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ABSTRACT  

A causal Bayesian Network (BN) is a probabilistic graphical model that captures causal or 

conditional relationships between variables, and enables causal reasoning under uncertainty. 

Causal reasoning via graphical representation in turn enables interpretability and full 

transparency in decision-making, and this makes causal BNs suitable for modelling critical 

real-world problems that require explainability, such as in healthcare, environmental sciences, 

government policy and economics. 

Learning accurate causal structure from data represents a notoriously difficult task, and 

this difficulty increases with any imperfections present in the input data. For example, real data 

tend not to capture all relevant variables needed for causal representation, and these missing 

variables are referred to as hidden or latent variables. If some of the latent variables are latent 

confounders (i.e., missing common causes), they would confound the effect variables, thereby 

leading to spurious relationships in the learnt structure that could be misinterpreted as causal 

relationships. While the relevant literature includes structure learning algorithms that are 

capable of learning causal structure from data with latent variables, it is fair to say that accurate 

structural discovery from real data remains an open problem.  

This thesis studies structure learning algorithms that recover graphical structure from 

data, and primarily focuses on the problem of latent variables. It investigates new solutions, 

including structure learning algorithms that learn from both observational and interventional 

data, approaches for density estimation that can be used to recover the underlying distribution 

of possible latent confounders, and techniques for hyperparameter optimisation of structure 

learning algorithms. The thesis explores this set of new approaches by applying them to a range 

of synthetic and real datasets of varying size, dimensionality, and data noise, and concludes by 

highlighting open problems and directions for future research. 
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Chapter 1 

 

Introduction  
 

Machine learning is rapidly evolving in both academic and industry settings. Black-box 

machine learning, and particularly deep learning, has proven to be effective in areas where 

causal representation may not be essential, such as in Natural Language Processing (NLP), 

machine vision, and sound information processing. However, the advancements in deep 

learning have also highlighted the limitations of black-box machine learning in providing 

interpretable solutions in critical real-world areas where decisions must be explained and 

justified. Causal models such as causal Bayesian Networks (BNs) proposed by Pearl (1988), 

do offer the interpretability that is necessary for transparency and explainability. A causal BN 

achieves this through graphical representation that enables quantitative reasoning under causal 

assumptions, where variables are represented by nodes and causal probabilistic dependencies 

between variables are represented by directed edges.  

Pearl and Mackenzie (2018) argue that there are three progressive levels of reasoning 

needed for machines to achieve effective real-world decision making; namely predictive, 

interventional and counterfactual reasoning. They call this "The ladder of causation". 

Specifically, at Level 1, models are limited to establishing associational relationships and 

generating predictions that are based exclusively on those relationships. For instance, they can 

answer questions such as "What symptoms are most likely to be observed in the presence of 

disease A?". Moving up to Level 2, models at this stage incorporate a form of causal 

representation that enables them to address questions relating to interventions. For example, 

"What would be the effect of taking drug A on symptoms B, considering that they are caused 

by disease C?" Finally, at Level 3, this highest level of causal representation enables answering 

questions about causation that extend to counterfactual reasoning. For instance, they can 

respond to inquiries such as, "Would the severity of my symptoms caused by disease C be 

reduced if I had opted for drug B instead of drug A?". Pearl (2000) argues that only causal 

models, including causal BNs, can address inquiries related to all three levels of causation.  

Over the past few decades, BNs have been widely used for decision making under 

uncertainty in diverse real-world applications. For instance, 

• Thornley et al. (2012) utilised a causal BN to investigate the risk of cardiovascular 

disease; 
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• Constantinou et al. (2013) developed a causal BN to measure the performance of 

football teams and predict match outcomes; 

• de Waal et al. (2016) used a causal BN to conduct a case study on rhino poaching; 

• Constantinou and Fenton (2017) demonstrated the use of causal BNs in modelling 

investment decision making in the UK property market; 

• de Zoete et al. (2019) employed a BN to illustrate the limitations of probability 

theory in legal reasoning, particularly in relation to legal paradoxes. 

When BNs are applied in practice, the causal structure of these models is often determined by 

knowledge and expert judgments. However, knowledge elicitation requires access to expertise, 

which can be costly and time consuming. These limitations gave rise to algorithms that 

automatically recover the underlying causal structure from data. Nowadays, many applications 

of BN models rely on structure learning algorithms, some of which enable users to specify 

knowledge-based constraints that restrict or guide structure learning towards graphical 

structures that are consistent with prior expert knowledge (Castelo and Siebes, 2000). 

1.1 Problem statement and Research hypothesis 

The process of learning BNs from data is generally separated into two main tasks: structure 

learning and parameter learning. The former represents an unsupervised approach that 

determines the structure of a BN model, whereas the latter represents the process of learning 

the conditional distributions given the learnt structure. This thesis focuses on the problem of 

structure learning.  

Learning causal structure from data is known to be an NP-hard problem where the 

number of possible graphs grows super-exponentially with the number of the variables. 

Moreover, large or dense networks tend to require large sample sizes to parameterise them with 

reasonable accuracy, and this adds further pressures to computational complexity which 

increases both with the number of the variables and the sample size. Moreover, these challenges 

are elevated when the input data are imperfect (Constantinou et al., 2021).  

Structure learning algorithms rely on unrealistic assumptions that rarely, if ever, hold 

in practice. One such assumption is that the input data are noise-free and that they incorporate 

all possible causes. Because real data are rarely perfect, learning accurate causal models from 

real data remains a notoriously difficult task. This partly explains why BNs are yet to produce 

the level of real-world impact observed by some of the associational ML techniques, such as 

deep learning and reinforcement learning which excel in areas where causal representation is 

not necessary. 

Not capturing all the relevant variables needed for accurate causal representation is an 

example of learning from imperfect data. This specific problem is often referred to as learning 

in the presence of unmeasured or latent variables, or under the assumption of causal 

insufficiency (Spirtes et al., 2001). A latent confounder, which is a special case of a latent 

variable, represents a variable missing from data that is a common cause of two or more 

observed variables, and tends to lead to spurious edges between observed variables that may 

be misinterpreted as causal relationships. This thesis investigates these challenges and focuses 

on improving structure learning accuracy, primarily in the presence of latent variables.  
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1.2 Structure of the thesis 

The thesis is structured as follows: 

a) Chapter 2 provides preliminary information and covers past studies related to these 

preliminaries. It starts by covering the main features of BNs and then focuses on 

structure learning terminology, including descriptions of some of the main classes of 

learning and some of the algorithms underpinning them.  

b) Chapter 3 focuses on contributions that come from two published papers in which I 

am a co-author. The chapter starts by summarising the results published by 

Constantinou et al. (2021) where we investigate the impact of data noise on structure 

learning. The chapter includes the results of a model averaging structure learning 

algorithm we propose in (Constantinou et. al., 2022) for recovering graphical structures 

from noisy data. The material presented in this chapter provides a brief summary of 

these two publications. 

c) Chapter 4 focuses on a conference publication I led (Chobtham and Constantinou, 

2020), where we propose a structure learning algorithm that recovers Gaussian BNs 

from data under the assumption of causal insufficiency. The material presented in this 

chapter primarily comes from the published paper.  

d) Chapter 5 describes another structure learning algorithm that focuses on learning 

discrete, rather than Gaussian, BNs from data under the assumption of causal 

insufficiency. Moreover, this algorithm is designed such that is capable of learning from 

multiple datasets that capture both observational and interventional data. The material 

presented in this chapter primarily comes from the relevant Journal publication I led 

(Chobtham et al., 2023). 

e) Chapter 6 presents a modified Variational Bayes method that can be combined with 

structure learning algorithms that predict latent confounders, to approximate the actual 

distributions of the predicted latent confounders. The material presented in this chapter 

comes from the relevant conference publication I led (Chobtham and Constantinou, 

2022). 

f) Chapter 7 describes a tuning algorithm that can be paired with structure learning 

algorithms to optimise their hyperparameters. The material presented in this chapter 

comes from a paper I led that is currently under peer-review (Chobtham and 

Constantinou, 2023).  

g) Chapter 8, the final chapter of this thesis, begins with a summary of concluding 

remarks and looks at possible directions for future research. This chapter ends by 

highlighting important open problems in causal structure learning as partly identified 

by this thesis and another study in which I am a co-author (Constantinou et al., 2023). 
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Chapter 2 

 

Background information and literature review 

 

This chapter begins by providing necessary background information on BNs, and then moves 

to structure learning algorithms and methods for evaluating the discovery of causal or 

conditional dependency structures. The chapter ends with relevant literature review on these 

topics. Subsequent chapters provide additional, albeit more specialised, background 

information and literature review related to those chapters. 

2.1 Bayesian networks  

A causal BN is a generative model represented by a Directed Acyclic Graph (DAG) G, where 

nodes 𝐗 = {X1, … , XN} represent random variables and directed edges represent dependencies 

or causal relationships between variables (Pearl, 1988). The dependencies between variables 

are described via conditional probabilities P(Xi|parent(Xi)), where parent(Xi) is the set of 

parents of node Xi in the DAG. The joint distribution over all nodes is defined as the product 

of all conditional probabilities as follows: 

P(X1, . . . XN) =  ∏ P(Xi|parent(Xi))

N

i=1

 

Given a DAG G, we call orientations or marks at the ends of any edges which consist 

of arrowheads (>) and tails (-). Two nodes are adjacent if there is any type of edge between 

them. If A → B is present in G, A is called a parent of B and B is called a child of A. A path is 

a sequence of nodes X which nodes Xi and Xi+1 are adjacent. For a direct path, Xi must be the 

parent of Xi+1. If there exists an indirect path from A to B, we classify A as an ancestor of B 

and B as a descendant of A. Node X is called a collider if two directed edges are entering X. If 

X is not a collider, X will be called a non-collider. A v-structure is an unshielded triple A, B and 

C where node C is the collider (A ⟶ C ⟵ B). Finally, the Markov Blanket of a node A, denoted 

as MB(A), encompasses the parents, children, and parents of children of A. It represents the 

smallest set of nodes that render A independent of all other nodes. In other words, MB(A) acts 

as a shield, protecting A from the influence of all other variables. 
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Definition 1 – d-separation: Given a graph 𝐺, where 𝐴 and B are two nodes in 𝐺 and C is a 

set of nodes not containing A or B in 𝐺, A and B are d-connected given C (A⊥/ B | C) if every 

non-collider on paths between A and B is not a member of C or every collider on paths between 

A and B has a descendant in C. If A and B are not d-connected given C, then they are d-

separated given C (A ⊥ B | C), or we say that there is no active path between A and B relative 

to C (Pearl, 1988). 

Inference in BNs is often described in terms of the following three causal classes: 

a) Serial connection (Causal chain): As shown in Figure 2.1, in this scenario node A 

serves as the cause of node C, and node C serves as the cause of node B. 

Consequently, the influence of A on B is transmitted through C. However, if node C 

is observed, A has no longer influence on B. This prevents any active path between 

A and B given an observation on C. According to Definition 1 of d-separation, we 

can deduce that A and B are d-separated given C (A ⊥ B | C). 
 

 
 

Figure 2.1 An example of a serial connection. 

  

b) Divergence connection (Common cause): Figure 2.2 illustrates a scenario where 

node C acts as the cause of both A and B. If C is observed, then the path is blocked 

between the children of C. Consequently, we can infer that nodes A and B are d-

separated given C (A ⊥ B | C).  

 

Figure 2.2 An example of a divergence connection. 

c) Converging connection (Common effect): The relationship depicted in Figure 2.3 

exhibits a notable characteristic known as "explaining away", which occurs when 

node C acts as the effect of both node A and node B. In this scenario, nodes A, B and 

C form a v-structure, with node C acting as the collider. According to Definition 1 

of d-separation, if node C is observed, then the path between its parents becomes 

active. Consequently, we can infer that A and B are conditionally dependent given 

C (A ⊥/  B | C). 
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Figure 2.3 An example of a converging connection.  

2.1.1 Markov property and Markov condition 

BNs assume the Markov property and the Markov condition. It is through the Markov property 

that a DAG, representing a set of nodes, encodes a set of CI relationships on the joint 

probability distribution. We can formally define the Markov property as follows: 

Definition 2: Markov property Given a DAG 𝐺 and a joint probability distribution P, we 

say that the distribution P satisfies: 

a) The global Markov property with respect to G if 

             A ⊥G B | C ⇒ A ⊥P B | C for all disjoint nodes A, B and set of node C.    
 

b) The local Markov property if every node X in G is conditionally independent of 

its non-descendants given its parents.  
 

c) The Markov factorisation property if P can be decomposed as follows:  
 

P = ∏ P(Xi | 𝐏𝐚N
i=1 ( Xi )); where 𝐏𝐚(Xi) are the parents of node Xi. 

Using the Markov property, we can establish the relationship known as the Markov 

condition or causal Markov condition. This condition serves as a bridge principle that 

connects the causal interpretation of a DAG with probability distributions. The Markov 

condition can be described as follows: 

Definition 3: Markov condition Given a DAG 𝐺, every node is conditionally independent of 

its non-descendants given its parents in 𝐺. 

2.1.2 Intervention 

As discussed in the introduction, BNs enable decision makers to model problems that go 

beyond prediction, such as by enabling the simulation of hypothetical interventions to estimate 

the effect of intervention. Pearl (2000) initially defined an intervention as an action that forces 

the state of a variable in a BN to a particular value. This action causes parts of the data 

generating process to change and induces an interventional distribution which might differ 

from the corresponding observational distribution. Pearl describes the difference between 

“given that we see” as observational data and “given that we do” as interventional data. Classic 

randomised controlled trials that capture treatments and their outcomes (Fisher, 1935) can be 

viewed as one kind of system suitable for generating interventional data. They typically involve 

randomly assigning patients into two groups, where the so-called treatment group is given the 

drug being tested, and the control group is given a placebo. If the outcome distribution differs 

significantly between the two groups, the difference is viewed as the effect of the drug.  

 

 

 



 

Page 8 of 116 
 
 

 

Figure 2.4 An illustration of the mechanisms of Perfect, Imperfect, and Uncertain interventions, 

where the square box represents the target node(s), ΘX|Y
0 , ΘY

0  are the parameters for nodes X and Y 

respectively when I = 0 (representing no intervention), and ΘX|Y
1 , ΘY

1  are the parameters for nodes X 

and Y respectively when I = 1 (representing an external imperfect or an uncertain intervention).  

Figure 2.4 illustrates the three different intervention mechanisms by comparing the pre-

intervention and post-intervention actions. Specifically, a Perfect intervention is what Pearl 

describes as do-calculus (do(X)) where the intervened variable is set to a given state with no 

uncertainty (Pearl, 2000). A perfect intervention modifies the original causal structure by 

rendering the intervened variable independent of its causes (also referred to as graph surgery). 

On the other hand, an Imperfect intervention or a mechanism change (Tian and Pearl, 2001)  

can be viewed as having external intervention nodes that act like switching parents I on an 

intervened variable X for each external intervention node. Specifically, I = 1 activates the 

intervention where the target node X is parameterised over ΘX
1 , whereas when I = 0 the 

intervention is deactivated and target node X is parameterised over ΘX
0 , which would imply no 

external influence on node X. Applications of imperfect intervention are often observed in 

healthcare studies, where medicine and therapeutic actions often have an imperfect effect in 

terms of treating symptoms or curing diseases (Rickles, 2009).  

Lastly, an Uncertain intervention (Eaton and Murphy, 2007) represents the case where 

an external intervention I has multiple target nodes, or where the intervention on node X comes 

from more than one intervening route, as opposed to the imperfect intervention that assumes 
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the relationship between intervention nodes and target nodes is one-to-one. Unlike perfect 

intervention, imperfect and uncertain interventions do not modify the graph and instead 

manipulate the node parameters. 

2.2 Structure learning  

When BNs are applied in practice, their structure is determined by knowledge, structure 

learning, or a combination of both (Castelo and Siebes, 2000; Constantinou et al., 2016). This 

subsection focuses on algorithms that can be used to recover causal or conditional dependency 

structure from data. Structure learning methods tend to fall generally into two main categories: 

constraint-based learning and score-based learning. Additionally, there exist hybrid or other 

approaches, such as continuous rather than combinatorial optimisation, that are sometimes 

viewed as additional categories.  

2.2.1 Constraint-based learning 

The class of constraint-based learning primarily represents structure learning algorithms that 

rely on statistical CI tests to establish the CI relationships between variables and generate a 

graph skeleton based on observational data. Subsequently, the edge directions are determined 

by conditional dependence and other orientation rules to the constrained skeleton. The 

orientation phase depends on the accuracy of the skeleton and hence, any errors from the first 

phase are propagated to the orientation phase. Additionally, this class is often assumed to 

discover causal relationships under the assumption of causal faithfulness; an assumption that 

might not hold when working with real data. The faithfulness condition is defined as: 

Definition 4: Faithfulness condition Given a DAG 𝐺 and a joint probability distribution P, 

we say that 𝐺 and P satisfy the faithfulness condition if 𝐺 entails all CI relationships in P, and 

all CI relationships in P are entailed by 𝐺, based on the Markov condition. 

Figure 2.5 An example where G is unfaithful to its joint probability distribution P. 

When both the DAG G and the probability distribution P satisfy the faithfulness 

condition, we say that G and P are faithful to each other. In other words, G is a perfect map of 

P(A=0,C=0), P(A=0)P(C=0) = 0.09375 

P(A=0,C=1), P(A=0)P(C=1) = 0.15625     

P(A=1,C=0), P(A=1)P(C=0) = 0.28125 

P(A=1,C=1), P(A=1)P(C=1) = 0.46875   

P(A,C)=P(A)P(C) for all values, and hence A ⊥ C   
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P. However, it is important to note that the faithfulness condition may not be intuitively 

determined at first glance. For instance, Figure 2.5 (Kitson et al., 2023) provides a simple 

illustration where the graph G exhibits two paths A → B and B → C, which cancel each other's 

influence. Consequently, this creates an independence relationship between nodes A and C in 

the joint probability distribution P that is not implied by G. As a result, we can deduce that P 

and G are unfaithful in this case. 

2.2.1.1 Conditional Independence (CI) tests  

Learning causal structures from CI tests may lead to graphical outputs that are not a DAG, but 

which relate to a Markov equivalence class. We can formally define the Markov equivalence 

class as follows: 

Definition 5: Markov equivalence class: Two DAGs are Markov equivalent and belong to 

the same Markov equivalence class if they entail the same set of CI relationships.  

The DAGs depicted in Figures 2.1 and 2.2 entail the same CI relationship A ⊥ B | C. This 

implies that the DAGs cannot be distinguished by their CI relationships from observational 

data. As a result, these DAGs belong to the same Markov equivalence class. A Markov 

equivalence class of DAGs can be uniquely represented by a Completed Partially Directed 

Acyclic Graph (CPDAG). The CPDAG includes undirected edges that cannot be assigned a 

specific orientation based on observational data. For example, the CPDAG of both DAGs 

depicted in Figures 2.1 and 2.2 is A − C − B. 

CI tests could be determined by different statistical functions suitable for measuring 

independence. Some of the commonly used such functions include: 

a) Fisher’s z test 

Fisher's z-test is a statistical test commonly used for continuous variables, specifically for linear 

Gaussian data (Fisher, 1921). It is defined as follows: 

Z(ρAB.𝐂, n) =
1

2
√n − |𝐂| − 3 ln [

|1 + ρAB.𝐂|

|1 − ρAB.𝐂|
] 

where ρAB.𝐂 represents the partial correlation coefficient between variables A and B given 𝐂, n 

is denoted by the sample size, and |𝐂| denotes the number of variables in set 𝐂. The calculation 

of the partial correlation coefficient is given by: 

ρAB.𝐂 =
ρAB − ρA𝐂ρB𝐂

√1 − ρA𝐂
2 √1 − ρB𝐂

2
 

To determine whether a null hypothesis is rejected or accepted, a p-value is used as a 

test statistic or probability value, compared to a predefined significance threshold (α), typically 

set at 0.01, 0.05, or 0.1. If the p-value is less than α, the null hypothesis is rejected, indicating 

that variables A and B are conditionally dependent given 𝐂. Conversely, if the p-value is greater 

than α, the null hypothesis is not rejected, and hence variables A and B are conditionally 

independent given 𝐂. 
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b) Pearson’s chi2 test  

The Pearson’s chi2 statistical test (Pearson, 1900) is a commonly used function for testing CI 

given discrete data. It assumes a null hypothesis that node A and node B are conditionally 

independent given the set of nodes 𝐂. The test produces a p-value of the test statistic, which is 

used to determine whether to reject or accept the null hypothesis. The significance threshold α 

serves as the hyperparameter of the Pearson’s chi2 test. The formula for the Pearson’s chi2 test 

is: 
 

χ2 = 2 ∑
(nabc − mabc)2

nabc
 

where nabc is the number of instances in the data D where A = a, B = b and 𝐂 = c, mabc =

 
nac⋅nbc

nc
, and the calculation of the number of instances of nac, nbc and nc is analogous to that 

of nabc. We will use Chi2 interchangeably with the Pearson’s chi2 test for the rest of this thesis. 
 

c) G2 test 

The G2 statistical test (Sokal and Rohlf, 1981) is a likelihood ratio test commonly applied to 

assess CI with discrete variables. This test exhibits asymptotic equivalence to the Chi2 test and 

is defined as follows: 

 

G2 = 2 ∑ nabcln
nabcnc

nacnbc
 

d) Mutual Information (MI) test 

Shannon’s Mutual Information (MI) was introduced as a measure of mutual dependence 

between two discrete variables (Cover and Thomas 2006). The mutual information between 

two nodes A and B is defined as: 

MI(A, B) = ∑ p̂(a, b)ln [
p̂(a, b)

p̂(a)p̂(b)
]

a,b

 

where p̂(a, b) refers to p̂(A = a, B = b) as the probability p(a, b) derived from the maximum 

likelihood estimate. It is calculated as p̂(a, b) =
nab

n
, where n is the total number of samples, 

and the process of calculating p̂(a) and p̂(b) is analogous to that of p̂(a, b). Consequently, 

conditional MI can be used for CI test, defined as: 

MI(A, B | 𝐂) =  ∑ p̂(a, b, c)ln

a,b,c

[
p̂(a, b, c)p̂(c)

p̂(a, c) ⋅ p̂(b, c)
] 

where p̂(a, b, c) = 
nabc

n
 and the calculation of p̂(a, c), p̂(b, c) and p̂(c) is analogous to that of 

p̂(a, b, c). The significance threshold α serves the same purpose as in the Fisher's z-test, the 

Chi2 test and the G2 test, i.e., if MI(A, B | 𝐂) is greater than α, node A and node B are 

conditionally independent given 𝐂.  
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e) Shrinkage Mutual Information test (MI-sh) 

James and Stein (1961) proposed a shrinkage estimate of MI for two random variables in the 

form of a regulariser, which they call the James-Stein-type shrinkage intensity λ. The 

conditional MI-sh test (Scutari and Brogini, 2012) between A and B given 𝐂 is defined as the 

expectation of MI − sh(A, B|𝐂) with respect to the distribution of 𝐂. As with the other CI 

functions, they use the significance threshold α to accept or reject the same null hypothesis. 

The MI-sh test is described as follows: 

MI − sh(A, B| 𝐂) = ∑ pshrink(a, b, c)log [
pshrink(a, b, c)pshrink(c)

pshrink(a, c)pshrink(b, c)
]

a,b,c

 

where: 

pshrink(a, b, c) = λ
1

|A||B||𝐂|
+ (1 − λ)p̂(a, b, c)   

 

pshrink(a, c) = λ
1

|A||𝐂|
+ (1 − λ)p̂(a, c) 

pshrink(b, c) = λ
1

|B||𝐂|
+ (1 − λ)p̂(b, c) 

pshrink(c) = λ
1

|𝐂|
+ (1 − λ)p̂(c) 

 

where |A|, |B| and |𝐂| denote the number of states of variables A, B and the set of variables 𝐂 

respectively, and λ is the shrinkage intensity. Hausser and Strimmer (2009) proposed a closed-

form estimator λ∗ that employs James-Stein-type shrinkage making it highly efficient 

computationally. In the case of estimating a single parameter, λ∗ is defined as: 

 

λ∗ =
1−∑ (p̂k)2V

k=1

(n−1) ∑ (
1

V
−p̂k)2V

k=1

  

where λ∗ = [0,1] is the shrinkage intensity, λ∗ = 0 means no shrinkage and λ∗ = 1 refers to 

full shrinkage, n is the sample size, and p̂1 … , p̂V are the probabilities of a variable and ∑ p̂kk  

=1. 

2.2.1.2 Causally Insufficient Systems 

 

 

 

 

 

 

Figure 2.6 (a) Latent confounder B in grey causes A and C. Definition 1 indicates that A and C are 

statistically dependent, leading to spurious directed edges in (b) and (c). The bidirected edge in the 

ancestral graph in (d) represents confounding. 

(b) (a) (c) (d) 
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In constraint-based learning, obtaining a DAG from data in the presence of latent variables can 

be problematic in the presence of latent confounders (Spirtes et al., 2001). Figure 2.6a presents 

a DAG where B is a latent confounder. Given Definition 1, A and C are statistically dependent. 

Therefore, in the absence of B, a spurious edge is typically discovered between A and C as 

illustrated in Figures 2.6b and 2.6c. Algorithms that account for latent confounders produce an 

ancestral graph that captures possible latent variables or latent confounders. Figure 2.6d 

presents an ancestral graph in which the bidirected edge indicates that the dependency between 

A and C may be due to confounding. Moreover, directed edges in ancestral graphs do not 

necessary represent direct causal relationships as in DAGs. Specifically, an ancestral graph is 

an extended version of a DAG under the assumption of causal insufficiency, in which the global 

Markov property offers the probabilistic interpretation that: if A and B are m-separated by C, 

then A and B are conditionally independent given C, where the m-separation definition in 

ancestral graphs aligns with the d-separation definition in DAGs.  

 A Maximal Ancestral Graph (MAG) (Richardson and Spirtes, 2000) is an ancestral 

graph where arcs indicate direct or ancestral relationships and bidirected edges represent 

confounding. A Partial Ancestral Graph (PAG) represents a set of Markov equivalent MAGs 

(Spirtes et al., 2001), in the same way a CPDAG represents a set of Markov equivalent DAGs, 

that entail the same set of CIs or m-separation criteria. A MAG can contain the following types 

of edges: —, →, and ↔. The undirected edge A— B indicates that A is an ancestor of B or a 

selection variable, and B is an ancestor of A or a selection variable. The selection variable 

indicates the presence of selection bias in the dataset. In this thesis, we do not explore selection 

bias and hence, the learnt MAGs or PAGs presented by the structure learning algorithms 

investigated will not include an undirected edge. Further, the directed edge A → B in a MAG 

or a PAG indicates parental or ancestral relationships, and the bidirected edge A ↔ B refers to 

the presence of a latent confounder where A and B are related but where neither A is an ancestor 

of B nor B is an ancestor of A. In a PAG, the variant mark (o) at the endpoint of edges indicates 

that the endpoint could be a tail (–) or an arrowhead (>) in the equivalence class of MAGs. For 

example, o→ in the PAG indicates that the edge can be either ↔ or → in the equivalent MAGs, 

whereas o—o indicates that the edge in the equivalent MAGs can be →, ← or ↔. Both MAGs 

and PAGs are acyclic graphs and do not allow the existence of almost directed cycles that may 

occur when A ↔ B is present and B is an ancestor of A (Richardson and Spirtes, 2000). Figure 

2.7 illustrates an example of a DAG with latent variables L1 and L2, along with two examples 

of its Markov equivalent MAGs, and the PAG representing the Markov equivalence class of 

those MAGs (Chobtham and Constantinou, 2020). 
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Figure 2.7 A causal DAG with observed variables {V, W, X, Y, Z} ∪ latent variables {L1, L2} in grey, 

with two examples of Markov equivalent MAGs, and the Markov equivalent PAG of MAGs.   

2.2.1.3 Constraint-based algorithms  

Constraint-based algorithms can be divided into those which assume causal sufficiency and 

those which assume causal insufficiency. In describing these algorithms, we place a greater 

focus on algorithms that assume causal insufficiency, since they better fall within the scope of 

this thesis. We start with those that assume causal sufficiency, and some of the widely-used 

include: 

a) GS: Grow-Shrink (GS) is a constraint-based algorithm that utilises the concept of 

Markov Blankets to reduce the number of CI tests required (Margaritis and Thrun, 

1999). It identifies the Markov Blanket for each variable, determines the undirected 

skeleton of the graph, and orientates edges to produce a Partially Directed Acyclic 

Graph (PDAG) in which the only edges that are directed are those that are part of 

colliders. 
 

b) PC, CPC and PC-Stable: The PC-Stable algorithm (Colombo and Maathuis, 2014) is 

a modified version of the classic constraint-based algorithm PC (Spirtes and Glymour, 

1991) and produces a PDAG. PC-Stable addresses the variable order-dependency issue 

of PC by changing the order in which edge deletions are performed and by 

incorporating the v-structure phase from the CPC algorithm (Ramsey et al, 2006) 

(details are provided below). PC and its variant PC-Stable are considered the gold 

standard for benchmarking constraint-based learning algorithms. 
 

c) Inter-IAMB: This is an enhanced variant of the IAMB algorithm (Tsamardinos, et al. 

2003), employing an interleaved approach that combines the grown and shrink phases. 

The primary objective is to minimise the size of the Markov Blanket. By reducing the 

size of the Markov Blanket, Inter-IAMB achieves more precise results in the CI tests. 

Many variants that are based on the above algorithms have been proposed under the 

assumption of causal sufficiency. However, some of the variants do assume causal 

insufficiency, and aim to recover a graph structure in the presence of latent variables. One of 

the most widely-used such constraint-based algorithms is Fast Causal Inference (FCI) (Spirtes 
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et al., 2001). FCI modifies the PC algorithm (Spirtes and Glymour, 1991) such that it produces 

a PAG output, consistent with causal insufficiency considerations. Specifically, FCI first 

determines the adjacencies by employing CI tests to remove edges (dependencies) from a 

completed undirected graph in the adjacency phase, just like in PC. It then performs CI tests 

by checking all pairs of nodes A and B given an empty set to remove edges A − B and 

progressively increasing the size of the conditioning sets or the separated sets (Sepsets) until a 

pre-defined Sepset size is reached. In this phase, the algorithm only considers Sepset members 

which are adjacent to A and B. Moreover, FCI makes use of the result of the Sepset obtained 

in this phase to be considered in the next v-structure phase. Next, the v-structure phase performs 

edge orientation given the graph skeleton. Specifically, if the Sepset for A and B does not 

contain C for an unshielded triple A − C − B, then the v-structure phase identifies it as the v-

structure A ⟶ C ⟵ B. However, Sepsets in an ancestral graph can contain nodes which are 

not adjacent to A or B (Spirtes et al., 2001). The FCI algorithm uses complex strategies, such 

as Possible-D-Sep(A, B), to determine additional edges to remove. The v-structure orientation 

is subsequently repeated on this new skeleton. Finally, the FCI algorithm orientates some of 

the remaining undirected edges based on four orientation rules and by ensuring to that the 

creation of new v-structures is prevented.  

Many modified versions of FCI have been published in the literature and include the 

augmented FCI (Zhang, 2008) which improves the orientation phase by extending the 

orientation rules of FCI from four to ten that are said to produce a sound and complete PAG. 

Others include the conservative rule FCI algorithm (cFCI) that incorporates CPC by Ramsey 

et al. (2006) to improve the edge orientation accuracy in the v-structure phase. Compared to 

FCI, cFCI performs additional CI tests on every pair of nodes A and B given on all subsets of 

all neighbours of A and B including C, for each unshielded triple A − C − B. The conservative 

rule in cFCI classifies each unshielded triple as either a definite v-structure, a definite non v-

structure, or an ambiguous triple, e.g. if C is not in any Sepsets A and B, the conservative rule 

will classify the unshielded triple A − C − B as a definite v-structure. Therefore, cFCI is more 

cautious about orientating edges than FCI; hence, the name “conservative”.  

