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Abstract

The majority of voice disorders stem from improper vocal usage. Alterations in voice

quality can also serve as indicators for a broad spectrum of diseases. Particularly, the sig-

nificant correlation between voice disorders and dental health underscores the need for

precise diagnosis through acoustic data. This paper introduces effective and efficient fea-

tures for deep learning with speech signals to distinguish between two groups: individuals

with healthy voices and those with pathological voice conditions. Using a public voice

database, the ten-fold test results obtained from long short-term memory networks trained

on the combination of time-frequency and time-space features with a data balance strategy

achieved the following metrics: accuracy = 90%, sensitivity = 93%, specificity = 87%, pre-

cision = 88%, F1 score = 0.90, and area under the receiver operating characteristic curve =

0.96.
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1 Introduction

The involvement of speech pathology in head and neck cancer, and oral-maxillofacial

surgery has recently been highlighted by the Michigan Medicine [1]. It is known that voice

disorders stem from a wide array of factors, either present since birth or acquired later in

life. These factors encompass physiological or anatomical irregularities in the upper airway

due to underlying neurological conditions, trauma, and head and neck cancer.

Roughly 30% of adults might encounter difficulties linked to voice disorders [1]. The

consequences of voice disorders on quality of life can lead to social seclusion and hin-

der one’s professional and personal pursuits. The field of speech-language pathology also

encompasses the specialized management of head and neck disorders. Within this do-

main, individualized assessment, treatment, and education are provided to patients deal-

ing with diseases or dysfunctions in the structures of the head and neck, which includes

the mandible, maxilla, soft and hard palates, nose, cheek, lips, tongue, and throat [1].

The development of speech within the evolving craniofacial complex relies signifi-

cantly on the structural and functional integrity of this complex [2]. While development

initiates during prenatal stages, a substantial portion of communicative language poten-

tial unfolds postnatally and hinges on neurological and cognitive well-being. Both ge-

netic and acquired abnormalities can lead to significant dental misalignments, potentially

impacting speech production. Certain investigations indicated a connection between tem-

poromandibular disorders, voice, and oral health-related quality of life in women [3]. Thus,

addressing maxillofacial disorders typically necessitates a combined approach involving or-

thognathic surgery and orthodontic interventions [4]. Optimal patient care requires a truly

interdisciplinary approach, ensuring comprehensive and well-coordinated treatment. Ef-

fective and efficient rehabilitation plans and schedules can be crafted when speech pathol-

ogists and maxillofacial surgeons collaborate closely to synchronize their treatment efforts
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[2, 5, 6].

In fact, oral health challenges in the field of speech pathology were pointed out

decades ago [7]. Assessment of the spectral characteristics of the vowels /a/, /i/, and

/u/ was carried out in a group of 24 children [8]. The authors found statistically sig-

nificant variations in fundamental frequency when analyzing the individual progress of

patients with bilateral cleft lip, jaw, and palate conditions. The fundamental frequency and

analysis of the first formant demonstrated their effectiveness in characterizing the vocal

timbre of individuals with cleft conditions.

In pediatric dentistry, it was investigated that children with voice disorders tend to

exhibit a greater prevalence and more pronounced malocclusions than those with ordinary

speech development [9]. Moreover, dental medicine is deeply involved in modifying and

repairing oral structures to combat the effects of disease and developmental irregularities.

Given that a significant part of speech articulation occurs within the oral cavity, any modi-

fications or restorations of these structures can impact speech, the extent of which depends

on the location and extent of the alteration. A literature review highlighted the role of

pediatric dentists in the early identification and management of speech impairments [10].

The association between speech disorders and dental medicine addressed above high-

lights the importance of developing a capacity for precise diagnosis of pathological speech.

It has been realized that physicians currently face a deficit in diagnostic tools for voice

disorders, and the incorporation of artificial intelligence (AI) tools into their toolkit has the

potential to expedite diagnoses [11]. A recent review on machine learning methods for di-

agnosing voice disorders has also been reported with a focus on nonlaryngeal aerodigestive

and neurological disorders [12].

