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An optimization framework to guide the choice of thresholds
for risk-based cancer screening
Adam R. Brentnall 1✉, Emma C. Atakpa1, Harry Hill 2, Ruggiero Santeramo 1,3, Celeste Damiani 1,4, Jack Cuzick1,
Giovanni Montana 3 and Stephen W. Duffy1

It is uncommon for risk groups defined by statistical or artificial intelligence (AI) models to be chosen by jointly considering model
performance and potential interventions available. We develop a framework to rapidly guide choice of risk groups in this manner,
and apply it to guide breast cancer screening intervals using an AI model. Linear programming is used to define risk groups that
minimize expected advanced cancer incidence subject to resource constraints. In the application risk stratification performance is
estimated from a case–control study (2044 cases, 1:1 matching), and other parameters are taken from screening trials and the
screening programme in England. Under the model, re-screening in 1 year for the highest 4% AI model risk, in 3 years for the
middle 64%, and in 4 years for 32% of the population at lowest risk, was expected to reduce the number of advanced cancers
diagnosed by approximately 18 advanced cancers per 1000 diagnosed with triennial screening, for the same average number of
screens in the population as triennial screening for all. Sensitivity analyses found the choice of thresholds was robust to model
parameters, but the estimated reduction in advanced cancers was not precise and requires further evaluation. Our framework helps
define thresholds with the greatest chance of success for reducing the population health burden of cancer when used in risk-
adapted screening, which should be further evaluated such as in health-economic modelling based on computer simulation
models, and real-world evaluations.
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INTRODUCTION
Policy makers design cancer screening programmes by weighing
up their benefits from saving lives and reducing morbidity, with
costs and risks to participants. All screening tests yield false-
positive results, where further investigation of screening abnorm-
alities reveals no cancer. This investigation may involve additional
tests including biopsy, causing increased anxiety, and physical
discomfort for the patient. On the other hand, not all cancer is
detected early by screening, leading to a missed opportunity for
early diagnosis and treatment. To increase the effectiveness of
current programmes, and to design new screening algorithms,
there is increasing interest in risk-adapted cancer screening. Here,
screening is tailored to a person’s risk, so that those at highest risk
receive the greatest screening activity.
A setting where risk-based screening is being actively

considered is breast cancer control1–4. A variety of models have
been developed to assess the risk of breast cancer. Many use
classical risk factors such as family history and reproductive
factors, and some include breast density and polygenic risk
scores5. While most models for breast cancer risk assessment have
focused on time horizons from 5 years to lifetime risk irrespective
of a screening mammogram result, some have been developed
for shorter-term risk after and conditional on a negative screening
mammogram result. Recent evidence suggests that information in
a woman’s routine screening mammogram is useful in this context
and appears to provide more information than classic risk models.
Several case–control and cohort studies indicate that this is likely
to be because AI models, whether trained to detect cancer at
screening or over a longer period of time, can identify subtle early
signs of breast cancer on the mammogram6–9.

The UK National Health Service (NHS) is exploring the
possibilities of using AI and machine learning technologies to
help clinicians interpret mammograms in breast screening
(https://www.longtermplan.nhs.uk). One system that has been
developed for breast cancer risk assessment based on screening
mammograms is an AI model called Mirai10. Performance of the
system in terms of discrimination ability for interval and
subsequent screen-detected breast cancers diagnosed over 1–6
years has held up in multiple settings6–8. We plan to evaluate
AI-guided screening using a model such as Mirai, through a
comprehensive health-economic model for risk-based screening
to estimate health-related quality of life, cancer survival and NHS
costs over the lifetime of the female population eligible for
screening in the UK. Evaluation using this model requires defined
screening regimens chosen based on risk thresholds. Risk groups
for decision making are included in breast cancer clinical
guidelines for the longer-horizon risk models based on classical
risk factors such as family history, but it is not clear if they are
suited for shorter-horizon AI risk models. To help with the choice
of thresholds, we therefore aimed to develop a framework to
evaluate the potential effectiveness of different thresholds for AI
model-based screening strategies. Thresholds identified using this
first model may be subsequently evaluated in a more compre-
hensive health-economic model.
In this paper, we present our framework designed to evaluate

the likelihood of advanced cancer based on a risk assessment and
screening approach. Its purpose is to help determine the most
effective risk thresholds for risk-adapted cancer screening, and
also show whether there are potential benefits from risk-stratified
screening, and indicate the scale of these potential benefits. In our
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application, we show how the framework may be applied to
assess thresholds for the Mirai breast AI model to tailor the
screening interval in those attending the NHS Breast Screening
Programme aged 50–70 years.