Colombo and Maatthuis (2014) studied the impact of incorrect CI tests and found their 

outcome to be sensitive to the lexicographic ordering of the variable names – or on the order 

of the variables as read from data. To address this issue, they proposed PC-Stable and FCI-

Stable by processing all the CI tests at each Sepset size, and removing edges at the end of – not 

during – the CI process. In the v-structure phase, FCI-Stable follows the approach adopted by 

cFCI by considering all the Sepsets of A and B in triple A − C − B to decide whether it is a v-

structure. Colombo and Maatthuis (2014) also found that the conservative rule was orientating 

only few of the v-structures and proposed the majority rule in the v-structure phase which can 

be viewed as a relaxed version of the conservative rule. They call this new variant mFCI. 

Specifically, in mFCI, the majority rule classifies each unshielded triple A − C − B as: 

a) A v-structure if C is in less than 50% of the Sepsets of A and B, 

b) A non v-structure if C is in more than 50% of the Sepsets of A and B, 

c) An ambiguous triple if C is in 50% of the Sepsets of A and B. 

Lastly, the Really Fast Causal Inference algorithm (RFCI) was proposed by Colombo 

et al. (2011). This variant skips one adjacency phase and one v-structure phase in FCI, and 

therefore performs fewer CI tests. This modification makes the algorithm faster and more 
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suitable to problems that involve thousands of variables, in exchange for a minor reduction in 

the accuracy of the learnt graph.  

2.2.2 Score-based learning 

Score-based methods can be viewed as a traditional machine learning approach that combines 

search with objective functions to identify the highest scoring graph. As previously mentioned 

in the introduction, the problem of structure learning is NP-hard, making an exhaustive search 

across all possible graphs impractical. To address this challenge, heuristic search techniques 

such as greedy search or hill-climbing search are often employed. However, these methods 

often get stuck in local optima. Exact search algorithms, such as Branch & Bound or Integer 

Linear Programming (ILP), guarantee the identification of the highest scoring graph within the 

search-space of graphs, but the search-space of these algorithms is generally restricted to a 

small maximum node in-degree to ensure reasonable computation times.  

2.2.2.1 Objective scores 

The objective scores used in score-based learning are usually score-equivalent, which means 

that they generate the same score for DAGs that are part of the same Markov equivalence class 

or CPDAG. The two most used score-equivalent objective functions are described below. 

a) The Bayesian Dirichlet equivalent uniform (BDeu)  

The BDeu score represents the Maximum A Posteriori (MAP) structure. It is a variant of BD 

and BDe scores, and assumes equivalent uniform priors. Importantly, these are decomposable 

scores where the total score of the graph represents the sum of the scores assigned to each of 

its nodes. A decomposable score is important for structure learning because most local scores 

can be reused, rather than recomputed, when exploring neighbouring graphs. The BD score 

was first introduced by Heckerman et al. (1994), under the assumption that the data follow a 

Dirichlet distribution. Pairing structure learning with BD as the objective function implies that 

the algorithm searches for a DAG G that maximises the posterior probability P(G|D) given the 

data D. In this case, structure learning from data can be viewed as an optimisation problem to 

maximise P(G|D) ∝ P(G) P(D|G) where the highest posterior probability of a learnt graph G is 

approximated to the highest Log-Likelihood (LL) score:  

log P(G|D) = logP(G)+ log P(D|G) 

 

where P(G) is the prior distribution over all DAGs. Because the search space of DAGs grows 

super-exponentially with the number of variables, it is impractical to specify informative priors 

for each DAG. For simplicity, the prior distribution is often taken to be uniform. The BD score 

can be computed as follows: 

BD = ∏ ∏ [
Γ(Σkαijk)

Γ (Σkαijk + Σknijk)
∏

Γ(αijk + nijk)

Γ(αijk)

|Xi|

k=1

]

qi

j=1

N

i=1

 

where N is the number of variables, qi is the number of possible combinations of values of the 

parents of node Xi (it is 1 if there is no parent), j is the index over the combinations of values 

of the parents of node Xi, |Xi| is the number of states of node Xi, k is the index over the possible 

values of node Xi, Γ is the Gamma function, nijk is the total number of instances in data D where 
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the parents of node Xi have the jth combination of values, and αijk are the hyperparameters of 

the Dirichlet distribution. In BDeu, the hyperparameters are set to αijk =  iss
|Xi|qi

⁄  where iss 

is the imaginary sample size that represents the user’s prior belief about the impact of the prior 

distribution on the score. The study by Silander et al. (2007) suggests that reasonable 

hyperparameter values are iss ∈ [1,20], where larger iss values tend to produce denser DAGs. 

Because the BDeu score produces a small value, it is computationally convenient to take its 

log value. Its closed-form expression is:  

BDeuiss = ∑ ∑ [log
Γ (iss

qi
⁄ )

Γ (iss
qi

⁄ + Σknijk)
+ ∑ log

Γ (iss
|Xi|qi

⁄ + nijk)

Γ (iss
|Xi|qi

⁄ )

|Xi|

k=1

]

qi

j=1

N

i=1

   

 
b) Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) 

Schwarz (1978) proposed BIC as a model-selection function to reduce the risk of model-

overfitting by balancing the goodness-of-fit with model dimensionality. It is based on Occam’s 

razor principle in that the simplest solution is usually the best solution. Like BDeuiss, BIC is 

decomposable and score-equivalent, and is equally commonly used as the objective function 

in score-based structure learning. The general form of the score for discrete variables is 

expressed as: 

BIC(G, D) = LL(G, D) −
log(n)

2
F 

 

where n is the sample size, LL(G, D) denotes the LL of the data D given the graph G: 

 

LL(G, D) = log[p̂(D|G)] = ∑ ∑ ∑ Nijk

ri

k=1

qi

j=1

V

i=1

log
Nijk

Nij
 

 

and F is the complexity penalty represented by the number of free parameters of the model. It 

can be expressed as: 

F = ∑(ri − 1)qi

V

i=1

  

 

In Akaike Information Criterion (AIC) (Akaike, 1974), the penalty term is just the number of 

free parameters in the score which is defined as: 

 

AIC(G, D) = LL(G, D) − F 
 

2.2.2.2 Score-based algorithms  

Some of the state-of-the-art score-based algorithms that assume causal sufficiency include: 

a) FGS: This is an efficient version, proposed by Ramsey (2015), of the score-based 

Greedy Equivalence Search (GES) algorithm proposed by Chickering (2003). It 

improves the efficiency of GES through parallelisation and caching scores. FGS and 

GES search for Markov equivalence classes of DAGs instead of the entire DAG space, 

leading to polynomial time complexity. They consist of two learning phases referred to 



 

Page 18 of 116 
 
 

as the forward and backward search phases. In the forward phase, the learning process 

begins with an empty graph. At each iteration, the graph is explored by adding the edge 

that maximises the objective score. In the backward phase, edges are removed until no 

further edge removals increase the objective score.  
 

b) GOBNILP: The Integer Linear Programming (ILP) algorithm by Cussens (2011) offers 

exact learning by dividing structure learning into two phases. The first phase computes 

the scores for Candidate Parent Sets (CPSs), whereas the second phase optimally 

assigns parents to each node ensuring acyclicity. GOBNILP guarantees to return the 

graph with the highest score within the given search-space of graphs, but the search-

space is often restricted to a low maximum in-degree due to computational complexity 

considerations. 
 

c) HC: Hill-Climbing (HC) greedily searches the search-space of DAGs and returns the 

DAG that maximises a given objective score (Heckerman et al., 1994; Scutari et al., 

2018). It starts from an empty graph and iteratively performs local moves such as arc 

additions, deletions, or reversals to improve the graph's score until a local maximum is 

reached. 
 

d) NOTEARS: NOTEARS is a continuous optimisation algorithm that formulates a 

score-based algorithm to an equality-constrained problem with an acyclicity constraint 

(Zheng et al., 2018). Originally designed for continuous data, it also has applicability 

to ordinal discrete data. 
 

e) TABU: This is extension of the HC algorithm (Bouckaert, 1995; Scutari et al., 2018) 

that allows the exploration of lower-scoring local moves that are likely to help the 

algorithm escape from some local maxima. It also avoids revisiting previously 

encountered DAGs, promoting exploration of new regions in the DAG space. 
 

f) WINASOBS: An ordering-based algorithm by Scanagatta (2018) that is similar to ILP 

in terms of the two learning phases, but employs a simplified objective score called 

BIC*, and stronger pruning that does not guarantee exact learning. It is an approximate 

learning algorithm applicable to thousands of nodes. 

As with constraint-based algorithms, some score-based algorithms also perform 

structure learning under the assumption of causal insufficiency – but these score-based variants 

are recently proposed and hence, few of them are available and are restricted to linear Gaussian 

distributions.  

g) GSMAG: Possibly the first score-based variant that assumes causal insufficiency is the 

GSMAG algorithm that uses greedy search to discover structures from data under the 

assumption the input data are continuous and normally distributed (Triantafillou and 

Tsamardinos, 2016). GSMAG employs a variant of BIC as the objective function, 

suitable for discovering MAG structures (see subsection 4.1). 
 

h) BB: Rantanen et. al (2021) recently proposed the Branch-and-Bound algorithm (BB) 

for an exact score-based algorithm in the search-space of MAGs. BB employs dynamic 

programming and the branch-and-bound technique in conjunction with the BIC score 

for MAGs as in GSMAG.  
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2.2.3 Hybrid learning  

Hybrid learning algorithms combine techniques from both constraint-based learning and score-

based learning. This methodology typically involves utilising constraint-based approaches in 

an initial restrictive phase to limit the search space. Subsequently, objective scores are 

employed in a maximisation phase to identify the highest scoring graph while considering pairs 

of nodes that are constrained based on the outcomes of the restrictive phase. Some commonly 

used hybrid algorithms that assume causal sufficiency include: 

a) H2PC: Proposed by Gasse et al. (2014), H2PC combines the strengths of HPC and HC. 

HPC is an ensemble constraint-based algorithm that consists of three individual 

learners, each focusing on learning parents and children sets (PC learner). By 

integrating these learners, HPC aims to enhance the overall performance and reliability 

of the PC learner.  
 

b) MMHC: The Max-Min Hill-Climbing (MMHC) algorithm integrates principles from 

local-learning, constraint-based learning, and score-based learning. It starts by building 

a skeleton graph and then applies greedy hill-climbing search to determine the edge 

orientations or that skeleton (Tsamardinos et al., 2006). Renowned for its effectiveness 

in high-dimensional data, MMHC often serves as baseline for evaluating other structure 

learning methods. 
 

c) SaiyanH: This algorithm starts with CI tests that are used to produce a skeleton graph 

that can be viewed as a denser version of the maximum spanning tree. It then uses some 

of the results from CI, in conjunction with an objective score and the effect of 

intervention, to determine the orientation of those edges. The DAG is then given as an 

input to the TABU algorithm with the restriction not to remove edges that would lead 

to disjoint graphical fragments. This restriction ensures full propagation of evidence 

when the learnt structure is converted into a BN model (Constantinou, 2020).  

Hybrid algorithms that perform structure learning under the assumption of causal 

insufficiency include: 

d) GFCI: This algorithm by Ogarrio et al. (2016) combines the score-based FGS (Ramsey, 

2015) with the orientation rules of the constraint-based FCI. GFCI starts by obtaining 

the dependencies from the learnt CPDAG returned by FGS, and performs CI tests on 

those dependencies to remove potential false positive edges. The result of this process 

is a skeleton. The orientation rules of FCI are then used to orientate some of those edges 

and to produce a PAG. Due to various choices of CI tests and objective scores, GFCI 

can work with both discrete and continuous variables. 
 

e) M3HC: This algorithm by Tsirlis et al. (2018) produces a MAG by incorporating a 

constraint-based learning as the restriction phase to the GSMAG algorithm. M3HC 

assumes the data are continuous and normally distributed. Tsirlis et al. (2018) showed 

that hybrid algorithms such as M3HC and GFCI demonstrate better performance over 

other relevant constraint-based algorithms.  
 

f) RFCI-BSC: Jabbari et al. (2017) introduced RFCI-BSC as a model averaging variant 

of RFCI, that generates multiple potential models and returns the PAG with the highest 
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probability as the preferred graph. However, the algorithm’s process involves bootstrap 

sampling, where multiple datasets are created through resampling with replacement, 

which makes the algorithm non-deterministic. CI tests from RFCI are then applied to 

each of those datasets. This non-deterministic nature of RFCI-BSC necessitates running 

the algorithm multiple times and obtaining an average of the results to ensure reliable 

outcomes.  
 

2.2.4 Evaluating structure learning algorithms  

Structure learning algorithms can be evaluated in two different ways. Firstly, graphical 

accuracy metrics can be used to measure how close the learnt graph is to the true graph. This 

approach, however, assumes access to the ground truth graph, and therefore is only applicable 

to synthetic experiments. In real cases, the ground truth naturally remains unknown and hence, 

model-selection scores such as the BIC and BDeu (see subsection 2.2.2.1), amongst other 

domain-specific approaches, are often used to judge the validity of the learnt graph. 

Three metrics are commonly used to assess the graphical accuracy of the learnt graphs. 

These are: 

a) F1: It represents the harmonic mean of Precision (P) and Recall (R). F1 ranges from 0 

to 1, where a higher F1 score represents better performance. The F1 score is measured 

as follows: 

F1 = 2
PR

P + R
 

where P =
TP

TP+FP
 and R =

TP

TP+FN
 , and TP, FP and FN refer to the number of true 

positive, false positive, and false negative edges in a learnt graph compared to a true 

graph respectively. 

b) SHD: The Structural Hamming Distance (SHD) metric is the most used metric in 

literature. It counts the number of steps needed, in terms of edge insertions, deletions, 

and reversals, to convert the learnt DAG to the true DAG (Tsamardinos, 2006). A lower 

SHD score represents better performance, and it is defined as:  

SHD = FN + FP 

c) BSF: The Balanced Scoring Function (BSF) score (Constantinou, 2019) considers all 

four confusion matrix parameters (TP, TN, FP and FN) to balance the score relative to 

the density of the true graph. The BSF score is defined as: 

BSF = 0.5 × (
TP

a
+

TN

i
−

FP

i
−

FN

a
) 

where a is the number of edges in the true DAG, i is the number of independencies in 

the true DAG, i =
N(N−1)

2
− a, TN is the number of true negative edges and N is the 

number of variables. The BSF score ranges from -1 to 1, where 1 corresponds to a 

perfect match between learnt and true graphs, 0 represents a score equivalent to that 

obtained from an empty or a fully connected graph, and -1 corresponds to the worst 

possible mismatch (i.e., the reverse of the true graph). 
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Chapter 3  

 

Structure learning with imperfect data  

 

This chapter discusses two papers that I co-authored. It begins by summarising the findings of 

Constantinou et al. (2021), which examine how data noise affects structure learning. The 

chapter also presents the results of our proposed model averaging structure learning algorithm, 

described in Constantinou et al. (2022), for recovering graphical structures from noisy data. 

The content of this chapter provides a concise overview of these two publications. 

The structure learning algorithms introduced in the literature assume that the 

distributions of the input data reflect the true distributions of data generating system. Moreover, 

each algorithm relies on a set of assumptions about the input data, and tends to be evaluated 

with clean synthetic data (Scutari et al., 2019). However, it is widely acknowledged that the 

synthetic performance of structure learning algorithms tends to overestimate their real-world 

performance, although the extent of this overestimation remains unknown. This chapter 

examines how imperfect data influence structure learning performance, and how structure 

learning may be able to account for these imperfections in the data. 

This chapter is organised as follows: subsection 3.1 describes the case studies, 

subsection 3.2 describes the methodology we followed to generate imperfect data, subsection 

3.3 covers the structure learning algorithms evaluated, subsection 3.4 presents the results, 

subsection 3.5 describes and evaluates a new structure learning algorithm that assumes the 

presence of data noise, and we provide our concluding remarks in subsection 3.6.  

3.1 Case studies 

We consider the six discrete data case studies, available in the Bayesys repository 

(Constantinou et al., 2020), whose properties are provided in Table 3.1. Three of the case 

studies represent well-established examples from the BN structure learning literature, whereas 

the other three represent new cases and are based on recent BN real-world applications. These 

are:  
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a) Asia: a small network that captures the relationships between a visit to Asia, 

tuberculosis and lung cancer (Lauritzen and Spiegelhalter, 1988). 

b) Sports: a small network that measures the effect of ball possession in football matches, 

on shots generated and goals scored (Constantinou et al., 2013). 

c) Property: a medium-size network for investment decision making in the UK property 

market (Constantinou and Fenton, 2017). 

d) Alarm: a medium-size network of an alarm notification system for patients in a hospital 

intensive care unit (Beinlich et al., 1989). 

e) ForMed: a large network modelling the risk of violent reoffending in mentally ill 

prisoners before and after release or discharge (Constantinou et al., 2015). 

f) Pathfinder: a very large network for diagnosis of lymph-node diseases (Heckerman et 

al., 1992). 

 

Network size Network Variables Edges Max in-degree Free parameters 

Small  Asia 8 8 2 18 

Sports 9 15 2 1,049 

Medium Property 27 31 3 3,056 

Alarm 37 46 4 509 

Large ForMed 88 138 6 912 

Very Large Pathfinder 109 195 5 71,890 
 

Table 3.1 The properties of the six real-world networks. 
 

3.2 Generating imperfect data 

Each of the six networks were used to generate synthetic data, with and without synthetic noise. 

We generated 16 different categories of input data per case study, and assume five different 

sample sizes for each of these 16 datasets (0.1k, 1k, 10k, 100k, and 1000k samples). The 16 

categories are depicted in Table 3.2, and are generated as follows: 

a) No noise (N): This represents the standard case of clean synthetic data. 
 

b) Missing values (M): In this scenario, the datasets are modified to include missing data 

values that are Missing Completely At Random (MCAR). We explore two different 

scenarios: a) that each individual data value has a probability of 5% to become missing 

(dataset denoted as M5), and b) a probability of 10% to become missing (denoted as 

M10). Because the algorithms tested assume complete data as input, we subsequently 

replaced each missing data value with a new state called ‘missing’, indicating 

missingness.  
 

c) Incorrect values (I): Where each data value has 5% (I5) or 10% (I10) risk to be 

replaced with an incorrect value, where the new value comes from the set of other 

possible values observed in each variable.  
 

d) Merged states (S): Where 5% or 10% of the variables (both cases tested) have two of 

their states merged into one. For example, a variable with states {𝑎, 𝑏, 𝑐} would have 

two random states, such as 𝑎 and 𝑏, both modified into a new state 𝑎𝑏. This assumption 

aims to approximate the performance of the algorithms when applied to real datasets 
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where some of the data variables have had their number of states decreased in an effort 

to reduce the dimensionality of the model. 
 

e) Latent variables (L): Where approximately 5% or 10% of the variables (both cases 

tested) are randomly removed from the dataset. This assumption aims to approximate 

the performance of the algorithms when applied to datasets that incorporate latent 

variables.  
 

f) Combo (c): This category represents dual combinations of the noisy categories 

described above (denoted as cMI, cMS, cML, cIS, cIL, and cSL), plus the combination 

of all four categories of data noise (cMISL). Because these experiments incorporate 

multiple types of noise, we chose the rate of 5% as the default rate of noise for each 

type of noise incorporated into a dataset. If 5% is not possible due to limited data, then 

the rate of 10% is chosen. 
 

Experiment No noise 
Missing values Incorrect values Merged states Latent variables 

5% 10% 5% 10% 5% 10% 5% 10% 

N ✓         

M5  ✓        

M10   ✓       

I5    ✓      

I10     ✓     

S5      ✓    

S10       ✓   

L5        ✓  

L10         ✓ 

cMI  ✓  ✓      

cMS  ✓    ✓    

cML  ✓      ✓  

cIS    ✓  ✓    

cIL    ✓    ✓  

cSL      ✓  ✓  

cMISL  ✓  ✓  ✓  ✓  

 

Table 3.2 The 16 experiment codes for different types of noise where N denotes no noise, M 

represents missing values, I represents incorrect values, S represents merged states, L represents latent 

variables, and c represents combo. 

 

3.3 Structure learning algorithms and evaluation setup 

We investigate the impact of data noise in terms of how the different imperfect datasets 

influence the structure learning performance of different algorithms. We consider 15 structure 

learning algorithms from all three classes of learning, all of which have already been described 

in subsections 2.2.1.3, 2.2.2.2, and 2.2.3. Each algorithm is tested with their default 

hyperparameter settings as implemented in structure learning software or packages listed in 

Table 3.3. The default hyperparameters are selected under the assumption that this is how most 

users would employ these algorithms in real-world settings, given that there is no guidance on 

how and when we should be changing the value of these hyperparameters.  
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Because of the large number of the experiments, we restrict runtime to six hours per 

experiment. Algorithms that exceed the runtime limit are assigned the lowest rank for that 

particular experiment. We evaluate structure learning performance by comparing the learnt 

graph to the ground truth, and we use the SHD, BSF and F1 metrics to do this (refer to 

subsection 2.2.4). While these algorithms are often compared in terms of how accurately they 

recover the true CPDAG, in this set of experiments we measure them in terms of how well they 

recover the true DAG. This is because the purpose of these experiments is to investigate the 

usefulness of these algorithms in real-world settings where we tend to require CBNs (i.e., a 

DAG) and hence, we would like the assessment to be driven by how well the algorithms 

achieve this objective, rather than driven by what some of the algorithms, or implementations 

of the algorithms, assume or can and cannot do. Moreover, when it comes to causally 

insufficient experiments (i.e., those which incorporate latent variables), we assess the learnt 

graphs with respect to the ground truth MAG. Table 3.4 presents the penalty weights assumed 

by the graphical metrics. 

 

Algorithm Learning class Software 
Programming 

Language 
Reference 

PC-Stable Constraint-based Tetrad 

 

Java (Wongchokprasitti, 2019) 

 

 

 

FGS Score-based 

FCI Constraint-based 

GFCI Hybrid 

RFCI-BSC Hybrid  

Inter-IAMB Constraint-based bnlearn 

 

R (Scutari, 2019) 

MMHC Hybrid  

GS Constraint-based  

HC Score-based  

TABU Score-based  

H2PC Hybrid  

SaiyanH Hybrid Bayesys Java (Constantinou, 2020) 

GOBNILP Exact score-based GOBNILP C++ (Cussens, 2011) 

NOTEARS Score-based Source code Python (Zheng et al., 2018) 

WINASOBS Score-based BLIP The BLIP software (Scanagatta, 2017) 

 

Table 3.3 The properties of the 15 structure learning algorithms considered for evaluation. 

 

True edge Learnt edge Penalty Reasoning 

A →  B A →  B, A o→ B  0 Complete match 

A →  B A ↔  B, A − B , Ao−oB,  A ←  B,  A←o B 0.5 Partial match 

A →  B A B 1 No match 

A ↔  B Any edge/arc 0 Latent confounder 

A  B A  B 0 Complete match 

A  B Any edge/arc 1 Incorrect dependency discovered 

 

Table 3.4 The penalty weights used for evaluation, where o-o and o→ are learnt edges by structure 

learning algorithms under the assumption of causal insufficiency. 

 

3.4 Results 

Table 3.5 presents the average ranked performance, the overall ranked performance, and the 

relative performance of each structure learning algorithm in terms of both the F1 and SHD 
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scores, with and without data noise, averaged over all six different cases, five sample sizes, and 

15 noisy experiments (for the noisy case).  

In this set of results, we note a few interesting observations that relate to the ranking of 

the algorithms and how that might be sensitive to the noise in the data. TABU, which tops all 

three rankings under clean data, loses significant ground against the other algorithms in the 

presence of data noise where it ranks 2nd overall by the F1 and BSF metrics, and 4th overall by 

SHD. In contrast, the HC algorithm, which all metrics ranked 2nd under clean data, ranks 1st by 

F1 and BSF, and 2nd by SHD in the presence of data noise. This is an interesting observation 

because TABU is an improved search version of HC that escapes some of the suboptimal search 

regions in which HC has the tendency to get stuck in. This result can only suggest that data 

noise has misled TABU into performing escapes from a local maximum into regions that may 

better fit the noisy input data but which further deviate from the true graph. 

Algorithm 
Average rank Overall rank Average rank Overall rank 

Clean Noisy Δ Clean Noisy Δ Clean Noisy Δ Clean Noisy Δ 

 F1 SHD 

FCI 7.7 8.67 -1 9 11 -2 6.57 8.67 -2.1 7 12 -5 

FGS 7.5 7.15 0.35 8 8 0 7.83 7.12 0.71 10 8 2 

GFCI 6.87 7.26 -0.4 7 9 -2 6.87 6.91 -0 9 7 2 

GS 11.87 11.7 0.12 14 15 -1 10.43 9.54 0.89 13 13 0 

H2PC 6.13 5.66 0.47 5 5 0 5.1 4.96 0.14 3 3 0 

HC 3.63 3.6 0.03 2 1 1 4.77 4.92 -0.2 2 2 0 

GOBNILP 4.8 5.17 -0.4 3 3 0 6.43 6.72 -0.3 5 6 -1 

Inter-IAMB 10 9.79 0.21 12 12 0 8.6 7.82 0.78 12 9 3 

MMHC 7.77 6.51 1.26 10 6 4 6.47 4.66 1.81 6 1 5 

NOTEARS 12 11.7 0.35 15 14 1 13 12.83 0.17 15 15 0 

PC-Stable 8.1 7.59 0.51 11 10 1 6.83 7.87 -1 8 10 -2 

RFCI-BSC 11.5 11.5 0 13 13 0 10.9 11.05 -0.2 14 14 0 

SaiyanH 5.33 5.27 0.06 4 4 0 8 7.87 0.13 11 11 0 

TABU 3.27 3.62 -0.4 1 2 -1 4.43 4.99 -0.6 1 4 -3 

WINASOBS 6.3 6.54 -0.2 6 7 -1 5.87 5.49 0.38 4 5 -1 

 
BSF  

FCI 7.67 8.23 -0.6 9 11 -2       

FGS 7.1 7.37 -0.3 8 8 0       

GFCI 6.97 7.6 -0.6 6 10 -4       

GS 11.9 11.68 0.22 14 14 0       

H2PC 6.97 6.26 0.71 6 5 1       

HC 3.17 3.03 0.13 2 1 1       

GOBNILP 4.13 4.35 -0.2 3 3 0       

Inter-IAMB 10.43 9.98 0.45 12 12 0       

MMHC 8.6 7.59 1.01 11 9 2       

NOTEARS 12 12.51 -0.5 15 15 0       

PC-Stable 8 7.15 0.85 10 7 3       

RFCI-BSC 11.47 11.54 -0.1 13 13 0       

SaiyanH 4.77 5.16 -0.4 4 4 0       

TABU 3.1 3.13 -0 1 2 -1       

WINASOBS 6.17 6.77 -0.6 5 6 -1       

 
Table 3.5 The average and overall ranked performance for each algorithm over all case studies and 

sample sizes, and over all the 15 noisy-based experiments, as determined by each of the three metrics, 

where Δ represents the relative difference in performance compared to noise-free experiments N. 

Green and red rankings indicate improved and decreased structural accuracy in the presence of data 

noise, relative to the corresponding noise-free experiments. 
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The GOBNILP algorithm, which is the only exact learning algorithm tested in this set 

of experiments, has lost some ground in relative performance but not enough to alter its 

ranking. This result is consistent with that of TABU on the basis that data noise appears to 

distort model fitting which in turn has a negative effect on algorithms that seek the highest, or 

close to the highest, model-selection scores across the search-space of graphs. 

Another interesting observation involves MMHC, which is the only algorithm that 

shows significant gains in performance across all the three metrics. Specifically, MMHC ranks 

6th, 1st, and 9th in terms of F1, SHD, and BSF metrics respectively in the presence of data noise, 

up from 10th, 6th, and 11th with clean data. 

On the other hand, FCI is the algorithm with the highest loss in relative performance. 

Conversely, FCI experiences the most substantial decline in relative performance compared to 

other algorithms. On the other hand, and rather surprisingly, the algorithms designed to account 

for latent variables during structure learning, such as the FCI, GFCI and RFCI-BSC, did not 

improve their performance relative to other algorithms under experiments which involve the 

reconstruction of the true MAG (experiments which incorporate code ‘L’). 

 
Figure 3.1 The overall decrease in accuracy of F1 and BSF and the corresponding increase in SHD 

are observed across all algorithms in each noisy experiment. These observations are made in 

comparison to the results of the experiment N conducted with clean data. 

 

Figure 3.1 illustrates the overall decline in accuracy for all algorithms across each noisy 

experiment, and relative to noise-free experiments N. The findings highlight some 

inconsistencies in the conclusions drawn from the F1 and BSF metrics compared to the SHD 

metric. For example, the SHD score leads to the counterintuitive conclusion that experiments 

I5, I10, cMI, and cIL, have decreased structure learning performance more than experiment 

cMISL which incorporates all types of data noise as well as a higher total rate of data noise. 

On the other hand, the F1 and BSF metrics correctly identify that cMISL has had the largest 

negative impact on structure learning performance, as might be expected.  

 According to the F1 and BSF metrics, the overall results suggest that data noise of types 

S and L have had a relatively minor impact on structure learning performance. However, it 
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should be noted that the results from experiments that incorporate L are based on the 

reconstruction of the true MAGs which incorporate a lower number of variables compared to 

the true DAGs used in experiments that do not incorporate L, and the difference in the number 

of variables in the data influences the result generated by the metrics. Conversely, data noise 

of types M and I have had a much stronger impact on decreasing the performance of the 

algorithms. Combining all four types of noise into a single dataset (experiment cMISL), which 

might better approximate real data, leads to the highest negative impact on structure learning 

performance. 

3.5 Model averaging and pruning strategies for structure learning 

with imperfect data 

In the previous subsections we studied the impact of data noise on structure learning. We show 

that some algorithms are less sensitive, and sometimes react differently, to a given type of data 

noise than others. Importantly, we found that non-exact or simple learners are more resilient to 

data noise, compared to exact or more sophisticated non-exact learners. For example, less 

sophisticated non-exact learners such as HC perform better in the presence of data noise 

compared to more sophisticated non-exact learners such as TABU which, in theory, TABU is 

an improved search technique over HC. 

Motivated by these results, this subsection describes a novel approximate BN structure 

learning algorithm, which we call Model Averaging Hill-Climbing (MAHC), that combines 

two novel strategies, pruning and model averaging, with hill-climbing search (Constantinou et. 

al., 2022). This set of strategies produces an algorithm that searches a considerably smaller 

search-space of graphs and maximises the score over a set of graphs, rather than exploring 

individual graphs which might be generating a higher score due to data noise.  

Pruning the search space of graphs represents a particularly important strategy in exact 

learning algorithms. This is because, in the absence of pruning, an exact algorithm would need 

to perform exhaustive search to guarantee the discovery of the optimal graph. Because exact 

learning is known to be computationally intractable, pruning becomes necessary. An important 

distinction between pruning strategies involves whether the pruning is sound or not, and sound 

pruning ensures the pruned search space of graphs contains the optimal graph. Research into 

sound pruning has been important in the development of exact search. Well-established exact 

learning solutions include integer programming approaches such as GOBNILP by Cussens 

(2011), and combinatorial optimisation approaches such as Branch-and-Bound by de Campos 

(2009). Both these approaches employ effective versions of sound pruning and allow exact 

learning to scale to tens of variables.  

However, because pruning for approximate learning algorithms need not to be sound, 

it can be more aggressive. This is especially useful in the presence of data noise given that the 

highest scoring graph would be the one that best fits the noisy – not the true – data. On this 

basis, there is no incentive to preserve the highest scoring graph in the search-space of graphs. 

