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We reproduce and extend the previous studies of Lehner and Pretorius of the endpoint of the
Gregory-Laflamme instability of black strings in five space-time dimensions. We consider unstable
black strings of fixed thickness and different lengths, and in all cases we confirm that at the interme-
diate stages of the evolution the horizon can be interpreted as a quasistationary self-similar sequence
of black strings connecting spherical black holes on different scales. However, we do not find any
evidence for a global timescale relating subsequent generations. The endpoint of the instability is
the pinch off of the horizon in finite asymptotic time, thus confirming the violation of the weak
cosmic censorship conjecture around black string spacetimes.

I. INTRODUCTION

General Relativity (GR) is the currently accepted
classical theory of gravity. Quite remarkably, so far it
has successfully passed all experimental tests, explaining
gravitational phenomena on an incredibly wide range
of scales, from Solar system scales to cosmology. Fur-
thermore, the detections of gravitational waves by the
LIGO/Virgo/KAGRA collaboration [1, 2] produced in
mergers of compact objects have allowed for new tests
of Einstein’s theory in the strong field regime; such tests
should lead to new insights into fundamental aspects of
the theory.

Black holes play a very important role in our under-
standing of GR, and gravity in general, due to their
simplicity, which makes them tractable, and the fact
that they capture key aspects of the theory. One of
the distinguishing features of black holes is the presence
of singularities in their interior, where the description
provided by GR breaks down. Penrose’s famous sin-
gularity theorem [3] establishes that singularities in GR
can occur more generally, as one should expect in a non-
linear theory, and they need not be hidden inside black
holes. The occurrence of singularities limits the predic-
tivity of GR as a classical theory of gravity; to ensure
that GR retains its predictive power in the presence of
certain singularities, Penrose conjectured that the lat-
ter should generically be cloaked by horizons. This is
the Weak Cosmic Censorship Conjecture (WCCC) [4]
(see [5–7] for a modern and mathematically precise for-
mulation), and there are no known counter-examples
in four-dimensional astrophysical settings.1 Proving or
disproving this conjecture remains one of the most im-
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1 Choptuik’s critical collapse [8] is non-generic. In fact,
Christodoulou proved the WCCC for the Einstein-scalar field
model in four dimensional asymptotically flat spacetimes in
spherical symmetry [9].

portant open problems in mathematical relativity (see
[10] for recent progress).

While the Kerr black hole is believed to be stable
[11–15], and hence its relevance in astrophysics, higher
dimensional vacuum black holes exhibit much richer dy-
namics. Almost 30 years ago, Gregory and Laflamme
(GL) discovered that black strings (and black p-branes
in general) can be unstable to long wavelength pertur-
bations that break the translational symmetry along the
compact extra dimensions [16]. It is fair to say that the
study of the GL instability and its possible endpoints
together with the discovery of the asymptotically flat
black ring in five dimensions [17] were largely responsi-
ble for the intrinsic interest in understanding the physics
of higher dimensional black holes regardless of string
theory (see [18] for a review). From the extensive work
done in this area over the years it has become clear that
the GL instability is very general and it basically affects
any higher dimensional black hole which is sufficiently
far from extremality whenever the horizon geometry is
characterized by widely separated length scales. The
latter happens for instance for rapidly spinning asymp-
totically flat black holes [19–22] and black rings [23],
or in anti-de Sitter black holes [24, 25]. Therefore, the
GL instability can teach us very general aspects of the
physics and the possible phases of black holes and their
dynamics in a wide variety of settings.

The endpoint of the GL instability of black strings
was finally spelled out in a famous paper by Lehner and
Pretorius [26] (see [27] for a reivew), who used numeri-
cal relativity techniques to solve the Einstein equations
numerically in the highly dynamical and fully non-linear
regime. They found that the horizon evolves into a
sequence of spherical black holes joined by string seg-
ments; these string segments are themselves GL unsta-
ble, triggering a cascade of instabilities that give rise
to new generations of black holes and black strings on
ever smaller scales, eventually leading to the pinch off
of horizon somewhere along the string. In particular,
[26] argue that the dynamics of the GL instability is
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(globally) self-similar.2 Using this observation they es-
timate that the pinch off time (as measured by asymp-
totic observers) is given by a geometric series and hence
finite. Since horizons cannot bifurcate in a smooth man-
ner (see e.g., Proposition 9.2.5 in [28]), [26] conclude
that a naked singularity must form at the pinch off. In-
deed, the simulations of [26] show that the spacetime
curvature invariants at the horizon of the black string
blow up as the system approaches the pinch off. Fur-
thermore, since no fine tuning is required, one concludes
that the endpoint of the GL instability constitutes a vi-
olation of the WCCC in higher dimensional asymptoti-
cally Kaluza-Klein (KK) spaces. Following the original
work of [26], further studies of certain higher dimen-
sional asymptotically flat rotating black holes and black
rings that also suffer from the GL instability have pro-
vided further support for this picture in finite number
of spacetime dimensions [29–32] and in the large D limit
of GR [33–36].

The seminal paper of [26] is more than ten years old
and, as important as it is for the current understand-
ing of the WCCC and its potential violations, it has not
been independently reproduced in the literature. There-
fore, the first goal of the present article is to reproduce
the main results of [26], using completely independent
methods and a different code: While [26] solve the Ein-
stein equations using harmonic coordinates and excision
with the PAMR/AMRD libraries,3 here we solve the Ein-
stein equations using the CCZ4 formulation [37, 38] in
singularity avoiding coordinates and the GRChombo code
[39, 40]. The second goal of this paper is to extend the
results of [26] by evolving the system closer to the singu-
larity than ever before and by considering black strings
of different lengths to obtain a more general picture of
the evolution and the endpoint of the GL instability of
black strings. While we reproduce the main result of
[26], namely that the GL unstable black string evolves
into a sequence of ever thinner strings connecting black
holes leading to a pinch off in finite asymptotic time,
we do not find any evidence of a global timescale relat-
ing subsequent generations. This implies that the pinch
off time is not given by a geometric series; instead, the
local dynamics on the string segments plays an impor-
tant role beyond the third generation, leading to a faster
approach to the singularity. The distinct role that the
third generation plays here is due to our choice of initial
data (as well as in [26]). Furthermore, our simulations
indicate that the dynamics near the singularity seems to
be independent of macroscopic details of the string, sug-
gesting the existence of a universal local solution that
controls the pinch off, as in certain fluids [41, 42].