RESULTS
Breast cancer imaging AI
Our framework (see Section ‘Methods’) was applied to risk-
adapted mammography screening intervals using an AI algorithm
called Mirai. This deep-learning algorithm estimates risk of breast
cancer annually to 5 years, using four-view digital mammogra-
phy10. It has been evaluated in a case–control study in women
attending the NHS Breast Screening Programme 2010–2019, using
mammograms from the OPTIMAM database8,11. The AI model was
a strong predictor of advanced breast cancer risk at the next
screening mammogram.
Our aim is to evaluate the use of this algorithm for risk-stratified

screening in an English context. Here, women are currently invited
for triennial double-reading mammography screening when aged
50–70 years. In this setting, some studies have considered the
health-economic utility of risk stratification to tailor screening,
rather than the current one-size-fits-all approach. This includes a
life-table analysis12 and computer simulation models13. Stochastic
discrete-event simulation models such as the latter are a powerful
and flexible means to evaluate healthcare interventions including
risk-based screening. However, they are rarely designed for
optimization of parameter inputs such as thresholds, but are
intended to provide a rich analysis of the harms and benefits of
different risk-based strategies. Our goal is to use the deterministic
model in this paper to propose and determine thresholds to use
for different screening strategies based on using computer
simulation or other such models.

Model parameters and assumptions
To estimate risk thresholds using the Mirai algorithm, parameters
for the optimization model were set as follows, following the
notation defined in Methods section.

1. ‘Advanced’ breast cancer was defined to be cancer that has
spread to lymph nodes (node-positive disease). Node
positivity is one of the strongest factors associated with
prognosis in patients diagnosed with breast cancer, and
randomized controlled trials have shown that reductions in
node-positive cancer are associated with reductions in
breast cancer mortality14,15. Although other definitions of
‘advanced’ breast cancer might also be used, such as clinical
stage 2b or greater, we use node positivity here because
data are available from screening trials, and from routine
modern screening practice for mammography screening on
the proportion of cancers node positive or with missing
node status by detection model. In particular, we follow an
estimate from ref. 16 that 22% screen-detected cancers and
53% interval cancers are node positive (i.e., assumptions for
akj(t) and bkj(t) as defined in Section Methods). While these
might differ by age, the algorithm was only very weakly
correlated with age (Spearman correlation 0.18)8, and so we
judge this a reasonable assumption.

2. Sensitivity of mammographic screening was taken to be
Dk= 0.92, taken as constant over all quantiles of risk
k= 1,…, n. The assumption of constancy by quantile of
Mirai is justified because an earlier analysis of risk
assessment using Mirai found similar discrimination for
interval and screen-detected cancers, and the algorithm was
only very weakly correlated with the strongest factor
associated with sensitivity of mammography: breast density
(Spearman correlation 0.15)8.

3. The transition rate from asymptomatic to symptomatic
disease is λk= 0.25 following randomized trial evidence17.
We do not have any direct evidence on the association
between Mirai risk and this parameter, and assume it is
constant over all levels of risk.

Based on the above assumptions, model (2) may be used to
estimate the proportion of advanced cancers detected by
screening interval and mode of detection. The consequence of
the above assumptions on advanced cancer risk by screening
interval is shown in Table 1.
The degree of risk stratification achieved by the AI model over 3

years is shown by the histogram in Fig. 1. Many more women with
cancer at the next screen in 3 years are identified in the top 5% of
the control distribution compared with the bottom 5%. This
means that there is a potential efficacy gain from more intensive
screening for those at high which might outweigh the efficacy loss
from less intensive screening of those at lower risk.
The distribution of risk in the population was estimated using

mean 3-year risk in centiles from the empirical distribution
function of the AI model projected 3-year risk in controls. For
the optimization problem, we therefore used K= 100, with the
decision problem to determine xkj, the screening regimen j for
each centile k. Focus is on the relative benefit of risk-based
screening compared with triennial screening for all, so that
optimization solutions are evaluated by dividing the estimate of
advanced cancer incidence P(X) (Eq. (3)) by the value where
everyone receives triennial screening.
The cost functions for strategy j do not depend on centile k (i.e.,

hkj= hj), and are set to be the total number of screens required
over a 6-year period; e.g., for biannual screening strategy h= 3, for
triennial h= 2. If the total constraint H= 200 then the same
number of screens as triennial for all is met; this is also varied to
explore results when more or fewer screens (resources) are
available.

Risk groups
To help guide the choice of thresholds, we considered a scenario
where time to the next screen is to be determined in 1-, 2-, 3-, 4-,
or 6-year intervals. Thresholds were chosen when a subset of
these intervals was considered: either (i) 1, 2, 3 or 6 years; (ii) 1, 3,
or 6 years; (iii) 2, 3, or 6 years; and (iv) 1, 3, or 4 years. The baseline
scenario constrains the total number of screens used to be the
same as triennial screening, which is used for all women in the
NHS breast screening programme.
The optimal threshold choices using the same resources as

triennial screening are shown in Table 2 (see Supplementary Table
1 for corresponding thresholds). When the number of screens was
constrained to equal the same as triennial screening on average,
then most women were still recommended triennial screening.
Allowing four screening intervals (1, 2, 3 and 6 years) reduced the
number of advanced cancers diagnosed by approximately 18
advanced cancers per 1000 cancers diagnosed with triennial
screening, which was the same as three screening intervals if the

Table 1. Proportion of cancers expected to be node-positive by
mammography screening interval following Eq. (1) and assumptions in
subsection ‘model parameters and assumptions’.