Moreover, even in the case of noise-free input data, Guo and Constantinou (2020) show that 

pruning CPSs by removing those with relatively low local scores leads to marginal reductions 

in structure learning accuracy in exchange for considerable increase in efficiency, thereby 

easing the application of structure learning to large datasets.  
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Model averaging, on the other hand, aims to reduce inconsistencies in the learnt output. 

It may involve returning the average output over multiple outputs produced by different ML 

algorithms, or the average output over multiple candidate outputs as determined by a single 

ML algorithm. In the context of structure learning, unlike model selection which involves 

returning the single best graph discovered, model averaging typically involves returning an 

output that represents a weighted average across a set of high-scoring graphs. One of the earliest 

papers that discuss the difference between model selection and model averaging in this context 

of structure learning is the work by Madigan et al. (1996) who average the output over a set of 

CPDAGs. Recent related works include those by Chen and Tian (2014) who implemented an 

algorithm to return the k-best equivalence classes of BN structure for model averaging, by 

Goudie and Mukherjee (2016) who describe a Gibbs sampler for learning DAGs that involves 

averaging across a set of DAGs that satisfy a set of conditions, and by Kuipers et al. (2022) 

who propose a hybrid learning algorithm that samples DAGs from the posterior distribution to 

reduce the complexity of MCMC and enable full Bayesian model averaging for large networks. 

3.5.1 The MAHC algorithm 

The MAHC algorithm can be viewed as a variant of the classic HC algorithm with two 

extensions. The first extension involves pre-processing some of the local objective scores and 

applying pruning to the search space of DAGs. The outcome of the pre-processing step will be 

a set of arcs pruned off, in addition to a set of local scores pre-processed that can be reused 

during the structure learning phase.  

We denote the set of discrete variables by uppercase letter 𝑉, the CPS 𝑗 of variable 𝑉𝑖 

by 𝐶𝑃𝑆𝑖,𝑗 where 𝑖 iterates over all variables and 𝑗 iterates over the CPSs of 𝑉𝑖, and 𝑆𝑖,𝑗 

corresponds to the objective score of 𝐶𝑃𝑆𝑖,𝑗. MAHC employs the following pruning rules by 

exploring CPS up to a node in-degree of 3: 

Pruning rule 1 – for all empty and single-parent CPS: Assuming 𝐶𝑃𝑆1,1 and 𝐶𝑃𝑆1,2 

have corresponding scores 𝑆1,1 and 𝑆1,2, if 𝐶𝑃𝑆1,1 ⊂ 𝐶𝑃𝑆1,2 and 𝑆1,1 ≥ 𝑆1,2, then the 

parents resulting from set subtraction 𝐶𝑃𝑆1,2 − 𝐶𝑃𝑆1,1 are pruned off. Note that any 

edges pruned off apply to CPSs of all sizes. 

Pruning rule 2 – with constraints for parent-sets of size 2 and 3: Each CPS corresponds 

to a node 𝑖 that is part of 𝑉, denoted as 𝑉𝑖, and each 𝑉𝑖 has |𝑉| − 1 possible parents 

ranked by 𝑙th highest score. Consider that the first and second highest valid1 scoring 

parents of 𝑉𝑖 are 𝐶𝑃𝑆𝑖,𝑙=1 and 𝐶𝑃𝑆𝑖,𝑙=2 respectively; e.g., 𝐶𝑃𝑆𝑖,𝑙=1 has the highest score 

as a CPS of size one (single parents) of 𝑉𝑖. When Pruning rule 1 is executed on CPSs 

of size two for node 𝑉𝑖, it is only applied to CPSs that contain {𝐶𝑃𝑆𝑖,𝑙=1, 𝑉𝑘} and iterate 

over 𝑘, where 𝑉𝑘 ∉ {𝐶𝑃𝑆𝑖,𝑙=1, 𝑉𝑖}. Similarly, when executed on CPS of size three, it 

will be restricted to CPSs that contain {𝐶𝑃𝑆𝑖,𝑙=1, 𝐶𝑃𝑆𝑖,𝑙=2, 𝑉𝑘} iterating over 𝑘, where 

𝑉𝑘 ∉ {𝐶𝑃𝑆𝑖,𝑙=1, 𝐶𝑃𝑆𝑖,𝑙=2, 𝑉𝑖}. In other words, for CPS sizes greater than 1, pruning is 

 
1 It is possible for one of the highest scoring parents to be pruned off during pre-processing. This can 

happen when pre-processing CPSs of at least size 2. When this happens, the next available highest scoring parent 

takes the place, in the ladder of highest scores for a given node, of the parent that has been pruned off. 
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only applied to the CPSs that include the 𝑝 − 1 highest scoring valid parents, where 𝑝 

denotes the number of parents.  

Once the pre-processing phase is completed and the set of edges that can be considered 

for structure learning is determined, the algorithm moves to the structure learning phase which 

involves the second extension where model averaging is applied over the hill-climbing search 

space. Unlike traditional model averaging which involves averaging over a set of graphs, the 

model averaging approach employed in MAHC involves averaging a set of model-selection 

scores (i.e., BIC scores), where each average score is assigned to a single graph explored. The 

formal description of this modification is provided by Modification 1 and Modification 2, for 

search and score respectively. 

Modification 1 (Search): Given a candidate DAG 𝐺, traditional hill-climbing involves 

visiting each neighbouring graph 𝐺𝑛 of 𝐺 at each hill-climbing iteration. In the extended 

version, we modify search such that each hill-climbing iteration involves not only 

visiting each neighbouring graph 𝐺𝑛 of 𝐺, but also each neighbouring graph 𝐺𝑛𝑛 of 𝐺𝑛 

(i.e., 𝐺𝑛𝑛 is the neighbouring graph of the neighbouring graph of 𝐺). 

Modification 2 (Score): Given a candidate DAG 𝐺, traditional hill-climbing moves to 

the neighbouring graph that maximises 𝑆(𝐺𝑛) given a set of scores 𝑆𝑛 that consists of 

multiple 𝑆(𝐺𝑛). In other words, traditional hill-climbing searches for the maximum 

objective score 𝑆(𝐺𝑛)across neighbouring scores. In the extended version, hill-climbing 

moves to the neighbouring graph that returns max(𝑆(𝐺𝑛, 𝐺𝑛𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) given a set of scores 𝑆𝑛 

that consists of multiple 𝑆(𝐺𝑛, 𝐺𝑛𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. In other words, the extended version searches for 

the highest average objective score 𝑆(𝐺𝑛, 𝐺𝑛𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, each of which corresponds to a 

neighbouring graph 𝐺𝑛 and the scores of all its valid neighbouring graphs 𝐺𝑛𝑛.  

3.5.2 Evaluation and results 

We evaluate MAHC by considering the same evaluation setup as described in subsections 3.1, 

3.2 and 3.3. However, we focus on the case which contains multiple types of data noise (i.e., 

cMISL), under the assumption that multiple types of data noise represent a more realistic 

scenario, and data sample sizes of 0.1k, 1k, 10k, and 100k. Moreover, we compare MAHC 

against six structure learning algorithms, spanning all three classes of structure learning. These 

are HC, TABU, GOBNILP, PC-Stable, FCI, MMHC and SaiyanH.  

Learning class 
Relative to 

algorithm: 

F1 BSF SHD 

Better Same Worse Better Same Worse Better Same Worse 

Constraint-based 
FCI 83.3% 0.0% 16.7% 66.7% 0.0% 33.3% 62.5% 4.2% 33.3% 

PC-Stable 79.2% 0.0% 20.8% 54.2% 0.0% 45.8% 54.2% 0.0% 45.8% 

Score-based 

(exact) 
GOBNILP 45.8% 20.8% 33.3% 29.2% 20.8% 50.0% 37.5% 16.7% 45.8% 

Score-based 

(approximate) 

HC 54.2% 37.5% 8.3% 45.8% 29.2% 25.0% 58.3% 25.0% 16.7% 

TABU 50.0% 25.0% 25.0% 33.3% 20.8% 45.8% 41.7% 20.8% 37.5% 

Hybrid 
MMHC 41.7% 20.8% 37.5% 66.7% 16.7% 16.7% 66.7% 16.7% 16.7% 

SaiyanH 79.2% 4.2% 16.7% 41.7% 4.2% 54.2% 50.0% 0.0% 50.0% 

 

Table 3.6 The graphical accuracy of MAHC relative to the other seven algorithms. The percentages 

represent the number of times the score of MAHC was better, worse, or the same relative to each of 

the other algorithms, across all case studies, sample sizes, and noisy experiments. The best 

performance is shown in bold. 
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The results that follow are discussed in terms of “better score”, indicating higher 

learning accuracy. For F1 and BSF, a better score refers to a higher F1 or BSF value. In the 

case of the SHD, however, a better score refers to a lower SHD value. Table 3.6 presents the 

graphical accuracy of MAHC relative to the other algorithms in the presence of data noise, 

over all experiments. While MAHC is shown to perform similar to other algorithms in noise-

free experiments (Constantinou et al., 2022), the results presented in Table 3.6 that focus on 

structure learning with noisy data show that MAHC consistently outperforms most of the other 

algorithms, suggesting that the model averaging process make MAHC considerably less 

sensitive to data noise compared to other algorithms. 

Table 3.7 summarises the BIC results in terms of normalised average percentage score. 

For example, the average score of GOBNILP is 100% for clean data at 0.1k sample size, 

because GOBNILP produced the highest score in all of the experiments that involved clean 

data with a sample size of 0.1k. The results show that the score-based algorithms produce the 

highest model-selection scores, as expected (since they maximise BIC by 

design/implementation). The hybrid algorithms which include a phase that relies on constraint-

based learning, as well as the constraint-based algorithms, generate considerably lower BIC 

scores since they are not designed with the sole purpose to maximise BIC. The BIC scores of 

MAHC are closer to those of HC, and considerably stronger than those produced by the hybrid 

and constraint-based learning algorithms. This outcome suggests that model averaging has a 

relatively small negative impact on the model-selection score, especially in the presence of data 

noise, relative to the gain in graphical accuracy over HC as illustrated in Table 3.6.  

What could be classified as surprising, however, is the BIC score of the ground truth 

graphs. The results show that the lower the sample size, the lower the chance the true graph 

will be part of the higher scoring graphs. However, this is true only for the clean data cases. 

The data noise drops the relative performance of the ground truth under all sample sizes, and 

decreases the BIC score of the ground truth graph considerably. This supports our initial 

hypothesis that the incentive to search for the highest scoring graph diminishes considerably in 

the presence of data noise. 

 

Sample size 

Score-based 

Exact 

score-

based 

Constraint-based Hybrid 
True 

graph 

MAHC TABU HC GOBNILP 
PC-

Stable 
FCI MMHC SaiyanH  

100 (Clean)  94.63% 99.16% 99.13% 100% 76.21% 77.65% 69.67% 88.88% 11.44% 

1k (Clean)  88.19% 97.08% 93.77% 100% 35.15% 43.91% 40.68% 91.19% 42.70% 

10k (Clean)  92.50% 98.66% 97.42% 90.21% 20.77% 28.45% 18.14% 90.22% 80.96% 

100k (Clean)  83.94% 86.66% 85.84% 80.00% 57.27% 56.94% 9.99% 93.56% 98.15% 

100 (Noisy) 99.96% 99.97% 99.97% 99.98% 95.16% 94.76% 99.73% 86.53% 0.00% 

1k (Noisy) 99.54% 99.92% 99.86% 100.00% 69.09% 66.42% 99.32% 91.06% 30.81% 

10k (Noisy) 97.83% 99.68% 98.89% 100.00% 19.45% 16.54% 95.70% 97.45% 72.34% 

100k (Noisy) 94.37% 98.69% 94.98% 100.00% 59.25% 41.89% 47.22% 84.24% 34.51% 

 

Table 3.7 The percentages represent the average normalised BIC scores, where higher percentages 

correspond to a better score. An average of 100% indicates that the algorithm obtained the highest 

average BIC score across all experiments. 
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3.6 Conclusions 

This study focused on evaluating the performance of BN structure learning algorithms, with 

the objective to assess their ability to reconstruct the true causal graphs under various 

hypotheses of data noise. The investigation focused on 15 different algorithms from different 

classes of learning, and 16 different data noise scenarios, over six case studies and five sample 

sizes. 

 The results suggest that data noise can have a considerable impact on the accuracy of 

the learnt graph. Specifically, incorporating all four types of noise in a single dataset decreases 

structure learning accuracy in the range of 30% to 37% (i.e., accuracy increases by 43% to 59% 

without data noise). These results have major implications since they suggest that BN structure 

learning accuracy presented in the literature, on the basis of traditional synthetic data, 

overestimates real-world performance to higher degree than maybe was previously assumed. 

Still, traditional noise-free synthetic experiments remain important in evaluating BN structure 

learning algorithms under various hypothetical assumptions. 

With regards to the novel model averaging MAHC structure learning algorithm, the 

results suggest that the performance of MAHC is competitive when the input data are clean, 

and often superior when the input data are noisy. The results suggest that model averaging 

strategies could be better suited for learning from real data, under the assumption that real 

observations never satisfy the ideal conditions assumed in clean synthetic experiments and that 

they often incorporate different kinds of data noise, many of which might be similar to those 

assumed in this work. Additionally, the results show that the ground truth graph will not only 

not have the highest objective score, but will also often deviate considerably from the highest 

scoring graph, either due to data noise or limited data, both of which distort model fitting. This 

decreases the incentive to search for the highest scoring graph, and at the same time increases 

the importance of approximate learning.  

Practitioners who work with real data should priorotise structure learning solutions with 

weaker assumptions that are less sensitive to data noise. The results presented in this chapter 

suggest that, in general, score-based solutions tend to be more resilient to noise compared to 

constraint-base methods, and this is perhaps explained by constraint-based learning being 

sensitive to early errors made during the structure learning process, which in turn affect 

subsequent results of conditional independence tests. This is an observations that would benefit 

from further investigation. The results also support model averaging strategies which are found 

to successfully reduce sensitivity to data noise in the context of structure learning. Finally, 

because it is impossible for algorithms that assume noise-free data to successfully generalise 

to noisy experiments, the incorporation of knowledge-based constraints remains a desirable 

feature for the application of these algorithms to real-world problems, warranting further 

exploration in future investigations. 
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Chapter 4 
 

Structure learning with causal effects in the 

presence of continuous data and latent 

variables  

 

Latent variables may lead to spurious relationships that can be misinterpreted as causal 

relationships. As discussed in subsection 2.2.1.2, this challenge is known as learning under 

causal insufficiency. Structure learning algorithms that assume causal insufficiency tend to 

reconstruct an ancestral graph where bidirected edges represent confounding and directed 

edges represent direct or ancestral relationships. 

This chapter presents a hybrid structure learning algorithm called Conservative rule and 

Causal effect Hill-climbing for MAG (CCHM), which can be used to recover ancestral graphs 

(covered in subsection 2.2.1.2) from data with latent variables. CCHM combines the constraint-

based part of cFCI with hill-climbing score-based learning. The score-based process 

incorporates Pearl’s do-calculus to measure causal effects, which are used to orientate edges 

that would otherwise remain undirected.  

We focus on Gaussian Bayesian Networks (GBNs), where the data follows a 

multivariate Gaussian distribution. In general, GBNs (Geiger and Heckerman, 1994) consist of 

a random variable Xi where: 

P(Xi|parent(Xi))~𝒩(θXi
|parent(Xi)) 

and Xi can be written in the form of a linear regression model: 

Xi =  µxi + β parent(Xi) + 𝜖 

where µ is the mean of the random variable Xi, β is the coefficient for the directed edge j to i 

{βij} and ϵ is a positive random error vector which follows a Gaussian distribution 

ϵ ~𝒩(0, σxi

2 ) with covariance σxi

2 .  

This chapter describes the hybrid CCHM algorithm that is designed to learn GBNs from 

causally insufficient data. Relevant literature review, including descriptions of the relevant 

algorithms considered in this chapter, can be found in subsections 2.2.1.3, 2.2.2.2 and 2.2.3. 

The chapter is organised as follows: subsection 4.1 describes the CCHM algorithm, subsection 

4.2 describes random networks and real networks as the case studies and evaluation, subsection 

4.3 illustrate results, and subsection 4.4 provides concluding remarks and future research 

directions.  
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4.1 Conservative rule and Causal effect Hill-climbing for MAG 

(CCHM) 

The process of CCHM can be divided into two phases. The first phase adopts the CI tests of 

cFCI (covered in subsection 2.2.1.3) to construct the skeleton of the graph and to further 

classify definite colliders as whitelist and definite non-colliders as blacklist. The second phase 

involves score-based learning that uses the BIC score as the objective function, adjusted for 

MAGs, where edge orientation is augmented with causal effect measures. These steps are 

described as follows: 

a) Definite colliders (whitelist) and definite non-colliders (blacklist) 

CI tests are used to determine the edges between variables and to produce the skeleton graph. 

A p-value associates with each statistical test result, which is used to sort conditional 

independencies in ascending order. An α hyperparameter is then used as the cut-off threshold 

in establishing independence. For each conditional independency A ⊥ B | 𝐙, 𝐙 is recorded as 

Sepset of nodes A and B. The orientation of edges is determined by a method inherited from 

cFCI, where extra CI tests over all unshielded triples determine the classification for each of 

those triples as either a definite collider or a definite non-collider: 

• Given unshielded triple A − C − B, perform CI tests on A and B over all neighbours 

of A and B.  

• If C is NOT in all Sepsets of A and B, add A − C − B to the whitelist as a definite 

collider. 

• If C is in ALL Sepsets of A and B, add A − C − B to the blacklist as a definite non-

collider. 
 

b) BIC for MAGs 

The score-based learning part of CCHM involves hill-climbing greedy search that minimises 

the BIC score, which balances the goodness-of-fit scores against a penalty term for model 

dimensionality based on Occam’s razor principle. CCHM adopts the BIC function used in the 

M3HC (Tsirlis et al., 2018) and GSMAG algorithms (Triantafillou and Tsamardinos, 2016), 

which is adjusted for MAGs. Formally, given a dataset over variables V with a distribution 

𝒩(0, Σ) where Σ is a covariance matrix calculated from the dataset, a unique solution Y is 

found where Σ̂ = (I − ℬ)−1Ω(I − ℬ)−t. MAG 𝒢 is constructed from linear equations Y = ℬ ∙

Y + ϵ, where Y = {Yi|i ∈ V}, ℬ is a V × V coefficient matrix for the directed edge j to i {βij}, 

I is an identity matrix, ϵ is a positive random error vector for the bidirected edge j to i {ωij}, 

and the error covariance matrix Ω = Cov(ϵ) = {ωii}. The BIC score is then calculated as 

follows (Richardson, Spirtes, 2000): 

BIC(∑̂|𝒢) = −2 ln (LL𝒢(∑̂|𝒢)) + ln(n)(2|V| + |E|) 
 

where LL𝒢 is likelihood function, |V| and |E| are the size of nodes and edges that are part of 

the complexity penalty term, and n is the sample size. Similar to the factorisation property of 

DAGs, the score LL𝒢(∑̂|𝒢) can be decomposed into c-components (Sk) of 𝒢 which refer to the 

connected components that are partitioned by removing all directed edges (Nowzohour et al., 

2015):  
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LL𝒢(∑̂|𝒢) = −
N

2
∑ Sk

k
 

where Sk = |Ck| ∙ ln(2π) + ln (
|Σ̂𝒢k

|

∏ σkj
2

j∈Pa𝒢k

) +
n−1

n
∙ tr[Σ̂𝒢k

−1S𝒢k
− |Pa𝒢(Ck)\{Ck}|] 

and where Ck denotes the set of nodes for each c-component k, 𝒢𝑘 is the marginalisation from 

Ck, with all their parent nodes defined as Pa𝒢(Ck) in Ck, and σkj
2  represents the diagonal Σ̂𝒢𝑘

of 

the parent node k. The likelihood Σ̂ is determined by the RICF algorithm (Drton et al., 2006).  

c) Direct causal effect criteria  

Because the BIC for MAGs is a Markov equivalent score, it is incapable of orientating all edges 

from statistical observations. Optimising for BIC under causal insufficiency returns a PAG, or 

one of the MAGs that are part of the equivalence class of the optimal PAG. In this work, we 

are interested in orientating all edges that would enable us to generate a MAG, rather than a 

PAG, output. We achieve this using Pearl’s do-calculus (Pearl, 2000) to measure the direct 

causal effect on edges that the BIC score fails to orientate. The direct causal effect is estimated 

by intervention that renders the intervening variable independent of its parents.  

Theorem: Single-door criterion for direct effect  

Single-Door Criterion for direct effect (Pearl, 2000): Let G be any DAG in which β is the path 

coefficient associated with X→Y, the path coefficient β is identifiable and equal to the 

regression coefficient if there exists a set of variables that (i) contains no descendant of Y and 

(ii) is a set d-separated of X and Y in subgraph after removing X→Y from G. 

The interpretation of the path coefficient β  in the regression of the single-door criterion 

theorem can be expressed as the direct causal effect determined by the rate of change of E[Y] 
given intervention X (Maathuis et al., 2009) as follows: 

β =
∂

∂x
E[Y| do(x)] = E[Y|do(X = x + 1)] − E[Y|do(X = x)] for any value of x 

This assumes that all causal effect parameters are identifiable by RICF (Drton et al., 2006), and 

that the path coefficient or the direct causal effect is the regression coefficient estimated from 

the likelihood function. Let A→B be the edge in the true graph, the Structural Equation Model 

(SEM) B = βAA + ϵB, if we assume that we have A~𝒩(μA, σ2
A), ϵB~𝒩(0, σϵB

2 ), and ϵB and 

A are independent. Thus, E[B] = βAE[A], σ2
B = βA

2σ2
A +  σϵB

2 . For every pair A and B in the 

learned graph, two causal graphs where A→B and A←B need to be constructed to measure the 

direct causal effects. Specifically, 

• For graphs A→B, do the intervention on A; i.e., 𝑑𝑜(𝑎) (Pearl, 2000, page 161)   

  βA  =  
E[BA]

E[A2]
         (4.1)   

• For graphs B→A, do the intervention on B; i.e., 𝑑𝑜(𝑏). 

βB  =  
E[AB]

E[B2]
         (4.2)   

From Equations (4.1), (4.2) and the variance of a random variable X (σ2
X

) =  E[X2] − E[X]2: 
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βA

βB
=  

E[B2]

E[A2]
=  

E[B]2 + σ2
B

E[A]2 + σ2
A

    

Substitute E[B] = βAE[A],  σ2
B = βA

2σ2
A + σϵB

2  from the graph, 

=  
β𝐴

2 E[A]2 + βA
2σ2

A + σϵB
2

E[A]2 + σ2
A

=  β𝐴
2 +

σϵB
2

E[A]2 + σ2
A

     (4.3) 

If E[A]  = μA = 0, σ2
𝐴 = 1 and σ2

ϵB
= 1  in the normal distribution in (4.3) 

βA

βB
=  βA

2 + 1  ; we have the probability (|𝛽𝐴| > |𝛽𝐵|) = 1 

Note that this aligns with the study by Peters and B¨uhlmann (2013) where a causal graph can 

be identifiable from observational data in linear Gaussian models with equal error variances. 

However, in their experiments the authors assume causally sufficient with the results restricted 

to DAG discovery, whereas here we assume causal insufficiency aiming for MAG discovery. 

Algorithm 1 describes the steps of CCHM in detail.  

Algorithm 1: CCHM (Conservative rule and Causal effect Hill-climbing for MAG) 

Input: significance threshold α, maximum Sepset size k, CI test 

Output: MAG 

// Search for a skeleton (Step 1 and 2 are the first and second steps of the cFCI Algorithm) 

Step 1 Set up a complete undirected graph and initialise Sepset Z with size =0 

Repeat  

remove edges between each pair of nodes A and B that become independent conditional 

on Sepset Z, as determined by α 

Until all Sepset Z size = k have been tested 

Step 2 Given unshielded triple A − C − B, perform CI tests on A and B given all neighbours of A and 

B as determined by α 

a) If C is NOT in all Sepsets of A and B, add A − C − B to the whitelist as a definite 

collider 

b) If C is in ALL Sepsets of A and B, add A − C − B to the blacklist as a definite non-

collider 

Step 3          Orientate as many edges as possible in the skeleton graph given the whitelist, and retrieve the  

                    BIC score for MAGs of the resulting graph  

 // Score-based learning with do-calculus 

Step 4 Repeat 

    For each pair(A,B), in ascending order by p-value 

 Calculate the BIC scores for MAGs for each edge A→B, A←B and AB. 

     If i) BIC decreases, ii) the result graph remains acyclic, and iii) the result triple is not in   

            blacklist 

             If edges A→B, A←B and AB produce unequal BIC scores for MAGs 

         Add the edge A→B, A←B or AB that minimises the BIC score for MAGs 

                 Else  

                        Calculate the direct causal effect β for edges A→B and A←B 

 βA = E(B|do(A = a + 1)) − E(B|do(A = a)) 

βB = E(A|do(B = b + 1)) − E(A|do(B = b)) 

                        Orientate A→B or A←B that maximises the direct causal effect from  

                        Equation (4.3) 

          

                       

Until no undirected edges remain 

 

4.2 Evaluation 
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The graphs produced by the CCHM algorithm are compared to the outputs of the M3HC, GSPo, 

GFCI, RFCI, FCI, and cFCI algorithms, when applied to the same data. GSPo is an order-based 

search algorithm that performs greedy search over the space of independence maps (IMAPs) 

to determine the minimal IMAP (Bernstein et al., 2019). This is achieved by defining a partial 

ordered set (poset) that is linked to the IMAP, expressed as a discrete optimisation problem. 

However, GSPo uses a random starting point for a poset, and this makes the algorithm non-

deterministic since each run is likely to produce a different MAG. Experimental results show 

that GSPo may converge to a different solution each time it is executed, and this instability 

makes such algorithms more difficult to evaluate and less desirable in practice. The GSPo 

algorithm was tested using the causaldag Python package by Squires (2018), the M3HC 

algorithm was tested using the MATLAB implementation by Triantafillou (2019), and the 

GFCI and RFCI algorithms were tested using the Tetrad-based rcausal package in R 

(Wongchokprasitti, 2019). The computational time of CCHM is compared to the M3HC, FCI 

and cFCI, which are based on the same MATLAB package. The CCHM implementation is 

available online at  https://github.com/kiattikunc/CCHM. 

All experiments are based on synthetic data. However, we divide them into experiments 

based on data generated from BNs which had their structure and dependencies randomised, 

and data generated from real-world BNs. Randomised BNs were generated using 

Triantafillou’s (2019) MATLAB package. We created a total of 600 random Gaussian DAGs 

that varied in variable size, max in-degree, and sample size. Specifically, 50 DAGs were 

generated for each combination of variables V and max in-degree settings 𝒟, where V = {10, 

20, 50, 70, 100, 200} and 𝒟 = {3, 5}. Each of those 600 graphs was then used to generate two 

datasets of sample sizes 1k and 10k, for a total of 1,200 datasets. Data were generated assuming 

linear Gaussian parameters µ = 0 and 𝜎2 = 1 and uniformly random coefficients β [0.1,0.9] 

for each parent set to avoid very weak or very strong edges. Approximately 10% of the 

variables in the data are made latent in each of the 600 datasets. 

In addition to the randomised networks, we made use of four real-world Gaussian BNs 

taken from the bnlearn repository (Scutari, 2019). These are the a) MAGIC-NIAB (44 nodes) 

which captures genetic effects and phenotypic interactions for Multiparent Advanced 

Generation Inter-Cross (MAGIC) winter wheat population, b) MAGIC-IRRI (64 nodes) which 

captures genetic effects and phenotypic interactions for MAGIC indica rice population, c) 

ECOLI70 (46 nodes) which captures the protein-coding genes of E. coli, and d) ARTH150 (107 

nodes) which captures the gene expressions and proteomics data of Arabidopsis Thaliana. Each 

of these four BNs was used to generate data, with the sample size set to 10k. For each of the 

four datasets, we introduced four different rates of latent variable: 0%, 10%, 20% and 50%. 

This made the total number of real-world datasets 16; four datasets per BN.  

The following hyperparameter settings are used for all algorithms: a) α = 0.01 for the 

Fisher’s z CI test for datasets sampled from the randomised BNs, b) α = 0.05, 0.01, 0.001, 

which are the same settings as those used by Tsirlis et al. (2018), for datasets generated by the 

real-world BNs, and c) the max Sepset size of the conditioning set is set to ‘4’ so that runtime 

is maintained at reasonable levels. The maximum length of discriminating paths is also set to 

‘4’ for the four FCI-based algorithms (this is the same as the max Sepset size). For GSPo, the 

depth of depth-first search is set to ‘4’ and the randomised points of posets to ‘5’ (these are the 

default settings). Because GSPo is a non-deterministic algorithm that generates a different 

output each time it is executed, we report the average scores obtained over five runs. Lastly, 

https://github.com/kiattikunc/CCHM
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all algorithms were restricted to a four-hour runtime limit. Further, because the algorithms will 

output either a PAG or a MAG, we convert all MAG outputs into the corresponding PAGs. 

The accuracy of the learnt graphs is then assessed with respect to the true PAG. The results are 

evaluated using the traditional measures of Precision and Recall, SHD, and BSF, described in 

subsection 2.2.4. 
 

4.3 Empirical results  
 

4.3.1 Results based on random Gaussian Bayesian Networks 

Figure 4.1 presents the Precision and Recall scores achieved by each of the algorithms on the 

datasets generated by the randomised BNs. The scores are averaged across the different settings 

of variable size and max in-degree. Note that because there was no noteworthy difference 

between the overall results obtained from the two different data sample sizes, we only report 

the results based on sample size 10k. Therefore, the results and conclusions based on the 

datasets with sample size 10k also hold for the datasets with sample size 1k. 

  

Figure 4.1 Average Precision and Recall scores of the algorithms (variances for CCHM) for each 

combination of variable size and max in-degree settings (50 graphs per combination). The results are 

based on synthetic data with sample size 10k and assume that 10% of the variables are latent. 
 

Overall, the results show that CCHM outperforms all other algorithms in terms of both 

Precision and Recall, and across all settings excluding Recall under max in-degree 5 where 

GSPo ranks highest (Figure 4.1b). While GSPo appears to perform best when the number of 

variables is lowest, its performance decreases sharply with the number of variables, and fails 

to produce a result within the four-hour time limit when the number of variables is highest.  
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The results show no noticeable difference between FCI and its variant RFCI, whereas 

the cFCI and GFCI show strong improvements over FCI, with cFCI outperforming all the other 

FCI-based algorithms. Moreover, the performance of cFCI is on par with that of M3HC. Note 

that while CCHM employs the BIC objective function of M3HC, CCHM outperforms M3HC 

in both sparse (Figure 4.1a) and dense (Figure 4.1b) graphs. This result provides empirical 

evidence that the conservative rules used in the constraint-based phase of CCHM and the do-

calculus used in the score-based phase of CCHM have indeed improved structure learning 

performance.  

Figure 4.2 compares the average runtime of CCHM to the runtimes of the other 

algorithms. The runtime comparison is restricted to algorithms that are based on the same 

MATLAB implementation on which CCHM is based. The results show that CCHM is 

marginally faster than cFCI and slower than the other algorithms, with the worst case scenario 

observed when the number of variables is highest, where CCHM is approximately two times 

slower than FCI. 

 

Figure 4.2 Average computation time of the algorithms for each combination of variable size and 

max in-degree settings (50 graphs per combination). The results are based on synthetic data with 

sample size 10k and assume that 10% of the variables are latent. 
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Figure 4.3 Average number of edges, SHD and BSF scores of the algorithms (variances of BSF for 

CCHM) for each combination of variable size and max in-degree settings (50 graphs per combination). 

