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Abstract—Learning music representations that are general-
purpose offers the flexibility to finetune several downstream tasks
using smaller datasets. The wav2vec 2.0 speech representation
model showed promising results in many downstream speech
tasks but has been less effective when adapted to music. In this
paper, we evaluate whether pre-training wav2vec 2.0 directly on
music data can be a better solution instead of finetuning the
speech model. We illustrate that when pre-training on music
data, the discrete latent representations are able to encode
the semantic meaning of musical concepts such as pitch and
instrument. Our results show that finetuning wav2vec 2.0 pre-
trained on music data allows us to achieve promising results on
music classification tasks that are competitive with prior work
on audio representations. In addition, the results are superior
to the pre-trained model on speech embeddings, demonstrating
that wav2vec 2.0 pre-trained on music data can be a promising
music representation model.

Index Terms—music representations, self-supervision, pre-
training

I. INTRODUCTION

Learning feature representations with deep architectures
has shown remarkable success over hand-crafted features in
Music Information Retrieval (MIR) [1]. Approaches such
as transfer learning from music auto-tagging [2]–[4] allow
someone to pre-train neural networks using large datasets
and extracting features for downstream MIR tasks such as
instrument classification or genre recognition. In this way,
downstream MIR tasks can be solved using smaller annotated
datasets, which is desired since labeling is costly and difficult
to achieve. One issue with auto-tagging models is that they
require very large annotated datasets that are still difficult to
obtain. To overcome the need for large annotated datasets,
new music representation techniques have emerged that do not
directly use waveform-related labels emerged. For example,
pre-training from language models [5] or using noisy language
descriptors of the musical content [6].

A different approach that is based on using proxy tasks to
learn representations is self-supervised learning (SSL), where
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information from input data is extracted to provide labels. This
is advantageous since labels can be generated automatically
without requiring human intervention. Some SSL models have
been proposed for music representations showing competitive
performance in several downstream MIR tasks [7]–[13]. Be-
yond music representation learning, SSL models have grown
in popularity for speech representations and downstream tasks
such as speaker identification, automatic speech recognition,
phoneme recognition, and speech translation [14]. Examples
of speech SSL models include wav2vec 2.0 [15] which is a
contrastive learning-based approach where the model learns to
distinguish a target sample (positive) from distractors (nega-
tive). The original model was pre-trained on the LibriSpeech
dataset [16] and its success is highlighted by the ability to
retain high performance even when dedicated datasets for
downstream tasks are very small, e.g., 10 minutes only for
speech recognition [15] or 1000 observations for non-intrusive
speech quality assessment [17].

The wav2vec 2.0 SSL model has been extensively evaluated
for speech tasks. However, its adaptation to music tasks (such
as pitch classification or instrument classification) has been
limiting. In the NeurIPS challenge HEAR [18], wav2vec 2.0
embeddings are extracted from the model pre-trained on the
LibriSpeech dataset and are used as input features without
finetuning. Their performance is relatively low in music tasks,
even if wav2vec 2.0 speech embeddings can still represent
some musical concepts to some degree, such as pitch [18].
Wang et al. [19] have also evaluated wav2vec 2.0 outside
of the speech domain. In this case, the authors found that
wav2vec 2.0 did not perform well when pre-trained on Au-
dioSet [20], possibly due to the limitation of the masked
prediction objective of learning from a dataset more complex
than LibriSpeech [19]. More promising results with wav2vec
2.0 outside of the speech domain have been obtained for
quality predictions of sound music archives [21] and heart
murmur detection [22].

An approach that is still unexplored is pre-training wav2vec
2.0 on music data only for music information retrieval tasks.
The transferability of deep networks becomes more chal-
lenging when the source and the target tasks have different
domains [23] and it has been shown that wav2vec 2.0 might be
sensitive to a domain shift. For example, pre-training wav2vec
2.0 with cross-lingual datasets improves performance of ASR
systems [24] and finetuning with non-English languages shows979-8-3503-6021-9/23/$31.00 ©2023 IEEE



a performance drop for speech quality assessment [17].
In this paper, we study whether the domain shift between

the pre-trained model and the downstream tasks observed can
cause this performance drop in music tasks as reported in the
studies above. We explore further the capacity of wav2vec 2.0
features in non-speech tasks by asking the following questions:

1) Does wav2vec 2.0 pre-trained on music encode mean-
ingful music representations, i.e. related to musical con-
cepts such as pitch or instruments?