The rest of this article is organised as follows: In
Section II we describe in detail the numerical methods
that we have used and our choice of initial conditions.
Section III contains the main results of the article. In

2 This should not be confused with local self-similarity near the
singularity, which would manifest itself as a scaling solution
describing the approach to the singularity.

3 http://laplace.physics.ubc.ca/Group/Software.html.

Section IIIA we describe the evolution of the apparent
horizon area; Section III B studies the dynamics of the
apparent horizon and Section III C contains the details
of the approach to the singularity. In Section IV we
summarize our main results and outline directions for
future research. Convergence tests are presented in Ap-
pendix A.

In this article we use the following conventions: G =
c = 1. Greek letters µ, ν, . . . denote spacetime indices
while Latin letters i, j, . . . denote indices on the spatial
hypersurfaces.

II. NUMERICAL METHODS

A. Evolution

We solve the Einstein vacuum equations in 4+1 di-
mensions in the CCZ4 formulation [37, 38] using the
GRChombo code [39, 40]. We use Cartesian coordinates
and impose SO(3) symmetry along the Minkowski di-
rections at the level of the equations of motion using
the modified cartoon method [43–45], thus reducing the
effective dimensionality of the problem to 2+1. The di-
mensionally reduced equations of motion in the BSSN
formulation can be found in [45]; the generalization to
CCZ4 is straightforward.

To stably simulate black string spacetimes, we rede-
fine the constraint damping parameter κ1 → κ1/α as
in [38], where α is the lapse function. In the results re-
ported in Section III, we used κ1 = 0.37 and κ2 = −0.8.
We use 6th order finite differences to discretise the spa-
tial derivatives and a standard RK4 time integrator to
step forward in time. Since the overall convergence or-
der cannot be higher than four, we use 6th order Kreiss-
Oliger dissipation. In Appendix A we show that the
order of convergence that we achieve is roughly three,
as expected in a typical AMR code as GRChombo. As
in similar settings [29–31], to control the gradients near
the coordinate singularity present in the computational
domain inside black holes, we add diffusion terms well
inside the apparent horizon (AH) to the right hand side
of the equations of motion for those variables that ap-
pear with second order spatial derivatives. We place
the outer boundary along the Minkowski directions at
Louter = 256r0, where r0 is the mass parameter of the
black string, see equation (3) in Section II B. At the
outer boundary x = Louter we impose either Sommer-
feld or periodic boundary conditions, while the direction
along the string, z, is periodic with period L.4 The grid
spacing in the coarsest level typically is dx = 0.25 r0
and we add another 12 levels of refinement (so 13 levels
in total) with a refinement ratio of 2:1.

We evolve the lapse α with the standard 1+log slicing

4 Since Louter is not in causal contact with the black string for
the entire duration of our simulations (see Section III), the par-
ticular choice of boundary conditions at x = Louter makes no
difference in practice.
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condition,

(∂t − βi∂i)α = cα α (K − 2 Θ) , (1)

with cα = 1.3. Here K is the trace of the extrinsic
curvature of the spatial slices and Θ is another of the
CCZ4 evolution variables. We evolve the shift vector βi
with the integrated Gamma-driver,

(∂t − βj∂j)βi = cβ Γ̂i − η βi , (2)

where Γ̂i is the usual CCZ4 evolution variable and
cβ = 0.6; these choices of gauge parameters have proven
to work well in numerical simulations of higher dimen-
sional black hole spacetimes [29–31, 44, 46].5 Notice
that unlike [29–31], we have not included an extra term
in (2) corresponding to the contracted Christoffel sym-
bols of the (conformally rescaled) initial spatial metric.
The reason is that such term vanishes for our choice of
initial conditions, see Section II B.

B. Initial data

We start with an unperturbed 5D black string written
in Gullstrand-Painlevé coordinates [47, 48],

ds2 = −
(

1− r0
r

)
dt2+2

√
r0
r
dt dr+dr2+r2dΩ2

(2)+dz
2 ,

(3)
where r0 is the usual Schwarzschild mass parameter,
z ∼ z + L is the KK compact direction and dΩ2

(2) is
the standard metric on the unit round two-sphere. The
ADM mass of (3) is

M = 1
2 Lr0 . (4)

The advantage of using these coordinates is that they
are horizon-penetrating while the metric on the spatial
sections is flat. The latter makes it particularly conve-
nient for constructing perturbed initial data that mini-
mizes the amount of initial constraint violations, as we
explain below. We regularize the physical singularity
present in the initial data slice using the “turduckening"
approach [49, 50] and cutting off by hand the range of
the radial coordinate. In terms of the radial cartoon
coordinate x, if x < ε, then we evaluate the initial data
quantities derived from (3) at x = ε; for the results
presented below, we typically use ε = 0.1 r0.6

From the initial data (3), we read off the 4 + 1 quan-
tities, noting that in Cartesian coordinates det γ = 1
and hence the unperturbed conformal factor satisfies

5 Note that the values of the gauge parameters cα and cβ that
we use in (1) and (2) differ from the typical values used in
black holes binary mergers in astrophysical scenarios, which are
cα = 2 and cβ = 0.75.

6 We should emphasize that we only employ this regularization
procedure at the level of the initial data; at the later stages in
the evolution, the x coordinate takes values in 0 < x < xmax.

χ ≡ (det γ)−
1
4 = 1. Furthermore, the Christoffel sym-

bols associated to the spatial conformal metric γ̃ij triv-
ially vanish. We introduce a constraint violating pertur-
bation on the conformal factor χ that triggers the GL
instability:

χ = 1 + ε sin
(
2πnz
L

)
e
−
(

x
r0
− r0

x

)2

, (5)

where ε is the amplitude of the perturbation, n ∈ N se-
lects the GL harmonic to be excited and the exponential
factor in (5) ensures that the perturbation is localized
near the horizon. Therefore, our perturbation (5) does
not change the ADM mass (4) of the spacetime. For the
results reported in Section III, we chose r0 = 1, ε = 0.01
and n = 1. We keep track of the constraint violations
introduced by our perturbation and we verify that for
ε . 0.01 they are exponentially suppressed by the damp-
ing terms in the CCZ4 equations on a timescale that is
much faster than any other timescale in the problem.
The remaining 4 +1 quantities are left unperturbed; for
the initial lapse α and shift vector βi, we set α = 1 and
βi = 0.7