Most recently, to tackle this issue, a recent work [13] has suggested the use of a trans-

fer learning framework, which combined a pre-trained convolutional neural network called
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OpenL3 with a support vector machine classifier for the automatic identification of multi-

class voice disorders. Initially, the Mel spectrum of the provided voice signal was extracted,

similar to traditional speech feature extraction methods. Subsequently, this Mel spectrum

was fed into the OpenL3 network to generate high-level feature embeddings. Powered by

deep learning in AI, to distinguish between healthy and pathological voices through the

analysis of spectrogram images obtained from the recordings of the vowel /a/, a convo-

lutional neural network model was integrated into a mobile health application, enabling a

user-friendly and portable tool for evaluating voice disorders [14]. An alternative approach

[15] combined three vocal attributes: chroma, mel spectrogram, and mel frequency cepstral

coefficient. The researchers employed a deep neural network to detect voice disorders,

utilizing the vowels /a/, /i/, and /u/ articulated at various pitch levels–high, low, and

average.

This study presents a substantial extension of a recent work [16] on the selection

of efficient and effective features for long short-term memory (LSTM) network learning

on speech signals for diagnosing voice disorders presented at the 2023 IEEE Conference

on Artificial Intelligence. Here, the proposed approach explores various feature extraction

techniques to address the computational challenges associated with the LSTM. These fea-

tures encompass derivations from both time-frequency and time-space domains, as well as

wavelet time scattering networks.

The rest of this paper is organized as follows. Section 2 outlines the voice dataset used,

consisting of both healthy and pathological cases. Section 3 details the techniques applied

for extracting features and classifying patterns in the diagnosis of voice disorders. The

outcomes of testing multiple models for the diagnosis are presented in Section 4. Finally,

Section 5 provides concluding insights from this research, along with potential avenues for

future exploration.
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2 Data

In this study, the VOICED (VOice ICar fEDerico II) database [17] was employed to demon-

strate the effectiveness of the proposed approach in addressing a challenging biomedical

classification problem. The database comprises acoustic recordings of the vowel “a” lasting

five seconds, featuring two distinct groups of participants: healthy individuals and those

with pathological conditions. Both groups consist of male and female subjects ranging in

age from 18 to 70 years.

Specifically, the dataset contains 61 recordings from healthy voices and 147 from

pathological voices, with variable signal lengths about 35,000 time points. Among these, 21

recordings pertain to healthy male voices and 51 to pathological male voices. For female

voices, there are 40 healthy voice recordings and 96 pathological voice recordings. To en-

sure the reliability of the dataset, both healthy and pathological voices underwent rigorous

clinical evaluation by medical experts. Diagnoses adhered to the guidelines outlined in the

SIFEL protocol, which is a clinical protocol endorsed by the Italian Society of Phoniatrics

and Logopaedics.

All recordings took place in a noise-free environment, using Vox4Health technology.

The distance between the mobile device and the subjects was approximately 20 cm, at an

angle of approximately 45 degrees. All participants received instructions to articulate the

vowel in a natural manner, and the acquired signals were filtered to eliminate noise during

the recording process. The database includes voice recordings featuring various forms of

pathological conditions, which are classified as 1) hyperkinetic dysphonia, 2) hypokinetic

dysphonia, and 3) reflux laryngitis. These types of pathology are briefly described as

follows [18]:

• Hyperkinetic dysphonia represents a frequently encountered clinical condition, espe-

cially among individuals engaged in vocally demanding professions. This disorder is
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marked by excessive muscular contractions within the pneumo-phonic apparatus. It

results in a strained, high-pitched voice, diminished frequency modulation, and a no-

ticeable harshness in vocal delivery. Additionally, the increased resistance of the vocal

folds to the expiratory airflow intensifies the effort required for phonation, leading

to disruptions in respiratory patterns. Numerous conditions fall under this category,

including vocal fold nodules, Reinke’s edema, chorditis, rigid vocal folds, polyps, and

prolapse.

