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We develop a modified CCZ4 formulation of the Einstein equations in dþ 1 spacetime dimensions for
general relativity plus a Gauss-Bonnet term, as well as for the most general parity-invariant scalar-tensor
theory of gravity up to four derivatives. We demonstrate well-posedness for both theories and provide full
expressions for their implementation in numerical relativity codes. As a proof of concept, we study the so-
called “stealth scalarization” induced by the spin of the remnant black hole after the merger. As in previous
studies using alternative gauges, we find that the scalarization occurs too late after the merger to impact the
tensor waveform, unless the parameters are finely tuned. Naively increasing the coupling to accelerate the
growth of the scalar field risks a breakdown of the effective field theory, and therefore well-posedness, as
the evolution is pushed into the strongly coupled regime. Observation of such an effect would therefore rely
on the detection of the scalar radiation that is produced during scalarization. This work provides a basis on
which further studies can be undertaken using codes that employ a moving-punctures approach to
managing singularities in the numerical domain. It is therefore an important step forward in our ability to
analyze modifications of general relativity in gravitational wave observations.
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I. INTRODUCTION

Gravitational waves from the mergers of compact objects
provide an opportunity to study the strong field, highly
dynamical regime of general relativity (GR) at higher
curvature scales than previous observations. While the
curvature scales accessed by current and planned gravita-
tional wave detectors are still well below those where GR is
expected to break down due to quantum effects, they
nevertheless represent an unexplored part of the parameter
space in which deviations could manifest [1–6]. In order to
properly test this, we need to understand what deviations
could look like in theories beyond GR.
The parameter space of modified theories is highly

constrained by a range of astronomical and cosmological
observations (see [6–9] for reviews). As discussed in [6],
there is no unique parametrization that maps between all
different observations and theories, but a well-motivated
one is based on the typical length scale of the curvature, for

example, as measured by the Kretschmann scalar of the
physical system. Using this parametrization, weaker gravity
scenarios like solar system constraints already rule out
modifications on larger scales associated with supermas-
sive black holes,1 but the regime of higher curvature
(smaller length ∼km) scales as probed by LIGO observa-
tions of black holes (BHs) and neutron stars are only just
beginning to be constrained [8,14–18].
Current waveforms are tested for consistency with GR by

measuring parametrized deviations to the merger, inspiral
and ringdown phases [19–23]. However, it is desirable to
obtain predictions for specific models to check whether such
parametrized deviations are well-motivated and consistent in
alternative theories beyond GR [1,15,24–28]. Such predic-
tions necessitate the use of numerical relativity for the
merger section of the signal in near equal mass cases.
Beyond GR theories also have implications for compact
objects such as neutron stars and boson stars, which can
undergo scalarization through mechanisms similar to the BH
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1This assumes that the effects of the modification are not
screened at such scales. Another interesting scenario is one in
which the modifications act at longer scales (in particular, they
can then provide dark energy models), but are screened in high
density regions within galaxies (see [7] for a review). Numerical
studies of such mechanisms are challenging due to the difference
in length scales involved but have produced interesting results in
recent years about the effectiveness of the mechanism beyond
static, spherical configurations; see [10–13].
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case (e.g., the recent works [29,30]; see [31] for a review of
earlier work).
Lovelock’s theorem states that GR is the unique four-

dimensional, local, second derivative theory for a massless
spin-2 field [32–34]. Therefore modifications to GR require
one of these “pillars” to be broken. From a minimal
perspective, one might consider the addition of higher
derivatives of the metric to be the most well-motivated. In
pure gravity, after considering field redefinitions, the
leading correction to GR starts at six or eight derivatives
[35]. Such theories of gravity have equations of motion
greater than second order, and it is not yet understood how
to obtain well-posed formulations that capture the physics
of interest, despite some recent progress [36–40]. The
property of well-posedness guarantees that, given some
suitable initial data, the solution to the equations of motion
exists, is unique and depends continuously on the initial
data. It is thus a necessary (but not necessarily sufficient)
condition to be able to simulate the theory on a computer
and extract waveforms that can then be compared to the
predictions of GR. Nontrivial modifications in pure gravity
that maintain second order equations of motion, and admit
well-posed formulations, can be found by going to higher
dimensions—for example, in the dþ 1 dimensional
Lovelock theory of GR plus a Gauss-Bonnet term [34].
Problems with well-posedness also afflict formulations of
massive gravity and nonlocal, Lorentz violating theories
such as Einstein-Aether, although some pioneering work is
tackling these possibilities [41,42].
From the perspective of numerical, time-domain studies

of GR modifications, one of the simplest modifications is
the addition of an additional scalar degree of freedom.
Some theories can be mapped to GR plus a minimally
coupled scalar by a rescaling (going from the Jordan to the
Einstein frame), and these clearly admit a well-posed
formulation. However, in the absence of an additional
mechanism to excite the scalar field, they lack any

distinctive features that would distinguish them from GR
(since their stationary black hole solutions are those of
Kerr). That is, the solutions have “no hair.” More general
four-derivative scalar-tensor theories (from the wider class
of Horndeski models [43]) may give rise to hairy solutions
but have lacked well-posed formulations until relatively
recently. Work has been done using order-reduced methods
that evolve the scalar equation of motion on a fixed GR
background [24,44–52] and hence, do not have any well-
posedness issues, as long as a certain regularity in the
background metric is satisfied.2 Such simulations can
provide an estimate of the scalar dynamics and associated
energy losses but may miss information about the fully
nonlinear impact the metric and potentially suffer from the
accumulation of secular errors over long inspirals. Despite
their limitations, these studies put initial constraints on the
coupling from the merger signal and have identified many
interesting effects such as dynamical descalarization [49],
and so-called “stealth scalarization” [46], in which the
spinning remnant of the merger induces a growth in the
scalar field; see Fig. 1.3

Progress in simulating the full scalar-tensor theory, includ-
ing backreaction effects (but limited to the weak-coupling
regime),wasmadepossiblebyKovácsandReall,whoshowed
that these theories are indeedwell-posed in amodified version
of the harmonic gauge [54,55]. Subsequently, studies of some
specific scalar-tensor theories within these classes have been
probed in their highly dynamical and fully nonlinear regimes
[56–59]. These studies have probed the limits of the hyper-
bolicity of the theory in themodified gauge, the stability of the

FIG. 1. Fully nonlinear Stealth scalarization: here, we show the time evolution of the scalar cloud after the merger for Einstein-scalar-
Gauss-Bonnet theory with exponential quadratic coupling [see Eq. (65)] on the rotation plane (upper row) and on a section orthogonal to
it (lower row). The color indicates the contribution of the kinetic and gradient terms to the energy density of the scalar. The dotted black
lines denote the location of the apparent horizon. We see that the scalar cloud grows by extracting spin from the remnant and stabilizes
with a density that is high compared to the curvature scale of the BH.

2In particular, the conformal metric is required to be at least C3
in order to set up an asymptotically regular structure at Iþ [53].
This is especially relevant to physical situations involving shocks,
e.g., in neutron star mergers, where this condition can fail.

3These works typically neglect the four-derivative scalar term,
which we see from our work is justified since it is always
subdominant to the effect of the Gauss-Bonnet term.
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hairyBHsolutions, and their imprint on thegravitationalwave
signal in mergers. They have shown that current post-
Newtonian theory is not sufficient to model the dephasing
of the gravitational wave signal in the last few orbits [59].
However, the work is still in the early stages of development
and some questions remain unanswered. In particular, recent
work in the spherically symmetric case has shown that there is
stronggeodesic focusing that is independentof thegauge [60],
but in the general case, it is not always clear whether a
breakdown inhyperbolicity is due to thegaugeor to a problem
with the predictivity of the theory.4 Instabilities in evolving
unequal mass cases to the merger using modified generalized
harmonic coordinates with excision have also been encoun-
tered, and these do not appear to relate to a loss of hyper-
bolicity but to other numerical issues [59]. As wewill discuss
in this work, our own method requires some tuning of the
parameters to achieve stability, and it may require further
experimentation before the methods become as well devel-
oped and stable as the existing GR formulations.5

Generalized harmonic coordinates (GHC) give a mani-
fest wavelike structure to the equations, but their practical
implementation in numerical simulations necessitates exci-
sion. The latter, while conceptually straightforward, can be
difficult to implement in practice. As a consequence, many
groups in the numerical relativity community have opted
to use singularity avoiding coordinates such as the BSSN
[63–65], Z4C [66,67] or CCZ4 [68,69] formulations in the
puncture gauge [70,71], which do not require the excision
of the interior of black holes from the computational
domain. The extension of the results of [54,55] to singu-
larity avoiding coordinates would allow such groups to
generate waveforms in these models. It would also give an
alternative gauge in which to probe questions of hyper-
bolicity and may offer advantages for the unequal mass
issues found in [59] (as we plan to test in future work).
In this paper we extend and generalize the results of our

previous Letter [72], in which we modified the CCZ4
formulation of the Einstein equations together with the 1þ
log slicing [73] and Gamma-driver [74] gauge conditions
and showed that the most general parity-invariant scalar-
tensor theory of gravity up to four derivatives (4∂ST) was
well-posed and permitted a stable numerical evolution in
singularity avoiding coordinates. In particular, we extend
those results to dþ 1 spacetime dimensions and give further
details on the derivation and numerical implementation of
thewell-posed formulation.Wealso treat the case of pureGR
with a Gauss-Bonnet term in higher dimensions, for which
the same approach is effective.

The article is organized as follows: In Sec. II, we set out
the modified CCZ4 formulation for the pure GR case with
general matter source terms. This allows us to define the
auxiliary metrics required, specify the constraint damping
conditions and write down the dþ 1 decomposition and the
modified gauge evolution. We then show that this system
remains well-posed. In the following sections, we extend
the analysis in [72] to two cases of modified theories of
gravity:

(i) In Sec. III, we detail the case of adding a Gauss-
Bonnet term to the usual Einstein-Hilbert Lagran-
gian in dþ 1 dimensions (with d > 3).

(ii) In Sec. IV, we treat the case of an additional scalar
degree of freedom in 4∂ST.

In both cases, the modifications to the GR case can be
accounted for by effective matter source terms—taking the
place of the energy, momentum and stress density terms in
the GR case—but which are not true matter terms but rather
specific functions of the curvature quantities. The specific
form of these terms is nontrivial to write down and not
particularly enlightening, and so we give this in the
appendices, along with some implementation details
regarding the need to invert matrices to obtain certain
components in the evolution equations. In the main text, we
provide an analysis to confirm that the well-posedness of
the equations is not spoiled by the additional terms in a
suitable weakly coupled regime. In Sec. V, we show
selected results of simulations in the second case of
4∂ST, demonstrating in particular that different functional
forms for the coupling remain well behaved. We conclude
in Sec. VI.
We follow the conventions in Wald’s book [75]. Greek

letters μ; ν… denote spacetime indices, and they run from
0 to d; Latin letters i; j;… denote indices on the spatial
hypersurfaces, and they run from 1 to d. We setG ¼ c ¼ 1.

II. MODIFIED CCZ4 FORMULATION

In this section, we describe in detail the modified CCZ4
formulation that we use and its derivation for (dþ 1)-
dimensional Einstein gravity (i.e., GR without modifica-
tions) with a general matter source:

I ¼ 1

2κ

Z
ddþ1x

ffiffiffiffiffiffi
−g

p
Rþ Imatter; ð1Þ

where κ ¼ 8πG. In order to write the equations in full
generality, we include an arbitrary stress tensor in the right-
hand side (rhs) of the Einstein equations.

