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Although hydrogen sulfide (H2S) is an endogenous signaling molecule with antioxidant 
properties, it is also cytotoxic by potently inhibiting cytochrome c oxidase and mitochon-
drial respiration. Paradoxically, the primary route of H2S detoxification is thought to 
occur inside the mitochondrial matrix via a series of relatively slow enzymatic reactions 
that are unlikely to compete with its rapid inhibition of cytochrome c oxidase. Therefore, 
alternative or complementary cellular mechanisms of H2S detoxification are predicted 
to exist. Here, superoxide dismutase [Cu-Zn] (SOD1) is shown to be an efficient H2S 
oxidase that has an essential role in limiting cytotoxicity from endogenous and exogenous 
sulfide. Decreased SOD1 expression resulted in increased sensitivity to H2S toxicity in 
yeast and human cells, while increased SOD1 expression enhanced tolerance to H2S. 
SOD1 rapidly converted H2S to sulfate under conditions of limiting sulfide; however, 
when sulfide was in molar excess, SOD1 catalyzed the formation of per- and polysulfides, 
which induce cellular thiol oxidation. Furthermore, in SOD1-deficient cells, elevated 
levels of reactive oxygen species catalyzed sulfide oxidation to per- and polysulfides. 
These data reveal that a fundamental function of SOD1 is to regulate H2S and related 
reactive sulfur species.

hydrogen sulfide | persulfide | polysulfide | SOD1 | reactive sulfur species

H2S is a toxin that inhibits cellular respiration with a similar potency as cyanide (1, 2). 
Additionally, excessive cellular H2S is associated with oxidative stress and polysulfide 
formation (3–7). Despite its potent toxicity, endogenous or exogenous H2S exerts regu-
latory and beneficial actions in cell and animal models (8–11), consistent with sulfide 
being efficiently metabolized to avoid its toxicity.

H2S mediates cellular signaling in part by reacting with disulfide bonds to form per-
sulfides (Reaction 1) (12–14).

 [1]

In x&addition to signaling, persulfide formation is currently considered the primary mech-
anism of H2S detoxification via sulfide quinone oxidoreductase (SQOR) and the “sulfide 
oxidizing unit” in the mitochondrial matrix (15–17). The SQOR active site exists as a 
trisulfide bond between two cysteine residues, and the detoxification of sulfide is thought 
to proceed as in Reaction 2, forming two cysteine persulfide residues (18).

 [2]

However, persulfide formation from sulfide reacting with either disulfide (Reaction 1) or 
trisulfide (Reaction 2) are thermodynamically unfavorable reactions (Keq << 1) (13, 19), 
and correspondingly, SQOR reduction by H2S has only been described for excessive sulfide 
concentrations (15, 17, 20). In contrast, complex IV (cytochrome c oxidase) is rapidly 
and potently inhibited by H2S (1, 21). Due to the incongruities of H2S reactivity described 
above, together with the lack of SQOR sulfide detoxification in central nervous tissue 
(22), we challenged the currently accepted mechanism of sulfide detoxification and pos-
tulated that a cytosolic H2S oxidase exists to limit mitochondrial inhibition by H2S.

Superoxide dismutase [Cu-Zn] (SOD1) is a highly expressed, ubiquitous copper, and 
zinc-containing protein that is conserved throughout evolution and across taxonomical 
kingdoms (23–25). Although it is generally accepted to function as a superoxide oxidore-
ductase (26), SOD1 can catalyze other chemical reactions (27–30). Here we show that 
SOD1 rapidly detoxifies endogenous and exogenous sulfide to sulfate. Furthermore, we 
demonstrate that this sulfide oxidase function of SOD1 protects cells from H2S and limits 
reactive sulfur species (RSS) (i.e., persulfides and polysulfides) that mediate sulfide sign-
aling and toxicity (31, 32).
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Results and Discussion