Interval (years) Screen detected (%) Node-positive (%)

1 87 26

2 76 29

3 67 32

4 60 34

5 54 36
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low-risk group received 4-year intervals (choices 1, 3 or 4 years). As
expected, the other screening strategies were slightly inferior with
fewer advanced cancers expected to be prevented, being 16 per
1000 with 1, 3, 6-year options; and 13 per 1000 if 2, 3, or 6-year
options. The analysis suggests that if one is operating with
constraints on number of screens being as the current English
programme, and wishes to offset additional screens needed by a
high-risk group from a low-risk group, then one might prefer a
slight lag in screening interval for the low-risk group (e.g., 4 years),
but a much higher intensity for a relatively small high-risk group
(1 year).
Figure 2 extends this analysis and shows the anticipated

advanced cancer incidence from risk-based vs universal triennial
screening as a function of resources. It shows that, theoretically,
one may obtain greater benefits for the same resource, or achieve
the same advanced cancer incidence as triennial screening with
less resource. It also shows that having more options for screening

interval is more worthwhile when resources increase. For example,
the 2-, 3- or 6-year option reaches a maximum when only 2-year
screening for all is possible.
Figure 3 plots the percentage population who fall into each

screening strategy as a function of resources (total screens). The
proportion recommended annual screening is relatively small and
stable when resources are slightly increased or decreased relative
to triennial screening for all (3% when 2, 3 and 6 years are
considered; 4% when only 3 and 6 years are considered). If
resources are more constrained than triennial screening, the
model suggests one should still prioritize higher-risk subgroups to
receive more frequent than triennial screening, rather than say the
minimum screening interval in the population to be 3 years.

Robustness
Estimation of the reduction in advanced cancer risk in the
population that would be achieved by risk-stratified screening
depends on accurate calibration of all the parameters in the
model (akj, bkj, rkj, skj defined in Methods section). However, one
useful feature of the optimization model is that choice of risk
thresholds does not depend on calibration of absolute risks for
rkj(t) being correct, provided relative risks are well calibrated. This
is due to the form of the objective function and constraints. If the
true risk ~rkj say is multiplied by a constant M, so that the risk model
over-predicts risk if M > 1 and underestimates it if M < 1, then the
optimal solution will not change, as M is a scale factor on the
objective function and has no effect on constraints. Therefore, to
use this model, one simply has to check the calibration of the
relative risks of the risk model. Furthermore, if the model is wrong
by a scale factor, then the relative benefit seen in Fig. 2 will also be
the same. This is because the inaccuracy in absolute risk affects
not only the estimate of advanced cancer risk in the risk-stratified
approach but also the baseline scenario of triennial screening
for all.
The recommended risk stratification thresholds and estimated

relative benefit might vary depending on other assumptions. To
evaluate the potential sensitivity of findings to these, we
conducted some sensitivity analyses. In all of these analyses, we
found the optimal thresholds were the same when resources were
constrained to be the same as triennial screening. However, the
assessment of relative performance could differ. Here we present
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Fig. 1 Estimated distribution of 3y risk from the Mirai AI model. The panel shows a histogram of Mirai 3-year risk in breast cancer cases and
controls using data from ref. 8.

Table 2. Proportion of the population assigned to different screening
intervals following an image AI risk assessment under our model,
under a constraint that the average number of screens is the same as
the current UK programme (triennial for all).

Possible interval (years) Interval Per cent population

2, 3, 6 2 14

3 72

6 14

1, 3, 6 1 4

3 80

6 16

1, 2, 3, 6 1 3

2 8

3 69

6 20

1, 3, 4 1 4

3 64

4 32
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findings when screening intervals 1, 3 and 4 years were
considered because this strategy appeared effective in the first
analysis and is relatively simple because it only involves three risk
groups.
We first varied the assumed node-positive rate by an absolute

10% increase or decrease for screen-detected or interval cancers
(akj and bkj). We observed a smaller expected benefit when node
positivity increased by 10% for screen-detected cancers (reduction
of approximately 10 advanced cancers per 1000 with triennial
screening), but a greater benefit for the other scenarios (22–31 per
thousand). We next varied the assumed proportion screen
detected, by increasing or decreasing it by 5%. Estimated benefit
was almost unchanged when this change occurred for all groups.
Thus, if the sensitivity of the test was lower than anticipated across

risk groups, or the rate of disease progression was faster, then we
would expect a similar relative benefit compared with triennial
screening. We finally assessed when triennial screening would be
better than anticipated, with 5% fewer screens detected in the 1
or 4-year regimens only. Here, the anticipated benefit would be
much less (approximately 5 per thousand). The effect of these
changes in assumptions on relative benefit with varying resources
is shown in Fig. 4.

