Moving up to Level 2, models at this stage incorporate a form of causal

representation that enables them to address questions relating to interventions. For example,

"What would be the effect of taking drug A on symptoms B, considering that they are caused

by disease C?" Finally, at Level 3, this highest level of causal representation enables answering

questions about causation that extend to counterfactual reasoning. For instance, they can

respond to inquiries such as, "Would the severity of my symptoms caused by disease C be

reduced if I had opted for drug B instead of drug A?". Pearl (2000) argues that only causal

models, including causal BNs, can address inquiries related to all three levels of causation.

Over the past few decades, BNs have been widely used for decision making under

uncertainty in diverse real-world applications. For instance,

• Thornley et al. (2012) utilised a causal BN to investigate the risk of cardiovascular

disease;

Page 2 of 116

• Constantinou et al. (2013) developed a causal BN to measure the performance of

football teams and predict match outcomes;

• de Waal et al. (2016) used a causal BN to conduct a case study on rhino poaching;

• Constantinou and Fenton (2017) demonstrated the use of causal BNs in modelling

investment decision making in the UK property market;

• de Zoete et al. (2019) employed a BN to illustrate the limitations of probability

theory in legal reasoning, particularly in relation to legal paradoxes.

When BNs are applied in practice, the causal structure of these models is often determined by

knowledge and expert judgments. However, knowledge elicitation requires access to expertise,

which can be costly and time consuming. These limitations gave rise to algorithms that

automatically recover the underlying causal structure from data. Nowadays, many applications

of BN models rely on structure learning algorithms, some of which enable users to specify

knowledge-based constraints that restrict or guide structure learning towards graphical

structures that are consistent with prior expert knowledge (Castelo and Siebes, 2000).

1.1 Problem statement and Research hypothesis

The process of learning BNs from data is generally separated into two main tasks: structure

learning and parameter learning. The former represents an unsupervised approach that

determines the structure of a BN model, whereas the latter represents the process of learning

the conditional distributions given the learnt structure. This thesis focuses on the problem of

structure learning.

Learning causal structure from data is known to be an NP-hard problem where the

number of possible graphs grows super-exponentially with the number of the variables.

Moreover, large or dense networks tend to require large sample sizes to parameterise them with

reasonable accuracy, and this adds further pressures to computational complexity which

increases both with the number of the variables and the sample size. Moreover, these challenges

are elevated when the input data are imperfect (Constantinou et al., 2021).

Structure learning algorithms rely on unrealistic assumptions that rarely, if ever, hold

in practice. One such assumption is that the input data are noise-free and that they incorporate

all possible causes. Because real data are rarely perfect, learning accurate causal models from

real data remains a notoriously difficult task. This partly explains why BNs are yet to produce

the level of real-world impact observed by some of the associational ML techniques, such as

deep learning and reinforcement learning which excel in areas where causal representation is

not necessary.

Not capturing all the relevant variables needed for accurate causal representation is an

example of learning from imperfect data. This specific problem is often referred to as learning

in the presence of unmeasured or latent variables, or under the assumption of causal

insufficiency (Spirtes et al., 2001). A latent confounder, which is a special case of a latent

variable, represents a variable missing from data that is a common cause of two or more

observed variables, and tends to lead to spurious edges between observed variables that may

be misinterpreted as causal relationships. This thesis investigates these challenges and focuses

on improving structure learning accuracy, primarily in the presence of latent variables.

Page 3 of 116

1.2 Structure of the thesis

The thesis is structured as follows:

a) Chapter 2 provides preliminary information and covers past studies related to these

preliminaries. It starts by covering the main features of BNs and then focuses on

structure learning terminology, including descriptions of some of the main classes of

learning and some of the algorithms underpinning them.

b) Chapter 3 focuses on contributions that come from two published papers in which I

am a co-author. The chapter starts by summarising the results published by

Constantinou et al. (2021) where we investigate the impact of data noise on structure

learning. The chapter includes the results of a model averaging structure learning

algorithm we propose in (Constantinou et. al., 2022) for recovering graphical structures

from noisy data. The material presented in this chapter provides a brief summary of

these two publications.

c) Chapter 4 focuses on a conference publication I led (Chobtham and Constantinou,

2020), where we propose a structure learning algorithm that recovers Gaussian BNs

from data under the assumption of causal insufficiency. The material presented in this

chapter primarily comes from the published paper.

d) Chapter 5 describes another structure learning algorithm that focuses on learning

discrete, rather than Gaussian, BNs from data under the assumption of causal

insufficiency. Moreover, this algorithm is designed such that is capable of learning from

multiple datasets that capture both observational and interventional data. The material

presented in this chapter primarily comes from the relevant Journal publication I led

(Chobtham et al., 2023).

e) Chapter 6 presents a modified Variational Bayes method that can be combined with

structure learning algorithms that predict latent confounders, to approximate the actual

distributions of the predicted latent confounders. The material presented in this chapter

comes from the relevant conference publication I led (Chobtham and Constantinou,

2022).

f) Chapter 7 describes a tuning algorithm that can be paired with structure learning

algorithms to optimise their hyperparameters. The material presented in this chapter

comes from a paper I led that is currently under peer-review (Chobtham and

Constantinou, 2023).

g) Chapter 8, the final chapter of this thesis, begins with a summary of concluding

remarks and looks at possible directions for future research. This chapter ends by

highlighting important open problems in causal structure learning as partly identified

by this thesis and another study in which I am a co-author (Constantinou et al., 2023).

Page 4 of 116

Credit co-authorship contribution statement

Kiattikun Chobtham
Constantinou

et al., 2021

Constantinou

et. al., 2022

Kitson et al.,

2023

Constantinou

et al., 2023

Conceptualization ✓ ✓

Methodology ✓ ✓

Data Curation

Coding ✓ ✓

Experiments ✓ ✓

Analysis of results

Visualization

Software and repository

Writing - Original Draft

Writing - Review & Editing ✓ ✓ ✓ ✓

Supervision

Page 5 of 116

Chapter 2

Background information and literature review

This chapter begins by providing necessary background information on BNs, and then moves

to structure learning algorithms and methods for evaluating the discovery of causal or

conditional dependency structures. The chapter ends with relevant literature review on these

topics. Subsequent chapters provide additional, albeit more specialised, background

information and literature review related to those chapters.

2.1 Bayesian networks

A causal BN is a generative model represented by a Directed Acyclic Graph (DAG) G, where

nodes 𝐗 = {X1, … , XN} represent random variables and directed edges represent dependencies

or causal relationships between variables (Pearl, 1988). The dependencies between variables

are described via conditional probabilities P(Xi|parent(Xi)), where parent(Xi) is the set of

parents of node Xi in the DAG. The joint distribution over all nodes is defined as the product

of all conditional probabilities as follows:

P(X1, . . . XN) = ∏ P(Xi|parent(Xi))

N

i=1

Given a DAG G, we call orientations or marks at the ends of any edges which consist

of arrowheads (>) and tails (-). Two nodes are adjacent if there is any type of edge between

them. If A → B is present in G, A is called a parent of B and B is called a child of A. A path is

a sequence of nodes X which nodes Xi and Xi+1 are adjacent. For a direct path, Xi must be the

parent of Xi+1. If there exists an indirect path from A to B, we classify A as an ancestor of B

and B as a descendant of A. Node X is called a collider if two directed edges are entering X. If

X is not a collider, X will be called a non-collider. A v-structure is an unshielded triple A, B and

C where node C is the collider (A ⟶ C ⟵ B). Finally, the Markov Blanket of a node A, denoted

as MB(A), encompasses the parents, children, and parents of children of A. It represents the

smallest set of nodes that render A independent of all other nodes. In other words, MB(A) acts

as a shield, protecting A from the influence of all other variables.

Page 6 of 116

Definition 1 – d-separation: Given a graph 𝐺, where 𝐴 and B are two nodes in 𝐺 and C is a

set of nodes not containing A or B in 𝐺, A and B are d-connected given C (A⊥/ B | C) if every

non-collider on paths between A and B is not a member of C or every collider on paths between

A and B has a descendant in C. If A and B are not d-connected given C, then they are d-

separated given C (A ⊥ B | C), or we say that there is no active path between A and B relative

to C (Pearl, 1988).

Inference in BNs is often described in terms of the following three causal classes:

a) Serial connection (Causal chain): As shown in Figure 2.1, in this scenario node A

serves as the cause of node C, and node C serves as the cause of node B.

Consequently, the influence of A on B is transmitted through C. However, if node C

is observed, A has no longer influence on B. This prevents any active path between

A and B given an observation on C. According to Definition 1 of d-separation, we

can deduce that A and B are d-separated given C (A ⊥ B | C).

Figure 2.1 An example of a serial connection.

b) Divergence connection (Common cause): Figure 2.2 illustrates a scenario where

node C acts as the cause of both A and B. If C is observed, then the path is blocked

between the children of C. Consequently, we can infer that nodes A and B are d-

separated given C (A ⊥ B | C).

Figure 2.2 An example of a divergence connection.

c) Converging connection (Common effect): The relationship depicted in Figure 2.3

exhibits a notable characteristic known as "explaining away", which occurs when

node C acts as the effect of both node A and node B. In this scenario, nodes A, B and

C form a v-structure, with node C acting as the collider. According to Definition 1

of d-separation, if node C is observed, then the path between its parents becomes

active. Consequently, we can infer that A and B are conditionally dependent given

C (A ⊥/ B | C).

Page 7 of 116

Figure 2.3 An example of a converging connection.

2.1.1 Markov property and Markov condition

BNs assume the Markov property and the Markov condition. It is through the Markov property

that a DAG, representing a set of nodes, encodes a set of CI relationships on the joint

probability distribution. We can formally define the Markov property as follows:

Definition 2: Markov property Given a DAG 𝐺 and a joint probability distribution P, we

say that the distribution P satisfies:

a) The global Markov property with respect to G if

 A ⊥G B | C ⇒ A ⊥P B | C for all disjoint nodes A, B and set of node C.

b) The local Markov property if every node X in G is conditionally independent of

its non-descendants given its parents.

c) The Markov factorisation property if P can be decomposed as follows:

P = ∏ P(Xi | 𝐏𝐚N
i=1 (Xi)); where 𝐏𝐚(Xi) are the parents of node Xi.

Using the Markov property, we can establish the relationship known as the Markov

condition or causal Markov condition. This condition serves as a bridge principle that

connects the causal interpretation of a DAG with probability distributions. The Markov

condition can be described as follows:

Definition 3: Markov condition Given a DAG 𝐺, every node is conditionally independent of

its non-descendants given its parents in 𝐺.

2.1.2 Intervention

As discussed in the introduction, BNs enable decision makers to model problems that go

beyond prediction, such as by enabling the simulation of hypothetical interventions to estimate

the effect of intervention. Pearl (2000) initially defined an intervention as an action that forces

the state of a variable in a BN to a particular value. This action causes parts of the data

generating process to change and induces an interventional distribution which might differ

from the corresponding observational distribution. Pearl describes the difference between

“given that we see” as observational data and “given that we do” as interventional data. Classic

randomised controlled trials that capture treatments and their outcomes (Fisher, 1935) can be

viewed as one kind of system suitable for generating interventional data. They typically involve

randomly assigning patients into two groups, where the so-called treatment group is given the

drug being tested, and the control group is given a placebo. If the outcome distribution differs

significantly between the two groups, the difference is viewed as the effect of the drug.

Page 8 of 116

Figure 2.4 An illustration of the mechanisms of Perfect, Imperfect, and Uncertain interventions,

where the square box represents the target node(s), ΘX|Y
0 , ΘY

0 are the parameters for nodes X and Y

respectively when I = 0 (representing no intervention), and ΘX|Y
1 , ΘY

1 are the parameters for nodes X

and Y respectively when I = 1 (representing an external imperfect or an uncertain intervention).

Figure 2.4 illustrates the three different intervention mechanisms by comparing the pre-

intervention and post-intervention actions. Specifically, a Perfect intervention is what Pearl

describes as do-calculus (do(X)) where the intervened variable is set to a given state with no

uncertainty (Pearl, 2000). A perfect intervention modifies the original causal structure by

rendering the intervened variable independent of its causes (also referred to as graph surgery).

On the other hand, an Imperfect intervention or a mechanism change (Tian and Pearl, 2001)

can be viewed as having external intervention nodes that act like switching parents I on an

intervened variable X for each external intervention node. Specifically, I = 1 activates the

intervention where the target node X is parameterised over ΘX
1 , whereas when I = 0 the

intervention is deactivated and target node X is parameterised over ΘX
0 , which would imply no

external influence on node X. Applications of imperfect intervention are often observed in

healthcare studies, where medicine and therapeutic actions often have an imperfect effect in

terms of treating symptoms or curing diseases (Rickles, 2009).

Lastly, an Uncertain intervention (Eaton and Murphy, 2007) represents the case where

an external intervention I has multiple target nodes, or where the intervention on node X comes

from more than one intervening route, as opposed to the imperfect intervention that assumes

Page 9 of 116

the relationship between intervention nodes and target nodes is one-to-one. Unlike perfect

intervention, imperfect and uncertain interventions do not modify the graph and instead

manipulate the node parameters.

2.2 Structure learning

When BNs are applied in practice, their structure is determined by knowledge, structure

learning, or a combination of both (Castelo and Siebes, 2000; Constantinou et al., 2016). This

subsection focuses on algorithms that can be used to recover causal or conditional dependency

structure from data. Structure learning methods tend to fall generally into two main categories:

constraint-based learning and score-based learning. Additionally, there exist hybrid or other

approaches, such as continuous rather than combinatorial optimisation, that are sometimes

viewed as additional categories.

2.2.1 Constraint-based learning

The class of constraint-based learning primarily represents structure learning algorithms that

rely on statistical CI tests to establish the CI relationships between variables and generate a

graph skeleton based on observational data. Subsequently, the edge directions are determined

by conditional dependence and other orientation rules to the constrained skeleton. The

orientation phase depends on the accuracy of the skeleton and hence, any errors from the first

phase are propagated to the orientation phase. Additionally, this class is often assumed to

discover causal relationships under the assumption of causal faithfulness; an assumption that

might not hold when working with real data. The faithfulness condition is defined as:

Definition 4: Faithfulness condition Given a DAG 𝐺 and a joint probability distribution P,

we say that 𝐺 and P satisfy the faithfulness condition if 𝐺 entails all CI relationships in P, and

all CI relationships in P are entailed by 𝐺, based on the Markov condition.

Figure 2.5 An example where G is unfaithful to its joint probability distribution P.

When both the DAG G and the probability distribution P satisfy the faithfulness

condition, we say that G and P are faithful to each other. In other words, G is a perfect map of

P(A=0,C=0), P(A=0)P(C=0) = 0.09375

P(A=0,C=1), P(A=0)P(C=1) = 0.15625

P(A=1,C=0), P(A=1)P(C=0) = 0.28125

P(A=1,C=1), P(A=1)P(C=1) = 0.46875

P(A,C)=P(A)P(C) for all values, and hence A ⊥ C

Page 10 of 116

P. However, it is important to note that the faithfulness condition may not be intuitively

determined at first glance. For instance, Figure 2.5 (Kitson et al., 2023) provides a simple

illustration where the graph G exhibits two paths A → B and B → C, which cancel each other's

influence. Consequently, this creates an independence relationship between nodes A and C in

the joint probability distribution P that is not implied by G. As a result, we can deduce that P

and G are unfaithful in this case.

2.2.1.1 Conditional Independence (CI) tests

Learning causal structures from CI tests may lead to graphical outputs that are not a DAG, but

which relate to a Markov equivalence class. We can formally define the Markov equivalence

class as follows:

Definition 5: Markov equivalence class: Two DAGs are Markov equivalent and belong to

the same Markov equivalence class if they entail the same set of CI relationships.

The DAGs depicted in Figures 2.1 and 2.2 entail the same CI relationship A ⊥ B | C. This

implies that the DAGs cannot be distinguished by their CI relationships from observational

data. As a result, these DAGs belong to the same Markov equivalence class. A Markov

equivalence class of DAGs can be uniquely represented by a Completed Partially Directed

Acyclic Graph (CPDAG). The CPDAG includes undirected edges that cannot be assigned a

specific orientation based on observational data. For example, the CPDAG of both DAGs

depicted in Figures 2.1 and 2.2 is A − C − B.

CI tests could be determined by different statistical functions suitable for measuring

independence. Some of the commonly used such functions include:

a) Fisher’s z test

Fisher's z-test is a statistical test commonly used for continuous variables, specifically for linear

Gaussian data (Fisher, 1921). It is defined as follows:

Z(ρAB.𝐂, n) =
1

2
√n − |𝐂| − 3 ln [

|1 + ρAB.𝐂|

|1 − ρAB.𝐂|
]

where ρAB.𝐂 represents the partial correlation coefficient between variables A and B given 𝐂, n

is denoted by the sample size, and |𝐂| denotes the number of variables in set 𝐂. The calculation

of the partial correlation coefficient is given by:

ρAB.𝐂 =
ρAB − ρA𝐂ρB𝐂

√1 − ρA𝐂
2 √1 − ρB𝐂

2

To determine whether a null hypothesis is rejected or accepted, a p-value is used as a

test statistic or probability value, compared to a predefined significance threshold (α), typically

set at 0.01, 0.05, or 0.1. If the p-value is less than α, the null hypothesis is rejected, indicating

that variables A and B are conditionally dependent given 𝐂. Conversely, if the p-value is greater

than α, the null hypothesis is not rejected, and hence variables A and B are conditionally

independent given 𝐂.

Page 11 of 116

b) Pearson’s chi2 test

The Pearson’s chi2 statistical test (Pearson, 1900) is a commonly used function for testing CI

given discrete data. It assumes a null hypothesis that node A and node B are conditionally

independent given the set of nodes 𝐂. The test produces a p-value of the test statistic, which is

used to determine whether to reject or accept the null hypothesis. The significance threshold α

serves as the hyperparameter of the Pearson’s chi2 test. The formula for the Pearson’s chi2 test

is:

χ2 = 2 ∑
(nabc − mabc)2

nabc

where nabc is the number of instances in the data D where A = a, B = b and 𝐂 = c, mabc =

nac⋅nbc

nc
, and the calculation of the number of instances of nac, nbc and nc is analogous to that

of nabc. We will use Chi2 interchangeably with the Pearson’s chi2 test for the rest of this thesis.

c) G2 test

The G2 statistical test (Sokal and Rohlf, 1981) is a likelihood ratio test commonly applied to

assess CI with discrete variables. This test exhibits asymptotic equivalence to the Chi2 test and

is defined as follows:

G2 = 2 ∑ nabcln
nabcnc

nacnbc

d) Mutual Information (MI) test

Shannon’s Mutual Information (MI) was introduced as a measure of mutual dependence

between two discrete variables (Cover and Thomas 2006). The mutual information between

two nodes A and B is defined as:

MI(A, B) = ∑ p̂(a, b)ln [
p̂(a, b)

p̂(a)p̂(b)
]

a,b

where p̂(a, b) refers to p̂(A = a, B = b) as the probability p(a, b) derived from the maximum

likelihood estimate. It is calculated as p̂(a, b) =
nab

n
, where n is the total number of samples,

and the process of calculating p̂(a) and p̂(b) is analogous to that of p̂(a, b). Consequently,

conditional MI can be used for CI test, defined as:

MI(A, B | 𝐂) = ∑ p̂(a, b, c)ln

a,b,c

[
p̂(a, b, c)p̂(c)

p̂(a, c) ⋅ p̂(b, c)
]

where p̂(a, b, c) =
nabc

n
 and the calculation of p̂(a, c), p̂(b, c) and p̂(c) is analogous to that of

p̂(a, b, c). The significance threshold α serves the same purpose as in the Fisher's z-test, the

Chi2 test and the G2 test, i.e., if MI(A, B | 𝐂) is greater than α, node A and node B are

conditionally independent given 𝐂.

Page 12 of 116

e) Shrinkage Mutual Information test (MI-sh)

James and Stein (1961) proposed a shrinkage estimate of MI for two random variables in the

form of a regulariser, which they call the James-Stein-type shrinkage intensity λ. The

conditional MI-sh test (Scutari and Brogini, 2012) between A and B given 𝐂 is defined as the

expectation of MI − sh(A, B|𝐂) with respect to the distribution of 𝐂. As with the other CI

functions, they use the significance threshold α to accept or reject the same null hypothesis.

The MI-sh test is described as follows:

MI − sh(A, B| 𝐂) = ∑ pshrink(a, b, c)log [
pshrink(a, b, c)pshrink(c)

pshrink(a, c)pshrink(b, c)
]

a,b,c

where:

pshrink(a, b, c) = λ
1

|A||B||𝐂|
+ (1 − λ)p̂(a, b, c)

pshrink(a, c) = λ
1

|A||𝐂|
+ (1 − λ)p̂(a, c)

pshrink(b, c) = λ
1

|B||𝐂|
+ (1 − λ)p̂(b, c)

pshrink(c) = λ
1

|𝐂|
+ (1 − λ)p̂(c)

where |A|, |B| and |𝐂| denote the number of states of variables A, B and the set of variables 𝐂

respectively, and λ is the shrinkage intensity. Hausser and Strimmer (2009) proposed a closed-

form estimator λ∗ that employs James-Stein-type shrinkage making it highly efficient

computationally. In the case of estimating a single parameter, λ∗ is defined as:

λ∗ =
1−∑ (p̂k)2V

k=1

(n−1) ∑ (
1

V
−p̂k)2V

k=1

where λ∗ = [0,1] is the shrinkage intensity, λ∗ = 0 means no shrinkage and λ∗ = 1 refers to

full shrinkage, n is the sample size, and p̂1 … , p̂V are the probabilities of a variable and ∑ p̂kk

=1.

2.2.1.2 Causally Insufficient Systems

Figure 2.6 (a) Latent confounder B in grey causes A and C. Definition 1 indicates that A and C are

statistically dependent, leading to spurious directed edges in (b) and (c). The bidirected edge in the

ancestral graph in (d) represents confounding.

(b) (a) (c) (d)

Page 13 of 116

In constraint-based learning, obtaining a DAG from data in the presence of latent variables can

be problematic in the presence of latent confounders (Spirtes et al., 2001). Figure 2.6a presents

a DAG where B is a latent confounder. Given Definition 1, A and C are statistically dependent.

Therefore, in the absence of B, a spurious edge is typically discovered between A and C as

illustrated in Figures 2.6b and 2.6c. Algorithms that account for latent confounders produce an

ancestral graph that captures possible latent variables or latent confounders. Figure 2.6d

presents an ancestral graph in which the bidirected edge indicates that the dependency between

A and C may be due to confounding. Moreover, directed edges in ancestral graphs do not

necessary represent direct causal relationships as in DAGs. Specifically, an ancestral graph is

an extended version of a DAG under the assumption of causal insufficiency, in which the global

Markov property offers the probabilistic interpretation that: if A and B are m-separated by C,

then A and B are conditionally independent given C, where the m-separation definition in

ancestral graphs aligns with the d-separation definition in DAGs.

 A Maximal Ancestral Graph (MAG) (Richardson and Spirtes, 2000) is an ancestral

graph where arcs indicate direct or ancestral relationships and bidirected edges represent

confounding. A Partial Ancestral Graph (PAG) represents a set of Markov equivalent MAGs

(Spirtes et al., 2001), in the same way a CPDAG represents a set of Markov equivalent DAGs,

that entail the same set of CIs or m-separation criteria. A MAG can contain the following types

of edges: —, →, and ↔. The undirected edge A— B indicates that A is an ancestor of B or a

selection variable, and B is an ancestor of A or a selection variable. The selection variable

indicates the presence of selection bias in the dataset. In this thesis, we do not explore selection

bias and hence, the learnt MAGs or PAGs presented by the structure learning algorithms

investigated will not include an undirected edge. Further, the directed edge A → B in a MAG

or a PAG indicates parental or ancestral relationships, and the bidirected edge A ↔ B refers to

the presence of a latent confounder where A and B are related but where neither A is an ancestor

of B nor B is an ancestor of A. In a PAG, the variant mark (o) at the endpoint of edges indicates

that the endpoint could be a tail (–) or an arrowhead (>) in the equivalence class of MAGs. For

example, o→ in the PAG indicates that the edge can be either ↔ or → in the equivalent MAGs,

whereas o—o indicates that the edge in the equivalent MAGs can be →, ← or ↔. Both MAGs

and PAGs are acyclic graphs and do not allow the existence of almost directed cycles that may

occur when A ↔ B is present and B is an ancestor of A (Richardson and Spirtes, 2000). Figure

2.7 illustrates an example of a DAG with latent variables L1 and L2, along with two examples

of its Markov equivalent MAGs, and the PAG representing the Markov equivalence class of

those MAGs (Chobtham and Constantinou, 2020).

Page 14 of 116

Figure 2.7 A causal DAG with observed variables {V, W, X, Y, Z} ∪ latent variables {L1, L2} in grey,

with two examples of Markov equivalent MAGs, and the Markov equivalent PAG of MAGs.

2.2.1.3 Constraint-based algorithms

Constraint-based algorithms can be divided into those which assume causal sufficiency and

those which assume causal insufficiency. In describing these algorithms, we place a greater

focus on algorithms that assume causal insufficiency, since they better fall within the scope of

this thesis. We start with those that assume causal sufficiency, and some of the widely-used

include:

a) GS: Grow-Shrink (GS) is a constraint-based algorithm that utilises the concept of

Markov Blankets to reduce the number of CI tests required (Margaritis and Thrun,

1999). It identifies the Markov Blanket for each variable, determines the undirected

skeleton of the graph, and orientates edges to produce a Partially Directed Acyclic

Graph (PDAG) in which the only edges that are directed are those that are part of

colliders.

b) PC, CPC and PC-Stable: The PC-Stable algorithm (Colombo and Maathuis, 2014) is

a modified version of the classic constraint-based algorithm PC (Spirtes and Glymour,

1991) and produces a PDAG. PC-Stable addresses the variable order-dependency issue

of PC by changing the order in which edge deletions are performed and by

incorporating the v-structure phase from the CPC algorithm (Ramsey et al, 2006)

(details are provided below). PC and its variant PC-Stable are considered the gold

standard for benchmarking constraint-based learning algorithms.

c) Inter-IAMB: This is an enhanced variant of the IAMB algorithm (Tsamardinos, et al.

2003), employing an interleaved approach that combines the grown and shrink phases.

The primary objective is to minimise the size of the Markov Blanket. By reducing the

size of the Markov Blanket, Inter-IAMB achieves more precise results in the CI tests.

Many variants that are based on the above algorithms have been proposed under the

assumption of causal sufficiency. However, some of the variants do assume causal

insufficiency, and aim to recover a graph structure in the presence of latent variables. One of

the most widely-used such constraint-based algorithms is Fast Causal Inference (FCI) (Spirtes

Page 15 of 116

et al., 2001). FCI modifies the PC algorithm (Spirtes and Glymour, 1991) such that it produces

a PAG output, consistent with causal insufficiency considerations. Specifically, FCI first

determines the adjacencies by employing CI tests to remove edges (dependencies) from a

completed undirected graph in the adjacency phase, just like in PC. It then performs CI tests

by checking all pairs of nodes A and B given an empty set to remove edges A − B and

progressively increasing the size of the conditioning sets or the separated sets (Sepsets) until a

pre-defined Sepset size is reached. In this phase, the algorithm only considers Sepset members

which are adjacent to A and B. Moreover, FCI makes use of the result of the Sepset obtained

in this phase to be considered in the next v-structure phase. Next, the v-structure phase performs

edge orientation given the graph skeleton. Specifically, if the Sepset for A and B does not

contain C for an unshielded triple A − C − B, then the v-structure phase identifies it as the v-

structure A ⟶ C ⟵ B. However, Sepsets in an ancestral graph can contain nodes which are

not adjacent to A or B (Spirtes et al., 2001). The FCI algorithm uses complex strategies, such

as Possible-D-Sep(A, B), to determine additional edges to remove. The v-structure orientation

is subsequently repeated on this new skeleton. Finally, the FCI algorithm orientates some of

the remaining undirected edges based on four orientation rules and by ensuring to that the

creation of new v-structures is prevented.

Many modified versions of FCI have been published in the literature and include the

augmented FCI (Zhang, 2008) which improves the orientation phase by extending the

orientation rules of FCI from four to ten that are said to produce a sound and complete PAG.

Others include the conservative rule FCI algorithm (cFCI) that incorporates CPC by Ramsey

et al. (2006) to improve the edge orientation accuracy in the v-structure phase. Compared to

FCI, cFCI performs additional CI tests on every pair of nodes A and B given on all subsets of

all neighbours of A and B including C, for each unshielded triple A − C − B. The conservative

rule in cFCI classifies each unshielded triple as either a definite v-structure, a definite non v-

structure, or an ambiguous triple, e.g. if C is not in any Sepsets A and B, the conservative rule

will classify the unshielded triple A − C − B as a definite v-structure. Therefore, cFCI is more

cautious about orientating edges than FCI; hence, the name “conservative”.

Colombo and Maatthuis (2014) studied the impact of incorrect CI tests and found their

outcome to be sensitive to the lexicographic ordering of the variable names – or on the order

of the variables as read from data. To address this issue, they proposed PC-Stable and FCI-

Stable by processing all the CI tests at each Sepset size, and removing edges at the end of – not

during – the CI process. In the v-structure phase, FCI-Stable follows the approach adopted by

cFCI by considering all the Sepsets of A and B in triple A − C − B to decide whether it is a v-

structure. Colombo and Maatthuis (2014) also found that the conservative rule was orientating

only few of the v-structures and proposed the majority rule in the v-structure phase which can

be viewed as a relaxed version of the conservative rule. They call this new variant mFCI.

Specifically, in mFCI, the majority rule classifies each unshielded triple A − C − B as:

a) A v-structure if C is in less than 50% of the Sepsets of A and B,

b) A non v-structure if C is in more than 50% of the Sepsets of A and B,

c) An ambiguous triple if C is in 50% of the Sepsets of A and B.

Lastly, the Really Fast Causal Inference algorithm (RFCI) was proposed by Colombo

et al. (2011). This variant skips one adjacency phase and one v-structure phase in FCI, and

therefore performs fewer CI tests. This modification makes the algorithm faster and more

Page 16 of 116

suitable to problems that involve thousands of variables, in exchange for a minor reduction in

the accuracy of the learnt graph.

2.2.2 Score-based learning

Score-based methods can be viewed as a traditional machine learning approach that combines

search with objective functions to identify the highest scoring graph. As previously mentioned

in the introduction, the problem of structure learning is NP-hard, making an exhaustive search

across all possible graphs impractical. To address this challenge, heuristic search techniques

such as greedy search or hill-climbing search are often employed. However, these methods

often get stuck in local optima. Exact search algorithms, such as Branch & Bound or Integer

Linear Programming (ILP), guarantee the identification of the highest scoring graph within the

search-space of graphs, but the search-space of these algorithms is generally restricted to a

small maximum node in-degree to ensure reasonable computation times.

2.2.2.1 Objective scores

The objective scores used in score-based learning are usually score-equivalent, which means

that they generate the same score for DAGs that are part of the same Markov equivalence class

or CPDAG. The two most used score-equivalent objective functions are described below.

a) The Bayesian Dirichlet equivalent uniform (BDeu)

The BDeu score represents the Maximum A Posteriori (MAP) structure. It is a variant of BD

and BDe scores, and assumes equivalent uniform priors. Importantly, these are decomposable

scores where the total score of the graph represents the sum of the scores assigned to each of

its nodes. A decomposable score is important for structure learning because most local scores

can be reused, rather than recomputed, when exploring neighbouring graphs. The BD score

was first introduced by Heckerman et al. (1994), under the assumption that the data follow a

Dirichlet distribution. Pairing structure learning with BD as the objective function implies that

the algorithm searches for a DAG G that maximises the posterior probability P(G|D) given the

data D. In this case, structure learning from data can be viewed as an optimisation problem to

maximise P(G|D) ∝ P(G) P(D|G) where the highest posterior probability of a learnt graph G is

approximated to the highest Log-Likelihood (LL) score:

log P(G|D) = logP(G)+ log P(D|G)

where P(G) is the prior distribution over all DAGs. Because the search space of DAGs grows

super-exponentially with the number of variables, it is impractical to specify informative priors

for each DAG. For simplicity, the prior distribution is often taken to be uniform. The BD score

can be computed as follows:

BD = ∏ ∏ [
Γ(Σkαijk)

Γ (Σkαijk + Σknijk)
∏

Γ(αijk + nijk)

Γ(αijk)

|Xi|

k=1

]

qi

j=1

N

i=1

where N is the number of variables, qi is the number of possible combinations of values of the

parents of node Xi (it is 1 if there is no parent), j is the index over the combinations of values

of the parents of node Xi, |Xi| is the number of states of node Xi, k is the index over the possible

values of node Xi, Γ is the Gamma function, nijk is the total number of instances in data D where

Page 17 of 116

the parents of node Xi have the jth combination of values, and αijk are the hyperparameters of

the Dirichlet distribution. In BDeu, the hyperparameters are set to αijk = iss
|Xi|qi

⁄ where iss

is the imaginary sample size that represents the user’s prior belief about the impact of the prior

distribution on the score. The study by Silander et al. (2007) suggests that reasonable

hyperparameter values are iss ∈ [1,20], where larger iss values tend to produce denser DAGs.