SOD1 Expression is Critical for Sulfide Tolerance. As H2S is a 
potent toxin present at the origins of life (33), we speculated that 
a universal mechanism of sulfide detoxification exists. SOD1 is 
a ubiquitous, highly expressed redox-active protein present in all 
kingdoms of life; therefore, using a yeast knockout model, the role 
of SOD1 in limiting H2S toxicity was investigated. Using a serial 
dilution spot assay, sod1Δ yeast showed inhibited growth on NaSH 
compared to control agar (Fig. 1A). The toxic effect of NaSH on 
sod1Δ yeast was similar to methyl viologen (MV), a superoxide-
generating compound. Additionally, manganese supplementation, 
which functions as a superoxide dismutase mimetic (34–37), but 
not a sulfide oxidase at physiological pH (SI Appendix, Fig. S1C), 
limited MV-induced cytotoxicity, but did not alter sulfide-
mediated toxicity in sod1Δ yeast (SI Appendix, Fig. S1 A and B). 
These results indicate that sulfide-induced cytotoxicity in sod1Δ 
yeast is due to limited sulfide metabolism and not due to general 
oxidative stress associated with sod1 deletion. Furthermore, wild-
type or sod1Δ yeast was cultured in complete liquid media with 
or without NaSH and growth was monitored over time (Fig. 1B). 
Wild-type yeast growth rates slightly increased in response to 
NaSH, while sod1Δ yeast growth rates were concentration-
dependently inhibited by sulfide (SI  Appendix, Fig.  S2A). To 
measure the effect of SOD1 expression on endogenous cellular 
H2S levels, wild-type or sod1Δ yeast was lysed in the presence 
of N-iodoacetyl tyrosine methyl ester (TME-IAM), a sulfide 
and polysulfide labeling and stabilizing reagent (38). TME-IAM 
adducted hydrogen sulfide/hydrosulfide (Bis-S-AM-TME) was 
analyzed by liquid chromatography-electrospray ionization–
tandem mass spectrometry (LC-ESI-MS/MS) (SI Appendix, Table 
S1) (38). H2S was significantly elevated in sod1Δ yeast compared 
to wild-type yeast (Fig.  1C). Similarly, endogenous H2S levels 
were significantly higher in HEK293 cells transfected with SOD1-
specific siRNA compared to control cells (Fig. 1D).

To examine the role of SOD1 expression on sulfide tolerance 
in mammalian cells, human HEK293 cells were transiently trans-
fected with control or SOD1-specific silencing RNA oligonucle-
otides and proliferation was measured in cell cultured with the 
slow-releasing H2S-donor, GYY4137 (500 μM), or vehicle. This 
concentration of GYY4137 formed a steady-state sulfide concen-
tration of ≈74 μM after 24 h (SI Appendix, Fig. S2B). Sulfide 
reduced control cell proliferation after 72 h to approximately half 
of vehicle treated controls, whereas sulfide almost completely 
inhibited SOD1-silenced cell proliferation (Fig. 1 E and F). To 
confirm that the inhibition of proliferation was not due to 
decreased cell adhesion, GYY4137 was added to cells 24 h after 
seeding. GYY4137 has similar inhibitory effects on adherent cell 
proliferation (SI Appendix, Fig. S2 C and D). Conversely, SOD1 
overexpression significantly increased HEK293 cell tolerance to 1 
mM GYY4137 (Fig. 1 G and H). The steady-state concentration 
of H2S under these conditions was ≈150 μM (SI Appendix, 
Fig. S1B). Cystathionine β-synthase (CBS) overexpression results 
in elevated intracellular H2S and/or cysteine persulfide levels  
(39, 40). To examine the effect of SOD1 on endogenous H2S 
production, HEK293 cells were transiently transfected with either 
GFP-tagged, wild-type, or mutant (H65R) CBS expression vector 
with either control or SOD1-specific siRNA (SI Appendix, Fig. S2 
E and F). Wild-type but not mutant CBS overexpression showed 
decreased proliferation in SOD1-silenced cells; however, wild-type 
or mutant CBS overexpression had no effect on SOD1-replete 
cells (Fig. 1 I and J). Despite similar superoxide metabolizing func-
tion, SOD2 silencing had no effect on exogenous sulfide-mediated 
cellular toxicity in HEK293 cells (SI Appendix, Fig. S2 G and H). 