DISCUSSION
We developed a framework to help choose thresholds for risk-
based cancer screening, and applied it to screening intervals
following a breast AI risk model. Benefits from screening were

−100

0

100

0.5 1.0 2.0
Resource vs triannual

C
ha

ng
e 

in
 a

dv
an

ce
d 

ca
nc

er
s 

pe
r 

10
00

 c
an

ce
rs

Options
1236
134
136
236
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Fig. 3 Optimal percentage of the population in risk groups associated with different screening intervals (see legend) as a function of the
resources required (number of screens, 1.0 is the same as triennial screening for all), under different screening interval options. a is for
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modelled to be from the reduction in advanced cancer incidence;
costs were constrained indirectly based on the total number of
screens in the population. When the total number of screens was
constrained to be the same as the current population screening
programme as in England, then we identified improvements are
theoretically possible by screening those at highest risk annually;
offset by reducing the intensity of screening for those at lowest
risk. Our results also indicate that there are risk stratification
regimens that lead to a reduction in the number of advanced
cancers and number of screens. Of the risk-stratified regimens
considered, we found using three screening intervals (1, 3 or 4
years) using Mirai 3-year risk thresholds (<1.56% for low risk, and
≥5.06% for high risk) was promising, and expected to reduce the
number of advanced cancers diagnosed by approximately 18
advanced cancers per 1000 cancers diagnosed with triennial
screening. However, this is an early analysis. Sensitivity analysis
suggested that the risk thresholds are likely robust, but the
absolute value of the risk-based screening approach was not
estimated with precision. The risk thresholds established in this
model will feed into a more comprehensive health-economic
model to evaluate the net population health benefit of introdu-
cing this risk-based screening regimen compared to the current
screening programme.
Previous modelling studies suggest that risk-based screening

using more static risk factors such as family history and polygenic
risk scores might be more cost-effective than the current English
screening programme18. Largely, results from earlier studies
pertain more to who gets screened and at what age, rather than
about what the screening regimen is. Even so, there are also
practical challenges to this paradigm. For instance, a polygenic risk
score requires consent and for a woman to provide DNA for
testing. Family history questionnaires must be completed, and IT
systems must be put in place for this. If feasible, basing risk
assessment on imaging only would eliminate the need for
additional data collection, such as genetic, family history and
lifestyle information, and seamlessly integrate into existing clinical
workflows. Other relevant work on the use of Mirai to guide
screening intervals has also been presented using a Markov
Decision Process model19. This used observed data on cohorts of
women attending screening to evaluate new regimens with
sequential decision making. Costs were indirectly modelled based

on the total number of screens in the population. Benefits from
changing screening intervals were taken to arise from the timing
of a proposed screen in relation to the observed time of diagnosis
in the data, assumed linearly proportional to the time an adaptive
interval was to the observed actual cancer detection than the
observed screen. That is, if the time of proposed screening prior to
the observed diagnosis was closer to diagnosis than the actual
previous screen, this would incur a positive reward; if it was further
away, it would incur a negative reward. However, it is unclear how
this adhoc reward function would relate to advanced cancer
incidence or mortality. For example, it takes no account as to
whether the observed cancer was screen detected or an interval
cancer, or advanced or early stage, as explicitly considered in our
framework.
Our approach has several strengths. Firstly, a deterministic

model for advanced cancer incidence is mathematically tractable
to estimate risk thresholds using an optimization model. Secondly,
the framework relies on relatively few inputs (data) and therefore
can be readily applied to exploring the potential for health gains
from risk-stratified screening for cancers other than breast cancer.
Related to this is that the relative simplicity of the methods used
to make predictions of the health gains from risk-stratified
screening are perhaps more transparent and comprehensible for
a decision maker than simulation models. Thirdly, in our view, an
attractive feature of the model for threshold choice is it does not
require the invasive cancer risk model to be calibrated for absolute
risk; only for relative risk. Fourthly, our focus was on screening
strategies that maintain the same number of screens as the
current programme. This constraint, combined with the risk
assessment tool being software applied to screening data already
collected at routine appointments, means we expect the cost to
the NHS of delivering the risk stratification proposals in this paper
to be less than many other proposals for breast screening risk
stratification in the research literature20. Cost constraint is a
current priority for many policy makers in the UK NHS.
Our work has several limitations. Firstly, it does not consider