Because the BDeu score produces a small value, it is computationally convenient to take its

log value. Its closed-form expression is:

BDeuiss = ∑ ∑ [log
Γ (iss

qi
⁄)

Γ (iss
qi

⁄ + Σknijk)
+ ∑ log

Γ (iss
|Xi|qi

⁄ + nijk)

Γ (iss
|Xi|qi

⁄)

|Xi|

k=1

]

qi

j=1

N

i=1

b) Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)

Schwarz (1978) proposed BIC as a model-selection function to reduce the risk of model-

overfitting by balancing the goodness-of-fit with model dimensionality. It is based on Occam’s

razor principle in that the simplest solution is usually the best solution. Like BDeuiss, BIC is

decomposable and score-equivalent, and is equally commonly used as the objective function

in score-based structure learning. The general form of the score for discrete variables is

expressed as:

BIC(G, D) = LL(G, D) −
log(n)

2
F

where n is the sample size, LL(G, D) denotes the LL of the data D given the graph G:

LL(G, D) = log[p̂(D|G)] = ∑ ∑ ∑ Nijk

ri

k=1

qi

j=1

V

i=1

log
Nijk

Nij

and F is the complexity penalty represented by the number of free parameters of the model. It

can be expressed as:

F = ∑(ri − 1)qi

V

i=1

In Akaike Information Criterion (AIC) (Akaike, 1974), the penalty term is just the number of

free parameters in the score which is defined as:

AIC(G, D) = LL(G, D) − F

2.2.2.2 Score-based algorithms

Some of the state-of-the-art score-based algorithms that assume causal sufficiency include:

a) FGS: This is an efficient version, proposed by Ramsey (2015), of the score-based

Greedy Equivalence Search (GES) algorithm proposed by Chickering (2003). It

improves the efficiency of GES through parallelisation and caching scores. FGS and

GES search for Markov equivalence classes of DAGs instead of the entire DAG space,

leading to polynomial time complexity. They consist of two learning phases referred to

Page 18 of 116

as the forward and backward search phases. In the forward phase, the learning process

begins with an empty graph. At each iteration, the graph is explored by adding the edge

that maximises the objective score. In the backward phase, edges are removed until no

further edge removals increase the objective score.

b) GOBNILP: The Integer Linear Programming (ILP) algorithm by Cussens (2011) offers

exact learning by dividing structure learning into two phases. The first phase computes

the scores for Candidate Parent Sets (CPSs), whereas the second phase optimally

assigns parents to each node ensuring acyclicity. GOBNILP guarantees to return the

graph with the highest score within the given search-space of graphs, but the search-

space is often restricted to a low maximum in-degree due to computational complexity

considerations.

c) HC: Hill-Climbing (HC) greedily searches the search-space of DAGs and returns the

DAG that maximises a given objective score (Heckerman et al., 1994; Scutari et al.,

2018). It starts from an empty graph and iteratively performs local moves such as arc

additions, deletions, or reversals to improve the graph's score until a local maximum is

reached.

d) NOTEARS: NOTEARS is a continuous optimisation algorithm that formulates a

score-based algorithm to an equality-constrained problem with an acyclicity constraint

(Zheng et al., 2018). Originally designed for continuous data, it also has applicability

to ordinal discrete data.

e) TABU: This is extension of the HC algorithm (Bouckaert, 1995; Scutari et al., 2018)

that allows the exploration of lower-scoring local moves that are likely to help the

algorithm escape from some local maxima. It also avoids revisiting previously

encountered DAGs, promoting exploration of new regions in the DAG space.

f) WINASOBS: An ordering-based algorithm by Scanagatta (2018) that is similar to ILP

in terms of the two learning phases, but employs a simplified objective score called

BIC*, and stronger pruning that does not guarantee exact learning. It is an approximate

learning algorithm applicable to thousands of nodes.

As with constraint-based algorithms, some score-based algorithms also perform

structure learning under the assumption of causal insufficiency – but these score-based variants

are recently proposed and hence, few of them are available and are restricted to linear Gaussian

distributions.

g) GSMAG: Possibly the first score-based variant that assumes causal insufficiency is the

GSMAG algorithm that uses greedy search to discover structures from data under the

assumption the input data are continuous and normally distributed (Triantafillou and

Tsamardinos, 2016). GSMAG employs a variant of BIC as the objective function,

suitable for discovering MAG structures (see subsection 4.1).

h) BB: Rantanen et. al (2021) recently proposed the Branch-and-Bound algorithm (BB)

for an exact score-based algorithm in the search-space of MAGs. BB employs dynamic

programming and the branch-and-bound technique in conjunction with the BIC score

for MAGs as in GSMAG.

Page 19 of 116

2.2.3 Hybrid learning

Hybrid learning algorithms combine techniques from both constraint-based learning and score-

based learning. This methodology typically involves utilising constraint-based approaches in

an initial restrictive phase to limit the search space. Subsequently, objective scores are

employed in a maximisation phase to identify the highest scoring graph while considering pairs

of nodes that are constrained based on the outcomes of the restrictive phase. Some commonly

used hybrid algorithms that assume causal sufficiency include:

a) H2PC: Proposed by Gasse et al. (2014), H2PC combines the strengths of HPC and HC.

HPC is an ensemble constraint-based algorithm that consists of three individual

learners, each focusing on learning parents and children sets (PC learner). By

integrating these learners, HPC aims to enhance the overall performance and reliability

of the PC learner.

b) MMHC: The Max-Min Hill-Climbing (MMHC) algorithm integrates principles from

local-learning, constraint-based learning, and score-based learning. It starts by building

a skeleton graph and then applies greedy hill-climbing search to determine the edge

orientations or that skeleton (Tsamardinos et al., 2006). Renowned for its effectiveness

in high-dimensional data, MMHC often serves as baseline for evaluating other structure

learning methods.

c) SaiyanH: This algorithm starts with CI tests that are used to produce a skeleton graph

that can be viewed as a denser version of the maximum spanning tree. It then uses some

of the results from CI, in conjunction with an objective score and the effect of

intervention, to determine the orientation of those edges. The DAG is then given as an

input to the TABU algorithm with the restriction not to remove edges that would lead

to disjoint graphical fragments. This restriction ensures full propagation of evidence

when the learnt structure is converted into a BN model (Constantinou, 2020).

Hybrid algorithms that perform structure learning under the assumption of causal

insufficiency include:

d) GFCI: This algorithm by Ogarrio et al. (2016) combines the score-based FGS (Ramsey,

2015) with the orientation rules of the constraint-based FCI. GFCI starts by obtaining

the dependencies from the learnt CPDAG returned by FGS, and performs CI tests on

those dependencies to remove potential false positive edges. The result of this process

is a skeleton. The orientation rules of FCI are then used to orientate some of those edges

and to produce a PAG. Due to various choices of CI tests and objective scores, GFCI

can work with both discrete and continuous variables.

e) M3HC: This algorithm by Tsirlis et al. (2018) produces a MAG by incorporating a

constraint-based learning as the restriction phase to the GSMAG algorithm. M3HC

assumes the data are continuous and normally distributed. Tsirlis et al. (2018) showed

that hybrid algorithms such as M3HC and GFCI demonstrate better performance over

other relevant constraint-based algorithms.

f) RFCI-BSC: Jabbari et al. (2017) introduced RFCI-BSC as a model averaging variant

of RFCI, that generates multiple potential models and returns the PAG with the highest

Page 20 of 116

probability as the preferred graph. However, the algorithm’s process involves bootstrap

sampling, where multiple datasets are created through resampling with replacement,

which makes the algorithm non-deterministic. CI tests from RFCI are then applied to

each of those datasets. This non-deterministic nature of RFCI-BSC necessitates running

the algorithm multiple times and obtaining an average of the results to ensure reliable

outcomes.

2.2.4 Evaluating structure learning algorithms

Structure learning algorithms can be evaluated in two different ways. Firstly, graphical

accuracy metrics can be used to measure how close the learnt graph is to the true graph. This

approach, however, assumes access to the ground truth graph, and therefore is only applicable

to synthetic experiments. In real cases, the ground truth naturally remains unknown and hence,

model-selection scores such as the BIC and BDeu (see subsection 2.2.2.1), amongst other

domain-specific approaches, are often used to judge the validity of the learnt graph.

Three metrics are commonly used to assess the graphical accuracy of the learnt graphs.

These are:

a) F1: It represents the harmonic mean of Precision (P) and Recall (R). F1 ranges from 0

to 1, where a higher F1 score represents better performance. The F1 score is measured

as follows:

F1 = 2
PR

P + R

where P =
TP

TP+FP
 and R =

TP

TP+FN
 , and TP, FP and FN refer to the number of true

positive, false positive, and false negative edges in a learnt graph compared to a true

graph respectively.

b) SHD: The Structural Hamming Distance (SHD) metric is the most used metric in

literature. It counts the number of steps needed, in terms of edge insertions, deletions,

and reversals, to convert the learnt DAG to the true DAG (Tsamardinos, 2006). A lower

SHD score represents better performance, and it is defined as:

SHD = FN + FP

c) BSF: The Balanced Scoring Function (BSF) score (Constantinou, 2019) considers all

four confusion matrix parameters (TP, TN, FP and FN) to balance the score relative to

the density of the true graph. The BSF score is defined as:

BSF = 0.5 × (
TP

a
+

TN

i
−

FP

i
−

FN

a
)

where a is the number of edges in the true DAG, i is the number of independencies in

the true DAG, i =
N(N−1)

2
− a, TN is the number of true negative edges and N is the

number of variables. The BSF score ranges from -1 to 1, where 1 corresponds to a

perfect match between learnt and true graphs, 0 represents a score equivalent to that

obtained from an empty or a fully connected graph, and -1 corresponds to the worst

possible mismatch (i.e., the reverse of the true graph).

Page 21 of 116

Chapter 3

Structure learning with imperfect data

This chapter discusses two papers that I co-authored. It begins by summarising the findings of

Constantinou et al. (2021), which examine how data noise affects structure learning. The

chapter also presents the results of our proposed model averaging structure learning algorithm,

described in Constantinou et al. (2022), for recovering graphical structures from noisy data.

The content of this chapter provides a concise overview of these two publications.

The structure learning algorithms introduced in the literature assume that the

distributions of the input data reflect the true distributions of data generating system. Moreover,

each algorithm relies on a set of assumptions about the input data, and tends to be evaluated

with clean synthetic data (Scutari et al., 2019). However, it is widely acknowledged that the

synthetic performance of structure learning algorithms tends to overestimate their real-world

performance, although the extent of this overestimation remains unknown. This chapter

examines how imperfect data influence structure learning performance, and how structure

learning may be able to account for these imperfections in the data.

This chapter is organised as follows: subsection 3.1 describes the case studies,

subsection 3.2 describes the methodology we followed to generate imperfect data, subsection

3.3 covers the structure learning algorithms evaluated, subsection 3.4 presents the results,

subsection 3.5 describes and evaluates a new structure learning algorithm that assumes the

presence of data noise, and we provide our concluding remarks in subsection 3.6.

3.1 Case studies

We consider the six discrete data case studies, available in the Bayesys repository

(Constantinou et al., 2020), whose properties are provided in Table 3.1. Three of the case

studies represent well-established examples from the BN structure learning literature, whereas

the other three represent new cases and are based on recent BN real-world applications. These

are:

Page 22 of 116

a) Asia: a small network that captures the relationships between a visit to Asia,

tuberculosis and lung cancer (Lauritzen and Spiegelhalter, 1988).

b) Sports: a small network that measures the effect of ball possession in football matches,

on shots generated and goals scored (Constantinou et al., 2013).

c) Property: a medium-size network for investment decision making in the UK property

market (Constantinou and Fenton, 2017).

d) Alarm: a medium-size network of an alarm notification system for patients in a hospital

intensive care unit (Beinlich et al., 1989).

e) ForMed: a large network modelling the risk of violent reoffending in mentally ill

prisoners before and after release or discharge (Constantinou et al., 2015).

f) Pathfinder: a very large network for diagnosis of lymph-node diseases (Heckerman et

al., 1992).

Network size Network Variables Edges Max in-degree Free parameters

Small Asia 8 8 2 18

Sports 9 15 2 1,049

Medium Property 27 31 3 3,056

Alarm 37 46 4 509

Large ForMed 88 138 6 912

Very Large Pathfinder 109 195 5 71,890

Table 3.1 The properties of the six real-world networks.

3.2 Generating imperfect data

Each of the six networks were used to generate synthetic data, with and without synthetic noise.

We generated 16 different categories of input data per case study, and assume five different

sample sizes for each of these 16 datasets (0.1k, 1k, 10k, 100k, and 1000k samples). The 16

categories are depicted in Table 3.2, and are generated as follows:

a) No noise (N): This represents the standard case of clean synthetic data.

b) Missing values (M): In this scenario, the datasets are modified to include missing data

values that are Missing Completely At Random (MCAR). We explore two different

scenarios: a) that each individual data value has a probability of 5% to become missing

(dataset denoted as M5), and b) a probability of 10% to become missing (denoted as

M10). Because the algorithms tested assume complete data as input, we subsequently

replaced each missing data value with a new state called ‘missing’, indicating

missingness.

c) Incorrect values (I): Where each data value has 5% (I5) or 10% (I10) risk to be

replaced with an incorrect value, where the new value comes from the set of other

possible values observed in each variable.

d) Merged states (S): Where 5% or 10% of the variables (both cases tested) have two of

their states merged into one. For example, a variable with states {𝑎, 𝑏, 𝑐} would have

two random states, such as 𝑎 and 𝑏, both modified into a new state 𝑎𝑏. This assumption

aims to approximate the performance of the algorithms when applied to real datasets

Page 23 of 116

where some of the data variables have had their number of states decreased in an effort

to reduce the dimensionality of the model.

e) Latent variables (L): Where approximately 5% or 10% of the variables (both cases

tested) are randomly removed from the dataset. This assumption aims to approximate

the performance of the algorithms when applied to datasets that incorporate latent

variables.

f) Combo (c): This category represents dual combinations of the noisy categories

described above (denoted as cMI, cMS, cML, cIS, cIL, and cSL), plus the combination

of all four categories of data noise (cMISL). Because these experiments incorporate

multiple types of noise, we chose the rate of 5% as the default rate of noise for each

type of noise incorporated into a dataset. If 5% is not possible due to limited data, then

the rate of 10% is chosen.

Experiment No noise
Missing values Incorrect values Merged states Latent variables

5% 10% 5% 10% 5% 10% 5% 10%

N ✓

M5 ✓

M10 ✓

I5 ✓

I10 ✓

S5 ✓

S10 ✓

L5 ✓

L10 ✓

cMI ✓ ✓

cMS ✓ ✓

cML ✓ ✓

cIS ✓ ✓

cIL ✓ ✓

cSL ✓ ✓

cMISL ✓ ✓ ✓ ✓

Table 3.2 The 16 experiment codes for different types of noise where N denotes no noise, M

represents missing values, I represents incorrect values, S represents merged states, L represents latent

variables, and c represents combo.

3.3 Structure learning algorithms and evaluation setup

We investigate the impact of data noise in terms of how the different imperfect datasets

influence the structure learning performance of different algorithms. We consider 15 structure

learning algorithms from all three classes of learning, all of which have already been described

in subsections 2.2.1.3, 2.2.2.2, and 2.2.3. Each algorithm is tested with their default

hyperparameter settings as implemented in structure learning software or packages listed in

Table 3.3. The default hyperparameters are selected under the assumption that this is how most

users would employ these algorithms in real-world settings, given that there is no guidance on

how and when we should be changing the value of these hyperparameters.

Page 24 of 116

Because of the large number of the experiments, we restrict runtime to six hours per

experiment. Algorithms that exceed the runtime limit are assigned the lowest rank for that

particular experiment. We evaluate structure learning performance by comparing the learnt

graph to the ground truth, and we use the SHD, BSF and F1 metrics to do this (refer to

subsection 2.2.4). While these algorithms are often compared in terms of how accurately they

recover the true CPDAG, in this set of experiments we measure them in terms of how well they

recover the true DAG. This is because the purpose of these experiments is to investigate the

usefulness of these algorithms in real-world settings where we tend to require CBNs (i.e., a

DAG) and hence, we would like the assessment to be driven by how well the algorithms

achieve this objective, rather than driven by what some of the algorithms, or implementations

of the algorithms, assume or can and cannot do. Moreover, when it comes to causally

insufficient experiments (i.e., those which incorporate latent variables), we assess the learnt

graphs with respect to the ground truth MAG. Table 3.4 presents the penalty weights assumed

by the graphical metrics.

Algorithm Learning class Software
Programming

Language
Reference

PC-Stable Constraint-based Tetrad

Java (Wongchokprasitti, 2019)

FGS Score-based

FCI Constraint-based

GFCI Hybrid

RFCI-BSC Hybrid

Inter-IAMB Constraint-based bnlearn

R (Scutari, 2019)

MMHC Hybrid

GS Constraint-based

HC Score-based

TABU Score-based

H2PC Hybrid

SaiyanH Hybrid Bayesys Java (Constantinou, 2020)

GOBNILP Exact score-based GOBNILP C++ (Cussens, 2011)

NOTEARS Score-based Source code Python (Zheng et al., 2018)

WINASOBS Score-based BLIP The BLIP software (Scanagatta, 2017)

Table 3.3 The properties of the 15 structure learning algorithms considered for evaluation.

True edge Learnt edge Penalty Reasoning

A →  B A →  B, A o→ B 0 Complete match

A →  B A ↔  B, A − B , Ao−oB,  A ←  B,  A←o B 0.5 Partial match

A →  B A B 1 No match

A ↔  B Any edge/arc 0 Latent confounder

A  B A  B 0 Complete match

A  B Any edge/arc 1 Incorrect dependency discovered

Table 3.4 The penalty weights used for evaluation, where o-o and o→ are learnt edges by structure

learning algorithms under the assumption of causal insufficiency.

3.4 Results

Table 3.5 presents the average ranked performance, the overall ranked performance, and the

relative performance of each structure learning algorithm in terms of both the F1 and SHD

Page 25 of 116

scores, with and without data noise, averaged over all six different cases, five sample sizes, and

15 noisy experiments (for the noisy case).

In this set of results, we note a few interesting observations that relate to the ranking of

the algorithms and how that might be sensitive to the noise in the data. TABU, which tops all

three rankings under clean data, loses significant ground against the other algorithms in the

presence of data noise where it ranks 2nd overall by the F1 and BSF metrics, and 4th overall by

SHD. In contrast, the HC algorithm, which all metrics ranked 2nd under clean data, ranks 1st by

F1 and BSF, and 2nd by SHD in the presence of data noise. This is an interesting observation

because TABU is an improved search version of HC that escapes some of the suboptimal search

regions in which HC has the tendency to get stuck in. This result can only suggest that data

noise has misled TABU into performing escapes from a local maximum into regions that may

better fit the noisy input data but which further deviate from the true graph.

Algorithm
Average rank Overall rank Average rank Overall rank

Clean Noisy Δ Clean Noisy Δ Clean Noisy Δ Clean Noisy Δ

 F1 SHD

FCI 7.7 8.67 -1 9 11 -2 6.57 8.67 -2.1 7 12 -5

FGS 7.5 7.15 0.35 8 8 0 7.83 7.12 0.71 10 8 2

GFCI 6.87 7.26 -0.4 7 9 -2 6.87 6.91 -0 9 7 2

GS 11.87 11.7 0.12 14 15 -1 10.43 9.54 0.89 13 13 0

H2PC 6.13 5.66 0.47 5 5 0 5.1 4.96 0.14 3 3 0

HC 3.63 3.6 0.03 2 1 1 4.77 4.92 -0.2 2 2 0

GOBNILP 4.8 5.17 -0.4 3 3 0 6.43 6.72 -0.3 5 6 -1

Inter-IAMB 10 9.79 0.21 12 12 0 8.6 7.82 0.78 12 9 3

MMHC 7.77 6.51 1.26 10 6 4 6.47 4.66 1.81 6 1 5

NOTEARS 12 11.7 0.35 15 14 1 13 12.83 0.17 15 15 0

PC-Stable 8.1 7.59 0.51 11 10 1 6.83 7.87 -1 8 10 -2

RFCI-BSC 11.5 11.5 0 13 13 0 10.9 11.05 -0.2 14 14 0

SaiyanH 5.33 5.27 0.06 4 4 0 8 7.87 0.13 11 11 0

TABU 3.27 3.62 -0.4 1 2 -1 4.43 4.99 -0.6 1 4 -3

WINASOBS 6.3 6.54 -0.2 6 7 -1 5.87 5.49 0.38 4 5 -1

BSF

FCI 7.67 8.23 -0.6 9 11 -2

FGS 7.1 7.37 -0.3 8 8 0

GFCI 6.97 7.6 -0.6 6 10 -4

GS 11.9 11.68 0.22 14 14 0

H2PC 6.97 6.26 0.71 6 5 1

HC 3.17 3.03 0.13 2 1 1

GOBNILP 4.13 4.35 -0.2 3 3 0

Inter-IAMB 10.43 9.98 0.45 12 12 0

MMHC 8.6 7.59 1.01 11 9 2

NOTEARS 12 12.51 -0.5 15 15 0

PC-Stable 8 7.15 0.85 10 7 3

RFCI-BSC 11.47 11.54 -0.1 13 13 0

SaiyanH 4.77 5.16 -0.4 4 4 0

TABU 3.1 3.13 -0 1 2 -1

WINASOBS 6.17 6.77 -0.6 5 6 -1

Table 3.5 The average and overall ranked performance for each algorithm over all case studies and

sample sizes, and over all the 15 noisy-based experiments, as determined by each of the three metrics,

where Δ represents the relative difference in performance compared to noise-free experiments N.

Green and red rankings indicate improved and decreased structural accuracy in the presence of data

noise, relative to the corresponding noise-free experiments.

Page 26 of 116

The GOBNILP algorithm, which is the only exact learning algorithm tested in this set

of experiments, has lost some ground in relative performance but not enough to alter its

ranking. This result is consistent with that of TABU on the basis that data noise appears to

distort model fitting which in turn has a negative effect on algorithms that seek the highest, or

close to the highest, model-selection scores across the search-space of graphs.

Another interesting observation involves MMHC, which is the only algorithm that

shows significant gains in performance across all the three metrics. Specifically, MMHC ranks

6th, 1st, and 9th in terms of F1, SHD, and BSF metrics respectively in the presence of data noise,

up from 10th, 6th, and 11th with clean data.

On the other hand, FCI is the algorithm with the highest loss in relative performance.

Conversely, FCI experiences the most substantial decline in relative performance compared to

other algorithms. On the other hand, and rather surprisingly, the algorithms designed to account

for latent variables during structure learning, such as the FCI, GFCI and RFCI-BSC, did not

improve their performance relative to other algorithms under experiments which involve the

reconstruction of the true MAG (experiments which incorporate code ‘L’).

Figure 3.1 The overall decrease in accuracy of F1 and BSF and the corresponding increase in SHD

are observed across all algorithms in each noisy experiment. These observations are made in

comparison to the results of the experiment N conducted with clean data.

Figure 3.1 illustrates the overall decline in accuracy for all algorithms across each noisy

experiment, and relative to noise-free experiments N. The findings highlight some

inconsistencies in the conclusions drawn from the F1 and BSF metrics compared to the SHD

metric. For example, the SHD score leads to the counterintuitive conclusion that experiments

I5, I10, cMI, and cIL, have decreased structure learning performance more than experiment

cMISL which incorporates all types of data noise as well as a higher total rate of data noise.

On the other hand, the F1 and BSF metrics correctly identify that cMISL has had the largest

negative impact on structure learning performance, as might be expected.

 According to the F1 and BSF metrics, the overall results suggest that data noise of types

S and L have had a relatively minor impact on structure learning performance. However, it

-100%

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

M5 M10 I5 I10 S5 S10 L5 L10 cMI cMS cML cIS cIL cSL cMISL

D
ec

re
as

e
in

 a
cc

u
ra

cy

Noisy experiment

F1 BSF SHD

Page 27 of 116

should be noted that the results from experiments that incorporate L are based on the

reconstruction of the true MAGs which incorporate a lower number of variables compared to

the true DAGs used in experiments that do not incorporate L, and the difference in the number

of variables in the data influences the result generated by the metrics. Conversely, data noise

of types M and I have had a much stronger impact on decreasing the performance of the

algorithms. Combining all four types of noise into a single dataset (experiment cMISL), which

might better approximate real data, leads to the highest negative impact on structure learning

performance.

3.5 Model averaging and pruning strategies for structure learning

with imperfect data

In the previous subsections we studied the impact of data noise on structure learning. We show

that some algorithms are less sensitive, and sometimes react differently, to a given type of data

noise than others. Importantly, we found that non-exact or simple learners are more resilient to

data noise, compared to exact or more sophisticated non-exact learners. For example, less

sophisticated non-exact learners such as HC perform better in the presence of data noise

compared to more sophisticated non-exact learners such as TABU which, in theory, TABU is

an improved search technique over HC.

Motivated by these results, this subsection describes a novel approximate BN structure

learning algorithm, which we call Model Averaging Hill-Climbing (MAHC), that combines

two novel strategies, pruning and model averaging, with hill-climbing search (Constantinou et.

al., 2022). This set of strategies produces an algorithm that searches a considerably smaller

search-space of graphs and maximises the score over a set of graphs, rather than exploring

individual graphs which might be generating a higher score due to data noise.

Pruning the search space of graphs represents a particularly important strategy in exact

learning algorithms. This is because, in the absence of pruning, an exact algorithm would need

to perform exhaustive search to guarantee the discovery of the optimal graph. Because exact

learning is known to be computationally intractable, pruning becomes necessary. An important

distinction between pruning strategies involves whether the pruning is sound or not, and sound

pruning ensures the pruned search space of graphs contains the optimal graph. Research into

sound pruning has been important in the development of exact search. Well-established exact

learning solutions include integer programming approaches such as GOBNILP by Cussens

(2011), and combinatorial optimisation approaches such as Branch-and-Bound by de Campos

(2009). Both these approaches employ effective versions of sound pruning and allow exact

learning to scale to tens of variables.

However, because pruning for approximate learning algorithms need not to be sound,

it can be more aggressive. This is especially useful in the presence of data noise given that the

highest scoring graph would be the one that best fits the noisy – not the true – data. On this

basis, there is no incentive to preserve the highest scoring graph in the search-space of graphs.

Moreover, even in the case of noise-free input data, Guo and Constantinou (2020) show that

pruning CPSs by removing those with relatively low local scores leads to marginal reductions

in structure learning accuracy in exchange for considerable increase in efficiency, thereby

easing the application of structure learning to large datasets.

Page 28 of 116

Model averaging, on the other hand, aims to reduce inconsistencies in the learnt output.

It may involve returning the average output over multiple outputs produced by different ML

algorithms, or the average output over multiple candidate outputs as determined by a single

ML algorithm. In the context of structure learning, unlike model selection which involves

returning the single best graph discovered, model averaging typically involves returning an

output that represents a weighted average across a set of high-scoring graphs. One of the earliest

papers that discuss the difference between model selection and model averaging in this context

of structure learning is the work by Madigan et al. (1996) who average the output over a set of

CPDAGs. Recent related works include those by Chen and Tian (2014) who implemented an

algorithm to return the k-best equivalence classes of BN structure for model averaging, by

Goudie and Mukherjee (2016) who describe a Gibbs sampler for learning DAGs that involves

averaging across a set of DAGs that satisfy a set of conditions, and by Kuipers et al. (2022)

who propose a hybrid learning algorithm that samples DAGs from the posterior distribution to

reduce the complexity of MCMC and enable full Bayesian model averaging for large networks.

3.5.1 The MAHC algorithm

The MAHC algorithm can be viewed as a variant of the classic HC algorithm with two

extensions. The first extension involves pre-processing some of the local objective scores and

applying pruning to the search space of DAGs. The outcome of the pre-processing step will be

a set of arcs pruned off, in addition to a set of local scores pre-processed that can be reused

during the structure learning phase.

We denote the set of discrete variables by uppercase letter 𝑉, the CPS 𝑗 of variable 𝑉𝑖

by 𝐶𝑃𝑆𝑖,𝑗 where 𝑖 iterates over all variables and 𝑗 iterates over the CPSs of 𝑉𝑖, and 𝑆𝑖,𝑗

corresponds to the objective score of 𝐶𝑃𝑆𝑖,𝑗. MAHC employs the following pruning rules by

exploring CPS up to a node in-degree of 3:

Pruning rule 1 – for all empty and single-parent CPS: Assuming 𝐶𝑃𝑆1,1 and 𝐶𝑃𝑆1,2

have corresponding scores 𝑆1,1 and 𝑆1,2, if 𝐶𝑃𝑆1,1 ⊂ 𝐶𝑃𝑆1,2 and 𝑆1,1 ≥ 𝑆1,2, then the

parents resulting from set subtraction 𝐶𝑃𝑆1,2 − 𝐶𝑃𝑆1,1 are pruned off. Note that any

edges pruned off apply to CPSs of all sizes.

Pruning rule 2 – with constraints for parent-sets of size 2 and 3: Each CPS corresponds

to a node 𝑖 that is part of 𝑉, denoted as 𝑉𝑖, and each 𝑉𝑖 has |𝑉| − 1 possible parents

ranked by 𝑙th highest score. Consider that the first and second highest valid1 scoring

parents of 𝑉𝑖 are 𝐶𝑃𝑆𝑖,𝑙=1 and 𝐶𝑃𝑆𝑖,𝑙=2 respectively; e.g., 𝐶𝑃𝑆𝑖,𝑙=1 has the highest score

as a CPS of size one (single parents) of 𝑉𝑖. When Pruning rule 1 is executed on CPSs

of size two for node 𝑉𝑖, it is only applied to CPSs that contain {𝐶𝑃𝑆𝑖,𝑙=1, 𝑉𝑘} and iterate

over 𝑘, where 𝑉𝑘 ∉ {𝐶𝑃𝑆𝑖,𝑙=1, 𝑉𝑖}. Similarly, when executed on CPS of size three, it

will be restricted to CPSs that contain {𝐶𝑃𝑆𝑖,𝑙=1, 𝐶𝑃𝑆𝑖,𝑙=2, 𝑉𝑘} iterating over 𝑘, where

𝑉𝑘 ∉ {𝐶𝑃𝑆𝑖,𝑙=1, 𝐶𝑃𝑆𝑖,𝑙=2, 𝑉𝑖}. In other words, for CPS sizes greater than 1, pruning is

1 It is possible for one of the highest scoring parents to be pruned off during pre-processing. This can

happen when pre-processing CPSs of at least size 2. When this happens, the next available highest scoring parent

takes the place, in the ladder of highest scores for a given node, of the parent that has been pruned off.

Page 29 of 116

only applied to the CPSs that include the 𝑝 − 1 highest scoring valid parents, where 𝑝

denotes the number of parents.

Once the pre-processing phase is completed and the set of edges that can be considered

for structure learning is determined, the algorithm moves to the structure learning phase which

involves the second extension where model averaging is applied over the hill-climbing search

space. Unlike traditional model averaging which involves averaging over a set of graphs, the

model averaging approach employed in MAHC involves averaging a set of model-selection

scores (i.e., BIC scores), where each average score is assigned to a single graph explored. The

formal description of this modification is provided by Modification 1 and Modification 2, for

search and score respectively.

Modification 1 (Search): Given a candidate DAG 𝐺, traditional hill-climbing involves

visiting each neighbouring graph 𝐺𝑛 of 𝐺 at each hill-climbing iteration. In the extended

version, we modify search such that each hill-climbing iteration involves not only

visiting each neighbouring graph 𝐺𝑛 of 𝐺, but also each neighbouring graph 𝐺𝑛𝑛 of 𝐺𝑛

(i.e., 𝐺𝑛𝑛 is the neighbouring graph of the neighbouring graph of 𝐺).

Modification 2 (Score): Given a candidate DAG 𝐺, traditional hill-climbing moves to

the neighbouring graph that maximises 𝑆(𝐺𝑛) given a set of scores 𝑆𝑛 that consists of

multiple 𝑆(𝐺𝑛). In other words, traditional hill-climbing searches for the maximum

objective score 𝑆(𝐺𝑛)across neighbouring scores. In the extended version, hill-climbing

moves to the neighbouring graph that returns max(𝑆(𝐺𝑛, 𝐺𝑛𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) given a set of scores 𝑆𝑛

that consists of multiple 𝑆(𝐺𝑛, 𝐺𝑛𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. In other words, the extended version searches for

the highest average objective score 𝑆(𝐺𝑛, 𝐺𝑛𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, each of which corresponds to a

neighbouring graph 𝐺𝑛 and the scores of all its valid neighbouring graphs 𝐺𝑛𝑛.

3.5.2 Evaluation and results

We evaluate MAHC by considering the same evaluation setup as described in subsections 3.1,

3.2 and 3.3. However, we focus on the case which contains multiple types of data noise (i.e.,

cMISL), under the assumption that multiple types of data noise represent a more realistic

scenario, and data sample sizes of 0.1k, 1k, 10k, and 100k. Moreover, we compare MAHC

against six structure learning algorithms, spanning all three classes of structure learning. These

are HC, TABU, GOBNILP, PC-Stable, FCI, MMHC and SaiyanH.

Learning class
Relative to

algorithm:

F1 BSF SHD

Better Same Worse Better Same Worse Better Same Worse

Constraint-based
FCI 83.3% 0.0% 16.7% 66.7% 0.0% 33.3% 62.5% 4.2% 33.3%

PC-Stable 79.2% 0.0% 20.8% 54.2% 0.0% 45.8% 54.2% 0.0% 45.8%

Score-based

(exact)
GOBNILP 45.8% 20.8% 33.3% 29.2% 20.8% 50.0% 37.5% 16.7% 45.8%

Score-based

(approximate)

HC 54.2% 37.5% 8.3% 45.8% 29.2% 25.0% 58.3% 25.0% 16.7%

TABU 50.0% 25.0% 25.0% 33.3% 20.8% 45.8% 41.7% 20.8% 37.5%

Hybrid
MMHC 41.7% 20.8% 37.5% 66.7% 16.7% 16.7% 66.7% 16.7% 16.7%

SaiyanH 79.2% 4.2% 16.7% 41.7% 4.2% 54.2% 50.0% 0.0% 50.0%

Table 3.6 The graphical accuracy of MAHC relative to the other seven algorithms. The percentages

represent the number of times the score of MAHC was better, worse, or the same relative to each of

the other algorithms, across all case studies, sample sizes, and noisy experiments. The best

performance is shown in bold.

Page 30 of 116

The results that follow are discussed in terms of “better score”, indicating higher

learning accuracy. For F1 and BSF, a better score refers to a higher F1 or BSF value. In the

case of the SHD, however, a better score refers to a lower SHD value. Table 3.6 presents the

graphical accuracy of MAHC relative to the other algorithms in the presence of data noise,

over all experiments. While MAHC is shown to perform similar to other algorithms in noise-

free experiments (Constantinou et al., 2022), the results presented in Table 3.6 that focus on

structure learning with noisy data show that MAHC consistently outperforms most of the other

algorithms, suggesting that the model averaging process make MAHC considerably less

sensitive to data noise compared to other algorithms.

Table 3.7 summarises the BIC results in terms of normalised average percentage score.

For example, the average score of GOBNILP is 100% for clean data at 0.1k sample size,

because GOBNILP produced the highest score in all of the experiments that involved clean

data with a sample size of 0.1k. The results show that the score-based algorithms produce the

highest model-selection scores, as expected (since they maximise BIC by

design/implementation). The hybrid algorithms which include a phase that relies on constraint-

based learning, as well as the constraint-based algorithms, generate considerably lower BIC

scores since they are not designed with the sole purpose to maximise BIC. The BIC scores of

MAHC are closer to those of HC, and considerably stronger than those produced by the hybrid

and constraint-based learning algorithms. This outcome suggests that model averaging has a

relatively small negative impact on the model-selection score, especially in the presence of data

noise, relative to the gain in graphical accuracy over HC as illustrated in Table 3.6.

What could be classified as surprising, however, is the BIC score of the ground truth

graphs. The results show that the lower the sample size, the lower the chance the true graph

will be part of the higher scoring graphs. However, this is true only for the clean data cases.

The data noise drops the relative performance of the ground truth under all sample sizes, and

decreases the BIC score of the ground truth graph considerably. This supports our initial

hypothesis that the incentive to search for the highest scoring graph diminishes considerably in

the presence of data noise.