These data reveal that SOD1 is essential for protecting cells against 
both endogenous and exogenous H2S-mediated cytotoxicity.

SOD1 Oxidizes Sulfide to Sulfate. As SOD1 expression appears to 
be critical for sulfide detoxification, the reaction between SOD1 
and sulfide was investigated. Sulfide oxidation by SOD1 has been 
reported to be a very slow process that forms hydrogen persulfide 
(H2S2); however, this reaction was only studied under non-
physiological conditions of excess H2S compared to SOD1 (41). 
Cellular and tissue H2S concentrations are estimated to be in the 
low nanomolar range (42), while cellular SOD1 concentrations 
are estimated to be between 10 and 100 μM (43). Therefore, 
the physiologically relevant reaction between excess SOD1 and 
limiting H2S was examined. H2S was rapidly consumed by 
the addition of SOD1 in a concentration-dependent manner 
(Fig. 2A). Sulfate was the major reaction product from SOD1 
and NaSH; however, sulfate formation was significantly decreased 
in apo-SOD1 (Fig. 2B). Under anaerobic conditions, H2S rapidly 
reacted with SOD1, as the Cu2+ d-d transition centered at 670 
nm follows a second-order decay (Fig. 2 C and D), implying that 
sulfide coordinated to the copper center forming a reduced copper-
sulfide species. Upon exposure to air, the d-d band returned to the 
starting absorbance, signifying that the SOD1-sulfide complex 
was oxidized by O2 (Fig. 2 C and D).

Copper and nickel (2+) thiolate complexes are in structural 
resonance with thiyl radical coordinated to a reduced metal center, 
and the paramagnetic nature of these complexes permits spin-al-
lowed reactions with molecular oxygen to generate sulfinic acids 
(44, 45). Here we propose that HS− coordination to Cu2+-SOD1, 
instead of an alkyl thiolate, initially forms sulfhydryl thioperoxide, 
which is a tautomer of sulfoxylic acid (Fig. 2E). Sulfoxylic acid is 
thermodynamically susceptible to further oxidation by Cu2+ to 
form sulfoxylic peroxide radical, which is reduced by Cu1+ and 
rearranges to form sulfate (46). Thus, the Cu2+ center of SOD1 
catalyzes the autoxidation of sulfide by removing the spin-forbid-
den nature of Reaction 3, which is thermodynamically highly 
favorable.

 [3]

Metal-catalyzed sulfide oxidation is an effective route to detoxifi-
cation, as cobinamide, a vitamin B12 analog, reduces H2S toxicity 
(3). Therefore, the ubiquitous and highly expressed [Cu-Zn] 
SOD1 is an efficient sulfide oxidase under physiological condi-
tions that converts toxic hydrogen sulfide into innocuous 
sulfate.