A. Introduction of auxilliary metrics
of the modified gauge

The equations of motion (EOMs) that follow from
varying (1) in the modified harmonic gauge introduced
by [54,55] and supplemented by constraint damping terms
are given by:

4Recently, [61] has suggested that adding extra interactions
between the scalar field and the spacetime curvature can
ameliorate the loss of hyperbolicity in certain situations.

5An alternative to simulating the full theory that has seen
recent success is so-called “fixing” of the equations of motion,
where the UV behavior of the equations is explicitly modified;
see, for example, [13,36,38–40,62].
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Rμν −
1

2
Rgμν þ 2P̂α

βμν∇βZα

− κ1

�
2nðμZνÞ þ

�
d − 3

2þ bðxÞ þ
d − 1

2
κ2

�
nαZαgμν

�
¼ κTμν; ð2Þ

where P̂α
βμν ¼ δðμα ĝνÞβ − 1

2
δβαĝμν, Zμ is the vector of con-

straints, and ĝμν and g̃μν are two auxiliary Lorentzian
metrics whose null cones do not intersect with each other
and lie outside the light cone of gμν. As shown in [55], this
can be achieved by setting

g̃μν ¼ gμν − aðxÞnμnν; ĝμν ¼ gμν − bðxÞnμnν; ð3Þ

with aðxÞ and bðxÞ being two functions that satisfy
0 < aðxÞ < bðxÞ, 0 < bðxÞ < aðxÞ or −1 < aðxÞ < 0 <
bðxÞ, but are otherwise arbitrary, and nμ is the unit (with
respect to gμν) normal to surfaces of constant x0. In the
modified harmonic gauge, the spacetime coordinates xμ are
fixed by imposing

Zμ ≡ −
1

2
ðHμ þ g̃ρσΓμ

ρσÞ ¼ 0; ð4Þ

where Hμ are the source functions, which can be freely
chosen. These choices determine the gauge in that formu-
lation, and it amounts to specifying evolution equations for
the lapse and shift, which are derived below.

B. d + 1 decomposition

We now consider the usual dþ 1 decomposition of
spacetime metric:

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð5Þ

where α and βi are the lapse function and shift vector,
respectively. In these coordinates, the unit timelike vector
normal to the t≡ x0 ¼ const hypersurfaces is given by
nμ ¼ 1

α ðδμt − βiδμi Þ. The spatial indices are raised and low-
ered with the physical spatial metric γij. We also apply the
usual conformal decomposition of the evolution variables,

χ ¼ detðγijÞ−1
d; ð6Þ

γ̃ij ¼ χγij; ð7Þ

Ãij ¼ χ

�
Kij −

1

d
γijK

�
; ð8Þ

Γ̂i ¼ Γ̃i þ 2γ̃ijZj; ð9Þ

where Γ̃i ≡ γ̃klΓ̃i
kl, Γ̃i

kl are the Christoffel symbols associated
to the conformal spatial metric γ̃ij,

6 and Kij ¼ − 1
2
Lnγij is

the extrinsic curvature of the spatial slices, and K is its trace.
The dþ 1 decomposition of the vector of constraints Zμ

is given by [68,69]:

Θ ¼ Z0 ¼ 1

2

�
H⊥ þ K þ 1

α2
ð1þ aðxÞÞ∂⊥α

�
; ð10aÞ

Zi ¼−
1

2

�
HiþΓi−

1þaðxÞ
α

�
Diαþ

γij
α
∂⊥βj

��
; ð10bÞ

where we use the shorthand notation ∂⊥ ≡ ∂t − βi∂i, Γk
ij are

the Christoffel symbols of the spatial metric γij and

Γi ≡ γijγ
klΓj

kl. Note that only the function aðxÞ appears
in the components of the vector of constraints (10); this will
be important in identifying the constraint violating modes
when we analyze the hyperbolicity of the evolution
equations in the following sections.
We consider the usual decomposition of the energy

momentum tensor of the matter,

ρ ¼ nμnνTμν; Ji ¼ −nμγνi Tμν; Sij ¼ γμi γ
ν
jTμν:

ð11Þ

In the case of a massless scalar field with stress tensor,7

Tϕ
μν ¼ ð∇μϕÞð∇νϕÞ −

1

2
ð∇ϕÞ2gμν; ð12Þ

where ð∇ϕÞ2 ¼ gμνð∇μϕÞð∇νϕÞ, we get

ρϕ ¼ 1

2
ðK2

ϕ þ ð∂ϕÞ2Þ; ð13aÞ

Jϕi ¼ Kϕ∂iϕ; ð13bÞ

Sϕij ¼ð∂iϕÞð∂jϕÞ þ
1

2
γijðK2

ϕ − ð∂ϕÞ2Þ; ð13cÞ

with ð∂ϕÞ2 ¼ γijð∂iϕÞð∂jϕÞ and Kϕ ¼ − 1
α ∂⊥ϕ.

The resulting dþ 1 form of the Einstein field equations
coupled to matter is

6The conformal spatial metric γ̃ij is unrelated to the auxiliary
spacetime metric g̃μν defined in (3).

7Note that we have considered the coupling of gravity to the
scalar field as in the canonical Horndeski Lagrangian, which
differs from the normalization used in [56].
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∂⊥γ̃ij ¼ −2αÃij þ 2γ̃kði∂jÞβk −
2

d
γ̃ij∂kβ

k; ð14aÞ

∂⊥χ ¼ 2

d
χðαK − ∂kβ

kÞ; ð14bÞ

∂⊥K ¼ −DiDiαþ α½Rþ 2DiZi þ KðK − 2ΘÞ� − dκ1ð1þ κ2ÞαΘþ κα

d − 1
½S − dρ�

−
dαbðxÞ

2ðd − 1Þð1þ bðxÞÞ
�
R − ÃijÃ

ij þ d − 1

d
K2 − ðd − 1Þκ1ð2þ κ2ÞΘ − 2κρ

�
; ð14cÞ

∂⊥Θ ¼ α

2

�
R − ÃijÃ

ij þ d − 1

d
K2 þ 2DiZi − 2ΘK

�
− ZiDiα −

κ1
2
ðdþ 1þ ðd − 1Þκ2ÞαΘ − καρ

−
bðxÞ

1þ bðxÞ
�
α

2

�
R − ÃijÃ

ij þ d − 1

d
K2

�
−
κ1
2

�
d − 3

2þ b
þ dþ 1þ ðd − 1Þκ2

�
αΘ − καρ

�
; ð14dÞ

∂⊥Ãij ¼ α½ÃijðK − 2ΘÞ − 2ÃikÃ
k
j� þ 2Ãkði∂jÞβk þ χ½αðRij þ 2DðiZjÞ − κSijÞ −DiDjα�TF −

2

d
ð∂kβkÞÃij; ð14eÞ

∂⊥Γ̂i ¼ 2α

�
Γ̃i

klÃ
kl −

d − 1

d
γ̃ij∂jK −

d
2χ

Ãij
∂jχ

�
− 2Ãij

∂jα − Γ̂j
∂jβ

i þ 2

d
Γ̂i
∂jβ

j

þ d − 2

d
γ̃ik∂k∂jβ

j þ γ̃jk∂j∂kβ
i þ 2αγ̃ij

�
∂jΘ −

1

α
Θ∂jα −

2

d
KZj

�

− 2κ1αγ̃
ijZj − 2καγ̃ijJj −

2αbðxÞ
1þ bðxÞ

�
D̃jÃ

ij −
�
d − 1

d

�
γ̃ij∂jK −

d
2χ

Ãij
∂jχ

þ γ̃ij
�
∂jΘ −

1

d
KZj

�
− ÃijZj − κ1γ̃

ijZj − κγ̃ijJj

�
: ð14fÞ

Setting bðxÞ ¼ 0 and d ¼ 3 in (14), we recover the
equations in [76].
In the case of a massless scalar field coupled to GR, we

would also have the corresponding equation of motion for
the scalar field

□ϕ ¼ 0: ð15Þ
This equation can be written as two first order (in time)
equations for the scalar field ϕ and its curvature Kϕ; in the
dþ 1 decomposition of the spacetime metric (5), they are
given by

∂⊥ϕ ¼ −αKϕ; ð16aÞ

∂⊥Kϕ ¼ αð−DiDiϕþ KKϕÞ − ðDiϕÞDiα: ð16bÞ

C. Gauge evolution equations

Recall that the choice of source functions Hi and H⊥,
which is completely free, results in the evolution equations
for the gauge variables. For instance, in the standard GR
case, i.e., aðxÞ ¼ bðxÞ ¼ 0, by choosing

H⊥ ¼ ð2Θ − KÞ
�
1 −

2

α

�
; ð17aÞ

Hi ¼
Diα

α
þ d − 2

2
∂iχ þ Γ̂i

�
d

2ðd − 1Þα2 − χ

�
; ð17bÞ

the conditions Θ ¼ 0 and Zi ¼ 0 in (10a)–(10b) lead to
the usual 1þ log slicing and the (integrated) Gamma-
driver evolution equations for the lapse and the shift
respectively,8

∂⊥α ¼ −2αðK − 2ΘÞ; ð18aÞ

∂tβ
i ¼ βj∂jβ

i þ d
2ðd − 1Þ Γ̂

i; ð18bÞ

8The integrated Gamma-driver equation (18b) contains an
integration constant that we did not include. If the initial data is
not conformally flat, one has to take this constant into account to
obtain smooth coordinates throughout the evolution. See, for
instance, [77,78] for examples where this is important.
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where the factor d
2ðd−1Þ in (18b) comes from imposing that

the shift propagates at the speed of light in the asymptotic
region.9 However, this gauge is not adequate for our
purposes since it does not have any dependency on the
function aðxÞ, and hence, it does not take advantage of the
corresponding auxiliary metric that we have introduced. As
we shall show in Sec. II E, the function aðxÞ plays a crucial
role in the proof of strong hyperbolicity in the modified
theories of gravity that we consider. A suitably modified
version of the 1þ log slicing and Gamma-driver equa-
tions (18) can be found by the choice of source functions in
(17) and setting to zero the constraints (10) with aðxÞ ≠ 0.
The resulting modified gauge evolution equations become

∂⊥α ¼ −
2α

1þ aðxÞ ðK − 2ΘÞ; ð19aÞ

∂⊥βi ¼
d

2ðd − 1Þ
Γ̂i

1þ aðxÞ −
aðxÞα

1þ aðxÞD
iα: ð19bÞ

Equations (14), (19) together with (16), provide the
closed system of evolution equations whose hyperbolicity
we will analyze in Sec. II E.