C. Grid hierarchy and AMR

The location along the string where the first genera-
tion forms is sensitive to the initial conditions, see Sec-
tion III. Beyond this point and for initial data with zero
total momentum, as in our case and in [26], the evo-
lution should respect the Z2 reflection symmetry about
the centre of the first generation string segment. The
reason is that the n = 1 GL harmonic, which is the one
that governs the subsequent universal evolution of the
strings with the thicknesses that we have considered,
has this symmetry. However, truncation errors due to
the asymmetry of the various levels of refinement that
are automatically added as the evolution of the insta-
bility unfolds can break this physical symmetry of the
problem. This effect is visible from the third generation
onwards in the animation of the evolution of the insta-
bility produced by [26] and in Fig. 2 of this reference.
In this subsection we provide details of the grid hierar-
chy that we used in our simulations that ensures that
our numerical method respects this Z2 symmetry; we
emphasise that we did not explicitly enforce this sym-
metry in our simulations, so the fact that it is respected
is a sign that the truncation errors do not interfere with
the physics. The reader interested in the results of our
simulations can safely skip the rest of this subsection.

In similar problems that some of us addressed in the
past using GRChombo, e.g., [29–32], a refinement crite-
rion based on the gradients of the conformal factor χ

7 This choice of lapse and shift implies that initially there is a
period of strong gauge dynamics superposed with the physical
evolution of the GL instability. This period of gauge adjustment
typically lasts t/r0 ∼ 10, whilst with our perturbation the onset
of the GL instability occurs at t/r0 ∼ 70 − 100 or even later,
see Fig. 2.
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as estimates of the local numerical error was used. The
reason is that in the moving punctures gauge (i.e., 1+log
slicing for the lapse plus Gamma driver for the shift),
the contours of the conformal factor χ track the AH
quite accurately. Therefore, such a criterion leads to
hierarchy of refinement levels that approximately fol-
lows the shape of the AH, thus potentially optimizing
the computational cost of the simulations. However, in
the problems considered in [29–32], one did not have to
worry about any underlying symmetries that the numer-
ical method ought to respect, so this refinement criterion
turned out to be very convenient and efficient. Unfortu-
nately, in the present case of the black string, we were
not able to find an efficient way to dynamically ensure
that the grid hierarchy that resulted from a refinement
criterion based on the gradients of χ respected the Z2

symmetry of the problem.
In the top panel in Fig. 1 we show a typical exam-

ple of the hierarchy of innermost refinement levels that
result from using this tagging criterion. As this figure
shows, the levels are not symmetric. As consequence,
the high frequency noise that the AMR algorithm pro-
duces at the level boundaries can lead to an accumlation
of errors that can result in late time unphysical effects,
typically beyond the third generation, unless very high
resolution is used. Another issue with a |∂χ|-based re-
finement criterion in the black string problem is that the
finest level covers a significant portion of the interior of
the big blob, which seems wasteful, see the top panel of
Fig. 1. We tried to minimize the size of this region cov-
ered by the finest levels, but the resulting AMR hierar-
chy led to large truncation errors at the level boundaries
that were hard to control in practice. Another poten-
tial issue with a dynamical tagging criterion such as the
|∂χ|-based one is that it inevitably leads to significant
AMR level dynamics, in particular when new genera-
tions appear since the variable χ changes very rapidly
in some regions, resulting in frequent regridding and
hence higher levels of numerical errors. We tried other
dynamical refinement criteria based on the trace of the
extrinsic curvature K or the CCZ4 variable Γ̂i but the
results were qualitatively the same.

To ensure that the truncation errors do not interfere
with the dynamics of the unstable black strings, we en-
force that all refinement levels are rectangular-shaped,
see the bottom panel in Fig. 1. This shape of the re-
finement levels ensures that our numerical method re-
spects the Z2 symmetry of the system but does not
enforce it, and the computational cost of the simula-
tions is comparable to that of a |∂χ|-based refinement
criterion. The thinnest parts of the AH of the black
string determine the necessary resolution of the finest
level, which in turn essentially determines the compu-
tational cost of the simulation. In practice, we require
that the AH is covered by at least 40 grid points, but
typically we had 60 or more grid points covering the
AH; if there are not enough points in the finest level, a
new level is added.8 In addition, we monitor the con-

8 Note that because of the reflection symmetry about x = 0, our

straint violations throughout the simulation and verify
that they remain under control. With rectangular re-
finement levels, some of the not-so-thin parts of the AH
are overly resolved (see the bottom panel in Fig. 1) but,
on the other hand, the finest refinement level only covers
a small portion of the interior of the big blob. Further-
more, with rectangular levels, once a new level is added,
we do not regrid anymore and hence its shape is fixed
once and for all, thus minimizing the number of interpo-
lation/extrapolation operations at the level boundaries.
This helps to control the errors and speeds up the sim-
ulation.

We note that the computational cost of the simulation
increases exponentially as the singularity is approached
if we insist in requiring that the AH is covered by at
least 40 points, as we do. With more levels added to
the grid hierarchy, the size of the checkpoint files like-
wise increases exponentially, which can eventually pose
a storage problem. Therefore, even with AMR, with fi-
nite resources one cannot possibly reach the pinch off.
Summarizing, the computational and storage costs of
the simulations of the GL instability of black strings
eventually become prohibitive; for the results presented
in this article, the resources required towards the end
of the simulations exceed those of a typical equal mass
non-spinning black hole binary merger, which is a 3 + 1
problem.

D. Apparent horizon

We assume that the AH is given by the level set F = 0
of the function

F (x, z) = x− h(z) . (6)

Imposing that the outgoing null rays have vanishing ex-
pansion on this surface gives a non-linear second order
ODE for h(z). We solve this equation using the PETSc
libraries [51]. Typically we do so at every full time step
of the coarsest level and we use the previous solution as
the initial guess.

The ansatz (6) for the shape of the AH is the same as
in [26, 52]; even though the AH is slice-dependant and
our gauge is different from the ones used in these refer-
ences, the embedding diagrams of the AH that we have
obtained (see below and Fig. 4) look indistinguishable
from those in [26, 52]. This is not unrelated to the fact
that, as shown in [52], for most of the evolution the AH
is a very good approximation to the event horizon.