The results are based on synthetic data with sample size 10k and assume that 10% of the variables are 

latent. 

Figure 4.3 presents the SHD and BSF scores, along with the corresponding numbers of 

edges generated by each algorithm. Both the SHD and BSF metrics rank CCHM highest when 

the number of variables is more than 10, and these results are consistent with the Precision and 

Recall results previously depicted in Figure 4.1 where GSPo performs best when the number 

of variables is lowest in sparse graphs. The number of edges produced by CCHM is in line with 

the number of edges produced by the other algorithms, and this observation provides 

confidence that CCHM achieves the highest scores due to accuracy rather than due to the 

number of edges, which may sometimes bias the result of a metric (Constantinou et. al., 2021). 

One inconsistency between the SHD and other metrics involves the GFCI algorithm, where 

SHD ranks lower than all the other FCI-based algorithms, something which contradicts the 

results of Precision, Recall, and BSF. Interestingly, while GSPo produces the highest BSF 

scores for graphs that incorporate just 10 variables, its performance diminishes drastically with 

the number of variables and quickly becomes the worst performer (refer to the BFS scores in 

Figure 4.3a); an observation that is largely consistent with the results in Figure 4.1. 

 

 

 

 

 

 

 

 
 

0

100

200

300

400

500

600

10 20 50 70 100 200

A
ve

ra
ge

 n
u

m
b

er
s 

o
f 

ed
ge

s

Number of variables

0

50

100

150

200

250

300

350

10 20 50 70 100 200

A
ve

ra
ge

 n
u

m
b

er
s 

o
f 

ed
ge

s

Number of variables

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 20 50 70 100 200

B
SF

Number of variables

a) maximum in-degree = 3 

b) maximum in-degree = 5 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 20 50 70 100 200

B
SF

Number of variables

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 50 70 100 200

SH
D

Number of variables

0

100

200

300

400

500

600

10 20 50 70 100 200

SH
D

Number of variables



 

Page 40 of 116 
 
 

4.3.2 Results based on real-world Gaussian Bayesian Networks 

 
 

Figure 4.4 The SHD scores of the top three algorithms in each of the four Gaussian BNs, over three 

different input settings for hyperparameter α. The results are based on synthetic data with sample size 

10k. 
 

The reduced number of experiments that associate with the real-world GBNs (i.e., 16 instead 

of 600 randomised experiments) enabled us to also test the sensitivity of the algorithms on the 

α hyperparameter, which reflects the significance cut-off point in establishing independence. 

Figure 4.4 presents the SHD scores for each of the four real-world GBNs, and over different 

rates of latent variables. The results are restricted to the top three algorithms for each case 

study, and this is because we report three different results for each of the top three algorithms 

based on the three different hyperparameter inputs α specified in Figure 4.4.  

 Only four algorithms (CCHM, M3HC, cFCI and GSPo) achieved a top-three 

performance in any of the four networks, and this suggests that the relative performance 

between algorithms is rather consistent across the different case studies. While there is no clear 

relationship between the rate of latent variables and SHD score, the results do suggest that the 

accuracy of the algorithms decreases with the rate of latent variables in the data. This is because 

while we would expect the SHD score to decrease with less variables in the data, since less 

variables lead to potentially fewer differences between the learned and the true graphs (refer to 

Figure 4.3), the results in Figure 4.4 reveal a weak increasing trend in SHD score with the rate 

of latent variables in the data.  

Overall, the CCHM algorithm was part of the top three algorithms in all the four case 

studies. Specifically, CCHM generated the lowest SHD error in networks (a) and (b). The 
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results in network (c) were less consistent, with GSPo ranked 1st at latent variable rates of 10% 

and 20%, and CCHM ranked 1st at latent variable rates of 0% and 50%. In contrast, the results 

based on network (d) show no noteworthy differences in the performance between the three 

top algorithms. Overall, the results suggest that cFCI and GSPo are much more sensitive to the 

α hyperparameter compared to the CCHM and M3HC algorithms, and that CCHM generally 

performs best when α = 0.01. 

4.4 Conclusions 

This work describes a novel structure learning algorithm, called CCHM, which builds on recent 

developments in BN structure learning under causal insufficiency. CCHM combines 

constraint-based and score-based learning with causal effects to learn GBNs. The constraint-

based part of CCHM adopts features from the state-of-the-art cFCI algorithm, whereas the 

score-based part is based on traditional hill-climbing greedy search that minimises the BIC 

score for MAGs. CCHM applies Pearl’s do-calculus as a method to orientate the edges that 

both constraint-based and score-based learning fail to do so from observational data. The 

results show that CCHM outperforms the state-of-the-art algorithms in the majority of the 

experiments, which include both randomised and real-world GBNs.  

A limitation of this work is that the algorithm assumes linear GBNs and that the data 

are continuous. A possible direction for future work would be to extend this approach to 

discrete BNs, where causal insufficiency remains an important open problem (Jabbari et al., 

2017). Other directions include investigating different strategies in the way the do-calculus 

effect is applied to the process of structure learning; e.g., it can be applied directly to the 

calculation of the BIC score during score-based learning, or computed as the total causal effect 

of the graph using do-calculus rules or via back-door adjustment with graph surgery. Lastly, 

causal insufficiency represents just one type of data noise that exist in real-world datasets, and 

future work could also investigate the effects of causal insufficiency when combined with other 

types of noise in the data.  
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Chapter 5 
 

Hybrid structure learning from multiple 

discrete datasets by scoring multiple 

interventions 

 

In BNs, the direction of edges is crucial for causal reasoning and decision making via 

intervention. However, as discussed in subsection 2.2.1.1 regarding Markov equivalence class 

considerations, many structure learning algorithms cannot orientate all edges purely from 

observational data. That is, the causal chain and common cause relationships cannot be 

distinguished from observational data, irrespective of sample size. Figure 5.1a presents an 

example where three nodes A, B and C, are A ⊥ B | C, and there are three DAGs that support 

this CI statement. 

Interventional data, however, may help us orientate some of those undirected edges. As 

illustrated in Figure 5.1b, a perfect intervention on C would force its state to c (C = c) 

independent of its parents. Simulating hypothetical interventions by rendering the intervention 

independent of its causes enables us to measure the effect of intervention. Importantly, 

interventional analysis may help us distinguish over different DAGs that fall within the same 

Markov equivalence class. 

 

Figure 5.1 (a) Three Markov equivalent DAGs that entail the CI statement A ⊥ B | C, and (b) the 

corresponding modified DAGs when assuming a perfect intervention on C, where the square box 

represents the target node for intervention. 

(a) 

(b) 
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This chapter describes the hybrid mFGS-BS (majority rule and Fast Greedy 

equivalence Search with Bayesian Scoring) algorithm for structure learning from discrete data 

that involves an observational data set and one or more interventional data sets. The aim of the 

proposed algorithm is to orientate as many edges as possible from both observational and 

interventional data. The algorithm assumes causal insufficiency in the presence of latent 

variables and produces a PAG output. The proposed algorithm relies on a hybrid approach and 

a novel Bayesian scoring paradigm that calculates the posterior probability of each directed 

edge being added to the learnt graph.  

This chapter is organised as follows: subsection 5.1 discusses related works, subsection 

5.2 describes the mFGS-BS algorithm, subsection 5.3 describes evaluation setup along with 

the case studies, subsection 5.4 presents the results, and we provide our concluding remarks 

and future research directions in subsection 5.5.  

5.1 Related works  

Structure learning algorithms that learn from both observational and interventional data tend 

to do so from pooled data, which is a method that pools all datasets together with intervened 

variables specified. These algorithms aim to generate a graph that is consistent, as much as 

possible, with all input data. Examples include IGSP (Wang et al., 2017) and GIES (Hauser 

and B¨uhlmann, 2012) that return a DAG from pooled causally sufficient data.  

Other methods involve determining the results of CI tests from each dataset separately 

and constructing a single graph using conflict resolution strategies. For causally insufficient 

data, the Causal discovery from Overlapping INtErventions (COmbINE) algorithm by 

Triantafillou and Tsamardinos (2015) implements the cFCI approach to learn the common 

characteristics and the results of CI tests from different datasets, which it then converts into 

Boolean Satisfiability (SAT) instances in a MINISAT application to resolve any conflicts. 

Other algorithms that operate on such results of CI tests include HEJ (Hyttinen et al., 2014) 

which uses Clingo (Gebser et al., 2011) – an Answer Set Programming (ASP) rule-based 

declarative programming language that solves various representations of NP-hard optimisation 

tasks (Gelfond and Lifschitz, 1988; Niemela, 1999) – for conflict resolution. It produces cyclic 

directed mixed graphs encoding results of CI tests from conditioning and marginalisation 

operations, and the graphs may contain directed, bidirected or undirected edges. The ACI 

algorithm (Magliacane et al., 2016) also relies on Clingo and can be viewed as a 

computationally less expensive variant of HEJ that operates in the search space of ancestral 

graphs, but which does not support bidirected edges for latent confounder representation. 

Lastly, JCI (Mooij et al., 2020) is a constraint-based algorithm that uses auxiliary context 

variables and system variables, which the authors define as variables of interest (presumably 

observed variables) and intervention targets respectively. JCI learns from a pooled dataset 

including knowledge about the relationship between context variables and generates a directed 

mixed graph, but which does not fall under the ancestral graph family. Table 5.1 summarises 

the main features of these relevant algorithms. 
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Algorithm Class 
Discrete 

/Continuous data 
Output Intervention type Dataset 

COmbINE Constraint-based Both PAG Perfect Separate 

HEJ Constraint-based Both 
Cyclic Directed Mixed 

Graph 
Perfect Separate 

JCI Constraint-based Both 
Acyclic Directed Mixed 

Graph 

Perfect/ Imperfect/ 

Uncertain 
Pooled 

ACI Constraint-based Both Ancestral graph Perfect/ Imperfect Separate 

 

Table 5.1 Overview of the relevant structure discovery algorithms that assume causal insufficiency, 

and learn graphs from multiple interventions.  

Previous works that assumed prior probabilities for the existence of directed edges, as 

opposed to a binary outcome, include those by Castelo and Siebes (2000) who introduced the 

idea of assigning subjective prior probabilities (specified by experts) to directed edges, and by 

Scutari (2016) who assumed the marginal uniform prior probabilities of directed edges A → B 

and A ← B to be ¼, while the prior probability of the independency between A and B to be ½ 

in a variant of the BD score called the Bayesian Dirichlet sparse score (BDs). 

Hyttinen et al. (2014) proposed a Bayesian scoring method that applies prior 

probabilistic weights to the results obtained from CI tests. These prior probabilities are 

subjective and obtained from knowledge. In this work, we modify this method so that the prior 

probabilities are objectively calculated from data, and are assigned to directed edges rather than 

to the results obtained from CI tests. These details are discussed in subsections 5.2.1 and 5.2.2. 

With reference to the method by Hyttinen et al. (2014), the posterior probability of CI 

(P(r|DOBS)), given observational data, is: 

P(r|DOBS) =
prior × P(DOBS|r) 

prior × P(DOBS|r) + (1 − prior) × P(DOBS|r̅)
  (5.1) 

where r is an arbitrary CI that A and B are independent given Z (A ⊥ B | Z), r̅ is an arbitrary 

conditional dependence that A and B are dependent given 𝐙 (A ⊥/ B | Z), 𝐙 is the set of variables 

that is the Sepset of variables A and B, prior is an informative or uninformative probability 

from knowledge that A ⊥ B | Z is true, P(DOBS|r) is the network score of A ⊥ B | Z (marginal 

likelihood), and P(DOBS|r̅) is the network score of A ⊥/ B| Z (A → B or A ← B). 

Similarly, Jabarri et al. (2017) used the BDeu score, which we describe in subsection 

2.2.2.1, to obtain a posterior probability for CI in the hybrid RFCI-BSC algorithm, and assumed 

a uniform prior as the uninformative probability for each result obtained from CI tests as 

follows:  

P(r|DOBS) =
P(DOBS|r)

P(DOBS|r) + P(DOBS|r̅ )
 

where P(DOBS|r) is the BDeu score (marginal likelihood) of structure A ← Z → B (A ⊥ B| Z), 

and P(DOBS|r̅) is the BDeu score of structure A ← Z → B and A → B (A ⊥/ B | Z), and all 

variables in Z are parents of both A and B. These structures are proposed by Jabarri et al. (2017; 

2020) to be the representation of all possible structures that correspond to the relevant CI tests. 

Since the marginal likelihoods can be found in the objective scores computed by score-based 
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learning (Margaritis, 2005), the BDeu score of these structures can be used to derive the 

marginal likelihoods for discrete variables.  

5.2 The mFGS-BS algorithm  

The mFGS-BS algorithm described in this subsection learns a PAG from both observational 

and interventional data, under the assumption of causal insufficiency and that the intervened 

variables are subject to perfect intervention. The novelty of mFGS-BS involves assigning 

probabilities to each possible directed edge. If the two opposing directions between a pair of 

variables both have probabilities that are higher than a given threshold, then a bidirected edge 

is assumed.  

We first describe in subsection 5.2.1 how the probabilities of directed edges from a 

single observational dataset can be obtained, and then describe in subsection 5.2.2 how we 

extend this concept to cases in which we want to learn a structure from both observational and 

interventional data. Subsection 5.2.3 provides the overall description of mFGS-BS.  

5.2.1 Determining the probabilities of directed edges from a single observational dataset  

We devise a new method to determine directed edges that is largely based on the methods of 

Hyttinen et al. (2014) and Jabbari et al. (2017) that focus on assigning probabilities to each 

result obtained from CI tests. In this work, we label observational data as DOBS and 

interventional data as DINT. When assuming the unconditional independence between two 

nodes A and B, we modify Equation (5.1) to consider the possibility of edges A B (i.e. no edge 

between A and B), A → B and A ← B in a DAG as follows: 

 

P(A B|DOBS) =  
P(A B) ×  P(DOBS|A B) 

P(A B) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B) + P(A ← B) × P(DOBS|A ← B)
 

 

Since P(A B|DOBS) + P(A → B|DOBS) + P(A ← B|DOBS) = 1 and P(A B) + P(A → B) + P(A ← B) = 1, then:  

 

 1 − (P(A → B|DOBS) + P(A ← B|DOBS))  = 

(1 − (P(A → B) + P(A ← B))) ×  P(DOBS|A B)

(1 − (P(A → B) + P(A ← B))) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B) + P(A ← B) × P(DOBS|A ← B)
 (5.2) 

 

where P(A → B) is the prior probability of directed edge A → B, P(A ← B) is the prior 

probability of directed edge A ← B that we later describe in subsection 5.2.2, P(DOBS|A → B) 

is the BDeu score of structure A → B, and P(DOBS|A ← B) is the BDeu score of structure A ←
B.  

Because we assume that the learnt ancestral graph is a PAG that may contain bidirected 

edges, the bidirected edge A ↔ B corresponds to the dependency between A and B from the 

assumed true structure A ← L → B (A ⊥/ B) where L is a latent confounder. The dependency 

between A and B in a PAG can be A → B, A ← B or A ↔ B. Because Equation (5.2) is not 

suitable to calculate the posterior probabilities of these types of edges, we devise two equations: 

(1) calculating P(A → B|DOBS) by ignoring A ← B, as described in Case 1 below, and (2) 

calculating P(A ← B|DOBS) by ignoring A → B, as described in Case 2 below. These enable us 



 

Page 46 of 116 
 
 

to calculate the probabilities of each of these directed edges independently. If the posterior 

probabilities of both directed edges A → B and A ← B are higher than a given threshold, then 

mFGS-BS will not be able to orientate the given directed edges and will produce the bidirected 

edge A ↔ B.  

Case 1: Calculate P(A → B|DOBS) given the assumption that P(A ← B|DOBS) = 0, 
P(DOBS|A ← B) = 0 and P(A ← B) = 0 from Equation (5.2), then: 

1 − P(A → B|DOBS) =
(1 − P(A → B)) × P(DOBS|A B)

(1 − P(A → B)) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B)
 

Case 2: Calculate P(A ← B|DOBS) given the assumption that P(A → B|DOBS) = 0, 
P(DOBS|A → B) = 0 and P(A → B) = 0 from Equation (5.2), then: 

1 − P(A ← B|DOBS) =
(1 −  P(A ← B)) × P(DOBS|A B)

(1 − P(A ← B)) × P(DOBS|A B) + P(A ← B) × P(DOBS|A ← B)
 

From this, we define the posterior probabilities of directed edges as specified by Definition 6. 

Definition 6: Assuming the learnt graph is a PAG, we define a bidirected edge A ↔ B as the 

dependency between A and B derived from the possibility of both A → B and A ← B, where the 

posterior probabilities P(A → B|DOBS) and P(A ← B|DOBS) are: 

P(A → B|DOBS) = 1 −
(1 − P(A → B)) × P(DOBS|A B) 

(1 − P(A → B)) × P(DOBS|A B) + P(A → B) × P(DOBS|A → B)
 

 

P(A ← B|DOBS) = 1 −
(1 − P(A ← B)) × P(DOBS|A B) 

(1 − P(A ← B)) × P(DOBS|A B) + P(A ← B) × P(DOBS|A ← B)
 

5.2.2 Determining the probabilities of directed edges from both observational and 

interventional datasets  

Cooper and Yoo (1999) propose a Bayesian score for DAG structures that assumes a mixture 

of causally sufficient observational and experimental data simultaneously. However, the 

proposed closed-form solution assumes that exhaustive enumeration of DAG structures is 

possible, and this renders the process computationally expensive or intractable when applied 

to today’s larger datasets. In this work, we extend the approach described in subsection 5.2.1 

to learn from an observational dataset and one or more interventional datasets, which the 

algorithm processes in turn to improve computational efficiency. The proposed mFGS-BS 

algorithm computes the posterior probabilities of directed edges derived from previously 

processed data, where each posterior probability of a given edge serves as the prior probability 

of that edge in the next iteration. For each interventional dataset, INTi, the algorithm uses 

Equations (5.3) and (5.4) to determine the posterior probability of each directed edge. We use 

the term “posterior” here to reflect the fact that this probability, denoted for example, 

P(A → B|DINTi
), is based both on the current interventional dataset being processed and all 

previous datasets processed.  

P(A → B|DINTi
) = 1 −

(1−P(A→B))×P(DINTi
|A B)

(1−P(A→B))×P(DINTi
| A B)+P(A→B)×P(DINTi

|A→B)  
  (5.3) 
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P(A ← B|DINTi
) = 1 −

(1−P(A←B))×P(DINTi
| A B)

(1−P(A←B))×P(DINTi
| A B)+P(A←B)×P(DINTi

|A←B) 
  (5.4) 

The term P(A → B) on the right hand side of Equation (5.3) represents the objective prior 

probability of directed edge A → B based on the previously processed datasets. The term P(A ←

B) plays an analogous role as the objective prior for A ← B in Equation (5.4). The prior for 

A → B is taken to be either the posterior for that directed edge computed in the previous 

iteration, that is, P(A → B|DINTi−1
), or a prior derived using Equation (5.5) whichever is the 

larger.  

P(A → B) = max{PFGS(A → B)|DOBS,INT1:i−1
, P(A → B)A→B←C|DOBS} 

+ ∑ P(A − B)local BDeu of B,target =A|DOBS,INTk

i−1

k=1

 (5.5) 

where P(A → B) is computed from three factors on the right hand side of Equation (5.5): 

a) Factor 1: PFGS(A → B)|DOBS,INT1:i−1
is the probability of directed edge A → B over all 

previously learnt CPDAGs from FGS across DOBS,INT1:i−1
(further details are provided 

in subsection 5.2.2.1). 
 

b) Factor 2: P(A → B)A→B←C|DOBS is the probability of directed edge A → B calculated 

from the ratio of Sepsets determining v-structure A → B ← C using the majority rule 

from DOBS (further details are provided in subsection 5.2.2.2). 
 

c) Factor 3: ∑ P(A − B)local BDeu of B,target =A|DOBS,INTk

i−1
k=1  is the summation of all 

relative changes in the local BDeu scores of node B compared to DOBS, when the 

intervened variable is A across all previously learnt DINT. The relative changes in the 

local BDeu scores are described in subsection 5.2.2.3).  

5.2.2.1 Factor 1: Determining the probabilities of directed edges given the 

occurrence rates of each directed edge over all learnt CPDAGs 
 

The first, out of the three, factors used to calculate the prior probability of a directed edge is 

based on the occurrence rate of each directed edge derived from the probability of directed 

edge A → B (PFGS(A → B)|DOBS,INT1:i−1
) over all learnt CPDAGs obtained by applying FGS to 

each input dataset. Specifically,:  

PFGS(A → B)|DOBS,INT1:i−1
=

#directed edge(A → B)

#total directed edge(A → B) + #total directed edge(A ← B)
 

where: 

directed edge(A → B) = {
   1  ∶ if A → B is in a learnt CPDAG                                                                
0.5 ∶ if A − B is in a learnt CPDAG and the intervened variable = A 

0  ∶ otherwise                                                                                                 
 

and: 

total directed edge(A → B) = {
 1 :  if A → B is in a learnt CPDAG                                                                      
1 :  if A − B is in a learnt CPDAG and the intervened variable = A       

  0 :  otherwise                                                                                                           
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The total number of directed edges A → B represents the number of directed edges A → B 

present in each of the learnt CPDAGs. These formulas rely on a simple counting method to 

calculate probabilities, adopted by Hyttinen et al. (2014) who estimate prior probabilities of 

directed edges specified by experts. Note that CPDAGs learnt from interventional data should 

not produce directed edges entering the intervened variable due to the graph surgery 

mechanisms illustrated in Figure 2.4 of Chapter 2 (i.e., interventions are rendered independent 

of their parents). For example, if the undirected edge A − B is present in the learnt CPDAG 

when we intervene on node A, the algorithm assigns probability 0 for directed edge A ← B and 

probability 0.5 for directed edge A → B to account for the risk of false positive edges learnt by 

FGS, since it does not produce bidirected edges in the presence of latent confounders (Ogarrio 

et al., 2016).  

It is important to clarify that in the absence of intervention, an undirected edge in the 

learnt CPDAG does not imply equal probability for either direction (Kummerfeld, 2021). The 

correct probability for each directed edge can be obtained by enumerating all possible DAGs 

from the learnt CPDAG. However, this tends to increase the computational complexity of the 

algorithm substantially, especially in the case of mFGS-BS which is designed to produce a 

CPDAG for each input dataset. For simplicity and reasons of efficiency, when an undirected 

edge is present in a learnt CPDAG, mFGS-BS assumes a probability of 0.5 for either direction. 

5.2.2.2 Factor 2: Determining the probabilities of directed edges given the ratios of 

Sepsets determining v-structures 

Because the joint probability distribution from interventional data will not capture all 

dependencies, we consider the v-structures as determined by observational data. Therefore, 

interventional data is not used by this factor. In mFCI, the v-structures are obtained from 

unshielded triples that are part of an initial undirected graph determined by statistical CI tests. 

Then, the majority rule in mFCI is used to definitively orientate the edges of unshielded triples 

A − B − C into v-structures A → B ← C, determined by the ratio of Sepsets (Colombo and 

Maathuis, 2014). In this work, we use a novel method to instead calculate the probabilities of 

these directed edges, where P(A → B)A→B←C|DOBS and P(C → B)A→B←C|DOBS correspond to 

the individual probabilities of directed edges A → B and C → B in producing v-structure A →

B ← C given the observational data. In order to assign a probability to directed edges in an 

unshielded triple A − B − C, mFGS-BS considers how many of the Sepsets of A and C contain 

B. If B is in less than 50% of the Sepsets of A and C (i.e., the ratio of Sepsets < 0.5) then we 

assume that B does not block an active path between A and C. Hence, the likelihood of v-

structure A → B ← C will be higher than 0.5, and from this we deduce that P(A →

B)A→B←C|DOBS > 0.5 and P(C → B)A→B←C|DOBS > 0.5. Conversely, if B is in ≥ 50% of the 

Sepsets of A and C, we deduce that the unshielded triple A − B − C is unlikely to be a v-

structure and that instead is likely to be either A → B → C, A ← B → C or A ← B ← C. These 

assumptions lead to Equations (5.6) and (5.7) which are calculated independently as follows: 

 (5.6) 

P(A ← B)A→B←C|DOBS = P(C ← B)A→B←C|DOBS = 0.5  (5.7) 

 



 

Page 49 of 116 
 
 

where the ratio of Sepsets =
|Sepsets of A and C which contain B| 

|all Sepsets of A and C| 
, |Sepsets of A and C which contain B| 

and |all Sepsets of A and C| represent the number of Sepsets in DOBS. P(A → B)A→B←C|DOBS, 

P(C → B)A→B←C|DOBS from Equation (5.6), P(A ← B)A→B←C|DOBS and P(C ← B)A→B←C|DOBS 

from Equation (5.7) are assigned the value of 0.5 for the reasons covered in subsection 5.2.2.1. 

5.2.2.3 Factor 3: Determining the probability of directed edges given the relative 

changes in local BDeu scores 

BDeu is a score-equivalent function where the BDeu score of a graph represents the summation 

of all local BDeu scores assigned to each node within that graph. The local BDeu score for 

node i (Zi) (Cussens, 2012) is denoted as: 

Zi =  ∑ [log
Γ(iss qi⁄ )

Γ(iss qi⁄ + Σknijk)
+  ∑ log

Γ(iss |Xi|qi⁄ + nijk)

Γ(iss |Xi|qi⁄ )

|Xi|

k=1

]

qi

j=1

   

The effect of an intervention represents the difference between pre and post-

intervention distributions of the children of a target node (Zhang, 2006). We consider the 

difference in their local BDeu scores to represent the effect of the intervention, assuming the 

sample size of the input observational data is the same with the sample size of the interventional 

data when computing this difference. From this, we obtain the relative change in the local BDeu 

scores as described by Definition 7. 

Definition 7: Assuming equal sample size for both observational and interventional data, the 

relative change in the local BDeu scores between pre-intervention (Zi|DOBS) and post-

intervention (Zi|DINT) of node i is: 

|
Zi|DOBS − Zi|DINT

Zi|DOBS
| (5.8) 

For example, when we intervene on node A when A → B is present in the graph, then 

we would expect the effect of this intervention to be reflected in the probability distribution of 

B. When A is the intervened variable and the undirected edge A − B is learnt by FGS given 

DINT, we are interested in the likelihood of the directed edge A → B being present in the true 

graph. In this case, the probability of directed edge A → B is measured by Factor 3 in terms of 

the relative change in the local BDeu score of node B, given DINT and DOBS, as defined by 

Equation (5.8).  

Example 1. This example is described with reference to Figure 5.2, and assumes that the true 

DAG is the one shown in Figure 2.7 of Chapter 2. Figure 5.2a shows the undirected graph as 

constructed by the CI tests given DOBS, to determine unshielded triples. Figures 5.2b, 5.2c and 

5.2d present the three hypothetical CPDAGs learnt by FGS from three different datasets. We 

first illustrate how to derive Factor 2 in Table 5.2, where the first column shows that the CI 

tests over V and Y, given the unshielded triple V − X − Y in Figure 5.3a, return 3 Sepsets with 

p-values greater than the significant threshold α of 0.05. The only Sepset of node V and Y that 

contains X is {W, X, Z}. This means that the ratio of Sepsets in determining the given v-structure 

will be 0.333, as shown in the second column in Table 5.2. The third and fourth columns show 

how we arrive at the calculation of Factor 2, given Equations (5.6) and (5.7) respectively, each 

of which corresponds to a probability of the directed edge being present in the true graph.  
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Sepsets of 𝐕 and 𝐘 
the ratio of Sepsets 

containing 𝐗 

Factor 2: 

𝐏(𝐕 → 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒 

𝐏(𝐘 → 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒 

given Equation (5.6) 

Factor 2: 

𝐏(𝐕 ← 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒 

𝐏(𝐘 ← 𝐗)𝐕→𝐗←𝐘|𝐃𝐎𝐁𝐒 

given Equation (5.7) 
{W} 

1 

3 
= 0.333 1-0.333 = 0.667 

 
{W, X, Z} 0.5 
{Z}  

 

Table 5.2 How the probabilities of directed edges of Factor 2 are calculated, given the unshielded 

triple V − X − Y in Example 1 and with reference to Figure 5.2a. 

 

Figure 5.2 (a) The undirected graph produced by the CI tests given DOBS, (b)-(d) and the three 

CPDAGs learnt by FGS from observational and interventional data (DOBS , DINT1
and DINT2

) 

generated based on the DAG shown in Figure 2.7 of Chapter 2, with variables targeted for 

intervention T1={V}, T2={W} shown in the square boxes.  

Table 5.3 illustrates how Factor 3 is calculated, that produces the relative change in the 

local BDeu scores as described in subsection 5.2.2.3. The example is based on one 

observational dataset, two interventional datasets, and one intervened variable per 

interventional dataset as shown in Figure 5.2c and Figure 5.2d. Figure 5.2c shows that the 

undirected edge V − X is learnt by FGS given DINT1
. When V is the intervened variable, we 

observe that the relative change in the local BDeu score of node X is 0.0119 from the effect of 

this intervention, so this increases the probability of directed edge V → X being present in the 

true graph. Table 5.3 also shows the relative changes in the local BDeu score of V and Z are 

0.0174 and 0.0001 respectively when W is the intervened variable in Figure 5.2d. 

Directed 

edges 

Interventional 

datasets 

Intervened 

variables 

Local BDeu score 

(pre-intervention) 

Local BDeu score          

(post-intervention) 

Relative change in local BDeu 

scores given Equation (5.8) 

V → X DINT1
 V X = -11,507 X = -11,370 0.0119 

W → V DINT2
 W V = -14,274 V = -14,026 0.0174 

W → Z DINT2
 W Z = -6,936 Z = -6,935 0.0001 

 

Table 5.3 An example of calculating the relative change in the local BDeu scores as described in 

Example 1 and with reference to Figure 5.2c and Figure 5.2d. 
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Finally, Table 5.4 presents the outputs produced by each of the three factors, and with 

reference to the directed edges presented in the first column. The calculations in the second, 

third and fourth columns correspond to the outputs of Factors 1, 2 and 3 respectively. In 

calculating Factor 1 for directed edge X → Y, Figures 5b, 5c and 5d show that X ← Y appears 

once and X → Y appears twice across the three CPDAGs, thus PFGS(X → Y)|DOBS,INT1:2
= 0.67. 

For directed edge W → V, Figure 5.2b shows W − V, Figure 5.2c shows no edge, and Figure 

5.2d shows W − V given DINT2
 and hence, PFGS(V → W)|DOBS,INT1:2

 is set to 0 and 

PFGS(W → V)|DOBS,INT1:2
 to 0.5. This is because W is the intervened variable in Figure 5.2d, 

and from this we can conclude that if an edge is discovered between V and W, then the direction 

of that edge can only be entering V. Note that PFGS(W → V)|DOBS,INT1:2
 is set to 0.5 and not to 

1 because FGS suggests W − V instead of W → V. Finally, the fifth column of Table 5.4 shows 

the overall calculation for the prior probability of each directed edge, that takes into 

consideration all three factors, given Equation (5.5). 

Directed 

edges 
Factor 1: 

𝐏𝐅𝐆𝐒(𝐀 → 𝐁)|𝐃𝐎𝐁𝐒,𝐈𝐍𝐓𝟏:𝟐
 

Factor 2: 
𝐏(𝐀 → 𝐁)𝐀→𝐁←𝐂|𝐃𝐎𝐁𝐒 

Factor 3: 

∑ 𝐏(𝐀 − 𝐁)𝐥𝐨𝐜𝐚𝐥 𝐁𝐃𝐞𝐮 𝐨𝐟 𝐁,𝐭𝐚𝐫𝐠𝐞𝐭 =𝐀|𝐃𝐎𝐁𝐒,𝐈𝐍𝐓𝐤

𝟐

𝐤=𝟏

 

𝐏(𝐀 → 𝐁) 

given Equation (5.5) 

X → Y 0.67 0.5 - 0.67 

Y → X 0.34 0.67 - 0.67 

V → X 0.75 0.67 0.0119 0.7619 

W → V 0.5 0 0.0174 0.5174 

V → W 0 0 - 0 

W → Y 1 0 - 1 

W → Z 0.75 0 0.0001 0.7501 
 

Table 5.4 Examples of the calculation of the prior probability of directed edges with reference to 

Example 1, Figure 5.2, Table 5.2 and Table 5.3.  