• Hypokinetic dysphonia is characterized by reduced vocal fold adduction during the res-

piratory cycle, especially during inhalation, resulting in airflow obstruction within

the larynx. This incomplete vocal fold closure results in a weak and breathy voice. In-

terestingly, in cases of hypokinetic dysphonia, voice quality improves with increased

vocal intensity, which can potentially lead to improper vocal strain. Conditions falling

under the umbrella of hypokinetic dysphonia include dysphonia of the vocal fold

groove, adduction deficits, presbiphonia, glottic insufficiency, vocal fold paralysis,

conversion dysphonia, laryngitis, and extraglottic air leakage.

• Reflux laryngitis refers to an inflammation of the larynx triggered by the regurgita-

tion of stomach acid into the esophagus. The primary symptom typically observed

is persistent hoarseness, although additional symptoms may manifest to varying de-

grees, including pharyngitis, occasional coughing fits, nighttime coughing, asthma,

nocturnal laryngeal spasms, and halitosis.

3 Methods

The process of extracting time-frequency and time-space features from time series data for

LSTM-based classification was initially introduced in [19], and is further elaborated upon
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here. Additionally, the fundamental concept of wavelet time scattering as a feature extrac-

tion technique is introduced to provide insights into the implementation of the proposed

approach for diagnosing pathological speech signals.

3.1 Extraction of time-frequency features with instantaneous frequency

and spectral entropy

The instantaneous frequency (IF) of a non-stationary signal is a time-dependent parameter

that corresponds to the mean of the frequencies, denoted as f , within the evolving signal

as it progresses through various time points t [20]. To estimate the IF of a signal at a given

sampling rate, the IF function calculates the power spectrum of the spectrogram, denoted

as P(t, f ), and then estimates the IF using the following expression:

IF(t) =

∫ ∞
−∞ f P(t, f )d f∫ ∞
−∞ P(t, f )d f

. (1)

The power spectrum quantifies the strength of a signal at a specific frequency f . In

the case of a periodic signal, peaks are observed at the fundamental frequency and its har-

monics within the spectrum. Quasiperiodic signals exhibit peaks at linear combinations of

related frequencies, while chaotic signals result in the presence of broad-band components

in the spectrum. However, in practical scenarios, it is impossible to determine the exact

power spectrum because real signals are not infinitely long but instead measured over a

finite time interval. Consequently, it becomes necessary to estimate the power spectrum

numerically and was technically described in [19].

Spectral entropy (SE) of a signal provides insight into its spectral power distribution

[20]. The SE treats the normalized power distribution in the frequency domain as a proba-

bility distribution and computes its Shannon entropy. In this context, the Shannon entropy

is referred to as the spectral entropy of the signal. The probability distribution at a specific
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time t, where 0 ≤ t ≤ T, and frequency point z, denoted as p(t, z), is computed as follows.

p(t, z) =
P(t, z)

∑ f P(t, f )
. (2)

The spectral entropy at time t, denoted as SE(t), is determined as

SE(t) = −
Q

∑
z=1

p(t, z) log2 p(t, z). (3)

where Q is the total frequency points.

In this study, to extract the IF and SE features of the speech signals, the parameters

were specified as follows: range of f = [0, f s/2], and sampling rate f s = 300 Hz.

3.2 Extraction of time-space features with fuzzy recurrence plots and

spatial entropy

A fuzzy recurrence plot (FRP) [21] is a visualization technique used in the analysis of time

series data. It is derived from the concept of recurrence plots (RPs) [22], which are used to

study nonlinear dynamics in time series. FRPs extend this idea by introducing a degree of

fuzziness or uncertainty into the recurrence analysis.

A traditional RP is constructed by comparing each point in the phase space of a

dynamical system with every other point and determining whether they are close enough

based on some predefined distance metric. If two points are sufficiently close, a black

dot that represents “recurrence” is marked on the 2D plot. This is typically represented

as a binary plot, where a recurrence is denoted as a black point and non-recurrence as a

white point. In an FRP, the binary nature of recurrence is relaxed. Instead of just marking

points as either recurrent or non-recurrent, it assigns a degree of membership to each point,

representing the degree of similarity or recurrence. This introduces a level of fuzziness

or uncertainty into the analysis. The degree of membership takes real values between 0
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and 1, where 0 means no recurrence (completely dissimilar) and 1 means a perfect match

(completely similar). Real values between 0 and 1 indicate the level of partial similarity.

