3D CORONARY VESSEL RECONSTRUCTION FROM BI-PLANE ANGIOGRAPHY USING
GRAPH CONVOLUTIONAL NETWORKS
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ABSTRACT

X-ray coronary angiography (XCA) is used to assess coronary artery
disease and provides valuable information on lesion morphology and
severity. However, XCA images are 2D and therefore limit visuali-
sation of the vessel. 3D reconstruction of coronary vessels is possi-
ble using multiple views, however lumen border detection in current
software is performed manually resulting in limited reproducibility
and slow processing time. In this study we propose 3DAngioNet, a
novel deep learning (DL) system that enables rapid 3D vessel mesh
reconstruction using 2D XCA images from two views. Our approach
learns a coarse mesh template using an EfficientB3-UNet segmen-
tation network and projection geometries, and deforms it using a
graph convolutional network. 3DAngioNet outperforms similar au-
tomated reconstruction methods, offers improved efficiency, and en-
ables modelling of bifurcated vessels. The approach was validated
using state-of-the-art software verified by skilled cardiologists.

Index Terms— deep learning, 3d reconstruction, angiography

1. INTRODUCTION

XCA is a standard procedure in the assessment of coronary artery
disease, where an injection of radiopaque contrast medium into
vessels enables visualisation of lumen morphology [1]. Regions of
narrowing (stenosis) caused by a build up of atherosclerotic plaque
that restrict blood flow to the heart can be identified, aiding treatment
such as stent placement. Quantitative coronary angiography (QCA)
was introduced to provide precise quantification of plaque lesions
and disease progression. However, QCA only uses a 2D represen-
tation of the lumen, and therefore limits visualisations in cases of
vessel overlap and foreshortening where the full morphology of the
vessel is either obscured or distorted [1]. In order to overcome these
problems, 3D-QCA methods have been developed to reconstruct
coronary artery segments in three dimensions using two or more
angiographic views. 3D-QCA models are of high clinical relevance
due to their application in computational fluid dynamics where the
flow of blood through coronary vessels is simulated. These ap-
proaches allow for visualisation of vessel geometry and stenosis in
3D, however they are typically semi-autonomous, time-consuming,
and require manual correction of vessel segmentation or multi-step
input from clinicians. Bifurcation points where the vessel splits into
multiple branches affect the flow and velocity of blood, however
reconstructing main and side branches in a single 3D-QCA model
has been a particular challenge in past investigations.

Since the inception of the ShapeNet dataset [2], mesh de-
formation DL algorithms such as 3DR2N2 [3], Pixel2Mesh [4],
Pixel2Mesh++ [5] have demonstrated state-of-the-art results for 3D

reconstruction from 2D images. This is especially applicable in
medical imaging where data is often limited to one or few views
and has led to 3D reconstruction of the heart in HeartFFDNet [6],
liver in Xray2Shape [7] and lungs in DeepOrganNet [8]. Such meth-
ods offer advantages over traditional approaches as they are able
to reconcile surface morphology in information poor areas, have
higher performance and are computationally efficient. Despite this,
no attempts have been made to reconstruct coronary vessels using
these advanced DL techniques.

Our Contribution. Based on the challenges discussed, we
propose and validate a novel deep learning methodology for 3D
reconstruction of coronary artery segments called 3DAngioNet. To
the best of our knowledge this is the first deep learning paper to
automate coronary segment reconstruction with bifurcation points
and without the need for clinical correction.

2. METHOD

2.1. System Overview

3DAngioNet uses a coarse-to-fine approach based on three mod-
ules. Firstly, a Mesh Initialisation (MI) module creates a coarse
mesh using an EfficientNetB3-UNet segmentation algorithm and
back-projection from 2D to 3D using stereo geometry. Secondly,
a Surface Refinement (SR) module adds fine-grained detail by de-
forming the initial mesh using image features sampled from an
encoder using a graph convolutional network (GCN). Third, in cases
of bifurcation an additional step is carried out where main and side
branches are stitched together using a simple Boolean operation.
The model takes a pair of angiographic images as input, with corre-
sponding acquisition geometries and segment of interest (SOI) start
and end points provided by an expert clinician, and outputs a 3D
mesh surface. The full framework is presented in Fig. 1.