2) Is it possible to obtain competitive performance on
MIR tasks when finetuning wav2vec 2.0 pre-trained on
music?

3) Can we establish if wav2vec 2.0 is a potential candidate
model for music tasks other than speech?

The paper is structured as follows. In Section 2 we illustrate
how we pre-train wav2vec 2.0 with music data. Section
3 is dedicated to the analysis of the features learned by
wav2vec 2.0. We show whether the information encoded
in the codebooks is related to music labels and we com-
pare the encoded representations in the continuous layers
of wav2vec 2.0 pre-trained on music with the information
encoded in the original speech model. Section 4 shows the
results of finetuning wav2vec 2.0 pre-trained on music on three
MIR tasks: instrument classification, pitch classification1 and
singing pitch classification. The singing domain is evaluated
since transferring wav2vec 2.0 embeddings from the speech
domain to the singing domain has been proposed for automatic
lyric transcription [25] but it is still unexplored in other singing
analysis tasks such as pitch classification. In Section 5 we
discuss whether wav2vec 2.0 pre-trained on music provides
promising potential for broader downstream MIR tasks.

II. METHOD

A. Pre-Trained Model

The wav2vec 2.0 model can be summarized in the following
blocks:

1) A feature encoder f : X 7→ Z that converts input
audio chunks of 20 milliseconds X into a sequence of
latent speech representations Z = {z1, z2, ..., zT } for T
timesteps. The encoder consists of 7 1D convolutional
layers, each with 512 filters.

2) A context network g : Z 7→ C based on the Transformer
architecture [26] that builds context representations for
each audio segment that capture the entire audio se-
quence C = {c1, c2, ..., cT }

3) A quantization module that transforms encoder output
representations into discrete speech representations C 7→
Q. The discrete latent features are learned with product
quantization and are needed to create targets for the
loss function, but they are not used as input for the
context network. A vector that concatenates an entry
from each of the 2 codebooks is linearly transformed to

1In this paper, we use the term pitch classification since the NSynth dataset
is made of isolated note segments. This is different from the more common
term ”pitch detection” where note segments are not isolated.

get the quantized representations Q = {q1, q2, ..., qT }.
The Gumbel-Softmax is used to choose the codebook
entries in a differentiable way.

4) A contrastive loss function is used to learn how to iden-
tify the true quantized speech representation from 100
quantized negative samples that are uniformly sampled.
Given an audio chunk at time step t, the model compares
the cosine similarity between the Transformer output
at time step t and the quantized speech representation
in the same step t against the similarity with negative
distractors. The high similarity with the negative sam-
ples is penalized by contrastive loss. The latent speech
representation at the time step t created by the feature
encoder is masked before being fed to the Transformer-
based context network. Negative samples are sampled
from other masked time steps of the same utterance.

We use the BASE model configuration [15], which consists of
12 Transformer blocks and produces 768-dimensional feature
vectors.

To learn music representations, we pre-trained wav2vec 2.0
on the MusicNet dataset [27]. MusicNet consists of ≈ 34
hours of audio across 330 classical music recordings provided
as raw waveforms, covering 11 musical instruments. To pre-
train wav2vec 2.0 we use the fairseq toolkit [28]. The data is
split into overlapped segments of 20 seconds, whose length
is recommended in the fairseq repository instructions. To
increase the dataset size we take overlapped segments with
a hop size equal to 10 seconds collecting ≈ 65 hours of audio
in total. The dataset that we used to pre-train represents only
≈ 7% of the LibriSpeech dataset size which is the one used to
pre-train wav2vec 2.0 for speech [15]. However, we will show
that this is sufficient to address whether wav2vec 2.0 learns
meaningful music representations. The model was trained for
1790 epochs and it took 7 days on the NVIDIA A100 64GB
GPU.

B. Finetuning

Evaluation of downstream tasks is performed on the NSynth
dataset [29] using the original train, validation, and test splits.
The NSynth dataset includes 305,979 samples of 4 seconds.
Two tasks are evaluated on this dataset, pitch classification 1
and instrument classification. Pitch labels on the isolated note
recordings are provided as MIDI numbers. Instrument labels
represent the instrument family and include the following 11
instruments: bass, brass, flute, guitar, keyboard, mallet, organ,
reed, string, synth lead, vocal. Notice that synth lead is only
present in the training set, which makes validation and test
splits made of 10 instrument classes.