FRPs can be useful for analyzing time series data when the distinction between recurrence

and non-recurrence is inherently not clear-cut. This uncertainty modeling allows for a

more natural understanding of the data and can reveal hidden patterns or relationships

that might not be apparent in traditional binary RPs.

Given an embedding dimension d and a time delay β, a phase-space construction of

the original time series or sequence (x1, x2, . . . , xM) yields Y = (y1, . . . , yN), where N =

M − (d − 1)β. The constructed elements of Y can be expressed as follows:

yi = (xi, xi+β, . . . , xi+(d−1)β), i = 1, . . . , N − (d − 1)β. (4)

Using this constructed phase space Y, an FRP, denoted as R, can computed and rep-

resented as a grayscale image to visualize the recurrence patterns of a dynamical system.

More precisely, an FRP is a square matrix containing membership grades that quantify the

similarity between pairs of points in the constructed phase-space trajectory of the dynami-

cal system. This similarity is mathematically expressed as:

R(i, j) = µ(yi, yj), i, j = 1, . . . , N, (5)

where µ(yi, yj) ∈ [0, 1] represents the membership of similarity between yi and yj. A higher

value of µ(yi, yj) suggests a stronger similarity between yi and yj.

The elements of an FRP are determined using three fundamental properties of fuzzy

inference:

µ(yi, yi) = 1, i = 1, . . . , N. (6)

which expresses reflexivity.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.23295008doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.04.23295008
http://creativecommons.org/licenses/by-nc-nd/4.0/


µ(yi, vk) = µ(vk, yi), i = 1, . . . , N, k = 1, . . . , c, (7)

which defines symmetry, where vk represents the k-th cluster center, and c > 1 is the spec-

ified number of clusters to which each element yi belongs with an estimated membership

level.

µ(yi, yj) = max
[

min
k

{µ(yi, vk), µ(vk, yj)}
]

, i ̸= j, (8)

which infers transitivity.

The membership grades µ(yi, vk), i = 1, . . . , N, k = 1, . . . , c, can be optimally deter-

mined using the fuzzy c-means (FCM) algorithm [23]. The objective of the FCM algorithm

is to minimize the following function:

O =
N

∑
i=1

c

∑
k=1

[µ(yi, vk)]
m ∥xi − vk∥2, (9)

where m ∈ [1, ∞), typically set to 2, represents the fuzzy weighting exponent. The FCM

objective function is subject to the following constraint:

c

∑
k=1

µ(yi, vk) = 1, i = 1, . . . , N. (10)

The objective function can be numerically minimized through iterative steps, as fol-

lows:

Using initial values for µ(yi, vk), k = 1, . . . , c, i = 1, . . . , N, the cluster centers and

membership grades are iteratively updated until convergence or a predefined number of

iterations is reached:

vk =
∑N

i=1 yi[µ(yi, vk)]
m

∑N
i=1[µ(yi, vk)]m

, (11)

10
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and

µ(yi, vk) =
1

∑c
j=1

(
∥yi−vk∥
∥yi−vj∥

)2/(m−1)
. (12)

For the computation of the FRPs in this study, the embedding dimension d= 1 and

time delay β = 1 were used for the phase-space construction, and number of clusters c = 3

used for the FCM algorithm.

The Shannon entropy of an FRP (FRP-SE), which is a grayscale image, denoted as

H(R), is expressed as

H(R) = −
G

∑
l=1

pl log2 pl, (13)

where G is set to 256, representing the number of gray levels in R. This value is derived

by converting real pixel values from the [0, 1] range into integers within [0, 255], pl corre-

sponds to the probability assigned to the intensity level l, which is calculated based on the

normalized histogram for the l-th bin.