D. Constraint damping

We have included constraint damping terms
[68,69,79,80] in the Einstein equation (2). One can recover
the usual CCZ4 equations [68,69] by considering the trace-
reversed version of (2) and setting ϕ ¼ aðxÞ ¼ bðxÞ ¼ 0.
By analyzing the propagation of the constraint violating
modes around Minkowski space as in [79], we obtain the
bounds

κ1 > 0; κ2 > −
2

2þ bðxÞ ; ð20Þ

which guarantee that constraint violating modes are expo-
nentially suppressed (around Minkowski space). In this
section, we give the details of the calculation of these
bounds, so the impatient reader can skip this subsection.
Note that the bðxÞ term appearing in Eq. (2) has been

manually inserted so that the bound on κ2 does not depend
on d. Taking the divergence of (2), one gets

□Zμ þ RμνZν − κ1∇νð2nðμZνÞ þ κ̂2gμνnρZρÞ
¼ ∇ν½bðxÞð2nβnðμδανÞ∇βZα − nμnν∇ρZρÞ�; ð21Þ

where we have defined κ̂2 ¼ d−3
2
þ d−1

2
κ2 as a shorthand

notation. Now, linearizing around a background solution

gð0Þμν such that Rð0Þ
μν ¼ 0 and Zð0Þ

μ ¼ 0 and going to a frame

where nμ ¼ ð1; 0;…; 0Þ without loss of generality,
one gets

ð□ − bðxÞ∂2t ÞZ0 − κ1½ð2þ κ̂2Þ∂tZ0 − ∂
iZi� ¼ 0; ð22aÞ

ð□ − bðxÞ∂2t ÞZi − κ1ð∂tZi þ κ̂2∂iZ0Þ ¼ 0: ð22bÞ

Then, using a plane-wave ansatz Zμ ¼ estþikixi Ẑμ, we are
led to the following eigenvalue problem

0
B@

ξ − κ1ð1þ κ̂2Þs iκ1k 0

−iκ1κ̂2k −ξ 0

0 0 −ξ

1
CA
0
B@

Ẑ0

Ẑn

ẐA

1
CA ¼ 0; ð23Þ

where ξ ¼ −s2ð1þ bðxÞÞ − k2 − κ1s, Ẑn is the component
of Ẑi in the direction of ki, and ẐA are the components
orthogonal to ki.
The eigenvalues for ẐA are given by

s ¼ −κ1
2ð1þ bðxÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
κ1

2ð1þ bðxÞÞ
�

2

−
k2

1þ bðxÞ

s
; ð24Þ

while the corresponding eigenvalues for Ẑ0 and Ẑn are
more complicated and can be found by setting to zero the
determinant of the upper-left block of the matrix in (23),
which yields the following quartic polynomial equation,

ðð1þ bðxÞÞs2 þ k2Þ2 þ κ21ð−k2κ̂2 þ s2ð2þ κ̂2ÞÞ
þ κ1sðð1þ bðxÞÞs2 þ k2Þð3þ κ̂2Þ ¼ 0: ð25Þ

For the special case κ̂2 ¼ 0, they take the simple form

s ¼ −
κ1

1þ bðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

κ1
1þ bðxÞ

�
2

−
k2

1þ bðxÞ

s
: ð26Þ

In this case, one has that for large wavenumbers, k ≫ κ1,

s ≈ −
κ1

1þ bðxÞ �
ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bðxÞp ;

s ≈ −
κ1

2ð1þ bðxÞÞ �
ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bðxÞp ; ð27Þ

while for small wavenumbers, k ≪ κ1, we get

s≈−
κ1

1þbðxÞ ; −
k2

κ1
; −

2κ1
1þbðxÞ ; −

k2

2κ1
; ð28Þ

Clearly from (26), the real part is always negative, and
hence, these modes are always damped. We have verified
that the eigenvalues for Ẑ0 and Ẑn are undamped for
κ̂2 < − 2

2þbðxÞ; for κ̂2 ¼ − 2
2þbðxÞ, they also have a simple

form, namely

9This factor is a gauge choice and in some instances, e.g.,
higher dimensions, other choices may be more convenient for
numerical stability.
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s ¼ � ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bðxÞp ; ð29Þ

s ¼ −
ð4þ 3bðxÞÞκ1

2ð1þ bðxÞÞð2þ bðxÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

bðxÞκ1
2ð2þ bðxÞÞð1þ bðxÞÞ

�
2

−
k2

1þ bðxÞ

s
; ð30Þ

and hence, they are undamped for all values of ki.
Therefore, we conclude that damping occurs for κ1 > 0

and κ̂2 > − 2
2þbðxÞ, which implies that κ2 > − 2

2þbðxÞ.

E. Hyperbolicity analysis

In this section, we prove the strong hyperbolicity of the
dþ 1 Einstein-scalar-field equations in the same way as in
[76]. We start by writing the principal part of the equations.
For this purpose, we need to introduce an orthonormal d-
bein (triad in d ¼ 3) consisting of a unit covector ξi, such
that ξiγijξj ¼ 1, and unit vectors eiA with A ¼ 1;…; d − 1

such that ξieiA ¼ 0 and eiAγije
j
B ¼ δAB. Then, keeping the

highest derivative terms in the equations (14), (16) and
(19), and replacing ∂μ → iξμ ≡ iðξ0; ξiÞ,10 we obtain the
system

iξ0U ¼ MðξkÞU; ð31Þ

where U is a 2ð3dþ 2Þ-dimensional vector accounting for
the principal part of the CCZ4 variables plus the scalar field
ϕ and its curvature Kϕ, where we have taken into account
the constraints detðγ̃ijÞ ¼ 1 and TrðÃijÞ ¼ 0. Explicitly, the
principal part (31) for the Einstein-scalar-field system in
our gauge is given by

iξ̌0 ˆ̃γij ¼ 2iγ̃kðiξjÞβ̂
k − 2α ˆ̃Aij −

2i
d
γ̃ijξkβ̂

k; ð32aÞ

iξ̌0χ̂ ¼ 2

d
χðαK̂ − iξkβ̂

kÞ; ð32bÞ

iξ̌0ϕ̂ ¼ −αK̂ϕ; ð32cÞ

iξ̌0K̂ ¼ α̂þ iαχξi
ˆ̂Γi − α

�
d − 1

χ
χ̂ −

γ̃jk ˆ̃γjk
2

�

þ bðxÞdα
2χðd − 1Þð1þ bðxÞÞ ðξ

lξk ˆ̃γkl − γ̃jk ˆ̃γjk

þ ðd − 1Þχ̂Þ; ð32dÞ

iξ̌0K̂ϕ ¼ αϕ̂; ð32eÞ

iξ̌0Θ̂ ¼ −
α

2

�
d − 1

χ
χ̂ −

γ̃ij ˆ̃γij
2

�
þ iαχξi

ˆ̂Γi

2

þ bðxÞα
2χð1þ bðxÞÞ ðξ

lξk ˆ̃γkl − χγ̃jk ˆ̃γjk

þ ðd − 1Þχ̂Þ; ð32fÞ

iξ̌0
ˆ̃Aij ¼

�
ξiξj −

1

d

γ̃ij
χ

��
χα̂ −

ðd − 2Þα
2

χ̂

�

þ iαχ

�
γ̃kðiξjÞ

ˆ̂Γk −
γ̃ijξk

ˆ̂Γk

d

�

þ 1

2
α

�
ˆ̃γij −

1

d
γ̃ijγ̃

kl ˆ̃γkl

�
; ð32gÞ

iξ̌0
ˆ̂Γi ¼ 2iαξi

χ

�
Θ̂ −

d − 1

d
K̂

�
−
1

χ

�
β̂i þ d − 2

d
ξiξlβ̂

l

�

−
2iαbðxÞ
1þ bðxÞ

�
ξi

χ

�
Θ̂ −

d − 1

d
K̂

�
þ ξj

ˆ̃A
ij
�
; ð32hÞ

iξ̌0α̂ ¼ −
2α

1þ aðxÞ ðK̂ − 2Θ̂Þ; ð32iÞ

iξ̌0β̂
i ¼ d

2ðd − 1Þ
ˆ̂Γi þ aðxÞ

1þ aðxÞ
�

d
2ðd − 1Þ

ˆ̂Γi − iαξiα̂

�
;

ð32jÞ

where ξ̌0 ¼ ξ0 − βiξi and the hat ˆ denotes the background
values of the corresponding variables.
In the following, we use the notation ⊥ to denote the

contraction of any tensor Ti with the normal covector ξi,
e.g., T⊥ ¼ Tiξi; therefore, γ̂⊥⊥ ¼ γ̂ijξ

iξj and so on.
Similarly, upper case Latin indices are defined by con-
tractions with the components of the d-bein; for instance,
γ̂AB ¼ γ̂ijeiAe

j
B and analogously for the other variables.

Having introduced the notation, we can now decompose the
principal part of the equations (32) into a scalar, vector and
traceless tensor blocks depending on how they transform
with respect to transformations of the d-bein vectors eiA.
The tensor block is given by

iξ̌0 ˆ̃γ
TF
AB ¼ −2α ˆ̃ATF

AB; ð33aÞ

iξ̌0
ˆ̃A
TF
AB ¼ α

2
ˆ̃γTFAB; ð33bÞ

with eigenvalues ξ̌0 ¼ �α. Note that this block is
unchanged with respect to the GR case in standard puncture
gauge.
The vector block is

iξ̌0 ˆ̃γ⊥A ¼ iχβ̂A − 2α ˆ̃A⊥A; ð34aÞ
10Note that this i factor differs from the conventions in [76];

here, we follow the conventions of [54,55].
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iξ̌0
ˆ̃A⊥A ¼ α

2
ˆ̃γ⊥A þ iαχ2

2
ˆ̂ΓA; ð34bÞ

iξ̌0β̂A ¼ d
2ðd − 1Þð1þ aðxÞÞ

ˆ̂ΓA; ð34cÞ

iξ̌0
ˆ̂ΓA ¼ −

1

χ
β̂A −

2ibðxÞα
χ2ð1þ bðxÞÞ

ˆ̃A⊥A; ð34dÞ

with eigenvalues ξ̌0 ¼ � αffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p and �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þχð1þaðxÞÞ

q
.

These eigenvalues are degenerate for α2χ ¼ d
2ðd−1Þ

1þbðxÞ
1þaðxÞ,

which can be avoided if we choose bðxÞ > d−2
d þ 2ðd−1ÞaðxÞ

d
given the ranges of α and χ. This degeneracy reduces to the
one already present in the standard CCZ4 formulation of
GR when aðxÞ ¼ bðxÞ ¼ 0, which does not cause problems
in practical applications. The same appears to happen in our
new formulation. Therefore, in practice, we can replace this

constraint by bðxÞ ≠ d−2
d þ 2ðd−1ÞaðxÞ

d so as to avoid the
degeneracy at spatial infinity.
Finally, the scalar block is

iξ̌0 ˆ̃γ⊥⊥ ¼ 2iðd − 1Þ
d

χβ̂⊥ − 2α ˆ̃A⊥⊥; ð35aÞ

iξ̌0χ̂ ¼ 2

d
χðαK̂ − iβ̂⊥Þ; ð35bÞ

iξ̌0ϕ̂ ¼ −αK̂ϕ; ð35cÞ

iξ̌0K̂ ¼ α̂þ iαχ ˆ̂Γ⊥ þ α

2χ
ð ˆ̃γ⊥⊥ þ ˆ̃γABδ

ABÞ − α

d − 1

χ̂

χ

−
bðxÞdα

2χð1þ bðxÞÞ
�

1

d − 1
ˆ̃γABδ

AB − χ̂

�
; ð35dÞ

iξ̌0K̂ϕ ¼ αϕ̂; ð35eÞ

iξ̌0Θ̂ ¼ i
2
αχ ˆ̂Γ⊥ þ α

4χ
ð ˆ̃γ⊥⊥ þ ˆ̃γABδ

ABÞ − ðd − 1Þα
2

χ̂

χ

−
αbðxÞ

2ð1þ bðxÞÞχ ð
ˆ̃γABδ

AB − ðd − 1Þχ̂Þ; ð35fÞ

iξ̌0
ˆ̃A⊥⊥ ¼ d − 1

d
χα̂ −

ðd − 1Þðd − 2Þα
2d

χ̂ þ i
ðd − 1Þα

d
χ2 ˆ̂Γ⊥

−
α

2d
ð ˆ̃γABδAB − ðd − 1Þ ˆ̃γ⊥⊥Þ; ð35gÞ

iξ̌0α̂ ¼ −
2α

1þ aðxÞ ðK̂ − 2Θ̂Þ; ð35hÞ

iξ̌0β̂
⊥ ¼ d

2ðd − 1Þð1þ aðxÞÞ
ˆ̂Γ⊥ −

iaðxÞ
1þ aðxÞ αα̂; ð35iÞ

iξ̌0
ˆ̂Γ⊥ ¼ 2iα

χ

�
Θ̂ −

d − 1

d
K̂

�
−
2ðd − 1Þ

d
1

χ
β̂⊥

−
2iαbðxÞ

χð1þ bðxÞÞ
�
Θ̂ −

d − 1

d
K̂ þ 1

χ
ˆ̃A⊥⊥

�
; ð35jÞ

with eigenvalues ξ̌0 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χð1þaðxÞÞ

p ;�
ffiffiffiffiffiffiffiffiffiffiffi

2α
1þaðxÞ

q
;�α and

� αffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p , with the last pair of multiplicity 2. The

eigenvalues degenerate for α ¼ 1
2χ, α2 ¼ 1þbðxÞ

χð1þaðxÞÞ and

α ¼ 2ð1þbðxÞÞ
1þaðxÞ , which do not spoil the hyperbolicity of the

system as long as aðxÞ ≠ bðxÞ, so that again we avoid
degeneracy at spatial infinity.11

To summarize, the constraints on the functions aðxÞ and
bðxÞ that guarantee the hyperbolicity of the system are

0<bðxÞ≠d−2

d
þ2ðd−1ÞaðxÞ

d
and

8>><
>>:
−1<aðxÞ<0

or

0<aðxÞ<bðxÞ
or

aðxÞ≠1þ2bðxÞ and 0<bðxÞ<aðxÞ: ð36Þ

Following [54,55], we can classify the eigenvalues into
three types12:

(i) Physical eigenvalues: ξ̌0 ¼ �α with multiplicity d,
consisting of the 2ðd − 1Þ polarizations of the
gravitational field plus the additional two polar-
izations from the scalar field.