Sample size

Score-based

Exact

score-

based

Constraint-based Hybrid
True

graph

MAHC TABU HC GOBNILP
PC-

Stable
FCI MMHC SaiyanH

100 (Clean) 94.63% 99.16% 99.13% 100% 76.21% 77.65% 69.67% 88.88% 11.44%

1k (Clean) 88.19% 97.08% 93.77% 100% 35.15% 43.91% 40.68% 91.19% 42.70%

10k (Clean) 92.50% 98.66% 97.42% 90.21% 20.77% 28.45% 18.14% 90.22% 80.96%

100k (Clean) 83.94% 86.66% 85.84% 80.00% 57.27% 56.94% 9.99% 93.56% 98.15%

100 (Noisy) 99.96% 99.97% 99.97% 99.98% 95.16% 94.76% 99.73% 86.53% 0.00%

1k (Noisy) 99.54% 99.92% 99.86% 100.00% 69.09% 66.42% 99.32% 91.06% 30.81%

10k (Noisy) 97.83% 99.68% 98.89% 100.00% 19.45% 16.54% 95.70% 97.45% 72.34%

100k (Noisy) 94.37% 98.69% 94.98% 100.00% 59.25% 41.89% 47.22% 84.24% 34.51%

Table 3.7 The percentages represent the average normalised BIC scores, where higher percentages

correspond to a better score. An average of 100% indicates that the algorithm obtained the highest

average BIC score across all experiments.

Page 31 of 116

3.6 Conclusions

This study focused on evaluating the performance of BN structure learning algorithms, with

the objective to assess their ability to reconstruct the true causal graphs under various

hypotheses of data noise. The investigation focused on 15 different algorithms from different

classes of learning, and 16 different data noise scenarios, over six case studies and five sample

sizes.

 The results suggest that data noise can have a considerable impact on the accuracy of

the learnt graph. Specifically, incorporating all four types of noise in a single dataset decreases

structure learning accuracy in the range of 30% to 37% (i.e., accuracy increases by 43% to 59%

without data noise). These results have major implications since they suggest that BN structure

learning accuracy presented in the literature, on the basis of traditional synthetic data,

overestimates real-world performance to higher degree than maybe was previously assumed.

Still, traditional noise-free synthetic experiments remain important in evaluating BN structure

learning algorithms under various hypothetical assumptions.

With regards to the novel model averaging MAHC structure learning algorithm, the

results suggest that the performance of MAHC is competitive when the input data are clean,

and often superior when the input data are noisy. The results suggest that model averaging

strategies could be better suited for learning from real data, under the assumption that real

observations never satisfy the ideal conditions assumed in clean synthetic experiments and that

they often incorporate different kinds of data noise, many of which might be similar to those

assumed in this work. Additionally, the results show that the ground truth graph will not only

not have the highest objective score, but will also often deviate considerably from the highest

scoring graph, either due to data noise or limited data, both of which distort model fitting. This

decreases the incentive to search for the highest scoring graph, and at the same time increases

the importance of approximate learning.

Practitioners who work with real data should priorotise structure learning solutions with

weaker assumptions that are less sensitive to data noise. The results presented in this chapter

suggest that, in general, score-based solutions tend to be more resilient to noise compared to

constraint-base methods, and this is perhaps explained by constraint-based learning being

sensitive to early errors made during the structure learning process, which in turn affect

subsequent results of conditional independence tests. This is an observations that would benefit

from further investigation. The results also support model averaging strategies which are found

to successfully reduce sensitivity to data noise in the context of structure learning. Finally,

because it is impossible for algorithms that assume noise-free data to successfully generalise

to noisy experiments, the incorporation of knowledge-based constraints remains a desirable

feature for the application of these algorithms to real-world problems, warranting further

exploration in future investigations.

Page 32 of 116

Chapter 4

Structure learning with causal effects in the

presence of continuous data and latent

variables

Latent variables may lead to spurious relationships that can be misinterpreted as causal

relationships. As discussed in subsection 2.2.1.2, this challenge is known as learning under

causal insufficiency. Structure learning algorithms that assume causal insufficiency tend to

reconstruct an ancestral graph where bidirected edges represent confounding and directed

edges represent direct or ancestral relationships.

This chapter presents a hybrid structure learning algorithm called Conservative rule and

Causal effect Hill-climbing for MAG (CCHM), which can be used to recover ancestral graphs

(covered in subsection 2.2.1.2) from data with latent variables. CCHM combines the constraint-

based part of cFCI with hill-climbing score-based learning. The score-based process

incorporates Pearl’s do-calculus to measure causal effects, which are used to orientate edges

that would otherwise remain undirected.

We focus on Gaussian Bayesian Networks (GBNs), where the data follows a

multivariate Gaussian distribution. In general, GBNs (Geiger and Heckerman, 1994) consist of

a random variable Xi where:

P(Xi|parent(Xi))~𝒩(θXi
|parent(Xi))

and Xi can be written in the form of a linear regression model:

Xi = µxi + β parent(Xi) + 𝜖

where µ is the mean of the random variable Xi, β is the coefficient for the directed edge j to i

{βij} and ϵ is a positive random error vector which follows a Gaussian distribution

ϵ ~𝒩(0, σxi

2) with covariance σxi

2 .

This chapter describes the hybrid CCHM algorithm that is designed to learn GBNs from

causally insufficient data. Relevant literature review, including descriptions of the relevant

algorithms considered in this chapter, can be found in subsections 2.2.1.3, 2.2.2.2 and 2.2.3.

The chapter is organised as follows: subsection 4.1 describes the CCHM algorithm, subsection

4.2 describes random networks and real networks as the case studies and evaluation, subsection

4.3 illustrate results, and subsection 4.4 provides concluding remarks and future research

directions.

Page 33 of 116

4.1 Conservative rule and Causal effect Hill-climbing for MAG

(CCHM)

The process of CCHM can be divided into two phases. The first phase adopts the CI tests of

cFCI (covered in subsection 2.2.1.3) to construct the skeleton of the graph and to further

classify definite colliders as whitelist and definite non-colliders as blacklist. The second phase

involves score-based learning that uses the BIC score as the objective function, adjusted for

MAGs, where edge orientation is augmented with causal effect measures. These steps are

described as follows:

a) Definite colliders (whitelist) and definite non-colliders (blacklist)

CI tests are used to determine the edges between variables and to produce the skeleton graph.

A p-value associates with each statistical test result, which is used to sort conditional

independencies in ascending order. An α hyperparameter is then used as the cut-off threshold

in establishing independence. For each conditional independency A ⊥ B | 𝐙, 𝐙 is recorded as

Sepset of nodes A and B. The orientation of edges is determined by a method inherited from

cFCI, where extra CI tests over all unshielded triples determine the classification for each of

those triples as either a definite collider or a definite non-collider:

• Given unshielded triple A − C − B, perform CI tests on A and B over all neighbours

of A and B.

• If C is NOT in all Sepsets of A and B, add A − C − B to the whitelist as a definite

collider.

• If C is in ALL Sepsets of A and B, add A − C − B to the blacklist as a definite non-

collider.

b) BIC for MAGs

The score-based learning part of CCHM involves hill-climbing greedy search that minimises

the BIC score, which balances the goodness-of-fit scores against a penalty term for model

dimensionality based on Occam’s razor principle. CCHM adopts the BIC function used in the

M3HC (Tsirlis et al., 2018) and GSMAG algorithms (Triantafillou and Tsamardinos, 2016),

which is adjusted for MAGs. Formally, given a dataset over variables V with a distribution

𝒩(0, Σ) where Σ is a covariance matrix calculated from the dataset, a unique solution Y is

found where Σ̂ = (I − ℬ)−1Ω(I − ℬ)−t. MAG 𝒢 is constructed from linear equations Y = ℬ ∙

Y + ϵ, where Y = {Yi|i ∈ V}, ℬ is a V × V coefficient matrix for the directed edge j to i {βij},

I is an identity matrix, ϵ is a positive random error vector for the bidirected edge j to i {ωij},

and the error covariance matrix Ω = Cov(ϵ) = {ωii}. The BIC score is then calculated as

follows (Richardson, Spirtes, 2000):

BIC(∑̂|𝒢) = −2 ln (LL𝒢(∑̂|𝒢)) + ln(n)(2|V| + |E|)

where LL𝒢 is likelihood function, |V| and |E| are the size of nodes and edges that are part of

the complexity penalty term, and n is the sample size. Similar to the factorisation property of

DAGs, the score LL𝒢(∑̂|𝒢) can be decomposed into c-components (Sk) of 𝒢 which refer to the

connected components that are partitioned by removing all directed edges (Nowzohour et al.,

2015):

Page 34 of 116

LL𝒢(∑̂|𝒢) = −
N

2
∑ Sk

k

where Sk = |Ck| ∙ ln(2π) + ln (
|Σ̂𝒢k

|

∏ σkj
2

j∈Pa𝒢k

) +
n−1

n
∙ tr[Σ̂𝒢k

−1S𝒢k
− |Pa𝒢(Ck)\{Ck}|]

and where Ck denotes the set of nodes for each c-component k, 𝒢𝑘 is the marginalisation from

Ck, with all their parent nodes defined as Pa𝒢(Ck) in Ck, and σkj
2 represents the diagonal Σ̂𝒢𝑘

of

the parent node k. The likelihood Σ̂ is determined by the RICF algorithm (Drton et al., 2006).

c) Direct causal effect criteria

Because the BIC for MAGs is a Markov equivalent score, it is incapable of orientating all edges

from statistical observations. Optimising for BIC under causal insufficiency returns a PAG, or

one of the MAGs that are part of the equivalence class of the optimal PAG. In this work, we

are interested in orientating all edges that would enable us to generate a MAG, rather than a

PAG, output. We achieve this using Pearl’s do-calculus (Pearl, 2000) to measure the direct

causal effect on edges that the BIC score fails to orientate. The direct causal effect is estimated

by intervention that renders the intervening variable independent of its parents.

Theorem: Single-door criterion for direct effect

Single-Door Criterion for direct effect (Pearl, 2000): Let G be any DAG in which β is the path

coefficient associated with X→Y, the path coefficient β is identifiable and equal to the

regression coefficient if there exists a set of variables that (i) contains no descendant of Y and

(ii) is a set d-separated of X and Y in subgraph after removing X→Y from G.

The interpretation of the path coefficient β in the regression of the single-door criterion

theorem can be expressed as the direct causal effect determined by the rate of change of E[Y]
given intervention X (Maathuis et al., 2009) as follows:

β =
∂

∂x
E[Y| do(x)] = E[Y|do(X = x + 1)] − E[Y|do(X = x)] for any value of x

This assumes that all causal effect parameters are identifiable by RICF (Drton et al., 2006), and

that the path coefficient or the direct causal effect is the regression coefficient estimated from

the likelihood function. Let A→B be the edge in the true graph, the Structural Equation Model

(SEM) B = βAA + ϵB, if we assume that we have A~𝒩(μA, σ2
A), ϵB~𝒩(0, σϵB

2), and ϵB and

A are independent. Thus, E[B] = βAE[A], σ2
B = βA

2σ2
A + σϵB

2 . For every pair A and B in the

learned graph, two causal graphs where A→B and A←B need to be constructed to measure the

direct causal effects. Specifically,

• For graphs A→B, do the intervention on A; i.e., 𝑑𝑜(𝑎) (Pearl, 2000, page 161)

 βA =
E[BA]

E[A2]
 (4.1)

• For graphs B→A, do the intervention on B; i.e., 𝑑𝑜(𝑏).

βB =
E[AB]

E[B2]
 (4.2)

From Equations (4.1), (4.2) and the variance of a random variable X (σ2
X

) = E[X2] − E[X]2:

Page 35 of 116

βA

βB
=

E[B2]

E[A2]
=

E[B]2 + σ2
B

E[A]2 + σ2
A

Substitute E[B] = βAE[A], σ2
B = βA

2σ2
A + σϵB

2 from the graph,

=
β𝐴

2 E[A]2 + βA
2σ2

A + σϵB
2

E[A]2 + σ2
A

= β𝐴
2 +

σϵB
2

E[A]2 + σ2
A

 (4.3)

If E[A] = μA = 0, σ2
𝐴 = 1 and σ2

ϵB
= 1 in the normal distribution in (4.3)

βA

βB
= βA

2 + 1 ; we have the probability (|𝛽𝐴| > |𝛽𝐵|) = 1

Note that this aligns with the study by Peters and B¨uhlmann (2013) where a causal graph can

be identifiable from observational data in linear Gaussian models with equal error variances.

However, in their experiments the authors assume causally sufficient with the results restricted

to DAG discovery, whereas here we assume causal insufficiency aiming for MAG discovery.

Algorithm 1 describes the steps of CCHM in detail.

Algorithm 1: CCHM (Conservative rule and Causal effect Hill-climbing for MAG)

Input: significance threshold α, maximum Sepset size k, CI test

Output: MAG

// Search for a skeleton (Step 1 and 2 are the first and second steps of the cFCI Algorithm)

Step 1 Set up a complete undirected graph and initialise Sepset Z with size =0

Repeat

remove edges between each pair of nodes A and B that become independent conditional

on Sepset Z, as determined by α

Until all Sepset Z size = k have been tested

Step 2 Given unshielded triple A − C − B, perform CI tests on A and B given all neighbours of A and

B as determined by α

a) If C is NOT in all Sepsets of A and B, add A − C − B to the whitelist as a definite

collider

b) If C is in ALL Sepsets of A and B, add A − C − B to the blacklist as a definite non-

collider

Step 3 Orientate as many edges as possible in the skeleton graph given the whitelist, and retrieve the

 BIC score for MAGs of the resulting graph

 // Score-based learning with do-calculus

Step 4 Repeat

 For each pair(A,B), in ascending order by p-value

 Calculate the BIC scores for MAGs for each edge A→B, A←B and AB.

 If i) BIC decreases, ii) the result graph remains acyclic, and iii) the result triple is not in

 blacklist

 If edges A→B, A←B and AB produce unequal BIC scores for MAGs

 Add the edge A→B, A←B or AB that minimises the BIC score for MAGs

 Else

 Calculate the direct causal effect β for edges A→B and A←B

 βA = E(B|do(A = a + 1)) − E(B|do(A = a))

βB = E(A|do(B = b + 1)) − E(A|do(B = b))

 Orientate A→B or A←B that maximises the direct causal effect from

 Equation (4.3)

Until no undirected edges remain

4.2 Evaluation

Page 36 of 116

The graphs produced by the CCHM algorithm are compared to the outputs of the M3HC, GSPo,

GFCI, RFCI, FCI, and cFCI algorithms, when applied to the same data. GSPo is an order-based

search algorithm that performs greedy search over the space of independence maps (IMAPs)

to determine the minimal IMAP (Bernstein et al., 2019). This is achieved by defining a partial

ordered set (poset) that is linked to the IMAP, expressed as a discrete optimisation problem.

However, GSPo uses a random starting point for a poset, and this makes the algorithm non-

deterministic since each run is likely to produce a different MAG. Experimental results show

that GSPo may converge to a different solution each time it is executed, and this instability

makes such algorithms more difficult to evaluate and less desirable in practice. The GSPo

algorithm was tested using the causaldag Python package by Squires (2018), the M3HC

algorithm was tested using the MATLAB implementation by Triantafillou (2019), and the

GFCI and RFCI algorithms were tested using the Tetrad-based rcausal package in R

(Wongchokprasitti, 2019). The computational time of CCHM is compared to the M3HC, FCI

and cFCI, which are based on the same MATLAB package. The CCHM implementation is

available online at https://github.com/kiattikunc/CCHM.

All experiments are based on synthetic data. However, we divide them into experiments

based on data generated from BNs which had their structure and dependencies randomised,

and data generated from real-world BNs. Randomised BNs were generated using

Triantafillou’s (2019) MATLAB package. We created a total of 600 random Gaussian DAGs

that varied in variable size, max in-degree, and sample size. Specifically, 50 DAGs were

generated for each combination of variables V and max in-degree settings 𝒟, where V = {10,

20, 50, 70, 100, 200} and 𝒟 = {3, 5}. Each of those 600 graphs was then used to generate two

datasets of sample sizes 1k and 10k, for a total of 1,200 datasets. Data were generated assuming

linear Gaussian parameters µ = 0 and 𝜎2 = 1 and uniformly random coefficients β [0.1,0.9]

for each parent set to avoid very weak or very strong edges. Approximately 10% of the

variables in the data are made latent in each of the 600 datasets.

In addition to the randomised networks, we made use of four real-world Gaussian BNs

taken from the bnlearn repository (Scutari, 2019). These are the a) MAGIC-NIAB (44 nodes)

which captures genetic effects and phenotypic interactions for Multiparent Advanced

Generation Inter-Cross (MAGIC) winter wheat population, b) MAGIC-IRRI (64 nodes) which

captures genetic effects and phenotypic interactions for MAGIC indica rice population, c)

ECOLI70 (46 nodes) which captures the protein-coding genes of E. coli, and d) ARTH150 (107

nodes) which captures the gene expressions and proteomics data of Arabidopsis Thaliana. Each

of these four BNs was used to generate data, with the sample size set to 10k. For each of the

four datasets, we introduced four different rates of latent variable: 0%, 10%, 20% and 50%.

This made the total number of real-world datasets 16; four datasets per BN.

The following hyperparameter settings are used for all algorithms: a) α = 0.01 for the

Fisher’s z CI test for datasets sampled from the randomised BNs, b) α = 0.05, 0.01, 0.001,

which are the same settings as those used by Tsirlis et al. (2018), for datasets generated by the

real-world BNs, and c) the max Sepset size of the conditioning set is set to ‘4’ so that runtime

is maintained at reasonable levels. The maximum length of discriminating paths is also set to

‘4’ for the four FCI-based algorithms (this is the same as the max Sepset size). For GSPo, the

depth of depth-first search is set to ‘4’ and the randomised points of posets to ‘5’ (these are the

default settings). Because GSPo is a non-deterministic algorithm that generates a different

output each time it is executed, we report the average scores obtained over five runs. Lastly,

https://github.com/kiattikunc/CCHM

Page 37 of 116

all algorithms were restricted to a four-hour runtime limit. Further, because the algorithms will

output either a PAG or a MAG, we convert all MAG outputs into the corresponding PAGs.

The accuracy of the learnt graphs is then assessed with respect to the true PAG. The results are

evaluated using the traditional measures of Precision and Recall, SHD, and BSF, described in

subsection 2.2.4.

4.3 Empirical results

4.3.1 Results based on random Gaussian Bayesian Networks

Figure 4.1 presents the Precision and Recall scores achieved by each of the algorithms on the

datasets generated by the randomised BNs. The scores are averaged across the different settings

of variable size and max in-degree. Note that because there was no noteworthy difference

between the overall results obtained from the two different data sample sizes, we only report

the results based on sample size 10k. Therefore, the results and conclusions based on the

datasets with sample size 10k also hold for the datasets with sample size 1k.

Figure 4.1 Average Precision and Recall scores of the algorithms (variances for CCHM) for each

combination of variable size and max in-degree settings (50 graphs per combination). The results are

based on synthetic data with sample size 10k and assume that 10% of the variables are latent.

Overall, the results show that CCHM outperforms all other algorithms in terms of both

Precision and Recall, and across all settings excluding Recall under max in-degree 5 where

GSPo ranks highest (Figure 4.1b). While GSPo appears to perform best when the number of

variables is lowest, its performance decreases sharply with the number of variables, and fails

to produce a result within the four-hour time limit when the number of variables is highest.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

10 20 50 70 100 200

P
re

ci
si

o
n

Number of variables

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

10 20 50 70 100 200

R
ec

al
l

Number of variables

CCHM M3HC FCI
GFCI RFCI GSPo
cFCI

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 20 50 70 100 200

P
re

ci
si

o
n

Number of variables

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 50 70 100 200

R
ec

al
l

Number of variables

a) maximum in-degree = 3

b) maximum in-degree = 5

Page 38 of 116

The results show no noticeable difference between FCI and its variant RFCI, whereas

the cFCI and GFCI show strong improvements over FCI, with cFCI outperforming all the other

FCI-based algorithms. Moreover, the performance of cFCI is on par with that of M3HC. Note

that while CCHM employs the BIC objective function of M3HC, CCHM outperforms M3HC

in both sparse (Figure 4.1a) and dense (Figure 4.1b) graphs. This result provides empirical

evidence that the conservative rules used in the constraint-based phase of CCHM and the do-

calculus used in the score-based phase of CCHM have indeed improved structure learning

performance.

Figure 4.2 compares the average runtime of CCHM to the runtimes of the other

algorithms. The runtime comparison is restricted to algorithms that are based on the same

MATLAB implementation on which CCHM is based. The results show that CCHM is

marginally faster than cFCI and slower than the other algorithms, with the worst case scenario

observed when the number of variables is highest, where CCHM is approximately two times

slower than FCI.

Figure 4.2 Average computation time of the algorithms for each combination of variable size and

max in-degree settings (50 graphs per combination). The results are based on synthetic data with

sample size 10k and assume that 10% of the variables are latent.

0

50

100

150

200

250

300

350

400

10 20 50 70 100 200

Sec

Number of variables

max in-degree =5

M3HC CCHM

FCI cFCI

0

20

40

60

80

100

120

10 20 50 70 100 200

Sec

Number of variables

max in-degree =3

Page 39 of 116

Figure 4.3 Average number of edges, SHD and BSF scores of the algorithms (variances of BSF for

CCHM) for each combination of variable size and max in-degree settings (50 graphs per combination).

The results are based on synthetic data with sample size 10k and assume that 10% of the variables are

latent.

Figure 4.3 presents the SHD and BSF scores, along with the corresponding numbers of

edges generated by each algorithm. Both the SHD and BSF metrics rank CCHM highest when

the number of variables is more than 10, and these results are consistent with the Precision and

Recall results previously depicted in Figure 4.1 where GSPo performs best when the number

of variables is lowest in sparse graphs. The number of edges produced by CCHM is in line with

the number of edges produced by the other algorithms, and this observation provides

confidence that CCHM achieves the highest scores due to accuracy rather than due to the

number of edges, which may sometimes bias the result of a metric (Constantinou et. al., 2021).

One inconsistency between the SHD and other metrics involves the GFCI algorithm, where

SHD ranks lower than all the other FCI-based algorithms, something which contradicts the

results of Precision, Recall, and BSF. Interestingly, while GSPo produces the highest BSF

scores for graphs that incorporate just 10 variables, its performance diminishes drastically with

the number of variables and quickly becomes the worst performer (refer to the BFS scores in

Figure 4.3a); an observation that is largely consistent with the results in Figure 4.1.

0

100

200

300

400

500

600

10 20 50 70 100 200

A
ve

ra
ge

 n
u

m
b

er
s

o
f

ed
ge

s

Number of variables

0

50

100

150

200

250

300

350

10 20 50 70 100 200

A
ve

ra
ge

 n
u

m
b

er
s

o
f

ed
ge

s

Number of variables

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 20 50 70 100 200

B
SF

Number of variables

a) maximum in-degree = 3

b) maximum in-degree = 5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 20 50 70 100 200

B
SF

Number of variables

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 50 70 100 200

SH
D

Number of variables

0

100

200

300

400

500

600

10 20 50 70 100 200

SH
D

Number of variables

Page 40 of 116

4.3.2 Results based on real-world Gaussian Bayesian Networks

Figure 4.4 The SHD scores of the top three algorithms in each of the four Gaussian BNs, over three

different input settings for hyperparameter α. The results are based on synthetic data with sample size

10k.

The reduced number of experiments that associate with the real-world GBNs (i.e., 16 instead

of 600 randomised experiments) enabled us to also test the sensitivity of the algorithms on the

α hyperparameter, which reflects the significance cut-off point in establishing independence.

Figure 4.4 presents the SHD scores for each of the four real-world GBNs, and over different

rates of latent variables. The results are restricted to the top three algorithms for each case

study, and this is because we report three different results for each of the top three algorithms

based on the three different hyperparameter inputs α specified in Figure 4.4.

 Only four algorithms (CCHM, M3HC, cFCI and GSPo) achieved a top-three

performance in any of the four networks, and this suggests that the relative performance

between algorithms is rather consistent across the different case studies. While there is no clear

relationship between the rate of latent variables and SHD score, the results do suggest that the

accuracy of the algorithms decreases with the rate of latent variables in the data. This is because

while we would expect the SHD score to decrease with less variables in the data, since less

variables lead to potentially fewer differences between the learned and the true graphs (refer to

Figure 4.3), the results in Figure 4.4 reveal a weak increasing trend in SHD score with the rate

of latent variables in the data.

Overall, the CCHM algorithm was part of the top three algorithms in all the four case

studies. Specifically, CCHM generated the lowest SHD error in networks (a) and (b). The

30

80

130

180

230

280

0% 10% 20% 50%

SH
D

Rate of latent variables

b) magic-irri (64 variables)

0

20

40

60

80

100

120

0% 10% 20% 50%

SH
D

Rate of latent variables

a) magic-niab (44 variables)

100

200

300

400

500

600

700

0% 10% 20% 50%

SH
D

Rate of latent variables

d) arth150 (107 variables)

20

40

60

80

100

120

140

160

180

0% 10% 20% 50%

SH
D

Rate of latent variables

c) ecoli70 (46 variables)

Page 41 of 116

results in network (c) were less consistent, with GSPo ranked 1st at latent variable rates of 10%

and 20%, and CCHM ranked 1st at latent variable rates of 0% and 50%. In contrast, the results

based on network (d) show no noteworthy differences in the performance between the three

top algorithms. Overall, the results suggest that cFCI and GSPo are much more sensitive to the

α hyperparameter compared to the CCHM and M3HC algorithms, and that CCHM generally

performs best when α = 0.01.

4.4 Conclusions

This work describes a novel structure learning algorithm, called CCHM, which builds on recent

developments in BN structure learning under causal insufficiency. CCHM combines

constraint-based and score-based learning with causal effects to learn GBNs. The constraint-

based part of CCHM adopts features from the state-of-the-art cFCI algorithm, whereas the

score-based part is based on traditional hill-climbing greedy search that minimises the BIC

score for MAGs. CCHM applies Pearl’s do-calculus as a method to orientate the edges that

both constraint-based and score-based learning fail to do so from observational data. The

results show that CCHM outperforms the state-of-the-art algorithms in the majority of the

experiments, which include both randomised and real-world GBNs.

A limitation of this work is that the algorithm assumes linear GBNs and that the data

are continuous. A possible direction for future work would be to extend this approach to

discrete BNs, where causal insufficiency remains an important open problem (Jabbari et al.,

2017). Other directions include investigating different strategies in the way the do-calculus

effect is applied to the process of structure learning; e.g., it can be applied directly to the

calculation of the BIC score during score-based learning, or computed as the total causal effect

of the graph using do-calculus rules or via back-door adjustment with graph surgery. Lastly,

causal insufficiency represents just one type of data noise that exist in real-world datasets, and

future work could also investigate the effects of causal insufficiency when combined with other

types of noise in the data.

Page 42 of 116

Chapter 5

Hybrid structure learning from multiple

discrete datasets by scoring multiple

interventions

In BNs, the direction of edges is crucial for causal reasoning and decision making via

intervention. However, as discussed in subsection 2.2.1.1 regarding Markov equivalence class

considerations, many structure learning algorithms cannot orientate all edges purely from

observational data. That is, the causal chain and common cause relationships cannot be

distinguished from observational data, irrespective of sample size. Figure 5.1a presents an

example where three nodes A, B and C, are A ⊥ B | C, and there are three DAGs that support

this CI statement.

Interventional data, however, may help us orientate some of those undirected edges. As

illustrated in Figure 5.1b, a perfect intervention on C would force its state to c (C = c)

independent of its parents. Simulating hypothetical interventions by rendering the intervention

independent of its causes enables us to measure the effect of intervention. Importantly,

interventional analysis may help us distinguish over different DAGs that fall within the same

Markov equivalence class.

Figure 5.1 (a) Three Markov equivalent DAGs that entail the CI statement A ⊥ B | C, and (b) the

corresponding modified DAGs when assuming a perfect intervention on C, where the square box

represents the target node for intervention.

(a)

(b)

Page 43 of 116

This chapter describes the hybrid mFGS-BS (majority rule and Fast Greedy

equivalence Search with Bayesian Scoring) algorithm for structure learning from discrete data

that involves an observational data set and one or more interventional data sets. The aim of the

proposed algorithm is to orientate as many edges as possible from both observational and

interventional data. The algorithm assumes causal insufficiency in the presence of latent

variables and produces a PAG output. The proposed algorithm relies on a hybrid approach and

a novel Bayesian scoring paradigm that calculates the posterior probability of each directed

edge being added to the learnt graph.

This chapter is organised as follows: subsection 5.1 discusses related works, subsection

5.2 describes the mFGS-BS algorithm, subsection 5.3 describes evaluation setup along with

the case studies, subsection 5.4 presents the results, and we provide our concluding remarks

and future research directions in subsection 5.5.

5.1 Related works

Structure learning algorithms that learn from both observational and interventional data tend

to do so from pooled data, which is a method that pools all datasets together with intervened

variables specified. These algorithms aim to generate a graph that is consistent, as much as

possible, with all input data. Examples include IGSP (Wang et al., 2017) and GIES (Hauser

and B¨uhlmann, 2012) that return a DAG from pooled causally sufficient data.

Other methods involve determining the results of CI tests from each dataset separately

and constructing a single graph using conflict resolution strategies. For causally insufficient

data, the Causal discovery from Overlapping INtErventions (COmbINE) algorithm by

Triantafillou and Tsamardinos (2015) implements the cFCI approach to learn the common

characteristics and the results of CI tests from different datasets, which it then converts into

Boolean Satisfiability (SAT) instances in a MINISAT application to resolve any conflicts.

Other algorithms that operate on such results of CI tests include HEJ (Hyttinen et al., 2014)

which uses Clingo (Gebser et al., 2011) – an Answer Set Programming (ASP) rule-based

declarative programming language that solves various representations of NP-hard optimisation

tasks (Gelfond and Lifschitz, 1988; Niemela, 1999) – for conflict resolution. It produces cyclic

directed mixed graphs encoding results of CI tests from conditioning and marginalisation

operations, and the graphs may contain directed, bidirected or undirected edges. The ACI

algorithm (Magliacane et al., 2016) also relies on Clingo and can be viewed as a

computationally less expensive variant of HEJ that operates in the search space of ancestral

graphs, but which does not support bidirected edges for latent confounder representation.

Lastly, JCI (Mooij et al., 2020) is a constraint-based algorithm that uses auxiliary context

variables and system variables, which the authors define as variables of interest (presumably

observed variables) and intervention targets respectively. JCI learns from a pooled dataset

including knowledge about the relationship between context variables and generates a directed

mixed graph, but which does not fall under the ancestral graph family. Table 5.1 summarises

the main features of these relevant algorithms.

Page 44 of 116

Algorithm Class
Discrete

/Continuous data
Output Intervention type Dataset

COmbINE Constraint-based Both PAG Perfect Separate

HEJ Constraint-based Both
Cyclic Directed Mixed

Graph
Perfect Separate

JCI Constraint-based Both
Acyclic Directed Mixed

Graph

Perfect/ Imperfect/

Uncertain
Pooled

ACI Constraint-based Both Ancestral graph Perfect/ Imperfect Separate

Table 5.1 Overview of the relevant structure discovery algorithms that assume causal insufficiency,

and learn graphs from multiple interventions.

Previous works that assumed prior probabilities for the existence of directed edges, as

opposed to a binary outcome, include those by Castelo and Siebes (2000) who introduced the

idea of assigning subjective prior probabilities (specified by experts) to directed edges, and by

Scutari (2016) who assumed the marginal uniform prior probabilities of directed edges A → B

and A ← B to be ¼, while the prior probability of the independency between A and B to be ½

in a variant of the BD score called the Bayesian Dirichlet sparse score (BDs).

Hyttinen et al. (2014) proposed a Bayesian scoring method that applies prior

probabilistic weights to the results obtained from CI tests. These prior probabilities are

subjective and obtained from knowledge. In this work, we modify this method so that the prior

probabilities are objectively calculated from data, and are assigned to directed edges rather than

to the results obtained from CI tests. These details are discussed in subsections 5.2.1 and 5.2.2.

With reference to the method by Hyttinen et al. (2014), the posterior probability of CI

(P(r|DOBS)), given observational data, is:

P(r|DOBS) =
prior × P(DOBS|r)

prior × P(DOBS|r) + (1 − prior) × P(DOBS|r̅)
 (5.1)

where r is an arbitrary CI that A and B are independent given Z (A ⊥ B | Z), r̅ is an arbitrary

conditional dependence that A and B are dependent given 𝐙 (A ⊥/ B | Z), 𝐙 is the set of variables

that is the Sepset of variables A and B, prior is an informative or uninformative probability

from knowledge that A ⊥ B | Z is true, P(DOBS|r) is the network score of A ⊥ B | Z (marginal

likelihood), and P(DOBS|r̅) is the network score of A ⊥/ B| Z (A → B or A ← B).

Similarly, Jabarri et al. (2017) used the BDeu score, which we describe in subsection

2.2.2.1, to obtain a posterior probability for CI in the hybrid RFCI-BSC algorithm, and assumed

a uniform prior as the uninformative probability for each result obtained from CI tests as

follows:

P(r|DOBS) =
P(DOBS|r)

P(DOBS|r) + P(DOBS|r̅)

where P(DOBS|r) is the BDeu score (marginal likelihood) of structure A ← Z → B (A ⊥ B| Z),

and P(DOBS|r̅) is the BDeu score of structure A ← Z → B and A → B (A ⊥/ B | Z), and all

variables in Z are parents of both A and B. These structures are proposed by Jabarri et al. (2017;

2020) to be the representation of all possible structures that correspond to the relevant CI tests.

Since the marginal likelihoods can be found in the objective scores computed by score-based

Page 45 of 116

learning (Margaritis, 2005), the BDeu score of these structures can be used to derive the

marginal likelihoods for discrete variables.

5.2 The mFGS-BS algorithm

The mFGS-BS algorithm described in this subsection learns a PAG from both observational

and interventional data, under the assumption of causal insufficiency and that the intervened

variables are subject to perfect intervention. The novelty of mFGS-BS involves assigning

probabilities to each possible directed edge. If the two opposing directions between a pair of

variables both have probabilities that are higher than a given threshold, then a bidirected edge

is assumed.

We first describe in subsection 5.2.1 how the probabilities of directed edges from a

single observational dataset can be obtained, and then describe in subsection 5.2.2 how we

extend this concept to cases in which we want to learn a structure from both observational and

interventional data. Subsection 5.2.3 provides the overall description of mFGS-BS.