To get some intuition about the shape of the AH dur-
ing the evolution, we produce embedding diagrams of
the geometry into R4 following [26, 52]:

ds2 = dR2 +R2 dΩ2
(2) + dZ2 (7)

where Z is periodic. The embedding coordinate R is
defined as the areal radius of the horizon S2; in our

criterion ensures that the whole of the AH is covered by at least
80 points.
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FIG. 1. Grid hierarchy obtained with a dynamical refine-
ment criterion based on the gradients of the evolution vari-
able χ (top) versus a rectangular grid hierarchy determined
by the resolution at the AH (bottom). The actual location of
the AH is depicted in red and the color gradient corresponds
to the different refinement levels, with darker blue depict-
ing finer (i.e., higher resolution) levels. In this example we
considered a black string with r0 = 1 and L = 16.

working coordinates this is,

R(z) =
√
gww h(z) , (8)

where w denotes any of the Cartesian cartoon directions
along the S2. Then, the other embedding coordinate
Z is uniquely defined by demanding that the proper
length of the AH along the compact direction z is the
same as the Euclidean length of the curve R(Z) in the

embedding diagram. This gives,

Z(z) =

∫ z

0

dz̄

√
gzz + 2 gzx h′(z̄) + gxx h′(z̄)2√

h′(z̄)2 + 1
. (9)

Finally, we monitor the spacetime Kretschmann in-
variant evaluated on the AH:

K̄ =
1

12
RabcdR

abcdR4 , (10)

where the normalization has been chosen so that K̄ =
1 at the horizon of a stationary uniform black string,
and K̄ = 6 at the horizon of an asymptotically flat 5D
Schwarzschild black hole.

III. RESULTS

In this section we present our results. In our simula-
tions, we have fixed the mass parameter of the parent
4D Schwarzschild black hole to r0 = 1 (see eq. (3)) and
varied the asymptotic length of the compact circle L,
and hence the total mass. We discuss the results for
the different values of L that we have considered simul-
taneously in order to present the general picture of the
dynamics of the GL instability. As we shall explain be-
low, the computational cost differs for different L’s and
we were not able to get equally close to the singularity
for all values of L due to our limited computational re-
sources. We aimed at pushing the L = 10 case as much
as we could since this is the case that can be directly
compared with the results of [26].9 The equivalent case
to L = 10 with r0 = 1 was chosen in [26, 27, 52] because
it leads to approximately the fastest growth rate for
the shortest wavelength instability. In practice we have
found that with our perturbations (5) and the values of
L that we have considered, the time that it takes for the
dynamics to enter the non-linear regime is comparable
in all cases. The L = 8 case, which corresponds to a
fatter string, takes a bit longer to enter the non-linear
regime, as expected.

Just as [26, 27], we observe that the GL instability of a
uniform black string evolves into a dynamical black hole
that can be described as a quasistationary sequence of
spherical black holes connected by thin (and unstable)
black strings on different scales. The time of formation
of the first generation is sensitive to the choice of ini-
tial conditions but the subsequent evolution is universal.
Therefore, for the rest of this section, we will focus on
describing the dynamics of the unstable black strings
and the evolution of the AH after the first generation
has formed. An animation of the evolution of the AH
for the r0 = 1 and L = 10 black string can be found
here; other animations corresponding to strings of dif-
ferent lengths can be found in the GRChombo YouTube
channel.

9 Note that these references present their results in units of the
initial 4D Schwarzschild mass MSchw = r0/2 = 1, so their
results and ours are related by an overall rescaling by a factor
of 2.

https://youtu.be/Mc-jzvn_hto
https://youtube.com/playlist?list=PLSkfizpQDrcbUn2JNjkL0LKcy9k_oGQ_-
https://youtube.com/playlist?list=PLSkfizpQDrcbUn2JNjkL0LKcy9k_oGQ_-
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FIG. 2. Evolution of the AH area for unstable black strings
in 5D with 4D mass parameter r0 = 1 and different L’s.
The dashed lines indicate the AH area of a slightly deformed
5D KK black hole with the same mass as the unperturbed
black string [53]; the dotted lines correspond of the area of
two black holes on a circle [54] with the same total mass
as the unperturbed black string and the same radii as the
first and second generation blobs measured at the end of the
simulation.

A. Evolution of the AH area

In Fig. 2 we display the evolution of the AH area nor-
malized by the horizon area of the initial unperturbed
black string of length L and mass parameter r0 = 1. The
evolution of the AH area in the L = 10 case agrees very
well with the results of [26], and it asymptotes to the
area of an asymptotically flat 5D Schwarzschild black
hole with the same initial mass. For our choice of pa-
rameters, ASchw5D

/A0 = 1.373, while at the end of our
simulation we have A/A0 = 1.369. However, we believe
that the closeness of these two numbers is just a coinci-
dence and that the KK corrections to the horizon area
should be taken into account.

The dashed lines in Fig. 2 indicate the relative area
of a slightly deformed single black hole on a circle with
the same mass as the unperturbed black string with the
same L. For the values of L and masses that we have
considered, the leading KK corrections to the thermon-
dynamic quantities of a single 5D caged black hole [53]
are between 6% and 3% of their respective asymptoti-
cally flat values, corresponding to the L = 8 and L = 16
cases respectively, so not negligible.10 If one takes these
KK corrections into account, then the area of a single
KK black hole with the same initial mass as the uniform
black string with r0 = 1 and L = 10 is A/A0 = 1.439,
which is significantly larger than the AH area at the
end of the simulation. We can see from Fig. 2 that for
larger values of L, i.e., L = 12 and L = 16, the final
values of A/A0 are even further away from the area of a
single KK black hole with the same initial mass, while
the difference is smaller for the L = 8 case. The reason
for this apparent disagreement is that we have ignored

10 The area of an asymptotically flat 5D Schwarzschild black hole
with the same mass as the L = 8 and r0 = 1 uniform black
string is A/A0 = 1.228, which is less than the AH area at the
end of our simulation. In this case, clearly the KK corrections
cannot be ignored.

R1/L

R2/L

R2/R1

8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

L/r0

FIG. 3. Relative sizes of the first and second generation
blobs as a function of the unperturbed string length L. The
size of the second generation blob with respect to the first
generation one increases with L. The lines have been added
to guide the eye.

the contribution of the second generation bulge to the
final area and the latter cannot be ignored, in particu-
lar for larger L, as it is larger than the size of the KK
corrections. Indeed, the radius of the second generation
bulge varies between 10% and 30% of the radius of the
first generation bulge depending on L, see Fig. 3, and
hence its contribution to the final area should also be
taken into account.