(ii) “Gauge-condition violating” eigenvalues: ξ̌0 ¼
�

ffiffiffiffiffiffiffiffiffiffiffi
2α

1þaðxÞ
q

;� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χð1þaðxÞÞ

p and �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þχð1þaðxÞÞ

q
, with

the last pair of multiplicity d − 1.
(iii) “Pure-gauge” eigenvalues: ξ̌0 ¼ � αffiffiffiffiffiffiffiffiffiffiffi

1þbðxÞ
p with

multiplicity dþ 1.
Their corresponding eigenvectors have been explicitly
written in Appendix A. Clearly the eigenvalues are real
[recall that in all cases, aðxÞ > −1 and bðxÞ > 0], they
smoothly depend on ξi, and so do corresponding eigen-
vectors. Hence, we conclude that M is diagonalizable.
Moreover, the propagation of the constraints (see
Appendix B) is strongly hyperbolic, showing that if they
are satisfied at the initial time, they will continue to be
satisfied at future times. Therefore, we have proved that the
system is strongly hyperbolic and, thus, well-posed. In the
following two sections, we extend this well-posedness
result to certain modified theories of gravity.

11We note that while for α2 ¼ 1
χð1þaðxÞÞ, some of the eigenvalues

coincide, the corresponding eigenvectors remain distinct, and
hence, there is no degeneracy in this case.

12Note that the plus and minus signs of ξ̌0 correspond to the
ongoing and outgoing modes.
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III. EINSTEIN-GAUSS-BONNET
THEORY OF GRAVITY

In this section, we consider Einstein-Gauss-Bonnet grav-
ity, which is a Lovelock theory, in a (dþ 1)-dimensional
spacetime ðM; gμνÞ, with d > 3. The action for this theory is
given by [81]

S ¼ 1

2κ

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ðRþ λGBLGBÞ; ð37Þ

where λGB is the coupling constant of the theory and

LGB ¼ R2 − 4RμνRμνþ þ RμνρσRμνρσ ð38Þ

is theGauss-Bonnet term.Weview (37) as a low energy EFT
of gravity, with the Gauss-Bonet term being the first
correction in an otherwise infinite series; therefore, we will
demand that it has to be suitably small compared to the
Einstein-Hilbert term. This holds in the weakly coupled
regime, which is defined by

L ≫
ffiffiffiffiffiffiffiffiffi
jλGB

q
j; ð39Þ

where L is any characteristic length scale of the system
associated to the spacetime curvature.
The EOMs that follow from varying (37) supplemented

with our modified harmonic gauge fixing terms as well as
constraint damping terms are given by

Rμν −
1

2
Rgμν þ 2P̂α

βμν∇βZα

− κ1

�
2nðμZνÞ þ

�
d − 3

2þ bðxÞ þ
d − 1

2
κ2

�
nαZαgμν

�
¼ λGBHμν; ð40Þ

where

Hμν ¼ −2ðRRμν − 2RμαRα
ν − 2RαβRμανβ

þ Rμ
αβγRναβγÞ þ

1

2
gμνLGB: ð41Þ

In practice, Hμν can be thought of as an effective stress-
energy tensor, and we treat it as such in the dþ 1
decomposition. The explicit form of the contributions of
Hμν to the stress-energy tensor in dþ 1 form can be found
in Appendix C, along with implementation details of the
evolution equations.
For d ¼ 3, the symmetry properties of the curvature

tensor imply that the equations of motion (40) reduce to the

standard Einstein equations in vacuum [55], so this theory
is only different from GR for d > 3. In this section, we will
explicitly prove well-posedness of (40) in our formulation
for d ¼ 4 and in the weakly coupled regime (39). We
expect the formulation to remain well-posed for other
values of d > 3.
To show that (37) is well-posed in our mCCZ4

formulation, we need to find the principal part of the full
theory, (14)–(19), which can be written as

M ¼ M0 þ δM; ð42Þ

where M0 is the principal part of the Einstein theory,
already computed in (33)–(35) (without the contributions
of the scalar field), and δM ¼ λGBMGB are the contributions
from the higher derivative terms, which are small compared
to M0 in the weakly coupled regime. The explicit form of
MGB can be found in the Mathematica notebook [82],
which is provided as Supplemental Material.
Therefore, to prove that the full theory is well-posed in

an open neighbourhood around the Einstein theory, we can
proceed by explicitly computing the eigenvalues and
eigenvectors of (42) perturbatively and showing that M
has real eigenvalues and is diagonalizable.
Consider one of the eigenvalues13 of the unperturbed

principal part M0, namely ξ with multiplicity Nξ; let
the associated right and left eigenvectors be fvξR;igN

ξ

i¼1

and fvξL;igN
ξ

i¼1, respectively. The perturbed eigenvalues

fξþ δζξigN
ξ

i¼1 and eigenvectors fαξi · vξR þ δwξ
igN

ξ

i¼1 can be
obtained by solving the eigenvalue problem [83],

T ξαξi ¼ iδζξiα
ξ
i ; ð43Þ

ðM0 − iξIÞδwξ
i ¼ ðiδζξi I − δMÞðαξi · vξRÞ; ð44Þ

where T ξ
ij ¼

vξ†
L;iδMvξ

R;j

vξ†
L;iv

ξ
R;i

. Note that (43) ensures that the rhs

of (44) has no components parallel to ξ. Therefore, the
matrix M0 − iξI on the lhs. of (44) is invertible [83].
To prove well-posedness, we need to verify that

the matrices fT ξgξ∈SpecðM0Þ are diagonalizable and that the
perturbed eigenvectors depend smoothly on ξk. From the
projection matrices T corresponding to each type of
eigenvalues (see the attached Mathematica notebook
[82]), one can see that the only nontrivial contributions
occur for the physical eigenvalues. In this case, the explicit
form of the projection matrix is

13Here, we suppress the subscript 0 on ξ0 to simplify the
notation.
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T �α ¼ �

0
BBBBBB@

2P00 −2P01 −2P02 −2P12 −2P12

−2P01 2P11 −2P12 0 2P02

−2P02 −2P12 2P22 2P01 0

−2P12 0 2P01 2P11 P11 þ P22 − P00

−2P12 2P02 0 P11 þ P22 − P00 2P22

1
CCCCCCCCA
; ð45Þ

with

PAB ¼ λGBeiAe
j
B

�
LnKij þ

1

α
DiDjαþ KikKk

j

− 2ξkNikj þ ξkξlMikjl

�
; ð46Þ

and Ln denotes the Lie derivative along nμ. Finding explicit
expressions of the first order corrections to the physical
eigenvalues is not necessary since we know that they exist
and that they are real given that T �α are real and symmetric.
Therefore, this fact together with the smoothness of all the
coefficients in MGB ensures the well-posedness of the
weakly coupled EGB theory in the 4þ 1 modified CCZ4
formulation that we have developed.

IV. FOUR-DERIVATIVE SCALAR
TENSOR THEORY

The next modified theory of gravity that we consider is
the most general parity-invariant scalar-tensor theory of
gravity up to four derivatives (4∂ST), whose action is [84]

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½−VðϕÞ þ Rþ X

þ g2ðϕÞX2 þ λðϕÞLGB�; ð47Þ

where X ≡ − 1
2
ð∇μϕÞð∇μϕÞ, VðϕÞ is the scalar potential,

g2ðϕÞ and λðϕÞ are smooth functions of the scalar field ϕ
(but not of its derivatives), and LGB is the Gauss-Bonet
term (38).
The form of the coupling λðϕÞ determines the presence

of scalar hair. Previous works have divided the classes of
coupling functions into the two following cases [46,60]:

(i) Type I: λðϕÞ ∼ ϕþOðϕ2Þ. In this case, the scalar
field is always sourced by the presence of curvature,
and so the Kerr family of black holes are not
stationary solutions of the theory. Since all the
stationary black hole spacetimes in the theory must
have hair, this case is strongly constrained by
observations of astrophysical BHs. This case in-
cludes the so called shift-symmetric and dilatonic
couplings.

(ii) Type II: λðϕÞ ∼ ϕ2 þOðϕ3Þ. In this case, Kerr black
holes can be stationary solutions of the theory, but in
certain regions of the parameter space, there can also

exist black holes with nontrivial scalar configura-
tions, i.e., hairy black holes. This means that
astrophysical black holes may be on either the hairy
or nonhairy branches, which makes them more
difficult to constrain.