many important aspects of assessing the worth of different
screening strategies including harms such as unnecessary biopsies,
nor feasibility in terms of implementation. However, the model is
only intended to provide preliminary modelling evidence to be
evaluated further in more comprehensive health-economic
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models, or in prospective research studies. Secondly, the model is
an idealized scenario, whereby everyone receives the screening
interval offered. In practice, one might observe higher or lower
compliance depending on the risk assessment, which would affect
overall utility. In addition to subsequent attendance, there may also
be a potential negative impact of receiving breast cancer risk
estimates on women’s worries and attitudes towards breast
screening. Research evidence suggests little psychological harm
for women and the majority of women in England are interested in
having their risk assessed21, but this is based on classical models,
which are directly interpretable, not image-based AI models, which
largely remain a black box as to how they work and require further
investigation. Thirdly, our focus on screening strategies that
maintain the same number of screens as the current programme
is unlikely to correspond directly with a cost-effectiveness analysis.
However, health systems typically aim to implement the most cost-
effective option providing there is funding for it. In addition, we do
not analyse costs and hence do not ascertain ‘cost-effectiveness’
and we do not consider that programmes might increase the
number of screens; it might be that triennial screening the low-risk
group is cost-effective despite it increasing the number of screens
beyond the current screening programme. Fourthly, we stratified
based on relative risk thresholds that do not vary by age, but there
is other modelling evidence suggesting that it may be preferable
to introduce risk thresholds that vary by age22. This was done in
our example in order to evaluate a method for tailoring screening
interval when all women 50–70 years are offered it. However, the
methodology could also be adapted for alternative age-stratified
risk-based screening strategies. Finally, our work does not address
many important issues for implementation. For example, extend-
ing the screening interval for some might be unacceptable to the
population. A qualitative UK study reported that many women
‘low-risk’ from classical models ‘did not believe screening should
stop altogether’23. For any change to a successful screening
programme, there must be an understanding of these issues, clear
communication on reasons for change and potential benefits and
risks from participation.
In conclusion, we developed and applied an optimization

algorithm to help evaluate risk-based screening thresholds. It may
be used to establish when risk models are good enough for health
gains to be theoretically possible from risk-stratified screening
compared to the current screening programmes. The framework
could be used for other breast cancer risk models by using
estimates of their distribution of risk in the population. It could be
applied to other cancer types by adapting the model for advanced
cancer incidence. It is intended as a first step to help define risk-
based strategies that have the greatest chance of success on
reducing the population health burden of cancer, that would be
considered further in health-economic modelling and real-world
evaluations.

METHODS
Our method aims to improve population health by choosing
cancer screening intervals based on invasive cancer risk assess-
ment. Risk groups are chosen to minimize an estimate of
advanced cancer risk in the population, subject to resource
constraints. Minimization of expected advanced cancer risk is
likely to be a worthwhile objective for several cancer types. Some
cancer screening trials have shown that the ability to shift
detection of ‘advanced’ cancers to an early stage where treatment
is more effective is linked to the effectiveness of the test to reduce
cancer-specific mortality24. New screening strategies that reduce
‘advanced’ cancer risk are likely to further improve outcomes over
the population. Indeed, this concept is used to justify primary
endpoints for large breast cancer screening trials such as the
ongoing Tomosynthesis Mammographic Imaging Screening Trial
(TMIST)25. However, the decision on the definition of ‘advanced’

cancer for the modelling will vary according to cancer type,
associated prognosis, and data available for model parameters.
We next outline the method when determining screening

regimens for a cohort, then the model is adapted to decide
thresholds for a population.

Screening regimens in a cohort
Advanced cancer risk. We first describe our strategy to evaluate
expected advanced cancer risk conditional on Z risk individual
factors zi= (zi1,…, ziZ), and possible screening regimens
j= 1,…,m, in a cohort of i= 1,…, n individuals. Let T denote a
random variable for time to invasive breast cancer diagnosis,
given the person has not previously had cancer. The aim is to
evaluate advanced cancer risk conditional on the risk factors and
screening regimen:

pijðtÞ ¼ PðT � t; stage ¼ advanced j zi; screening regimen ¼ jÞ:
This will be used to choose regimens for each individual i through
an optimization model. We assume that a model for (conditional)
invasive cancer risk is available:

rijðtÞ ¼ PðT � t j zi ; screening regimen ¼ jÞ:
In many settings, invasive cancer risk will be independent of a
screening strategy with sufficient follow-up time. One might
choose from a range of cancer risk models that have been
developed for this. To extend the invasive cancer model to
advanced cancer risk, we note prognosis usually differs substan-
tially between cancer (1) detected at screening, or (2) in the
interval between screens. We define the chance of screen-
detected (vs interval) cancer conditional on a diagnosis of cancer
by time t, risk factors zi, and screening regimen j as

sijðtÞ ¼ Pð detection ¼ screen jT � t; zi; screening regimen ¼ jÞ;
so that 1− sij(t)= P(detection= interval∣T ≤ t, zi, screening regi-
men= j). For most cancers, a model will be needed to estimate
sij(t). We propose an epidemiological model based on the transition
from asymptomatic to symptomatic disease, taken as constant
over the follow-up time t. Let the transition rate per year from
asymptomatic to symptomatic disease conditional on risk factors zi
and screening strategy j be denoted λij. The screening interval for
individual i strategy j is uj years, taken as the same for all i given j;
and test sensitivity of regimen j for individual i is denoted Dij. Then,
following Launoy et al.26, we have that approximately:

sijðtÞ ¼ Dijf1� expð�λijujÞg
λijujf1� ð1� DijÞ expð � λijujg :