5.2.1 Determining the probabilities of directed edges from a single observational dataset

We devise a new method to determine directed edges that is largely based on the methods of

Hyttinen et al. (2014) and Jabbari et al. (2017) that focus on assigning probabilities to each

result obtained from CI tests. In this work, we label observational data as DOBS and

interventional data as DINT. When assuming the unconditional independence between two

nodes A and B, we modify Equation (5.1) to consider the possibility of edges A B (i.e. no edge

between A and B), A → B and A ← B in a DAG as follows:

P(A B|DOBS) =
P(A B) × P(DOBS|A B)

P(A B) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B) + P(A ← B) × P(DOBS|A ← B)

Since P(A B|DOBS) + P(A → B|DOBS) + P(A ← B|DOBS) = 1 and P(A B) + P(A → B) + P(A ← B) = 1, then:

 1 − (P(A → B|DOBS) + P(A ← B|DOBS)) =

(1 − (P(A → B) + P(A ← B))) × P(DOBS|A B)

(1 − (P(A → B) + P(A ← B))) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B) + P(A ← B) × P(DOBS|A ← B)
 (5.2)

where P(A → B) is the prior probability of directed edge A → B, P(A ← B) is the prior

probability of directed edge A ← B that we later describe in subsection 5.2.2, P(DOBS|A → B)

is the BDeu score of structure A → B, and P(DOBS|A ← B) is the BDeu score of structure A ←
B.

Because we assume that the learnt ancestral graph is a PAG that may contain bidirected

edges, the bidirected edge A ↔ B corresponds to the dependency between A and B from the

assumed true structure A ← L → B (A ⊥/ B) where L is a latent confounder. The dependency

between A and B in a PAG can be A → B, A ← B or A ↔ B. Because Equation (5.2) is not

suitable to calculate the posterior probabilities of these types of edges, we devise two equations:

(1) calculating P(A → B|DOBS) by ignoring A ← B, as described in Case 1 below, and (2)

calculating P(A ← B|DOBS) by ignoring A → B, as described in Case 2 below. These enable us

Page 46 of 116

to calculate the probabilities of each of these directed edges independently. If the posterior

probabilities of both directed edges A → B and A ← B are higher than a given threshold, then

mFGS-BS will not be able to orientate the given directed edges and will produce the bidirected

edge A ↔ B.

Case 1: Calculate P(A → B|DOBS) given the assumption that P(A ← B|DOBS) = 0,
P(DOBS|A ← B) = 0 and P(A ← B) = 0 from Equation (5.2), then:

1 − P(A → B|DOBS) =
(1 − P(A → B)) × P(DOBS|A B)

(1 − P(A → B)) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B)

Case 2: Calculate P(A ← B|DOBS) given the assumption that P(A → B|DOBS) = 0,
P(DOBS|A → B) = 0 and P(A → B) = 0 from Equation (5.2), then:

1 − P(A ← B|DOBS) =
(1 − P(A ← B)) × P(DOBS|A B)

(1 − P(A ← B)) × P(DOBS|A B) + P(A ← B) × P(DOBS|A ← B)

From this, we define the posterior probabilities of directed edges as specified by Definition 6.

Definition 6: Assuming the learnt graph is a PAG, we define a bidirected edge A ↔ B as the

dependency between A and B derived from the possibility of both A → B and A ← B, where the

posterior probabilities P(A → B|DOBS) and P(A ← B|DOBS) are:

P(A → B|DOBS) = 1 −
(1 − P(A → B)) × P(DOBS|A B)

(1 − P(A → B)) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B)

P(A ← B|DOBS) = 1 −
(1 − P(A ← B)) × P(DOBS|A B)

(1 − P(A ← B)) × P(DOBS|A B) + P(A ← B) × P(DOBS|A ← B)

5.2.2 Determining the probabilities of directed edges from both observational and

interventional datasets

Cooper and Yoo (1999) propose a Bayesian score for DAG structures that assumes a mixture

of causally sufficient observational and experimental data simultaneously. However, the

proposed closed-form solution assumes that exhaustive enumeration of DAG structures is

possible, and this renders the process computationally expensive or intractable when applied

to today’s larger datasets. In this work, we extend the approach described in subsection 5.2.1

to learn from an observational dataset and one or more interventional datasets, which the

algorithm processes in turn to improve computational efficiency. The proposed mFGS-BS

algorithm computes the posterior probabilities of directed edges derived from previously

processed data, where each posterior probability of a given edge serves as the prior probability

of that edge in the next iteration. For each interventional dataset, INTi, the algorithm uses

Equations (5.3) and (5.4) to determine the posterior probability of each directed edge. We use

the term “posterior” here to reflect the fact that this probability, denoted for example,

P(A → B|DINTi
), is based both on the current interventional dataset being processed and all

previous datasets processed.

P(A → B|DINTi
) = 1 −

(1−P(A→B))×P(DINTi
|A B)

(1−P(A→B))×P(DINTi
| A B)+P(A→B)×P(DINTi

|A→B)
 (5.3)

Page 47 of 116

P(A ← B|DINTi
) = 1 −

(1−P(A←B))×P(DINTi
| A B)

(1−P(A←B))×P(DINTi
| A B)+P(A←B)×P(DINTi

|A←B)
 (5.4)

The term P(A → B) on the right hand side of Equation (5.3) represents the objective prior

probability of directed edge A → B based on the previously processed datasets. The term P(A ←

B) plays an analogous role as the objective prior for A ← B in Equation (5.4). The prior for

A → B is taken to be either the posterior for that directed edge computed in the previous

iteration, that is, P(A → B|DINTi−1
), or a prior derived using Equation (5.5) whichever is the

larger.

P(A → B) = max{PFGS(A → B)|DOBS,INT1:i−1
, P(A → B)A→B←C|DOBS}

+ ∑ P(A − B)local BDeu of B,target =A|DOBS,INTk

i−1

k=1

 (5.5)

where P(A → B) is computed from three factors on the right hand side of Equation (5.5):

a) Factor 1: PFGS(A → B)|DOBS,INT1:i−1
is the probability of directed edge A → B over all

previously learnt CPDAGs from FGS across DOBS,INT1:i−1
(further details are provided

in subsection 5.2.2.1).

b) Factor 2: P(A → B)A→B←C|DOBS is the probability of directed edge A → B calculated

from the ratio of Sepsets determining v-structure A → B ← C using the majority rule

from DOBS (further details are provided in subsection 5.2.2.2).

c) Factor 3: ∑ P(A − B)local BDeu of B,target =A|DOBS,INTk

i−1
k=1 is the summation of all

relative changes in the local BDeu scores of node B compared to DOBS, when the

intervened variable is A across all previously learnt DINT. The relative changes in the

local BDeu scores are described in subsection 5.2.2.3).

5.2.2.1 Factor 1: Determining the probabilities of directed edges given the

occurrence rates of each directed edge over all learnt CPDAGs

The first, out of the three, factors used to calculate the prior probability of a directed edge is

based on the occurrence rate of each directed edge derived from the probability of directed

edge A → B (PFGS(A → B)|DOBS,INT1:i−1
) over all learnt CPDAGs obtained by applying FGS to

each input dataset. Specifically,:

PFGS(A → B)|DOBS,INT1:i−1
=

#directed edge(A → B)

#total directed edge(A → B) + #total directed edge(A ← B)

where:

directed edge(A → B) = {
 1 ∶ if A → B is in a learnt CPDAG
0.5 ∶ if A − B is in a learnt CPDAG and the intervened variable = A

0 ∶ otherwise

and:

total directed edge(A → B) = {
 1 : if A → B is in a learnt CPDAG
1 : if A − B is in a learnt CPDAG and the intervened variable = A

 0 : otherwise

Page 48 of 116

The total number of directed edges A → B represents the number of directed edges A → B

present in each of the learnt CPDAGs. These formulas rely on a simple counting method to

calculate probabilities, adopted by Hyttinen et al. (2014) who estimate prior probabilities of

directed edges specified by experts. Note that CPDAGs learnt from interventional data should

not produce directed edges entering the intervened variable due to the graph surgery

mechanisms illustrated in Figure 2.4 of Chapter 2 (i.e., interventions are rendered independent

of their parents). For example, if the undirected edge A − B is present in the learnt CPDAG

when we intervene on node A, the algorithm assigns probability 0 for directed edge A ← B and

probability 0.5 for directed edge A → B to account for the risk of false positive edges learnt by

FGS, since it does not produce bidirected edges in the presence of latent confounders (Ogarrio

et al., 2016).

It is important to clarify that in the absence of intervention, an undirected edge in the

learnt CPDAG does not imply equal probability for either direction (Kummerfeld, 2021). The

correct probability for each directed edge can be obtained by enumerating all possible DAGs

from the learnt CPDAG. However, this tends to increase the computational complexity of the

algorithm substantially, especially in the case of mFGS-BS which is designed to produce a

CPDAG for each input dataset. For simplicity and reasons of efficiency, when an undirected

edge is present in a learnt CPDAG, mFGS-BS assumes a probability of 0.5 for either direction.

5.2.2.2 Factor 2: Determining the probabilities of directed edges given the ratios of

Sepsets determining v-structures

Because the joint probability distribution from interventional data will not capture all

dependencies, we consider the v-structures as determined by observational data. Therefore,

interventional data is not used by this factor. In mFCI, the v-structures are obtained from

unshielded triples that are part of an initial undirected graph determined by statistical CI tests.

Then, the majority rule in mFCI is used to definitively orientate the edges of unshielded triples

A − B − C into v-structures A → B ← C, determined by the ratio of Sepsets (Colombo and

Maathuis, 2014). In this work, we use a novel method to instead calculate the probabilities of

these directed edges, where P(A → B)A→B←C|DOBS and P(C → B)A→B←C|DOBS correspond to

the individual probabilities of directed edges A → B and C → B in producing v-structure A →

B ← C given the observational data. In order to assign a probability to directed edges in an

unshielded triple A − B − C, mFGS-BS considers how many of the Sepsets of A and C contain

B. If B is in less than 50% of the Sepsets of A and C (i.e., the ratio of Sepsets < 0.5) then we

assume that B does not block an active path between A and C. Hence, the likelihood of v-

structure A → B ← C will be higher than 0.5, and from this we deduce that P(A →

B)A→B←C|DOBS > 0.5 and P(C → B)A→B←C|DOBS > 0.5. Conversely, if B is in ≥ 50% of the

Sepsets of A and C, we deduce that the unshielded triple A − B − C is unlikely to be a v-

structure and that instead is likely to be either A → B → C, A ← B → C or A ← B ← C. These

assumptions lead to Equations (5.6) and (5.7) which are calculated independently as follows:

 (5.6)

P(A ← B)A→B←C|DOBS = P(C ← B)A→B←C|DOBS = 0.5 (5.7)

Page 49 of 116

where the ratio of Sepsets =
|Sepsets of A and C which contain B|

|all Sepsets of A and C|
, |Sepsets of A and C which contain B|

and |all Sepsets of A and C| represent the number of Sepsets in DOBS. P(A → B)A→B←C|DOBS,

P(C → B)A→B←C|DOBS from Equation (5.6), P(A ← B)A→B←C|DOBS and P(C ← B)A→B←C|DOBS

from Equation (5.7) are assigned the value of 0.5 for the reasons covered in subsection 5.2.2.1.

5.2.2.3 Factor 3: Determining the probability of directed edges given the relative

changes in local BDeu scores

BDeu is a score-equivalent function where the BDeu score of a graph represents the summation

of all local BDeu scores assigned to each node within that graph. The local BDeu score for

node i (Zi) (Cussens, 2012) is denoted as:

Zi = ∑ [log
Γ(iss qi⁄)

Γ(iss qi⁄ + Σknijk)
+ ∑ log

Γ(iss |Xi|qi⁄ + nijk)

Γ(iss |Xi|qi⁄)

|Xi|

k=1

]

qi

j=1

The effect of an intervention represents the difference between pre and post-

intervention distributions of the children of a target node (Zhang, 2006). We consider the

difference in their local BDeu scores to represent the effect of the intervention, assuming the

sample size of the input observational data is the same with the sample size of the interventional

data when computing this difference. From this, we obtain the relative change in the local BDeu

scores as described by Definition 7.

Definition 7: Assuming equal sample size for both observational and interventional data, the

relative change in the local BDeu scores between pre-intervention (Zi|DOBS) and post-

intervention (Zi|DINT) of node i is:

|
Zi|DOBS − Zi|DINT

Zi|DOBS
| (5.8)

For example, when we intervene on node A when A → B is present in the graph, then

we would expect the effect of this intervention to be reflected in the probability distribution of

B. When A is the intervened variable and the undirected edge A − B is learnt by FGS given

DINT, we are interested in the likelihood of the directed edge A → B being present in the true

graph. In this case, the probability of directed edge A → B is measured by Factor 3 in terms of

the relative change in the local BDeu score of node B, given DINT and DOBS, as defined by

Equation (5.8).

Example 1. This example is described with reference to Figure 5.2, and assumes that the true

DAG is the one shown in Figure 2.7 of Chapter 2. Figure 5.2a shows the undirected graph as

constructed by the CI tests given DOBS, to determine unshielded triples. Figures 5.2b, 5.2c and

5.2d present the three hypothetical CPDAGs learnt by FGS from three different datasets. We

first illustrate how to derive Factor 2 in Table 5.2, where the first column shows that the CI

tests over V and Y, given the unshielded triple V − X − Y in Figure 5.3a, return 3 Sepsets with

p-values greater than the significant threshold α of 0.05. The only Sepset of node V and Y that

contains X is {W, X, Z}. This means that the ratio of Sepsets in determining the given v-structure

will be 0.333, as shown in the second column in Table 5.2. The third and fourth columns show

how we arrive at the calculation of Factor 2, given Equations (5.6) and (5.7) respectively, each

of which corresponds to a probability of the directed edge being present in the true graph.

Page 50 of 116

Sepsets of 𝐕 and 𝐘
the ratio of Sepsets

containing 𝐗

Factor 2:

𝐏(𝐕 → 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒

𝐏(𝐘 → 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒

given Equation (5.6)

Factor 2:

𝐏(𝐕 ← 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒

𝐏(𝐘 ← 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒

given Equation (5.7)
{W}

1

3
= 0.333 1-0.333 = 0.667

{W, X, Z} 0.5
{Z}

Table 5.2 How the probabilities of directed edges of Factor 2 are calculated, given the unshielded

triple V − X − Y in Example 1 and with reference to Figure 5.2a.

Figure 5.2 (a) The undirected graph produced by the CI tests given DOBS, (b)-(d) and the three

CPDAGs learnt by FGS from observational and interventional data (DOBS , DINT1
and DINT2

)

generated based on the DAG shown in Figure 2.7 of Chapter 2, with variables targeted for

intervention T1={V}, T2={W} shown in the square boxes.

Table 5.3 illustrates how Factor 3 is calculated, that produces the relative change in the

local BDeu scores as described in subsection 5.2.2.3. The example is based on one

observational dataset, two interventional datasets, and one intervened variable per

interventional dataset as shown in Figure 5.2c and Figure 5.2d. Figure 5.2c shows that the

undirected edge V − X is learnt by FGS given DINT1
. When V is the intervened variable, we

observe that the relative change in the local BDeu score of node X is 0.0119 from the effect of

this intervention, so this increases the probability of directed edge V → X being present in the

true graph. Table 5.3 also shows the relative changes in the local BDeu score of V and Z are

0.0174 and 0.0001 respectively when W is the intervened variable in Figure 5.2d.

Directed

edges

Interventional

datasets

Intervened

variables

Local BDeu score

(pre-intervention)

Local BDeu score

(post-intervention)

Relative change in local BDeu

scores given Equation (5.8)

V → X DINT1
 V X = -11,507 X = -11,370 0.0119

W → V DINT2
 W V = -14,274 V = -14,026 0.0174

W → Z DINT2
 W Z = -6,936 Z = -6,935 0.0001

Table 5.3 An example of calculating the relative change in the local BDeu scores as described in

Example 1 and with reference to Figure 5.2c and Figure 5.2d.

Page 51 of 116

Finally, Table 5.4 presents the outputs produced by each of the three factors, and with

reference to the directed edges presented in the first column. The calculations in the second,

third and fourth columns correspond to the outputs of Factors 1, 2 and 3 respectively. In

calculating Factor 1 for directed edge X → Y, Figures 5b, 5c and 5d show that X ← Y appears

once and X → Y appears twice across the three CPDAGs, thus PFGS(X → Y)|DOBS,INT1:2
= 0.67.

For directed edge W → V, Figure 5.2b shows W − V, Figure 5.2c shows no edge, and Figure

5.2d shows W − V given DINT2
 and hence, PFGS(V → W)|DOBS,INT1:2

 is set to 0 and

PFGS(W → V)|DOBS,INT1:2
 to 0.5. This is because W is the intervened variable in Figure 5.2d,

and from this we can conclude that if an edge is discovered between V and W, then the direction

of that edge can only be entering V. Note that PFGS(W → V)|DOBS,INT1:2
 is set to 0.5 and not to

1 because FGS suggests W − V instead of W → V. Finally, the fifth column of Table 5.4 shows

the overall calculation for the prior probability of each directed edge, that takes into

consideration all three factors, given Equation (5.5).

Directed

edges
Factor 1:

𝐏𝐅𝐆𝐒(𝐀 → 𝐁)|𝐃𝐎𝐁𝐒,𝐈𝐍𝐓𝟏:𝟐

Factor 2:
𝐏(𝐀 → 𝐁)𝐀→𝐁←𝐂|𝐃𝐎𝐁𝐒

Factor 3:

∑ 𝐏(𝐀 − 𝐁)𝐥𝐨𝐜𝐚𝐥 𝐁𝐃𝐞𝐮 𝐨𝐟 𝐁,𝐭𝐚𝐫𝐠𝐞𝐭 =𝐀|𝐃𝐎𝐁𝐒,𝐈𝐍𝐓𝐤

𝟐

𝐤=𝟏

𝐏(𝐀 → 𝐁)

given Equation (5.5)

X → Y 0.67 0.5 - 0.67

Y → X 0.34 0.67 - 0.67

V → X 0.75 0.67 0.0119 0.7619

W → V 0.5 0 0.0174 0.5174

V → W 0 0 - 0

W → Y 1 0 - 1

W → Z 0.75 0 0.0001 0.7501

Table 5.4 Examples of the calculation of the prior probability of directed edges with reference to

Example 1, Figure 5.2, Table 5.2 and Table 5.3.

5.2.3 Algorithm mFGS-BS

Figure 5.3 The overall process of the mFGS-BS algorithm that iteratively processes datasets and

calculates posterior probabilities of directed edges to generate a PAG.

We now use the concepts described in subsections 5.2.1 and 5.2.2 to formulate the mFGS-

BS algorithm. The pseudocode of mFGS-BS is provided in Algorithm 2. The algorithm takes

as an input an observational dataset and one or more interventional datasets, the set of

variables targeted for intervention for each interventional data, and the hyperparameters

specified in Algorithm 2. The overall process of mFGS-BS is shown in Figure 5.3. The first

step in Algorithm 2 performs CI tests given an observational dataset. Steps 2 to 4 derive the

Page 52 of 116

initial prior probabilities of directed edges forming v-structures and the probabilities of

directed edges learnt by FGS given an observational dataset. Step 5 then iteratively calculates

the posterior probabilities of directed edges derived from each interventional dataset

(DINT𝟏
− DINT𝐈−𝟏

), as described in subsection 5.2.2. In the last steps, a PAG is constructed

from the posterior probabilities of directed edges obtained after processing the last

interventional dataset (DINT𝐈
), based on a hyperparameter cut-off threshold used to determine

the existence of a directed edge or bidirected edge.

Algorithm 2: mFGS-BS (majority rule and Fast Greedy equivalent Search with Bayesian Scoring)

Input: interventional datasets DINTI
, an observational data DOBS, intervened variable sets TI, significance threshold α,𝛼

posterior probability cut-off threshold c, maximum Sepset size k, CI test

Output: a PAG

Step 1

Set up a complete undirected graph 𝒰 and Sepset 𝐙 size = 0

Repeat

Remove the dependencies for each pair (A, B) in 𝒰 if they become independent given subsets of

Sepset 𝐙, determined by significance threshold α in DOBS

Sepset 𝐙 size = Sepset 𝐙 size +1

Until Sepset 𝐙 size k has been tested

Step 2

Given unshielded triple A − B − C from 𝒰 resulting from Step 1, perform CI tests, with significance

threshold α, on A and C given all neighbours of A and C including B, given DOBS and calculate Factor 2

P(A → B)A→B←C|DOBS, P(A ← B)A→B←C|DOBS, P(C → B)A→B←C|DOBS and P(C ← B)A→B←C|DOBS

according to Equations (5.6) and (5.7)

Step 3 Run FGS on DOBS and add the learnt CPDAG to the list ℒG

Step 4 For each pair (A, B) over all variables

Calculate the prior probabilities P(A → B), P(A ← B) for each possible directed edge A → B, A ← B

 where P(A → B) = max{PFGS(A → B)|DOBS , P(A → B)A→B←C|DOBS}

 Calculate the posterior probabilities P(A → B|DINT1
), P(A ← B|DINT1

) for each possible directed edge

 A → B, A ← B according to Equations (5.3) and (5.4)

Step 5 For i=1 to I-1

Run FGS on DINTi
 and add the learnt CPDAG to the list ℒ𝐺

For each pair (A, B) over all variables

 If A is the intervened variable

 Calculate Factor 3 P(A − B)local BDeu of B,target=A|DOBS,INTi
 given Equation (5.8) and add it to

 the list ℒS

 Calculate the prior probabilities P(A → B), P(A ← B) for each possible directed edge A → B and

 A ← B given Equation (5.5), where Factor 1 is calculated given ℒG, Factor 2 is calculated

 given Equations (5.6) and (5.7) in Step 2, and Factor 3 is calculated given ℒS

 P(A → B) ⟵ max{P(A → B), P(A → B|DINTi
)}

 P(A ← B) ⟵ max{P(A ← B), P(A ← B|DINTi
)}

 Calculate the posterior probabilities P(A → B|DINTi+1
), P(A ← B|DINTi+1

) for each possible

 directed edge A → B, A ← B according to Equations (5.3) and (5.4)

Step 6 Repeat until no cycles or an almost cyclic are present in the output graph

 For each pair (A, B) in all variables

 Select edge A → B if the posterior probability P(A → B|DINT𝐈
) is higher than threshold c;

 Select edge A ↔ B if the posterior probabilities P(A → B|DINT𝐈
) and P(A ← B|DINT𝐈

) are both

 higher than threshold c;

 Select edge A o— o B if the posterior probabilities P(A → B|DINT𝐈
) and P(A ← B|DINT𝐈

) are both

 lower or equal to threshold c, but A − B exists in 𝒰.

Step 7

 If the graph contains a cycle or an almost cyclic

 Remove an edge that causes a cycle, or an almost cycle, where the edge selected is the one that has

 the lowest posterior probability.

Output a PAG by combining the set of edges learnt from Step 6

Page 53 of 116

5.3 Evaluation

We consider the same six networks previously presented in Table 3.1 of Chapter 3 that vary in

dimensionality. Because the experiments assume multiple interventional datasets, we restrict

the evaluation to synthetic experiments that can accurately represent such scenarios since we

had no access to suitable real data. We use the networks to generate one synthetic observational

and up to 10 synthetic interventional datasets. The true MAGs and true DAGs for each of the

networks are available in the Bayesys repository (Constantinou et al., 2020). For each true

DAG, we consider observational and interventional datasets over two sample sizes (n = 1k and

n = 10k). Interventional data are generated using the bnlearn R package (Scutari, 2019). For

each dataset, we randomly choose one or five variables to be targeted for intervention. This

means it is possible for the same variable to be targeted for intervention in more than one

interventional dataset. We remove all incoming edges entering intervened variables, and we

assume a uniform distribution for each state of variables targeted for intervention, before the

intervention is set, as in (Korb et al., 2004). Finally, 10% of the variables in the smaller

networks (Asia and Sports) and 5% of the variables in the larger networks (Property, Alarm,

Formed and Pathfinder) are made latent. To minimise uncertainty, we repeat the experiments

five times per algorithm and obtain the average scores.

The structure learning performance is evaluated using the graphical measures of

Precision, Recall, F1 and BSF as described in subsection 2.2.4. We compare the graphical

scores obtained by mFGS-BS to those obtained by COmbINE, RFCI-BSC and GFCI as

described in subsections 5.1 and 2.2.3, which are three similar algorithms that also produce a

PAG. RFCI-BSC assigns probabilities to CIs that are used to learn a PAG, which is the most

similar approach to mFGS-BS, whilst the well-establish GFCI supports latent variables, and

has been shown to more accurate than FCI and RFCI (Ogarrio et al., 2016; Constantinou et. al.,

2021). An important difference amongst these algorithms is that COmbINE enables learning

from multiple interventional datasets while RFCI-BSC and GFCI do not. RFCI-BSC and GFCI

are hybrid algorithms which assume the input data are observational. We therefore combine

the observational and interventional datasets into a single dataset which we use as input to these

algorithms. This serves as a baseline experiment where the RFCI-BSC and GFCI algorithms

produce a result given all data but without taking advantage of interventional information.

True edges Predicted edges Penalty Result

𝐀 ↔ 𝐁 A → B, A ⇢ B, A ← B, A ⇠ B, A B 1 True Positive = 0

𝐀 → 𝐁 A ↔ B, A ← B, A ⇠ B, A B 1 True Positive = 0

𝐀 ← 𝐁 A ↔ B, A → B, A ⇢ B, A B 1 True Positive = 0

𝐀 𝐁 A → B, A ⇢ B, A ← B, A ⇠ B, A ↔ B 1 True Negative = 0

𝐀 → 𝐁 Ao— oB, Ao---oB 0.5 True Positive = 0.5

𝐀 ← 𝐁 Ao— oB, Ao---oB 0.5 True Positive = 0.5

𝐀 → 𝐁 A o→ B, A o⇢ B 0.25 True Positive = 0.75

𝐀 ← 𝐁 A ←o B, A ⇠o B 0.25 True Positive = 0.75

Table 5.5 The edge and orientation penalty scores used by the scoring metrics, where ⇢ represents

one of the output edges of COmbINE.

 COmbINE was tested using the MATLAB implementation by Triantafillou (2019)

while RFCI-BSC and GFCI were tested using the rcausal package, which is the R wrapper for

Tetrad Library (Wongchokprasitti, 2019). The mFGS-BS implementation is available online at

https://github.com/kiattikunc/mFGS-BS. Note the output of COmbINE represents a special

https://github.com/kiattikunc/mFGS-BS

Page 54 of 116

type of PAG that contains dashed edges (---) indicating uncertainty about the existence of an

edge learnt from each interventional dataset. Since we are interested in the direction of

causation, all output PAGs are measured against the true MAG using the penalty scores

described in Table 5.5. Regarding the hyperparameter inputs of the algorithms, the significant

threshold α for the G2 hypothesis test is set to 0.05, and the max Sepset size of the conditioning

set is set to 10, in all algorithms. The posterior probability cut-off threshold of mFGS-BS is set

to 0.5, and the default iss of BDeu in mFGS-BS, RFCI-BSC and GFCI is set to 1. We also

apply a runtime limit of four hours to each graph learnt/experiment for all algorithms.

5.4 Results

The results are separated into four subsections. We start with subsection 5.4.1, where we

measure the sensitivity to the order of interventional datasets. We use the Alarm network to

generate 5 and 10 interventional datasets with sample sizes 1k and 10k by intervening on a

random single variable per dataset and 5% of the variables in the data are made latent. Then,

we randomise 20 orderings of 5 and 10 interventional datasets, and evaluate the results. In

subsection 5.4.2, we assess the impact of each of the three factors described in subsection 5.2.2

on graphical learning accuracy. Subsection 5.4.3 compares the results of mFGS-BS to those of

the other algorithms when we intervene on a single variable per interventional data set, and

subsection 5.4.4 when we intervene on five variables per interventional data set.

5.4.1 Assessing the sensitivity of the ordering of interventional datasets

Figure 5.4 The boxplots show the BSF and F1 scores of mFGS-BS from 20 random interventional

data orderings generated from the Alarm network, assuming one intervened variable and 5% latent

variables per dataset, over two sample sizes and two numbers of interventional datasets. The

boxplots report the average values (the symbol x in the box) along with the median (the middle line

of the box), and the maximum and minimum scores (the whiskers of the box). The lower edge of

the boxplot represents the first quartile, while the higher edge of the boxplot represents the third

quartile.

The mFGS-BS algorithm updates the posterior probabilities of directed edges by taking into

consideration a single interventional dataset at a time. In this subsection, we evaluate how this

ordering might influence the graphical performance of the algorithm. This experiment involves

the different combinations of 5 and 10 interventional datasets, and sample sizes 1k and 10k.

The boxplot in Figure 5.4 shows the BSF and F1 scores of mFGS-BS when applied to each

hyperparameter setting involving the Alarm network. Each of the four sample sizes involves

20 randomised orderings of interventional data. The results show that the average BSF score is

0.730.0363 when we have 5 interventional datasets at 1k sample size each, and the variability

Page 55 of 116

decreases to 0.810.0058 for 10 interventional datasets at 10 sample size each. We observe

that the average F1 scores are mostly consistent with the BSF scores. Both the BSF and F1

scores show that there is a minor deviation in the scores obtained from mFGS-BS, depending

on the ordering of interventional datasets, and the standard deviation decreases with the number

and size of the interventional datasets.

5.4.2 Assessing the impact of Factors 1, 2, and 3

We assess the impact of the three factors described in subsection 5.2.2 by modifying Equation

(5.5) to consider one, or combinations of two, factors at a time. As shown in Table 5.6, mFGS-

BS-1 refers to considering Factor 1 only, mFGS-BS-23 considers Factors 2 and 3, etc. The

impact is measured in terms of graphical accuracy, based on the metrics Precision, Recall, F1

and BSF shown in Table 5.6. The experiments are based on the Alarm network and assume 5%

latent variables (one in this case), and sample sizes 1k and 10k.

The results in Table 5.6 depict the average learning performance over 10 experiments,

from considering just one interventional dataset to considering 10 interventional datasets. We

repeat these experiments five times, and each time we randomly choose a new variable to be

targeted for intervention. Considering one factor alone, the results clearly show considerable

drop in performance across almost all cases. Combinations of two factors increase

performance, particularly when Factor 3 is included in the combination. Although Factor 1

appears to be less important than Factors 2 and 3, considering all three factors (i.e., the default

mFGS-BS) does lead to a slightly better overall performance across all combinations.

Metric

n

m
F

G
S

-B
S

m
F

G
S

-B
S

-1

m
F

G
S

-B
S

-2

m
F

G
S

-B
S

-3

m
F

G
S

-B
S

-1
2

m
F

G
S

-B
S

-1
3

m
F

G
S

-B
S

-2
3

Precision 1k 0.79 0.45 0.76 0.58 0.45 0.82 0.78

Recall 0.74 0.71 0.56 0.36 0.71 0.73 0.58

F1 0.77 0.55 0.64 0.44 0.55 0.77 0.66

 BSF 0.74 0.65 0.56 0.36 0.65 0.73 0.58

Precision 10k 0.79 0.64 0.76 0.63 0.63 0.78 0.77

Recall 0.75 0.74 0.69 0.55 0.74 0.74 0.71

F1 0.77 0.68 0.72 0.59 0.68 0.76 0.74

BSF 0.75 0.72 0.69 0.55 0.71 0.74 0.70

Table 5.6 The impact of Factors 1, 2 and 3 (refer to subsection 5.2.2) on graphical performance,

where mFGS-BS considers all of the three factors (default version), mFGS-BS-1 considers Factor 1

only, mFGS-BS-12 considers Factors 1 and 2 only, etc. The results represent average performance

over multiple experiments with synthetic Alarm network data, as described in subsection 5.4.2.

Page 56 of 116

5.4.3 Results based on one variable targeted for intervention per interventional dataset

Figure 5.5 Average performance of the algorithms when applied to synthetic data generated from the

Asia network, assuming one intervened variable and 10% latent variables per dataset, over two sample

sizes.

In this subsection, we assume that each interventional dataset contains a single variable that is

randomly targeted for intervention. Because RFCI-BSC failed to generate a PAG within the

four-hour runtime limit for almost all cases in which the sample size is 10k (presumably

because it generates multiple PAGs through bootstrapping), we restrict its comparisons to

experiments where the sample size is up to 1k. Figure 5.5 shows the results obtained by

applying the algorithms to the Asia network over two sample sizes. The x-axis represents the

total number of interventional datasets considered for learning, and the y-axis represents the

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F1

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10

Ed

ge
s

interventional data sets

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(S
ec

)

interventional data sets

Page 57 of 116

specified scoring metric, runtime, or the number of edges learnt. Each data point in these graphs

represents the average result across five iterations. Each iteration involves new datasets and

new variables targeted for intervention. The results show that mFGS-BS outperforms GFCI

and RFCI-BSC, and to a lesser degree COmbINE which demonstrates erratic performance,

across all four metrics and two sample sizes. Importantly, the results show that both mFGS-BS

and COmbINE continue to improve with the number of interventional datasets. Conversely,

the graphical accuracy of GFCI and RFCI-BSC decreases with the number of interventional

datasets, and this is expected since these two algorithms use pooled data, where the post-

interventional and pre-interventional distributions may conflict. GFCI produces a high number

of learnt edges, and this number continues to increase with the number of datasets and greatly

surpasses the number of true edges. Lastly, COmbINE is found to be considerably faster than

both mFGS-BS and GFCI at 10k sample size.

Figure 5.6 repeats the results for the Sports network, which is also a small network.

However, compared to Asia, the Sports network contains a considerably higher number of free

parameters. Overall, the results show that the algorithms deliver a rather similar performance

when the number of datasets is low, with the gap in performance increasing as the number of

datasets increases. The accuracy of mFGS-BS increases faster with the number of datasets, and

this eventually makes the gap in performance important at higher number of datasets. This is

partly because the accuracy of COmbINE does not improve with the number of interventional

datasets, and there is no obvious explanation for this observation. Interestingly, while

COmbINE is the fastest algorithm on Asia, it is the slowest on Sports. A possible explanation

is the number of free parameters, which is 1,049 in Sports compared to just 18 in Asia, despite

the two networks having just one variable difference. This suggests that COmbINE might not

scale well with dense networks, or with networks that contain multinomial, rather than Boolean

variables, whereas RFCI-BSC fails to return an output and instead returns an out-of-memory

error.

Page 58 of 116

Figure 5.6 Average performance of the algorithms when applied to synthetic data generated from the

Sports network, assuming one intervened variable and 10% latent variables per dataset, over two

sample sizes.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

F1

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(S
ec

)

interventional data sets

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10

Ed

ge
s

interventional data sets

Page 59 of 116

Figure 5.7 Average performance of the algorithms when applied to synthetic data generated from

the Alarm network, assuming one intervened variable and 5% latent variables per dataset, over two

sample sizes.