The EOMs derived from (47) in the modified harmonic
gauge, analogously to (2), yield

Rμν −
1

2
Rgμν þ 2P̂α

βμν∇βZα − κ1½2nðμZνÞ þ κ2nαZαgμν�

¼ Tϕμν þHμν þ TXμν −
1

2
VðϕÞgμν; ð48Þ

½1þ 2g2ðϕÞX�□ϕ − V 0ðϕÞ − 3X2g02ðϕÞ
− 2g2ðϕÞð∇μϕÞð∇νϕÞ∇μ∇νϕ ¼ −λ0ðϕÞLGB; ð49Þ

where

TX
μν ¼ g2ðϕÞXð∇μϕÞð∇νϕÞ þ

1

2
g2ðϕÞX2gμν; ð50Þ

Hμν ¼ −4
�
2RρðμCνÞρ − C

�
Rμν −

1

2
Rgμν

�
−
1

2
RCμν

þ CαβðRμανβ − gμνRαβÞ
�
; ð51Þ

with

Cμν ≡ λ0ðϕÞ∇μ∇νϕþ λ00ðϕÞð∇μϕÞð∇νϕÞ; ð52Þ

and C≡ gμνCμν.
For the remainder of this paper, we consider for

simplicity a 4∂ST theory with no potential for the scalar
field and with the coupling functions being λðϕÞ ¼ λGB

4
fðϕÞ

and g2ðϕÞ ¼ g2, where fðϕÞ is an arbitrary function (which
is either linear, quadratic or exponential in our simulations),
and λGB and g2 are constants that we assume to satisfy the
weak coupling conditions, namely

L ≫
ffiffiffiffiffiffiffiffiffiffiffiffi
jλ0ðϕÞ

p
j;

ffiffiffiffiffiffiffi
jg2j

p
; ð53Þ

where L accounts here as well for any characteristic length
scale of the system associated to the spacetime curvature
and the gradients of the scalar field.
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As in the previous case, the modifications give rise to
effective stress-energy contributions in the dþ 1 decom-
position. The explicit form of these contributions in dþ 1
form can be found in Appendix D, along with implemen-
tation details regarding the evolution equations.
In order to show well-posedness for the 4∂ST in our

modified CCZ4 gauge, we proceed with the same pertur-
bation analysis done for the previous case. Here, we write
again the principal part of the theory as

M ¼ M0 þ δM; ð54Þ

where, in this case, M0 is the principal part of the Einstein-
scalar-field theory (here also including the scalar field part),
and δM ¼ λGBMGB þ g2MX are the contributions from the
higher derivative terms, which are small compared toM0 in
the weakly coupled regime.MGB is also written down in the
Mathematica Notebook attached [82] and, as for MX, its
only contribution comes from

MXK̂ϕ ¼ 2½K2
ϕ − ξiξjðDiϕÞðDjϕÞ�ϕ̂

þ 2iKϕðξiDiϕÞK̂ϕ; ð55Þ

Here again, the only nontrivial contributions to the
eigenvalues occur for the physical eigenvalues. Setting
ϵ ¼ �1, we have that the corresponding projection matri-
ces are

T ϵα ¼

0
BB@

2σϵ
2ϵ
χ ψ01 − ϵ

χ ðψ00 − ψ11Þ
ϵχ
2
ψ01 2ηϵ 0

− ϵχ
4
ðψ00 − ψ11Þ 0 2ηϵ

1
CCA;

ð56Þ
where

ηϵ ¼ ½2ξiγiμnν − ϵðnμnν þ ξiξjγ
i
μγ

j
νÞ�Cμν; ð57Þ

σϵ ¼
g2
2
½ξiðDiϕÞKϕ þ ϵðK2

ϕ − ξiξjðDiϕÞðDjϕÞÞ�; ð58Þ

ψAB ¼ λGBeiAe
j
B

�
LnKij þ

1

α
DiDjα

þ Rij þ KKij − Ki
kKjk þ 2ξkðDkKij −DðiKjÞkÞ

�
:

ð59Þ

Apart from proving that T �α diagonalizes, we can explicity
compute the six physical eigenvalues of the 4∂ST theory in
mCCZ4 perturbatively up to first order; the two corre-
sponding to the purely gravitational sector14 are given by

ξ0 ¼ αðϵþ 2ηϵÞ; ð60Þ

and the four corresponding to the mixed gravitational-
scalar field polarizations are

ξ0 ¼ α

�
ϵþ ηϵ þ σϵ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηϵ − σϵÞ2 þ ψ2

12 þ
�
ψ11 − ψ22

2

�
2

s �
; ð61Þ

where for simplicity, we have shifted ξ0 − βkξk → ξ0.
Furthermore, it is straightforward to see that the smoothness
conditions are satisfied. Hence, this proves well-posedness in
the weakly coupled 4∂ST theory in the 3þ 1 formalism for
the modified CCZ4 formulation that we have developed.

V. RESULTS OF SIMULATIONS FOR 4∂ST

In this section, we extend the results shown in [72] for
the 4∂ST theory, which we have implemented (using the
equations in Appendix D) as an extension to GRChombo
[86,87]. The implementation and study of the Gregory-
Laflamme instability of black strings in the higher-
dimensional Einstein-Gauss-Bonnet theory is underway
and will be presented elsewhere.

A. Technical details

1. Gauge parameters

We have chosen the functions appearing in our modified
CCZ4 gauge to be spatial constants, with aðxÞ ¼ 0.2 and
bðxÞ ¼ 0.4 in all our simulations. This choice gives
reasonable results but our initial investigations suggest
that tuning these values or choosing metric dependent
functions may give better constraint conservation.15 This
will be investigated further in future work.

2. Excision of the EsGB terms

As in [72,88,89], we smoothly switch off some of the
higher derivative terms in the EOMs well inside the
apparent horizon (AH) by replacing λGB → λGB

1þe−100ðχ−χ0Þ with
χ0 ¼ 0.15 for spinless black holes (BHs). The specific
value of χ0 needs to be adjusted (smaller) for higher spin,
with the value chosen to be within the AH in our chosen
coordinates (see Fig. C1 in [90] for the values in typical
puncture gauge simulations). In binary black hole (BBH)
merger simulations, we have found that it helps to change
the value of χ0 after the merger, since the final remnant has

14The corresponding eigenvectors are null with respect to the
effective metric Cμν ¼ gμν − 4Cμν as described in [85].

15Making aðxÞ and bðxÞ functions of the evolution variable χ
so that they interpolate between zero in the asymptotic region and
the values quoted above near black holes does not seem to make
any significant difference in the numerical stability of our
simulations.
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a dimensionless spin of the order of a=M ≳ 0.7. Provided
that the excision happens well within the AH, this should
not change the physical behavior outside it.

3. Constraint damping parameters

We have also noted that the values of the damping
constraint coefficients κ1 and κ2 play an essential role for
keeping the violation of the Hamiltonian and momentum
constraints of the system under control, and, in particular,
the best values appear to depend on the final spin of the
stationary BH solution that the system evolves to.
Therefore, we also increase the values after the remnant
is formed—more details are given in the following sub-
sections. We use the usual rescaling κ1 → κ1=α that allows
for stable evolutions of BHs as in [69].

4. Numerical setup

For the runs with single BHs, we use a computational
domain of L ¼ 256M with the BH situated at the centre of
the grid, and N ¼ 128 grid points on the coarsest level. We
use six levels of refinement, which results in a finest
resolution of dxfinest ¼ M=16 on the finest grid, giving ∼35
grid points across the BH horizon in the quasi-isotropic
Kerr coordinates [91] that we use to set the initial
conditions for the metric. These coordinates are a gener-
alization of the wormholelike isotropic Schwarzschild
coordinates and similarly evolve into a trumpetlike solution
for the (modified) puncture gauge within the first ∼10M of
the simulation. At this point, the BH horizon is located at
r ∼ 0.98M in the zero spin case, which is similar to the GR
puncture gauge value [90].
For the BBH mergers, we have chosen L ¼ 512M, with

N ¼ 128 grid points on the coarsest level. We use nine
levels of refinement, which results in a resolution of
dxfinest ¼ M=64 on the finest grid, which gives roughly
60 points across the horizon of each BH prior to their
merger. We anticipate that higher resolutions would be
required for detailed waveform templates, but for this study,
we are mainly interested in the overall phenomenology. For
both type of simulations we use sixth order finite
differences to discretize the spatial derivatives and a
standard RK4 time integrator to step forward in time.
We have checked convergence for these parameters, as
shown in [72].
We study two cases for the BBH mergers:
(i) Case 1: The BHs have equal masses mð1Þ ¼

mð2Þ ¼ 0.49M, initial separation 11M and initial
velocities vðiÞ ¼ ð0;�0.09; 0Þ. These initial condi-
tions were tuned to have roughly circular initial orbits
in GR such that the two black holes merge in
approximately ten orbits. For this case, we superpose
the solutions for two boosted black holes as described
in [92,93], using a perturbative solution for the
conformal factor that is accurate up to order ðPiPiÞ2.

(ii) Case 2: An equal mass binary where the component
BHs each have nonzero initial (dimensionless) spin of
a0=M ¼ 0.4 aligned with the orbital axis. In this case,
we use a standalone version of the TwoPunctures
code [94] to generate Bowen-York initial data [93]
with a separation of 11M, initial velocities vðiÞ ¼
ð0;�0.08; 0Þ, equal masses of m1 ¼ m2 ¼ 0.31 (so
that the total ADM mass is approximately 1) and
angular momentum JðiÞ=m2

ðiÞ ¼ ð0; 0; 0.4Þ. In this
case, the orbits are only roughly circular, and we
have around eight orbits prior to the merger in the
GR case.

Note that in both cases we use GR initial data, which
remains a solution of the constraint equations only in the
case in which the additional scalar degree of freedom is
zero. In some cases below, we add a small perturbation in
the field to source its growth after the merger. In these
cases, where that the constraints are initially violated, the
violations are small and quickly damped away by the
damping terms in the EOMs. A generalization of the initial
data solver of [95] to the 4∂ST theory will be presented
elsewhere [96].

B. Type I coupling—shift-symmetric EsGB

We start by considering the simplest case of scalarization
in the 4∂ST theory by adding a linear coupling fðϕÞ ¼ ϕ,
which is often referred to as shift-symmetric Einstein-
scalar-Gauss-Bonnet (EsGB) theory (usually in the absence
of the g2 term, although this term also respects the shift-
symmetry).
As discussed above, due to the curvature sourcing the

scalar field, BH solutions in this theory differ from the Kerr
solution in that they possess a nontrivial scalar configura-
tion; that is, they have scalar hair.
As an initial test, we set the initial conditions to be the

single Kerr BH with mass parameter M ¼ 1 as described
above and set the scalar field to zero initially. The values of
the constraint damping coefficients have been chosen to be
κ1 ¼ 0.35–1.7 (higher values for this parameter are found
to be required for higher spins in order to stabilize the final
state) and κ2 ¼ −0.5.
Figure 216 shows that a stationary hairy BH solution is

obtained for all the values of the dimensionless spin
parameter a0=M after an initial transient period of growth

16In this and subsequent figures, we present the average value
of certain quantities across the Apparent Horizon (AH). We
denote

hψiAH ¼
R

1
χ ψr

2ðθ;ϕÞ sin θdθdϕR
1
χ r

2ðθ;ϕÞ sin θdrdθdϕ ; ð62Þ

where r, θ, ϕ account for the spherical coordinates, r ¼ rðθ;ϕÞ is
the apparent horizon, and 1=χ is a factor coming from the
determinant of the induced metric on a 2-dimensional surface,
which we find is a good approximation to the exact value since
the determinant of the (Cartesian) conformal metric in our
formulation is 1.