5.2.3 Algorithm mFGS-BS 

 

 

Figure 5.3 The overall process of the mFGS-BS algorithm that iteratively processes datasets and 

calculates posterior probabilities of directed edges to generate a PAG. 

 

We now use the concepts described in subsections 5.2.1 and 5.2.2 to formulate the mFGS-

BS algorithm. The pseudocode of mFGS-BS is provided in Algorithm 2. The algorithm takes 

as an input an observational dataset and one or more interventional datasets, the set of 

variables targeted for intervention for each interventional data, and the hyperparameters 

specified in Algorithm 2. The overall process of mFGS-BS is shown in Figure 5.3. The first 

step in Algorithm 2 performs CI tests given an observational dataset. Steps 2 to 4 derive the 
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initial prior probabilities of directed edges forming v-structures and the probabilities of 

directed edges learnt by FGS given an observational dataset. Step 5 then iteratively calculates 

the posterior probabilities of directed edges derived from each interventional dataset 

(DINT𝟏
− DINT𝐈−𝟏

), as described in subsection 5.2.2. In the last steps, a PAG is constructed 

from the posterior probabilities of directed edges obtained after processing the last 

interventional dataset (DINT𝐈
), based on a hyperparameter cut-off threshold used to determine 

the existence of a directed edge or bidirected edge. 
 

Algorithm 2: mFGS-BS (majority rule and Fast Greedy equivalent Search with Bayesian Scoring) 

Input: interventional datasets DINTI
, an observational data DOBS, intervened variable sets TI, significance threshold α,𝛼  

posterior probability cut-off threshold c, maximum Sepset size k, CI test 

Output: a PAG 
 

Step 1 

 

 

 

 

 

Set up a complete undirected graph 𝒰 and Sepset 𝐙 size = 0 

Repeat  

Remove the dependencies for each pair (A, B) in 𝒰 if they become independent given subsets of 

Sepset 𝐙, determined by significance threshold α in DOBS 

Sepset 𝐙 size = Sepset 𝐙 size +1 

Until Sepset 𝐙 size k has been tested 
 

Step 2 

 
Given unshielded triple A − B − C from 𝒰 resulting from Step 1, perform CI tests, with significance 

threshold α, on A and C given all neighbours of A and C including B, given DOBS and calculate Factor 2 

P(A → B)A→B←C|DOBS, P(A ← B)A→B←C|DOBS, P(C → B)A→B←C|DOBS and P(C ← B)A→B←C|DOBS 

according to Equations (5.6) and (5.7) 
 

Step 3 Run FGS on DOBS and add the learnt CPDAG to the list ℒG 
 

Step 4 For each pair (A, B) over all variables  

Calculate the prior probabilities P(A → B), P(A ← B) for each possible directed edge A → B, A ← B  

      where P(A → B) = max{PFGS(A → B)|DOBS , P(A → B)A→B←C|DOBS} 

        Calculate the posterior probabilities P(A → B|DINT1
), P(A ← B|DINT1

) for each possible directed edge 

         A → B, A ← B according to Equations (5.3) and (5.4) 

Step 5 For i=1 to I-1 

Run FGS on DINTi
 and add the learnt CPDAG to the list ℒ𝐺  

For each pair (A, B) over all variables  

      If A is the intervened variable  

          Calculate Factor 3 P(A − B)local BDeu of B,target=A|DOBS,INTi
 given Equation (5.8) and add it to  

                the list ℒS  

         

         Calculate the prior probabilities P(A → B), P(A ← B) for each possible directed edge A → B and  

            A ← B given Equation (5.5), where Factor 1 is calculated given ℒG, Factor 2 is calculated   

               given Equations (5.6) and (5.7) in Step 2, and Factor 3 is calculated given ℒS 
 

 P(A → B) ⟵ max{P(A → B), P(A → B|DINTi
)} 

 P(A ← B) ⟵ max{P(A ← B), P(A ← B|DINTi
)} 

  

                  Calculate the posterior probabilities P(A → B|DINTi+1
), P(A ← B|DINTi+1

) for each possible     

                    directed edge A → B, A ← B according to Equations (5.3) and (5.4) 
         

Step 6 Repeat until no cycles or an almost cyclic are present in the output graph 

       For each pair (A, B) in all variables  

          Select edge A → B if the posterior probability P(A → B|DINT𝐈
) is higher than threshold c; 

          Select edge A ↔ B if the posterior probabilities P(A → B|DINT𝐈
) and P(A ← B|DINT𝐈

) are both  

         higher than threshold c;  

         Select edge A o— o B if the posterior probabilities P(A → B|DINT𝐈
) and P(A ← B|DINT𝐈

) are both   

           lower or equal to threshold c, but A − B exists in 𝒰. 
 

 

 

 

 

 

Step 7 

       If the graph contains a cycle or an almost cyclic  

          Remove an edge that causes a cycle, or an almost cycle, where the edge selected is the one that has 

               the lowest posterior probability. 

     

 

Output a PAG by combining the set of edges learnt from Step 6       
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5.3 Evaluation  

We consider the same six networks previously presented in Table 3.1 of Chapter 3 that vary in 

dimensionality. Because the experiments assume multiple interventional datasets, we restrict 

the evaluation to synthetic experiments that can accurately represent such scenarios since we 

had no access to suitable real data. We use the networks to generate one synthetic observational 

and up to 10 synthetic interventional datasets. The true MAGs and true DAGs for each of the 

networks are available in the Bayesys repository (Constantinou et al., 2020). For each true 

DAG, we consider observational and interventional datasets over two sample sizes (n = 1k and 

n = 10k).  Interventional data are generated using the bnlearn R package (Scutari, 2019). For 

each dataset, we randomly choose one or five variables to be targeted for intervention. This 

means it is possible for the same variable to be targeted for intervention in more than one 

interventional dataset. We remove all incoming edges entering intervened variables, and we 

assume a uniform distribution for each state of variables targeted for intervention, before the 

intervention is set, as in (Korb et al., 2004). Finally, 10% of the variables in the smaller 

networks (Asia and Sports) and 5% of the variables in the larger networks (Property, Alarm, 

Formed and Pathfinder) are made latent. To minimise uncertainty, we repeat the experiments 

five times per algorithm and obtain the average scores. 

The structure learning performance is evaluated using the graphical measures of 

Precision, Recall, F1 and BSF as described in subsection 2.2.4. We compare the graphical 

scores obtained by mFGS-BS to those obtained by COmbINE, RFCI-BSC and GFCI as 

described in subsections 5.1 and 2.2.3, which are three similar algorithms that also produce a 

PAG. RFCI-BSC assigns probabilities to CIs that are used to learn a PAG, which is the most 

similar approach to mFGS-BS, whilst the well-establish GFCI supports latent variables, and 

has been shown to more accurate than FCI and RFCI (Ogarrio et al., 2016; Constantinou et. al., 

2021). An important difference amongst these algorithms is that COmbINE enables learning 

from multiple interventional datasets while RFCI-BSC and GFCI do not. RFCI-BSC and GFCI 

are hybrid algorithms which assume the input data are observational. We therefore combine 

the observational and interventional datasets into a single dataset which we use as input to these 

algorithms. This serves as a baseline experiment where the RFCI-BSC and GFCI algorithms 

produce a result given all data but without taking advantage of interventional information.  

True edges Predicted edges Penalty Result 

𝐀 ↔ 𝐁 A → B, A ⇢ B, A ← B, A ⇠ B, A  B   1 True Positive = 0 

𝐀 → 𝐁 A ↔ B, A ← B, A ⇠ B, A  B  1 True Positive = 0 

𝐀 ← 𝐁 A ↔ B, A → B, A ⇢ B, A  B  1 True Positive = 0 

𝐀     𝐁 A → B, A ⇢ B, A ← B, A ⇠ B, A ↔ B 1 True Negative = 0 

𝐀 → 𝐁 Ao— oB, Ao---oB 0.5 True Positive = 0.5 

𝐀 ← 𝐁 Ao— oB, Ao---oB 0.5 True Positive = 0.5 

𝐀 → 𝐁 A o→ B, A o⇢ B 0.25 True Positive = 0.75 

𝐀 ← 𝐁 A ←o B, A ⇠o B 0.25 True Positive = 0.75 
 

Table 5.5 The edge and orientation penalty scores used by the scoring metrics, where ⇢ represents 

one of the output edges of COmbINE. 

 COmbINE was tested using the MATLAB implementation by Triantafillou (2019) 

while RFCI-BSC and GFCI were tested using the rcausal package, which is the R wrapper for 

Tetrad Library (Wongchokprasitti, 2019). The mFGS-BS implementation is available online at 

https://github.com/kiattikunc/mFGS-BS. Note the output of COmbINE represents a special 

https://github.com/kiattikunc/mFGS-BS
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type of PAG that contains dashed edges (---) indicating uncertainty about the existence of an 

edge learnt from each interventional dataset. Since we are interested in the direction of 

causation, all output PAGs are measured against the true MAG using the penalty scores 

described in Table 5.5. Regarding the hyperparameter inputs of the algorithms, the significant 

threshold α for the G2 hypothesis test is set to 0.05, and the max Sepset size of the conditioning 

set is set to 10, in all algorithms. The posterior probability cut-off threshold of mFGS-BS is set 

to 0.5, and the default iss of BDeu in mFGS-BS, RFCI-BSC and GFCI is set to 1. We also 

apply a runtime limit of four hours to each graph learnt/experiment for all algorithms. 

5.4 Results 

The results are separated into four subsections. We start with subsection 5.4.1, where we 

measure the sensitivity to the order of interventional datasets. We use the Alarm network to 

generate 5 and 10 interventional datasets with sample sizes 1k and 10k by intervening on a 

random single variable per dataset and 5% of the variables in the data are made latent. Then, 

we randomise 20 orderings of 5 and 10 interventional datasets, and evaluate the results. In 

subsection 5.4.2, we assess the impact of each of the three factors described in subsection 5.2.2 

on graphical learning accuracy. Subsection 5.4.3 compares the results of mFGS-BS to those of 

the other algorithms when we intervene on a single variable per interventional data set, and 

subsection 5.4.4 when we intervene on five variables per interventional data set.  

5.4.1 Assessing the sensitivity of the ordering of interventional datasets  

 

Figure 5.4 The boxplots show the BSF and F1 scores of mFGS-BS from 20 random interventional 

data orderings generated from the Alarm network, assuming one intervened variable and 5% latent 

variables per dataset, over two sample sizes and two numbers of interventional datasets. The 

boxplots report the average values (the symbol x in the box) along with the median (the middle line 

of the box), and the maximum and minimum scores (the whiskers of the box). The lower edge of 

the boxplot represents the first quartile, while the higher edge of the boxplot represents the third 

quartile. 

The mFGS-BS algorithm updates the posterior probabilities of directed edges by taking into 

consideration a single interventional dataset at a time. In this subsection, we evaluate how this 

ordering might influence the graphical performance of the algorithm. This experiment involves 

the different combinations of 5 and 10 interventional datasets, and sample sizes 1k and 10k. 

The boxplot in Figure 5.4 shows the BSF and F1 scores of mFGS-BS when applied to each 

hyperparameter setting involving the Alarm network. Each of the four sample sizes involves 

20 randomised orderings of interventional data. The results show that the average BSF score is 

0.730.0363 when we have 5 interventional datasets at 1k sample size each, and the variability 
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decreases to 0.810.0058 for 10 interventional datasets at 10 sample size each. We observe 

that the average F1 scores are mostly consistent with the BSF scores. Both the BSF and F1 

scores show that there is a minor deviation in the scores obtained from mFGS-BS, depending 

on the ordering of interventional datasets, and the standard deviation decreases with the number 

and size of the interventional datasets.  

5.4.2 Assessing the impact of Factors 1, 2, and 3 
 

We assess the impact of the three factors described in subsection 5.2.2 by modifying Equation 

(5.5) to consider one, or combinations of two, factors at a time. As shown in Table 5.6, mFGS-

BS-1 refers to considering Factor 1 only, mFGS-BS-23 considers Factors 2 and 3, etc. The 

impact is measured in terms of graphical accuracy, based on the metrics Precision, Recall, F1 

and BSF shown in Table 5.6. The experiments are based on the Alarm network and assume 5% 

latent variables (one in this case), and sample sizes 1k and 10k.  

The results in Table 5.6 depict the average learning performance over 10 experiments, 

from considering just one interventional dataset to considering 10 interventional datasets. We 

repeat these experiments five times, and each time we randomly choose a new variable to be 

targeted for intervention. Considering one factor alone, the results clearly show considerable 

drop in performance across almost all cases. Combinations of two factors increase 

performance, particularly when Factor 3 is included in the combination. Although Factor 1 

appears to be less important than Factors 2 and 3, considering all three factors (i.e., the default 

mFGS-BS) does lead to a slightly better overall performance across all combinations. 

Metric 
 

n 

m
F

G
S

-B
S

 

m
F

G
S
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S

-1
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F

G
S

-B
S

-2
 

m
F
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S

-B
S

-3
 

m
F

G
S

-B
S

-1
2
 

m
F

G
S
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S

-1
3
 

m
F

G
S

-B
S

-2
3
 

Precision 1k 0.79 0.45 0.76 0.58 0.45 0.82 0.78 

Recall  0.74 0.71 0.56 0.36 0.71 0.73 0.58 

F1  0.77 0.55 0.64 0.44 0.55 0.77 0.66 

         BSF 0.74 0.65 0.56 0.36 0.65 0.73 0.58 

Precision 10k 0.79 0.64 0.76 0.63 0.63 0.78 0.77 

Recall  0.75 0.74 0.69 0.55 0.74 0.74 0.71 

F1  0.77 0.68 0.72 0.59 0.68 0.76 0.74 

BSF  0.75 0.72 0.69 0.55 0.71 0.74 0.70 
 

Table 5.6 The impact of Factors 1, 2 and 3 (refer to subsection 5.2.2) on graphical performance, 

where mFGS-BS considers all of the three factors (default version), mFGS-BS-1 considers Factor 1 

only, mFGS-BS-12 considers Factors 1 and 2 only, etc. The results represent average performance 

over multiple experiments with synthetic Alarm network data, as described in subsection 5.4.2. 

 

 

 

 

 

 

 

 

 

 

 



 

Page 56 of 116 
 
 

 

5.4.3 Results based on one variable targeted for intervention per interventional dataset 

 

Figure 5.5 Average performance of the algorithms when applied to synthetic data generated from the 

Asia network, assuming one intervened variable and 10% latent variables per dataset, over two sample 

sizes. 

In this subsection, we assume that each interventional dataset contains a single variable that is 

randomly targeted for intervention. Because RFCI-BSC failed to generate a PAG within the 

four-hour runtime limit for almost all cases in which the sample size is 10k (presumably 

because it generates multiple PAGs through bootstrapping), we restrict its comparisons to 

experiments where the sample size is up to 1k. Figure 5.5 shows the results obtained by 

applying the algorithms to the Asia network over two sample sizes. The x-axis represents the 

total number of interventional datasets considered for learning, and the y-axis represents the 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

# interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

R
ec

al
l

# interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F1

# interventional data sets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

B
SF

# interventional data sets

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10

# 
Ed

ge
s

# interventional data sets

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e 

(S
ec

)

# interventional data sets



 

Page 57 of 116 
 
 

specified scoring metric, runtime, or the number of edges learnt. Each data point in these graphs 

represents the average result across five iterations. Each iteration involves new datasets and 

new variables targeted for intervention. The results show that mFGS-BS outperforms GFCI 

and RFCI-BSC, and to a lesser degree COmbINE which demonstrates erratic performance, 

across all four metrics and two sample sizes. Importantly, the results show that both mFGS-BS 

and COmbINE continue to improve with the number of interventional datasets. Conversely, 

the graphical accuracy of GFCI and RFCI-BSC decreases with the number of interventional 

datasets, and this is expected since these two algorithms use pooled data, where the post-

interventional and pre-interventional distributions may conflict. GFCI produces a high number 

of learnt edges, and this number continues to increase with the number of datasets and greatly 

surpasses the number of true edges. Lastly, COmbINE is found to be considerably faster than 

both mFGS-BS and GFCI at 10k sample size. 

Figure 5.6 repeats the results for the Sports network, which is also a small network. 

However, compared to Asia, the Sports network contains a considerably higher number of free 

parameters. Overall, the results show that the algorithms deliver a rather similar performance 

when the number of datasets is low, with the gap in performance increasing as the number of 

datasets increases. The accuracy of mFGS-BS increases faster with the number of datasets, and 

this eventually makes the gap in performance important at higher number of datasets. This is 

partly because the accuracy of COmbINE does not improve with the number of interventional 

datasets, and there is no obvious explanation for this observation. Interestingly, while 

COmbINE is the fastest algorithm on Asia, it is the slowest on Sports. A possible explanation 

is the number of free parameters, which is 1,049 in Sports compared to just 18 in Asia, despite 

the two networks having just one variable difference. This suggests that COmbINE might not 

scale well with dense networks, or with networks that contain multinomial, rather than Boolean 

variables, whereas RFCI-BSC fails to return an output and instead returns an out-of-memory 

error. 
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Figure 5.6 Average performance of the algorithms when applied to synthetic data generated from the 

Sports network, assuming one intervened variable and 10% latent variables per dataset, over two 

sample sizes. 
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Figure 5.7 Average performance of the algorithms when applied to synthetic data generated from 

the Alarm network, assuming one intervened variable and 5% latent variables per dataset, over two 

sample sizes. 

Figures 5.7 and 5.8 repeat the results for the medium networks Alarm and Property 

respectively. While there are some variations in the results, the overall conclusions that can be 

derived from these results are consistent with those derived from the smaller networks of Asia 

and Sports. A notable exception is that COmbINE performs better than mFGS-BS, in terms of 

BSF and recall, in Property. However, this result is restricted to the sample size of 10k, and 

this is because COmbINE fails to generate a result within the four-hour runtime limit for sample 

size 1k and RFCI-BSC fails to return a result when the experiments rely on more than two 

interventional datasets. Because COmbINE does not return a result for any of these larger 

networks within the four-hour time limit, we have put these results in Appendix A (see Figures 

A1 and A2). Overall, the larger networks show that GFCI outperforms mFGS-BS slightly in 

ForMed, perhaps because any differences between the observational and interventional data 
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with just one intervened node is relatively minor in this larger network. mFGS-BS outperforms 

GFCI considerably in Pathfinder in terms of graphical accuracy. Pathfinder is the network with 

the highest number of free parameters considered in this study, and this complexity might 

explain why all algorithms perform relatively poorly on Pathfinder compared to the other 

networks. 

 

Figure 5.8 Average performance of the algorithms when applied to synthetic data generated from 

the Property network, assuming one intervened variable and 5% latent variables per dataset, over 

two sample sizes. 

Table 5.7 summarises the average results across all experiments in which a single 

variable is targeted for intervention. The results show that mFGS-BS performed best in the 

small and medium networks and across all four graphical metrics, followed by COmbINE, then 

GFCI and finally RFCI-BSC. In terms of runtime, however, GFCI is found to be the fastest 
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algorithm in most experiments, followed by mFGS-BS, then COmbINE, and finally RFCI-

BSC which could not process any of the larger networks within the runtime limit. 
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 Precision Recall 

mFGS-BS 1k 0.87 0.72 0.81 0.79 0.90 0.29 0.83 0.38 0.57 0.74 0.46 0.16 

 10k 0.85 0.68 0.66 0.79 0.79 0.50 0.84 0.69 0.64 0.75 0.67 0.32 

COmbINE 1k 0.74 0.50 T 0.72 T T 0.73 0.48 T 0.60 T T 
 10k 0.80 0.63 0.79 0.81 T T 0.81 0.62 0.70 0.72 T T 

GFCI 1k 0.54 0.56 0.71 0.77 0.75 0.16 0.57 0.34 0.55 0.70 0.56 0.11 

 10k 0.49 0.55 0.74 0.76 0.77 0.12 0.62 0.53 0.66 0.77 0.71 0.11 
RFCI-BSC 1k 0.44 M 0.54 0.67 T T 0.42 M 0.44 0.57 T T 

 F1 BSF 

mFGS-BS 1k 0.85 0.50 0.67 0.77 0.61 0.20 0.83 0.38 0.57 0.74 0.46 0.14 

 10k 0.84 0.68 0.65 0.77 0.72 0.39 0.84 0.65 0.63 0.75 0.66 0.31 

COmbINE 1k  0.73 0.49 T 0.66 T T 0.70 0.36 T 0.60 T T 
 10k 0.80 0.62 0.74 0.76 T T 0.78 0.58 0.70 0.72 T T 

GFCI 1k  0.55 0.42 0.62 0.73 0.64 0.13 0.46 0.32 0.55 0.69 0.56 0.09 

 10k 0.54 0.54 0.70 0.77 0.73 0.12 0.46 0.52 0.66 0.77 0.70 0.08 
RFCI-BSC 1k 0.43 M 0.49 0.62 T T 0.37 M 0.43 0.57 T T 

 Learnt Edges Runtime 

mFGS-BS 1k 5.68 6.90 22.22 42.18 72.32 124.52 11.26 11.35 28.43 72.21 333.68 1026.19 
 10k 5.92 13.34 31.00 43.20 117.86 148.28 47.31 64.44 213.08 434.71 1556.64 2756.12 

COmbINE 1k 6.02 12.70 T 37.48 T T 10.14 169.59 T 677.86 T T 

 10k 6.14 12.94 28.32 39.90 T T 9.65 76.89 147.34 325.85 T T 
GFCI 1k 6.44 7.88 24.80 40.44 105.72 161.52 8.68 6.66 14.19 21.90 39.12 63.03 

 10k 8.06 12.46 28.58 46.00 129.90 210.04 38.76 49.39 162.28 219.94 1014.59 548.98 

RFCI-BSC 1k 5.96 M 36.88 38.65 T T 5.37 M M 44.59 T T 

 

Table 5.7 Average performance across all experiments in which a single variable is targeted for 

intervention per dataset, where M indicates out-of-memory error, and T indicates failure to 

complete learning within the four-hour runtime limit. The best performance values are shown in 

bold. 
 

5.4.4 Results based on five variables targeted for intervention per interventional dataset 

This subsection focuses on the results when the number of intervened variables is increased 

from one (subsection 5.4.3) to five, for each interventional data. Because the Asia and Sports 

networks contain less than 10 variables, we do not consider them here since it would be 

unrealistic to assume that half of the network variables are targeted for intervention. Instead, 

we consider the networks of Property, Alarm, ForMed and Pathfinder where the number of 

variables ranges from 27 to 109.  

Figure 5.9 presents the results based on the Property network and shows that both 

mFGS-BS and COmbINE improve their performance relative to the corresponding results in 

Figure 5.8 which consider only one intervened variable. Table 5.7, which summarises the 

average results obtained when considering five intervened variables, shows that mFGS-BS 

performs best across all metrics at 1k sample size, whereas COmbINE performs best across all 

metrics at 10k sample size for the Property network. However, as shown in Figure 5.9, the 

runtime of COmbINE increases much faster with the number of datasets, and fails to generate 

any results within the four-hour runtime limit when the number of datasets is three or more. 

RFCI-BSC, on the other hand, returned an out-of-memory error when applied to these datasets. 

Therefore, the average results reported in Table 5.8 may underestimate the performance of 
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COmbINE and RFCI-BSC for sample size 1k, since the average is derived solely by focusing 

on a lower number of datasets on which the performance tends to be worse. 

 

Figure 5.9 Average performance of the algorithms when applied to synthetic data generated from 

the Property network, assuming five intervened variables and 5% latent variables per dataset, over 

two sample sizes. The runtime of COmbINE at 1k sample size is not shown in the charts, because 

its runtime is much higher. 

Figure 5.10 repeats the results for the Alarm network. As before, COmbINE failed to 

produce a result for all experiments within the four-hour time limit. However, the results of 

COmbINE this time extend up to six interventional datasets and enable us to draw reasonably 

confident conclusions. mFGS-BS performs best overall and across almost all the different 

number of datasets and sample sizes. Both mFGS-BS and COmbINE perform better compared 

to the case of a single intervened variable, and continue to improve with the number of datasets, 

whereas GFCI and RFCI-BSC do not.  
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Figure 5.10 Average performance of the algorithms when applied to synthetic data generated from 

the Alarm network, assuming five intervened variables and 5% latent variables per dataset, over 

two sample sizes. 

For the large and very large networks, COmbINE and RFCI-BSC fail to produce any 

results. On the other hand, both mFGS-BS and GFCI are able to generate results for all 

experiments across both sample sizes. The experimental results obtained from ForMed and 

Pathfinder case studies can be found in Figures A3 and A4 of Appendix A. Note that, in the 

case of these larger networks, five intervened variables represent a relatively low number. Still, 

as shown in Table 5.8, mFGS-BS performs considerably better than GFCI and RFCI-BSC 

across almost all experiments. The only case in which GFCI performs slightly better than 

mFGS-BS is for ForMed at 1k sample size, where GFCI averages scores of 0.58 and 0.59 for 

BSF and Recall respectively, whereas mFGS-BS averages scores of 0.57 for both metrics. On 

the other hand, the cases in which mFGS-BS outperforms GFCI involve much higher 
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discrepancies in scores. For example, the most extreme case involves the Pathfinder case study 

where mFGS-BS averages a Precision score of 0.52 at 10k sample size, whereas GFCI averages 

a score of just 0.14.  
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 Precision Recall 

mFGS-BS 1k 0.88 0.86 0.83 0.31 0.62 0.78 0.57 0.17 

 10k 0.78 0.82 0.80 0.52 0.72 0.79 0.69 0.35 

COmbINE 1k 0.46 0.81 T T 0.50 0.69 T T 
 10k 0.85 0.84 T T 0.77 0.78 T T 

GFCI 1k 0.65 0.62 0.74 0.17 0.50 0.75 0.59 0.13 

 10k 0.59 0.55 0.69 0.14 0.59 0.77 0.67 0.13 

RFCI-BSC 1k 0.55 0.41 T T 0.27 0.44 T T 

 F1 BSF 

mFGS-BS 1k 0.74 0.81 0.68 0.22 0.62 0.77 0.57 0.15 
 10k 0.75 0.81 0.74 0.42 0.71 0.79 0.69 0.34 

COmbINE 1k 0.48 0.74 T T 0.47 0.69 T T 

 10k 0.81 0.81 T T 0.77 0.78 T T 
GFCI 1k 0.57 0.68 0.65 0.14 0.50 0.72 0.58 0.10 

 10k 0.59 0.64 0.68 0.13 0.57 0.73 0.66 0.10 

RFCI-BSC 1k 0.36 0.42 T T 0.27 0.42 T T 

 
Learnt Edges Runtime 

mFGS-BS 1k 22.22 40.66 95.54 126.96 37.69 77.98 413.96 762.02 
 10k 29.32 43.44 121.42 152.32 195.36 417.33 2,411.11 2,737.49 

COmbINE 1k 35.30 38.57 T T 5,420.72 1,108.76 T T 

 10k 29.04 41.57 T T 368.40 845.34 T T 
GFCI 1k 24.70 55.82 111.40 171.36 12.91 34.80 55.19 66.45 

 10k 32.02 63.60 136.80 220.00 160.72 199.41 478.82 546.57 

RFCI-BSC 1k 15.88 49.86 T T M 99.8 T T 
 

Table 5.8 Average performance across all experiments in which five variables are targeted for 

intervention per dataset, where M indicates out-of-memory error, and T indicates failure to 

complete learning within the four-hour runtime limit. The best performance values are shown in 

bold. 

The main conclusions from the results are: 

• mFGS-BS is found to be sensitive to the ordering of interventional datasets. However, 

the sensitivity is relatively small in terms of graphical accuracy, and decreases with 

the number and the size of interventional datasets. 
 

• Employing all three factors to determine edge direction produces the most accurate 

graphs (refer to subsection 5.4.2). Factor 1, which determines the probability of 

directed edges given the output of FGS, and Factor 2 which determines the probability 

of directed edges based on the ratio of Sepsets determining v-structure are found to 

have a stronger impact (in terms of increasing the F1 and BSF scores) than Factor 3 

which relies on changes in objective score between observational and interventional 

data. 
 

• mFGS-BS is found to be more accurate than the other algorithms when we simulate 

just one intervened variable. Specifically, mFGS-BS generates the highest F1 and 

BSF scores for the Asia, Sports and Alarm networks in most of the experiments (refer 

to Table 5.7). COmbINE and RFCI-BSC often fail to generate a result within the four-

hour runtime limit when applied to the larger networks. The average BSF and F1 

scores of mFGS-BS are approximately 45% and 38% higher compared to GFCI 
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across all networks respectively, while the average BSF and F1 scores of COmbINE 

are 16% and 15% higher compared to GFCI over all experiments in which COmbINE 

generates a result respectively. 
 

• The performance of both mFGS-BS and COmbINE continues to improve with the 

number of interventional datasets, while the performance of GFCI and RFCI-BSC 

does not. This highlights the advantage of algorithms that consider additional datasets 

independently. Moreover, the number of edges learnt by mFGS-BS tends to be lower 

compared to the number of edges present in the true MAGs, for the medium, large 

and very large networks. Note that while GFCI generates more edges when the 

number of interventional datasets increase, its overall performance in terms of BSF 

and F1 scores does not increase. 
 

• The overall performance of mFGS-BS and COmbINE continues to improve with the 

number of variables targeted for intervention as expected, since the higher number of 

interventions can be viewed as providing additional causal information to the model. 

The average BSF scores increase by approximately 9% and 11% when considering 

five, instead of one, intervened variables per interventional data for the mFGS-BS 

and COmbINE algorithms respectively. 
 

• The runtime of mFGS-BS, relative to the other three algorithms, appears to be worst 

in small and medium networks. However, the runtime of mFGS-BS, RFCI-BSC and 

GFCI scale linearly with the number of interventional datasets. In contrast, the 

empirical results suggest that COmbINE does not scale well with additional datasets. 

One explanation might be because COmbINE uses the MINISAT application to solve 

SAT instances encoded from results of CI tests, and the time to solve these SAT 

instances increases exponentially with the number of variables. A rather unexpected 

finding is that the computational time of COmbINE is higher when the sample size is 

1k compared to 10k. This might be because the results of CI tests learnt from low 

sample sizes contain more conflicts compared to those obtained when the sample size 

of the input data is higher. Lastly, GFCI is found to be the fastest algorithm in almost 

all of the experiments, as expected, since it does not consider each input dataset 

independently.  
 

5.5 Conclusions 

This chapter describes the hybrid mFGS-BS algorithm which produces a PAG by learning the 

probabilities of each directed edge from one observational dataset and one or more 

interventional datasets in a causally insufficient setting. The posterior probabilities learnt from 

one dataset are considered as candidate objective priors for learning from the next dataset. 

Three other mechanisms contribute to the objective priors used with each dataset: colliders 

identified from the observational data; the CPDAGs produced by running the FGS algorithm 

on each dataset; and a score-based approach relating to intervention targets. Pairs of nodes 

which have a directed edge in each direction with a probability above a given threshold are 

treated as having a bidirected edge between them, so that the algorithm produces a PAG. 