SOD1 Oxidizes Excess Sulfide to Per/Polysulfides. SOD1 is 
reported to oxidize H2S to hydrogen persulfide (H2S2); however, 
H2S2 formation was only investigated under conditions of limiting 
SOD1 and excess sulfide (41). Here we show that H2S2 and RSS 
formation by SOD1 is limited to conditions where sulfide is 
in molar excess compared to SOD1. Solutions of NaSH were 
added to SOD1 in the presence of SSP4, a fluorescent probe 
that detects persulfides (47). SSP4 fluorescence did not increase 
when limiting amounts of sulfide were added to SOD1; however, 
persulfide was detected when sulfide concentrations were greater 
than SOD1 (Fig. 3A). Similarly, sulfate production was nearly 
linear with respect to sulfide concentration; however, when the 
molar concentration of H2S exceeded that of SOD1, sulfate 
production was significantly reduced (Fig. 3B), suggesting that 
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Fig. 1. SOD1 protects cells from H2S toxicity. (A) (Top) Representative image of yeast spot assay of wild-type or sod1Δ yeast grown on YPD agar media or YPD 
containing either 100 μM MV2+ or NaSH. (Bottom) Bar graph showing mean values from densitometric analysis of yeast spot assay images (±SEM; n = 4 experiments, 
n = 2 spots per experiment). Significance calculated by two-way ANOVA with Sidak’s test. (B) Representative growth (OD600) of wild-type or sod1Δ yeast cultured 
± NaSH measured over 12 h. (C) Intracellular H2S content measured by LC-ESI-MS/MS (38) from wild-type or sod1Δ yeast or (D) control or SOD1-silenced HEK293 
cells. Data represent mean values [±SEM; n = 4 colonies (yeast); n = 4 wells (HEK293)] and significance calculated by unpaired, two-tailed t tests. (E) Proliferation, 
measured by electrical impedance, of SOD1-silenced or control HEK293 cells cultured with or without 500 μM GYY4137. (Inset: immunoblot showing relative 
SOD1 expression.) Data shown are mean cell index values (±SD, n = 3 to 4 wells per group) from a representative experiment. Significance at 72-h time point was 
calculated by two-way ANOVA with Sîdak’s test. (F) Graph showing final cell index values from (E) normalized to control values. Bars represent mean normalized 
cell index (±SEM; n = 5 experiments, n = 3 to 4 wells per experiment). (G). Proliferation, measured by electrical impedance, of SOD1-overexpressing or control 
HEK293 cells cultured with or without 1 mM GYY4137. (Inset: immunoblot showing relative SOD1 expression.) (H) Graph showing final cell index values from  
(G) normalized to control values. Bars represent mean normalized cell index (±SEM; n = 4 experiments, n = 3 to 4 wells per experiment). (I) Cell proliferation of control 
or SOD1-silenced HEK293 cells expressing either WT or H65R-mutant human CBS. Mean data from a representative experiment are shown. Data normalized to 
24-h time point (gridlines). (J) Graph showing 72-h cell index values from (I). Bars represent mean values (±SEM; n = 5 experiments, n = 2 to 3 wells per experiment).
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another chemical process dominates under these conditions. These 
data indicate that SOD1 does not contribute to persulfide and 
polysulfide formation under normal physiological H2S levels (42).

When SOD1 expression or function is decreased, or if high 
cellular levels of H2S are achieved, H2S2 is predicted to be formed; 
this is potentially significant as hydrogen persulfide is a cellular 
oxidant that is isoelectronic with hydrogen peroxide. Additionally, 
H2S2 disproportionates to regenerate H2S and form H2S3 and 
longer polysulfide chains; therefore, hydrogen persulfide results 
in RSS formation via multiple equilibria. To determine if H2S2 
is a cellular thiol oxidant like hydrogen peroxide, authentic 
sodium persulfide (Na2S2) was reacted with reduced glutathione 
(GSH). Sodium persulfide concentration-dependently oxidized 
GSH (Fig. 3C) and protein S-glutathionylation significantly 
increased in MCF10A cells treated with Na2S2 (Fig. 3D and 
SI Appendix, Fig. S3A). Similarly, Na2S2 resulted in rapid 
cGMP-dependent protein kinase 1 (PKG) oxidation (Fig. 3E) 
and reduced HEK293 cell proliferation in a concentration- 
dependent manner (Fig. 3F). Therefore, SOD1 catalyzes the for-
mation of RSS when sulfide is in molar excess, which has cellular 
thiol oxidizing effects.