The dotted lines in Fig. 2 show that indeed the final
total area compares better to the total area of two KK
black holes with the same radii as the first and second
generation bulges at the end of our simulations and same
total mass as the initial unperturbed black string. This
agreement gets better as L increases. The reason is that
the size of the first generation bulge compared to the
thickness of the parent string decreases as L increases,
see Fig. 3. In turn this leads to thicker first genera-
tion string segments and hence larger second generation
bulges compared to the first generation blob. This is in-
tuitive since as L increases keeping the thickness of the
string r0 fixed, one would expect that the second GL
harmonic becomes “stronger” until it would eventually
dominate the dynamics for L sufficiently large, leading
to the formation of two blobs of equal sizes in the first
generation.11 Also, we see that the size of the third gen-
eration bulges compared to the second generation ones
increases as L decreases, see Fig. 4; hence, approximat-
ing the total area by that of only two KK black holes of
the same size as the first and second generation bulges
is less accurate for smaller L.

The fact that the final AH area approaches the area of
two static KK black holes on a circle with the same ini-
tial total mass indicates that the total amount of grav-
itational radiation emitted during the evolution of the
GL instability up to this point is small. It is likely that
a strong burst of gravitational waves is emitted when

11 We observe this effect at the third generation for the L = 8
case, see Section III B.
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the first generation forms; such a burst is known to oc-
cur in other systems that experience a GL instability
and for which the gravitational waveforms have been
computed [30, 32]. Beyond the formation of the first
generation, the amount of gravitational wave emission
decreases since the fast dynamics only takes place on
ever decreasing scales and involving ever decreasing (lo-
cal) masses, and it should be almost negligible at the
the pinch off. Right after the pinch off one would ex-
pect that there is another period of strong gravitational
wave emission since the dynamics of the system should
be approximately that of a head-on collision between
the first and second generation blobs. From the embed-
ding diagrams in Fig. 4, we see that for larger L the
size of the second generation blob with respect to the
first generation one increases, so the mass ratio q of the
two black holes in the collision would decrease. In the
5D asymptotically flat case, [55] computed the energy
radiated in gravitational waves for head on collisions of
black holes for different mass ratios and showed that it
is less than 0.1% of the initial total mass in all cases.
Therefore, we expect that the total energy radiated via
gravitational wave emission during the GL instability
of black strings, including the pinch off and final state,
should also be small. We hope to report on this in future
work.

B. Dynamics and geometry of the AH

In Fig. 4 we display the embeddings of the AH geom-
etry at the last stage of our simulations for the various
L’s that we have explored. In red we have superposed
the normalized Kretschmann invariant K̄, eq. (10), on
the horizon. As [26, 27] already described, the local
geometry of the horizon can be interpreted as a dynam-
ical sequence of spherical black holes connected by black
strings and our simulations confirm their results. The
black string segments are locally GL unstable, leading
to a self-similar cascade of instabilities happening on dif-
ferent scales. Indeed, the fact that K̄ is essentially 1 on
the string-like portions of the AH whilst it approaches
6 near the equator of the bulges corresponding to dif-
ferent generations confirms the picture for the various
L’s. On the other hand, the regions near the bulges,
where K̄ differs significantly from these two values, cor-
respond to the highly dynamical regions of the AH. In
these neck regions, the horizon is becoming thinner on a
fast time scale due to mass being accreted by the neigh-
boring bulge and the surrounding string segment. Note
that the fact that normalized Kretschmann approaches
1 on the string segments implies that the spacetime cur-
vature invariant is blowing up like 1/R4, where R the
thickness of the horizon. It is apparent from Fig. 4
that in our simulations, the distribution of the higher
generation bulges is completely symmetric with respect
to the second generation bulge for all L’s. This is the
expectation for our choice of initial data and given that
the modes that govern the dynamics beyond the first
generation have this symmetry.

In the following we consider in detail the dynamics

FIG. 4. Top: Embeddings of the geometry of the AH at
the last stage of our simulations for L = 8, 10, 12, 16, from
top to bottom; the corresponding length along the Z direc-
tion is 11.32, 13.69, 15.90 and 21.03 in units of r0, respec-
tively. Note that we have rescaled the height of the plots so
that all of them have the same width while maintaining the
proportions of the embeddings. Superposed to the AH, we
have plotted (in red) the induced Kretschmann invariant on
the AH, suitably normalized (10). Bottom: zoom in of the
thinnest part of the string in the L = 10 case. The third
and fourth generations are clearly visible. The latter is still
rapidly evolving.

of the formation of the various generations. The defi-
nition of when the various generations have formed is
somewhat arbitrary because the unstable black string is
continuing to evolve and no portion of the AH is gen-
uinely stationary. In some cases, a given generation of
bulges has not had time to fully form by the time our
simulation ends; in other cases, the dynamics of the gen-
erations becomes so complex that some quantities are
ambiguous. See the detailed discussion below. In either
situation, some geometric quantities of the generations
cannot be meaningfully measured according to the def-
initions below. When this happens, we indicate it with
the symbol “?” in Tables I and II.

Refs. [26, 27] defined the formation of a new gen-
eration as the time when a newly forming bulge has a
radius which is 1.5 times the radius of the surrounding
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Gen. ti/r0 ns Rs,i/r0 Rh,f/r0 Ls,i/Rs,i
1 69 1 1 2.04 10
2 117 1 0.0586 0.299 136
3 122.8 1 0.0343 0.124 109
4 126.47 ≥1 0.01 ? 264

TABLE I. Properties of the generations for the L = 10 case
using the definitions in [26, 27]. By comparing the results
for different resolutions, we estimate the errors to be at the
1% level or smaller for the first and second generations.

string segment. For each generation, one measures the
number ns of satellite black holes that form per string
segment, their radii Rh,i as well as the radii Rs,i of the
string segments and their respective lengths Ls,i. Us-
ing these definitions, we summarize our results for the
L = 10 case in Table I. This table can be directly com-
pared with Table I in [26].

We find reasonably good agreement between our re-
sults and [26], within the errors, up to the second gener-
ation; we note that apparent disagreement in the thick-
ness of the string segment Rs,2/r0 may be attributed to
the rather ambiguous definition of Rs,2 since the string
is slightly non-uniform beyond the first generation; this
lack of non-uniformity of the string-like portions of the
horizon becomes more exacerbated as the evolution pro-
ceeds, see the bottom two panels in Fig. 7. On the
other hand, the agreement on the equatorial radius of
the first and second generation bulges Rh,f is very good.
Beyond the second generation, the agreement between
our results and those in [26] does not seem to be that
good anymore; [26] mention large errors in their simu-
latons at this point, which could explain the apparent
discrepancies.