The results of mFGS-BS were compared to those obtained by COmbINE, which also 

enables learning from multiple observational and interventional datasets. We have also 

compared the results against the RFCI-BSC and GFCI algorithms with pooled data, which 

serves as the baseline performance not accounting for variables targeted for intervention. The 



 

Page 66 of 116 
 
 

empirical evaluation was based on six case studies of different complexity, with varying 

numbers of intervened variables, interventional datasets, and sample sizes. Overall, the results 

show that mFGS-BS considerably outperforms the baseline algorithms and outperforms 

COmbINE in most of the experiments, in terms of graphical accuracy. RFCI-BSC and GFCI 

consider a single dataset of pooled data rather than each input dataset independently. GFCI was 

the faster algorithm because it performs fewer CI tests by design, whereas RFCI-BSC tends to 

fail to produce a result when applied to larger networks and sample sizes. Lastly, mFGS-BS 

offers considerable improvements in learning efficiency compared to COmbINE, which failed 

to produce any results, within the four-hour runtime limit, for the larger networks.  

A limitation of mFGS-BS is that it is sensitive to the ordering of the data sets and 

assumes equal sample size across all input data sets. This is, of course, an unrealistic 

assumption in practice. Future research directions could focus on adjusting mFGS-BS such that 

the local BDeu scores can be normalised to enable learning from multiple datasets with varying 

sample sizes, or by employing a resampling technique to generate multiple datasets with an 

equal sample size. Other future research directions could focus on enabling learning from 

interventional datasets that contain imperfect and uncertain interventions (refer to subsection 

2.1.2), in addition to perfect interventions. 
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Chapter 6 

 

Discovery and density estimation of latent 

confounders with evidence lower bound  

 

Discovering and parameterising latent confounders represent important and challenging 

problems in causal structure learning and density estimation respectively. In this chapter, we 

focus on both discovering and learning the distribution of latent confounders. This task requires 

solutions that come from different areas of statistics and machine learning. We combine 

elements of Variational Bayesian methods, expectation-maximisation, hill-climbing search, 

and structure learning under the assumption of causal insufficiency. We propose two 

algorithms; Incremental Latent Confounder search with VBEM (ILC-V) that maximises 

model-selection accuracy, and Hill-Climbing Latent Confounder search with VBEM (HCLC-

V) that improves computational efficiency in exchange for minor reductions in model-selection 

accuracy. The former algorithm maximises accuracy and is suitable for small networks, 

whereas the latter algorithm balances accuracy with computational complexity and so is 

suitable for moderate size networks.  

This chapter is organised as follows: subsection 6.1 provides the preliminary 

information and related works relevant to this chapter, subsection 6.2 describes the two 

proposed algorithms, subsection 6.3 describes the evaluation setup, subsection 6.3 presents the 

results, and we provide conclusions in subsection 6.4.  

6.1 Preliminaries 
 

6.1.1 Conjugate-exponential family models  

For density estimation of latent confounders, we consider conjugate-exponential family models 

for discrete data. We assume a Dirichlet prior that serves as a conjugate prior of a multinomial 

likelihood (Bishop, 2006), whose posterior distribution is also Dirichlet. We use the empirical 

Bayes method by Gelman et al. (2003) to determine the prior parameters from data and assume 

a Dirichlet prior Dir(θi|aij) where aij is a hyperparameter set to ‘1’ for uniform distribution, 

and θi denotes parameters ∑ θijj = 1 where j represents the number of states. Since we perform 

structure learning and density estimation under causal insufficiency, some variables will not be 

observed in the data, leading to an incomplete-data marginal likelihood p(D|G) of a DAG G. 
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6.1.2 Variational Bayesian Expectation-Maximization (VBEM)  

Marginalising out the parameters over latent confounders Li in p(D| G) makes the task of 

learning prohibitively expensive and intractable. We address this issue by approximating 

distributions of latent variables using the computationally efficient Variational Bayesian 

Expectation-Maximization (VBEM) algorithm (Beal and Ghahramani, 2002) that enables 

tractable solutions. The VBEM algorithm combines elements of variational inference (Jordan 

et al., 1999) and Expectation-Maximisation (EM; Friedman, 1988). It uses an alternated 

optimisation technique to find a surrogate distribution q(L, θ) from any exponential family Q 

(e.g., Gaussian, Dirichlet, multinomial) and optimises towards the true distribution 

p(L, θ| D, G). VBEM offers an approximate solution that guarantees to monotonically increase 

the objective score, and scales better with large data compared to Markov Chain Monte Carlo 

(MCMC) (Hastings, 1970). 

The objective of VBEM is to minimise the discrepancy between two distributions 

q(L, θ) and p(L, θ|D, G). It uses the reverse Kullback-Leiber (KL) divergence for this task, 

which is the standard choice for variational inference, defined as follows: 

KL(q ∥ p) = ∬ dLdθq(L, θ) log
q(L, θ)

p(L, θ|D, G)
  

  = 𝔼q [log
q(L, θ)

p(L, θ|D, G)
] 

  = 𝔼q[log p(D|G)] − {𝔼q[log p(L, θ, D|G)] − 𝔼q[log q(L, θ)]}   (6.1) 

Because the incomplete-data marginal likelihood p(D|G) is intractable to compute, we consider 

p(D|G) to be a constant. The aim is to minimise KL(q ∥ p), which is equivalent to maximising 

the Evidence Lower Bound (ELBO). Therefore, we can minimise KL(q ∥ p) without having to 

know the true distribution p(L, θ|D, G) and p(D|G). We can describe ELBO as the objective 

function: 

ELBO = 𝔼q[log p(L, θ, D|G)] − 𝔼q[log q(L, θ)]  (6.2) 

where q(L, θ) is assumed to be the factorisation of the free distributions qL(L) and qθ(θ). We 

maximise ELBO using a function ℱ of both qL(L) and qθ(θ) as follows (Beal and Ghahramani, 

2006): 

               ELBO = ℱ(qL(L), qθ(θ))

= ∬ dLdθqθ(θ)qL(L)[logp(L, θ, D|G) − log(qL(L)qθ(θ)) ]  (6.3) 

To maximise ℱ, VBEM calculates qL(L) and qθ(θ) while holding the other fixed at iteration 

t. The two steps for each iteration t are:  

a) VB-E step: estimates the posterior distribution over latent confounders qL
t+1(L) =

∏ qLi

t+1(Li)
|L|
i=1  given qθ

t (θ) from the last iteration by taking the functional derivatives 

in Equation (6.3) with respect to qLi
(Li), where |L| is the number of latent confounders. 
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b) VB-M step: estimates qθ
t+1(θ) given the posterior distribution qL

t+1(L) taken from the 

VB-E step by taking the functional derivatives in Equation (6.3) with respect to qθ(θ).  

VBEM iterates over the VB-E and VB-M steps until the difference in ELBO becomes 

smaller than a given threshold, indicating convergence. Since ELBO is not a score-equivalent 

function, it generates different values for graphs that belong to the same Markov equivalence 

class. A revised version called p-ELBO was proposed by Rodriguez-Sanchez et al. (2020) that 

includes a penalty term to avoid the |Li|! equivalent ways of assigning sets of parameters that 

result in the same distribution (non-identifiability), and it is defined as p-ELBO = ELBO −

∑ log |Li|!
|L|
i=1 , where |Li| is the number of states in Li. 

6.1.3 Related works 

ELBO was used as the objective function of a neural network in Variational Autoencoder 

(VAE) by Kingma and Welling (2013). VAE for heterogeneous Mixed type data (VAEM) was 

used by Ma et al. (2020) for density estimation of latent variables in deep generative models. 

VAE assumes each observed variable has a latent parent, whereas VAEM is an extension of 

VAE that assumes an additional latent confounder that serves as a parent of all latent variables. 

The ELBO score was extended to p-ELBO by Rodriguez-Sanchez et al. (2020, 2022), 

which was used as the objective score in Constrained Incremental Learner (CIL) and Greedy 

Latent Structure Learner (GLSL) algorithms. CIL learns a tree-structured BN that assumes any 

two nodes are connected by one directed path only, whereas GLSL learns a DAG BN. Both 

algorithms start from an empty graph and perform various search operations including a) add 

or remove latent variables as parents of observed variables, b) increase the number of states of 

latent variables, and c) perform edge operations such as add, remove, or reverse edges, aiming 

to maximise p-ELBO. Searching for latent confounders often means iterating over all pairs of 

observed variables, which is computationally expensive. Instead, these algorithms offer a 

strategy that focuses on a set of pairs of variables that provide the highest MI. Empirical results 

show that GLSL outperforms CIL, but at the expense of high computational complexity. 

6.2 The two proposed algorithms for learning of latent 

confounders 

This subsection describes the two learning strategies we have implemented for latent 

confounder discovery and density estimation. Subsection 6.2.1 describes how we use existing 

algorithms to draw a PAG output, which in turn is given as an input to the two algorithms we 

propose, which in turn use the input PAG to search for different MAGs and DAGs with 

parameterised latent confounders. We describe the two algorithms in subsections 6.2.2 and 

6.2.3 respectively. Both algorithms assume the input data are discrete. Consistent with previous 

studies that assume causal insufficiency, we assume that the latent confounders have no parents 

and that each latent confounder must have at least two children. We further assume a Dirichlet 

prior qθ(θ) over all parameters as described in subsection 6.1.1, and we use p-ELBO as the 

objective function which is computed using the VBEM algorithm as described in subsection 

6.1.2. 
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6.2.1 Searching for MAGs and DAGs given a PAG input 

The FCI algorithm and some of its variants discussed in subsections 2.2.1.3 and 2.2.3 represent 

the state-of-the-art in recovering ancestral graphs under the assumption of causal insufficiency. 

Any of these algorithms can be used to draw PAGs that can be given as input to the two 

proposed algorithms. A set of Markov equivalent MAGs can be then derived from that PAG. 

However, because the number of possible latent confounders that can be explored for a given 

MAG is generally intractable, we shall assume the minimum number of latent confounders 

satisfying the m-separation criteria. 

Assumption 1: The optimal number of latent confounders is the minimum number of latent 

confounders that retain the CIs of a given MAG. 

Figure 6.1 presents a simple PAG that contains two bidirected edges, along with a MAG 

and three DAGs that satisfy the CI statements of the PAG. Converting a MAG into possible 

DAGs implies that each DAG retains the CIs of that MAG by reducing the criteria of m-

separation to d-separation. In this example, the DAG that contains the minimum number of 

latent confounders, with reference to the MAG in Figure 6.1b, is shown in Figure 6.1c. The 

DAGs in Figures 6.1d and 6.1e contain a higher number of latent confounders than the 

minimum required to satisfy all the CIs of the given MAG. Because the algorithms we describe 

in subsections 6.2.2 and 6.2.3 rely on Assumption 1, they will never explore DAGs that contain 

a higher number of latent confounders than the minimum required, and would not visit DAGs 

such as those shown in Figures 6.1d and 6.1e. 

 

Figure 6.1 A PAG (a) along with one of its MAGs (b), and three DAGs (c, d, e) with different 

latent confounders (grey nodes) derived from the given MAG, where A ⊥/ B, A ⊥/ C and B ⊥/ C.  
 

6.2.2 Incremental Latent Confounder search with VBEM (ILC-V)  

The first algorithm, which we call ILC-V, is described in Algorithm 3. It takes a PAG input 

(Step 1) and uses the ZML algorithm available in R (Malinsky and Spirtes, 2017) to enumerate 

all Markov equivalent MAGs of that PAG (Step 3). It then constructs DAGs for each MAG, 

starting from the MAGs that contain the minimum number of bidirected edges (Step 4). Each 

latent confounder modelled at Step 4 is assumed to be binary, and the optimal DAG is the one 

that maximises p-ELBO using the VBEM algorithm made available as a Java library by 

Rodriguez-Sanchez (2021). 

At Step 5, Algorithm 3 calls Algorithm 3b to determine the optimal number of states 

for each latent confounder. This is achieved by iterating over each latent confounder present in 

the highest scoring DAG determined at Step 4, and greedily increasing the number of states by 

one at a time, for each latent confounder. Algorithm 3b returns a DAG that contains the optimal 

e)   a)  d)   c)  b)  
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number of states for each latent confounder, or the maximum number of states S if the objective 

score continues to increase with the number of states. To improve computational complexity, 

the objective score p-ELBO is applied to a subgraph GS that contains the auxiliary latent 

confounders and their children, since the conditional distributions of the remaining nodes 

remain unchanged in the BN. The final Step 6 generates the final DAG BN and revises the p-

ELBO score. 

 

Algorithm 3: Incremental Latent Confounder search with VBEM (ILC-V) 

Input:    A structure learning algorithm that generates PAG, max Sepset size k, significant threshold ⍺, observational data 

               𝐷, converge threshold c, max number of bidirected edges m, a runtime limit t. 
Output: A DAG BN that contains latent confounders as observed variables, along with the conditional distributions.   

Step 1 PAG ← Run a structure learning algorithm with ⍺ and k given 𝐷 

Step 2 𝑆 ← max number of states in 𝐷 

current number of bidirected edges ← count the total number of bidirected edges in PAG  

score_improve = TRUE 

best_pELBO = - Infinity 

Step 3 List of MAGs ℒM ← Enumerate all Markov equivalent MAGs from PAG 

Step 4              While score_improve = TRUE or current number of bidirected edges ≤ m or elapsed time ≤ t   
           best_local_pELBO = - Infinity 

           For each MAG in ℒM where its #bidirected edges = current number of bidirected edges 

                 Construct new DAG G that contains all edges → present in MAG and generate boolean  

                        auxiliary latent confounders for edges ↔ present in MAG as per Assumption 1   

           current_pELBO ← run VBEM until p-ELBO converges with c given 𝐷 and G                                            

            If current_pELBO > best_pELBO 

                  best_pELBO = current_pELBO   

                  best_DAG = G 

            If current_pELBO > best_local_pELBO 

                  best_local_pELBO = current_pELBO   

                              

            current number of bidirected edges++ 

            If best_pELBO > best_local_pELBO 

                 score_improve = FALSE 

                                

Step 5  If 𝑆 > 2  

        get best_DAG with (potentially) multinomial latent confounders ← run Algorithm 3b given best_DAG,   

        𝐷, c and S             
Step 6 get best_pELBO and return Output ← run VBEM until p-ELBO converges with c given 𝐷 and best_DAG 

 

Algorithm 3b: Greedy search for the optimal number of states for each latent confounder 

Input:    A DAG G with auxiliary boolean latent confounders, max states S for each latent confounder, observational data   

               𝐷, converge threshold c.           

Output: A DAG G with auxiliary (potentially) multinomial latent confounders. 

Step 1 score_improve = TRUE 

best_pELBO = - Infinity 

Step 2 For each latent confounder 𝑖 in DAG G 

          While score_improve = TRUE or number of states ≤ S              

                    current_pELBO ← run VBEM until p-ELBO converges with c given D and subgraph GS  
                    If current_pELBO > best_pELBO 

                          best_pELBO = current_pELBO   

                    Else 

                          score_improve = FALSE 

                          number of states of latent confounder 𝑖 -- 
                  number of states of latent confounder 𝑖 ++ 

                         Update the number of states of latent confounder 𝑖 in GS and G 

Step 3 Return G with the optimal number of states for each latent confounder 
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6.2.3 Hill-Climbing Latent Confounder search with VBEM (HCLC-V) 

 
Algorithm 4: Hill-Climbing Latent Confounder search with VBEM (HCLC-V) 

Input:    A structure learning algorithm that generates PAG, max Sepset size k, significant threshold ⍺, observational data 𝐷,     

               converge threshold c, max number of bidirected edges m, a runtime limit t. 
Output: A DAG BN that contains latent confounders as observed variables, along with the conditional distributions.   

Step 1 Same as in Algorithm 3 

Step 2 Same as in Algorithm 3 

Step 3 List of best_latent_confounder ℒL = ∅ 

Step 4 While score_improve = TRUE or current number of bidirected edges ≤ m or elapsed time ≤ t   
             best_local_pELBO = - Infinity 

             While all pairs A o—o B in PAG are not orientated 

                    Construct new DAG G by changing all o→ present in PAG to → and generate boolean  

                       auxiliary latent confounders for edges ↔ present in PAG as per Assumption 1  

                    Orientate A → B or A ← B in G from all pairs A o—o B with the maximum p-ELBO using VBEM  

             For each pair A o—o B or A o→ B in PAG which is not in ℒL  
                    Construct new MAG that contains all edges → present in 𝐺 and add the edge A ↔ B and others 

                         C ↔ D given ℒL  
                       Construct new DAG G′ that contains all edges → present in MAG and generate                                 

                         boolean auxiliary latent confounders for edges ↔ present in MAG as per Assumption 1   

                    current_pELBO ← run VBEM until p-ELBO converges with c given D and G′  

                    If current_pELBO > best_pELBO 

                         best_pELBO = current_pELBO   

                         best_DAG = G′ 

                         Add the auxiliary latent confounders to ℒL 

                    If current_pELBO > best_local_pELBO 

                         best_local_pELBO = current_pELBO    
 

              current number of bidirected edges++ 

              If best_pELBO > best_local_pELBO 

                    score_improve = FALSE             

Step 5  Same as in Algorithm 3 

Step 6 Same as in Algorithm 3 

 

Because ILC-V (Algorithm 3) is computationally expensive, as we later show in 

subsection 6.4, one might be interested in a computationally efficient version that minimally 

decreases the objective score of Algorithm 3. A problem with ILC-V is that when the input 

PAG contains a high number of invariant edges o—o or o→, enumerating all possible MAGs 

can quickly cause memory allocation problems. To address this, we introduce a modified 

version of ILC-V, which we call HCLC-V, that skips Markov equivalence checks. This means 

that HCLC-V no longer needs to check the CIs for each DAG visited, and this saves enormous 

computational time. Instead, HCLC-V iterates over possible edge orientations as described in 

Step 4 of Algorithm 4, and continues to follow the incremental search strategy of ILC-V in 

terms of the number of bidirected edges. Moreover, a list with the best-found latent 

confounders from one iteration is carried forward to the next iteration (see Steps 3 and 4 in 

Algorithm 4). Lastly, since HCLC-V relies on hill-climbing search, it stops exploration when 

a local maximum is reached. 
 

6.3 Evaluation  

The experimental setup involves four real-world BNs taken from the Bayesys repository 

(Constantinou et al., 2020), described in Table 6.1. We generated synthetic data of 1k and 10k 

samples using the bnlearn R package (Scutari, 2019). One dataset is created for each latent 

confounder listed in Table 6.1. This process was applied to both sample sizes, and led to a total 

of 22 datasets. 
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BN Variables Edges Max in-degree 
Free 

parameters 
Potential latent confounders 

Asia 8 8 2 18 Smoke 

Sports 9 15 2 1,049 RDlevel 

Property 27 31 3 3,056 propertyPurchaseValue, borrowing, 

otherPropertyExpenses 

Alarm 37 46 4 509 INTUBATION, HYPOVOLEMIA, LVFAILURE, 

ERRCAUTER, PULMEMBOLUS, KINKEDTUBE 
 

Table 6.1 The properties of the four real-world networks considered for evaluation. 

 

We have used the constraint-based FCI and the hybrid GFCI algorithms described in 

subsections 2.2.1.3 and 2.2.3, to generate PAGs to be provided as input to ILC-V and HCLC-

V. This produced four different result-combinations, which we refer to as ILC-VFCI, HCLC-

VFCI, ILC-VGFCI and HCLC-VGFCI in subsection 6.4. The GFCI algorithm was tested using the 

Tetrad-based rcausal R package (Wongchokprasitti, 2019), and the FCI algorithm was tested 

using the pcalg R package (Kalisch et al., 2012). The ILC-V and HCLC-V implementations 

are available online at https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM. Regarding the 

hyperparameters of FCI and GFCI, we set the G2 significance threshold to default ⍺ = 0.05 

and the Sepset to k = −1 for unlimited size of conditioning set. For ILC-V and HCLC-V, we 

set the maximum number of bidirected edges to m = 4 to enable us to carry out experiments 

within reasonable runtimes, and the convergence threshold of VBEM to c = 0.01. 

We assess the accuracy of ILC-V and HCLC-V in terms of the objective score p-ELBO 

and learning runtime, with reference to those obtained by the GLSL and CIL algorithms 

discussed in subsection 6.1.3. We consider the p-ELBO score by Rodriguez-Sanchez et al. 

(2020), which is an improved version of ELBO in tackling identifiability (Bishop, 2016) in 

discrete variables. Note that maximising ELBO can be viewed as being consistent with 

minimising KL-divergence between the true and surrogated distributions of latent confounders. 

However, as pointed out by Wallach et al. (2009), a possible issue with ELBO is that it may 

not accurately estimate the true distributions in latent variable models which, in turn, implies 

that p-ELBO is not perfect. We assume p-ELBO is a better alternative to traditional LL 

measures previously used to evaluate density estimation  (Rodriguez-Sanchez et al., 2022), 

since LL is known to be prone to overfitting.  

 GLSL and CIL are tested using the Java library by Rodriguez-Sanchez (2021) with 

mi = 10 regarding the number of pairs of variables to be considered with the highest MI, and 

with maxNumberParents_latent = −1 for GLSL to assume no parents for density estimation 

of latent confounders to enable us to carry out experiments within reasonable runtimes. We 

impose a runtime limit of 12 hours to each experiment and set hyperparameter t to 12 hours for 

both ILC-V and HCLC-V, to ensure that they return a result within the 12-hour runtime limit. 

Experiments that do not complete learning within the specified runtime limit are denoted as 

“Timeout”. All experiments are based on 8GB of RAM. The experiments involving the Asia, 

Sports and Property networks were carried out on the Intel Core i5-8250 CPU at 1.80 GHz, 

whereas the experiments involving the Alarm network on the M1 CPU at 3.2 GHz. 

6.4 Results 
 

6.4.1 The difference in search space explored by ILC-V and HCLC-V  

https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM
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This subsection investigates the difference in search space explored between the two proposed 

algorithms, ILC-V and HCLC-V. The comparison assumes that the PAG inputs are produced 

by GFCI, and relies on Step 4 (which represents the main difference between the two 

algorithms) where the latent confounders are assumed to be binary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 The p-ELBO scores produced at Step 4 by the two algorithms, where ● indicates the 

highest score achieved by the specified algorithm. The results in a) and b) are based on the Property 

network with variable ‘otherPropertyExpenses’ being the latent confounder and in c) and d) are based 

on the Alarm network with variable ‘INTUBATION’ being the latent confounder, and assume the 

input PAG is produced by GFCI. 

Figure 6.2 presents the results based on the Property network (27 nodes) for both sample 

sizes 1k and 10k. Figure 6.2a shows that ILC-VGFCI produces a slightly higher p-ELBO score 

than HCLC-VGFCI, but that ILC-VGFCI achieved that by exploring considerably more search 

space than HCLC-VGFCI; i.e., visited a total of 170 DAGs versus 20 DAGs. The charts depict 

different colours to illustrate how the two algorithms differ at visiting DAGs derived from 

MAGs that contain increasing numbers of bidirected edges. Specifically, Figure 6.2a shows 

that ILC-VGFCI visited all DAGs derived from MAGs containing up to three bidirected edges, 

whereas HCLC-VGFCI ended at a local maximum while visiting DAGs derived from MAGs 

containing up to two bidirected edges. 

Figure 6.2b, on the other hand, shows that the higher sample size helped ILC-VGFCI to 

both find a higher objective score and complete learning faster than HCLC-VGFCI. This is 

because ILC-VGFCI found no DAG derived from MAGs containing two bidirected edges to 
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have a higher score than the highest scoring DAG derived from MAGs containing one 

bidirected edge, which caused ILC-VGFCI to skip MAGs containing three bidirected edges. On 

the other hand, HCLC-VGFCI ended up visiting a higher number of DAGs, but note this does 

not necessarily imply that the algorithm was slower; i.e., recall that HCLC-V skips checking 

for Markov equivalence between graphs. Figure 6.2c and 6.2d repeat the analysis of Figure 

6.2a and 6.2b with application to the Alarm network (37 nodes), and show that the results are 

consistent with those produced for the Property network. The only difference here is that, at 

10k sample size, the p-ELBO score of HCLC-VGFCI matched that of the generally slower ILC-

VGFCI. 

6.4.2 Performance of ILC-V and HCLC-V relative to other algorithms 

We compare the results produced by ILC-V and HCLC-V to those produced by the CIL and 

GLSL algorithms described in subsection 6.1.3 which, to the best of our knowledge, are the 

two algorithms that are most relevant to this work, which involves both the discovery and 

density estimation of latent confounders. 
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Asia (smoke) 

p-ELBO (sample size 1k) 

-2,258 -1,845 -1,845 -1,807 -1,807 -1,796 -1,679 

Sports (Rdlevel) -11,742 -9,296 -9,417 -9,296 -9,417 -10,228 -10,228 

Property (propertyPurchaseValue) -25,254 -34,496 -34,532 -24,565 -24,596 -29,040 -28,076 

Property (borrowing) -25,254 -35,042 -35,080 Memory -24,044 -28,518 -27,534 

Property (otherPropertyExpenses) -25,254 -35,929 -35,979 -24,079 -24,079 -29,382 -28,363 

Alarm (INTUBATION) -11,220 Memory -14,802 -10,966 -11,068 -13,777 -11,581 

Alarm (HYPOVOLEMIA) -11,220 Memory -14,660 -10,908 -11,010 -13,721 -11,117 

Alarm (LVFAILURE) -11,220 Memory -14,821 -11,074 -11,075 -13,989 -11,307 

Alarm (ERRCAUTER) -11,220 Memory -14,678 -11,024 -11,017 -13,693 -11,254 

Alarm (PULMEMBOLUS) -11,220 Memory -15,081 -11,053 -11,055 -13,994 -11,294 

Alarm (KINKEDTUBE) -11,220 Memory -14,948 -10,889 -10,963 -13,896 -11,203 

Average rank  5.1 5.0 1.8 1.9 3.8 2.9 
 p-ELBO (sample size 10k) 

Asia (smoke) -22,508 -17,860 -17,860 -17,601 -17,601 -17,039 -16,135 

Sports (Rdlevel) -108,800 -92,014 -92,864 -92,014 -92,864 -99,741 -99,741 

Property (propertyPurchaseValue) -235,622 -285,084 -285,084 -238,090 -238,267 -283,142 -275,212 

Property (borrowing) -235,622 -277,035 -277,035 -239,289 -239,520 -277,440 -269,719 

Property (otherPropertyExpenses) -235,622 -284,024 -284,038 -237,178 -236,998 -285,975 -277,949 

Alarm (INTUBATION) -105,739 -119,906 -119,845 -104,919 -105,096 -133,084 Timeout 

Alarm (HYPOVOLEMIA) -105,739 Memory -126,194 -101,997 -102,960 -131,819 Timeout 

Alarm (LVFAILURE) -105,739 Memory -129,574 -103,761 -103,720 -134,606 Timeout 

Alarm (ERRCAUTER) -105,739 Memory -121,536 -103,492  -103,530 -132,280 Timeout 

Alarm (PULMEMBOLUS) -105,739 Memory -126,811 -103,652  -103,624 -135,116 Timeout 

Alarm (KINKEDTUBE) -105,739 Memory -125,698 -108,480 -102,803 -134,869 Timeout 

Average rank  4.4 3.7 1.5 1.8 4.4 4.2 
 

Table 6.2 The p-ELBO scores for each algorithm and dataset combination and across both sample 

sizes, where Memory indicates out-of-memory error in enumerating the possible MAGs, and Timeout 

indicates failure to complete learning within the 12-hour time limit. The best scores are indicated in 

bold. 

Table 6.2 presents the p-ELBO score for each algorithm and dataset combination, plus 

the p-ELBO scores of the true DAGs, for both sample sizes 1k and 10k. Supplementary 
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inference-based scores and runtimes can be found in Tables B1 and B2, in Appendix B. The 

average ranks show that ILC-VGFCI performs best in terms of maximising the p-ELBO score 

across both sample sizes, followed by HCLC-VGFCI. The CIL algorithm is found to be the worst 

performing algorithm at sample size 10k, whereas GLSL mostly outperforms both ILC-VFCI 

and HCLC-VFCI, but not ILC-VGFCI and HCLC-VGFCI. This means that ILC-V and HCLC-V 

benefit from the PAG input of GFCI, and suggests that the hybrid learning GFCI might be 

better than FCI at recovering PAGs; an observation consistent with previous studies 

(Constantinou et al., 2021). Note that while the true DAG will not always have the highest p-

ELBO score, the highest scores produced by the algorithms tend to be very close to those of 

the true DAG, and this helps to validate the results.  

While ILC performs best in general, it does not scale well with the size of the network. 

As shown in Table 6.2, ILC-V returns an out-of-memory error (for 8GB RAM) for most 

experiments with Alarm, specifically when paired with FCI, caused by the large number of 

possible MAGs derived from the input PAG. The cumulative runtime across all 10k datasets 

was 14, 34, 46 and 88 hours for CIL, HCLC-VGFCI, ILC-VGFCI and GLSL respectively, with a 

similar trend observed across 1k sample sizes. On overage, HCLC-V is found to be 1.4 times 

faster than ILC-V, which in turn is found to be 1.6 times slower than CIL and 4.5 times faster 

than GLSL which failed to complete the Alarm network experiments at 10k sample size; 

suggesting that its computational efficiency might not scale well with sample size. 

6.5 Conclusions 

This chapter investigates two novel algorithms that can be used for both discovery and density 

estimation of latent confounders in BN structure learning from discrete observational data. The 

first algorithm (ILC-V) aims to maximise model-selection accuracy by exploring sets of 

Markov equivalent MAGs, starting from the set of MAGs that contain the lowest number of 

bidirected edges and - while the objective score increases with each set - moving to sets of 

MAGs with increasing numbers of bidirected edges. The second algorithm (HCLC-V) aims to 

balance accuracy relative to computational efficiency by employing hill-climbing over the 

MAG space, enabling application to larger networks.  

Both algorithms require a PAG to be provided as an input, which means that the 

proposed algorithms need to be paired with a structure learning algorithm that recovers 

ancestral graphs. Because the input PAG will typically indicate multiple possible latent 

confounders, the ILC-V and HCLC-V algorithms use p-ELBO as the objective function to 

determine the number as well as the position of the latent confounders, thereby contributing to 

the discovery process, in addition to density estimation, of latent confounders.  

The two proposed algorithms are evaluated relative to two recent and relevant 

implementations that also optimise for p-ELBO. The empirical results show meaningful 

improvements in maximising the objective score, and in some ways in reducing time 

complexity; although the latter remains a major issue. Two important limitations are that a) 

both algorithms rely on a PAG input to be provided by some other structure learning algorithm, 

and b) the results are based on experiments that assume a single latent confounder only, which 

was necessary to ensure that most experiments complete within the 12-hour runtime limit. 
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Chapter 7 

 

Tuning structure learning algorithms with out-

of-sample and resampling strategies 

 

One of the challenges practitioners face when applying structure learning algorithms to their 

data involves determining a set of hyperparameters; otherwise, a set of hyperparameter defaults 

is assumed. The optimal hyperparameter configuration often depends on multiple factors, 

including the size and density of the usually unknown underlying true graph, the sample size 

of the input data, and the structure learning algorithm. This chapter describes a novel 

hyperparameter tuning method, called the Out-of-sample Tuning for Structure Learning 

(OTSL), that employs out-of-sample and resampling strategies to estimate the optimal 

hyperparameter configuration for structure learning, given the input data set and structure 

learning algorithm.  

This chapter is organised as follows: subsection 7.1 provides preliminary information 
regarding hyperparameter tuning for structure learning algorithms, subsection 7.2 describes the 

proposed algorithm, subsection 7.3 describes the evaluation setup, subsection 7.4 presents the 

results, and we provide conclusions in subsection 7.5.  