H2S2 from sulfide oxidation has been proposed to proceed via 
thiyl radical production and recombination (41); however, this is 
not a thermodynamically favorable reaction (HS• + e− = HS−;  
Eo = +0.92 V) (48) and chemically unlikely, as O2 would rapidly 
compete for thiyl radical recombination. We propose that under 
excess sulfide conditions, the Cu-thiyl complex will react with 
another equivalent of HS− (instead of O2 under limiting sulfide 
conditions) to form a cuprous persulfide radical anion (Fig. 3G). 
Disulfide radical anions are potent one-electron reducing agents 
(49), and we show here that SOD1-catalyzed persulfide formation 
proceeds via persulfide radical anion, as the reaction occurs under 

anaerobic conditions in the presence of electron acceptors of var-
ying reduction potentials. In addition to O2, the SOD1-persulfide 
complex reduced Fe(CN)6

3− and V3+ (Fig. 3H and SI Appendix, 
Fig. S3 B–D) but did not reduce MV2+ to MV•+ (SI Appendix, 
Fig. S3E). This indicates that the SOD1-persulfide complex reduc-
tion potential is bracketed between 0.26 and 0.43 V, consistent 
with a metal-coordinated disulfide radical anion (50). These results 
also indicate that SOD1-catalyzed persulfide formation under 
high relative sulfide conditions may proceed under hypoxic con-
ditions, provided an alternative electron acceptor is present. To 
measure persulfide formation under hypoxic conditions, HEK293 
cells were cultured in 21% or 1% O2-containing atmosphere for 
24 h with vehicle or 2 mM GYY4137, which corresponded to 
≈270 μM H2S (SI Appendix, Fig. S1B). Hypoxia resulted in 
increased basal persulfide formation compared to normoxic con-
trols and sulfide donation resulted in elevated persulfide formation 
in both conditions; however, sulfide donation under hypoxic con-
ditions resulted in significantly more persulfide formation com-
pared to normoxia (Fig. 3I). These data suggest that SOD1 may 
act as a pro-oxidant under high H2S levels, even in the absence of 
O2. Thus, cellular hypoxia may be a scenario of elevated H2S and 
RSS formation and reactivity.

To further examine if endogenous cellular H2S and RSS accu-
mulate in hypoxic conditions, wild-type yeast was loaded with 
either H2S-specific or RSS-specific chemical probes and monitored 
over time at variable O2 concentrations. When yeast was cultured 
under normoxic conditions, H2S and RSS probes remained rela-
tively stable; however, as the O2 concentration decreased to 1%, 
both H2S and RSS florescent probes gained in signal intensity 
(Fig. 3J and SI Appendix, Fig. S3 F and G). Overall, these results 
indicate that cellular hypoxia limits SOD1-mediated sulfide oxi-
dation and detoxification to sulfate and increases per- and 
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Fig. 2. SOD1 is a sulfide oxidase. (A) Amperometric electrode measurements of H2S (10 μM) consumption by the addition of human SOD1 (10 to 100 μM) or buffer 
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(680 nm) from bovine SOD-Cu2+ reduction by NaSH as in (C). Gray circles represent anaerobic spectra, and red “x” represents air-treated samples. Data shown 
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polysulfide formation, as observed in hypoxic brains (51). 
Therefore, as oxygen tension affects H2S and RSS levels, in vitro 
experiments performed in 21% O2 may artificially limit intracel-
lular H2S levels and therefore suppress RSS signaling.

SOD1 Limits Cellular Per- and Polysulfides. H2S is thought to 
elicit signaling via formation of persulfides as shown in Reaction 
1 (14). As SOD1 deletion or silencing resulted in increased basal 
H2S levels (Fig. 1 C and D), endogenous RSS was predicted to 
increase in response to decreased SOD1 expression. TME-IAM 
adducted persulfide (Bis-SS-AM-TME), trisulfide (Bis-SSS-AM-
TME), reduced glutathione (GS-AM-TME), and glutathione 
hydropersulfide (GSS-AM-TME) were measured by LC-ESI-
MS/MS (SI Appendix, Table S1) (38). The inorganic polysulfides 
S2

2− and S3
2− were significantly elevated in sod1Δ yeast compared 

to wild-type yeast (Fig.  4 A  and  B). Similarly, S2
2− and S3

2− 
were significantly elevated in SOD1-silenced HEK293 cells 
compared to control cells (Fig. 4 C and D). Furthermore, basal 
glutathione hydropersulfide (GSSH/GSH ratio) was also elevated 
in cells lacking SOD1 (Fig. 4E), suggesting that SOD1 exerts its 
antioxidant effects partially by limiting H2S and RSS.