To use this for advanced cancer risk, we further define

aijðtÞ ¼ Pð stage ¼ advanced j T � t;detection ¼ screen ; zi ;

screening regimen ¼ jÞ
so that 1− aij(t)= P(stage= early ∣ T ≤ t, detection= screen, zi,
screening regimen= j). Let the same for interval cancer be
denoted

bijðtÞ ¼ Pð stage ¼ advanced j T � t;detection ¼ interval ; zi;

screening regimen ¼ jÞ:
Then,

Pð stage ¼ advanced j T � t; zi ; screening regimen ¼ jÞ
¼ aijðtÞsijðtÞ þ bijðtÞf1� sijðtÞg

(1)

and so

pijðtÞ ¼ rijðtÞ½aijðtÞsijðtÞ þ bijðtÞf1� sijðtÞg�: (2)

One interpretation of formula (2) is that the model for invasive
cancer rij(t) is extended to advanced cancer risk through an
adjustment factor. The latter reflects the effectiveness of the
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screening regimen j in reducing risk of advanced cancer, linked to
screening test sensitivity, the rate of disease progression, test
sensitivity, and screening frequency.

Optimization. The conditional model of advanced cancer risk
may be used to estimate the best screening regimen j= 1,…,m
for individual i= 1,…, n given constraints on resources through
the following optimization model.
Denote the binary decision variable xij, where xij= 1 if screening

regimen j is chosen for individual i, and xij= 0 if not. Our objective
is to minimize the expected advanced cancer detection rate

min
X

Xn

i¼1

Xm

j¼1

xijpijðtÞ

for the strategy defined by the n ×m matrix X.
The constraints are:

1. The decision variable is binary: xij ∈ (0, 1) for all i= 1,…, n;
j= 1,…,m.

2. One screening regimen per person: ∑jxij= 1 for i= 1,…, n.
3. Resources are constrained: ∑i∑jhijxij ≤H where hij is the cost

associated with screening strategy j for individual i, and H is
the total cost. For instance, hij might be the number of screens
done, and this is constrained to a fixed total number H.

Technically, this form of optimization problem is called an integer
programme, and may be solved using standard algorithms27.

Choosing risk thresholds for a population
The above optimization model can be used to determine optimal
screening strategies on an individual basis, provided all para-
meters are known or estimable. We next adapt the methodology
for population stratification by making the following assumptions.

1. The distribution function of invasive cancer risk in the target
population is known. We use the index k= 1,…, K to denote
quantiles, for instance, using centiles, we have K= 100.
Then, for simplicity, we use the same notation as the
previous section but replace index i with k. The conditional
expected invasive cancer risk in each quantile k is

rkjðtÞ ¼ PðT � t jquantile ¼ k; screening regimen ¼ jÞ:

2. rkj(t)= rk(t). In other words, average risk in quantile k is the
same irrespective of screening. This is likely to be true or
approximately true for many screening tests. For example, it
is expected to hold for mammography screening for breast
cancer. An example where it is unlikely to hold is for
screening tests that prevent cancer through the detection
and subsequent treatment of precursor lesions. For exam-
ple, human papillomavirus testing for cervical cancer
screening.

3. Sensitivity Dkj= Dj does not depend on risk quantile k. This
assumption is met if the risk factors zi used are not
associated with the performance of the screening test. If this
is unlikely, then a stratified estimate might be considered,
where risk thresholds used are taken to depend on levels of
z associated with test sensitivity. In other words, risk
stratification depends both on the risk score, and a factor
used in the risk score that is also associated with test
sensitivity. One example would be a breast cancer risk
model that includes mammographic density, which is both a
strong risk factor and hinders the test due to masking
effects. If the same screening test is used, but, e.g., only the
screening interval is varied between regimens j= 1,…,m,
then this may simplify further to Dj= D.

4. More effective strategies cost more. That is, resources are
directly associated with advanced cancer risk, so that

regimens with higher costs also yield greater improvements
to advanced cancer risk: hkj(t) ≥ h(k−1)j for k= 1,…, K− 1 and
j= 1,…,m.

Under these assumptions, the integer programme above may be
adapted as follows:

Objective. Define

PðXÞ ¼
XK

k¼1

Xm

j¼1

xkjpkjðtÞ (3)

for strategy defined by the K ×m matrix X, where

pkjðtÞ ¼ ½akjðtÞskjðtÞ þ bkjðtÞf1� skjðtÞg�rkðtÞ:

The objective is

min
X

PðXÞ:

Constraints.