Drawing from the concept of non-probabilistic entropy as defined in [24], the fuzzy

recurrence entropy of an N × N FRP (FRP-FE), denoted as Ĥ(R), which quantifies the level

of uncertainty in recurrences within the constructed phase space of a dynamical system, is

defined as [25]

Ĥ(R) =
N

∑
i=

N

∑
j=1

−µ(yi, yj) log2 µ(yi, yj)− [1 − µ(yi, yj)] log2[1 − µ(yi, yj)]. (14)

3.3 Extraction of wavelet time scattering features

A network for performing wavelet time scattering decomposition employing the analytic

Morlet wavelet [26, 27] can be constructed as described in [28]. This network leverages
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wavelets and a lowpass scaling function to produce low-variance representations of real-

valued time series data. The wavelet time scattering process results in representations that

remain robust to translations within the input signal while retaining their ability to discrim-

inate between different classes. These representations can be used as inputs to a classifier

for pattern classification. The iterative computation of wavelet scattering coefficients across

multiple layers is elucidated as follows.

Consider ψ(t) as a band-pass filter, often referred to as the mother wavelet, which

adopts the Morlet wavelet. Additionally, let ψωu(t) represent a wavelet filter bank, which

can be constructed by dilating the mother wavelet as follows:

ψωu(t) = ωuψ(ωut), (15)

in which ωu = 2(u/V), u ∈ Z, with 1 ≤ u ≤ U that is the maximum level of layers, and V

representing the number of wavelets per octave.

Consider s as the input signal. The zeroth-order wavelet scattering coefficients are

computed by calculating the average of the feature vector, expressed as

L0(t) = s ∗ ϕ(t), (16)

where L0 represents the zeroth-order scattering, ϕ stands for a low-pass filter, and the ∗

symbol denotes the convolution operator.

The coefficients of the first-order wavelet scattering, which belong to layer 1, are cal-

culated by taking the average of the absolute values of the wavelet coefficients at this layer,

as follows:

L1(t, ω1) = |s ∗ ψω1(t)| ∗ ϕ(t). (17)

The second-order wavelet scattering coefficients are computed as follows:

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 4, 2023. ; https://doi.org/10.1101/2023.09.04.23295008doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.04.23295008
http://creativecommons.org/licenses/by-nc-nd/4.0/


L2(t, ω1, ω2) = ||s ∗ ψω1(t)| ∗ ψω2(t)| ∗ ϕ(t). (18)

Similarly, the computation of the third-order wavelet scattering coefficients is ex-

pressed as

L3(t, ω1, ω2, ω3) = |||s ∗ ψω1(t)| ∗ ψω2(t)| ∗ ψω3(t)| ∗ ϕ(t). (19)

In a general sense, wavelet scattering coefficients at layers u, where u = 1, . . . , U,

are established by applying a combination of convolution, modulus, and average pooling

operators as follows:

Lj(t, ω1, . . . , ωj) = |. . . ||s ∗ ψω1(t)| ∗ ψω2(t)| · · · ∗ ψωj(t)| ∗ ϕ(t). (20)

The mother wavelet is defined as [26, 27]

ψ(t) = c
[

e−
t2

2σ2

]
e2πi f t, (21)

where, in this study, c = 1, σ is the wavelet duration set to 1, i is the imaginary unit, f

is the central frequency, and 2π f is set to 5. Consequently, e2πi f t = cos(5t), resulting in

ψ(t) = e−
t2
2 cos(5t).

Other parameters for the wavelet time scattering in this study were specified as fol-

lows. Scale of time invariance = half of signal length, using wavelet scattering network

with two filter banks, where V factor for filter bank 1 = 8 wavelets per octave, and V factor

for filter bank 2 = 1 wavelet per octave, and sampling frequency = 1 Hz.

3.4 Classification with long short-term memory networks

Figure 1 illustrates the progression of an input time series as it passes through an LSTM

layer [29]. When utilizing TF and TS features, the input at a given time point is a fusion
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of four distinct features: IF, SE, FRP-SE, and FRP-FE, all of which are extracted from the

corresponding time point segment. Learnable parameters of an LSTM layer encompass the

input weights, denoted as a, the recurrent weights, denoted as r, and the bias, denoted as b.