SOD1 consumption of H2S is predicted to shift the equilibrium 
in Reaction 1 to decrease persulfide concentration (Fig. 4F). To 
examine if SOD1 limits persulfide formation, glutathione per-
sulfide was formed by reacting glutathione disulfide (GSSG) with 
Na2S. An equilibrium constant of ≈1 × 10−5 was calculated by 
reacting increasing concentrations of Na2S (SI Appendix, Fig. S4 
A and B), consistent with other reports that Reaction 1 is ther-
modynamically unfavorable (13, 19). Addition of SOD1 to GSS- 
in equilibrium with HS− and GSSG caused the persulfide 
absorbance to rapidly decay, whereas addition of buffer did not 
significantly alter the persulfide equilibrium (Fig. 4G), demon-
strating that SOD1-sulfide oxidase activity limits the cellular pool 
of RSS.

Cysteine trisulfide is predicted to react with thiols to generate 
cysteine persulfide (52), which can further react with thiols to 
form mixed disulfides and H2S (SI Appendix, Fig. S4C). Indeed, 
reaction of cysteine trisulfide with 2-mercaptoethanol rapidly 
formed H2S (SI Appendix, Fig. S4D). Therefore, cysteine trisulfide 
was utilized as an in situ cellular persulfide and H2S-donor (19, 
52). To determine if cysteine trisulfide treatment resulted in 
increased H2S, wild-type or sod1Δ yeast was treated with cysteine 
trisulfide and relative cellular H2S measured by fluorescent probe 
(53). Cysteine trisulfide significantly increased H2S in sod1Δ yeast 
compared to wild-type yeast (Fig. 4H), indicating that alkyl tri-
sulfides promote cellular H2S formation. To determine if SOD1 
can detoxify tri- and polysulfides via H2S oxidation, wild-type or 
sod1Δ yeast growth on agar plates containing either cysteine tri-
sulfide or potassium polysulfide (K2Sx) was determined by a serial 
dilution spot assay (Fig. 4I). The absence of SOD1 resulted in 
increased sensitivity to both cysteine trisulfide and K2Sx (Fig. 4J), 
indicating that SOD1 metabolizes cellular H2S produced from 
alkyl trisulfides, persulfides, and polysulfides and limits RSS tox-
icity. While RSS may serve important antioxidant and signaling 
roles (40, 54), excessive levels of per- and polysulfides will be 
maladaptive due to the oxidative stress they impart (7, 19, 32) 
and here we show that SOD1 attenuates these effects via shifting 
sulfide equilibria away from RSS.

Reactive Oxygen Species (ROS) Oxidizes H2S to RSS. H2S exhibits 
antioxidant effects in multiple cellular settings (55). Here, we 
have examined the role of SOD1 on sulfide oxidation by using 
SOD1-knockdown or deletion strategies; however, cells lacking 
SOD1 have elevated levels of ROS  (56). Superoxide rapidly 