1. The decision variable xkj 2 R and 0 ≤ xkj ≤ 1 for all
k= 1,…, K and j= 1,…,m.

2. Everyone in a quantile is assigned a screening strategy:
∑jxkj= 1 for k= 1,…, K.

3. Resources are constrained: ∑k∑jhkjxkj ≤ H where hkj is the cost
associated with screening strategy j for quantile k, and H is
the total cost.

The linear programme formulation is less computationally
expensive to solve than an integer programme, and the optimal
solution may place thresholds part way within risk quantiles.

Data
In our application, we estimate the distribution of invasive cancer
risk by quantile of Mirai in the population of women attending
the NHS breast screening programme; we use data from a
case–control study that was designed to evaluate the AI model.
These are n= 2044 cases matched 1:1 to controls on age,
mammography equipment, and site, aged 47–70 years (median
60 years, IQR 55–65 years) attending one of two sites between
2010 and 20198. The source data used in this study are available
from the OPTIMAM registry (https://medphys.royalsurrey.nhs.uk/
omidb/getting-access/). These data were fully anonymized and
received ethical approval for research (research ethics committee
(REC) reference: 19/SC/0284, IRAS reference: 265403).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The source data used to generate further data for this study are available through the
application to the OPTIMAM Mammography Image Database, with further
information via this link https://medphys.royalsurrey.nhs.uk/omidb/getting-access/.
All data used to construct the tables and figures in this paper are available in
GitHub.com via this link https://github.com/brentnall/risk-based-screening-groups.

CODE AVAILABILITY
All code used in this study for analysis is available on GitHub.com and can be
accessed via this link https://github.com/brentnall/risk-based-screening-groups. The
Mirai algorithm and source code are available on GitHub.com and can be accessed
via this link https://github.com/yala/Mirai.

A.R. Brentnall et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)   223 

https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
https://github.com/brentnall/risk-based-screening-groups
https://github.com/brentnall/risk-based-screening-groups
https://github.com/yala/Mirai


Received: 14 July 2023; Accepted: 15 November 2023;

REFERENCES
1. Harkness, E. F., Astley, S. M. & Evans, D. G. Risk-based breast cancer screening

strategies in women. Best Pract. Res. Clin. Obstet. Gynaecol. 65, 3–17 (2020).
2. Shieh, Y. et al. Breast cancer screening in the precision medicine era: risk-based

screening in a population-based trial. J. Natl Cancer Inst. 109 (2017).
3. Paci, E., Mantellini, P., Rossi, P. G., Falini, P. & Puliti, D. Tailored Breast Screening

Trial (TBST). Epidemiol. Prev. 37, 317–327 (2013).
4. MyPebs. My Personalized Breast Screening – Full Text View (accessed July 12, 2022)

ClinicalTrials.gov.
5. Brentnall, A. R. & Cuzick, J. Risk models for breast cancer and their validation. Stat.

Sci. 35, 14–30 (2020).
6. Yala, A. et al. Multi-institutional validation of a mammography-based breast

cancer risk model. J. Clin. Oncol. 40, 1732–1740 (2022).
7. Arasu, V. A. et al. Comparison of mammography AI algorithms with a clinical risk

model for 5-year breast cancer risk prediction: an observational study. Radiology
307, e222733 (2023).

8. Damiani, C. et al. Evaluation of an AI model to assess future breast cancer risk.
Radiology 307, e222679 (2023).

9. Vachon, C. M. et al. Impact of artificial intelligence system and volumetric density
on risk prediction of interval, screen-detected, and advanced breast cancer. J.
Clin. Oncol. 41, 3172–3183 (2023).

10. Yala, A. et al. Toward robust mammography-based models for breast cancer risk.
in Science Translational Medicine 13 (American Association for the Advancement
of Science Section: Research Article, 2021).

11. Halling-Brown, M. D. et al. OPTIMAM mammography image database: a large-
scale resource of mammography images and clinical data. Radiol. Artif. Intell. 3,
e200103 (2020).

12. Pashayan, N., Morris, S., Gilbert, F. J. & Pharoah, P. D. P. Cost-effectiveness and
benefit-to-harm ratio of risk-stratified screening for breast cancer: a life-table
model. JAMA Oncol. 4, 1504–1510 (2018).

13. Gray, E. et al. Evaluation of a stratified National Breast Screening Program in the
United Kingdom: an early model-based cost-effectiveness analysis. Value Health
20, 1100–1109 (2017).

14. Soerjomataram, I., Louwman, M. W., Ribot, J. G., Roukema, J. A. & Coebergh, J. W.
An overview of prognostic factors for long-term survivors of breast cancer. Breast
Cancer Res. Treat. 107, 309 (2008).

15. Tabar, L. et al. Efficacy of breast cancer screening by age new results from the
Swedish two-county trial. Cancer 75, 2507–2517 (1995).