The output of the last Transformer block is a matrix of size
(n × l) where n is the number of time frames and l is the
size of the feature vector equal to 768. To remove the time
dimension, we simply average across time, obtaining an l-
dimensional vector at the output. The latter is connected to a
linear layer that consists of the number of output neurons equal
to the number of classes of the task: 112 neurons for pitch
classification and 11 neurons for instrument classification.



Fig. 1. Co-occurrence between the discrete latent representations and instru-
ment family labels on the NSynth test set.

The pre-trained wav2vec 2.0 model with music data is
used in 3 different configurations for the downstream tasks:
1) finetuning (FT1) the entire network, 2) finetuning (FT2)
the context network (Transformer) while keeping the feature
encoder frozen, 3) Freezing both feature and context networks
and doing a simple feature extraction (FE) which consists of
training only the output linear layer. Finetuning on models
FT1 and FT2 is performed using the Adam optimizer with a
learning rate of 0.00001 for the pre-trained part and 0.0001
for the output layer. The FE model is trained using the Adam
optimizer with a learning rate of 0.001 and only the weights of
the output linear layer are optimized. In all 3 configurations,
training is stopped if the average loss in the validation set does
not decrease for 10 epochs. The cross-entropy loss is used for
classification.

III. FEATURE ANALYSIS

Our first research question in Section 1 asked whether
wav2vec 2.0 learns meaningful representations when pre-
trained on music data. We first explored whether the learned
discrete latent representations used in the loss function encode
a semantic meaning related to musical concepts. The discrete
representations are an important step in wav2vec 2.0 since
learning a finite set of discrete audio units encourages the
model not to learn all the variations in the data when minimiz-
ing the contrastive loss. We use the NSynth dataset to compute
the co-occurrence between both pitch and instrument family
labels and the discrete latent features produced by wav2vec
2.0 pre-trained on MusicNet without finetuning.

Figure 1 and Figure 2 show that discrete latent repre-
sentations specialize in both instrument and pitch classes,
respectively. Many latents co-occur with bass, which is the

Fig. 2. Co-occurrence between the discrete latent representations and pitch
classes on the NSynth test set.

most frequent class in the NSynth test. The discrete latent rep-
resentations share a similar pattern as the wav2vec 2.0 speech
model, where the encoded semantic meaning of the codebooks
has been shown to be represented by phonemes [15].

A deeper insight in the analysis of the wav2vec 2.0 features
can be obtained by analyzing the Transformer layers. Given
a masked latent representation zt, the objective of the model
is to learn a context representation ct in order to correctly
guess the quantized representation qt among the negative
samples. For this reason, it should be expected that the final
layers of the Transformer should have higher similarity with
the Transformer input. This behaviour should be observed
regardless of the input signal type (speech or music). To
confirm whether the Transformer layers evolve in the pre-
trained model as expected, we follow the same approach
of Pasad et al. [30] where they observed this phenomenon
occurring in the wav2vec 2.0 pre-trained on speech. We
computed the canonical correlation analysis (CCA) between
each Transformer layer and the output of the feature encoder.
Given a matrix W ∈ Rn×k and Y ∈ Rn×j with k < j, CCA
finds two basis such that when the matrices are projected onto
the basis their correlation is the highest. More specifically, the
CCA is calculated as follows:

ρi = max
ui
w,ui

y

corr(Wui
w, Y ui

y), (1)

CCA(W,Y ) =

k∑
i=1

ρi

k
(2)

where ρi represents the i-th canonical correlation coeffi-
cient, ui

w and ui
y are the vectors found by CCA that maximize



Fig. 3. Evolution of the Transformer layers of the pre-trained model and the
finetuned models using PWCCA between each layer and the output of the
feature encoder (CNN).

the canonical weights, and the final CCA is obtained with the
average. In our analysis, the matrices are represented by the
feature vectors at each timestep. We use a variant projection
weighted canonical correlation analysis (PWCCA) [31] that is
less sensitive to perturbation since it uses a weighted mean to
assign a higher weight to the correlation coefficients that have
more importance.