disproportionates to molecular oxygen and H2O2, and H2S is 
predicted to react with H2O2 to form H2S2 (Fig. 5A). Therefore, 
we investigated if ROS contributed to RSS cytotoxicity, while 
simultaneously inhibiting ROS-mediated oxidation. To mimic 
cellular ROS generation in the absence of SOD1, potassium 
superoxide (KO2) was dissolved in alkaline aqueous media, which 
rapidly forms O2 and H2O2 (57). Decomposed KO2 solutions 
containing approximately 50 μM H2O2 were reacted with Na2S, 
and the remaining sulfide was measured by monobromobimane 
(mBBr) fluorescence. ROS consumed sulfide (Fig. 5B) to form 
polysulfides (Fig. 5C). Furthermore, the reaction between sulfide 
and ROS inhibited ROS-mediated oxidation but increased per- 
and polysulfide reactivity (Fig. 5D). Additionally, H2S treatment 
reduced intracellular Ca2+ levels in SOD1-silenced HEK293 cells 
(SI  Appendix, Fig.  S5A), consistent with its ROS antioxidant 
effects (58). Therefore, H2S is a ROS antioxidant; however, this 
interaction results in the formation of thiol oxidizing RSS. To 
examine this effect of H2S and ROS in a cellular setting, HEK293 
cells were incubated with rotenone or vehicle and mitochondrial 
ROS formation was measured in response to NaSH. Rotenone 
treatment increased ROS formation, which was significantly 
decreased by H2S (Fig.  5E). However, this decrease in ROS 
production by H2S resulted in increased cytotoxicity after 24 
h (Fig.  5F), indicating that the interaction between ROS and 
H2S limits ROS-mediated oxidation, but forms other cytotoxic 
molecules. Similarly, NaSH treatment of SOD1-silenced HEK293 
cells resulted in decreased mitochondrial respiration and ATP 
production, while NaSH did not decrease mitochondrial activity 
in SOD1-replete control cells (SI Appendix, Fig. S5 B and C).

To measure the cellular RSS formation from ROS and H2S, 
wild-type or sod1Δ yeast was loaded with SSP4 and Hoechst 
33342 and cultured with increasing concentrations of NaSH. In 
the absence of SOD1, H2S donation resulted in rapid intracellular 
RSS formation in a concentration-dependent manner (Fig. 5 
G and H), whereas endogenous SOD1 expression in wild-type 
yeast significantly limited RSS formation (Fig. 5H). Furthermore, 
RSS formation (Fig. 5 G and H) preceded cellular death in sod1Δ 
yeast (Fig. 1B) and strongly indicates that RSS formation is asso-
ciated with cellular toxicity. The increased RSS formation in 
SOD1-knockdown cells suggests that cellular thiol oxidation may 
occur under conditions of excess sulfide compared to SOD1. 
Control or SOD1-silenced HEK293 cells were treated with 100 
μM NaSH, and cellular thiol oxidation was determined by PKG 
dimerization and protein S-glutathionylation. In control cells, 100 
μM NaSH was not sufficient to induce either PKG oxidation or 
increased protein S-glutathionylation, consistent with SOD1-
mediated detoxification (SI Appendix, Fig. S5 D and E). However, 
100 μM NaSH caused both PKG thiol oxidation and global pro-
tein S-glutathionylation in SOD1-silenced cells (SI Appendix, 
Fig. S5 D and E), suggesting that RSS formation induces cellular 
oxidative stress similar to authentic hydrogen persulfide (Fig. 3 
C–G) and cysteine trisulfide (19). Sulfide is known to induce 
oxidants other than ROS from inhibited mitochondrial electron 
transport chain (3, 6), and these results indicate that sulfide-me-
diated RSS formation is linked to cellular oxidation and toxicity. 
Therefore, we conclude that SOD1 limits persulfide/polysulfide 
toxicity by consuming H2S as well as preventing the interaction 
between ROS and H2S.

Overall, our data indicate that SOD1 restricts cellular H2S 
levels and limits cellular RSS by shifting the multiple equilibria 
associated with H2S (Fig. 6A). In the absence of SOD1, elevated 
ROS catalyzes the formation of toxic RSS (Fig. 6B). SOD1 has 
an antioxidant effect in microbes, animals, and plants (23); our 
results indicate that the antioxidant effect of SOD1 may be 

http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2205044120#supplementary-materials
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Fig. 4. SOD1 oxidation of sulfide decreases RSS. (A) Intracellular dihydrogen disulfide (S2
2−) and (B) dihydrogen trisulfide (S3