7.1 Preliminaries  

Subsections 2.2.1.1 and 2.2.2.1 provide background information on different functions that can 

be used to perform CI tests, and on different model-selection functions that serve as objective 

functions in score-based structure learning. In this chapter, we investigate solutions that could 

optimise the hyperparameter α that serves as the significance threshold in the functions that 

test for CI covered in subsection 2.2.1.1, and the hyperparameter iss that represents the 

equivalent sample size that determines the strength of prior beliefs in the BDeuiss score 

described in subsection 2.2.2.1. In addition to the standard functions used for CI tests and the 

BDeu score, we explore hyperparameter optimisation of the Extended BIC score described in 

subsection 7.7.1, and which represents a variant of the BIC score already described in 

subsection 2.2.2.1. 

7.1.1 Extended BIC 
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Chen and Chen (2012) presented a modified version of BIC which they call Extended BIC 

(EBIC) that can be used to control the density of the learnt graph. This is achieved by 

introducing the hyperparameter 0 ≤ γ that penalises the number of free parameters in the BN, 

which in turn are inversely proportional to the number of arcs in the learnt graph. This is 

equivalent to saying that large values of γ will favour sparser graphs. EBIC is defined as:  

EBICγ(G, D) = LL(G, D) −
log(n)

2
F − γ log(V) F, 0 ≤ γ 

 

Foygel and Drton (2010) studied the impact of the hyperparameter γ′ ∈ [0,1] and found 

that γ′= 0.5 is best in most synthetic experiments. However, it is acknowledged that the optimal 

value of γ′ is not invariant and hence, its optimisation remains an open question. In this work, 

we define EBICnormalised γ as: 

 

EBICnormalised γ(G, D) = LL(G, D) −
log(n)

2
F − γ′ log(V) F,   0 ≤ γ′ ≤ 1 

 

where the hyperparameter 0 ≤ γ is normalised to γ′ ∈ [0,1]. Thus, γ is the hyperparameter of 

EBICγ and EBICnormalised γ where EBICγ=0 = EBICnormalised γ=0 = BIC. 

 

7.1.2 Related works 

An issue with structure learning algorithms is that they come with a set of unoptimised 

hyperparameters. Because there is little guidance on how to choose these hyperparameters, 

most papers in the literature use these algorithms with either their hyperparameter defaults, or 

test them over a restricted set of different plausible hyperparameter values; a process that can 

be very time consuming. Hyperparameter tuning for structure learning algorithms can be 

divided into in-sample tuning and out-of-sample tuning methods, where the former utilises all 

available data and the latter uses a subset of the available data as a test data to tune 

hyperparameter configurations on data points that were not included in the training set. 

In-sample tuning approaches include the Stability Approach to Regularization 

Selection (StARS) by Liu et al. (2010), which optimises for model stability by selecting the 

hyperparameter configuration that generates the most stable learnt graphs over perturbations 

of the input data. Out-of-sample tuning approaches include the Out-of-sample Causal Tuning 

(OCT) by Biza et al. (2020, 2022), which performs cross-validation to identify the Markov 

Blankets (MBs) for each variable. The MB of a variable A represents a set of variables that 

make A independent of all other variables, and can serve as a feature selection method. 

Specifically, the MB of A includes the parents of A, its children, and the parents of its children. 

The OCT algorithm uses MBs to obtain a Random Forest model and optimises hyperparameters 

for predictive accuracy over test data. Experimental results showed that it performed well 

against the in-sample StARS approach discussed above.  

7.2 Out-of-sample Tuning for Structure Learning (OTSL) 

This subsection describes the algorithm we propose for hyperparameter tuning, which we call 

Out-of-sample Tuning for Structure Learning (OTSL). OTSL determines the optimal 

hyperparameter configuration for a structure learning algorithm by performing out-of-sample 

resampling and optimisation on test data.  
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7.2.1 Resampling with replacement with multiple training and test datasets  

Resampling with replacement or bootstrapping (Efron and Tibshirani, 1994) is commonly used 

for sampling in statistics and machine learning. Unlike traditional cross-validation where each 

fold is drawn from a dataset without replacement, bootstrapping involves resampling with 

replacement to produce new data for validation that may contain multiple instances of the 

original cases. Although cross-validation is a common optimisation technique for selecting a 

model based on its estimated predictive capability, the studies by McLatchie et al. (2023) and 

Piironen et al. (2016) empirically show that cross-validation led to the learning of complex 

models, particularly in the case with small datasets and a high number of variables. 

Consequently, resampling with replacement in structure learning was used to improve the 

accuracy of the learnt graph (Chun, 2011; Guo et al., 2022). We adopt this strategy for the 

OTSL algorithm and use resampling with replacement to generate multiple datasets for training 

and testing from a single observational dataset, where the training datasets are used for structure 

learning and the test datasets for hyperparameter tuning.  

7.2.2 Tuning hyperparameters on test data 

Subsection 2.2.2.1 describes the BIC and BDeuiss scores, which are commonly used as 

objective functions in score-based structure learning algorithms. However, an issue with these 

model-selection scores is that the graph they score the highest tends not to be the ground truth 

graph. The model averaging MAHC that we describe in Chapter 3 demonstrates that output 

graphs with slightly lower average BIC score may improve the graphical accuracy of the learnt 

graph, especially in the presence of data noise which is inevitably present in real data. This 

model averaging approach motivates the design of the proposed tuning approach, especially in 

that it focuses on maximising model-selection by taking the average over multiple data splits. 

We use the illustrations in Figure 7.1 to motivate our optimisation strategy, which is 

based on the HC algorithm and synthetic ALARM data with sample size 10k. Figure 7.1a 

presents the relationship between the graphical metric F1 (refer to subsection 7.4) and the 

objective score BDeuiss when iss varies between 1 and 20. The tuning method involves 

resampling with replacement, where the input dataset of 10k is resampled 10 times and, at each 

iteration, split 9-to-1 for training and testing (refer to Algorithm 5). Specifically, 

a) BDeuiss is the tuning score optimised for different iss hyperparameters. Note that 

at each iteration of iss, the tuned score represents the average BDeuiss score over 

10 iterations of resampling (refer to Algorithms 5 and 5b). 

b) F1 is the score for each graph recovered at different values of iss in BDeuiss. 

The illustration shows that it may be possible to optimise for iss in BDeuiss such that it 

improves the F1 score. Specifically, Figure 7.1a shows that the optimal value for iss in BDeuiss 

is 6, which in turn leads to a 0.57% improvement in F1 relative to the unoptimised 

hyperparameter default when iss = 1. 

Figure 7.1b repeats the same exercise and assumes that the tuning score is 

EBICnormalised γ, where γ in EBICγ varies between 0 and 19. In this example, we notice that 

the optimal γ hyperparameter is γ = 3 and happens to lead to the highest F1 score; an 

improvement of 11.63% relative to the unoptimised EBICnormalised γ score when γ = 0. 
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                                            (a)                                                                         (b)                                                         
Figure 7.1 The F1 scores over different hyperparameter values for BDeuiss and EBICγ. The 

illustration is based on the HC algorithm and synthetic ALARM data with a sample size 10k. 

 

7.2.3 The Out-of-sample Tuning for Structure Learning (OTSL) algorithm 

Algorithm 5 describes the OTSL algorithm. As described in Algorithm 5, OTSL takes as input 

a dataset D, the number of iterations K for resampling (we assume 10 as default), the tuning 

score (we explore BDeuiss and EBICnormalised γ in this study) and a list of configurations C that 

specify the structure learning algorithm along with its hyperparameters and a range of those 

hyperparameters to be explored. OTSL starts by resampling K training and test datasets given 

the input data. It then applies the specified structure learning algorithm with configurations C 

to each training dataset in K, and optimises the hyperparameters of either BDeuiss or 

EBICnormalised γ on each corresponding test dataset in K, across different input graphs and lists 

of configurations C.  Each scoring function generates the scores to be tuned for each  

combination of input graph (i.e., learnt structure by a given algorithm), dataset, and set of 

configurations C. The optimal configuration is the one that generates the highest average tuning 

score over K training and test datasets, and is returned as the optimal configuration. This 

process is described in Algorithms 5, 5a and 5b, where Algorithms 5a and 5b describe the 

tuning process for EBICnormalised γ and BDeuiss respectively. 
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   Algorithm 5: Out-of-sample Tuning for Structure Learning (OTSL)  

Input: dataset D, a list of configurations 𝐂, iteration K, score for tuning 

Output: c′ 

1: The sample size of train data X = the number of instances of D  (K-1) /K 

2: The sample size of test data Y = the number of instances of D / K 

3: For k = 1 to K 

4:          Dk,training ← resample with replacement (D) with sample size X 

5:           Dk,test← resample with replacement (D \ Dk,training) with sample size Y 

6: For c ∈ 𝐂 // find the optimal configuration 

7: For k = 1 to K 

8:    Gc,k  ← structure learning algorithm (Dk,training, c) 

9:       If Gc,k is CPDAG 

10        Gc,k ← CPDAGtoDAG (Gc,k)  

11:              If Gc,k is PDAG 

12:                                 Gc,k ← PDAGtoDAG (Gc,k) 

13:               Sc,k ← score_for_tuning(Gc,k, Dk,test, c) // scoring functions given test data and hyperparameters 

14: Sc = average Sc,k over K 

15: c′ = arg max Sc 

16: return c′  

 
 

 

   Algorithm 5a: score_for_tuning (EBICnormalised γ) 

Input: DAG G, dataset 𝒟, configuration c from a list of configurations 𝐂 

Output: EBICnormalised γ  

1: If c contains γ  

2:       score = EBICnormalised γ(G, 𝒟) 

3:    Else 

4:       score = EBICnormalised γ=0(G, 𝒟)  

 

 

 

   Algorithm 5b: score_for_tuning (BDeuiss) 

Input: DAG G, dataset 𝒟, configuration c from a list of configurations 𝐂 

Output: BDeuiss  

1: If c contains iss  

2:       score = BDeuiss(G, 𝒟) 

3:    Else 

4:       score = BDeuiss=1(G, 𝒟)  
 

 

7.3 Evaluation  

We consider 10 real-world BNs whose properties are provided in Table 7.1. Six of them are 

taken from the bnlearn (Scutari, 2019) and Bayesys (Constantinou et al., 2020) repositories and 

are used to generate synthetic data with sample sizes of 1k and 10k. In addition to the six 

synthetically generated datasets, we also consider four real datasets which we discuss in more 

detail in subsection 7.4.2.  
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Synthetic data Data source Variables Edges Max in-degree Free parameters 

Asia  Bayesys 

(Constantinou 

et al., 2020) 

8 8 2 18 

Sports  9 15 2 1,049 

Property  27 31 3 3,056 

Alarm  37 46 4 509 

Hailfinder  bnlearn 

(Scutari, 2019) 

56 66 4 2,656 

Hepar2 70 123 6 1,453 

Real data Data source Variables Sample size 

Diarrhoea Bayesys 

(Constantinou 

et al., 2020) 

28 259,627 

COVID-19 65 866 

ForMed 56 953 

Weather 
NCEP (Kalnay 

et al., 1996) 
648 900 

 

Table 7.1 The properties of the 10 case studies. 
 

Structure learning 

algorithm 

Configuration 

CI test / 

Objective function 

Hyperparameter 

𝜶 𝛄 𝐢𝐬𝐬 

Constraint-based 

PC-Stable Chi2, MI, MI-sh 
0.01, [0.05], 

0.1 
[0] [1] 

Score-based     

HC, FGS BDeuiss, EBICγ - [0], 1, 2, …, 19 [1], 2, 3, …, 20 

Hybrid based     

MCMC Chi2/ BDeuiss [0.05] - [1], 2, 3, …, 20 

MMHC Chi2/ BDeuiss, EBICγ 0.01, [0.05] [0], 1, 2, …, 9 [1], 2, 3, …, 10 

 

Table 7.2 The algorithms tested for hyperparameter optimisation, along with the set of 

hyperparameters optimised. Brackets indicate the hyperparameter defaults. The size of the separation-

set for CI tests is set to -1 to allow for an unlimited size of conditioning sets. 
 

Table 7.2 lists the five structure learning algorithms considered for hyperparameter 

optimisation, spanning all three classes of structure learning. The description of these 

algorithms can be found in subsections 2.2.1.3, 2.2.2.2 and 2.2.3. Because OTSL is designed 

to optimise either EBICnormalised γ or BDeuiss, we follow a somewhat different strategy when 

optimising constraint-based learning algorithms which do not involve score-based 

hyperparameters such as iss and γ. As shown in Table 7.2, the PC-Stable algorithm is tuned by 

exploring the three different thresholds for significance test 𝛼 by maximising either EBIC or 

BDeu given their hyperparameter defaults; i.e., we iterate over hyperparameter values for 𝛼 – 

not for iss or γ – when the input algorithm is constraint-based. Specifically, a) for constraint-

based PC-Stable we optimise hyperparameter α which represents the statistical significance 

threshold for either Chi2, MI, or MI-sh (refer to subsection 2.2.1.1), b) for score-based HC and 

FGS we optimise hyperparameter γ in EBICγ and iss in BDeuiss (refer to subsections 7.1.1 and 

2.2.2.1), and c) for hybrid algorithms MCMC and MMHC we optimise for all three possible 

hyperparameters. However, as shown in Table 7.2, we reduce the size of the set of possible 

hyperparameters to be explored for hybrid algorithms due to the much larger number of 

possible combinations of hyperparameters they produce. For example, if we were to explore 

the same range of hyperparameters for hybrid MMHC, then that would require 1,920 structure 

learning experiments for that algorithm alone; i.e., 3 hyperparameters for 𝛼 × 20 for γ or 3 

hyperparameters for 𝛼 × 20 for iss for each case study and sample size. Because MCMC is the 

most computationally expensive algorithm amongst the structure learning algorithms 

considered, we restrict the value of hyperparameter 𝛼 to its default 0.05 and instead optimise 

hyperparameter iss over a larger range in BDeuiss. 
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We use the F1 and SHD graphical metrics to assess synthetic experiments as described 

in subsection 2.2.4. The scores reported in this study reflect comparisons between the learnt 

and the corresponding true DAGs. If a structure learning algorithm produces a CPDAG then a 

random DAG is generated from the learnt CPDAG.  

The hyperparameter optimisation performance of OTSL is assessed with reference to 

other hyperparameter tuning methods that are proposed for tuning structure learning 

algorithms, and specifically the StARS and OCT approaches discussed in subsection 7.1.2. In 

addition, we also consider the BIC and the AIC model-selection functions as baselines for 

tuning, consistent with how they are used in other relevant studies for evaluation purposes, 

where tuning is determined by the hyperparameter value that maximises the given model-

selection function (Biza et al., 2020). 

We conduct all experiments by performing 10 iterations of resampling for both OTSL 

and StARS, and assuming a 10-fold cross-validation for OCT. We set a runtime limit of 24 

hours for each experiment and yet, this was not enough to complete all experiments. Because 

most tuning experiments failed to complete learning on the real-world Diarrhoea and Weather 

datasets within the runtime limit, we modify the experimental setup for these two datasets. The 

issue with the Diarrhoea dataset is that it contains a large number of samples (259,627), which 

we address by modifying the resampling technique such that it creates 10 sets of training data 

restricted to a sample size of 9k, and 10 sets of test data restricted to a sample size of 1k, derived 

from the 259,627 instances of the Diarrhoea dataset. On the other hand, the issue with the 

Weather dataset is that it contains a large number of variables, and we address this by reducing 

the number of iterations for resampling to 5 for the Weather dataset.  

Experiments with real data provide no access to ground truth. As a result, it is difficult 

to judge the unsupervised learning performance of these algorithms on real data. Therefore, we 

use real data to primarily investigate the issues we may face, specifically with large datasets as 

discussed above, and to illustrate how OTSL influences the structure learning performance of 

the different algorithms considered, in terms of model-selection, goodness-of-fit, and model 

dimensionality.  

We test PC-Stable, HC and MMHC using the bnlearn R package (Scutari, 2019). FGS 

using Tetrad-based rcausal R package (Wongchokprasitti, 2019), and MCMC (the order-

MCMC version) using the BiDAG R package (Suter et al., 2023). The model-selection scores 

of BIC and AIC, as well as the StARS and OCT tuning algorithms are tested using the 

MATLAB implementations available at https://github.com/mensxmachina/OCT. The 

implementation of OTSL is made available online at https://github.com/kiattikunc/OTSL. All 

experiments were conducted on a high performance computing cluster with 32 GBs of RAM, 

whereas the experiments involving the FGS algorithm were ran on a laptop with an M1 CPU 

at 3.2 GHz and 8GB of RAM. 

7.4 Results 
 

7.4.1 Results based on synthetic data  
 

7.4.1.1 Impact of hyperparameter tuning on graphical structure  

https://github.com/mensxmachina/OCT
https://github.com/kiattikunc/OTSL
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We assume two different cases for hyperparameter defaults: a) Default A where 𝛼 = 0.05 for 

Chi2 test and γ = 0 for EBICγ, and b) Default B where and 𝛼 = 0.05 for Chi2 test and iss = 1 

for BDeuiss. Figure 7.2 compares the F1 scores obtained by the four specified algorithms across 

all synthetic experiments, with and without (i.e., Default A) hyperparameter optimisation. In 

this set of experiments, hyperparameter optimisation is restricted to EBICnormalised γ and 

hence, the MCMC algorithm is not included in these results since EBICγ is not available in the 

BiDAG R package. Figure 7.2a depicts the results when trained with datasets of sample size 

1k, whereas Figure 7.2b depicts the results when trained with datasets of sample size 10k. 

Across the 12 comparisons shown in both Figures 7.2a and 7.2b, the results show that 

the hyperparameter tuning applied by OTSL improves the average F1 scores in 9 cases, and 

slightly decreases performance in 3 cases; i.e., for Property at both 1k and 10k sample sizes 

and for Sports at 10k sample size. In Figure 7.2a, the average F1 score across all DAGs learnt 

over the six cases and four structure learning algorithms is 0.448 for default configurations, 

and increases to 0.458 (or by ~2.3%) when tuning the hyperparameters of EBICnormalised γ. 

Figure 7.2b repeats these experiments for sample sizes 10k and shows that the results remain 

consistent with those obtained when the sample size is set to 1k. Specifically, the average F1 

score across all DAGs is 0.5 for the default configurations, and increases to 0.513 (or by ~2.5%) 

when tuned with OTSL.  

Figures 7.3a and 7.3b repeat the experiments of Figures 7.2a and 7.2b, and use BDeuiss 

as the tuning score instead of EBICnormalised γ. In this case, however, the results show that the 

hyperparameter tuning applied by OTSL did not improve the average F1 scores. Specifically, 

the average F1 scores for the default configurations (Default B) are 0.51 and 0.56 for sample 

sizes 1k and 10k respectively, and 0.506 and 0.56 respectively when tuned with OTSL. 

According to the boxplots, this small difference could be explained by random variability. 

    
                                      (a)                                                                         (b)                                                         

Figure 7.2 The average F1 scores with and without hyperparameter tuning. Untuned algorithms 

assume Default A configuration and tuned algorithms assume OTSL with EBICnormalised γ as the 

tuning score. The average scores are derived over four structure learning algorithms (excluding 

MCMC that does not support EBICγ), and six synthetic case studies. The boxplots represent the 

highest and lowest F1 scores with outliers, × is the mean and ‒ is the median. The lower edge of the 

boxplot represents the first quartile, while the higher edge of the boxplot represents the third quartile. 

Figure (a) depicts the scores for datasets with sample size 1k, and (b) with sample size 10k. 
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Table 7.3 details the average change in F1 and SHD scores for each structure learning 

algorithm relative to the hyperparameter defaults (Default A), when we tune their 

hyperparameters with OTSL and EBICnormalisedγ as the tuning score, as well as when we 

randomise the hyperparameter values averaged over 10 iterations. The results depicted in Table 

7.3 show that randomising the hyperparameters leads to an average decrease of 1.71% in F1 

score, and a decrease of 4.89% in SHD score, relative to the results obtained when assuming 

hyperparameter defaults. On the other hand, the F1 and SHD scores increase by 3.9% and 

6.12% respectively when optimising the hyperparameters using OTSL. However, the 

constraint-based PC-Stable generates poor tuning performance with F1 and SHD scores 

decreasing by 1.81% and 1.08% respectively. This might suggest that the score-based tuning 

applied by OTSL to tune constraint-based CI tests might not be appropriate. 

Table 7.4 repeats the experiments but assumes Default B configurations, and that the 

tuning score is BDeuiss instead of EBICnormalised γ previously assumed in Table 7.3. In this 

case, the results show that both randomising and optimising the hyperparameter iss of BDeuiss 

decreases graphical scores relative to those obtained by assuming hyperparameter defaults. In 

other words, it seems that assuming iss = 1 for BDeuiss produces strong performance with 

little, if any, room for improvement via hyperparameter tuning, and this is consistent with what 

is reported by Steck (2008) and Uneo (2011) who recommend to set iss = 1, especially when 

the distributions of the variables are assumed to be skewed or when the true underlying 

structure is assumed to be sparse. Our results show that randomising the iss hyperparameter of 

BDeuiss decreases the F1 and SHD scores by 4.86% and 11.02%, whereas optimising iss with 

OTSL increases the F1 scores by 0.12% and decreases the SHD scores by 3.36%. These results 

suggest that the BDeuiss function may not be suitable for hyperparameter tuning, at least 

compared to EBICnormalised γ, and that setting iss = 1 might indeed be sufficient, in general. 

 

  
                                      (a)                                                                         (b)                                                         

Figure 7.3 The average F1 scores with and without hyperparameter tuning. Untuned algorithms 

assume Default B configuration and tuned algorithms assume OTSL with BDeuiss as the tuning score. 

The average scores are derived over five structure learning algorithms, and six synthetic case studies. 

The boxplots represent the highest and lowest F1 scores with outliers, × is the mean and ‒ is the 

median. The lower edge of the boxplot represents the first quartile, while the higher edge of the 

boxplot represents the third quartile. Figure (a) depicts the scores for datasets with sample size 1k, 

and (b) with sample size 10k. 
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Algorithm 

Change in F1 relative to Default A Change in SHD relative to Default A 

Random 

configuration 

Tuning with 

EBICnormalised γ 
Random 

configuration 

Tuning with 

EBICnormalised γ 

PC-Stable 0.95% -1.18% -1.30% -1.08% 

HC 6.29% 12.96% 8.29% 23.40% 

FGS -14.21% -0.10% -26.31% 1.54% 

MMHC 0.00% 3.91% -0.43% 0.61% 

Average -1.71% 3.90% -4.89% 6.12% 
 

 

Table 7.3 The change in average F1 and SHD scores for each algorithm, after randomising their 

hyperparameters and after tuning them with OTSL. The experiments consider all six synthetic case 

studies and both 1k and 10k sample sizes. The hyperparameter defaults are 𝛼 = 0.05 for Chi2 test and 

γ = 0 for EBICγ (Default A). The best performance values are shown in bold. 

 

Algorithm 

Change in F1 relative to Default B Change in SHD relative to Default B 

Random 

configuration 

Tuning with 

BDeuiss 

Random 

configuration 

Tuning with 

BDeuiss 

PC-Stable 0.78% 2.40% -2.00% 0.64% 

HC -10.48% -8.64% -18.95% -11.33% 

FGS -14.77% 2.25% -34.65% -9.68% 

MCMC 2.79% 2.51% 2.40% 3.25% 

MMHC -2.69% 2.06% -2.11% 0.31% 

Average -4.86% 0.12% -11.02% -3.36% 
 

Table 7.4 The change in average F1 and SHD scores for each algorithm, after randomising their 

hyperparameters and after tuning them with OTSL. The experiments consider all six synthetic case 

studies and both 1k and 10k sample sizes. The hyperparameter defaults are 𝛼 = 0.05 for Chi2 test and 

γ = 0 for BDeuiss (Default B). The best performance values are shown in bold. 
 

7.4.1.2 Assessing OTSL relative to existing tuning algorithms for structure learning 

We compare the results of OTSL with those obtained by the out-of-sample tuning OCT and 

the in-sample tuning StARS. We also consider the baseline tuning results obtained by the 

model-selection scores BIC and AIC. This process involves applying the other four approaches 

to the same experiments presented in subsection 7.4.1.1, and comparing the changes to the F1 

and SHD scores across all hyperparameter tuning approaches. 

Structure 

learning 
algorithm 

Hyperparameter tuning method 

Out-of-sample In-sample Out-of-sample In-sample 

OTSL with 
EBICnormalised γ 

tuning 
OCT 

Model 

selection 

with BIC 

Model 

selection 

with AIC 

StARS 
OTSL with 

EBICnormalised γ 

tuning 
OCT 

Model 

selection 

with BIC 

Model 

selection 

with AIC 

StARS 

Change of F1 relative to Default A Change of SHD relative to Default A 

PC-Stable -1.18% 1.88% 4.32% 3.30% 0.72% -1.08% 0.09% 1.21% 1.56% -0.25% 

HC 12.96% 6.23% -0.65% -1.60% -3.62% 23.40% -35.43% -8.76% -9.90% -34.77% 

FGS -0.10% 1.26% -6.87% -7.43% 1.55% 1.54% -0.67% -5.71% -7.37% -2.59% 

MMHC 3.91% 3.03% 11.55% 19.88% 3.36% 0.61% -4.89% 22.47% 23.08% 17.09% 

Average 3.90% 3.10% 2.09% 3.54% 0.50% 6.12% -10.22% 2.30% 1.84% -5.13% 

 

Table 7.5 The average change in F1 and SHD scores due to hyperparameter tuning by the specified 

tuning method. The averages are derived from all six synthetic case studies and over both sample 

sizes. The structure learning algorithms assume Default A hyperparameter configuration (Chi2 test 

with 𝛼 = 0.05, and EBICγ with γ = 0). The highest improvements in graphical accuracy are shown in 

bold. 

 

 

 

 



 

Page 87 of 116 
 
 

Structure 
learning 

algorithm 

Hyperparameter tuning method 

Out-of-sample In-sample Out-of-sample In-sample 

OTSL 

with 

BDeuiss 

tuning 

OCT 

Model 

selection 
with BIC 

Model 

selection 
with AIC 

StARS 

OTSL 

with 

BDeuiss 

tuning 

OCT 

Model 

selection 
with BIC 

Model 

selection 
with AIC 

StARS 

Change of F1 relative to Default B Change of SHD relative to Default B 

PC-Stable 2.40% 1.26% -6.87% -7.43% 1.55% 0.64% -0.67% -5.71% -7.37% -2.59% 

HC -8.64% -11.25% -4.26% 1.88% -11.21% -11.33% -40.02% -2.57% -2.06% -11.15% 

FGS 2.25% -0.43% -6.02% -6.94% -7.91% -9.68% -41.77% -15.96% -17.17% -42.71% 
MCMC 2.51% -2.39% -0.93% 0.18% -0.15% 3.25% -10.80% -7.93% 1.97% -2.29% 

MMHC 2.06% -2.47% 0.41% -0.59% -3.56% 0.31% -1.65% -0.60% -0.28% -2.09% 

Average 0.12% -3.06% -3.53% -2.58% -4.26% -3.36% -18.98% -6.55% -4.98% -12.17% 
 

Table 7.6 The average change in F1 and SHD scores due to hyperparameter tuning by the specified 

tuning method. The averages are derived from all six synthetic case studies and over both sample 

sizes. The structure learning algorithms assume Default B hyperparameter configuration (Chi2 test 

with 𝛼 = 0.05, and BDeuiss with iss = 1). The highest improvements in graphical accuracy are shown 

in bold. 

 

Tables 7.5 and 7.6 summarise these results for both Default A and Default B 

hyperparameter configurations respectively. Table 7.5 shows that while none of the 

hyperparameter tuning approaches improves the graphical accuracy for all four structure 

learning algorithms, most of the approaches do improve the average structure learning 

performance across all algorithms. Specifically, all five tuning approaches improve the average 

F1 score across the four structure learning algorithms considered, although only three out of 

the five tuning approaches also improve the SHD score. The OTSL algorithm with 

EBICnormalised γ tuning increases both the F1 (up by 3.9%) and SHD (up by 6.12%) scores the 

most across all the tuning approaches considered. Interestingly, the F1 and SHD scores provide 

contradictory conclusions about the impact on graphical structure for OCT and StARS 

algorithms, and this inconsistency between the F1 and SHD metrics is in agreement with other 

studies (Constantinou et al., 2021). For example, the F1 metric suggests that the 

hyperparameter tuning of OCT improves the structure learning performance of all four 

structure learning algorithms, whereas the SHD metric suggests that OCT decreases the 

graphical accuracy of three out of the four structure learning algorithms. 

Table 7.6 presents the same results when the hyperparameter tuning approaches are 

applied to the iss hyperparameter of BDeuiss. Overall, the results are consistent with those 

presented in Tables 7.3 and 7.4, in that hyperparameter tuning appears to be successful for 

EBICnormalised γ but not for BDeuiss. While tuning with BDeuiss is found to be rather 

inadequate for all tuning methods, OTSL is found to perform considerably better compared to 

the other tuning approaches with an increase of 0.12% in the average F1 score (improved the 

scores of four out of the five algorithms) and a decrease of 3.36% in the average SHD score 

(improved the scores of three out of the five algorithms). 
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(a) (b)                                                         

Figure 7.4 (a) Overall runtime (structure learning and tuning) and (b) tuning runtime, summed over 

all six synthetic datasets and two sample sizes, across all five structure learning algorithms.  

We also assess the computational complexity of OTSL by comparing its 

hyperparameter tuning and overall structure learning runtimes against those produced by the 

other hyperparameter tuning approaches. Provisional results show that the runtimes are similar 

for both EBICnormalisedγ and BDeuiss, but here we focus on EBICnormalised γ which produces 

the best tuning performance. Figure 7.4a depicts the total runtimes (hyperparameter tuning and 

structure learning) across all six case studies, two sample sizes, and five structure learning 

algorithms, whereas Figure 7.4b shows the runtime for the same experiments but restricted to 

the hyperparameter tuning phase. As expected, optimisation with model-selection functions 

such as BIC and AIC results in very low runtimes, since they do not involve out-of-sample or 

resampling strategies, whereas OTSL, OCT and StARS perform 10 iterations of either in-

sample or out-of-sample tuning for each hyperparameter configuration and this leads to 

considerably higher runtimes. Overall, the results in Figure 4a show that the computational 

runtime of OTSL is similar to that of StARS, and considerably faster than that of OCT. 

Importantly, the tuning runtimes of OTSL and StARS represent just 0.2% and 0.4% of the total 

structure learning runtime respectively, whereas the tuning runtime of OCT represents 43% of 

its total structure learning runtime. Figure 7.4b shows that the tuning runtime of OTSL is slower 

than the tuning runtime of StARS, but much faster than the tuning runtime of OCT. 

7.4.2 Applying OTSL to real data  

While previous subsections focused on evaluating OSTL in terms of how its tuning improves 

the recovery of the ground truth graphs that were used to generate synthetic data, this subsection 

illustrates how OTSL could be used in practice with application to four different real datasets 

that come from different disciplines. As discussed in subsection 7.3, real data do not come with 

an access to ground truth and hence, the purpose here is to illustrate how tuning influences the 

structure learning performance of the different algorithms considered when applied to real data. 

We consider the following four discrete datasets, where the first three are obtained from the 

Bayesys repository (Constantinou et al., 2020) and the fourth from the National Center for 
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Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) 

in the USA, known as the NCEP/NCAR Reanalysis Project (Kalnay et al., 1996): 

a) ForMed: A case study already covered in subsection 3.1, which involves assessing and 

managing the risk of violence in released prisoners with history of violence and mental 

health (Coid et al., 2016; Constantinou et al., 2015). The data was collected through 

interviews and assessments comprising risk factors for 953 individual cases, and 

contains a total of 56 categorical variables. 

b) COVID-19: A dataset that captures pandemic data about the COVID-19 outbreak in 

the UK (Constantinou et al., 2023). The data comprises of 18 variables that capture 

information related to viral tests, infections, hospitalisations, vaccinations, deaths, 

COVID-19 variants, population mobility such as usage of transportation, schools, and 

restaurants, as well as various government policies such as facemasks and lockdowns. 