ARESTÉ SALÓ, CLOUGH, and FIGUERAS PHYS. REV. D 108, 084018 (2023)

084018-12



of the scalar hair. These final stationary states are consistent
with the results in [56].
Next, we extend the results for BBH mergers in shift-

symmetric 4∂ST in [72] by studying whether the weak
coupling condition (WCC) still holds for the case with the
highest values of the couplings, namely λGB ¼ 0.05M2 and
g2 ¼ M2. We use equal mass, nonspinning BHs (Case 1
described above), finding that the number of orbits reduces
to 3 for the chosen values of the couplings. The constraint
damping coefficients are set to κ1 ¼ 0.35=M and
κ2 ¼ −0.1. We observe in Fig. 3 that the WCC

ffiffiffiffiffiffiffiffi
λGB

p
=L ≪ 1;

ffiffiffiffiffi
g2

p
=L̃ ≪ 1 ð63Þ

still holds (even though it is close to the limit). Here, the
relevant length scales that represent the curvature quantities
of the metric and scalar sectors are

L−1 ¼ maxfjRijj1=2; j∇μϕj; j∇μ∇νϕj1=2; jLGBj1=4g;
L̃−1 ¼ maxfjKϕj; jDiϕDiϕj1=2g: ð64Þ

As expected, the highest values of the weak coupling
conditions occur right before the merger, given that the
curvature scales are larger near the initial BHs in com-
parison to the final remnant. Therefore, if the WCC is not
breached during the inspiral, it appears to be safe during
the merger and ringdown phases. Note that the WCC is
not a well-defined mathematical condition, but is however
a heuristic condition that helps us identify that we are
in the regime of validity of the theory where the
eigenvalues of the principal symbol do not differ signifi-
cantly from GR.
For this same coupling function, we also test our ability

to stably evolve equal mass BBH cases with non zero initial
component spins (Case 2 above). We used the following
values of the constraint damping coefficients, κ1 ¼ 1.4=M
and κ2 ¼ −0.1, which we changed to κ1 ¼ 1.7=M and κ2 ¼
0 after the merger. We also decrease the value of χ0 from
χ0 ¼ 0.15 to χ0 ¼ 0.05 after the merger.
The result is shown in Fig. 4, where we compare the

(2, 2) mode of the gravitational strain with GR by extracting
the gravitational waves at r ¼ 100M.17 We find that for the
chosen parameters the final spin reduces from ∼0.85 in GR

FIG. 2. Simulations of single BHs with spin in (Type I) shift-symmetric Einstein-scalar-Gauss-Bonnet theory for λGB=M2 ¼ 0.2. From
an initial zero value of the scalar field, the curvature sources a growth of the scalar hair to the stationary state, with higher spins sourcing
smaller average field values as expected. The energy for the scalar hair is extracted from the BH, which results in a decrease in its AH
area (which is permitted in these modified theories of gravity) and mass. In cases with spin, angular momentum may also be extracted by
the scalar field. Left: Average value of the scalar field at the AH for different values of the initial dimensionless spin a0=M. Right:
Change in the AH area, spin and mass relative to their initial values.

FIG. 3. Here, we show that the weak coupling regime holds
throughout the BBH merger simulation in shift-symmetric 4∂ST
theory with λGB ¼ 0.05M2 and g2 ¼ M2, namely the one with the
highest coupling constants considered in [72]. We depict the
evolution of the WCCs in Eq. (63) for both the BBHs throughout
the inspiral and the merger during the ringdown, seeing that they
are not violated for these values of the couplings. As expected, the
highest values are before the merger, due to the smaller curvature
scales of the initial black holes compared to the final remnant.

17For the accuracy purposes of this article, we only considered
the extraction at this radius, but in a number of cases, we checked
that this result is essentially the same as the one obtained by
extrapolating to null infinity.
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to ∼0.84 in shift-symmetric 4∂ST theory, as expected from
the extraction of spin caused by the nontrivial scalar field.

C. Type II coupling—tachyonic growth
and stealth scalarization

At this point, we turn to the second class of coupling
function, Type II, in which the coupling results in a
(spatially dependent) mass term. These admit both scalar-
ized and nonscalarized BH solutions.
In this case, we study the binary case directly, and we

choose the coupling parameters so that the scalar hair is
generated as a result of the merger. We use Case 1 of the
BBH configurations described above throughout this
section.
The simplest case of a Type II coupling is a quadratic

coupling, namely fðϕÞ ¼ ϕ2. As studied in [46,49], this
coupling function can have a tachyonic instability, which
leads to a spin-induced scalarization or descalarization. We
study the case in which the remnant scalarises after the
merger due to its spin for a high enough negative value of
the coupling λGB.
We used as constraint damping coefficients κ1 ¼

0.35=M and κ2 ¼ −0.1 initially, but after the merger,
changed them to κ1 ¼ 1.7=M and κ2 ¼ 0, together with
reducing the initial value of χ0 ¼ 0.15 to χ0 ¼ 0.05. We
also needed to add an initial perturbation in the scalar field
to seed the instability, for which we choose the (arbitrary)
form ϕðrÞ ¼ 10−3ð1þ 0.01r2e−r

2Þ.
Given that the initial BHs have zero spin, there is initially

no scalarization for this sign in the coupling, and the scalar
field dissipates. Only after the merger does the scalar field
have a nontrivial evolution. In Fig. 5, we show the two
possible behaviors (exponential growth or zero growth) and

find that the critical value of λGB for which the transition
occurs happens at around 10M2. For the values of the
coupling that induces exponential growth, we observe that
the weak coupling condition is eventually violated and,
thus, at some point along the evolution, the theory ceases to
be well-posed, which results in the breakdown of the
simulation (see also [97] for further results).
A more phenomenologically interesting class of Type II

coupling functions was proposed in [47,98], with the form

fðϕÞ ¼ ω−1ð1 − e−ωϕ
2Þ; ð65Þ

which we refer as exponential quadratic. This type of
coupling has the same initial behavior as the quadratic one,
but the tachyonic instability is saturated by the nonlinear-
ities at larger amplitudes, meaning that one can follow the
growth of the scalar hair and settling of the solution into a
steady hairy BH state after the merger while the theory
remains weakly coupled throughout the evolution. This is
the case referred to as “stealth scalarization” in previous
works [46,57].
Here, we used again the same set-up as in the quadratic

coupling case with ω ¼ 200 and λGB=M2 ¼ −20.18 The
results are depicted in Figs. 1 and 7.
Figure 7 shows that the single BH that results from the

merger scalarizes after the ringdown of the tensor modes,
which coincides with the a burst of radiation in the scalar

FIG. 4. Initial spinning binary black hole mergers (with spins
initially aligned along the orbital momentum, a�0 =M ¼ 0.4) in
GR (blue) and shift-symmetric 4∂ST (orange), for the following
values of the coupling constants, λGB ¼ 0.05M2 and g2 ¼ M2.
We show the (2, 2) mode of the gravitational strain in retarded
time, u ¼ t − r� (where r� is the tortoise coordinate), observing
that the additional extraction and radiation of energy via the scalar
channel induces the merger to happen sooner compared to GR.

FIG. 5. Evolution of the average value of the scalar field across
the AH, after the merger occurred in a binary black hole
simulation for Einstein-scalar-Gauss-Bonnet theory with quad-
ratic coupling for two different values of the coupling λGB. We see
that for a critical coupling value of around λGB ¼ −10M2, the
remnant (with a=M ∼ 0.7) scalarizes, and the value of the scalar
field grows exponentially. Eventually the simulation breaks
down, since the weak field condition (and hence, well-posedness)
does not hold anymore.

18The motivation for this large value of ω is that it leads to
ωϕ2 ∼ 1 at the apparent horizon when the black hole has
scalarized, which is where we expect the theory to start to break
down. A further study of the impact of different values of this
parameter has been carried out in [97].

ARESTÉ SALÓ, CLOUGH, and FIGUERAS PHYS. REV. D 108, 084018 (2023)

084018-14



mode (2, 0). At this point, we observe the largest deviation
of the Gauss-Bonnet curvature scalar with respect to the
Kretschmann scalar of a Kerr BH (with the same angular
momentum and mass as measured from the quasilocal
quantites at the AH). This scalarization process extracts
spin from the remnant BH, which decreases its intrinsic
spin before settling into an equilibrium state. The end result
is a stable hairy BH, but an observation of the effect would
rely on the scalar mode being detectable as a secondary
signal, since the tensor modes are emitted during a period in
which the theory cannot be distinguished from GR and thus
are unaffected—at least to the precision to which we are
able to measure the quasinormal modes (QNMs) here. This
is consistent with the behavior observed for the scalariza-
tion of isolated Kerr BHs in [57].
In Fig. 1, we see that the scalar field is localized around

the poles of the AH, which is consistent with the Gauss-
Bonnet curvature acting as the source term for the scalar, as
depicted in Fig. 6. We also show in Fig. 8 the contribution

FIG. 7. Here, we summarize the key results from the post merger phase of spin-induced scalarization in the EsGB theory with
exponential quadratic coupling. We see that the spin of the remnant following merger generates a tachyonic mass, by which the scalar
field acquires a nontrivial configuration. This happens late in the ringdown of the tensor modes. It is accompanied by a burst of radiation
in the scalar mode (2, 0), which coincides with the extraction of spin from the merger and the highest deviation of the Gauss-Bonnet
curvature with respect to the Kretschmann scalar of a Kerr Black Hole (note that the initial deviation in this quantity is due to the merger
state being far from Kerr). From top to bottom: (2, 2) mode of the gravitational strain, (0, 2) scalar mode in retarded time, average value
of the scalar field at the AH, evolution of the spin and L2 norm of the Gauss-Bonnet curvature relative to the Kerr Kretschmann scalar.

FIG. 6. The effective mass of the scalar field is proportional to
the Gauss-Bonnet curvature LGB (see [46] for a discussion).
Hence, a change of sign (which occurs for high spins) gives rise
to the spin-induced scalarization in the Type II couplings. Here,
we show the value of the Gauss-Bonnet curvature around the AH
of the final BH of our BBH merger simulation in the exponential
quadratic EsGB theory at t ¼ 1530M (when the value of the
scalar field has already settled down). The dotted points denote
the region where LGB ¼ 0. We observe that the negative regions
coincide with those where the scalar field has a nontrivial
contribution as from Fig. 1.
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of the Gauss-Bonnet term to the energy density, namely
ρGB, from which we can see that it gives rise to a negative
contribution to the total energy density in some regions
around the AH. This permits a violation of the null
curvature condition (NCC) in this modified theory of
gravity [60].
We note that for the chosen coupling function, the

absolute value of the overall coupling constant λGB could
be increased beyond the value that we have used in order to
increase the speed of growth of the scalar hair. This would
push the field growth closer to the ringdown, potentially
having an impact on the emission of tensor modes in this
phase. However, in order to avoid breaking the hyper-
bolicity of the equations and weak coupling conditions
during the evolution, the value of ω in the coupling function
(65) must also be increased in proportion to λGB [i.e.,
keeping λGB=ðM2ω1=2Þ constant]. As a result, the final
maximum scalar field value will be smaller, and while the
ρGB values at maximum should remain the same, as in
Fig. 8, the usual kinetic contribution of the field to the
energy density, as shown in Fig. 1, will be reduced. Due to
this trade off, there should exist optimum values of ω and
λGB that maximize the overlap of the growth of the scalar
hair and the ringdown of the BH, thus resulting in the
largest modification of the tensor QNMs. We leave a full
analysis of this to future work.

VI. DISCUSSION

In this article, we have developed a modified CCZ4
formulation of the Einstein equations in dþ 1 spacetime
dimensions for GR plus a Gauss-Bonnet term, as well as for
the most general parity-invariant scalar-tensor theory of
gravity up to four derivatives (4∂ST). We used a modified
version of the CCZ4 formulation of the Einstein equations
based on [54,55], together with a modification of the
puncture gauge extensively used in numerical relativity.
We demonstrated well-posedness for both theories and
provided full expressions for their implementation in
numerical relativity.
In the 4∂ST theory, we studied both Type I and Type II

couplings, including the so-called “stealth-scalarization”
effect where the scalar cloud arises due to the spin of the
remnant after merger. As in previous studies using

alternative gauges, we found that the scalarization generi-
cally occurs too late after merger to impact the tensor
waveform. Too large values of the coupling—to accelerate
the growth of the scalar hair—result in a breakdown of the
theory as it is pushed into the strongly coupled regime in
which well-posedness is no longer assured. However, we
point out that this can be compensated in our chosen
coupling function by tuning the values of the higher order
interactions. Without such tuning, observation will rely on
detection of the scalar GWs that we show accompany the
scalarization post merger.
Since the formalism is still in its infancy, it is likely that

the methods—in particular. the choices for the functions
aðxÞ and bðxÞ and the damping parameters—can be
optimized further. We found that we needed to be careful
in tracking the constraint violations and tuning the param-
eters in order to get sensible results, especially in cases of
BHs with high intrinsic spins. It will be interesting to test
whether the puncture gauge provides greater robustness in
studies of unequal mergers, which have been found to be
challenging in the modified GHC gauge (see [59]).
This work provides a basis on which further studies can

be undertaken using codes that employ a moving-punctures
approach to managing singularities in the numerical
domain. In particular, it seems likely that one can extend
our well-posedness results in singularity avoiding coordi-
nates to the general Horndeski theory [54,55]. This article,
and our previous work [72] (see also [40]), allow puncture
based codes to compute theoretical gravitational wave-
forms in certain alternative theories of gravity of interest
and compare them to observations, which is of strong
interest to the GW community. With the full range of
second order theories opened up for numerical study, a key
question that should be answered is where best to focus the
research effort, given the large parameter space and the
high computational cost of the simulations.
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APPENDIX A: EIGENVECTORS OF THE
EINSTEIN-SCALAR-FIELD PRINCIPAL PART

In this appendix we display the expression of the
eigenvectors of the Einstein-scalar-field principal part
in the modified CCZ4 gauge in dþ 1 spacetime dimen-
sions in Tables I–III, corresponding respectively to the
physical, “gauge-condition violating” and “pure-gauge”
categories.