2.2. Mesh Initialisation Module

2D Vessel Segmentation. As segmentation of a specific SOI is
required, there are a number of challenges to overcome when using
deep learning segmentation algorithms. Firstly, as the SOI is similar
to other vessels in shape, texture and pixel values, it is likely a DL
segmentation algorithm will try to segment the full coronary tree
resulting in a high number of false positives. This was confirmed
experimentally and overcome by cropping the X-ray around the
SOL. Despite this, overlapping vessels in the cropped patch may still
restrict learning as the choice of vessel can be ambiguous. This was
mitigated by rotating images so the start and end points of the SOI
are fitted to the x-axis. This strategy ensures the algorithm learns
to segment a vessel only if it is orientated in a horizontal position,
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Fig. 1. 3DAngioNet framework.

vastly reducing false positives. A U-Net model [9] with an Efficient-
NetB3 [10] encoder backbone initialised with ImageNet weights is
used as the segmentation architecture. The training of the network
is supervised by a Binary Cross Entropy Dice loss (Lseq) between
the predicted probability map and a binary ground truth map.

3D Centreline Extraction. Contour coordinates from vessel seg-
mentation predictions are extracted and the 2D centreline deter-
mined. As the geometries of multiple views are known, it is possible
to back-project a 2D point (u,v) to the 3D plane (x,y,z) using trian-
gulation [11].

Mesh Estimation. A mesh is constructed from the 3D centreline
vector P € R'°%3 and mean lumen radius vector R € R'°%! in
Blender software. For each 3D centreline point P; and lumen radius
R;, a ring of 60 vertices V; is created where the distance from P;
to each new vertex V; ; is R;. The ring is placed on the normal to
the 3D centreline, where Pi}5i+1 4 Pﬂz 4. Bach resulting coronary
vessel mesh has 6,000 vertices connected by 11,940 edges to form
5,940 quad faces.

2.3. Surface Refinement

Image Features. A VGG16 [12] network encodes image features
from each view, and returns the outputs from the first four convo-
lutional blocks to the projection layer. This lightweight encoder is
preferred over EfficientNet, as feature map resolution is maintained
in the early encoding layers which helps to preserve the vessel of in-
terest which only occupies a small area of the original image. High
level feature maps from late in the network contain more coarse
representations of vessel morphology such as curvature, thickness,
shape, while low level features from early in the network contain
finer details such as edges. The combination of high and low level
features ensures both coarse and fine details are leveraged for im-
proved deformation.

Forward-Projection. Image feature maps and the initialised mesh
are passed to a forward-projection layer which maps relevant pixels
to vertices on the mesh template. In forward-projection, a 3D point
(X,y,z) on the initial mesh is projected to the 2D image feature plane
(u,v) for each view. Four adjacent pixels are sampled using bi-linear
interpolation for every 2D coordinate on each of the four feature
maps, and the output vectors concatenated between views. The 3D

positional encoding values for the initial mesh are also concatenated
with the output vector resulting in a feature vector of size 483 for
each vertex.

Graph Convolutional Network. Our graph network receives graph
features as input from the forward-projection layer where 3D shape
information for each vertex of the initial mesh is encoded. Features
are passed through a block of 8 GCN layers [13], where informa-
tion is aggregated from neighbouring nodes, eventually regressing
the 3D location for each vertex. Residual connections are added to
minimise the over-smoothing effect common in graph networks. The
graph convolutional operation is formalised by:

HOY = o(D V2 AD V2O W) W

Where A is the adjacency matrix with self-loops of the graph G,
Di; = Ej Aij is the diagonal degree matrix of G, W are train-
able weights for each layer and o is a ReLU activation. H®) ¢
RN*P is output for layer [ where N is the number of nodes in the
graph and D is the dimension of the hidden layer given to be 128
[13].