The data instances represent daily information, spanning from January 30th, 2020, to 

June 13th, 2022, resulting in a total of 866 instances. 

c) Diarrhoea: Pre-processed survey data collated from the Demographic and Health 

Survey (DHS) program, which was used to investigate the factors associated with 

childhood diarrhoea in India (Kitson and Constantinou, 2021). The dataset captures 

relevant cases from 2015 to 2016 and contains 28 variables and 259,627 instances. 

d) Weather: A dataset that captures the monthly means of air temperature and other 

climatological data for each location as measured by latitude (y coordinate) and 

longitude (x coordinate) over the global grid system (Kalnay et al., 1996). The dataset 

merges information obtained from multiple sources, i.e., balloons, satellites, and buoys. 

It provides a comprehensive 75-year record from 1948 to 2022 of global atmospheric 

field analyses. We used the bnlearn R package (2019) to discretise the dataset. Because 

the raw data is too big for our experiments, we also resized the spatial dataset from 2.5 

degree x 2.5 degree global grids to 10 degree x 10 degree global grids, and reduced the 

total number of variables from 10,512 (144x73) to 648 (36x18). Therefore, the dataset 

used in this study contains a total of 648 variables and 900 instances. 

We apply the structure learning algorithms to each of the four datasets, and tune their 

hyperparameters using OTSL. We only consider Default A hyperparameter configuration with 

EBICnormalised γ for tuning, which was shown to be more suitable for hyperparameter 

optimisation. Table 7.7 presents the results obtained by applying the specified structure 

learning algorithms to the ForMed dataset and tuning their hyperparameters with OTSL. We 

report the model-selection score BIC, the goodness-of-fit score LL, the number of free 

parameters as a measure of model dimensionality, and the tuning scores EBICnormalised γ. 

Table 7.7 shows that out of the four structure learning algorithms considered, only one (HC 

with γ = 2) had its hyperparameter changed following tuning with OTSL. The tuning 

scores EBICnormalised γ in Table 7.7 suggest that the graph produced by MMHC, presented in 

Figure 7.5, might be the ‘best’ structure to consider amongst those learnt by the different 

algorithms, although this suggestion contradicts the BIC score which suggests that the best 

structure may be the one learnt by HC.  

Tables 7.8, 7.9, and 7.10, and corresponding Figures 7.6, 7.7, and 7.8, repeat the above 

analyses for case studies COVID-19, Diarrhoea and Weather respectively. Note that only two 

algorithms are reported for the Weather case study, and this is because HC did not complete 
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learning within the 24-hour time limit, while FGS returned a memory allocation error. The 

results show that OTSL modified the hyperparameters of three and four, out of the four, 

structure learning algorithms in COVID-19 and Diarrhoea cases respectively, and for one out 

of the two algorithms for dataset Weather. Table 7.8 shows that FGS produces the best structure 

for the COVID-19 case study (see Figure 7.6) according to both EBICnormalised γ and BIC 

scores. On the other hand, the results in Table 7.9 suggest that the graph produced by FGS is 

the best structure according to EBICnormalised γ, which once more contradicts the BIC score 

that scores the graph produced by HC the highest. Lastly, in Table 7.10 both EBICnormalised γ 

and BIC are in agreement that MMHC produced the best structure shown in Figure 7.8. The 

nodes in Figure 7.8 represent random variables of a monthly temperature for each location, 

whereas the arcs represent the spatial dependencies of surface temperatures for each grid2.  

Structure 

learning 

algorithm 

CI test / Objective 

score 

Optimal 

hyperparameter 

from OTSL (Tuning 

with 

EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

 

Chi2 𝛼 = 0.05 -4,099 -40,791 -39,775 296 

MI 𝛼 = 0.05 -4,113 -40,799 -39,760 303 

MI-sh 𝛼 = 0.05 -4,092 -40,837 -39,774 310 

HC EBICγ γ = 2 -3,974 -37,062 -35,442 540 

FGS EBICγ γ = 0 -4,195 -42,343 -41,846 145 

MMHC Chi2 / 𝐄𝐁𝐈𝐂𝛄 𝜶 = 0.05 / 𝛄 = 0 -3,942 -38,183 -37,744 439 

 

Table 7.7 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt 

by the specified structure learning algorithms when applied to the ForMed dataset, with OTSL tuning. 

The best performance values are shown in bold. 

 

 

 

 

 

 
 

 
2 The orange arcs represent short-distance temperature dependencies, while the red arcs show the teleconnected 

dependencies. We observe that the local short-distance arcs are dense, representing atmospheric thermodynamic 

processes, while the teleconnected dependencies are represented by only three arcs. One of these teleconnected 

dependencies indicates the El Niño effects, which are caused by temperatures along the equator in the Pacific 

Ocean (Yamasaki et al., 2008).  
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Figure 7.5 The DAG learnt by MMHC for the ForMed dataset with OTSL tuning (Table 7.7). 

Structure 

learning 

algorithm 

CI test / Objective 

score 

Optimal 

hyperparameter 

from OTSL (Tuning 

with 

EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

Chi2 𝛼 = 0.1 -1,392 -13,666 -13,270 117 

MI 𝛼 = 0.1 -1,395 -13,768 -13,190 171 

MI-sh 𝛼 = 0.01 -1,395 -13,768 -13,190 171 

HC EBICγ γ = 5 -1,249 -10,725 -8,787 323 

FGS 𝐄𝐁𝐈𝐂𝛄 𝛄 = 1 -1,092 -9,038 -9,918 260 

MMHC Chi2 /EBICγ 𝛼 = 0.05 / γ = 0 -1,257 -12,267 -12,129 138 

 

Table 7.8 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt 

by the specified structure learning algorithms when applied to the COVID-19 dataset, with OTSL 

tuning. The best performance values are shown in bold. 
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Figure 7.6 The DAG (sampled from the learnt CPDAG) learnt by FGS for the COVID-19 dataset 

with OTSL tuning (Table 7.8). 

Structure 

learning 

algorithm 

CI test / Objective 

score 

Optimal 

hyperparameter 

from OTSL (Tuning 

with 

EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

Chi2 𝛼 = 0.01 -19,653 -4,910,813 -4,899,630 1,794 

MI 𝛼 = 0.1 -19,400 -5,099,129 -5,088,588 1,691 

MI-sh 𝛼 = 0.01 -19,506 -5,082,642 -5,068,485 1,691 

HC EBICγ γ = 2 -19,257 -4,776,526 -4,748,359 9,389 

FGS 𝐄𝐁𝐈𝐂𝛄 𝛄 = 0 -19,175 -4,944,463 -4,941,340 501 

MMHC Chi2 / EBICγ 𝛼 = 0.01 / γ = 0 -19,257 -4,979,854 -4,979,334 520 
 

Table 7.9 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs learnt 

by the specified structure learning algorithms when applied to the Diarrhoea dataset, with OTSL 

tuning. The best performance values are shown in bold. 
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Figure 7.7 The DAG (sampled from the learnt CPDAG) learnt by FGS for the Diarrhoea dataset with 

OTSL tuning (Table 7.9). 

Structure 

learning 

algorithm 

CI test / Objective 

score 

Optimal 

hyperparameter 

from OTSL (Tuning 

with 

EBICnormalised γ) 

Tuning 

score

EBICnormalised γ 

from OTSL 

Score of learnt graph 

BIC LL 
Free 

parameters 

PC-

Stable 

Chi2 𝛼 = 0.05 -67,594 -334,171 -319,219 4,396 

MI 𝛼 = 0.01 -72,525 -378,849 -366,591  3,604  

MI-sh 𝛼 = 0.1 -71,653 -346,160 -333,059 3,852 

MMHC Chi2 / 𝐄𝐁𝐈𝐂𝛄 𝜶 = 0.05, 𝛄 = 0 -66,350 -318,220 -314,724 3,496 

 

Table 7.10 The tuning, model-selection, goodness-of-fit, and dimensionality scores of the graphs 

learnt by the specified structure learning algorithms when applied to the Weather dataset, with OTSL 

tuning. The best performance values are shown in bold. 
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Figure 7.8 The DAG learnt by MMHC for the Weather dataset with OTSL tuning (Table 7.10). The 

vertices of the world map superimposed over the DAG represent latitude and longitude locations on 

10x10 degree grids.  

7.5 Conclusions 

Learning causal models from observational data remains a major challenge. Traditionally, 

structure learning algorithms are evaluated and applied to real data with their hyperparameter 

defaults, or by iterating over a small set of possible hyperparameters. However, no specific set 

of hyperparameters is optimal for all input datasets which vary in sample size and 

dimensionality, and structure learning algorithms which vary in learning strategy. Therefore, 

the question of which hyperparameter values might be best for a given structure learning 

algorithm and input dataset combination remains an open question.  

In this chapter, we propose and evaluate a hyperparameter tuning algorithm, called 

OTSL, that employs out-of-sample resampling and score-based tuning to find the optimal 

hyperparameters for a given structure learning algorithm, given the input data. We describe 

and implement OTSL with a focus on score-based learning, and determine the hyperparameters 

of different algorithms by optimising either the iss or γ hyperparameters of BDeuiss and 

EBICnormalised γ objective scores.  

Synthetic experiments show that tuning with OTSL leads to reasonable improvements 

in structure learning in terms of the F1 and SHD scores, and when assuming EBICγ as the 

objective score for score-based learning. However, this level of improvement is not repeated 

for BDeuiss, and this observation is consistent for OTSL and all the other tuning approaches 

investigated in this study. This is because the hyperparameter default of iss = 1 in 

BDeuiss tends to lead to higher F1 and SHD scores compared to the graphs learnt when iss >

1 (and hence benefits little, if any, from hyperparameter tuning), and this observation is 

consistent with past studies (Steck, 2008; Uneo, 2011).  

The tuning performance of OTSL is evaluated with reference to other hyperparameter 

tuning approaches for structure learning. We have considered the OCT and StARS tuning 
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approaches, as well as the BIC and AIC model-selection scores that serve as baselines for 

tuning hyperparameters. Overall, the results show that OTSL provides better tuning 

performance from results derived across different structure learning algorithms, case studies, 

and sample sizes. In terms of computational complexity, OTSL was found to be more efficient 

than OCT but slightly less efficient than StARS. 

A limitation is that while OTSL can be applied to structure learning algorithms that 

come from different classes of learning, it is designed with score-based learning in mind and 

assumes that the optimal hyperparameters are those that maximise either the 

EBICnormalised γ or BDeuiss objective scores, and this also applies when tuning CI functions in 

constraint-based learning. This might explain why the results from tuning score-based learning 

algorithms are better than those derived from tuning constraint-based learning. Another 

limitation is that, because OTSL optimises hyperparameters on test data, this process involves 

resampling multiple training and test datasets from a single input dataset, which impacts the 

computational efficiency of structure learning; a learning process that is already known to be 

computationally expensive. 
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Chapter 8 

 

Conclusions and open problems 

 

This thesis studies structure learning algorithms that recover graphical structure from data, with 

the main focus being on the problem of latent confounders. This final chapter begins by 

summarising the outputs and conclusions derived from each chapter, and ends by summarising 

open problems derived from a relevant paper I co-authored. 

8.1 Concluding remarks  

Chapter 3 begins by examining how well structure learning algorithms perform when applied 

to noise-free data that follow the ideal assumptions assumed by the algorithms, as well as 

imperfect noisy data that contain various types and levels of noise commonly found in real-

world datasets. We investigated the impact of data noise using 15 structure learning algorithms 

from different learning classes. We considered case-study networks from different domains 

and of varying complexity, with different sample sizes, data noise types, and data noise rates. 

Although the chapter’s main objective was to analyse the impact of data noise on structure 

learning performance, the results also summarise the performance of these algorithms with and 

without data noise. For instance, we found that non-exact or simpler learners are more resilient 

to data noise compared to exact or more sophisticated non-exact learners. The results also 

indicate that score-based learning generally outperforms constraint-based learning, but a higher 

fitting score does not necessarily mean a more accurate causal graph. Additionally, while 

algorithms designed to account for causal insufficiency performed well in noisy experiments 

involving latent variables, they did not perform as well under other types of data noise. A 

possible limitation is that this study tested all algorithms using their default hyperparameters 

as implemented in the structure learning software of the considered packages. 

In total, these results were obtained from approximately 10,000 structure learning 

experiments with a total structure learning runtime of seven months. This large-scale empirical 

comparison of structure learning algorithms under different data noise assumptions is the first 

of its kind. The findings suggest that the traditional synthetic performance may overestimate 

real-world performance by anywhere between 10% and more than 50%. These results have 

significant implications as they indicate that structure learning accuracy reported in the 
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literature, based on traditional synthetic data, overestimates real-world performance to a greater 

extent than previously assumed. 

Chapter 3 concludes by introducing a novel structure learning algorithm called MAHC 

that combines pruning and model averaging strategies with hill-climbing search. Comparisons 

with other algorithms from various learning classes demonstrate that the combination of 

aggressive pruning and model averaging is effective and efficient, particularly in the presence 

of data noise. Specifically, the results show that MAHC performs competitively when the input 

data is clean and often outperforms other algorithms when the input data is noisy. These 

findings suggest that model averaging strategies may be better suited for learning from real 

data, assuming that real observations never satisfy the ideal conditions assumed in clean 

synthetic experiments and often contain different types of data noise, similar to those examined 

in this chapter. 

Chapter 4 expands upon recent advancements in structure learning when dealing with 

causal insufficiency. It introduces a new algorithm called CCHM, which combines constraint-

based and score-based learning techniques with causal effects to learn Gaussian BNs. The 

constraint-based aspect of CCHM incorporates elements from the state-of-the-art cFCI 

algorithm, while the score-based component employs a traditional hill-climbing greedy search 

that minimises the BIC score. CCHM utilises Pearl’s do-calculus to orientate edges, a task that 

most constraint-based and score-based learning do to complete from observational data. The 

results indicate that CCHM outperforms state-of-the-art algorithms in the majority of the 

experiments, which include both randomised and real-world Gaussian BNs. However, a 

limitation of this research is that the algorithm assumes linear GBNs, and requires that the input 

data are continuous. Chapter 5 extends this and describes a hybrid algorithm, called mFGS-

BS, that learns ancestral graphs by calculating the posterior probability of each directed edge 

being added to the learnt graph, from one observational data set and one or more interventional 

data sets. Overall, the results show that mFGS-BS improves structure learning accuracy relative 

to the state-of-the-art and it is computationally efficient. A limitation of mFGS-BS is that it is 

sensitive to the ordering of the data sets and assumes equal sample size across all input data 

sets, which is an unrealistic assumption in practice. 

Chapter 6 describes two novel algorithms that can be used for both discovery and 

density estimation of latent confounders in BN structure learning from discrete observational 

data. Discovering and parameterising latent confounders represent important and challenging 

problems in causal structure learning and density estimation respectively. These tasks require 

solutions that come from different areas of statistics and machine learning. Chapter 6 combines 

elements of variational Bayesian methods, expectation-maximisation, hill-climbing search, and 

structure learning under the assumption of causal insufficiency. The first algorithm (ILC-V) 

aims to maximise model-selection accuracy by exhaustively exploring sets of Markov 

equivalent MAGs. The second algorithm (HCLC-V) aims to balance accuracy relative to 

computational efficiency by employing hill-climbing over the MAG space, enabling 

application to larger networks.  

Both the ILC-V and HCLC-V algorithms require a PAG to be provided as an input and, 

because the input PAG will typically indicate multiple possible latent confounders, both 

algorithms employ the p-ELBO as the objective function to determine the number of the latent 

confounders, thereby contributing to the discovery process in addition to density estimation of 
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latent confounders. The empirical results show meaningful improvements in maximising the 

objective score relative to the state-of-the-art, and in some ways in reducing time complexity; 

although the latter remains a major issue. Two important limitations are that a) both algorithms 

need to be paired with a structure learning algorithm that produces an ancestral graph, since 

they require a PAG input to be provided, and b) the results are based on experiments that 

assume the minimum possible number of latent confounders consistent with the PAG input, 

which was necessary to ensure that most experiments complete within the 12-hour runtime 

limit. 

Lastly, Chapter 7 delves into the challenge of determining the optimal hyperparameter 

configuration for structure learning algorithms. Practitioners often encounter this problem 

when applying structure learning algorithms to their data and typically resort to using default 

hyperparameters as a solution. In this chapter, a novel hyperparameter tuning method called 

Out-of-sample Tuning for Structure Learning (OTSL) is described. OTSL utilises out-of-

sample and resampling strategies to estimate the optimal hyperparameter configuration for a 

structure learning algorithm based on the input dataset. The findings indicate that the optimal 

hyperparameter configuration depends on various factors, including the size and density of the 

underlying true graph (which is usually unknown), the sample size of the input data, and the 

specific structure learning algorithm used for tuning. Synthetic experiments demonstrate that 

OTSL considerably improves graphical accuracy compared to default hyperparameters. 

Moreover, it outperforms competing algorithms in terms of graphical performance and 

computational efficiency. However, a limitation is that because OTSL is designed primarily 

for score-based algorithms, its effectiveness in tuning constraint-based algorithms is not 

adequate. Another limitation is that because OTSL optimises hyperparameters on test data via 

resampling, it negatively impacts the computational efficiency of structure learning, which is 

already known to be computationally expensive. 

To facilitate future work, we make all graphs, models and data sets publicly available online 

as follows: 

• CCHM algorithm package: https://github.com/kiattikunc/CCHM  

• mFGS-BS algorithm package: https://github.com/kiattikunc/mFGES-BS  

• ILC-V and HCLC-V algorithms package: 

https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM  

• OTSL algorithm package: https://github.com/kiattikunc/OTSL  

• Case studies and datasets: Bayesys repository 

http://constantinou.info/downloads/bayesys/bayesys_repository.pdf  
 

8.2 Open problems 

In Constantinou et al. (2023) , we examine the challenges of causal structure learning using a 

unique COVID-19 UK pandemic dataset collated from various public sources (dataset 

described in subsection 7.4.2). Given that causal models allow us to simulate the impact of 

hypothetical interventions, we consider the COVID-19 problem, which necessitated prompt 

and unprecedented decisions in response to unforeseen events, as an ideal test scenario for 

causal structure learning. This section serves to outline the key issues in causal structure 

learning based on this case study, to be considered for future research directions. 

https://github.com/kiattikunc/CCHM
https://github.com/kiattikunc/mFGES-BS
https://github.com/kiattikunc/ILC_and_HCLC_with_VBEM
https://github.com/kiattikunc/OTSL
http://constantinou.info/downloads/bayesys/bayesys_repository.pdf
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We investigate the influence of different data formats (discrete, continuous, mixed) on 

29 algorithms that belong to various learning classes (constraint-based, score-based, hybrid, 

continuous optimisation). We assess the outcomes generated by each algorithm, as well as 

groups of algorithms, in terms of graphical structure, model complexity, sensitivity analysis, 

confounding variables, predictive and interventional inference. Throughout our analysis, we 

identify the following open problems: 

a) Large inconsistencies in the learnt output: The learnt structures show significant 

inconsistency amongst the different structure learning algorithms analysed. This 

inconsistency is observed in terms of the number of edges, the specific edges 

discovered, and the orientation of those edges within the generated graphs. More 

specifically, the learnt outputs vary in the number of edges - ranging from 7 to 98, and 

in the number of free parameters – ranging from 162 to above 5 billion. Notably, the 

level of inconsistency becomes more pronounced when comparing algorithms from 

different learning classes (e.g., score-based or constraint-based) and when considering 

different input data formats (e.g., categorical or continuous). 
 

b) Algorithms are sensitive to the format of the input data: Many of the structural 

discrepancies cannot be fully explained by differences between algorithms alone. This 

is because the same algorithm would often produce very different graphs depending on 

the input data format. 
 

c) Algorithms that assume causal insufficiency are also inconsistent: The 

inconsistency in the results also applies to algorithms that predict latent variables, by 

uncovering structures that emphasise potential spurious relationships caused by latent 

confounders. We would anticipate that these spurious edges would be discovered as 

edges in the learnt graphs by algorithms that do not account for latent confounders. 

However, our findings reveal that not only do the algorithms assuming causal 

insufficiency identify contrasting spurious edges, but many of the predicted spurious 

edges are absent in the majority of structures learnt by algorithms that do not 

incorporate latent variables. These inconsistencies in the confounding effects raise 

questions regarding the effectiveness of the structure learning algorithms that predict 

latent confounders. 
 

d) Predictive validation is not adequate: The extent of inconsistency amongst the 

structure learning algorithms results in only trivial disparities in predictive validation. 

However, when the evaluation is expanded to include interventional or sensitivity 

analyses, substantial differences emerge. These empirical findings emphasise the 

limitations of predictive validation in being able to differentiate causal systems and 

offer meaningful insights into causal reasoning. 
 

e) Model averaging a possible – but an imperfect – solution: A common approach 

towards reducing the inconsistency in the learnt graphs involves performing model 

averaging across a set of graphs, to obtain an average graph that is representative of that 

set of learnt graphs. This is something that we also investigate, by grouping algorithms 

in terms of learning class or data format as follows: 
 

• All_score-based: the average graph derived from all score-based algorithms. 
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• All_constraint-based: the average graph derived from all constraint-based 

algorithms. 

• All_hybrid: the average graph derived from all hybrid learning algorithms. 

• All_quartiles: the average graph derived from all algorithms applied to the discrete 

dataset discretised using quartiles. 

• All_k-means: the average graph derived from all algorithms applied to the discrete 

dataset discretised using k-means clustering. 

• All_continuous: the average graph derived from all algorithms applied to the 

continuous dataset. 

• All_mixed: the average graph derived from all algorithms applied to the mixed 

dataset. 

While model averaging is found to indeed reduce variability, we also find that the 

average graphs for each group are all different from one another. Figure 8.1 illustrates the F1 

score produced by each average graph relative to a knowledge-based causal graph about 

COVID-19. 

 

Figure 8.1 The F1 scores produced by each average graph with reference to the knowledge 

graph. 

f) Learning from continuous data is not adequate: The algorithms designed for 

learning from continuous data demonstrate a tendency to generate considerably denser 

graphs compared to the graphs they would learn from discretised data. Furthermore, 

these denser graphs were found to deviate further from the knowledge-based causal 

graph. This finding also applies to continuous optimisation, which was initially viewed 

as a promising new learning class through the NOTEARS algorithm (Zheng et al., 

2018), but has proven unsatisfactory in practical applications (Constantinou et al., 2021; 

Kaiser and Sipos, 2022). Based on these observations, we propose that structure 

learning from continuous data not only poses a substantial risk of model overfitting but 

also tends to recover numerous edges that are likely associational rather than causal. 
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Appendix A 

The figures presented in this section complement the results presented in Chapter 5. 

Figure A1 Average performance of the algorithms when applied to synthetic data generated from 

the Formed network, assuming one intervened variable and 5% latent variables per dataset, over two 

sample sizes. 
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Figure A2 Average performance of the algorithms when applied to synthetic data generated from the 

Pathfinder network, assuming one intervened variable and 5% latent variables per dataset, over two 

sample sizes. 
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Figure A3 Average performance of the algorithms when applied to synthetic data generated from 

the Formed network, assuming five intervened variables and 5% latent variables per dataset, over 

two sample sizes. 
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Figure A4 Average performance of the algorithms when applied to synthetic data generated from 

the Pathfinder network, assuming five intervened variables and 5% latent variables per dataset, 

over two sample sizes. 
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Appendix B 

The tables presented in this section complement the results presented in Chapter 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 105 of 116 
 
 

Table B1 All scores for each algorithm and dataset combination with sample size of 10k, where Memory indicates out-of-memory error in enumerating the 

possible MAGs, and Timeout indicates failure to complete learning within the 12-hour time limit. The best scores are indicated in bold. 
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  p-ELBO Runtime (Sec) 

Asia (smoke) -17,860 -17,860 -17,601 -17,601 -17,039 -16,135 119 100 155 106 302 947 

Sports (Rdlevel) -92,014 -92,864 -92,014 -92,864 -99,741 -99,741 431 727 612 789 533 628 

Property 

(propertyPurchaseValue) 
-285,084 -285,084 -238,090 -238,267 -283,142 -275,212 6235 5,630 59,806 51,545 3,124 18,270 

Property (borrowing) -277,035 -277,035 -239,289 -239,520 -277,440 -269,719 21,655 5,019 44,331 22,239 3,317 17,522 

Property 

(otherPropertyExpenses) 
-284,024 -284,038 -237,178 -236,998 -285,975 -277,949 3,332 2,269 3,893 18,367 3,182 19,273 

Alarm (INTUBATION) -119,906 -119,845 -104,919 -105,096 -133,084 Memory 2,258 5,502 14,357 22,508 6,584 Timeout 

Alarm (HYPOVOLEMIA) Memory -126,194 -101,997 -102,960 -131,819 Memory Memory 3,739 12,605 3,565 9,796 Timeout 

Alarm (LVFAILURE) Memory -129,574 -103,761 -103,720 -134,606 Memory Memory 2,510 16,050 3,920 5,439 Timeout 

Alarm (ERRCAUTER) Memory -121,536 -103,492  -103,530 -132,280 Memory Memory 2,253 21,023 3,594 5,979 Timeout 

Alarm (PULMEMBOLUS) Memory -126,811 -103,652  -103,624 -135,116 Memory Memory 2,606 12,306 3,163 5,841 Timeout 

Alarm (KINKEDTUBE) Memory -125,698 -108,480 -102,803 -134,869 Memory Memory 2,790 12,283 2,029 5,261 Timeout 

 LL BIC 

Asia (smoke) -17,857 -17,857 -17,599 -17,599 -16,986 -1,6069 -17,977 -17,977 -17,764 -17,764 -17,087 -16,208 

Sports (Rdlevel) -91,876 -92,630 -91,876 -92,630 -99,327 -99,327 -93,000 -93,887 -93,000 -93,887 -100,009 -100,009 

Property 

(propertyPurchaseValue) 
-284,729 -284,780 -237,915 -238,285 -281,780 -274,089 -288,312 -288,450 -252,720 -252,321 -283,797 -276,576 

Property (borrowing) -276,671 -276,671 -239,296 -239,378 -276,006 -268,558 -279,835 -279,835 -245,725 -246,364 -278,096 -271,202 

Property 

(otherPropertyExpenses) 
-283,867 -283,867 -237,110 -237,256 -284,519 -276,810 -287,165 -287,796 -244,874 -245,048 -286,660 -279,421 

Alarm (INTUBATION) -119,729 -119,758 -104,551 -104,742 -132,401 Timeout -121,921 -121,881 -110,036 -110,245 -133,594 Timeout 

Alarm (HYPOVOLEMIA) Memory -126,100 -101,914 -102,852 -131,124 Timeout Memory -128,039 -104,889 -105,873 -132,340 Timeout 

Alarm (LVFAILURE) Memory -129,488 -103,619 -103,617 -133,902 Timeout Memory -131,335 -106,691 -106,712 -135,141 Timeout 

Alarm (ERRCAUTER) Memory -121,443 -103,416 -103,429 -131,578 Timeout Memory -123,317 -106,386 -106,427 -132,812 Timeout 

Alarm (PULMEMBOLUS) Memory -126,715 -103,512 -103,502 -134,418 Timeout Memory -128,622 -106,496 -106,504 -135,639 Timeout 

Alarm (KINKEDTUBE) Memory -116,421 -108,034 -102,706 -134,162 Timeout Memory -118,328 -111,299 -105,262 -135,405 Timeout 
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Table B2 All scores for each algorithm and dataset combination with sample size of 1k, where Memory indicates out-of-memory error in enumerating the 

possible MAGs, and Timeout indicates failure to complete learning within the 12-hour time limit. The best scores are indicated in bold. 

BN (Latent confounder) 

IL
C

-V
F

C
I 

H
C

L
C

-

V
F

C
I 

IL
C

-V
G

F
C

I 

H
C

L
C

-

V
G

F
C

I 

C
IL

 

G
L

S
L

 

IL
C

-V
F

C
I 

H
C

L
C

-

V
F

C
I 

IL
C

-V
G

F
C

I 

H
C

L
C

-

V
G

F
C

I 

C
IL

 

G
L

S
L

 

  p-ELBO Runtime (sec) 

Asia (smoke) -1,845 -1,845 -1,807 -1,807 -1,796 -1,679 45 114 40 61 17 109 

Sports (Rdlevel) -9,296 -9,417 -9,296 -9,417 -10,228 -10,228 135 68 353 74 55 50 

Property (propertyPurchaseValue) -34,496 -34,532 -24,565 -24,596 -29,040 -28,076 1,775 188 1,918 557 212 1,864 

Property (borrowing) -35,042 -35,080 Memory -24,044 -28,518 -27,534 505 41 Memory 1,794 227 1,873 

Property (otherPropertyExpenses) -35,929 -35,979 -24,079 -24,079 -29,382 -28,363 533 55 10,311 628 222 1,964 

Alarm (INTUBATION) Memory -14,802 -10,966 -11,068 -13,777 -11,581 Memory 288 4,862 2,004 429 1,878 

Alarm (HYPOVOLEMIA) Memory -14,660 -10,908 -11,010 -13,721 -11,117 Memory 291 1,769 665 518 13,740 

Alarm (LVFAILURE) Memory -14,821 -11,074 -11,075 -13,989 -11,307 Memory 227 1,082 473 377 7,763 

Alarm (ERRCAUTER) Memory -14,678 -11,024 -11,017 -13,693 -11,254 Memory 213 5,509 386 307 6,432 

Alarm (PULMEMBOLUS) Memory -15,081 -11,053 -11,055 -13,994 -11,294 Memory 181 1,184 418 303 14,328 

Alarm (KINKEDTUBE) Memory -14,948 -10,889 -10,963 -13,896 -11,203 Memory 294 5,017 374 356 6,119 

  LL BIC 

 

Asia (smoke) 
-1,843 -1,843 -1,806 -1,806 -1,757 -1,628 -1,932 -1,932 -1,930 -1,930 -1,840 -1,794 

Sports (Rdlevel) -9,245 -9,323 -9,245 -9,323 -9,983 -9,983 -10,011 -10,159 -10,011 -10,159 -10,460 -10,460 

Property (propertyPurchaseValue) -34,451 -34,467 -24,427 -24,478 -28,266 -27,405 -35,308 -35,330 -29,645 -29,552 -29,737 -29,132 

Property (borrowing) -34,998 -35,015 Memory -24,366 -27,709 -26,846 -35,810 -35,833 Memory -29,143 -29,235 -28,691 

Property (otherPropertyExpenses) -35,882 -35,914 -24,240 -24,548 -28,563 -27,685 -36,732 -36,746 -29,518 -29,874 -30,128 -29,505 

Alarm (INTUBATION) Memory -14,722 -10,947 -11,002 -13,334 -10,906 Memory -15,596 -14,239 -14,421 -14,229 -13,355 

Alarm (HYPOVOLEMIA) Memory -12,823 -10,791 -10,900 -13,272 -10,446 Memory -14,301 -12,870 -12,993 -14,190 -14,646 

Alarm (LVFAILURE) Memory -13,177 -10,956 -10,962 -13,539 -10,619 Memory -14,580 -13,011 -13,024 -14,457 -14,857 

Alarm (ERRCAUTER) Memory -14,624 -10,902 -10,909 -13,241 -10,571 Memory -15,473 -12,989 -12,995 -14,160 -14,816 

Alarm (PULMEMBOLUS) Memory -15,009 -10,935 -10,938 -13,543 -10,608 Memory -15,873 -12,976 -12,990 -14,451 -14,718 

Alarm (KINKEDTUBE) Memory -14,901 -10,825 -10,850 -13,443 -10,526 Memory -15,781 -12,777 -12,839 -14,368 -14,791 
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