APPENDIX B: PROPAGATION OF THE
CONSTRAINTS

Below, we consider the propagation of the constraints in
the modified CCZ4 formulation in our gauge in dþ 1
spacetime dimensions. Let the Hamiltonian and momentum
constraints be denoted by H and Mi, respectively. Then,
we find that the constraints obey the following evolution
equations:

∂⊥H ¼
�
2þ bðxÞ
1þ bðxÞ

�
αKH −

2

α
Diðα2MiÞ

þ 4αðKγij − KijÞðDiZj − ΘKijÞ

−
2ðd − 1Þ
1þ bðxÞ κ1α

�
1þ κ2

2
ð2þ bðxÞÞ

�
KΘ; ðB1aÞ

TABLE I. Physical eigenvectors.

ˆ̃γij
ˆ̃Aij ϕ̂ K̂ϕ

0 0 ∓ 1 1
∓ 2eiAe

j
B eiAe

j
B

0 0
∀ A ≠ B

�2ðeiAejA − eiBe
j
BÞ −eiAe

j
A þ eiBe

j
B

0 0

TABLE II. “Gauge-condition violating” eigenvectors, where

σ ¼ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þaðxÞÞ

p
ð1−2αχÞ

4ðd−1Þα3=2 .

ˆ̃γij χ̂ β̂i α̂

ˆ̃Aij
K̂ ˆ̂Γi

− χ2

d−1 e
i
Ae

i
Bδ

AB − χ2

d−1 � d
ffiffi
χ

p

2ðd−1Þ
ffiffiffiffiffiffiffiffiffiffiffi
1þaðxÞ

p ξi 0

0 0 ξi
χ2eiAξ

j 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dχ
2ðd−1Þð1þaðxÞÞ

q
eAi

0

0 0 eAi
− χ2

d−1 e
i
Ae

j
Bδ

AB − χ2

d−1 � d
ffiffi
2

p ð1þaðxÞð1−2αχÞÞ
4ðd−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1þaðxÞÞ

p ξi
dð−1þ2αχÞ
2ðd−1Þα

∓ σeiAe
j
Bδ

AB � dσ
χ

ξi

19www.grchombo.org.
20https://www.archer2.ac.uk.
21www.dirac.ac.uk.
22www.gauss-centre.eu.
23www.lrz.de.
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∂⊥Mi ¼ αKMi −
1

2α
Diðα2HÞþ bðxÞ

2ð1þbðxÞÞDiðαHÞ

− 2Dj½αðDkZkγij−DðiZjÞ þΘðKij−KγijÞÞ�

þ d− 1

1þbðxÞκ1
�
1þ κ2

2
ð2þbðxÞÞ

�
DiðαΘÞ; ðB1bÞ

∂⊥Θ ¼ α

2ð1þ bðxÞÞHþ αðDiZi − KΘÞ − ZiDiα

−
ακ1

1þ bðxÞ
�
dþ 1þ 2bðxÞ

2þ bðxÞ þ d − 1

2
κ2

�
Θ; ðB1cÞ

∂⊥Zi ¼ −ΘDiαþ α

1þ bðxÞ ðDiΘþMi

− ZjKi
jð2þ bðxÞÞ − κ1ZiÞ: ðB1dÞ

We consider the principal part of (B1) and decompose it
into its scalar and vector sectors respectively, as in Sec. II E.
The scalar sector is given by

ξ̌0Ĥ ¼ −2αM̂⊥; ðB2aÞ
ξ̌0M̂⊥ ¼ −

α

2ð1þ bðxÞÞ Ĥ; ðB2bÞ

ξ̌0Ẑ⊥ ¼ α

1þ bðxÞ ðM̂⊥ þ Θ̂Þ; ðB2cÞ

ξ̌0Θ ¼ α

2ð1þ bðxÞÞ Ĥþ αẐ⊥: ðB2dÞ

The respective eigenvalues are ξ0 ¼ β⊥ � αffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p , each of

them with multiplicity 2 but there is no degeneracy in the
corresponding eigenvectors. The vector sector of the
principal part is given by

ξ̌0M̂A ¼ αẐA; ðB3aÞ

ξ̌0ẐA ¼ α

1þ bðxÞMA; ðB3bÞ

with eigenvalues ξ0 ¼ β⊥ � αffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p . Therefore, the system

is strongly hyperbolic, and, thus, it follows that if the
constraints are satisfied initially, then they continue to hold
throughout the evolution.

APPENDIX C: EQUATIONS OF MOTION
OF THE EINSTEIN-GAUSS-BONNET THEORY

IN MODIFIED CCZ4

The tensor (41) that appears on the rhs of the equations
of motion that result from varying the action (37) with
respect to the metric plays the role of an effective stress-
energy tensor. Therefore, its dþ 1 decomposition gives24

TABLE III. “Pure-gauge” eigenvectors.

ˆ̃γij χ̂ β̂i

ˆ̃Aij
K̂ ˆ̂Γi

Θ̂ α̂

χð1þbðxÞÞ
bðxÞ

�
− d

2ðd−1Þð1þaðxÞÞα2 þ χ

�
eiAξj

0 � d
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
2ðd−1Þαð1þaðxÞÞ e

A
i

� χ
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
2bðxÞα2

�
d

2ðd−1Þ
1þbðxÞ
1þaðxÞ − α2χ

�
eiAξ

j 0 eAi

0 0

− χ2ð1þbðxÞÞ
d−2þ2ðd−1ÞbðxÞ

�
dð2−αð1þaðxÞÞÞ
4α2χaðxÞbðxÞ þ d − 1

�
eiAe

j
Bδ

AB χ 1þbðxÞ
2aðxÞα2

4ðd−ðd−2ÞaðxÞα2χÞ− d2
d−1α

1þaðxÞ
1þbðxÞ

ðd−2Þðd−2þ2ðd−1ÞbðxÞÞ
d

2ðd−1ÞaðxÞα ξi

�χ2
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
d−2þ2ðd−1ÞbðxÞ

�
dð2−αð1þaðxÞÞÞ

4ðd−1Þα2χaðxÞbðxÞ þ 1

�
eiAe

j
Bδ

AB � d
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
4aðxÞα2

4ðd−ðd−2ÞaðxÞα2χÞ− d2
d−1α

1þaðxÞ
1þbðxÞ

ðd−2Þðd−2þ2ðd−1ÞbðxÞÞ
ξi

� d
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
4aðxÞα2

2ðd−ðd−2ÞaðxÞα2χÞ−αð2−ðd−2ÞbðxÞÞ1þaðxÞ
1þbðxÞ

ðd−2Þðd−2þ2ðd−1ÞbðxÞÞ
0

� χ
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
aðxÞbðxÞα

2ð1þaðxÞð1þbðxÞÞÞ−αð1þaðxÞÞ2
d−2þ2ðd−1ÞbðxÞ eiAe

j
Bδ

AB ∓
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p
χ

aðxÞα
2ð2ðd−1ÞþdaðxÞÞ−dαð1þaðxÞÞ2

1þbðxÞ
ðd−2Þðd−2þ2ðd−1ÞbðxÞÞ

ξi

−χ 1þaðxÞð1þ2d−1d bðxÞð1þbðxÞÞÞ−α
2
ð1þaðxÞÞ2

aðxÞbðxÞðd−2þ2ðd−1ÞbðxÞÞα eiAe
j
Bδ

AB 4ðd−1ÞðaðxÞð1þbðxÞÞ− d
d−2ð1þaðxÞÞÞþd2αð1þaðxÞ2

1þbðxÞ
2αaðxÞðd−2þ2ðd−1ÞbðxÞÞ

0

d−1
2aðxÞα

ð1þaðxÞÞ2
1þbðxÞ ð2−ðd−2ÞbðxÞÞα−2ðdþaðxÞð2−ðd−2ÞbðxÞÞÞ

ðd−2Þðd−2þ2ðd−1ÞbðxÞÞ
∓ 1þaðxÞ

α
ffiffiffiffiffiffiffiffiffiffiffi
1þbðxÞ

p

24The signs have been chosen so that the quantities in the dþ 1
decomposition of Hμν enter the equations of motion with the
same signs as the analogous quantities for a standard stress-
energy tensor.
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κρ ¼ nμnνHμν; ðC1aÞ

κJi ¼ −nμγiνHμν; ðC1bÞ

κSij ¼ γi
μγj

νHμν; ðC1cÞ

where

κρ ¼ −
λGB

2
ðM2 − 4MijMij þMijklMijklÞ; ðC2aÞ

κJi ¼ −2λGBðMNi − 2Mi
jNj þ 2MjkNijk

−Mi
ljkNjklÞ; ðC2bÞ

κSij ¼ 2λGB
�
4Mk

ðiFjÞk þ 2Mi
k
j
lFkl −MFij − 2MijF

þ 2NiNj − 4NkNkðijÞ − NkliNkl
j − 2NiklNj

kl

þMMij − 2ðMikMk
j þMklMikjlÞ þMiklmMj

klm

þ γij

�
MF − 2MklFkl þ NklmNklm − 2NkNk

−
1

4
ðM2 − 4MklMkl þMklmnMklmnÞ

��
; ðC2cÞ

with

Mijkl ¼ Rijkl þ KikKjl − KilKjk; ðC3aÞ
Nijk ¼ DiKjk −DjKik; ðC3bÞ

Fij ¼ LnKij þ
DiDjα

α
þ KikKj

k; ðC3cÞ

where Ln denotes the Lie derivative along nμ, and
Mij ¼ γklMikjl, M ¼ γijMij and Ni ¼ γjkNjik, as they
are also defined in Eq. (D3a).
The dþ 1 equations are obtained by inserting the above

quantities in Eq. (14) except for Ãij andK, whose evolution
equations are given by the following coupled system,