2−) content from wild-type or sod1Δ 
yeast. Bars represent mean polysulfide levels (±SEM; n = 4 colonies) and significance calculated by unpaired, two-tailed t test. (C) Intracellular dihydrogen disulfide 
(S2

2−) and (D) dihydrogen trisulfide (S3
2−) content from control or SOD1-silenced HEK293 cells. Bars represent mean polysulfide levels (±SEM; n = 4 wells) and 

significance calculated by unpaired, two-tailed t test. (E) Glutathione persulfide (GSSH) content normalized to total glutathione (GSH) and protein from (Left) 
wild-type or sod1Δ yeast and (Right) control or SOD1-silenced HEK293 cells. Bars represent mean polysulfide levels (±SEM; n = 4) and significance calculated by 
unpaired, two-tailed t test. (F) Schematic showing SOD1 regulation of glutathione persulfide levels by consuming H2S. H2S reacts with glutathione disulfide and is in 
equilibrium with glutathione persulfide and GSH. (G) Glutathione persulfide concentration after addition of buffer or bovine SOD1 (100 μM). Data represent mean 
concentrations (±SEM; n = 3 reactions). (H) Relative cellular H2S in wild-type or sod1Δ yeast treated with Cys-S3 for 1 h. Bars represent mean relative fluorescence 
units (±SEM; n = 9). Significance calculated by two-way ANOVA with Sidak’s test. (I) Representative image of yeast spot assay of wild-type or sod1Δ yeast grown 
on YPD agar media containing either 100 μM cysteine trisulfide or potassium polysulfide (K2Sx). (J) Bar graph showing mean values from densitometric analysis 
of yeast spot assay images (I) (±SEM; n = 4 experiments, n = 2 spots per experiment). Significance calculated by two-way ANOVA with Sidak’s test.
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expanded to include its role in sulfide and RSS detoxification. 
In addition to superoxide metabolism, SOD1 has other cellular 
function; for example, SOD1 regulates cellular NADPH pro-
duction by inhibiting GAPDH activity (59), as well as function-
ing as a nuclear transcription factor (60). Our data indicate an 
alternative role for SOD1 in sulfur metabolism and suggest that 
RSS such as polysulfides are cellular oxidants limited by SOD1, 
in addition to ROS. Although ROS are generally accepted to be 
the principle cellular oxidant, our results indicate that the oxi-
dative role of RSS may be equally important, as RSS have been 
proposed to be the major cellular oxidant pool (32, 61). Just as 
the discovery of the superoxide dismutation spurred research into 
the role of ROS in human disease (26), our results indicate a 
similar amount of attention may be justified for RSS in cellular 
dysfunction.

Materials and Methods

Detailed methods are accessible in SI  Appendix, Supplementary Text. 
Reagents and resources used in this study are listed in SI Appendix, Table S2. 

Briefly, yeast strains (WT and sod1Δ) were grown on YPD agar or liquid media 
supplemented with either NaSH or MV and growth assessed by either spot 
assay or OD600 measurements. Human embryonic kidney epithelial cell line 
(HEK293) was transfected with control or SOD1-specific siRNA, and growth was 
measured by electrical impedance in the presence of a H2S-donor, GYY4137. 
Alternatively, HEK293 cells were co-transfected with siRNA and expression 
plasmids encoding for GFP-tagged wild-type or mutant (H65R) CBS and pro-
liferation measured by electrical impedance. Human or bovine [Cu-Zn] SOD1 
or apo-SOD1 was reacted with NaSH, and sulfide consumption was measured 
by amperometric electrode, while sulfate was measured by anion chroma-
tography. Cellular and biochemical persulfide formation was measured by 
SSP4 fluorescence and LC-ESI-MS/MS. Protein thiol oxidation is measured 
by biotinylated glutathione ethyl ester incorporation and protein kinase G 
disulfide formation.

Data, Materials, and Software Availability. DNA plasmids data have been 
deposited in Addgene (182922, 182923, 182924). All study data are included 
in the article and/or SI Appendix.
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