The PWCCA is calculated using the FT1 approach where
the feature encoder is frozen, and by using frames extracted
from the MusicNet dataset. Due to the high computational
effort, we take 4 seconds in the middle of each MusicNet
observation using half of the dataset size. Figure 3 shows
that the pre-trained model attempts to reconstruct the input
features (i.e. the output of the feature encoder) while the
similarity between the final layers of the finetuned models tend
to be lower than the pre-trained model. This confirms that the
evolution of the Transformer layers with respect to the feature
encoder output is the same in both the speech model (Pasad
et al. [30]) and the music model (this study), which is aligned
with the objective of wav2vec 2.0.

IV. DOWNSTREAM TASKS

The second research question in Section 1 asked whether
finetuning wav2vec 2.0 pre-trained on music data shows com-
petitive performance in downstream MIR tasks. The perfor-
mance of wav2vec 2.0 pre-trained on music data is evaluated
on pitch and instrument classification using the NSynth test
set and singing pitch classification using VocalSet [32]. The
model is compared with previous works as shown in Table I.

For instrument pitch classification, we use CREPE [33]
which is the best pitch classifier in the HEAR challenge [18],
SF NFNet-50 which is the best model in a comparison of audio
representations reported by Wang et al. [19], and features
extracted from wav2vec 2.0 pre-trained on LibriSpeech which
is fundamental to understanding the differences with wav2vec
2.0 pre-trained on music. All the models, except for CREPE,
are designed to learn general-purpose audio representations.

For instrument classification, we consider MuLaP [6] which
learns music representations by using weak supervision from
noisy language descriptors of the musical content, the work
of Favory et al. [34] that we call contextual tag embeddings
(CTE) where the learned audio representations are aligned
to music tags, SF NFNet-50 which is also the best model
for instrument classification in the same study from Wang et
al. [19], and the feature extracted from wav2vec 2.0 pre-trained
on LibriSpeech.

It should be noted that the models reported in Table I have
some differences that do not allow for direct comparisons
such as pre-training datasets, supervision strategies, hyper-
parameters, and strategies to use the learned features. However,
the choice of the above prior work models helps us to
contextualize the results obtained with wav2vec 2.0 pre-trained
on music.

The results in Table I show that pre-training wav2vec 2.0
on music shows comparable results with prior work and
improvement over wav2vec 2.0 pre-trained on speech. For
pitch classification, finetuning the entire wav2vec 2.0 pre-
trained on music achieves the best results together with
CREPE and it is the best model among the ones trained to
learn general-purpose audio representations. Also, extracting
features from the music model shows an 11% increase over the
speech embeddings, indicating that pre-training wav2vec 2.0
on music is the contributing factor to the observed performance
improvement. For instrument classification, wav2vec 2.0 pre-
trained on music is the second-best model after SF NFNet-50
and it shows better results than MuLaP and CTE. We also
observe that feature extraction of wav2vec 2.0 from the music
model has significant improvement over the speech model,
which confirms the positive contribution of the music data used
in the pre-training phase. An important aspect to consider is
that we pre-trained wav2vec 2.0 on a relatively smaller dataset
which still shows competitive results with the other approaches
that are pre-trained on larger datasets.

A. Singing Pitch Classification

For singing pitch classification we use VocalSet [32] which
consists of monophonic tracks of arpeggios, scales, long tones,
and melodic excerpts recorded by nine female and eleven
male professional singers. The dataset includes more than 10
hours of recordings, seventeen singing techniques, such as
fast, articulated forte, and speaking in rhythm and three music
excerpts 1) Row, Row, Row Your Boat, 2) Caro Mio Ben,
and 3) Dona Nobis Pacem. To evaluate pitch classification
on VocalSet we use the pitch labels created by Faghih and
Timoney [35]. They estimated pitch with pYIN [36] and
then manually corrected pYIN mistakes using 3 annotators.
Estimated pitch is reported with average F0, average standard
deviation F0, and median F0 and no significant pitch value
differences were found [35]. Therefore, we use the average
F0 as the ground truth. In addition, a total of 24.5% of the
recordings have been discarded due to singer mistakes [35].