With these definitions of the generations, [26] sug-
gested, based on their data, that the instabilities that
give rise to the third and higher generations unfold on a
time scale which is approximately 1/4 of the preceding
one. We do not find evidence in our data of a global
time scale relating the subsequent generations in Table
I for L = 10 or in Table II for any of the values of L that
we have considered. In fact, we will argue below there
cannot be such a global time scale and that the develop-
ment of the instabilities beyond the second generation
is a rather chaotic process that depends on the local dy-
namics of the bulges and the string segments, which in
turn is dictated by the gravitational self-attraction and
local tension of the string.

To discuss our results, we found it useful to use
slightly different definition for the time of formation of
the generations. The motivation is the following. In
Fig. 5 we plot the time derivative of the logarithm of the
radius of the bulges corresponding to the first four gen-
erations as functions of time for the L = 10 black string;
other values of L give similar plots. The absolute max-
ima in this plot, marked with a dot, indicate the time
tp,i at which the growth of the i-th generation is fastest
compared to its size; after this point, the rate of change
of the radius of the i-th generation bulge slows down un-
til it develops a local minimum, also marked with a dot
in Fig. 5. We choose this local minimum as the time tn,i

FIG. 5. Time derivative of the logarithm of the equatorial
radius for each of the generations for the L = 10 case as
functions of time.
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FIG. 6. First few Fourier coefficients of the AH radius R(t, z)
as functions of time on the first generation string segment.
The first Fourier coefficient c1 dominates the dynamics. The
even Fourier coefficients are negligible compared to the odd
ones.

of formation of the i-th generation and we measure its
geometric properties at this point. After this time, the
radius of the bulge exhibits some non-trivial (yet slow)
dynamics due to the interactions with nearby bulges
from the preceding or subsequent generations. The def-
initions of Rh,f and Rs,i remain unchanged. We collect
the properties of the different generations that we have
managed to observe according to these definitions for
the various values of L in Table II.

We find that up until the formation of the third gen-
eration, the dynamics is governed by the symmetry of
the problem. The location along the string where the
first bulge appears depends on the initial data; once
formed, the first generation bulge is surrounded by a
uniform string that eventually becomes unstable, lead-
ing to the formation of a second generation bulge. Given
that there is no net momentum along the string because
of our choice of initial data, if the first GL harmonic is
the one driving the formation of the second generation
bulge (as in all cases that we have considered, see Fig.
6), the latter has to form at the centre of the preced-
ing segment of string by symmetry. Fig. 7 shows that
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L/r0 Gen. tp,i/r0 tn,i/r0 ns Rs,i/r0 Rh,f/r0 Rs,i/Ls,i

8
1 163.1 174.7 1 1 1.846 0.125
2 185.3 186.6 1 0.106 0.145 0.019
3 188.1/188.1 188.63/188.62 2 0.0230 0.0657/0.0585 0.0078

10

1 93 107 1 1 2.04 0.1
2 121.3 123.8 1 0.162 0.299 0.023
3 124.0 125.6 1 0.0539 0.124 0.016
4 126.8 ? ≥ 1/1 0.0185/0.0165 ? 0.0076/0.012

12
1 78 96.4 1 1 2.221 0.0833
2 111.7 115.35 1 0.209 0.457 0.025
3 chaotic ? ≥ 1 0.0452 ? 0.010

16
1 91 112.7 1 1 2.51 0.0625
2 128.6 133.7 1 0.351 0.723 0.034
3 chaotic ? ≥ 1 0.0263 ? 0.0039

TABLE II. Properties of the various generations for different L’s according to our definitions for the time of formation. We
estimate the errors to be at 1-5% level for the 3rd generation and beyond, while they are . 1% for the first and second
generations. There is no global time scale relating the time of of formation of the generations beyond the second one.

this is precisely what happens. Following [27], we de-
compose the string radius R(t, z) in the coordinate re-
gion z ∈ [0, 5r0] covering the first string segment for the
L = 10 case,

R(t, z) = c0 +

∞∑
k=1

ck sin
(
πkz
Ls,1

)
, (11)

to extract the Fourier coefficients ck that capture the
“strength" of the various GL harmonics. Fig. 6 shows
the values of ck/c0 as functions of time for the first few
k’s. Just as [27] already found, the odd coefficients dom-
inate and c1 is the one governing the evolution, which is
consistent with the formation of a single second gener-
ation bulge at the center of the string segment. For the
larger values of L we find that the higher (odd) Fourier
coefficients, namely c3 and c5, are “stronger" compared
to c1. This is consistent with the fact that the unstable
string segment is longer, so higher harmonics can also
be excited.

Symmetry also dictates that second generation bulge
that forms has zero net velocity along the string di-
rection. From Fig. 7, we see that the second genera-
tion bulge is surrounded by two identical segments of
(slightly non-uniform) string joining it with the first
generation bulge and hence it is in local equilibrium.
The disturbances along the string created by the forma-
tion of the second generation seed the instabilities that
eventually lead to the formation of the third generation,
see third panel in Fig. 7. It seems that this is the mech-
anism through which subsequent generations form from
the preceding ones.12 The string segments surrounding
the second generation eventually become unstable but
the formation of the third generation bulges is affected
by the presence of two unequal bulges at the respec-
tive ends in the following way. As the third panel in
Fig. 7 shows, the disturbance that eventually becomes

12 Presumably this is also how the mode that eventually leads to
the formation of the second generation gets excited, but it is
harder to see from our data.

FIG. 7. Formation of the second and third generations for
the L = 10 case. We have added a copy of the string to the
left of the plots to facilitate the visualization given that the
Z direction is periodic. The second generation forms right at
the centre of the preceding string segment; the disturbance
that eventually becomes the third generation moves along
the string segment at the same time as it grows due to the
interactions with the first and second generation blobs.

a third generation bulge is surrounded by string seg-
ments of unequal thickness because the bulges at the
respective ends have different sizes. Because of this non-
uniformity of the string segment and the unequal sizes
of the bulges, the disturbance no longer appears at the
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FIG. 8. Local dynamics of the bulges for the L = 12 case.
The numbers in red label the generations. The third and
fourth generation bulges do not have enough time to fully
form before being absorbed by the existing second genera-
tion bulge (big blob on the left). On the other hand, the
fifth generation bulge fully forms, even though it migrates
towards the second generation bulge as it forms.

centre of the preceding string; consequently, as it grows
it is also attracted towards the first or second gener-
ation bulge depending on its initial location along the
string. Therefore, as the third generation forms by ac-
creting mass from the surrounding string segments, the
growing bulge acquires a certain net velocity towards
one of the preceding generation bulges, leading to a fur-
ther thinning of one of the surrounding string segments.
In the example shown in Fig. 7, the third generation
bulge moves towards the first generation one. This lo-
cal motion of the bulges that inevitably arises at the
third generation and beyond interferes with the devel-
opment of the local GL instabilities because it leads to a
further thinning of certain string segments and it occurs
on the same time scale as the formation of the gener-
ations themselves. Clearly this pattern of local bulges’
motion and instabilities taking place at the same time
is what determines the evolution of the system beyond
the second generation. Ultimately, this is the reason
why from the third generation onwards there cannot be
a global time scale relating the subsequent generations
that form as a result of local GL instabilities. Instead,
the process becomes rather chaotic. It would be inter-
esting to quantify the latter more precisely.