�
Xkl
ij Yij

Xkl
K YK

��
∂tÃkl

∂tK

�
¼

�
ZÃ
ij

ZK

�
; ðC4Þ

where the elements of the matrix are

Xkl
ij ¼ γi

kγj
l þ 2λGB

�
Mγi

kγj
l þ 6

d
γijMkl

− 2ðMi
k
j
l þ 2MðikγjÞlÞ

�
; ðC5aÞ

Xkl
K ¼ −

4ðd − 3Þ
ðd − 1Þχ λ

GBMkl; ðC5bÞ

Yij ¼
4ðd − 3Þ

d
λGBχ

�
Mij −

1

d
γijM

�
; ðC5cÞ

YK ¼ 1þ 2ðd − 2Þðd − 3Þ
dðd − 1Þ λGBM; ðC5dÞ

whereas the rhs terms are

ZÃ
ij ¼ LβÃij − 2αÃilÃ

l
j

þ χ½αðRij þ 2DðiZjÞ − κS̄ijÞ −DiDjα�TF

þ αÃijðK − 2ΘÞ − 2

d
∂kβ

kÃij; ðC6aÞ

ZK ¼ βi∂iK −DiDiαþ α½Rþ 2DiZi þ KðK − 2ΘÞ�
− dκ1ð1þ κ2ÞαΘþ κα

d − 1
ðS̄ − dρÞ

−
dαbðxÞ

2ðd − 1Þð1þ bðxÞÞ
�
R − ÃijÃ

ij þ d − 1

d
K2

− ðd − 1Þκ1ð2þ κ2ÞΘ − 2κρ

�
; ðC6bÞ

with S̄ij and S̄, which are obtained by subtracting the time
derivatives of Ãij and K from Sij [which are, in turn,
computed from Eq. (C4)], given by

κS̄TFij ¼λGB
�
8

χ
MðikÔjÞkþ

4

χ
Mi

k
j
lÔkl−4ÔMij−

2

χ
MÔij

þ12

d

γ̃ij
χ

�
MÔ
2

−
MklÔkl

χ
þNkNk−

NklmNklm

2

��

−
4κ

d

γ̃ij
χ
ρ−2λGB

�
MiklmMj

klm−2ðMikMk
jþMklMikjlÞ

þMMijþ2

�
NiNj−2NkNkðijÞ−

1

2
NkliNkl

j

−NiklNj
kl

��
; ðC7aÞ

κS̄ ¼ 2λGBðd − 3Þ
�
MÔ −

2

χ
MijÔij þ 2NiNi

− NijkNijk

�
þ 4κρ; ðC7bÞ

where Ôij¼ 1
αLβÃij− ÃikÃj

kþ 2
dKÃijþ γ̃ijðKdÞ2− χ

αDiDjα−
2
dÃij

∂kβ
k

α þ γ̃ij
d
1
αLβK and Ô ¼ 1

α LβK þ ÃijÃ
ij þ K2

d −
1
α DkDkα.
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APPENDIX D: EQUATIONS OF MOTION
OF THE 4∂ST IN MODIFIED CCZ4

In this appendix, we write down the equations of motion
of the theory, Eqs. (48) and (49), in the 3þ 1 form as we
have implemented in our code.
We start writing the 3þ 1 decomposition of TX

μν appear-
ing in Eq. (48),

ρX ¼ 1

8
ðK2

ϕ − ð∂ϕÞ2Þð3K2
ϕ þ ð∂ϕÞ2Þ; ðD1aÞ

JXi ¼ 1

2
Kϕ∂iϕðK2

ϕ − ð∂ϕÞ2Þ; ðD1bÞ

SXij ¼
1

2
ðK2

ϕ − ð∂ϕÞ2Þ
�
ðDiϕÞDjϕþ 1

4
γijðK2

ϕ − ð∂ϕÞ2Þ
�
;

ðD1cÞ

and from Hμν as well,

ρGB ¼ ΩM
2

−MklΩkl; ðD2aÞ

JGBi ¼ ΩiM
2

−MijΩj − 2ðΩj½iNj� − ΩjkD½iKj�kÞ; ðD2bÞ

SGBij ¼ 2γkðiΩTF;l
jÞ

�
LnAkl þ

1

α
ðDkDlαÞTF þ AkmAm

l

�
−ΩTF

ij

�
LnK þ 1

α
DkDkα − 3AklAkl −

K2

3

�

−
Ω
3

�
LnAij þ

1

α
ðDiDjαÞTF þ AimAm

j

�
−ΩnnMij þ NðiΩjÞ − 2ϵðiklBjÞkΩl

þ γij

�
ρGB − NkΩk þ

M
6

�
Ωnn þ

Ω
3

�
−
1

3
ΩTF;klMkl −ΩTF;kl

�
LnAkl þ

1

α
ðDkDlαÞTF þ AkmAm

l

�

þ 2Ω
9

�
LnK þDkDkα

α
−
3

2
AklAkl −

K2

3

��
; ðD2cÞ

with

Mij ¼ Rij þ
1

χ

�
2

9
γ̃ijK2 þ 1

3
KÃij − ÃikÃj

k

�
; ðD3aÞ

Ni ¼ D̃jÃi
j −

3

2χ
Ãi

j
∂jχ −

2

3
∂iK; ðD3bÞ

Bij ¼ ϵðiklDkAjÞl; ðD3cÞ

Ωi ¼ f0
�
∂iKϕ − Ãj

i∂jϕ −
K
3
∂iϕ

�
þ f00Kϕ∂iϕ; ðD3dÞ

Ωij ¼ f0ðDiDjϕ − KϕKijÞ þ f00ð∂iϕÞ∂jϕ; ðD3eÞ

Ωnn ¼ f00K2
ϕ −

f0

α
DkαDkϕ −

f0

α
∂⊥Kϕ; ðD3fÞ

where Ni is the GR momentum constraint, Bij is the
magnetic part of the Weyl tensor and Ωi, Ωij and Ωnn come
from the 3þ 1 decomposition of Cμν in Eq. (52). In
addition, we have

MTF
ij ≡Mij −

1

3
γijM; ðD4aÞ

ΩTF
ij ≡Ωij −

1

3
γijΩ; ðD4bÞ

where M ¼ γklMkl is the GR Hamiltonian constraint and
Ω ¼ γklΩkl.
So, using that

κρ ¼ 1

2
ρϕ þ g2ρX þ λGBρGB; ðD5aÞ

κJi ¼
1

2
Jϕi þ g2JXi þ λGBJGBi ; ðD5bÞ

κS̄ij ¼
1

2
Sϕij þ g2SXij þ λGBS̄GBij ; ðD5cÞ

where the bar denotes again that the terms depending on the
time derivatives of Ãij and K are substracted since they are
taken into account in the matrix on the lhs. In Eq. (D6), we
can obtain the equations of motion in the 3þ 1 form by
replacing those quantities in Eqs. (14) and (16) with d ¼ 3,
except for K, Ãij and Kϕ, which satisfy the following
system of coupled partial differential equations:

0
BB@

Xkl
ij Yij 0

Xkl
K YK 0

Xkl
Kϕ

YKϕ
I

1
CCA
0
BB@

∂tÃkl

∂tK

∂tKϕ

1
CCA ¼

0
BB@

ZÃ
ij

ZK

ZKϕ

1
CCA; ðD6Þ

where the elements of the matrix are defined as follows:
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Xkl
ij ¼ γki γ

l
j

�
1 −

λGB

3
Ω
�
þ 2λGB

�
γkðiΩ

TF;l
jÞ −

γij
3
ΩTF;kl −

λGB

Σ
f02MTF

ij M
TF;kl

�
; ðD7aÞ

Xkl
K ¼ λGB

2χ

�
ΩTF;kl −

λGB

Σ
f02MMTF;kl

�
; ðD7bÞ

Xkl
Kϕ

¼ λGB

2χ
f0MTF;kl; ðD7cÞ

Yij ¼
λGB

3
χ

�
−ΩTF

ij þ λGB

Σ
f02MMTF

ij

�
; ðD7dÞ

YK ¼ 1þ λGB

3

�
−Ωþ λGB

4Σ
f02M2

�
; ðD7eÞ

YKϕ
¼ −

λGB

12
f0M; ðD7fÞ

I ¼ Σ; ðD7gÞ

where Σ ¼ 1þ g2ð3K2
ϕ − ð∂ϕÞ2Þ, while the terms of the rhs are

ZÃ
ij ¼ χ½−DiDjαþ αðRij þ 2DðiZjÞ − κS̄ijÞ�TF þ α½ÃijðK − 2ΘÞ − 2ÃilÃ

l
j�

þ βk∂kÃij þ 2Ãkði∂jÞβk −
2

3
Ãijð∂kβkÞ; ðD8aÞ

ZK ¼ βi∂iK −DiDiαþ α½Rþ 2DiZi þ KðK − 2ΘÞ� − 3κ1ð1þ κ2ÞαΘþ κα

2
ðS̄ − 3ρÞ

−
3αbðxÞ

4ð1þ bðxÞÞ
�
R − ÃijÃ

ij þ 2

3
K2 − 2κ1ð2þ κ2ÞΘ − 2κρ

�
; ðD8bÞ

ZKϕ ¼ Σ½βi∂iKϕ þ αð−DiDiϕþ KKϕÞ − ðDiϕÞDiα� þ αg2Zg2 −
λGB

4
αf0L̄GB; ðD8cÞ

where

Zg2 ¼ 2K2
ϕðDiDiϕ − KKϕÞ þ 2Diϕ

�
ðDjϕÞDiDjϕ−Kϕ

�
2DiKϕ −Djϕ

1

χ
Ãij −

1

3
KDiϕ

��
; ðD9Þ

with L̄GB also denoting that we are substracting the terms with time derivatives, which are take into account in the elements
of the matrix above. Finally, the expression of these remaining quantities yields

S̄GB;TFij ¼ −
1

3

�
ΩTF

ij −
λGB

Σ
f02MMTF

ij

�
×

�
−
1

α
βi∂iK þ 1

α
DiDiα − ÃklÃ

kl −
K2

3

�
−MTF

ij

�
Ωþ f00ðK2

ϕ − ð∂ϕÞ2Þ

−
g2
Σ
f0Zg2 −

λGB

Σ
f02H

�
−
1

3
Ω
�
1

α
DiDjαþ 1

χ
ðÃimÃ

m
j − Θ̂ijÞ

�
TF

þ 2ΩTF;k
ði

�
1

α
DjÞDkαþ 1

χ
ðÃjÞmÃk

m − Θ̂jÞkÞ
�

−
2

3
ΩTF

ij

�
1

α
DkDkα − ÃklÃ

kl

�
þ ½NðiΩjÞ�TF − 2

�
1

3
γijΩTF;kl þ λGB

Σ
f02MTF

ij M
TF;kl

�

×

�
1

α
DkDlαþ 1

χ
ðÃkmÃ

m
l − Θ̂klÞ

�
− 2ðDkAij −DðiAjÞkÞΩk − γijðDkAklÞΩl þ ΩðiDkAjÞk; ðD10aÞ
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S̄GB ¼ 2

3

�
Ω −

λGB

4Σ
f02M2

�
×

�
−
1

α
βi∂iK þ 1

α
DiDiα − ÃijÃ

ij −
K2

3

�
þ 2M

�
1

4
f00ðK2

ϕ − ð∂ϕÞ2Þ − g2
4Σ

f0Zg2

−
λGB

4Σ
f02H þ 1

3
Ω
�
− 2ΩiNi −ΩTF;ijMTF

ij − ρGB þ
�
ΩTF;kl −

λGB

Σ
f02MMTF;kl

�

×

�
1

α
DkDlαþ 1

χ
ÃkmÃ

m
l −

Θ̂kl

χ

�
; ðD10bÞ

L̄GB ¼ −
4

3
M

�
−
1

α
βi∂iK þ 1

α
DiDiα − ÃijÃ

ij −
K2

3

�
þ 8MTF;kl

�
1

α
DkDlαþ 1

χ
ðÃkjÃ

j
l − Θ̂klÞ

�
− 4H; ðD10cÞ

where we have used Θ̂kl ¼ 1
αLβÃkl þ 2

3
ðK − 1

α ∂iβ
iÞÃkl with LβÃij ¼ βk∂kÃij þ 2Ãkði∂jÞβk and

H ¼ 2BijBij þ NiNi ¼ −
4

3
DiK

�
Ni þDiK

3

�
þ 2DiAjkðDiAjk −DjAikÞ: ðD11Þ
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