Figures 5.7 and 5.8 repeat the results for the medium networks Alarm and Property

respectively. While there are some variations in the results, the overall conclusions that can be

derived from these results are consistent with those derived from the smaller networks of Asia

and Sports. A notable exception is that COmbINE performs better than mFGS-BS, in terms of

BSF and recall, in Property. However, this result is restricted to the sample size of 10k, and

this is because COmbINE fails to generate a result within the four-hour runtime limit for sample

size 1k and RFCI-BSC fails to return a result when the experiments rely on more than two

interventional datasets. Because COmbINE does not return a result for any of these larger

networks within the four-hour time limit, we have put these results in Appendix A (see Figures

A1 and A2). Overall, the larger networks show that GFCI outperforms mFGS-BS slightly in

ForMed, perhaps because any differences between the observational and interventional data

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

)

interventional data sets

34

36

38

40

42

44

46

48

50

1 2 3 4 5 6 7 8 9 10

Ed

ge
s

interventional data sets

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10

F1

interventional data sets

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

Page 60 of 116

with just one intervened node is relatively minor in this larger network. mFGS-BS outperforms

GFCI considerably in Pathfinder in terms of graphical accuracy. Pathfinder is the network with

the highest number of free parameters considered in this study, and this complexity might

explain why all algorithms perform relatively poorly on Pathfinder compared to the other

networks.

Figure 5.8 Average performance of the algorithms when applied to synthetic data generated from

the Property network, assuming one intervened variable and 5% latent variables per dataset, over

two sample sizes.

Table 5.7 summarises the average results across all experiments in which a single

variable is targeted for intervention. The results show that mFGS-BS performed best in the

small and medium networks and across all four graphical metrics, followed by COmbINE, then

GFCI and finally RFCI-BSC. In terms of runtime, however, GFCI is found to be the fastest

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10

F1

interventional data sets

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

20

22

24

26

28

30

32

34

36

38

40

1 2 3 4 5 6 7 8 9 10

Ed

ge
s

interventional data sets

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(S
ec

)

interventional data sets

Page 61 of 116

algorithm in most experiments, followed by mFGS-BS, then COmbINE, and finally RFCI-

BSC which could not process any of the larger networks within the runtime limit.
A

lg
o

ri
th

m

𝐧

A
si

a

S
p

o
r
ts

P
r
o

p
e
r
ty

A
la

rm

F
o

r
M

e
d

P
a

th
fi

n
d

er

A
si

a

S
p

o
r
ts

P
r
o

p
e
r
ty

A
la

rm

F
o

r
M

e
d

P
a

th
fi

n
d

er

 Precision Recall

mFGS-BS 1k 0.87 0.72 0.81 0.79 0.90 0.29 0.83 0.38 0.57 0.74 0.46 0.16

 10k 0.85 0.68 0.66 0.79 0.79 0.50 0.84 0.69 0.64 0.75 0.67 0.32

COmbINE 1k 0.74 0.50 T 0.72 T T 0.73 0.48 T 0.60 T T
 10k 0.80 0.63 0.79 0.81 T T 0.81 0.62 0.70 0.72 T T

GFCI 1k 0.54 0.56 0.71 0.77 0.75 0.16 0.57 0.34 0.55 0.70 0.56 0.11

 10k 0.49 0.55 0.74 0.76 0.77 0.12 0.62 0.53 0.66 0.77 0.71 0.11
RFCI-BSC 1k 0.44 M 0.54 0.67 T T 0.42 M 0.44 0.57 T T

 F1 BSF

mFGS-BS 1k 0.85 0.50 0.67 0.77 0.61 0.20 0.83 0.38 0.57 0.74 0.46 0.14

 10k 0.84 0.68 0.65 0.77 0.72 0.39 0.84 0.65 0.63 0.75 0.66 0.31

COmbINE 1k 0.73 0.49 T 0.66 T T 0.70 0.36 T 0.60 T T
 10k 0.80 0.62 0.74 0.76 T T 0.78 0.58 0.70 0.72 T T

GFCI 1k 0.55 0.42 0.62 0.73 0.64 0.13 0.46 0.32 0.55 0.69 0.56 0.09

 10k 0.54 0.54 0.70 0.77 0.73 0.12 0.46 0.52 0.66 0.77 0.70 0.08
RFCI-BSC 1k 0.43 M 0.49 0.62 T T 0.37 M 0.43 0.57 T T

 Learnt Edges Runtime

mFGS-BS 1k 5.68 6.90 22.22 42.18 72.32 124.52 11.26 11.35 28.43 72.21 333.68 1026.19
 10k 5.92 13.34 31.00 43.20 117.86 148.28 47.31 64.44 213.08 434.71 1556.64 2756.12

COmbINE 1k 6.02 12.70 T 37.48 T T 10.14 169.59 T 677.86 T T

 10k 6.14 12.94 28.32 39.90 T T 9.65 76.89 147.34 325.85 T T
GFCI 1k 6.44 7.88 24.80 40.44 105.72 161.52 8.68 6.66 14.19 21.90 39.12 63.03

 10k 8.06 12.46 28.58 46.00 129.90 210.04 38.76 49.39 162.28 219.94 1014.59 548.98

RFCI-BSC 1k 5.96 M 36.88 38.65 T T 5.37 M M 44.59 T T

Table 5.7 Average performance across all experiments in which a single variable is targeted for

intervention per dataset, where M indicates out-of-memory error, and T indicates failure to

complete learning within the four-hour runtime limit. The best performance values are shown in

bold.

5.4.4 Results based on five variables targeted for intervention per interventional dataset

This subsection focuses on the results when the number of intervened variables is increased

from one (subsection 5.4.3) to five, for each interventional data. Because the Asia and Sports

networks contain less than 10 variables, we do not consider them here since it would be

unrealistic to assume that half of the network variables are targeted for intervention. Instead,

we consider the networks of Property, Alarm, ForMed and Pathfinder where the number of

variables ranges from 27 to 109.

Figure 5.9 presents the results based on the Property network and shows that both

mFGS-BS and COmbINE improve their performance relative to the corresponding results in

Figure 5.8 which consider only one intervened variable. Table 5.7, which summarises the

average results obtained when considering five intervened variables, shows that mFGS-BS

performs best across all metrics at 1k sample size, whereas COmbINE performs best across all

metrics at 10k sample size for the Property network. However, as shown in Figure 5.9, the

runtime of COmbINE increases much faster with the number of datasets, and fails to generate

any results within the four-hour runtime limit when the number of datasets is three or more.

RFCI-BSC, on the other hand, returned an out-of-memory error when applied to these datasets.

Therefore, the average results reported in Table 5.8 may underestimate the performance of

Page 62 of 116

COmbINE and RFCI-BSC for sample size 1k, since the average is derived solely by focusing

on a lower number of datasets on which the performance tends to be worse.

Figure 5.9 Average performance of the algorithms when applied to synthetic data generated from

the Property network, assuming five intervened variables and 5% latent variables per dataset, over

two sample sizes. The runtime of COmbINE at 1k sample size is not shown in the charts, because

its runtime is much higher.

Figure 5.10 repeats the results for the Alarm network. As before, COmbINE failed to

produce a result for all experiments within the four-hour time limit. However, the results of

COmbINE this time extend up to six interventional datasets and enable us to draw reasonably

confident conclusions. mFGS-BS performs best overall and across almost all the different

number of datasets and sample sizes. Both mFGS-BS and COmbINE perform better compared

to the case of a single intervened variable, and continue to improve with the number of datasets,

whereas GFCI and RFCI-BSC do not.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

F1

interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(S
ec

)

interventional data sets

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Ed

ge
s

interventional data sets

Page 63 of 116

Figure 5.10 Average performance of the algorithms when applied to synthetic data generated from

the Alarm network, assuming five intervened variables and 5% latent variables per dataset, over

two sample sizes.

For the large and very large networks, COmbINE and RFCI-BSC fail to produce any

results. On the other hand, both mFGS-BS and GFCI are able to generate results for all

experiments across both sample sizes. The experimental results obtained from ForMed and

Pathfinder case studies can be found in Figures A3 and A4 of Appendix A. Note that, in the

case of these larger networks, five intervened variables represent a relatively low number. Still,

as shown in Table 5.8, mFGS-BS performs considerably better than GFCI and RFCI-BSC

across almost all experiments. The only case in which GFCI performs slightly better than

mFGS-BS is for ForMed at 1k sample size, where GFCI averages scores of 0.58 and 0.59 for

BSF and Recall respectively, whereas mFGS-BS averages scores of 0.57 for both metrics. On

the other hand, the cases in which mFGS-BS outperforms GFCI involve much higher

35

40

45

50

55

60

65

70

75

80

1 2 3 4 5 6 7 8 9 10

Ed

ge
s

interventional data sets

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(S
ec

)

interventional data sets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

F1

interventional data sets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

Page 64 of 116

discrepancies in scores. For example, the most extreme case involves the Pathfinder case study

where mFGS-BS averages a Precision score of 0.52 at 10k sample size, whereas GFCI averages

a score of just 0.14.

Algorithms 𝐧

P
r
o

p
e
r
ty

A
la

rm

F
o

r
M

e
d

P
a

th
fi

n
d

er

P
r
o

p
e
r
ty

A
la

rm

F
o

r
M

e
d

P
a

th
fi

n
d

er

 Precision Recall

mFGS-BS 1k 0.88 0.86 0.83 0.31 0.62 0.78 0.57 0.17

 10k 0.78 0.82 0.80 0.52 0.72 0.79 0.69 0.35

COmbINE 1k 0.46 0.81 T T 0.50 0.69 T T
 10k 0.85 0.84 T T 0.77 0.78 T T

GFCI 1k 0.65 0.62 0.74 0.17 0.50 0.75 0.59 0.13

 10k 0.59 0.55 0.69 0.14 0.59 0.77 0.67 0.13

RFCI-BSC 1k 0.55 0.41 T T 0.27 0.44 T T

 F1 BSF

mFGS-BS 1k 0.74 0.81 0.68 0.22 0.62 0.77 0.57 0.15
 10k 0.75 0.81 0.74 0.42 0.71 0.79 0.69 0.34

COmbINE 1k 0.48 0.74 T T 0.47 0.69 T T

 10k 0.81 0.81 T T 0.77 0.78 T T
GFCI 1k 0.57 0.68 0.65 0.14 0.50 0.72 0.58 0.10

 10k 0.59 0.64 0.68 0.13 0.57 0.73 0.66 0.10

RFCI-BSC 1k 0.36 0.42 T T 0.27 0.42 T T

Learnt Edges Runtime

mFGS-BS 1k 22.22 40.66 95.54 126.96 37.69 77.98 413.96 762.02
 10k 29.32 43.44 121.42 152.32 195.36 417.33 2,411.11 2,737.49

COmbINE 1k 35.30 38.57 T T 5,420.72 1,108.76 T T

 10k 29.04 41.57 T T 368.40 845.34 T T
GFCI 1k 24.70 55.82 111.40 171.36 12.91 34.80 55.19 66.45

 10k 32.02 63.60 136.80 220.00 160.72 199.41 478.82 546.57

RFCI-BSC 1k 15.88 49.86 T T M 99.8 T T

Table 5.8 Average performance across all experiments in which five variables are targeted for

intervention per dataset, where M indicates out-of-memory error, and T indicates failure to

complete learning within the four-hour runtime limit. The best performance values are shown in

bold.

The main conclusions from the results are:

• mFGS-BS is found to be sensitive to the ordering of interventional datasets. However,

the sensitivity is relatively small in terms of graphical accuracy, and decreases with

the number and the size of interventional datasets.

• Employing all three factors to determine edge direction produces the most accurate

graphs (refer to subsection 5.4.2). Factor 1, which determines the probability of

directed edges given the output of FGS, and Factor 2 which determines the probability

of directed edges based on the ratio of Sepsets determining v-structure are found to

have a stronger impact (in terms of increasing the F1 and BSF scores) than Factor 3

which relies on changes in objective score between observational and interventional

data.

• mFGS-BS is found to be more accurate than the other algorithms when we simulate

just one intervened variable. Specifically, mFGS-BS generates the highest F1 and

BSF scores for the Asia, Sports and Alarm networks in most of the experiments (refer

to Table 5.7). COmbINE and RFCI-BSC often fail to generate a result within the four-

hour runtime limit when applied to the larger networks. The average BSF and F1

scores of mFGS-BS are approximately 45% and 38% higher compared to GFCI

Page 65 of 116

across all networks respectively, while the average BSF and F1 scores of COmbINE

are 16% and 15% higher compared to GFCI over all experiments in which COmbINE

generates a result respectively.

• The performance of both mFGS-BS and COmbINE continues to improve with the

number of interventional datasets, while the performance of GFCI and RFCI-BSC

does not. This highlights the advantage of algorithms that consider additional datasets

independently. Moreover, the number of edges learnt by mFGS-BS tends to be lower

compared to the number of edges present in the true MAGs, for the medium, large

and very large networks. Note that while GFCI generates more edges when the

number of interventional datasets increase, its overall performance in terms of BSF

and F1 scores does not increase.

• The overall performance of mFGS-BS and COmbINE continues to improve with the

number of variables targeted for intervention as expected, since the higher number of

interventions can be viewed as providing additional causal information to the model.

The average BSF scores increase by approximately 9% and 11% when considering

five, instead of one, intervened variables per interventional data for the mFGS-BS

and COmbINE algorithms respectively.

• The runtime of mFGS-BS, relative to the other three algorithms, appears to be worst

in small and medium networks. However, the runtime of mFGS-BS, RFCI-BSC and

GFCI scale linearly with the number of interventional datasets. In contrast, the

empirical results suggest that COmbINE does not scale well with additional datasets.

One explanation might be because COmbINE uses the MINISAT application to solve

SAT instances encoded from results of CI tests, and the time to solve these SAT

instances increases exponentially with the number of variables. A rather unexpected

finding is that the computational time of COmbINE is higher when the sample size is

1k compared to 10k. This might be because the results of CI tests learnt from low

sample sizes contain more conflicts compared to those obtained when the sample size

of the input data is higher. Lastly, GFCI is found to be the fastest algorithm in almost

all of the experiments, as expected, since it does not consider each input dataset

independently.

5.5 Conclusions

This chapter describes the hybrid mFGS-BS algorithm which produces a PAG by learning the

probabilities of each directed edge from one observational dataset and one or more

interventional datasets in a causally insufficient setting. The posterior probabilities learnt from

one dataset are considered as candidate objective priors for learning from the next dataset.

Three other mechanisms contribute to the objective priors used with each dataset: colliders

identified from the observational data; the CPDAGs produced by running the FGS algorithm

on each dataset; and a score-based approach relating to intervention targets. Pairs of nodes

which have a directed edge in each direction with a probability above a given threshold are

treated as having a bidirected edge between them, so that the algorithm produces a PAG.

The results of mFGS-BS were compared to those obtained by COmbINE, which also

enables learning from multiple observational and interventional datasets. We have also

compared the results against the RFCI-BSC and GFCI algorithms with pooled data, which

serves as the baseline performance not accounting for variables targeted for intervention. The

Page 66 of 116

empirical evaluation was based on six case studies of different complexity, with varying

numbers of intervened variables, interventional datasets, and sample sizes. Overall, the results

show that mFGS-BS considerably outperforms the baseline algorithms and outperforms

COmbINE in most of the experiments, in terms of graphical accuracy. RFCI-BSC and GFCI

consider a single dataset of pooled data rather than each input dataset independently. GFCI was

the faster algorithm because it performs fewer CI tests by design, whereas RFCI-BSC tends to

fail to produce a result when applied to larger networks and sample sizes. Lastly, mFGS-BS

offers considerable improvements in learning efficiency compared to COmbINE, which failed

to produce any results, within the four-hour runtime limit, for the larger networks.

A limitation of mFGS-BS is that it is sensitive to the ordering of the data sets and

assumes equal sample size across all input data sets. This is, of course, an unrealistic

assumption in practice. Future research directions could focus on adjusting mFGS-BS such that

the local BDeu scores can be normalised to enable learning from multiple datasets with varying

sample sizes, or by employing a resampling technique to generate multiple datasets with an

equal sample size. Other future research directions could focus on enabling learning from

interventional datasets that contain imperfect and uncertain interventions (refer to subsection

2.1.2), in addition to perfect interventions.

Page 67 of 116

Chapter 6

Discovery and density estimation of latent

confounders with evidence lower bound

Discovering and parameterising latent confounders represent important and challenging

problems in causal structure learning and density estimation respectively. In this chapter, we

focus on both discovering and learning the distribution of latent confounders. This task requires

solutions that come from different areas of statistics and machine learning. We combine

elements of Variational Bayesian methods, expectation-maximisation, hill-climbing search,

and structure learning under the assumption of causal insufficiency. We propose two

algorithms; Incremental Latent Confounder search with VBEM (ILC-V) that maximises

model-selection accuracy, and Hill-Climbing Latent Confounder search with VBEM (HCLC-

V) that improves computational efficiency in exchange for minor reductions in model-selection

accuracy. The former algorithm maximises accuracy and is suitable for small networks,

whereas the latter algorithm balances accuracy with computational complexity and so is

suitable for moderate size networks.

This chapter is organised as follows: subsection 6.1 provides the preliminary

information and related works relevant to this chapter, subsection 6.2 describes the two

proposed algorithms, subsection 6.3 describes the evaluation setup, subsection 6.3 presents the

results, and we provide conclusions in subsection 6.4.

6.1 Preliminaries

6.1.1 Conjugate-exponential family models

For density estimation of latent confounders, we consider conjugate-exponential family models

for discrete data. We assume a Dirichlet prior that serves as a conjugate prior of a multinomial

likelihood (Bishop, 2006), whose posterior distribution is also Dirichlet. We use the empirical

Bayes method by Gelman et al. (2003) to determine the prior parameters from data and assume

a Dirichlet prior Dir(θi|aij) where aij is a hyperparameter set to ‘1’ for uniform distribution,

and θi denotes parameters ∑ θijj = 1 where j represents the number of states. Since we perform

structure learning and density estimation under causal insufficiency, some variables will not be

observed in the data, leading to an incomplete-data marginal likelihood p(D|G) of a DAG G.

Page 68 of 116

6.1.2 Variational Bayesian Expectation-Maximization (VBEM)

Marginalising out the parameters over latent confounders Li in p(D| G) makes the task of

learning prohibitively expensive and intractable. We address this issue by approximating

distributions of latent variables using the computationally efficient Variational Bayesian

Expectation-Maximization (VBEM) algorithm (Beal and Ghahramani, 2002) that enables

tractable solutions. The VBEM algorithm combines elements of variational inference (Jordan

et al., 1999) and Expectation-Maximisation (EM; Friedman, 1988). It uses an alternated

optimisation technique to find a surrogate distribution q(L, θ) from any exponential family Q

(e.g., Gaussian, Dirichlet, multinomial) and optimises towards the true distribution

p(L, θ| D, G). VBEM offers an approximate solution that guarantees to monotonically increase

the objective score, and scales better with large data compared to Markov Chain Monte Carlo

(MCMC) (Hastings, 1970).

The objective of VBEM is to minimise the discrepancy between two distributions

q(L, θ) and p(L, θ|D, G). It uses the reverse Kullback-Leiber (KL) divergence for this task,

which is the standard choice for variational inference, defined as follows:

KL(q ∥ p) = ∬ dLdθq(L, θ) log
q(L, θ)

p(L, θ|D, G)

 = 𝔼q [log
q(L, θ)

p(L, θ|D, G)
]

 = 𝔼q[log p(D|G)] − {𝔼q[log p(L, θ, D|G)] − 𝔼q[log q(L, θ)]} (6.1)

Because the incomplete-data marginal likelihood p(D|G) is intractable to compute, we consider

p(D|G) to be a constant. The aim is to minimise KL(q ∥ p), which is equivalent to maximising

the Evidence Lower Bound (ELBO). Therefore, we can minimise KL(q ∥ p) without having to

know the true distribution p(L, θ|D, G) and p(D|G). We can describe ELBO as the objective

function:

ELBO = 𝔼q[log p(L, θ, D|G)] − 𝔼q[log q(L, θ)] (6.2)

where q(L, θ) is assumed to be the factorisation of the free distributions qL(L) and qθ(θ). We

maximise ELBO using a function ℱ of both qL(L) and qθ(θ) as follows (Beal and Ghahramani,

2006):

 ELBO = ℱ(qL(L), qθ(θ))

= ∬ dLdθqθ(θ)qL(L)[logp(L, θ, D|G) − log(qL(L)qθ(θ))] (6.3)

To maximise ℱ, VBEM calculates qL(L) and qθ(θ) while holding the other fixed at iteration

t. The two steps for each iteration t are:

a) VB-E step: estimates the posterior distribution over latent confounders qL
t+1(L) =

∏ qLi

t+1(Li)
|L|
i=1 given qθ

t (θ) from the last iteration by taking the functional derivatives

in Equation (6.3) with respect to qLi
(Li), where |L| is the number of latent confounders.

Page 69 of 116

b) VB-M step: estimates qθ
t+1(θ) given the posterior distribution qL

t+1(L) taken from the

VB-E step by taking the functional derivatives in Equation (6.3) with respect to qθ(θ).

VBEM iterates over the VB-E and VB-M steps until the difference in ELBO becomes

smaller than a given threshold, indicating convergence. Since ELBO is not a score-equivalent

function, it generates different values for graphs that belong to the same Markov equivalence

class. A revised version called p-ELBO was proposed by Rodriguez-Sanchez et al. (2020) that

includes a penalty term to avoid the |Li|! equivalent ways of assigning sets of parameters that

result in the same distribution (non-identifiability), and it is defined as p-ELBO = ELBO −

∑ log |Li|!
|L|
i=1 , where |Li| is the number of states in Li.

6.1.3 Related works

ELBO was used as the objective function of a neural network in Variational Autoencoder

(VAE) by Kingma and Welling (2013). VAE for heterogeneous Mixed type data (VAEM) was

used by Ma et al. (2020) for density estimation of latent variables in deep generative models.

VAE assumes each observed variable has a latent parent, whereas VAEM is an extension of

VAE that assumes an additional latent confounder that serves as a parent of all latent variables.

The ELBO score was extended to p-ELBO by Rodriguez-Sanchez et al. (2020, 2022),

which was used as the objective score in Constrained Incremental Learner (CIL) and Greedy

Latent Structure Learner (GLSL) algorithms. CIL learns a tree-structured BN that assumes any

two nodes are connected by one directed path only, whereas GLSL learns a DAG BN. Both

algorithms start from an empty graph and perform various search operations including a) add

or remove latent variables as parents of observed variables, b) increase the number of states of

latent variables, and c) perform edge operations such as add, remove, or reverse edges, aiming

to maximise p-ELBO. Searching for latent confounders often means iterating over all pairs of

observed variables, which is computationally expensive. Instead, these algorithms offer a

strategy that focuses on a set of pairs of variables that provide the highest MI. Empirical results

show that GLSL outperforms CIL, but at the expense of high computational complexity.

6.2 The two proposed algorithms for learning of latent

confounders

This subsection describes the two learning strategies we have implemented for latent

confounder discovery and density estimation. Subsection 6.2.1 describes how we use existing

algorithms to draw a PAG output, which in turn is given as an input to the two algorithms we

propose, which in turn use the input PAG to search for different MAGs and DAGs with

parameterised latent confounders. We describe the two algorithms in subsections 6.2.2 and

6.2.3 respectively. Both algorithms assume the input data are discrete. Consistent with previous

studies that assume causal insufficiency, we assume that the latent confounders have no parents

and that each latent confounder must have at least two children. We further assume a Dirichlet

prior qθ(θ) over all parameters as described in subsection 6.1.1, and we use p-ELBO as the

objective function which is computed using the VBEM algorithm as described in subsection

6.1.2.

Page 70 of 116

6.2.1 Searching for MAGs and DAGs given a PAG input

The FCI algorithm and some of its variants discussed in subsections 2.2.1.3 and 2.2.3 represent

the state-of-the-art in recovering ancestral graphs under the assumption of causal insufficiency.

Any of these algorithms can be used to draw PAGs that can be given as input to the two

proposed algorithms. A set of Markov equivalent MAGs can be then derived from that PAG.

However, because the number of possible latent confounders that can be explored for a given

MAG is generally intractable, we shall assume the minimum number of latent confounders

satisfying the m-separation criteria.

Assumption 1: The optimal number of latent confounders is the minimum number of latent

confounders that retain the CIs of a given MAG.

Figure 6.1 presents a simple PAG that contains two bidirected edges, along with a MAG

and three DAGs that satisfy the CI statements of the PAG. Converting a MAG into possible

DAGs implies that each DAG retains the CIs of that MAG by reducing the criteria of m-

separation to d-separation. In this example, the DAG that contains the minimum number of

latent confounders, with reference to the MAG in Figure 6.1b, is shown in Figure 6.1c. The

DAGs in Figures 6.1d and 6.1e contain a higher number of latent confounders than the

minimum required to satisfy all the CIs of the given MAG. Because the algorithms we describe

in subsections 6.2.2 and 6.2.3 rely on Assumption 1, they will never explore DAGs that contain

a higher number of latent confounders than the minimum required, and would not visit DAGs

such as those shown in Figures 6.1d and 6.1e.

Figure 6.1 A PAG (a) along with one of its MAGs (b), and three DAGs (c, d, e) with different

latent confounders (grey nodes) derived from the given MAG, where A ⊥/ B, A ⊥/ C and B ⊥/ C.

6.2.2 Incremental Latent Confounder search with VBEM (ILC-V)

The first algorithm, which we call ILC-V, is described in Algorithm 3. It takes a PAG input

(Step 1) and uses the ZML algorithm available in R (Malinsky and Spirtes, 2017) to enumerate

all Markov equivalent MAGs of that PAG (Step 3). It then constructs DAGs for each MAG,

starting from the MAGs that contain the minimum number of bidirected edges (Step 4). Each

latent confounder modelled at Step 4 is assumed to be binary, and the optimal DAG is the one

that maximises p-ELBO using the VBEM algorithm made available as a Java library by

Rodriguez-Sanchez (2021).

At Step 5, Algorithm 3 calls Algorithm 3b to determine the optimal number of states

for each latent confounder. This is achieved by iterating over each latent confounder present in

the highest scoring DAG determined at Step 4, and greedily increasing the number of states by

one at a time, for each latent confounder. Algorithm 3b returns a DAG that contains the optimal

e) a) d) c) b)

Page 71 of 116

number of states for each latent confounder, or the maximum number of states S if the objective

score continues to increase with the number of states. To improve computational complexity,

the objective score p-ELBO is applied to a subgraph GS that contains the auxiliary latent

confounders and their children, since the conditional distributions of the remaining nodes

remain unchanged in the BN. The final Step 6 generates the final DAG BN and revises the p-

ELBO score.

Algorithm 3: Incremental Latent Confounder search with VBEM (ILC-V)

Input: A structure learning algorithm that generates PAG, max Sepset size k, significant threshold ⍺, observational data

 𝐷, converge threshold c, max number of bidirected edges m, a runtime limit t.
Output: A DAG BN that contains latent confounders as observed variables, along with the conditional distributions.

Step 1 PAG ← Run a structure learning algorithm with ⍺ and k given 𝐷

Step 2 𝑆 ← max number of states in 𝐷

current number of bidirected edges ← count the total number of bidirected edges in PAG

score_improve = TRUE

best_pELBO = - Infinity

Step 3 List of MAGs ℒM ← Enumerate all Markov equivalent MAGs from PAG

Step 4 While score_improve = TRUE or current number of bidirected edges ≤ m or elapsed time ≤ t
 best_local_pELBO = - Infinity

 For each MAG in ℒM where its #bidirected edges = current number of bidirected edges

 Construct new DAG G that contains all edges → present in MAG and generate boolean

 auxiliary latent confounders for edges ↔ present in MAG as per Assumption 1

 current_pELBO ← run VBEM until p-ELBO converges with c given 𝐷 and G

 If current_pELBO > best_pELBO

 best_pELBO = current_pELBO

 best_DAG = G

 If current_pELBO > best_local_pELBO

 best_local_pELBO = current_pELBO

 current number of bidirected edges++

 If best_pELBO > best_local_pELBO

 score_improve = FALSE

Step 5 If 𝑆 > 2

 get best_DAG with (potentially) multinomial latent confounders ← run Algorithm 3b given best_DAG,

 𝐷, c and S
Step 6 get best_pELBO and return Output ← run VBEM until p-ELBO converges with c given 𝐷 and best_DAG

Algorithm 3b: Greedy search for the optimal number of states for each latent confounder

Input: A DAG G with auxiliary boolean latent confounders, max states S for each latent confounder, observational data

 𝐷, converge threshold c.

Output: A DAG G with auxiliary (potentially) multinomial latent confounders.

Step 1 score_improve = TRUE

best_pELBO = - Infinity

Step 2 For each latent confounder 𝑖 in DAG G

 While score_improve = TRUE or number of states ≤ S

 current_pELBO ← run VBEM until p-ELBO converges with c given D and subgraph GS
 If current_pELBO > best_pELBO

 best_pELBO = current_pELBO

 Else

 score_improve = FALSE

 number of states of latent confounder 𝑖 --
 number of states of latent confounder 𝑖 ++

 Update the number of states of latent confounder 𝑖 in GS and G

Step 3 Return G with the optimal number of states for each latent confounder

Page 72 of 116

6.2.3 Hill-Climbing Latent Confounder search with VBEM (HCLC-V)

Algorithm 4: Hill-Climbing Latent Confounder search with VBEM (HCLC-V)

Input: A structure learning algorithm that generates PAG, max Sepset size k, significant threshold ⍺, observational data 𝐷,

 converge threshold c, max number of bidirected edges m, a runtime limit t.
Output: A DAG BN that contains latent confounders as observed variables, along with the conditional distributions.

Step 1 Same as in Algorithm 3

Step 2 Same as in Algorithm 3

Step 3 List of best_latent_confounder ℒL = ∅

Step 4 While score_improve = TRUE or current number of bidirected edges ≤ m or elapsed time ≤ t
 best_local_pELBO = - Infinity

 While all pairs A o—o B in PAG are not orientated

 Construct new DAG G by changing all o→ present in PAG to → and generate boolean

 auxiliary latent confounders for edges ↔ present in PAG as per Assumption 1

 Orientate A → B or A ← B in G from all pairs A o—o B with the maximum p-ELBO using VBEM

 For each pair A o—o B or A o→ B in PAG which is not in ℒL
 Construct new MAG that contains all edges → present in 𝐺 and add the edge A ↔ B and others

 C ↔ D given ℒL
 Construct new DAG G′ that contains all edges → present in MAG and generate

 boolean auxiliary latent confounders for edges ↔ present in MAG as per Assumption 1

 current_pELBO ← run VBEM until p-ELBO converges with c given D and G′

 If current_pELBO > best_pELBO

 best_pELBO = current_pELBO

 best_DAG = G′

 Add the auxiliary latent confounders to ℒL

 If current_pELBO > best_local_pELBO

 best_local_pELBO = current_pELBO

 current number of bidirected edges++

 If best_pELBO > best_local_pELBO

 score_improve = FALSE

Step 5 Same as in Algorithm 3

Step 6 Same as in Algorithm 3

Because ILC-V (Algorithm 3) is computationally expensive, as we later show in

subsection 6.4, one might be interested in a computationally efficient version that minimally

decreases the objective score of Algorithm 3. A problem with ILC-V is that when the input

PAG contains a high number of invariant edges o—o or o→, enumerating all possible MAGs

can quickly cause memory allocation problems. To address this, we introduce a modified

version of ILC-V, which we call HCLC-V, that skips Markov equivalence checks. This means

that HCLC-V no longer needs to check the CIs for each DAG visited, and this saves enormous

computational time. Instead, HCLC-V iterates over possible edge orientations as described in

Step 4 of Algorithm 4, and continues to follow the incremental search strategy of ILC-V in

terms of the number of bidirected edges. Moreover, a list with the best-found latent

confounders from one iteration is carried forward to the next iteration (see Steps 3 and 4 in

Algorithm 4). Lastly, since HCLC-V relies on hill-climbing search, it stops exploration when

a local maximum is reached.

6.3 Evaluation

The experimental setup involves four real-world BNs taken from the Bayesys repository

(Constantinou et al., 2020), described in Table 6.1. We generated synthetic data of 1k and 10k

samples using the bnlearn R package (Scutari, 2019). One dataset is created for each latent

confounder listed in Table 6.1. This process was applied to both sample sizes, and led to a total

of 22 datasets.

Page 73 of 116

BN Variables Edges Max in-degree
Free

parameters
Potential latent confounders

Asia 8 8 2 18 Smoke

Sports 9 15 2 1,049 RDlevel

Property 27 31 3 3,056 propertyPurchaseValue, borrowing,

otherPropertyExpenses

Alarm 37 46 4 509 INTUBATION, HYPOVOLEMIA, LVFAILURE,

ERRCAUTER, PULMEMBOLUS, KINKEDTUBE

Table 6.1 The properties of the four real-world networks considered for evaluation.

We have used the constraint-based FCI and the hybrid GFCI algorithms described in

subsections 2.2.1.3 and 2.2.3, to generate PAGs to be provided as input to ILC-V and HCLC-

V. This produced four different result-combinations, which we refer to as ILC-VFCI, HCLC-

VFCI, ILC-VGFCI and HCLC-VGFCI in subsection 6.4. The GFCI algorithm was tested using the

Tetrad-based rcausal R package (Wongchokprasitti, 2019), and the FCI algorithm was tested

using the pcalg R package (Kalisch et al., 2012). The ILC-V and HCLC-V implementations

are available online at https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM. Regarding the

hyperparameters of FCI and GFCI, we set the G2 significance threshold to default ⍺ = 0.05

and the Sepset to k = −1 for unlimited size of conditioning set. For ILC-V and HCLC-V, we

set the maximum number of bidirected edges to m = 4 to enable us to carry out experiments

within reasonable runtimes, and the convergence threshold of VBEM to c = 0.01.

We assess the accuracy of ILC-V and HCLC-V in terms of the objective score p-ELBO

and learning runtime, with reference to those obtained by the GLSL and CIL algorithms

discussed in subsection 6.1.3. We consider the p-ELBO score by Rodriguez-Sanchez et al.

(2020), which is an improved version of ELBO in tackling identifiability (Bishop, 2016) in

discrete variables. Note that maximising ELBO can be viewed as being consistent with

minimising KL-divergence between the true and surrogated distributions of latent confounders.

However, as pointed out by Wallach et al. (2009), a possible issue with ELBO is that it may

not accurately estimate the true distributions in latent variable models which, in turn, implies

that p-ELBO is not perfect. We assume p-ELBO is a better alternative to traditional LL

measures previously used to evaluate density estimation (Rodriguez-Sanchez et al., 2022),

since LL is known to be prone to overfitting.

 GLSL and CIL are tested using the Java library by Rodriguez-Sanchez (2021) with

mi = 10 regarding the number of pairs of variables to be considered with the highest MI, and

with maxNumberParents_latent = −1 for GLSL to assume no parents for density estimation

of latent confounders to enable us to carry out experiments within reasonable runtimes. We

impose a runtime limit of 12 hours to each experiment and set hyperparameter t to 12 hours for

both ILC-V and HCLC-V, to ensure that they return a result within the 12-hour runtime limit.