These parameters are organized into matrices and vectors as follows: A represents the con-

catenation of input weights, R embodies the concatenation of recurrent weights, and vector

b encapsulates the concatenation of biases from each component. These concatenations are

mathematically expressed as:

A = [ai, an, ag, ao]
T, (22)

R = [ri, rn, rg, ro]
T, (23)

b = [bi, bn, bg, bo]
T, (24)

where the subscripts i, n, g, and o respectively denote the input gate, neglect (or forget)

gate, cell candidate, and output gate.

The cell state at time step t is defined as

ct = nt ◦ ct−1 + it ◦ gt, (25)

in which ◦ is the Hadamard product.

The hidden state at time step t is given by

ft = ot ◦ σc(ct), (26)

where σc represents the state activation function, which is typically computed using the

hyperbolic tangent function.
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At time step t, the input gate (it), neglect gate (nt), cell candidate (gt), and output gate

(ot) are formulated as follows:

it = σg(aiut + rint−1 + bi), (27)

nt = σg(anut + rnft−1 + bn), (28)

gt = σc(agut + rgft−1 + bg), (29)

ot = σg(aout + roft−1 + bo), (30)

where σg represents the gate activation function, commonly employing the sigmoid func-

tion.

Moreover, a bidirectional LSTM (bi-LSTM) [30] represents an extension of the LSTM,

aiming to offer enhanced performance for sequence classification tasks. Unlike the LSTM,

which is trained using a single sequence, the bi-LSTM architecture is trained using two

simultaneous LSTM layers: one processes the input time series in its original order, and

the other operates on a reversed version of the time series. This dual-layered architecture

enables the model to capture bidirectional long-term dependencies between different time

steps within the time series data, thereby providing additional contextual information to

the network. Consequently, this approach is expected to facilitates more comprehensive

learning from the input data.

In this study, the configuration of LSTM and biLSTM networks were chosen as fol-

lows. Number of hidden units = 100, output mode = last time step of the sequence, cell and

state activation function = hyperbolic tangent, gate activation function = sigmoid. Train-

ing options for the networks were set as follow. Solver for training neural network =
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Adam optimizer, bias learning rate = 1, input-weight L2 regularizer = nonnegative scalar,

recurrent-weight L2 regularizer = 1, and bias L2 regularizer = 0.

3.5 Measures of classification performance

To compute statistical measures of performance for classifiers, the following variables are

defined as

• P = the number of samples of pathological voice

• N = the number of samples of healthy voice

• TP = the numer of correctly predicted samples as pathological voice

• TN = the number of correctly predicted samples as healthy voice

• FP = the number of falsely predicted samples as pathological voice

• FN = the number of falsely predicted samples as healthy voice

The measures of performance in the context of accuracy (ACC), sensitivity (SEN),

specificity (SPE), precision (PRE), and F1 score are defined Table 1.

Another performance metric to consider is the area under the receiver operating char-

acteristic (ROC) curve. The ROC curve is generated by plotting the true positive (TP) rate

against the false positive (FP) rate across different thresholds. In some contexts, the TP

rate is referred to as sensitivity or the probability of correct prediction, while the FP rate

is synonymous with the probability of false alarm. Therefore, the area under the ROC

curve (AUC) serves as an assessment of predictor quality, irrespective of the specific classi-

fication threshold chosen. Larger values of these performance measures indicate superior

performance of the predictor.
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4 Results

It was shown that the LSTM processing of long signals results in undesired computational

complexity in association with the training phase [31]. The original speech signals were

divided into short segments of L = 250 and 500 time points, where segments whose lengths

were less than the specified length were discarded. To overcome the data imbalance, where

samples of the pathological conditions are twice more than those of the healthy, partial

samples of the healthy speech were replicated to match the sample size of the pathology.

Thus, for L = 250 and 500, there are 21,746 and 10,861 short speech signals created for each

cohort, respectively. Figures 2 and 3 show examples of healthy and pathological speech

signals (L = 250) and their extracted features, respectively.