Pitch detection consists of tracking a time-varying pitch.
Similarly to what we have done for the NSynth test set,



TABLE I
PERFORMANCE EVALUATION USING RAW PITCH ACCURACY (RP) ON VOCALSET AND CLASS ACCURACY ON NSYNTH TEST SET. THE RESULTS OF THE

BASELINE MODEL ARE TAKEN FROM [18]+ , [19]++ [6]+++

VocalSet NSynth Test Pre-Training Data
RP1/4 RP1/2 Pitch Instr. Type ≈Hours

w2v Music FE 39.1 49.7 76.0 49.0 Music 65
w2v Music FT1 44.5 64.2 82.0 70.0 Music 65
w2v Music FT2 67.1 86.2 90.0 75.0 Music 65
CREPE [33] 92.8 96.1 90.0+

SF NFNet-50 [19] 88.0++ 78.2++ Audio 5800
w2v Speech FE [15] 65.0+ Speech 960
w2v Speech FE [15] 35.0++ 40.2++ Speech 960
MuLaP [6] 71.7+++

CTE [34] 70.0+++ Music 562

we perform pitch classification instead of pitch detection.
Unlike NSynth, we do not have isolated note recordings so we
perform a segmentation step first by using the onset and offset
annotations of VocalSet provided by [35] to extract frames
where pitch variations are small. In addition, we consider only
frames labelled with ’Sound’ [35] i.e. frames where pitch is
present. This means that we ignore pitch transition frames and
unpitched frames. Onset and offsets locations are estimated
in 4 different ways but no statistically significant difference
was found [35] so we take the first approach called ‘extended
1’. Finally, we found that male singer 9 annotations were
also located beyond the duration of the audio tracks, so we
discarded tracks performed by this singer.

Singing pitch classification performance is evaluated using
raw pitch accuracy which measures the number of correct
predicted samples over the total number of samples within a
pitch error tolerance. Specifically, we use RP1/4 where correct
pitch estimates are the ones within a quarter tone from the
ground truth and RP1/2 where correct predictions are the ones
within a semitone from the ground truth. The output of the
proposed models is a class corresponding to the MIDI code
which is converted into Hz values to calculate performance. As
a baseline, we use CREPE [33] which is the best pitch classi-
fier in the HEAR challenge [18]. We take the average of all the
estimated pitches within the stationary segment extracted with
the onset and offset locations as described above. The results
in Table I suggest the same trend of the tasks evaluated on the
NSynth set above i.e., finetuning the whole network is better
than feature extraction or partial finetuning. The relevant gap
between RP1/2 and RP1/4 indicates that wav2vec models often
classify pitches that are a semitone away from the ground
truth. This means that mispredictions are not random and that
might be specifically related to the singing domain. The fact
that we pre-trained by only using instrumental classical music
might indicate why singing pitch classification might be less
robust than instrument pitch classification.

V. DISCUSSION & CONCLUSIONS

In this paper, our aim was to study the potential of wav2vec
2.0 for learning meaningful representations from music data.
We pre-trained wav2vec 2.0 on music data and evaluated the

model on pitch and instrument classification. We demonstrated
that wav2vec 2.0 encodes semantic meaning related to musical
concepts in the discrete latent representations and that the
Transformer layer behaviour is the same of the speech model.
We showed that finetuning wav2vec 2.0 pre-trained on music
has significant improvement over the original model pre-
trained on speech and other audio-representations models. We
posed the question: is wav2vec 2.0 pre-trained on music a
potential model for learning general-purpose music represen-
tations? Our results and analysis support further application of
wav2vec 2.0 with music pre-training for broader downstream
MIR tasks.

Specifically, we propose to extend these findings by per-
forming a direct comparison with the other models and ad-
dressing the following: (i) we pre-trained the model using a
small dataset which was sufficient for the questions addressed
in this paper but not for general-purpose audio representations
that require pre-training with much larger datasets; (ii) the
evaluation of the MIR task was conducted using monophonic
datasets (NSynth, VocalSet) so the generalization for down-
stream polyphonic tasks should be explored; (iii) a broader
mix of genres in the pre-trained dataset should be explored
as MusicNet includes Western classical music and also non-
Western music; (iv) the model hyperparameters were not
adjusted or optimized and may be better suited to speech than
to music; (iv) the model has been trained for a fixed number
of epochs due to GPU capacity constraints but more training
epochs can be used e.g. by monitoring the contrastive loss
with a validation set.
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