Differentiable Rendering. We implement a differentiable render-
ing pipeline based on Soft-Rasterizer [14] which provides an addi-
tional 2D supervisory signal during training. At each iteration our
3D mesh prediction is projected to the angiographic image space us-
ing the camera geometry of each of two views. Alignment between
projection silhouette and vessel mask is calculated using the same
Lseg loss from the MI module.

Losses. The SR module is supervised by a point-wise mean squared
error loss £arse to minimise the distance between predicted v and
ground truth v mesh vertices.

[v]

1 ~
Lyvse = m Z(vz - Ui)z 2)
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However, a MSE loss alone is not sufficient to produce realistic ves-
sel shapes with smooth and even surfaces, hence a set of 3 regu-
larization losses must be used to avoid undesirable morphological
artefacts. A normal loss Lnorm ensures faces are pointing in the
correct direction by penalising large angles between the predicted



vertex normals ng; and ground truth vertex normals 7, .
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Where n,, is the normal at a vertex v;, N ( f ) is the number of faces
adjacent to the vertex v;, f; ; refers to the normal of the jth face
surrounding the ith vertex. The face normal is simply calculated as
the cross product between any two vectors made from vertices that
make up a face.

An edge loss LEaqge is used to restrict the length of the edge
from its initial state and leads to a visually appealing surface,
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where F is a set of graph edges.

A Laplacian loss L4 is used to penalise overlapping vertices, en-
suring a smooth mesh surface. The discrete Laplacian L at vertex v;
and the Laplacian loss L4, are calculated as follows:

1
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Where N (v;) is the number of neighbouring vertices v; to the vertex
v; that are connected by an edge, and L(v;) refers to the discrete
Laplacian at a given vertex v;. The losses are combined using Eq. 8,
where weights are found through extensive experimentation.

L=Lyse+0.01LNorm + 2‘5£Edge + 100£Lap =+ 0.0002£seg
(3)
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Fig. 2. Stitching Process.

2.4. Stitching

Main and side branches are reconstructed separately using the above
method and then unnormalised to give their original positions in 3D
space. It is assumed that the start point of side branch centreline
should intersect somewhere along the main branch centreline. How-
ever, due to errors in acquisition or reconstruction, there is often a
small distance between these. To fix this, side branch(es) are trans-
lated in 3D space so that their start point shares the same coordi-
nates with the nearest main branch centreline point. The main and

side branch(es) are then combined using a Boolean Union operation
which removes any area which is shared between the two mesh, and
creates a new mesh from the unshared areas. This is formalised by
AUB := {2z €R’|z € Aandz € B} where A and B are the
main branch and side branch meshes. The full stitching process is
illustrated in Fig 2.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

Overview A dataset of angiographic studies of 414 patients with
atherosclerotic lesions was obtained using four different XCA ma-
chines. Coronary reconstruction was performed on a segment of
intermediate significance detected on coronary angiography (90%>
Diameter Stenosis >30%). In total 489 segments in these angio-
graphic images fulfilled the inclusion criteria and were included in
the final analysis. The dataset was split into 70% train, 15% val and
15% test examples, where each example has a pair of angiographic
images and acquisition geometry information.

Ground Truth. 2D segmentation masks and 3D ground truth
meshes were created from two precisely calibrated views using com-
mercially validated QAngio XA 3D RE software (Medis Medical
Imaging Systems, Leiden, The Netherlands), with manual correction
performed by two expert cardiologists. For bifurcated vessels, only
2D ground truth masks are available. Each mesh is standardised to
6000 vertices, 5940 faces and 11940 edges.

Pre-Processing. Grayscale angiographic images (512 x 512) from
each view were normalised to the pixel values [0,1]. 3D initialisa-
tion and ground truth mesh vertices were normalised by a translation
to the origin, rotated in 3D to fit the z-axis and normalised to the
interval [0,1]. Camera extrinsic and intrinsic parameters found in the
acquisition DICOM file were used to roughly calibrate views. Cal-
ibration was then optimised to match the vessel start and end point
correspondence given by clinicians using a Levenberg—Marquardt
algorithm [15].