Experiments that do not complete learning within the specified runtime limit are denoted as

“Timeout”. All experiments are based on 8GB of RAM. The experiments involving the Asia,

Sports and Property networks were carried out on the Intel Core i5-8250 CPU at 1.80 GHz,

whereas the experiments involving the Alarm network on the M1 CPU at 3.2 GHz.

6.4 Results

6.4.1 The difference in search space explored by ILC-V and HCLC-V

https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM

Page 74 of 116

This subsection investigates the difference in search space explored between the two proposed

algorithms, ILC-V and HCLC-V. The comparison assumes that the PAG inputs are produced

by GFCI, and relies on Step 4 (which represents the main difference between the two

algorithms) where the latent confounders are assumed to be binary.

Figure 6.2 The p-ELBO scores produced at Step 4 by the two algorithms, where ● indicates the

highest score achieved by the specified algorithm. The results in a) and b) are based on the Property

network with variable ‘otherPropertyExpenses’ being the latent confounder and in c) and d) are based

on the Alarm network with variable ‘INTUBATION’ being the latent confounder, and assume the

input PAG is produced by GFCI.

Figure 6.2 presents the results based on the Property network (27 nodes) for both sample

sizes 1k and 10k. Figure 6.2a shows that ILC-VGFCI produces a slightly higher p-ELBO score

than HCLC-VGFCI, but that ILC-VGFCI achieved that by exploring considerably more search

space than HCLC-VGFCI; i.e., visited a total of 170 DAGs versus 20 DAGs. The charts depict

different colours to illustrate how the two algorithms differ at visiting DAGs derived from

MAGs that contain increasing numbers of bidirected edges. Specifically, Figure 6.2a shows

that ILC-VGFCI visited all DAGs derived from MAGs containing up to three bidirected edges,

whereas HCLC-VGFCI ended at a local maximum while visiting DAGs derived from MAGs

containing up to two bidirected edges.

Figure 6.2b, on the other hand, shows that the higher sample size helped ILC-VGFCI to

both find a higher objective score and complete learning faster than HCLC-VGFCI. This is

because ILC-VGFCI found no DAG derived from MAGs containing two bidirected edges to

-12100

-12000

-11900

-11800

-11700

-11600

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

p
-E

LB
O

DAGs

-111000

-110000

-109000

-108000

-107000

-106000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

p
-E

LB
O

DAGs

-26500

-26100

-25700

-25300

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

p
-E

LB
O

DAGs

-248000

-246000

-244000

-242000

-240000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

p
-E

LB
O

DAGs

1

2

3

1

2

3

4

HCLC-VGFCI

ILC-VGFC

#current bidirected edges

a) The Property network with sample size 1k b) The Property network with sample size 10k

c) The Alarm network with sample size 1k d) The Alarm network with sample size 10k

Page 75 of 116

have a higher score than the highest scoring DAG derived from MAGs containing one

bidirected edge, which caused ILC-VGFCI to skip MAGs containing three bidirected edges. On

the other hand, HCLC-VGFCI ended up visiting a higher number of DAGs, but note this does

not necessarily imply that the algorithm was slower; i.e., recall that HCLC-V skips checking

for Markov equivalence between graphs. Figure 6.2c and 6.2d repeat the analysis of Figure

6.2a and 6.2b with application to the Alarm network (37 nodes), and show that the results are

consistent with those produced for the Property network. The only difference here is that, at

10k sample size, the p-ELBO score of HCLC-VGFCI matched that of the generally slower ILC-

VGFCI.

6.4.2 Performance of ILC-V and HCLC-V relative to other algorithms

We compare the results produced by ILC-V and HCLC-V to those produced by the CIL and

GLSL algorithms described in subsection 6.1.3 which, to the best of our knowledge, are the

two algorithms that are most relevant to this work, which involves both the discovery and

density estimation of latent confounders.

BN (Latent confounder)

T
r
u

e
D

A
G

IL
C

-V
F

C
I

H
C

L
C

-V
F

C
I

IL
C

-V
G

F
C

I

H
C

L
C

-V
G

F
C

I

C
IL

G
L

S
L

Asia (smoke)

p-ELBO (sample size 1k)

-2,258 -1,845 -1,845 -1,807 -1,807 -1,796 -1,679

Sports (Rdlevel) -11,742 -9,296 -9,417 -9,296 -9,417 -10,228 -10,228

Property (propertyPurchaseValue) -25,254 -34,496 -34,532 -24,565 -24,596 -29,040 -28,076

Property (borrowing) -25,254 -35,042 -35,080 Memory -24,044 -28,518 -27,534

Property (otherPropertyExpenses) -25,254 -35,929 -35,979 -24,079 -24,079 -29,382 -28,363

Alarm (INTUBATION) -11,220 Memory -14,802 -10,966 -11,068 -13,777 -11,581

Alarm (HYPOVOLEMIA) -11,220 Memory -14,660 -10,908 -11,010 -13,721 -11,117

Alarm (LVFAILURE) -11,220 Memory -14,821 -11,074 -11,075 -13,989 -11,307

Alarm (ERRCAUTER) -11,220 Memory -14,678 -11,024 -11,017 -13,693 -11,254

Alarm (PULMEMBOLUS) -11,220 Memory -15,081 -11,053 -11,055 -13,994 -11,294

Alarm (KINKEDTUBE) -11,220 Memory -14,948 -10,889 -10,963 -13,896 -11,203

Average rank 5.1 5.0 1.8 1.9 3.8 2.9
 p-ELBO (sample size 10k)

Asia (smoke) -22,508 -17,860 -17,860 -17,601 -17,601 -17,039 -16,135

Sports (Rdlevel) -108,800 -92,014 -92,864 -92,014 -92,864 -99,741 -99,741

Property (propertyPurchaseValue) -235,622 -285,084 -285,084 -238,090 -238,267 -283,142 -275,212

Property (borrowing) -235,622 -277,035 -277,035 -239,289 -239,520 -277,440 -269,719

Property (otherPropertyExpenses) -235,622 -284,024 -284,038 -237,178 -236,998 -285,975 -277,949

Alarm (INTUBATION) -105,739 -119,906 -119,845 -104,919 -105,096 -133,084 Timeout

Alarm (HYPOVOLEMIA) -105,739 Memory -126,194 -101,997 -102,960 -131,819 Timeout

Alarm (LVFAILURE) -105,739 Memory -129,574 -103,761 -103,720 -134,606 Timeout

Alarm (ERRCAUTER) -105,739 Memory -121,536 -103,492 -103,530 -132,280 Timeout

Alarm (PULMEMBOLUS) -105,739 Memory -126,811 -103,652 -103,624 -135,116 Timeout

Alarm (KINKEDTUBE) -105,739 Memory -125,698 -108,480 -102,803 -134,869 Timeout

Average rank 4.4 3.7 1.5 1.8 4.4 4.2

Table 6.2 The p-ELBO scores for each algorithm and dataset combination and across both sample

sizes, where Memory indicates out-of-memory error in enumerating the possible MAGs, and Timeout

indicates failure to complete learning within the 12-hour time limit. The best scores are indicated in

bold.

Table 6.2 presents the p-ELBO score for each algorithm and dataset combination, plus

the p-ELBO scores of the true DAGs, for both sample sizes 1k and 10k. Supplementary

Page 76 of 116

inference-based scores and runtimes can be found in Tables B1 and B2, in Appendix B. The

average ranks show that ILC-VGFCI performs best in terms of maximising the p-ELBO score

across both sample sizes, followed by HCLC-VGFCI. The CIL algorithm is found to be the worst

performing algorithm at sample size 10k, whereas GLSL mostly outperforms both ILC-VFCI

and HCLC-VFCI, but not ILC-VGFCI and HCLC-VGFCI. This means that ILC-V and HCLC-V

benefit from the PAG input of GFCI, and suggests that the hybrid learning GFCI might be

better than FCI at recovering PAGs; an observation consistent with previous studies

(Constantinou et al., 2021). Note that while the true DAG will not always have the highest p-

ELBO score, the highest scores produced by the algorithms tend to be very close to those of

the true DAG, and this helps to validate the results.

While ILC performs best in general, it does not scale well with the size of the network.

As shown in Table 6.2, ILC-V returns an out-of-memory error (for 8GB RAM) for most

experiments with Alarm, specifically when paired with FCI, caused by the large number of

possible MAGs derived from the input PAG. The cumulative runtime across all 10k datasets

was 14, 34, 46 and 88 hours for CIL, HCLC-VGFCI, ILC-VGFCI and GLSL respectively, with a

similar trend observed across 1k sample sizes. On overage, HCLC-V is found to be 1.4 times

faster than ILC-V, which in turn is found to be 1.6 times slower than CIL and 4.5 times faster

than GLSL which failed to complete the Alarm network experiments at 10k sample size;

suggesting that its computational efficiency might not scale well with sample size.

6.5 Conclusions

This chapter investigates two novel algorithms that can be used for both discovery and density

estimation of latent confounders in BN structure learning from discrete observational data. The

first algorithm (ILC-V) aims to maximise model-selection accuracy by exploring sets of

Markov equivalent MAGs, starting from the set of MAGs that contain the lowest number of

bidirected edges and - while the objective score increases with each set - moving to sets of

MAGs with increasing numbers of bidirected edges. The second algorithm (HCLC-V) aims to

balance accuracy relative to computational efficiency by employing hill-climbing over the

MAG space, enabling application to larger networks.

Both algorithms require a PAG to be provided as an input, which means that the

proposed algorithms need to be paired with a structure learning algorithm that recovers

ancestral graphs. Because the input PAG will typically indicate multiple possible latent

confounders, the ILC-V and HCLC-V algorithms use p-ELBO as the objective function to

determine the number as well as the position of the latent confounders, thereby contributing to

the discovery process, in addition to density estimation, of latent confounders.

The two proposed algorithms are evaluated relative to two recent and relevant

implementations that also optimise for p-ELBO. The empirical results show meaningful

improvements in maximising the objective score, and in some ways in reducing time

complexity; although the latter remains a major issue. Two important limitations are that a)

both algorithms rely on a PAG input to be provided by some other structure learning algorithm,

and b) the results are based on experiments that assume a single latent confounder only, which

was necessary to ensure that most experiments complete within the 12-hour runtime limit.

Page 77 of 116

Chapter 7

Tuning structure learning algorithms with out-

of-sample and resampling strategies

One of the challenges practitioners face when applying structure learning algorithms to their

data involves determining a set of hyperparameters; otherwise, a set of hyperparameter defaults

is assumed. The optimal hyperparameter configuration often depends on multiple factors,

including the size and density of the usually unknown underlying true graph, the sample size

of the input data, and the structure learning algorithm. This chapter describes a novel

hyperparameter tuning method, called the Out-of-sample Tuning for Structure Learning

(OTSL), that employs out-of-sample and resampling strategies to estimate the optimal

hyperparameter configuration for structure learning, given the input data set and structure

learning algorithm.

This chapter is organised as follows: subsection 7.1 provides preliminary information
regarding hyperparameter tuning for structure learning algorithms, subsection 7.2 describes the

proposed algorithm, subsection 7.3 describes the evaluation setup, subsection 7.4 presents the

results, and we provide conclusions in subsection 7.5.

7.1 Preliminaries

Subsections 2.2.1.1 and 2.2.2.1 provide background information on different functions that can

be used to perform CI tests, and on different model-selection functions that serve as objective

functions in score-based structure learning. In this chapter, we investigate solutions that could

optimise the hyperparameter α that serves as the significance threshold in the functions that

test for CI covered in subsection 2.2.1.1, and the hyperparameter iss that represents the

equivalent sample size that determines the strength of prior beliefs in the BDeuiss score

described in subsection 2.2.2.1. In addition to the standard functions used for CI tests and the

BDeu score, we explore hyperparameter optimisation of the Extended BIC score described in

subsection 7.7.1, and which represents a variant of the BIC score already described in

subsection 2.2.2.1.

7.1.1 Extended BIC

Page 78 of 116

Chen and Chen (2012) presented a modified version of BIC which they call Extended BIC

(EBIC) that can be used to control the density of the learnt graph. This is achieved by

introducing the hyperparameter 0 ≤ γ that penalises the number of free parameters in the BN,

which in turn are inversely proportional to the number of arcs in the learnt graph. This is

equivalent to saying that large values of γ will favour sparser graphs. EBIC is defined as:

EBICγ(G, D) = LL(G, D) −
log(n)

2
F − γ log(V) F, 0 ≤ γ

Foygel and Drton (2010) studied the impact of the hyperparameter γ′ ∈ [0,1] and found

that γ′= 0.5 is best in most synthetic experiments. However, it is acknowledged that the optimal

value of γ′ is not invariant and hence, its optimisation remains an open question. In this work,

we define EBICnormalised γ as:

EBICnormalised γ(G, D) = LL(G, D) −
log(n)

2
F − γ′ log(V) F, 0 ≤ γ′ ≤ 1

where the hyperparameter 0 ≤ γ is normalised to γ′ ∈ [0,1]. Thus, γ is the hyperparameter of

EBICγ and EBICnormalised γ where EBICγ=0 = EBICnormalised γ=0 = BIC.

7.1.2 Related works

An issue with structure learning algorithms is that they come with a set of unoptimised

hyperparameters. Because there is little guidance on how to choose these hyperparameters,

most papers in the literature use these algorithms with either their hyperparameter defaults, or

test them over a restricted set of different plausible hyperparameter values; a process that can

be very time consuming. Hyperparameter tuning for structure learning algorithms can be

divided into in-sample tuning and out-of-sample tuning methods, where the former utilises all

available data and the latter uses a subset of the available data as a test data to tune

hyperparameter configurations on data points that were not included in the training set.

In-sample tuning approaches include the Stability Approach to Regularization

Selection (StARS) by Liu et al. (2010), which optimises for model stability by selecting the

hyperparameter configuration that generates the most stable learnt graphs over perturbations

of the input data. Out-of-sample tuning approaches include the Out-of-sample Causal Tuning

(OCT) by Biza et al. (2020, 2022), which performs cross-validation to identify the Markov

Blankets (MBs) for each variable. The MB of a variable A represents a set of variables that

make A independent of all other variables, and can serve as a feature selection method.

Specifically, the MB of A includes the parents of A, its children, and the parents of its children.

The OCT algorithm uses MBs to obtain a Random Forest model and optimises hyperparameters

for predictive accuracy over test data. Experimental results showed that it performed well

against the in-sample StARS approach discussed above.

7.2 Out-of-sample Tuning for Structure Learning (OTSL)

This subsection describes the algorithm we propose for hyperparameter tuning, which we call

Out-of-sample Tuning for Structure Learning (OTSL). OTSL determines the optimal

hyperparameter configuration for a structure learning algorithm by performing out-of-sample

resampling and optimisation on test data.

Page 79 of 116

7.2.1 Resampling with replacement with multiple training and test datasets

Resampling with replacement or bootstrapping (Efron and Tibshirani, 1994) is commonly used

for sampling in statistics and machine learning. Unlike traditional cross-validation where each

fold is drawn from a dataset without replacement, bootstrapping involves resampling with

replacement to produce new data for validation that may contain multiple instances of the

original cases. Although cross-validation is a common optimisation technique for selecting a

model based on its estimated predictive capability, the studies by McLatchie et al. (2023) and

Piironen et al. (2016) empirically show that cross-validation led to the learning of complex

models, particularly in the case with small datasets and a high number of variables.

Consequently, resampling with replacement in structure learning was used to improve the

accuracy of the learnt graph (Chun, 2011; Guo et al., 2022). We adopt this strategy for the

OTSL algorithm and use resampling with replacement to generate multiple datasets for training

and testing from a single observational dataset, where the training datasets are used for structure

learning and the test datasets for hyperparameter tuning.

7.2.2 Tuning hyperparameters on test data

Subsection 2.2.2.1 describes the BIC and BDeuiss scores, which are commonly used as

objective functions in score-based structure learning algorithms. However, an issue with these

model-selection scores is that the graph they score the highest tends not to be the ground truth

graph. The model averaging MAHC that we describe in Chapter 3 demonstrates that output

graphs with slightly lower average BIC score may improve the graphical accuracy of the learnt

graph, especially in the presence of data noise which is inevitably present in real data. This

model averaging approach motivates the design of the proposed tuning approach, especially in

that it focuses on maximising model-selection by taking the average over multiple data splits.

We use the illustrations in Figure 7.1 to motivate our optimisation strategy, which is

based on the HC algorithm and synthetic ALARM data with sample size 10k. Figure 7.1a

presents the relationship between the graphical metric F1 (refer to subsection 7.4) and the

objective score BDeuiss when iss varies between 1 and 20. The tuning method involves

resampling with replacement, where the input dataset of 10k is resampled 10 times and, at each

iteration, split 9-to-1 for training and testing (refer to Algorithm 5). Specifically,

a) BDeuiss is the tuning score optimised for different iss hyperparameters. Note that

at each iteration of iss, the tuned score represents the average BDeuiss score over

10 iterations of resampling (refer to Algorithms 5 and 5b).

b) F1 is the score for each graph recovered at different values of iss in BDeuiss.

The illustration shows that it may be possible to optimise for iss in BDeuiss such that it

improves the F1 score. Specifically, Figure 7.1a shows that the optimal value for iss in BDeuiss

is 6, which in turn leads to a 0.57% improvement in F1 relative to the unoptimised

hyperparameter default when iss = 1.

Figure 7.1b repeats the same exercise and assumes that the tuning score is

EBICnormalised γ, where γ in EBICγ varies between 0 and 19. In this example, we notice that

the optimal γ hyperparameter is γ = 3 and happens to lead to the highest F1 score; an

improvement of 11.63% relative to the unoptimised EBICnormalised γ score when γ = 0.

Page 80 of 116

 (a) (b)
Figure 7.1 The F1 scores over different hyperparameter values for BDeuiss and EBICγ. The

illustration is based on the HC algorithm and synthetic ALARM data with a sample size 10k.

7.2.3 The Out-of-sample Tuning for Structure Learning (OTSL) algorithm

Algorithm 5 describes the OTSL algorithm. As described in Algorithm 5, OTSL takes as input

a dataset D, the number of iterations K for resampling (we assume 10 as default), the tuning

score (we explore BDeuiss and EBICnormalised γ in this study) and a list of configurations C that

specify the structure learning algorithm along with its hyperparameters and a range of those

hyperparameters to be explored. OTSL starts by resampling K training and test datasets given

the input data. It then applies the specified structure learning algorithm with configurations C

to each training dataset in K, and optimises the hyperparameters of either BDeuiss or

EBICnormalised γ on each corresponding test dataset in K, across different input graphs and lists

of configurations C. Each scoring function generates the scores to be tuned for each

combination of input graph (i.e., learnt structure by a given algorithm), dataset, and set of

configurations C. The optimal configuration is the one that generates the highest average tuning

score over K training and test datasets, and is returned as the optimal configuration. This

process is described in Algorithms 5, 5a and 5b, where Algorithms 5a and 5b describe the

tuning process for EBICnormalised γ and BDeuiss respectively.

-11450

-11400

-11350

-11300

-11250

-11200

-11150

-11100

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
vg

er
ag

e
B

D
eu

-i
ss

 s
co

re

F1

iss

F1

BDeu-iss

-24000

-22000

-20000

-18000

-16000

-14000

-12000

-10000

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 1 2 3 4 5 6 7 8 9 10111213141516171819

A
ve

rg
ae

 E
B

IC
-n

o
rm

al
is

ed
 γ

sc
o

re

F1

hyperparameter γ

F1

EBIC-normalised γ

Page 81 of 116

 Algorithm 5: Out-of-sample Tuning for Structure Learning (OTSL)

Input: dataset D, a list of configurations 𝐂, iteration K, score for tuning

Output: c′

1: The sample size of train data X = the number of instances of D  (K-1) /K

2: The sample size of test data Y = the number of instances of D / K

3: For k = 1 to K

4: Dk,training ← resample with replacement (D) with sample size X

5: Dk,test← resample with replacement (D \ Dk,training) with sample size Y

6: For c ∈ 𝐂 // find the optimal configuration

7: For k = 1 to K

8: Gc,k ← structure learning algorithm (Dk,training, c)

9: If Gc,k is CPDAG

10 Gc,k ← CPDAGtoDAG (Gc,k)

11: If Gc,k is PDAG

12: Gc,k ← PDAGtoDAG (Gc,k)

13: Sc,k ← score_for_tuning(Gc,k, Dk,test, c) // scoring functions given test data and hyperparameters

14: Sc = average Sc,k over K

15: c′ = arg max Sc

16: return c′

 Algorithm 5a: score_for_tuning (EBICnormalised γ)

Input: DAG G, dataset 𝒟, configuration c from a list of configurations 𝐂

Output: EBICnormalised γ

1: If c contains γ

2: score = EBICnormalised γ(G, 𝒟)

3: Else

4: score = EBICnormalised γ=0(G, 𝒟)

 Algorithm 5b: score_for_tuning (BDeuiss)

Input: DAG G, dataset 𝒟, configuration c from a list of configurations 𝐂

Output: BDeuiss

1: If c contains iss

2: score = BDeuiss(G, 𝒟)

3: Else

4: score = BDeuiss=1(G, 𝒟)

7.3 Evaluation

We consider 10 real-world BNs whose properties are provided in Table 7.1. Six of them are

taken from the bnlearn (Scutari, 2019) and Bayesys (Constantinou et al., 2020) repositories and

are used to generate synthetic data with sample sizes of 1k and 10k. In addition to the six

synthetically generated datasets, we also consider four real datasets which we discuss in more

detail in subsection 7.4.2.

Page 82 of 116

Synthetic data Data source Variables Edges Max in-degree Free parameters

Asia Bayesys

(Constantinou

et al., 2020)

8 8 2 18

Sports 9 15 2 1,049

Property 27 31 3 3,056

Alarm 37 46 4 509

Hailfinder bnlearn

(Scutari, 2019)

56 66 4 2,656

Hepar2 70 123 6 1,453

Real data Data source Variables Sample size

Diarrhoea Bayesys

(Constantinou

et al., 2020)

28 259,627

COVID-19 65 866

ForMed 56 953

Weather
NCEP (Kalnay

et al., 1996)
648 900

Table 7.1 The properties of the 10 case studies.

Structure learning

algorithm

Configuration

CI test /

Objective function

Hyperparameter

𝜶 𝛄 𝐢𝐬𝐬

Constraint-based

PC-Stable Chi2, MI, MI-sh
0.01, [0.05],

0.1
[0] [1]

Score-based

HC, FGS BDeuiss, EBICγ - [0], 1, 2, …, 19 [1], 2, 3, …, 20

Hybrid based

MCMC Chi2/ BDeuiss [0.05] - [1], 2, 3, …, 20

MMHC Chi2/ BDeuiss, EBICγ 0.01, [0.05] [0], 1, 2, …, 9 [1], 2, 3, …, 10

Table 7.2 The algorithms tested for hyperparameter optimisation, along with the set of

hyperparameters optimised. Brackets indicate the hyperparameter defaults. The size of the separation-

set for CI tests is set to -1 to allow for an unlimited size of conditioning sets.

Table 7.2 lists the five structure learning algorithms considered for hyperparameter

optimisation, spanning all three classes of structure learning. The description of these

algorithms can be found in subsections 2.2.1.3, 2.2.2.2 and 2.2.3. Because OTSL is designed

to optimise either EBICnormalised γ or BDeuiss, we follow a somewhat different strategy when

optimising constraint-based learning algorithms which do not involve score-based

hyperparameters such as iss and γ. As shown in Table 7.2, the PC-Stable algorithm is tuned by

exploring the three different thresholds for significance test 𝛼 by maximising either EBIC or

BDeu given their hyperparameter defaults; i.e., we iterate over hyperparameter values for 𝛼 –

not for iss or γ – when the input algorithm is constraint-based. Specifically, a) for constraint-

based PC-Stable we optimise hyperparameter α which represents the statistical significance

threshold for either Chi2, MI, or MI-sh (refer to subsection 2.2.1.1), b) for score-based HC and

FGS we optimise hyperparameter γ in EBICγ and iss in BDeuiss (refer to subsections 7.1.1 and

2.2.2.1), and c) for hybrid algorithms MCMC and MMHC we optimise for all three possible

hyperparameters. However, as shown in Table 7.2, we reduce the size of the set of possible

hyperparameters to be explored for hybrid algorithms due to the much larger number of

possible combinations of hyperparameters they produce. For example, if we were to explore

the same range of hyperparameters for hybrid MMHC, then that would require 1,920 structure

learning experiments for that algorithm alone; i.e., 3 hyperparameters for 𝛼 × 20 for γ or 3

hyperparameters for 𝛼 × 20 for iss for each case study and sample size. Because MCMC is the

most computationally expensive algorithm amongst the structure learning algorithms

considered, we restrict the value of hyperparameter 𝛼 to its default 0.05 and instead optimise

hyperparameter iss over a larger range in BDeuiss.

Page 83 of 116

We use the F1 and SHD graphical metrics to assess synthetic experiments as described

in subsection 2.2.4. The scores reported in this study reflect comparisons between the learnt

and the corresponding true DAGs. If a structure learning algorithm produces a CPDAG then a

random DAG is generated from the learnt CPDAG.

The hyperparameter optimisation performance of OTSL is assessed with reference to

other hyperparameter tuning methods that are proposed for tuning structure learning

algorithms, and specifically the StARS and OCT approaches discussed in subsection 7.1.2. In

addition, we also consider the BIC and the AIC model-selection functions as baselines for

tuning, consistent with how they are used in other relevant studies for evaluation purposes,

where tuning is determined by the hyperparameter value that maximises the given model-

selection function (Biza et al., 2020).

We conduct all experiments by performing 10 iterations of resampling for both OTSL

and StARS, and assuming a 10-fold cross-validation for OCT. We set a runtime limit of 24

hours for each experiment and yet, this was not enough to complete all experiments. Because

most tuning experiments failed to complete learning on the real-world Diarrhoea and Weather

datasets within the runtime limit, we modify the experimental setup for these two datasets. The

issue with the Diarrhoea dataset is that it contains a large number of samples (259,627), which

we address by modifying the resampling technique such that it creates 10 sets of training data

restricted to a sample size of 9k, and 10 sets of test data restricted to a sample size of 1k, derived

from the 259,627 instances of the Diarrhoea dataset. On the other hand, the issue with the

Weather dataset is that it contains a large number of variables, and we address this by reducing

the number of iterations for resampling to 5 for the Weather dataset.

Experiments with real data provide no access to ground truth. As a result, it is difficult

to judge the unsupervised learning performance of these algorithms on real data. Therefore, we

use real data to primarily investigate the issues we may face, specifically with large datasets as

discussed above, and to illustrate how OTSL influences the structure learning performance of

the different algorithms considered, in terms of model-selection, goodness-of-fit, and model

dimensionality.

We test PC-Stable, HC and MMHC using the bnlearn R package (Scutari, 2019). FGS

using Tetrad-based rcausal R package (Wongchokprasitti, 2019), and MCMC (the order-

MCMC version) using the BiDAG R package (Suter et al., 2023). The model-selection scores

of BIC and AIC, as well as the StARS and OCT tuning algorithms are tested using the

MATLAB implementations available at https://github.com/mensxmachina/OCT. The

implementation of OTSL is made available online at https://github.com/kiattikunc/OTSL. All

experiments were conducted on a high performance computing cluster with 32 GBs of RAM,

whereas the experiments involving the FGS algorithm were ran on a laptop with an M1 CPU

at 3.2 GHz and 8GB of RAM.

7.4 Results

7.4.1 Results based on synthetic data

7.4.1.1 Impact of hyperparameter tuning on graphical structure

https://github.com/mensxmachina/OCT
https://github.com/kiattikunc/OTSL

Page 84 of 116

We assume two different cases for hyperparameter defaults: a) Default A where 𝛼 = 0.05 for

Chi2 test and γ = 0 for EBICγ, and b) Default B where and 𝛼 = 0.05 for Chi2 test and iss = 1

for BDeuiss. Figure 7.2 compares the F1 scores obtained by the four specified algorithms across

all synthetic experiments, with and without (i.e., Default A) hyperparameter optimisation. In

this set of experiments, hyperparameter optimisation is restricted to EBICnormalised γ and

hence, the MCMC algorithm is not included in these results since EBICγ is not available in the

BiDAG R package. Figure 7.2a depicts the results when trained with datasets of sample size

1k, whereas Figure 7.2b depicts the results when trained with datasets of sample size 10k.

Across the 12 comparisons shown in both Figures 7.2a and 7.2b, the results show that

the hyperparameter tuning applied by OTSL improves the average F1 scores in 9 cases, and

slightly decreases performance in 3 cases; i.e., for Property at both 1k and 10k sample sizes

and for Sports at 10k sample size. In Figure 7.2a, the average F1 score across all DAGs learnt

over the six cases and four structure learning algorithms is 0.448 for default configurations,

and increases to 0.458 (or by ~2.3%) when tuning the hyperparameters of EBICnormalised γ.

Figure 7.2b repeats these experiments for sample sizes 10k and shows that the results remain

consistent with those obtained when the sample size is set to 1k. Specifically, the average F1

score across all DAGs is 0.5 for the default configurations, and increases to 0.513 (or by ~2.5%)

when tuned with OTSL.

Figures 7.3a and 7.3b repeat the experiments of Figures 7.2a and 7.2b, and use BDeuiss

as the tuning score instead of EBICnormalised γ. In this case, however, the results show that the

hyperparameter tuning applied by OTSL did not improve the average F1 scores. Specifically,

the average F1 scores for the default configurations (Default B) are 0.51 and 0.56 for sample

sizes 1k and 10k respectively, and 0.506 and 0.56 respectively when tuned with OTSL.

According to the boxplots, this small difference could be explained by random variability.

 (a) (b)

Figure 7.2 The average F1 scores with and without hyperparameter tuning. Untuned algorithms

assume Default A configuration and tuned algorithms assume OTSL with EBICnormalised γ as the

tuning score. The average scores are derived over four structure learning algorithms (excluding

MCMC that does not support EBICγ), and six synthetic case studies. The boxplots represent the

highest and lowest F1 scores with outliers, × is the mean and ‒ is the median. The lower edge of the

boxplot represents the first quartile, while the higher edge of the boxplot represents the third quartile.

Figure (a) depicts the scores for datasets with sample size 1k, and (b) with sample size 10k.

Page 85 of 116

Table 7.3 details the average change in F1 and SHD scores for each structure learning

algorithm relative to the hyperparameter defaults (Default A), when we tune their

hyperparameters with OTSL and EBICnormalisedγ as the tuning score, as well as when we

randomise the hyperparameter values averaged over 10 iterations. The results depicted in Table

7.3 show that randomising the hyperparameters leads to an average decrease of 1.71% in F1

score, and a decrease of 4.89% in SHD score, relative to the results obtained when assuming

hyperparameter defaults. On the other hand, the F1 and SHD scores increase by 3.9% and

6.12% respectively when optimising the hyperparameters using OTSL. However, the

constraint-based PC-Stable generates poor tuning performance with F1 and SHD scores

decreasing by 1.81% and 1.08% respectively. This might suggest that the score-based tuning

applied by OTSL to tune constraint-based CI tests might not be appropriate.

Table 7.4 repeats the experiments but assumes Default B configurations, and that the

tuning score is BDeuiss instead of EBICnormalised γ previously assumed in Table 7.3. In this

case, the results show that both randomising and optimising the hyperparameter iss of BDeuiss

decreases graphical scores relative to those obtained by assuming hyperparameter defaults. In

other words, it seems that assuming iss = 1 for BDeuiss produces strong performance with

little, if any, room for improvement via hyperparameter tuning, and this is consistent with what

is reported by Steck (2008) and Uneo (2011) who recommend to set iss = 1, especially when

the distributions of the variables are assumed to be skewed or when the true underlying

structure is assumed to be sparse. Our results show that randomising the iss hyperparameter of

BDeuiss decreases the F1 and SHD scores by 4.86% and 11.02%, whereas optimising iss with

OTSL increases the F1 scores by 0.12% and decreases the SHD scores by 3.36%. These results

suggest that the BDeuiss function may not be suitable for hyperparameter tuning, at least

compared to EBICnormalised γ, and that setting iss = 1 might indeed be sufficient, in general.

 (a) (b)

Figure 7.3 The average F1 scores with and without hyperparameter tuning. Untuned algorithms

assume Default B configuration and tuned algorithms assume OTSL with BDeuiss as the tuning score.

The average scores are derived over five structure learning algorithms, and six synthetic case studies.

The boxplots represent the highest and lowest F1 scores with outliers, × is the mean and ‒ is the

median. The lower edge of the boxplot represents the first quartile, while the higher edge of the

boxplot represents the third quartile. Figure (a) depicts the scores for datasets with sample size 1k,

and (b) with sample size 10k.

Page 86 of 116

Algorithm

Change in F1 relative to Default A Change in SHD relative to Default A

Random

configuration

Tuning with

EBICnormalised γ
Random

configuration

Tuning with

EBICnormalised γ

PC-Stable 0.95% -1.18% -1.30% -1.08%

HC 6.29% 12.96% 8.29% 23.40%

FGS -14.21% -0.10% -26.31% 1.54%

MMHC 0.00% 3.91% -0.43% 0.61%

Average -1.71% 3.90% -4.89% 6.12%

Table 7.3 The change in average F1 and SHD scores for each algorithm, after randomising their

hyperparameters and after tuning them with OTSL. The experiments consider all six synthetic case

studies and both 1k and 10k sample sizes. The hyperparameter defaults are 𝛼 = 0.05 for Chi2 test and

γ = 0 for EBICγ (Default A). The best performance values are shown in bold.

Algorithm

Change in F1 relative to Default B Change in SHD relative to Default B

Random

configuration

Tuning with

BDeuiss

Random

configuration

Tuning with

BDeuiss

PC-Stable 0.78% 2.40% -2.00% 0.64%

HC -10.48% -8.64% -18.95% -11.33%

FGS -14.77% 2.25% -34.65% -9.68%

MCMC 2.79% 2.51% 2.40% 3.25%

MMHC -2.69% 2.06% -2.11% 0.31%

Average -4.86% 0.12% -11.02% -3.36%

Table 7.4 The change in average F1 and SHD scores for each algorithm, after randomising their

hyperparameters and after tuning them with OTSL. The experiments consider all six synthetic case

studies and both 1k and 10k sample sizes. The hyperparameter defaults are 𝛼 = 0.05 for Chi2 test and

γ = 0 for BDeuiss (Default B). The best performance values are shown in bold.

7.4.1.2 Assessing OTSL relative to existing tuning algorithms for structure learning

We compare the results of OTSL with those obtained by the out-of-sample tuning OCT and

the in-sample tuning StARS. We also consider the baseline tuning results obtained by the

model-selection scores BIC and AIC. This process involves applying the other four approaches

to the same experiments presented in subsection 7.4.1.1, and comparing the changes to the F1

and SHD scores across all hyperparameter tuning approaches.