16. Duffy, S. W. et al. The projected impact of the COVID-19 lockdown on breast
cancer deaths in England due to the cessation of population screening: a national
estimation. Br. J. Cancer 126, 1355–1361 (2022).

17. Tabár, L. et al. The Swedish two-county trial twenty years later. Radiol. Clin. North
Am. 38, 625–651 (2000).

18. Khan, S. A., Hernandez-Villafuerte, K. V., Muchadeyi, M. T. & Schlander, M. Cost-
effectiveness of risk-based breast cancer screening: a systematic review. Int. J.
Cancer 149, 790–810 (2021).

19. Yala, A. et al. Optimizing risk-based breast cancer screening policies with rein-
forcement learning. Nat. Med. 28, 136–143 (2022).

20. Appleby, J., Devlin, N. & Parkin, D. NICE’s cost effectiveness threshold. BMJ 335,
358–359 (2007).

21. French, D. P. et al. Psychological impact of providing women with personalised
10-year breast cancer risk estimates. Br. J. cancer 118, 1648–1657 (2018).

22. Pashayan, N. et al. Should age-dependent absolute risk thresholds be used for risk
stratification in risk-stratified breast cancer screening? J. Pers. Med. 11, 916 (2021).

23. McWilliams, L. et al. Extending screening intervals for women at low risk of breast
cancer: do they find it acceptable? BMC Cancer 21, 1–9 (2021).

24. Autier, P., Héry, C., Haukka, J., Boniol, M. & Byrnes, G. Advanced breast cancer and
breast cancer mortality in randomized controlled trials on mammography
screening. J. Clin. Oncol. 27, 5919–5923 (2009).

25. Lee, C. & McCaskill-Stevens, W. Tomosynthesis Mammographic Imaging Screen-
ing Trial (TMIST): an invitation and opportunity for the national medical asso-
ciation community to shape the future of precision screening for breast cancer. J.
Natl Med. Assoc. 112, 613–618 (2020).

26. Launoy, G., Duffy, S. W., Prevost, T. C. & Bouvier, V. Dépistage des cancers, sen-
sibilité du test et sensibilité du programme de dépistage. Rev. Epidemiol. Sante
Publique 426, 420–426 (1998).

27. Andersen, M., Dahl, J. & Vandenberghe, L. CVXOPT Python Software for Convex
Optimization (accessed April 1, 2022) https://cvxopt.org (2022).

ACKNOWLEDGEMENTS
This study was funded by Breast Cancer Now (2019DecPR1395) and Cancer Research
UK (C49757/A28689). S.W.D. contributed to this work as part of the National Institute
for Health Research (NIHR) Policy Research Programme, conducted through the
Policy Research Unit in Cancer Awareness, Screening and Early Diagnosis, PR-PRU-
1217-21601. The views expressed are those of the authors and not necessarily those
of the NIHR or the Department of Health and Social Care. The funders played no role
in study design, data collection, analysis and interpretation of data, or the writing of
this manuscript. The analysis in this publication is in part based on images and data
derived from the OPTIMAM imaging database11, and we would like to acknowledge
the OPTIMAM project team and staff at the Royal Surrey NHS Foundation Trust who
developed the OPTIMAM database, and Cancer Research UK who funded the creation
and maintenance of the database.

AUTHOR CONTRIBUTIONS
Conceptualization: A.R.B., E.C.A., H.H., J.C., S.W.D. Methodology: A.R.B., E.C.A., S.W.D.
Software: A.R.B. Formal analysis: A.R.B., H.H., R.S., G.M., S.W.D. Data curation: A.R.B., C.D.
Writing—original draft: A.R.B. Writing—review and editing: A.R.B., E.C.A., H.H., R.S.,
C.D., J.C., G.M., S.W.D. All authors read and approved the final manuscript.

COMPETING INTERESTS
A.R.B. and J.C. declare royalties from CRUK for commercial use of the Tyrer-Cuzick
(IBIS) breast cancer risk evaluation algorithm. A.R.B. declares consulting fees from
Kings College London. A.R.B. serves on the UK National Screening Committee
Research and Methodology subgroup, but this had no role in this manuscript. J.C.
declares no non-financial competing interests. All other authors declare no financial
or non-financial conflicts of interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-023-00967-9.

Correspondence and requests for materials should be addressed to Adam R.
Brentnall.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

A.R. Brentnall et al.

8

npj Digital Medicine (2023)   223 Published in partnership with Seoul National University Bundang Hospital

http://ClinicalTrials.gov
https://cvxopt.org
https://doi.org/10.1038/s41746-023-00967-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	An optimization framework to guide the choice of thresholds for risk-based cancer screening
	Introduction
	Results
	Breast cancer imaging�AI
	Model parameters and assumptions
	Risk�groups
	Robustness

	Discussion
	Methods
	Screening regimens in a�cohort
	Advanced cancer�risk
	Optimization

	Choosing risk thresholds for a population
	Objective
	Constraints

	Data
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