The dataset was randomly split into 10 folds, where 9 folds were used for training

the networks and the remaining fold was used for testing the performance of the trained

networks. Tables 2 and 3 show results of classifying healthy and pathological voices ob-

tained from different LSTM-based classifiers in terms of accuracy (ACC), sensitivity (SEN),

specificity (SPE), precision (PRE), F1 score, and area under the ROC curve (AUC) with

respect to L = 500 and 250, respectively.

For speech segments with L = 500, the LSTM, biLSTM, Wavelet-LSTM (LSTM inputs

are wavelet time scattering coefficients), and Wavelet-LSTM obtained 50% accuracy and

AUC = 0.5. The bi-LSTM, wavelet-LSTM, and wavelet-biLSTM completely biased toward

the healthy class (SPE = 100%), whereas the LSTM completely biased toward the patholo-

logical class (SEN = 100%). Both TFTS-LSTM (LSTM inputs are time-frequency and time-

space features) and TFTF-biLSTM provided much better results (AUC = 0.93) than the other

classification models. Accuracy rates obtained from the TFTS-LSTM and TFTS-biLSTM are

85% and 86%, respectively. Both TFTS-LSTM and TFTS-biLSTM could achieve a balanced

classification between the healthy and pathological samples (SEN = 92% and 89%, SPE =
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73% and 83%, respectively). The precision measure obtained from the TFTS-biLSTM (84%)

is higher than the precision from the TFTS-LSTM (81%), whereas F1 scores obtained from

the two models are the same (0.86).

For shorter speech segments with L = 250, complete biases that are opposite to the case

with L = 500 observed among LSTM, biLSTM, wavelet-LSTM, and wavelet-biLSTM models.

The AUC values for LSTM, biLSTM, wavelet-LSTM, and wavelet-biLSTM are between 0.50

and 0.53; whereas the AUC for TFTS-LSTM and TFTS-biLSTM = 0.96 and 0.95, respectively.

The use of the shorter signals could improve the performance of both TFTS-LSTM and

TFTS-biLSTM models, whose accuracy rates (88% and 90% for TFTS-biLSTM and TFTS-

LSTM, respectively) are significantly higher than those of the other four models (50%).

Once again, both TFTS-LSTM and TFTS-LSTM could diagnose the pathological conditions

better than the healthy samples (SEN = 93% vs. SEN = 87% for TFTS-LSTM, and SEN =

94% vs. SEN = 82% for TFTS-biLSTM). The precision and F1 score of the TFTS-LSTM are

higher than those of the TFTS-biLSTM.

Based on the results shown in Tables 2 and 3, the TFTS-LSTM for learning the speech

signals of L = 250 provided the most favorable classification performance for differentiating

between the healthy and pathological voices. To provide a visual comparison between the

three different classification methods, Figure 4 shows the iterative machine learning for

differentiating the two classes from the speech segments of L = 250 and confusion matrices

using LSTM, WS-LSTM, and TFTS-LSTM models. It can be seen that both LSTM and WS-

LSTM could not improve the training over 50 epochs, whereas the TFTS-LSTM could reach

toward nearly the maximum training accuracy or minimum loss.

In comparison with using the speech signals of original lengths reported in a previous

study [16], in this study, both LSTM and biLSTM increased the classification accuracy to

about 2%; wavelet-LSTM and wavelet-biLSTM resulted in about 20% decrease in the classi-
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fication accuracy; and TFTS-LSTM and TFTS-biLSTM increased the classification accuracy

to about 14% and 12%, respectively. A recent study, which incorporated deep-time recur-

rence features [32] into the LSTM for classifying healthy and pathological speech signals

using the same data set, obtained ten-fold results with accuracy = 86%, sensitivity = 100%,

and specificity = 50%, showing an unbalanced differentiation between the two cohorts. In

these studies, TFTS-LSTM and TFTS-biLSTM outperformed all other methods in terms of

accuracy and balance in the diagnosis.

Furthermore, in terms of computational complexity, the use of both LSTM and biL-

STM required significant longer training times than the Wavelet-LSTM, Wavelet-biLSTM,

TFTS-LSTM, and TFTS-biLSTM. By training these models with a single processor (Intel(R)

Core(TM) i7-6500U, CPU@2.50 GHz), it was noticed that the time taken for training either

the LSTM or biLSTM with the original speech segments were 25 times longer than the time

for training the wavelet-LSTM or wavelet-biLSTM, and 10 times longer than the training

time for the TFTS-LSTM or TFTS-biLSTM.