Structure

learning
algorithm

Hyperparameter tuning method

Out-of-sample In-sample Out-of-sample In-sample

OTSL with
EBICnormalised γ

tuning
OCT

Model

selection

with BIC

Model

selection

with AIC

StARS
OTSL with

EBICnormalised γ

tuning
OCT

Model

selection

with BIC

Model

selection

with AIC

StARS

Change of F1 relative to Default A Change of SHD relative to Default A

PC-Stable -1.18% 1.88% 4.32% 3.30% 0.72% -1.08% 0.09% 1.21% 1.56% -0.25%

HC 12.96% 6.23% -0.65% -1.60% -3.62% 23.40% -35.43% -8.76% -9.90% -34.77%

FGS -0.10% 1.26% -6.87% -7.43% 1.55% 1.54% -0.67% -5.71% -7.37% -2.59%

MMHC 3.91% 3.03% 11.55% 19.88% 3.36% 0.61% -4.89% 22.47% 23.08% 17.09%

Average 3.90% 3.10% 2.09% 3.54% 0.50% 6.12% -10.22% 2.30% 1.84% -5.13%

Table 7.5 The average change in F1 and SHD scores due to hyperparameter tuning by the specified

tuning method. The averages are derived from all six synthetic case studies and over both sample

sizes. The structure learning algorithms assume Default A hyperparameter configuration (Chi2 test

with 𝛼 = 0.05, and EBICγ with γ = 0). The highest improvements in graphical accuracy are shown in

bold.

Page 87 of 116

Structure
learning

algorithm

Hyperparameter tuning method

Out-of-sample In-sample Out-of-sample In-sample

OTSL

with

BDeuiss

tuning

OCT

Model

selection
with BIC

Model

selection
with AIC

StARS

OTSL

with

BDeuiss

tuning

OCT

Model

selection
with BIC

Model

selection
with AIC

StARS

Change of F1 relative to Default B Change of SHD relative to Default B

PC-Stable 2.40% 1.26% -6.87% -7.43% 1.55% 0.64% -0.67% -5.71% -7.37% -2.59%

HC -8.64% -11.25% -4.26% 1.88% -11.21% -11.33% -40.02% -2.57% -2.06% -11.15%

FGS 2.25% -0.43% -6.02% -6.94% -7.91% -9.68% -41.77% -15.96% -17.17% -42.71%
MCMC 2.51% -2.39% -0.93% 0.18% -0.15% 3.25% -10.80% -7.93% 1.97% -2.29%

MMHC 2.06% -2.47% 0.41% -0.59% -3.56% 0.31% -1.65% -0.60% -0.28% -2.09%

Average 0.12% -3.06% -3.53% -2.58% -4.26% -3.36% -18.98% -6.55% -4.98% -12.17%

Table 7.6 The average change in F1 and SHD scores due to hyperparameter tuning by the specified

tuning method. The averages are derived from all six synthetic case studies and over both sample

sizes. The structure learning algorithms assume Default B hyperparameter configuration (Chi2 test

with 𝛼 = 0.05, and BDeuiss with iss = 1). The highest improvements in graphical accuracy are shown

in bold.

Tables 7.5 and 7.6 summarise these results for both Default A and Default B

hyperparameter configurations respectively. Table 7.5 shows that while none of the

hyperparameter tuning approaches improves the graphical accuracy for all four structure

learning algorithms, most of the approaches do improve the average structure learning

performance across all algorithms. Specifically, all five tuning approaches improve the average

F1 score across the four structure learning algorithms considered, although only three out of

the five tuning approaches also improve the SHD score. The OTSL algorithm with

EBICnormalised γ tuning increases both the F1 (up by 3.9%) and SHD (up by 6.12%) scores the

most across all the tuning approaches considered. Interestingly, the F1 and SHD scores provide

contradictory conclusions about the impact on graphical structure for OCT and StARS

algorithms, and this inconsistency between the F1 and SHD metrics is in agreement with other

studies (Constantinou et al., 2021). For example, the F1 metric suggests that the

hyperparameter tuning of OCT improves the structure learning performance of all four

structure learning algorithms, whereas the SHD metric suggests that OCT decreases the

graphical accuracy of three out of the four structure learning algorithms.

Table 7.6 presents the same results when the hyperparameter tuning approaches are

applied to the iss hyperparameter of BDeuiss. Overall, the results are consistent with those

presented in Tables 7.3 and 7.4, in that hyperparameter tuning appears to be successful for

EBICnormalised γ but not for BDeuiss. While tuning with BDeuiss is found to be rather

inadequate for all tuning methods, OTSL is found to perform considerably better compared to

the other tuning approaches with an increase of 0.12% in the average F1 score (improved the

scores of four out of the five algorithms) and a decrease of 3.36% in the average SHD score

(improved the scores of three out of the five algorithms).

Page 88 of 116

(a) (b)

Figure 7.4 (a) Overall runtime (structure learning and tuning) and (b) tuning runtime, summed over

all six synthetic datasets and two sample sizes, across all five structure learning algorithms.

We also assess the computational complexity of OTSL by comparing its

hyperparameter tuning and overall structure learning runtimes against those produced by the

other hyperparameter tuning approaches. Provisional results show that the runtimes are similar

for both EBICnormalisedγ and BDeuiss, but here we focus on EBICnormalised γ which produces

the best tuning performance. Figure 7.4a depicts the total runtimes (hyperparameter tuning and

structure learning) across all six case studies, two sample sizes, and five structure learning

algorithms, whereas Figure 7.4b shows the runtime for the same experiments but restricted to

the hyperparameter tuning phase. As expected, optimisation with model-selection functions

such as BIC and AIC results in very low runtimes, since they do not involve out-of-sample or

resampling strategies, whereas OTSL, OCT and StARS perform 10 iterations of either in-

sample or out-of-sample tuning for each hyperparameter configuration and this leads to

considerably higher runtimes. Overall, the results in Figure 4a show that the computational

runtime of OTSL is similar to that of StARS, and considerably faster than that of OCT.

Importantly, the tuning runtimes of OTSL and StARS represent just 0.2% and 0.4% of the total

structure learning runtime respectively, whereas the tuning runtime of OCT represents 43% of

its total structure learning runtime. Figure 7.4b shows that the tuning runtime of OTSL is slower

than the tuning runtime of StARS, but much faster than the tuning runtime of OCT.

7.4.2 Applying OTSL to real data

While previous subsections focused on evaluating OSTL in terms of how its tuning improves

the recovery of the ground truth graphs that were used to generate synthetic data, this subsection

illustrates how OTSL could be used in practice with application to four different real datasets

that come from different disciplines. As discussed in subsection 7.3, real data do not come with

an access to ground truth and hence, the purpose here is to illustrate how tuning influences the

structure learning performance of the different algorithms considered when applied to real data.

We consider the following four discrete datasets, where the first three are obtained from the

Bayesys repository (Constantinou et al., 2020) and the fourth from the National Center for

2.86 2.86

35.46 35.51

48.58

0

10

20

30

40

50

60

0

50000

100000

150000

200000

h
o

u
r

se
c

Overall runtime (secs & hours)

Structure learning runtime Tuning runtime

119.28 119.28
178.81

346.18

78,959.26

1

10

100

1000

10000

100000

Tuning runtime (secs)

Page 89 of 116

Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR)

in the USA, known as the NCEP/NCAR Reanalysis Project (Kalnay et al., 1996):

a) ForMed: A case study already covered in subsection 3.1, which involves assessing and

managing the risk of violence in released prisoners with history of violence and mental

health (Coid et al., 2016; Constantinou et al., 2015). The data was collected through

interviews and assessments comprising risk factors for 953 individual cases, and

contains a total of 56 categorical variables.

b) COVID-19: A dataset that captures pandemic data about the COVID-19 outbreak in

the UK (Constantinou et al., 2023). The data comprises of 18 variables that capture

information related to viral tests, infections, hospitalisations, vaccinations, deaths,

COVID-19 variants, population mobility such as usage of transportation, schools, and

restaurants, as well as various government policies such as facemasks and lockdowns.

The data instances represent daily information, spanning from January 30th, 2020, to

June 13th, 2022, resulting in a total of 866 instances.

c) Diarrhoea: Pre-processed survey data collated from the Demographic and Health

Survey (DHS) program, which was used to investigate the factors associated with

childhood diarrhoea in India (Kitson and Constantinou, 2021). The dataset captures

relevant cases from 2015 to 2016 and contains 28 variables and 259,627 instances.

d) Weather: A dataset that captures the monthly means of air temperature and other

climatological data for each location as measured by latitude (y coordinate) and

longitude (x coordinate) over the global grid system (Kalnay et al., 1996). The dataset

merges information obtained from multiple sources, i.e., balloons, satellites, and buoys.

It provides a comprehensive 75-year record from 1948 to 2022 of global atmospheric

field analyses. We used the bnlearn R package (2019) to discretise the dataset. Because

the raw data is too big for our experiments, we also resized the spatial dataset from 2.5

degree x 2.5 degree global grids to 10 degree x 10 degree global grids, and reduced the

total number of variables from 10,512 (144x73) to 648 (36x18). Therefore, the dataset

used in this study contains a total of 648 variables and 900 instances.

We apply the structure learning algorithms to each of the four datasets, and tune their

hyperparameters using OTSL. We only consider Default A hyperparameter configuration with

EBICnormalised γ for tuning, which was shown to be more suitable for hyperparameter

optimisation. Table 7.7 presents the results obtained by applying the specified structure

learning algorithms to the ForMed dataset and tuning their hyperparameters with OTSL. We

report the model-selection score BIC, the goodness-of-fit score LL, the number of free

parameters as a measure of model dimensionality, and the tuning scores EBICnormalised γ.

Table 7.7 shows that out of the four structure learning algorithms considered, only one (HC

with γ = 2) had its hyperparameter changed following tuning with OTSL. The tuning

scores EBICnormalised γ in Table 7.7 suggest that the graph produced by MMHC, presented in

Figure 7.5, might be the ‘best’ structure to consider amongst those learnt by the different

algorithms, although this suggestion contradicts the BIC score which suggests that the best

structure may be the one learnt by HC.

Tables 7.8, 7.9, and 7.10, and corresponding Figures 7.6, 7.7, and 7.8, repeat the above

analyses for case studies COVID-19, Diarrhoea and Weather respectively. Note that only two

algorithms are reported for the Weather case study, and this is because HC did not complete

Page 90 of 116

learning within the 24-hour time limit, while FGS returned a memory allocation error. The

results show that OTSL modified the hyperparameters of three and four, out of the four,

structure learning algorithms in COVID-19 and Diarrhoea cases respectively, and for one out

of the two algorithms for dataset Weather. Table 7.8 shows that FGS produces the best structure

for the COVID-19 case study (see Figure 7.6) according to both EBICnormalised γ and BIC

scores. On the other hand, the results in Table 7.9 suggest that the graph produced by FGS is

the best structure according to EBICnormalised γ, which once more contradicts the BIC score

that scores the graph produced by HC the highest. Lastly, in Table 7.10 both EBICnormalised γ

and BIC are in agreement that MMHC produced the best structure shown in Figure 7.8. The

nodes in Figure 7.8 represent random variables of a monthly temperature for each location,

whereas the arcs represent the spatial dependencies of surface temperatures for each grid2.

Structure

learning

algorithm

CI test / Objective

score

Optimal

hyperparameter

from OTSL (Tuning

with

EBICnormalised γ)

Tuning

score

EBICnormalised γ

from OTSL

Score of learnt graph

BIC LL
Free

parameters

PC-

Stable

Chi2 𝛼 = 0.05 -4,099 -40,791 -39,775 296

MI 𝛼 = 0.05 -4,113 -40,799 -39,760 303

MI-sh 𝛼 = 0.05 -4,092 -40,837 -39,774 310

HC EBICγ γ = 2 -3,974 -37,062 -35,442 540

FGS EBICγ γ = 0 -4,195 -42,343 -41,846 145

MMHC Chi2 / 𝐄𝐁𝐈𝐂𝛄 𝜶 = 0.05 / 𝛄 = 0 -3,942 -38,183 -37,744 439

Table 7.7 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt

by the specified structure learning algorithms when applied to the ForMed dataset, with OTSL tuning.

The best performance values are shown in bold.

2 The orange arcs represent short-distance temperature dependencies, while the red arcs show the teleconnected

dependencies. We observe that the local short-distance arcs are dense, representing atmospheric thermodynamic

processes, while the teleconnected dependencies are represented by only three arcs. One of these teleconnected

dependencies indicates the El Niño effects, which are caused by temperatures along the equator in the Pacific

Ocean (Yamasaki et al., 2008).

Page 91 of 116

Figure 7.5 The DAG learnt by MMHC for the ForMed dataset with OTSL tuning (Table 7.7).

Structure

learning

algorithm

CI test / Objective

score

Optimal

hyperparameter

from OTSL (Tuning

with

EBICnormalised γ)

Tuning

score

EBICnormalised γ

from OTSL

Score of learnt graph

BIC LL
Free

parameters

PC-

Stable

Chi2 𝛼 = 0.1 -1,392 -13,666 -13,270 117

MI 𝛼 = 0.1 -1,395 -13,768 -13,190 171

MI-sh 𝛼 = 0.01 -1,395 -13,768 -13,190 171

HC EBICγ γ = 5 -1,249 -10,725 -8,787 323

FGS 𝐄𝐁𝐈𝐂𝛄 𝛄 = 1 -1,092 -9,038 -9,918 260

MMHC Chi2 /EBICγ 𝛼 = 0.05 / γ = 0 -1,257 -12,267 -12,129 138

Table 7.8 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt

by the specified structure learning algorithms when applied to the COVID-19 dataset, with OTSL

tuning. The best performance values are shown in bold.

Page 92 of 116

Figure 7.6 The DAG (sampled from the learnt CPDAG) learnt by FGS for the COVID-19 dataset

with OTSL tuning (Table 7.8).

Structure

learning

algorithm

CI test / Objective

score

Optimal

hyperparameter

from OTSL (Tuning

with

EBICnormalised γ)

Tuning

score

EBICnormalised γ

from OTSL

Score of learnt graph

BIC LL
Free

parameters

PC-

Stable

Chi2 𝛼 = 0.01 -19,653 -4,910,813 -4,899,630 1,794

MI 𝛼 = 0.1 -19,400 -5,099,129 -5,088,588 1,691

MI-sh 𝛼 = 0.01 -19,506 -5,082,642 -5,068,485 1,691

HC EBICγ γ = 2 -19,257 -4,776,526 -4,748,359 9,389

FGS 𝐄𝐁𝐈𝐂𝛄 𝛄 = 0 -19,175 -4,944,463 -4,941,340 501

MMHC Chi2 / EBICγ 𝛼 = 0.01 / γ = 0 -19,257 -4,979,854 -4,979,334 520

Table 7.9 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt

by the specified structure learning algorithms when applied to the Diarrhoea dataset, with OTSL

tuning. The best performance values are shown in bold.

Page 93 of 116

Figure 7.7 The DAG (sampled from the learnt CPDAG) learnt by FGS for the Diarrhoea dataset with

OTSL tuning (Table 7.9).

Structure

learning

algorithm

CI test / Objective

score

Optimal

hyperparameter

from OTSL (Tuning

with

EBICnormalised γ)

Tuning

score

EBICnormalised γ

from OTSL

Score of learnt graph

BIC LL
Free

parameters

PC-

Stable

Chi2 𝛼 = 0.05 -67,594 -334,171 -319,219 4,396

MI 𝛼 = 0.01 -72,525 -378,849 -366,591 3,604

MI-sh 𝛼 = 0.1 -71,653 -346,160 -333,059 3,852

MMHC Chi2 / 𝐄𝐁𝐈𝐂𝛄 𝜶 = 0.05, 𝛄 = 0 -66,350 -318,220 -314,724 3,496

Table 7.10 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs

learnt by the specified structure learning algorithms when applied to the Weather dataset, with OTSL

tuning. The best performance values are shown in bold.

Page 94 of 116

Figure 7.8 The DAG learnt by MMHC for the Weather dataset with OTSL tuning (Table 7.10). The

vertices of the world map superimposed over the DAG represent latitude and longitude locations on

10x10 degree grids.

7.5 Conclusions

Learning causal models from observational data remains a major challenge. Traditionally,

structure learning algorithms are evaluated and applied to real data with their hyperparameter

defaults, or by iterating over a small set of possible hyperparameters. However, no specific set

of hyperparameters is optimal for all input datasets which vary in sample size and

dimensionality, and structure learning algorithms which vary in learning strategy. Therefore,

the question of which hyperparameter values might be best for a given structure learning

algorithm and input dataset combination remains an open question.

In this chapter, we propose and evaluate a hyperparameter tuning algorithm, called

OTSL, that employs out-of-sample resampling and score-based tuning to find the optimal

hyperparameters for a given structure learning algorithm, given the input data. We describe

and implement OTSL with a focus on score-based learning, and determine the hyperparameters

of different algorithms by optimising either the iss or γ hyperparameters of BDeuiss and

EBICnormalised γ objective scores.

Synthetic experiments show that tuning with OTSL leads to reasonable improvements

in structure learning in terms of the F1 and SHD scores, and when assuming EBICγ as the

objective score for score-based learning. However, this level of improvement is not repeated

for BDeuiss, and this observation is consistent for OTSL and all the other tuning approaches

investigated in this study. This is because the hyperparameter default of iss = 1 in

BDeuiss tends to lead to higher F1 and SHD scores compared to the graphs learnt when iss >

1 (and hence benefits little, if any, from hyperparameter tuning), and this observation is

consistent with past studies (Steck, 2008; Uneo, 2011).

The tuning performance of OTSL is evaluated with reference to other hyperparameter

tuning approaches for structure learning. We have considered the OCT and StARS tuning

Page 95 of 116

approaches, as well as the BIC and AIC model-selection scores that serve as baselines for

tuning hyperparameters. Overall, the results show that OTSL provides better tuning

performance from results derived across different structure learning algorithms, case studies,

and sample sizes. In terms of computational complexity, OTSL was found to be more efficient

than OCT but slightly less efficient than StARS.

A limitation is that while OTSL can be applied to structure learning algorithms that

come from different classes of learning, it is designed with score-based learning in mind and

assumes that the optimal hyperparameters are those that maximise either the

EBICnormalised γ or BDeuiss objective scores, and this also applies when tuning CI functions in

constraint-based learning. This might explain why the results from tuning score-based learning

algorithms are better than those derived from tuning constraint-based learning. Another

limitation is that, because OTSL optimises hyperparameters on test data, this process involves

resampling multiple training and test datasets from a single input dataset, which impacts the

computational efficiency of structure learning; a learning process that is already known to be

computationally expensive.

Page 96 of 116

Chapter 8

Conclusions and open problems

This thesis studies structure learning algorithms that recover graphical structure from data, with

the main focus being on the problem of latent confounders. This final chapter begins by

summarising the outputs and conclusions derived from each chapter, and ends by summarising

open problems derived from a relevant paper I co-authored.

8.1 Concluding remarks

Chapter 3 begins by examining how well structure learning algorithms perform when applied

to noise-free data that follow the ideal assumptions assumed by the algorithms, as well as

imperfect noisy data that contain various types and levels of noise commonly found in real-

world datasets. We investigated the impact of data noise using 15 structure learning algorithms

from different learning classes. We considered case-study networks from different domains

and of varying complexity, with different sample sizes, data noise types, and data noise rates.

Although the chapter’s main objective was to analyse the impact of data noise on structure

learning performance, the results also summarise the performance of these algorithms with and

without data noise. For instance, we found that non-exact or simpler learners are more resilient

to data noise compared to exact or more sophisticated non-exact learners. The results also

indicate that score-based learning generally outperforms constraint-based learning, but a higher

fitting score does not necessarily mean a more accurate causal graph. Additionally, while

algorithms designed to account for causal insufficiency performed well in noisy experiments

involving latent variables, they did not perform as well under other types of data noise. A

possible limitation is that this study tested all algorithms using their default hyperparameters

as implemented in the structure learning software of the considered packages.

In total, these results were obtained from approximately 10,000 structure learning

experiments with a total structure learning runtime of seven months. This large-scale empirical

comparison of structure learning algorithms under different data noise assumptions is the first

of its kind. The findings suggest that the traditional synthetic performance may overestimate

real-world performance by anywhere between 10% and more than 50%. These results have

significant implications as they indicate that structure learning accuracy reported in the

Page 97 of 116

literature, based on traditional synthetic data, overestimates real-world performance to a greater

extent than previously assumed.

Chapter 3 concludes by introducing a novel structure learning algorithm called MAHC

that combines pruning and model averaging strategies with hill-climbing search. Comparisons

with other algorithms from various learning classes demonstrate that the combination of

aggressive pruning and model averaging is effective and efficient, particularly in the presence

of data noise. Specifically, the results show that MAHC performs competitively when the input

data is clean and often outperforms other algorithms when the input data is noisy. These

findings suggest that model averaging strategies may be better suited for learning from real

data, assuming that real observations never satisfy the ideal conditions assumed in clean

synthetic experiments and often contain different types of data noise, similar to those examined

in this chapter.

Chapter 4 expands upon recent advancements in structure learning when dealing with

causal insufficiency. It introduces a new algorithm called CCHM, which combines constraint-

based and score-based learning techniques with causal effects to learn Gaussian BNs. The

constraint-based aspect of CCHM incorporates elements from the state-of-the-art cFCI

algorithm, while the score-based component employs a traditional hill-climbing greedy search

that minimises the BIC score. CCHM utilises Pearl’s do-calculus to orientate edges, a task that

most constraint-based and score-based learning do to complete from observational data. The

results indicate that CCHM outperforms state-of-the-art algorithms in the majority of the

experiments, which include both randomised and real-world Gaussian BNs. However, a

limitation of this research is that the algorithm assumes linear GBNs, and requires that the input

data are continuous. Chapter 5 extends this and describes a hybrid algorithm, called mFGS-

BS, that learns ancestral graphs by calculating the posterior probability of each directed edge

being added to the learnt graph, from one observational data set and one or more interventional

data sets. Overall, the results show that mFGS-BS improves structure learning accuracy relative

to the state-of-the-art and it is computationally efficient. A limitation of mFGS-BS is that it is

sensitive to the ordering of the data sets and assumes equal sample size across all input data

sets, which is an unrealistic assumption in practice.

Chapter 6 describes two novel algorithms that can be used for both discovery and

density estimation of latent confounders in BN structure learning from discrete observational

data. Discovering and parameterising latent confounders represent important and challenging

problems in causal structure learning and density estimation respectively. These tasks require

solutions that come from different areas of statistics and machine learning. Chapter 6 combines

elements of variational Bayesian methods, expectation-maximisation, hill-climbing search, and

structure learning under the assumption of causal insufficiency. The first algorithm (ILC-V)

aims to maximise model-selection accuracy by exhaustively exploring sets of Markov

equivalent MAGs. The second algorithm (HCLC-V) aims to balance accuracy relative to

computational efficiency by employing hill-climbing over the MAG space, enabling

application to larger networks.

Both the ILC-V and HCLC-V algorithms require a PAG to be provided as an input and,

because the input PAG will typically indicate multiple possible latent confounders, both

algorithms employ the p-ELBO as the objective function to determine the number of the latent

confounders, thereby contributing to the discovery process in addition to density estimation of

Page 98 of 116

latent confounders. The empirical results show meaningful improvements in maximising the

objective score relative to the state-of-the-art, and in some ways in reducing time complexity;

although the latter remains a major issue. Two important limitations are that a) both algorithms

need to be paired with a structure learning algorithm that produces an ancestral graph, since

they require a PAG input to be provided, and b) the results are based on experiments that

assume the minimum possible number of latent confounders consistent with the PAG input,

which was necessary to ensure that most experiments complete within the 12-hour runtime

limit.

Lastly, Chapter 7 delves into the challenge of determining the optimal hyperparameter

configuration for structure learning algorithms. Practitioners often encounter this problem

when applying structure learning algorithms to their data and typically resort to using default

hyperparameters as a solution. In this chapter, a novel hyperparameter tuning method called

Out-of-sample Tuning for Structure Learning (OTSL) is described. OTSL utilises out-of-

sample and resampling strategies to estimate the optimal hyperparameter configuration for a

structure learning algorithm based on the input dataset. The findings indicate that the optimal

hyperparameter configuration depends on various factors, including the size and density of the

underlying true graph (which is usually unknown), the sample size of the input data, and the

specific structure learning algorithm used for tuning. Synthetic experiments demonstrate that

OTSL considerably improves graphical accuracy compared to default hyperparameters.

Moreover, it outperforms competing algorithms in terms of graphical performance and

computational efficiency. However, a limitation is that because OTSL is designed primarily

for score-based algorithms, its effectiveness in tuning constraint-based algorithms is not

adequate. Another limitation is that because OTSL optimises hyperparameters on test data via

resampling, it negatively impacts the computational efficiency of structure learning, which is

already known to be computationally expensive.

To facilitate future work, we make all graphs, models and data sets publicly available online

as follows:

• CCHM algorithm package: https://github.com/kiattikunc/CCHM

• mFGS-BS algorithm package: https://github.com/kiattikunc/mFGES-BS

• ILC-V and HCLC-V algorithms package:

https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM

• OTSL algorithm package: https://github.com/kiattikunc/OTSL

• Case studies and datasets: Bayesys repository

http://constantinou.info/downloads/bayesys/bayesys_repository.pdf

8.2 Open problems

In Constantinou et al. (2023) , we examine the challenges of causal structure learning using a

unique COVID-19 UK pandemic dataset collated from various public sources (dataset

described in subsection 7.4.2). Given that causal models allow us to simulate the impact of

hypothetical interventions, we consider the COVID-19 problem, which necessitated prompt

and unprecedented decisions in response to unforeseen events, as an ideal test scenario for

causal structure learning. This section serves to outline the key issues in causal structure

learning based on this case study, to be considered for future research directions.

https://github.com/kiattikunc/CCHM
https://github.com/kiattikunc/mFGES-BS
https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM
https://github.com/kiattikunc/OTSL
http://constantinou.info/downloads/bayesys/bayesys_repository.pdf

Page 99 of 116

We investigate the influence of different data formats (discrete, continuous, mixed) on

29 algorithms that belong to various learning classes (constraint-based, score-based, hybrid,

continuous optimisation). We assess the outcomes generated by each algorithm, as well as

groups of algorithms, in terms of graphical structure, model complexity, sensitivity analysis,

confounding variables, predictive and interventional inference. Throughout our analysis, we

identify the following open problems:

a) Large inconsistencies in the learnt output: The learnt structures show significant

inconsistency amongst the different structure learning algorithms analysed. This

inconsistency is observed in terms of the number of edges, the specific edges

discovered, and the orientation of those edges within the generated graphs. More

specifically, the learnt outputs vary in the number of edges - ranging from 7 to 98, and

in the number of free parameters – ranging from 162 to above 5 billion. Notably, the

level of inconsistency becomes more pronounced when comparing algorithms from

different learning classes (e.g., score-based or constraint-based) and when considering

different input data formats (e.g., categorical or continuous).

b) Algorithms are sensitive to the format of the input data: Many of the structural

discrepancies cannot be fully explained by differences between algorithms alone. This

is because the same algorithm would often produce very different graphs depending on

the input data format.

c) Algorithms that assume causal insufficiency are also inconsistent: The

inconsistency in the results also applies to algorithms that predict latent variables, by

uncovering structures that emphasise potential spurious relationships caused by latent

confounders. We would anticipate that these spurious edges would be discovered as

edges in the learnt graphs by algorithms that do not account for latent confounders.

However, our findings reveal that not only do the algorithms assuming causal

insufficiency identify contrasting spurious edges, but many of the predicted spurious

edges are absent in the majority of structures learnt by algorithms that do not

incorporate latent variables. These inconsistencies in the confounding effects raise

questions regarding the effectiveness of the structure learning algorithms that predict

latent confounders.

d) Predictive validation is not adequate: The extent of inconsistency amongst the

structure learning algorithms results in only trivial disparities in predictive validation.

However, when the evaluation is expanded to include interventional or sensitivity

analyses, substantial differences emerge. These empirical findings emphasise the

limitations of predictive validation in being able to differentiate causal systems and

offer meaningful insights into causal reasoning.

e) Model averaging a possible – but an imperfect – solution: A common approach

towards reducing the inconsistency in the learnt graphs involves performing model

averaging across a set of graphs, to obtain an average graph that is representative of that

set of learnt graphs. This is something that we also investigate, by grouping algorithms

in terms of learning class or data format as follows:

• All_score-based: the average graph derived from all score-based algorithms.

Page 100 of 116

• All_constraint-based: the average graph derived from all constraint-based

algorithms.

• All_hybrid: the average graph derived from all hybrid learning algorithms.

• All_quartiles: the average graph derived from all algorithms applied to the discrete

dataset discretised using quartiles.

• All_k-means: the average graph derived from all algorithms applied to the discrete

dataset discretised using k-means clustering.

• All_continuous: the average graph derived from all algorithms applied to the

continuous dataset.

• All_mixed: the average graph derived from all algorithms applied to the mixed

dataset.

While model averaging is found to indeed reduce variability, we also find that the

average graphs for each group are all different from one another. Figure 8.1 illustrates the F1

score produced by each average graph relative to a knowledge-based causal graph about

COVID-19.

Figure 8.1 The F1 scores produced by each average graph with reference to the knowledge

graph.

f) Learning from continuous data is not adequate: The algorithms designed for

learning from continuous data demonstrate a tendency to generate considerably denser

graphs compared to the graphs they would learn from discretised data. Furthermore,

these denser graphs were found to deviate further from the knowledge-based causal

graph. This finding also applies to continuous optimisation, which was initially viewed

as a promising new learning class through the NOTEARS algorithm (Zheng et al.,

2018), but has proven unsatisfactory in practical applications (Constantinou et al., 2021;

Kaiser and Sipos, 2022). Based on these observations, we propose that structure

learning from continuous data not only poses a substantial risk of model overfitting but

also tends to recover numerous edges that are likely associational rather than causal.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Knowledge

All_constraint

All_continuous

All_hybrid

All_k-means

All_mixed

All_quartiles

All_score-based
All_constraint-based

All_continuous

All_hybrid

All_k-means

All_mixed

All_quartiles

All_score-based

Page 101 of 116

Appendix A

The figures presented in this section complement the results presented in Chapter 5.

Figure A1 Average performance of the algorithms when applied to synthetic data generated from

the Formed network, assuming one intervened variable and 5% latent variables per dataset, over two

sample sizes.

0.55

0.6

0.65

0.7

0.75

0.8

2 3 4 5 6 7 8 9 10

F1

interventional data sets

0

500

1000

1500

2000

2500

2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

)

interventional data sets

0.7

0.75

0.8

0.85

0.9

0.95

2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

#E
d

ge

interventional data sets

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

Page 102 of 116

Figure A2 Average performance of the algorithms when applied to synthetic data generated from the

Pathfinder network, assuming one intervened variable and 5% latent variables per dataset, over two

sample sizes.

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 3 4 5 6 7 8 9 10

F1

interventional data sets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

)

interventional data sets

120

140

160

180

200

220

240

1 2 3 4 5 6 7 8 9 10

#E
d

ge

interventional data sets

Page 103 of 116

Figure A3 Average performance of the algorithms when applied to synthetic data generated from

the Formed network, assuming five intervened variables and 5% latent variables per dataset, over

two sample sizes.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.5

0.55

0.6

0.65

0.7

0.75

2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

2 3 4 5 6 7 8 9 10

F1

interventional data sets

0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

)

interventional data sets

0.5

0.55

0.6

0.65

0.7

0.75

2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

80

100

120

140

1 2 3 4 5 6 7 8 9 10

#E
d

ge

interventional data sets

Page 104 of 116

Figure A4 Average performance of the algorithms when applied to synthetic data generated from

the Pathfinder network, assuming five intervened variables and 5% latent variables per dataset,

over two sample sizes.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

interventional data sets

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2 3 4 5 6 7 8 9 10

R
ec

al
l

interventional data sets

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Ed

ge

interventional data sets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 3 4 5 6 7 8 9 10

F1

interventional data sets

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

)

interventional data sets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7 8 9 10

B
SF

interventional data sets

Page 105 of 116

Appendix B

The tables presented in this section complement the results presented in Chapter 6.

Page 105 of 116

Table B1 All scores for each algorithm and dataset combination with sample size of 10k, where Memory indicates out-of-memory error in enumerating the

possible MAGs, and Timeout indicates failure to complete learning within the 12-hour time limit. The best scores are indicated in bold.

BN (Latent confounder)

IL
C

-V
F

C
I

H
C

L
C

-V
F

C
I

IL
C

-V
G

F
C

I

H
C

L
C

-

V
G

F
C

I

C
IL

G
L

S
L

IL
C

-V
F

C
I

H
C

L
C

-V
F

C
I

IL
C

-V
G

F
C

I

H
C

L
C

-

V
G

F
C

I

C
IL

G
L

S
L

 p-ELBO Runtime (Sec)

Asia (smoke) -17,860 -17,860 -17,601 -17,601 -17,039 -16,135 119 100 155 106 302 947

Sports (Rdlevel) -92,014 -92,864 -92,014 -92,864 -99,741 -99,741 431 727 612 789 533 628

Property

(propertyPurchaseValue)
-285,084 -285,084 -238,090 -238,267 -283,142 -275,212 6235 5,630 59,806 51,545 3,124 18,270

Property (borrowing) -277,035 -277,035 -239,289 -239,520 -277,440 -269,719 21,655 5,019 44,331 22,239 3,317 17,522

Property

(otherPropertyExpenses)
-284,024 -284,038 -237,178 -236,998 -285,975 -277,949 3,332 2,269 3,893 18,367 3,182 19,273

Alarm (INTUBATION) -119,906 -119,845 -104,919 -105,096 -133,084 Memory 2,258 5,502 14,357 22,508 6,584 Timeout

Alarm (HYPOVOLEMIA) Memory -126,194 -101,997 -102,960 -131,819 Memory Memory 3,739 12,605 3,565 9,796 Timeout

Alarm (LVFAILURE) Memory -129,574 -103,761 -103,720 -134,606 Memory Memory 2,510 16,050 3,920 5,439 Timeout

Alarm (ERRCAUTER) Memory -121,536 -103,492 -103,530 -132,280 Memory Memory 2,253 21,023 3,594 5,979 Timeout

Alarm (PULMEMBOLUS) Memory -126,811 -103,652 -103,624 -135,116 Memory Memory 2,606 12,306 3,163 5,841 Timeout

Alarm (KINKEDTUBE) Memory -125,698 -108,480 -102,803 -134,869 Memory Memory 2,790 12,283 2,029 5,261 Timeout

 LL BIC

Asia (smoke) -17,857 -17,857 -17,599 -17,599 -16,986 -1,6069 -17,977 -17,977 -17,764 -17,764 -17,087 -16,208

Sports (Rdlevel) -91,876 -92,630 -91,876 -92,630 -99,327 -99,327 -93,000 -93,887 -93,000 -93,887 -100,009 -100,009

Property

(propertyPurchaseValue)
-284,729 -284,780 -237,915 -238,285 -281,780 -274,089 -288,312 -288,450 -252,720 -252,321 -283,797 -276,576

Property (borrowing) -276,671 -276,671 -239,296 -239,378 -276,006 -268,558 -279,835 -279,835 -245,725 -246,364 -278,096 -271,202

Property

(otherPropertyExpenses)
-283,867 -283,867 -237,110 -237,256 -284,519 -276,810 -287,165 -287,796 -244,874 -245,048 -286,660 -279,421

Alarm (INTUBATION) -119,729 -119,758 -104,551 -104,742 -132,401 Timeout -121,921 -121,881 -110,036 -110,245 -133,594 Timeout

Alarm (HYPOVOLEMIA) Memory -126,100 -101,914 -102,852 -131,124 Timeout Memory -128,039 -104,889 -105,873 -132,340 Timeout

Alarm (LVFAILURE) Memory -129,488 -103,619 -103,617 -133,902 Timeout Memory -131,335 -106,691 -106,712 -135,141 Timeout

Alarm (ERRCAUTER) Memory -121,443 -103,416 -103,429 -131,578 Timeout Memory -123,317 -106,386 -106,427 -132,812 Timeout

Alarm (PULMEMBOLUS) Memory -126,715 -103,512 -103,502 -134,418 Timeout Memory -128,622 -106,496 -106,504 -135,639 Timeout

Alarm (KINKEDTUBE) Memory -116,421 -108,034 -102,706 -134,162 Timeout Memory -118,328 -111,299 -105,262 -135,405 Timeout

Page 106 of 116

Table B2 All scores for each algorithm and dataset combination with sample size of 1k, where Memory indicates out-of-memory error in enumerating the

possible MAGs, and Timeout indicates failure to complete learning within the 12-hour time limit. The best scores are indicated in bold.