We illustrate in detail the local dynamics of the bulges
for the L = 12 case in Fig. 8. The third generation

v∥

v⟂

0 2 4 6 8 10 12 14
-3.0

-2.0

-1.0

0

1.0

2.0

3.0

-0.45

-0.3

-0.15

0

0.15

0.3

0.45

R
/r
0

v i

v∥

v⟂

4.5 5.0 5.5 6.0
-0.4

-0.2

0

0.2

0.4

-0.3

-0.15

0

0.15

0.3

Z/r0

R
/r
0

v i

FIG. 9. Top: Tangential and orthogonal velocities of a null
ray co-moving with the AH in the final stages of the evolution
of the unstable black string with L = 12. Bottom: Zoom
in of the thinnest part of the string, showing the second
generation blob (left) and the fifth generation blob (center).
The latter is moving towards the former.

bulge starts forming near the second generation bulge
(first panel) and it moves towards the latter as it grows.
However, it does not have time to fully form before be-
ing absorbed (second and third panels). A would-be
fourth generation bulge then starts forming, but again
it is absorbed by the second generation bulge before it
has had time to fully form; at the same time, the fifth
generation bulge starts to form, but in this case it is
located far enough from the second generation bulge so
that it has enough time to fully form. One can see from
the lower two panels in Fig. 8 that the fifth generation
bulge moves towards the second generation one while
the sixth generation is just beginning to form. In the
L = 12 case we find that the minimum thickness of the
string is located near where the string segment joins the
fifth generation bulge.

In order to get a qualitative picture of the motion
of the bulges at the last stages of our simulations, we
consider a particular null ray co-moving with the AH,

V = ∂t + ż ∂z + (ẋ+ h′ ż) ∂x , (12)

where the dot ˙ denotes the derivative with respect to the
parameter t, and ż and ẋ correspond to the tangential
(v‖) and orthogonal (v⊥) velocities of the null ray with
respect to asymptotic observers at rest; these velocities
provide some measure of how the various portions of
the AH are moving with respect to a frame that is at
rest with respect to asymptotic infinity.13 In Fig. 9
we plot the tangential and orthogonal velocities of such
a light ray that is co-moving with the AH at the last

13 In practice, ż and ẋ are found by requiring that (12) is null and
that the quadratic equation gµνV µV ν = 0 has zero discrimi-
nant.
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stage of our simulation. This figure is consistent with
the local dynamics of the blobs described in the previous
paragraphs since it shows that while the smaller blobs
accrete matter from the surrounding segments of string,
as shown by the local non-zero orthogonal velocities,
they are collectively being dragged towards the second
or first generation blobs. Furthermore, the tangential
velocities are relativistic and they are much larger than
the orthogonal ones. However, the motion of the blobs
is slow compared to the development of the local GL
instabilities on smaller scales.

The number of bulges that form per generation and
their location along the string depends on the value of L
but the main features of their local dynamics are essen-
tially the same for all cases. The motion of the bulges
interferes with their growth and hence their time of for-
mation as well as with the thicknesses of the resulting
segments of black string surrounding them. Because of
this local motion, some black string segments become
thinner than they would otherwise be solely due to the
mass accretion of a nearby bulge that is forming. Since
it is the thickness of the local string segment what de-
termines the growth rates of the local GL instabilities
and the harmonics that will drive the formation of the
the next generations, the local motion accelerates the
approach to the pinch off. Therefore, while there is
no global time scale relating subsequent generations be-
yond the second one, the fate of the black string is sealed
once the first GL instability sets in: the black string
will necessarily pinch off in finite asymptotic time. Fur-
thermore, the process accelerates as it approaches the
singularity. We should emphasize that the special role
that the third generation seems to play in this discussion
is an artefact of our choice of initial data; other initial
conditions, for instance with a net momentum along the
string, could induce the local bulge dynamics at a dif-
ferent stage in the evolution and the third generation
would no longer be singled out.

C. Approach to the singularity

The main result of [26, 27] was to convincingly demon-
strate that the black string pinches off in finite asymp-
totic time. In this section we corroborate this result for
the various L’s that we have considered.

As previously observed [26, 27, 30], the minimum of
the areal radius of the black string follows an approxi-
mate scaling law,

Rmin = a (t− tc) , (13)

where a is a dimensionless proportionality constant and
tc is the pinch off time. By fitting our numerical data to
(13) we can extract the values of a and tc for the different
L’s. For the L = 8, 16 cases we did not manage to get
as close to the pinch off as in the L = 10, 12 cases due
to the lack of sufficient computational resources.

In Fig. 10 we display the logarithm of the minimum
areal radius of the string as a function of the logarithm
of the time to the singularity for the L = 10 case; this

FIG. 10. Logarithm of the areal radius R of the AH vs the
logarithm of the time to the singularity for the L = 10 case.
We display the evolution of the minimum string radius to-
gether with the equatorial radii of several generations. Other
L’s give qualitatively similar plots.

figure can be compared with Fig. 4 in [26]. We collect
the results of the fits for the various L’s in Table III.

L/r0 a tc/r0
8 0.0058 189.6
10 0.0052 127.9
12 0.0048 123.5
16 0.0045 148.2

TABLE III. Slope of the scaling law (13) and pinch off time
for the different L’s.