5 Conclusion

The application of time-frequency and time-space features for LSTM learning was shown

to be of high and better performance in classifying physiological signals than several other

classification models [19]. In this study, the experimental results illustrated the supe-

rior performance of the LSTM that learned on time-frequency and time-space features of

healthy and pathological speech signals to those of LSTM networks that learned on either

the original data or wavelet-scattering coefficients of the signals.

Certain advantages offered with the incorporation time-frequency and time-space fea-

tures as input into an LSTM network include better diagnosis accuracy and computational

efficiency. A strategy for creating balanced data and augmenting training samples was
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found to be effective by means of the results obtained from the TFTS-LSTM and TFTS-

biLSTM classifiers. In this study, an empirical basis for the selection of short lengths of

the speech signals was relied on. An analytical procedure for choosing an optimal signal

length is worth developing in a future investigation. Furthermore, considering the inclu-

sion of time-frequency and time-space features in other classifiers would be encouraged for

potential improvement of the diagnosis.

Medical voice analysis systems utilize hardware, software, and human-computer in-

teraction to achieve smart hospital facilities [33]. Technical elaborations on this study can

contribute to endeavors concerning intelligent technology for the diagnosis of pathology in

human acoustics and its potential applications in smart healthcare.

Data and Computer Code Availability

The data that were used in this study are publicly available from the PhysioNet website

[18]. The Matlab codes implemented in this study are freely available at the first author’s

personal website: https://sites.google.com/view/tuan-d-pham/codes, under the title

“TFTS-LSTM for pathological voice diagnosis”.
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Table 1: Statistical performance measures of classification.

ACC SEN SPE PRE F1 score

TP + TN
P + N

TP
P

TN
N

TP
TP + FP

2TP
2TP + FP + FN
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Table 2: Diagnosis of healthy and pathological speech signals of length = 500 time points.

Classifier %ACC %SEN %SPE %PRE F1 AUC

biLSTM 50.00 0.00 100 NaN 0 0.52

LSTM 50.00 100 0.00 50.00 0.67 0.52

Wavelet-biLSTM 50.00 0.00 100 NaN 0 0.55

Wavelet-LSTM 50.00 0.00 100 NaN 0 0.54

TFTS-biLSTM 85.96 89.13 82.78 83.81 0.86 0.93

TFTS-LSTM 85.04 92.36 77.72 80.56 0.86 0.93

Table 3: Diagnosis of healthy and pathological speech signals of length = 250 time points.

Classifier %ACC %SEN %SPE %PRE F1 AUC

biLSTM 50.00 100 0.00 50.00 0.67 0.50

LSTM 50.00 0.00 100 NaN 0 0.50

Wavelet-biLSTM 50.00 100 0.00 50.00 0.67 0.53

Wavelet-LSTM 50.00 100 0.00 50.00 0.67 0.51

TFTS-biLSTM 88.02 93.75 82.30 84.12 0.89 0.95

TFTS-LSTM 90.14 93.38 86.90 87.69 0.90 0.96
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Figure 1: Architecture of a long short term memory (LSTM) network.
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(a)

(b) (c)

(d) (e)

Figure 2: Healthy speech and features: (a) signal segment, (b) instantaneous frequency,

(c) spectral entropy, (d) fuzzy recurrence plot, and (e) scattergram of first-order scattering

coefficients.
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(a)

(b) (c)

(d) (e)

Figure 3: Pathological speech and features: (a) signal segment, (b) instantaneous frequency,

(c) spectral entropy, (d) fuzzy recurrence plot, and (e) scattergram of first-order scattering

coefficients.
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(a) LSTM (b) LSTM

(c) Wavelet-LSTM (d) Wavelet-LSTM

(e) TFTS-LSTM (f) TFTS-LSTM

Figure 4: Training processes and confusion matrices using different classification models.
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