BN (Latent confounder)

IL
C

-V
F

C
I

H
C

L
C

-

V
F

C
I

IL
C

-V
G

F
C

I

H
C

L
C

-

V
G

F
C

I

C
IL

G
L

S
L

IL
C

-V
F

C
I

H
C

L
C

-

V
F

C
I

IL
C

-V
G

F
C

I

H
C

L
C

-

V
G

F
C

I

C
IL

G
L

S
L

 p-ELBO Runtime (sec)

Asia (smoke) -1,845 -1,845 -1,807 -1,807 -1,796 -1,679 45 114 40 61 17 109

Sports (Rdlevel) -9,296 -9,417 -9,296 -9,417 -10,228 -10,228 135 68 353 74 55 50

Property (propertyPurchaseValue) -34,496 -34,532 -24,565 -24,596 -29,040 -28,076 1,775 188 1,918 557 212 1,864

Property (borrowing) -35,042 -35,080 Memory -24,044 -28,518 -27,534 505 41 Memory 1,794 227 1,873

Property (otherPropertyExpenses) -35,929 -35,979 -24,079 -24,079 -29,382 -28,363 533 55 10,311 628 222 1,964

Alarm (INTUBATION) Memory -14,802 -10,966 -11,068 -13,777 -11,581 Memory 288 4,862 2,004 429 1,878

Alarm (HYPOVOLEMIA) Memory -14,660 -10,908 -11,010 -13,721 -11,117 Memory 291 1,769 665 518 13,740

Alarm (LVFAILURE) Memory -14,821 -11,074 -11,075 -13,989 -11,307 Memory 227 1,082 473 377 7,763

Alarm (ERRCAUTER) Memory -14,678 -11,024 -11,017 -13,693 -11,254 Memory 213 5,509 386 307 6,432

Alarm (PULMEMBOLUS) Memory -15,081 -11,053 -11,055 -13,994 -11,294 Memory 181 1,184 418 303 14,328

Alarm (KINKEDTUBE) Memory -14,948 -10,889 -10,963 -13,896 -11,203 Memory 294 5,017 374 356 6,119

 LL BIC

Asia (smoke)
-1,843 -1,843 -1,806 -1,806 -1,757 -1,628 -1,932 -1,932 -1,930 -1,930 -1,840 -1,794

Sports (Rdlevel) -9,245 -9,323 -9,245 -9,323 -9,983 -9,983 -10,011 -10,159 -10,011 -10,159 -10,460 -10,460

Property (propertyPurchaseValue) -34,451 -34,467 -24,427 -24,478 -28,266 -27,405 -35,308 -35,330 -29,645 -29,552 -29,737 -29,132

Property (borrowing) -34,998 -35,015 Memory -24,366 -27,709 -26,846 -35,810 -35,833 Memory -29,143 -29,235 -28,691

Property (otherPropertyExpenses) -35,882 -35,914 -24,240 -24,548 -28,563 -27,685 -36,732 -36,746 -29,518 -29,874 -30,128 -29,505

Alarm (INTUBATION) Memory -14,722 -10,947 -11,002 -13,334 -10,906 Memory -15,596 -14,239 -14,421 -14,229 -13,355

Alarm (HYPOVOLEMIA) Memory -12,823 -10,791 -10,900 -13,272 -10,446 Memory -14,301 -12,870 -12,993 -14,190 -14,646

Alarm (LVFAILURE) Memory -13,177 -10,956 -10,962 -13,539 -10,619 Memory -14,580 -13,011 -13,024 -14,457 -14,857

Alarm (ERRCAUTER) Memory -14,624 -10,902 -10,909 -13,241 -10,571 Memory -15,473 -12,989 -12,995 -14,160 -14,816

Alarm (PULMEMBOLUS) Memory -15,009 -10,935 -10,938 -13,543 -10,608 Memory -15,873 -12,976 -12,990 -14,451 -14,718

Alarm (KINKEDTUBE) Memory -14,901 -10,825 -10,850 -13,443 -10,526 Memory -15,781 -12,777 -12,839 -14,368 -14,791

Page 107 of 116

Bibliography

H. Akaike. A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723, 1974. doi: 10.1109/TAC.1974.1100705.

M. J. Beal and Z. Ghahramani. The variational Bayesian EM algorithm for incomplete data:

with application to scoring graphical model structures. Statistics, 07 2002.

M. J. Beal and Z. Ghahramani. Variational Bayesian learning of directed graphical models

with hidden variables. Bayesian Analysis, 1:793–831, 2006.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM monitoring

system: A case study with two probabilistic inference techniques for belief networks. In J.

Hunter, J. Cookson, and J. Wyatt, editors, AIME 89, pages 247–256, Berlin, Heidelberg,

1989. Springer Berlin Heidelberg. ISBN 978-3-642-93437-7.

D. I. Bernstein, B. Saeed, C. Squires, and C. Uhler. Ordering-based causal structure learning

in the presence of latent variables. In International Conference on Artificial Intelligence

and Statistics, 2019.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

K. Biza, I. Tsamardinos, and S. Triantafillou. Tuning causal discovery algorithms. In M.

Jaeger and T. D. Nielsen, editors, Proceedings of the 10th International Conference on

Probabilistic Graphical Models, volume 138 of Proceedings of Machine Learning

Research, pages 17–28. PMLR, 23–25 Sep 2020.

K. Biza, I. Tsamardinos, and S. Triantafillou. Out-of-sample tuning for causal discovery.

IEEE Transactions on Neural Networks and Learning Systems, pages 1–11, 2022. doi:

10.1109/TNNLS.2022.3185842.

R. Bouckaert. Bayesian Belief Networks: From Construction to Inference. Universiteit

Utrecht, Faculteit Wiskunde en Informatica, 1995. ISBN 9789039308486.

R. Castelo and A. Siebes. Priors on network structures. biasing the search for Bayesian

networks. International Journal of Approximate Reasoning, 24(1):39–57, 2000. ISSN

0888-613X. doi: https://doi.org/10.1016/S0888-613X(99)00041-9.

J. Chen and Z. Chen. Extended BIC for small-n-large-p sparse GLM. Statistica Sinica, 22, 04

2012. doi: 10.5705/ss.2010.216.

J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning Bayesian networks from data:

An information-theory based approach. Artificial Intelligence, 137(1):43–90, 2002. ISSN

0004-3702. doi: https://doi.org/10.1016/S0004-3702(02)00191-1.

Y. Chen and J. Tian. Finding the k-best equivalence classes of Bayesian network structures

for model averaging. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1),

Jun. 2014. doi:10.1609/aaai.v28i1.9064.

D. M. Chickering. Optimal structure identification with greedy search. J. Mach. Learn. Res.,

3 (null):507–554, Mar. 2003. ISSN 1532-4435. doi:10.1162/153244303321897717.

https://doi.org/10.1016/S0888-613X(99)00041-9
https://doi.org/10.1016/S0004-3702(02)00191-1

Page 108 of 116

K. Chobtham and A. C. Constantinou. Bayesian network structure learning with causal effects

in the presence of latent variables. In M. Jaeger and T. D. Nielsen, editors, Proceedings of

the 10th International Conference on Probabilistic Graphical Models, volume 138 of

Proceedings of Machine Learning Research, pages 101–112. PMLR, 23–25 Sep 2020.

K. Chobtham and A. C. Constantinou. Discovery and density estimation of latent confounders

in Bayesian networks with evidence lower bound. In Proceedings of the 11th
 International

Conference on Probabilistic Graphical Models, volume 186 of Proceedings of Machine

Learning Research, pages 121–132. PMLR, 05–07 Oct 2022.

K. Chobtham, A. C. Constantinou, and N. K. Kitson. Hybrid Bayesian network discovery

with latent variables by scoring multiple interventions. Data Mining and Knowledge

Discovery volume, 37: pages 476–520, 2023. doi: 10.1007/s10618-022-00882-9.

K. Chobtham and A. C. Constantinou. Tuning structure learning algorithms with out-of-

sample and resampling strategies, arXiv:2306.13932, 2023. URL

https://arxiv.org/abs/2306.13932.

Z. Chun. A survey of selective ensemble learning algorithms. Chinese Journal of Computers,

2011.

J. Coid, S. Ullrich, C. Kallis, M. Freestone, R. Gonzalez, L. Bui, A. Igoumenou, A.

Constantinou, N. Fenton, W. Marsh, M. Yang, B. DeStavola, J. Hu, J. Shaw, M. Doyle, L.

Archer-Power, M. Davoren, B. Osumili, P. Mccrone, and P. Bebbington. Improving risk

management for violence in mental health services: a multimethods approach. Programme

Grants for Applied Research, 4:1–408, 11 2016. doi: 10.3310/pgfar04160.

D. Colombo and M. H. Maathuis. Order-independent constraint-based causal structure

learning. Journal of Machine Learning Research, 15(116):3921–3962, 2014.

D. Colombo, M. Maathuis, M. Kalisch, and T. Richardson. Learning high-dimensional

directed acyclic graphs with latent and selection variables. Annals of Statistics - ANN

STATIST, 40, 04 2011. doi: 10.1214/11-AOS940.

A. C. Constantinou. Evaluating structure learning algorithms with a balanced scoring

function. CoRR, arXiv: 1905.12666, 2019.

A. C. Constantinou. Learning Bayesian networks that enable full propagation of evidence.

IEEE Access, 8:124845–124856, 2020.

A. C. Constantinou and N. Fenton. The future of the London buy-to-let property market:

Simulation with temporal Bayesian networks. PLOS ONE, 12(6):1–30, 06 2017. doi:

10.1371/journal.pone.0179297.

A. C. Constantinou, N. E. Fenton, and M. Neil. Profiting from an inefficient association

football gambling market: Prediction, risk and uncertainty using Bayesian networks.

Knowledge-Based Systems, 50:60–86, 2013. ISSN 0950-7051. doi:

https://doi.org/10.1016/j.knosys.2013.05.008.

A. C. Constantinou, M. Freestone, W. Marsh, N. Fenton, and J. Coid. Risk assessment and

risk management of violent reoffending among prisoners. Expert Systems with

https://arxiv.org/abs/2306.13932
https://doi.org/10.1016/j.knosys.2013.05.008

Page 109 of 116

Applications, 42(21): 7511–7529, 2015. ISSN 0957-4174. doi:

https://doi.org/10.1016/j.eswa.2015.05.025.

A. C. Constantinou, N. Fenton, and M. Neil. Integrating expert knowledge with data in

Bayesian networks: Preserving data-driven expectations when the expert variables remain

unobserved. Expert Systems with Applications, 56:197–208, 2016. ISSN 0957-4174. doi:

https://doi.org/10.1016/j.eswa.2016.02.050.

A. C. Constantinou, Y. Liu, K. Chobtham, Z. Guo, and N. K. Kitsoni. The Bayesys data and

Bayesian network repository. Queen Mary University of London, London, UK. [Online],

2020. URL http://bayesian-ai.eecs.qmul.ac.uk/bayesys/.

A. C. Constantinou, Y. Liu, K. Chobtham, Z. Guo, and N. K. Kitson. Large-scale empirical

validation of Bayesian network structure learning algorithms with noisy data. International

Journal of Approximate Reasoning, 131:151–188, 2021. ISSN 0888-613X. doi:

https://doi.org/10.1016/j.ijar.2021.01.001.

A. C. Constantinou, Y. Liu, N. K. Kitson, K. Chobtham, and Z. Guo. Effective and efficient

structure learning with pruning and model averaging strategies. International Journal of

Approximate Reasoning, 151:292–321, 2022. ISSN 0888-613X. doi:

https://doi.org/10.1016/j.ijar.2022.09.016.

A. C. Constantinou, N. K. Kitson, Y. Liu, K. Chobtham, A. Hashemzadeh, P. A. Nanavati,

R. Mbuvha, and B. Petrungaro. Open problems in causal structure learning: A case study

of COVID-19 in the UK, Expert Systems with Applications, Vol 234, 2023, 121069, ISSN

0957-4174.

G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational

data. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,

UAI’99, page 116–125, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers

Inc. ISBN 1558606149.

T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in

Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN

0471241954.

J. Cussens. Bayesian network learning with cutting planes. In Proceedings of the Twenty-

Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, page 153–160,

Arlington, Virginia, USA, 2011. AUAI Press. ISBN 9780974903972.

J. Cussens. An upper bound for BDeu local scores. 2012.

C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of Bayesian networks using

constraints. In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML ’09, page 113–120, New York, NY, USA, 2009. Association for

Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553389.

A. de Waal, H. Koen, P. de Villiers, H. Roodt, N. Moorosi, and G. Pavlin. Construction and

evaluation of Bayesian networks with expert-defined latent variables. In 2016 19th

International Conference on Information Fusion (FUSION), pages 774–781, 2016.

https://doi.org/10.1016/j.eswa.2015.05.025
https://doi.org/10.1016/j.eswa.2016.02.050
http://bayesian-ai.eecs.qmul.ac.uk/bayesys/
https://doi.org/10.1016/j.ijar.2021.01.001
https://doi.org/10.1016/j.ijar.2022.09.016

Page 110 of 116

J. de Zoete, N. Fenton, T. Noguchi, and D. Lagnado. Resolving the so-called “probabilistic

paradoxes in legal reasoning” with Bayesian networks. Science and Justice, 59(4):367–

379, 2019. ISSN 1355-0306. doi: https://doi.org/10.1016/j.scijus.2019.03.003.

M. Drton, M. Eichler, and T. Richardson. Computing maximum likelihood estimates in

recursive linear models with correlated errors. Journal of Machine Learning Research, 10,

01 2006. doi: 10.1145/1577069.1755864.

D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain interventions. In

M. Meila and X. Shen, editors, Proceedings of the Eleventh International Conference on

Artificial Intelligence and Statistics, volume 2 of Proceedings of Machine Learning

Research, pages 107–114, San Juan, Puerto Rico, 21–24 Mar 2007. PMLR.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Monographs on statistics and

applied probability. 1994.

R. Fisher. The design of experiments. 1935. Oliver and Boyd, Edinburgh, 1935.

R. Fisher. On the probable error of the correlation coefficient to a second approximation. In

Metron, volume 1, pages 1–32, 1921.

R. Foygel and M. Drton. Extended Bayesian Information Criteria for Gaussian Graphical

Models. In Proceedings of the 23rd International Conference on Neural Information

Processing Systems - Volume 1, NIPS’10, page 604–612, Red Hook, NY, USA, 2010.

Curran Associates Inc.

N. Friedman. The Bayesian structural EM algorithm. In Conference on Uncertainty in

Artificial Intelligence, 1998.

M. Gasse, A. Aussem, and H. Elghazel. A hybrid algorithm for Bayesian network structure

learning with application to multi-label learning. Expert Systems with Applications,

41(15): 6755–6772, 2014. ISSN 0957-4174. doi:

https://doi.org/10.1016/j.eswa.2014.04.032.

M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. Schneider. 1

potassco: The potsdam answer set solving collection. AI Commun., 24:107–124, 01 2011.

doi: 10.3233/AIC-2011-0491.

D. Geiger and D. Heckerman. Learning Gaussian networks. In R. L. de Mantaras and D.

Poole, editors, Uncertainty Proceedings 1994, pages 235–243. Morgan Kaufmann, San

Francisco (CA), 1994. ISBN 978-1-55860-332-5. doi: https://doi.org/10.1016/B978-1-

55860-332-5.50035-3.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InR.

Kowalski, Bowen, and Kenneth, editors, Proceedings of International Logic Programming

Conference and Symposium, pages 1070–1080. MIT Press, 1988.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis, Second Edition.

Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2003. ISBN

9781420057294.

R. J. B. Goudie and S. Mukherjee. A Gibbs sampler for learning DAGs. Journal of Machine

Learning Research, 17(30):1–39, 2016.

https://doi.org/10.1016/j.scijus.2019.03.003
https://doi.org/10.1016/j.eswa.2014.04.032
https://doi.org/10.1016/B978-1-55860-332-5.50035-3
https://doi.org/10.1016/B978-1-55860-332-5.50035-3

Page 111 of 116

X. Guo, Y. Wang, X. Huang, S. Yang, and K. Yu. Bootstrap-based causal structure learning.

In ”Proceedings of the 31st ACM International Conference on Information and Knowledge

Management”, CIKM ’22, page 656–665, New York, NY, USA, 2022. Association for

Computing Machinery. ISBN 9781450392365. doi: 10.1145/3511808.3557249. URL

https://doi.org/10.1145/3511808.3557249.

Z. Guo and A. C. Constantinou. Approximate learning of high dimensional Bayesian network

structures via pruning of candidate parent sets. Entropy, 22(10), 2020. ISSN 1099-4300.

doi:10.3390/e22101142.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109, 1970. ISSN 00063444.

A. Hauser and P. Buhlmann. Characterization and greedy learning of interventional Markov

equivalence classes of directed acyclic graphs, J. Mach. Learn. Res., 13(1):2409–2464,

Aug 2012. ISSN.

J. Hausser and K. Strimmer. Entropy inference and the james-stein estimator, with application

to nonlinear gene association networks. J. Mach. Learn. Res., 10:1469–1484, Dec 2009.

ISSN 1532-4435.

D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert systems: Part I the

pathfinder project. Methods of information in medicine, 31:90–105, 07 1992. doi:

10.1055/s-0038-1634867.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. In R. L. de Mantaras and D. Poole, editors,

Uncertainty Proceedings 1994, pages 293–301. Morgan Kaufmann, San Francisco (CA),

1994. ISBN 978-1-55860-332-5. doi: https://doi.org/10.1016/B978-1-55860-332-

5.50042-0.

A. Hyttinen, F. Eberhardt, and M. Jarvisalo. Constraint-based causal discovery: Conflict

resolution with answer set programming. In Proceedings of the Thirtieth Conference on

Uncertainty in Artificial Intelligence, UAI’14, page 340–349, Arlington, Virginia, USA,

2014. AUAI Press. ISBN 9780974903910.

F. Jabbari and G. Cooper. An instance-specific algorithm for learning the structure of causal

Bayesian networks containing latent variables. Proceedings of the SIAM International

Conference on Data Mining, pages 433–441, 03 2020. doi: 10.1137/1.9781611976236.49.

F. Jabbari, J. Ramsey, P. Spirtes, and G. F. Cooper. Discovery of causal models that contain

latent variables through Bayesian scoring of independence constraints. Machine learning

and knowledge discovery in databases : European Conference, ECML PKDD, 2017:142–

157, 2017.

W. James and C. Stein. Estimation with Quadratic Loss. In Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions

to the Theory of Statistics, pages 361–379, Berkeley, Calif., 1961. University of California

Press.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An Introduction to Variational

Methods for Graphical Models, page 105–161. MIT Press, Cambridge, MA, USA, 1999.

https://doi.org/10.1145/3511808.3557249
https://doi.org/10.1016/B978-1-55860-332-5.50042-0
https://doi.org/10.1016/B978-1-55860-332-5.50042-0

Page 112 of 116

M. Kaiser and M. Sipos. Unsuitability of NOTEARS for causal graph discovery when dealing

with dimensional quantities. Neural Process. Lett., 54(3):1587–1595, jun 2022. ISSN

1370-4621. doi: 10.1007/s11063-021-10694-5. URL https://doi.org/10.1007/s11063-021-

10694-5.

M. Kalisch, M. Machler, D. Colombo, M. H. Maathuis, and P. B ¨ uhlmann. Causal inference

using graphical models with the r package pcalg. Journal of Statistical Software, 47, 2012.

doi: 10.18637/jss.v047.i11. URL http://CRAN.R-project.org/package=pcalg.

E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha,

G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C.

Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph. The

ncep/ncar 40-year reanalysis project. Bulletin of the American Meteorological Society,

1996. URL https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html.

D. P. Kingma and M. Welling. Auto-encoding Variational Bayes, 2013. URL

https://arxiv.org/abs/1312.6114.

N. K. Kitson and A. C. Constantinou. Learning Bayesian networks from demographic and

health survey data. Journal of Biomedical Informatics, 113:103588, 2021. ISSN 1532-

0464. doi: https://doi.org/10.1016/j.jbi.2020.103588.

N. K. Kitson, A. C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of Bayesian

network structure learning. Artificial Intelligence Review, 2023. ISSN 1573-7462. doi:

10.1007/s10462-022-10351-w.

K. B. Korb, L. R. Hope, A. E. Nicholson, and K. Axnick. Varieties of causal intervention. In

C. Zhang, H. W. Guesgen, and W.-K. Yeap, editors, PRICAI 2004: Trends in Artificial

Intelligence, pages 322–331, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

J. Kuipers, P. Suter, and G. Moffa. Efficient sampling and structure learning of Bayesian

networks. Journal of Computational and Graphical Statistics, 31(3):639–650, 2022. doi:

10.1080/10618600.2021.2020127.

E. Kummerfeld. A simple interpretation of undirected edges in essential graphs is wrong.

PLOS ONE, 16(4):1–12, 04 2021. doi: 10.1371/journal.pone.0249415. URL

https://doi.org/10.1371/journal.pone.0249415.

L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems. Journal of the Royal Statistical Society:

Series B (Methodological), 50(2):157–194, 1988.

H. Liu, K. Roeder, and L. Wasserman. Stability Approach to Regularization Selection

(StARS) for high dimensional graphical models, In Proceedings of the 23rd International

Conference on Neural Information Processing Systems - Volume 2, NIPS’10, page 1432–

1440, Red Hook, NY, USA, 2010. Curran Associates Inc.

C. Ma, S. Tschiatschek, J. M. Hernandez-Lobato, R. Turner, and C. Zhang. VAEM: A deep

generative model for heterogeneous mixed type data, 2020.

URL https://arxiv.org/abs/2006.11941.

https://doi.org/10.1007/s11063-021-10694-5
https://doi.org/10.1007/s11063-021-10694-5
http://cran.r-project.org/package=pcalg
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://arxiv.org/abs/1312.6114
https://doi.org/10.1016/j.jbi.2020.103588
https://doi.org/10.1371/journal.pone.0249415.8S
https://arxiv.org/abs/2006.11941

Page 113 of 116

M. H. Maathuis, M. Kalisch, and P. Buhlmann. Estimating high-dimensional intervention

effects from observational data. The Annals of Statistics, 37(6A):3133–3164, Dec 2009.

ISSN 0090-5364. doi: 10.1214/09-aos685.

D. Madigan, S. A. Andersson, M. D. Perlman, and C. T. Volinsky. Bayesian model averaging

and model selection for Markov equivalence classes of acyclic digraphs. Communications

in Statistics - Theory and Methods, 25(11):2493–2519, 1996. doi:

10.1080/03610929608831853.

S. Magliacane, T. Claassen, and J. M. Mooij. Ancestral causal inference, In Proceedings of

the 30th International Conference on Neural Information Processing Systems, NIPS’16,

page 4473–4481, Red Hook, NY, USA, 2016. Curran Associates Inc.

D. Malinsky and P. Spirtes. Estimating bounds on causal effects in high-dimensional and

possibly confounded systems. International Journal of Approximate Reasoning, 88, 06

2017. doi: 10.1016/j.ijar.2017.06.005.

D. Margaritis. Distribution-free learning of Bayesian network structure in continuous

domains. In Proceedings of the 20th National Conference on Artificial Intelligence -

Volume 2, AAAI’05, page 825–830. AAAI Press, 2005. ISBN 157735236x.

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In

Advances in Neural Information Processing Systems, volume 12. MIT Press, 1999.

Y. McLatchie, S. Rognvaldsson, F. Weber, and A. Vehtari. Robust and efficient projection

predictive inference, 2023.

J. M. Mooij, S. Magliacane, and T. Claassen. Joint causal inference from multiple contexts,

J. Mach. Learn. Res., 21(1), Jan 2020. ISSN 1532-4435.

I. Niemela. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

ISSN 1012-2443. doi: 10.1023/A:1018930122475.

C. Nowzohour, M. Maathuis, and P. Buhlmann. Structure learning with bow-free acyclic path

diagrams, Stat, 1050:7, 2015.

J. M. Ogarrio, P. Spirtes, and J. Ramsey. A hybrid causal search algorithm for latent variable

models. In A. Antonucci, G. Corani, and C. P. Campos, editors, Proceedings of the Eighth

International Conference on Probabilistic Graphical Models, pages 368–379, 2016.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 1988

J. Pearl. Causality: Models, reasoning, and inference, second edition. Causality, 29, 01 2000.

doi:10.1017/CBO9780511803161.

J. Pearl and D. Mackenzie. The Book of Why: The New Science of Cause and Effect. Penguin

Books Limited, 2018. ISBN 9780241242643.

K. Pearson. On the criterion that a given system of deviations from the probable in the case

of a correlated system of variables is such that it can be reasonably supposed to have arisen

Page 114 of 116

from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, 50(302):157–175, 1900. doi: 10.1080/14786440009463897.

J. Peters and P. Buhlmann. Identifiability of Gaussian structural equation models with equal

error variances. Biometrika, 101(1):219–228, 11 2013. ISSN 0006-3444. doi:

10.1093/biomet/ast043.

J. Piironen and A. Vehtari. Comparison of Bayesian predictive methods for model selection.

Statistics and Computing, 27(3):711–735, Apr. 2016. ISSN 1573-1375. doi:

10.1007/s11222-016-9649-y.

J. Ramsey, P. Spirtes, and J. Zhang. Adjacency-faithfulness and conservative causal

inference. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial

Intelligence, UAI’06, page 401–408, Arlington, Virginia, USA, 2006. AUAI Press. ISBN

0974903922.

J. D. Ramsey. Scaling up greedy equivalence search for continuous variables. CoRR,

abs/1507.07749, 2015.

K. Rantanen, A. Hyttinen, and M. Jarvisalo. Maximal ancestral graph structure learning via

exact search. In C. de Campos and M. H. Maathuis, editors, Proceedings of the Thirty-

Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings

of Machine Learning Research, pages 1237–1247. PMLR, 27–30 Jul 2021.

T. Richardson and P. Spirtes. Ancestral graph Markov models. Annals of Statistics, 30, 11

2000. doi: 10.1214/aos/1031689015.

D. Rickles. Causality in complex interventions. Medicine, Health Care and Philosophy,

12:77–90, 2009.

F. Rodriguez-Sanchez. mpc-mixed library, 2021. URL https://github.com/ferjorosa/mpc-

mixed.

F. Rodriguez-Sanchez, P. Larranaga, and C. Bielza. Incremental learning of latent forests.

IEEE Access, 8:224420–224432, 2020. doi: 10.1109/ACCESS.2020.3027064.

F. Rodriguez-Sanchez, C. Bielza, and P. Larranaga. Multipartition clustering of mixed data

with Bayesian networks. International Journal of Intelligent Systems, 37(3):2188–2218,

2022. doi: https://doi.org/10.1002/int.22770.

M. Scanagatta, G. Corani, and M. Zaffalon. Improved local search in Bayesian networks

structure learning. In A. Hyttinen, J. Suzuki, and B. Malone, editors, Proceedings of The

3rd
 International Workshop on Advanced Methodologies for Bayesian Networks, volume

73 of Proceedings of Machine Learning Research, pages 45–56. PMLR, 20–22 Sep 2017.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,

1978. ISSN 00905364. URL http://www.jstor.org/stable/2958889.

M. Scutari. An empirical-Bayes score for discrete Bayesian networks, In European Workshop

on Probabilistic Graphical Models, 2016.

M. Scutari. Bnlearn dataset repository, 2019.

URL https://www.bnlearn.com/bnrepository.

https://github.com/ferjorosa/mpc-mixed
https://github.com/ferjorosa/mpc-mixed
https://doi.org/10.1002/int.22770
http://www.jstor.org/stable/2958889
https://www.bnlearn.com/bnrepository

Page 115 of 116

M. Scutari and A. Brogini. Bayesian network structure learning with permutation tests.

Communications in Statistics - Theory and Methods, 41(16-17):3233–3243, 2012.

M. Scutari, C. E. Graafland, and J. M. Gutierrez. Who Learns Better Bayesian Network

Structures: Accuracy and Speed of Structure Learning Algorithms. International Journal

of Approximate Reasoning, 115:235–253, 2019. ISSN 0888-613X. doi:

https://doi.org/10.1016/j.ijar.2019.10.003.

M. Scutari, C. Vitolo, and A. Tucker. Learning Bayesian networks from big data with greedy

search: computational complexity and efficient implementation. Statistics and Computing,

pages 1–14, 2018.

T. Silander, P. Kontkanen, and P. Myllymaki. On sensitivity of the MAP Bayesian network

structure to the equivalent sample size parameter. UAI’07, page 360–367, Arlington,

Virginia, USA, 2007. AUAI Press. ISBN 0974903930.

R. Sokal and F. Rohlf. Biometry: The Principles and Practice of Statistics in Biological

Research. W. H. Freeman, 1981. ISBN 9780716712541.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social

Science Computer Review, 9(1):62–72, 1991. doi: 10.1177/089443939100900106. URL

https://doi.org/10.1177/089443939100900106.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search, 2nd Edition,

volume 1 of MIT Press Books. The MIT Press, August 2001.

C. Squires. causaldag Python library, 2018.

URL https://github.com/uhlerlab/causaldag.

H. Steck. Learning the Bayesian network structure: Dirichlet prior vs data. In D. A.

McAllester and P. Myllymaki, editors, UAI 2008, Proceedings of the 24th Conference in

Uncertainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008, pages 511–518.

AUAI Press, 2008.

P. Suter, J. Kuipers, G. Moffa, and N. Beerenwinkel. Bayesian structure learning and

sampling of Bayesian networks with the r package BiDAG. Journal of Statistical Software,

105(1):1–31, 2023. doi: 10.18637/jss.v105.i09.

S. Thornley, R. Marshall, R. Jackson, D. Gentles, N. Dalbeth, S. Crengle, A. Kerr, and S.

Wells. Is serum urate causally associated with incident cardiovascular disease?

Rheumatology (Oxford, England), 52, 10 2012. doi: 10.1093/rheumatology/kes269.

J. Tian and J. Pearl. Causal discovery from changes: a Bayesian approach. In Conference on

Uncertainty in Artificial Intelligence, 2001.

S. Triantafillou and I. Tsamardinos. Constraint-based causal discovery from multiple

interventions over overlapping variable sets. Journal of Machine Learning Research,

16(66):2147–2205, 2015.

S. Triantafillou and I. Tsamardinos. Score-based vs constraint-based causal learning in the

presence of confounders. In CFA@UAI, 2016.

https://doi.org/10.1016/j.ijar.2019.10.003
https://doi.org/10.1177/089443939100900106
https://github.com/uhlerlab/causaldag

Page 116 of 116

S. Triantafillou, K. Tsirlis, V. Lagani, and I. Tsamardinos. MATLAB library, 2019. URL

https://github.com/mensxmachina/M3HC.

I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Time and sample efficient discovery of

Markov blankets and direct causal relations. In Proceedings of the ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’03, page 673–

678, New York, NY, USA, 2003. Association for Computing Machinery. ISBN

1581137370. doi: 10.1145/956750.956838.

I. Tsamardinos, L. Brown, and C. Aliferis. The max-min hill-climbing Bayesian network

structure learning algorithm. Machine Learning, 65:31–78, 10, 2006. doi: 10.1007/s10994-

006-6889-7.

K. Tsirlis, V. Lagani, S. Triantafillou, and I. Tsamardinos. On scoring maximal ancestral

graphs with the max–min hill climbing algorithm. International Journal of Approximate

Reasoning, 102, 08 2018. doi: 10.1016/j.ijar.2018.08.002.

M. Ueno. Robust learning Bayesian networks for prior belief. In F. G. Cozman and A. Pfeffer,

editors, UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in

Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 698–707. AUAI Press,

2011.

H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno. Evaluation methods for

topic models. In Proceedings of the 26th Annual International Conference on Machine

Learning, ICML ’09, page 1105–1112, New York, NY, USA, 2009. Association for

Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553515.

Y. Wang, L. Solus, K. D. Yang, and C. Uhler. Permutation-based causal inference algorithms

with interventions, In Proceedings of the 31st International Conference on Neural

Information Processing Systems, NIPS’17, page 5824–5833, Red Hook, NY, USA, 2017.

Curran Associates Inc. ISBN 9781510860964.

C. Wongchokprasitti. R-causal R Wrapper for Tetrad Library, v1.1.1, 2019. URL

https://github.com/bd2kccd/r-causal.

K. Yamasaki, A. Gozolchiani, and S. Havlin. Climate networks around the globe are

significantly affected by el nino. Phys. Rev. Lett., 100:228501, Jun 2008. doi:

10.1103/PhysRevLett.100.228501.

J. Zhang. Causal inference and reasoning in causally insufficient systems. Technical report,

2006.

J. Zhang. On the completeness of orientation rules for causal discovery in the presence of

latent confounders and selection bias. Artificial Intelligence, 172, 11 2008. doi:

10.1016/j.artint.2008.08.001.

X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. DAG with no tears: Continuous

optimization for structure learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 31. Curran Associates, Inc., 2018

https://github.com/mensxmachina/M3HC
https://github.com/bd2kccd/r-causal