3.2. Training

The MI module was trained using an Adam optimizer with an initial
learning rate of 0.001 with an epoch decay factor of 0.96. A batch
size of 8 was used and the best validation loss was saved during
training over 100 epochs. The SR module was trained using the
same set up for 500 epochs, a decay factor of 0.99 and batch size
of 1. 3DAngioNet is implemented with PyTorch using an NVIDIA
1080Ti GPU.

3.3. Comparison to Current Methods

We validate our framework by comparing test set predictions to the
3D ground truth using mean absolute error (MAE) and Hausdorff
distance (HD). Precision and recall are also calculated by determin-
ing the percentage of points that can find a nearest neighbour within
a threshold value 7 [4]. F-score is the harmonic mean between
precision and recall, and 7 set at 0.0005. In addition, we project the
3D mesh predictions back to the 2D angiographic image space and
calculate alignment with the 2D ground truth using Dice and Jaccard
Index.

Results in Fig. 3, Fig. 4 and Table 1 demonstrate that our model
is able to reconstruct vessels with minimal error and high resem-
blance to those created using state-of-the-art Medis software. By
automating the vessel reconstruction step, our framework offers im-
provements in efficiency with reconstructions taking approximately
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Fig. 3. 3D Qualitative Comparison. Bounding boxes indicate re-
gions of best performance.

MAE| HDJ F-scoreT Dice?  Jaccard]
(mm) (mm)
3DAngioNet  0.3459  1.1884  82.60 87.59  78.57
(-) SR 0.3658 1.8536  76.64 86.62  77.01
(-) DiffRend  0.3570  1.6283  81.63 86.57  76.95
MVP2M 04266 1.7612 81.54 86.15  76.25
P2MPP 0.3545  1.6520  81.90 87.40  78.18

Table 1. 3D and 2D Quantitative Comparison.

5s (1080Ti GPU, Batch size=1), compared to an estimated 4 minutes
for Medis.

Further comparison between our system and other existing
methodologies is difficult as our dataset is private, and no other
public datasets or source code for similar vessel reconstruction
methods is available. We compare to general purpose multi-view 3D
reconstruction methods Multi-View-Pixel2Mesh (MVP2M) [5] and
Pixel2Mesh++ (P2MPP) [5] networks. As these networks initialise a
mesh from an ellipsoid they are incapable of creating hollow tubular
structures, therefore we compare performance while using the mesh
initialisation from 3DAngioNet. Table 1 and Fig. 3 demonstrates
that our approach has more accurate and consistent reconstructions
with fewer errors in lumen surface.

Table 1 presents an ablation study which compares performance
using a number of different strategies: (1) Removing the SR module,
and creating a mesh using the MI module only, and (2) Removing the
differentiable rendering unit and additional 2D supervision. Models

View A

View B

B True Positive
W False Negative
B False Positive

Fig. 4. 2D Qualitative comparison between 2D projections from Fig
3 and the 2D ground truth (2-3x Zoom). Forth row compares a bi-
furcated vessel prediction after stitching. This comparison does not
appear in Fig.3 as only 2D ground truth is available for bifurcated
vessels.

trained using differentiable rendering and SR module outperform
those without, justifying our system design choices.

4. CONCLUSION

In this work we propose an effective method for 3D coronary ves-
sel reconstruction. We exploit segmentation and graph learning
to automate this process, with minimal error. Experimental re-
sults demonstrate that our method is superior to general purpose
3D reconstruction algorithms, while producing mesh vessels with
high resemblance to those created manually using state-of-the-art
software. This work enables streamlining of time-consuming tasks
while opening up future research avenues in atherosclerotic plaque
progression. Our model is validated on data from four different
XCA machines, demonstrating that our approach is generalizable
to new data. In future work we aim to fully automate 3DAngioNet
by learning the SOI region rather than using clinical guidance, and
improve lumen resolution by co-registering QCA with intravascular
imaging modalities.
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