The results in Table III suggest that the slope of the
scaling law (13) is independent of L, at least within the
errors and taking into account that we did not manage
to get equally close to the singularity for all L’s. If con-
firmed, this could be interpreted as providing evidence
for the existence of a universal scaling solution govern-
ing the pinch off of the black string. It is also interesting
to note that the values of the slope that we find for the
black string are essentially half of the values that the
authors of [30] found in the case of the ultraspinning
instability of Myers-Perry black holes in six spacetime
dimensions. In the latter case, the local geometry of the
AH is that of a black membrane. It would be interesting
to understand the origin of this factor of two difference
between the respective scaling laws.

IV. DISCUSSION

In this article we have reproduced and confirmed the
famous results of Lehner and Pretorius [26] on the end-
point of the GL instability of black strings in five space-
time dimensions. In particular, we provided further ev-
idence that the unstable black string evolves into a self-
similar sequence of uniform strings connecting spherical
black holes on different scales that should result in a
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pinch off in finite asymptotic time. Furthermore, we
have extended the results of [26] in several directions:
First, we have considered unstable black strings of dif-
ferent lengths and equal thicknesses, and shown that the
approach to the singularity is qualitatively the same as
in the case considered in [26]. Second, our numerical
simulations have allowed us to confidently get closer to
the singularity than before, reaching up to four or five
generations in the L = 10 and L = 12 cases respectively,
whilst preserving the Z2 symmetry about the second
generation blob. This symmetry and the particular role
that the third generation plays in the evolution are a
consequence of the type of initial conditions that we
(and [26]) have considered.

While our results and those of [26] agree very well up
to and including the second generation, we have seen no
evidence of a global timescale governing the formation
of the higher generations. We have argued that such
a timescale cannot exist because of the local motion of
the higher generation bulges caused by the tension and
gravitational self-attraction of the string. Such a mo-
tion takes place on a timescale which is of the same or-
der as the time of formation of the next generation, and
it leads to further thinning of certain string segments,
thus speeding up the approach to the singularity. How-
ever, the basic picture remains; namely, the minimum
thickness of the string follows a scaling law (13), and
the timescales for the development of local GL instabil-
ities, which are determined by the thickness of the string
segments, are shorter than the time of formation of the
singularity, at least for the duration of our simulations.

There are several directions for future work. One of
the most interesting open questions about the evolution
of the GL instability of the black string is the nature of
the singularity at the pinch off. This has far reaching
implications for the physical consequences of certain vi-
olations of the WCCC and the predictivity of general
relativity as a classical theory of gravity. Arguably, the
black string is the cleanest system where these questions
may be addressed. In non-relativistic incompressible
fluids, the work of [41] showed that the pinch off of an
axisymmetric column of fluid is governed by a universal
scale invariant attractor solution of the Navier-Stokes
equations. The solution of [41] shows that essentially
only microscopic a region of the fluid is involved in the
pinch off and, furthermore, this region is insensitive to
the evolution of the fluid on macroscopic scales. This
implies that the loss of predictivity of the classical hy-
drodynamic equations at the pinch off is minimal and
the details of how the pinch off takes place are irrelevant
for the macroscopic evolution of the fluid. Ref. [56] con-
jectured that a similar picture would hold in the case of
the GL instability of black strings. A related question
is whether an infinite number of generations or only a
finite number of them form before the singularity; in the
former case, the horizon would develop a fractal struc-
ture, while in the latter case this fractal structure would
break down at some point.14 We hope to report on the

14 We thank Frans Pretorius for pointing this out to us.

nature of the pinch off in future work.
Other important and related open questions are

whether null infinity is complete and determine the lo-
cation of the event horizon (EH). Given that the most of
the geometry of the AH of the unstable black string can
be accurately described as a sequence of quasistationary
black strings connecting black holes, one would expect
that the AH is very close to the EH almost everywhere.
Ref. [52] confirmed this at least for the initial stages
of the evolution. However, the pinch off is expected to
take place in a highly dynamical region of the geome-
try of the black string, precisely where the AH and the
EH may differ substantially. One can locate the EH
by shooting null geodesics backwards in time [57, 58],
starting from the last snapshot of the simulation. How-
ever, in our case, this approach poses a serious practical
difficulty because the size of the checkpoint files that we
have to store increases exponentially close to the pinch
off and we quickly run out of storage space in a normal
cluster.

As the evolution of the black string approaches
the pinch off, one would expect that eventually
higher derivative corrections to the Einstein-Hilbert La-
grangian would become important. It would be inter-
esting to quantify whether this is indeed the case in the
regime that can be probed with numerical simulations
and how such corrections affect the dynamics. In a re-
cent breakthrough, Refs. [59, 60] (see also [61]) have
shown that certain higher derivative theories of grav-
ity in higher dimensions are well-posed in reasonably
straightforward modifications of the gauges commonly
used in numerical relativity. Therefore, it should be
possible to study higher derivative corrections to the
evolution of the GL instability. Work to address this
question is in progress.
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Appendix A: Convergence tests

In this appendix we provide the results of the con-
vergence tests. We monitor the AH area since it plays
a fundamental role in the interpretation of the results
and, in turn, it is sensitive to the overall structure of the
horizon, thus providing a good idea of the accuracy level
of the simulations. To carry out the tests we evolved the
L = 10, r0 = 1 black string across different resolutions.

The medium resolution run has a coarsest grid spac-

ing of ∆med = h = 0.25r0 and this is the typical res-
olution that we have used to present the results in the
paper. The low and high resolution runs have grid spac-
ings ∆low = 10

7 h and ∆high = 2
3h respectively. The rea-

son for these choices is the following. The low resolution
cannot be too low, e.g., ∆low = 2h, because otherwise
the code would crash shortly after the formation of the
first generation; on the other hand, too high resolution
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FIG. 11. Convergence test for the AH area for the r0 = 1,
L = 10 black string. The medium resolution run has spacing
h = 0.25r0 in the coarsest grid level. This plot shows that the
order of convergence is roughly three. The computational
cost of the high resolution run limited the time of the tests.

is unfeasible with our limited computational resources.
Therefore, the chosen grid spacings for the tests seem
to be a good compromise.

In Fig. 11 we display the results of the convergence
tests. In this plot, we compare the AH area computed
with different resolutions in terms of the convergence
factor

Qn =
∆n

low −∆n
med

∆n
med −∆n

high
. (A1)

Due to the high computational cost of the high reso-
lution run, we could only evolve it for a limited time,
which in turn limits the evolution time of the tests. This
plot shows that the order of convergence is roughly 3
throughout the evolution. This is expected since even
though we use a method that is 6th order in space and
4th order in time, the interpolation/extrapolation at the
level boundaries typically reduce the order of conver-
gence.
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