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ABSTRACT

Context. Hydrodynamical simulations solve the governing equations on a discrete grid of space and time. This discretization causes
numerical diffusion similar to a physical viscous diffusion, whose magnitude is often unknown or poorly constrained. With the current
trend of simulating accretion disks with no or very low prescribed physical viscosity, it becomes essential to understand and quantify
this inherent numerical diffusion, in the form of a numerical viscosity.
Aims. We study the behavior of the viscous spreading ring and the spiral instability that develops in it. We then use this setup to
quantify the numerical viscosity in Cartesian grids and study its properties.
Methods. We simulate the viscous spreading ring and the related instability on a two-dimensional polar grid using PLUTO as well as
FARGO, and ensure the convergence of our results with a resolution study. We then repeat our models on a Cartesian grid and measure
the numerical viscosity by comparing results to the known analytical solution, using PLUTO and Athena++.
Results. We find that the numerical viscosity in a Cartesian grid scales with resolution as approximately νnum ∝ ∆x2 and is equivalent
to an effective α ∼ 10−4 for a common numerical setup. We also show that the spiral instability manifests as a single leading spiral
throughout the whole domain on polar grids. This is contrary to previous results and indicates that sufficient resolution is necessary
in order to correctly resolve the instability.
Conclusions. Our results are relevant in the context of models where the origin should be included in the computational domain,
or when polar grids cannot be used. Examples of such cases include models of disk accretion onto a central binary and inherently
Cartesian codes.
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1. Introduction

Hydrodynamical simulations are a useful tool in studying a vari-
ety of astrophysical processes. An example of such a process is
the accretion flow of a protoplanetary disk around a star. Accre-
tion is thought to be achieved via turbulence operating in parts
of the disk (Lyra & Umurhan 2019), that transports angular mo-
mentum radially outwards similar to a viscosity (Lynden-Bell
& Pringle 1974; Balbus & Papaloizou 1999), or via a magnetic
torque that is applied on the material close to the surface of the
disk as a stellar wind expels gas from the disk surface layers (Bai
& Stone 2013) with bulk of the disk remaining inviscid and lam-
inar. The result, particularly in protoplanetary disks, is a steady
radial infall of gas that ultimately depletes the disk over typical
timescales of 1–10 Myr Haisch et al. (2001).

While turbulent angular momentum transport has been the
traditional way of modeling accretion, numerous recent obser-
vations of disks around T Tauri stars (e.g., the DSHARP survey,
Andrews et al. 2018) suggest very low α ≲ 10−4 in order for
turbulence to be compatible with the radial width of observed
rings (Dullemond et al. 2018), the vertical structure of mm grains
(Dullemond et al. 2022) and the formation of rings and gaps
by embedded planets (Zhang et al. 2018). As a result, magnetic

winds are becoming a favored means of interpreting accretion in
protoplanetary disks, and numerical models of such disks tend
towards the inviscid limit (e.g., Lega et al. 2022).

Here, however, we run into a different problem: the numeri-
cal schemes used to model protoplanetary disks introduce a cer-
tain amount of numerical diffusion. The magnitude of this diffu-
sion, is often unknown or poorly constrained. Thus, calculating
an upper limit to this non-physical diffusion, or equivalently a
"numerical viscosity", is essential in ensuring that results are not
affected by the effects it can induce. This is particularly impor-
tant for models using Cartesian grids, which are primarily used
when the central object should be included in the simulation do-
main such as when modeling accretion patterns around binary
stars (e.g. Tiede et al. 2021), or for certain MHD codes (e.g.,
Fromang et al. 2006). Analogue issues also appear when an ob-
ject is not centered on a polar grid, which is often the case for
circumplanetary disks (e.g., Crida et al. 2009). Grid-noise due to
the asymmetric nature of Voronoi-mesh cells has also been iden-
tified as a source of numerical diffusion in moving mesh codes
(Zier & Springel 2022). In these cases, the geometry of the grid
introduces a very high numerical viscosity and as a result models
require the execution of very computationally expensive, high-
resolution simulations.
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In this work, we revisited the viscously spreading ring prob-
lem introduced first by Lüst (1952) and again by Lynden-Bell
& Pringle (1974), and analyzed in 2D by Speith & Kley (2003)
(henceforth SK03). We approached this with numerical hydro-
dynamics simulations that first aimed to reproduce or improve
upon the results of SK03 by reanalyzing the azimuthal instability
they reported, and then performed calculations in Cartesian co-
ordinates to quantify the numerical viscosity of the codes PLUTO
and Athena++.

The viscous ring problem and our physical and numerical
setup are described in Sect. 2. We compare our results with those
of SK03 and point out the origin of a numerical artifact in their
study through a resolution analysis in Sect. 3. We present our
results for Cartesian models and our estimates of the numerical
viscosity in Sect. 4. We then discuss our findings in Sect. 5, and
conclude in Sect. 6.

2. Model setup

In this section, we revisit the setup for the viscously spreading
ring problem and describe our physics and numerical methods.
We also provide a list of models that were executed using differ-
ent codes and in different coordinate systems.

2.1. The viscous ring problem

Starting from an axisymmetric surface density distribution of a
pressureless (P = 0) ring of gas with mass Mring that is centered
at distance R0 and is infinitely thin in the radial direction

Σring(t = 0,R) =
Mring

2πR
δ(R − R0), (1)

the ring will spread along the radial direction R following the
analytical solution (e.g., Lynden-Bell & Pringle 1974; Pringle
1981)

Σring(τ, x) =
Mring

πR2
0

1
τx1/4 I 1

4

(
2x
τ

)
exp

(
−

1 + x2

τ

)
, (2)

where x = R/R0 and τ = 12νtR−2
0 are normalized distance and

time quantities, ν is the kinematic viscosity of the gas, and I 1
4

is
the modified Bessel function of the order 1/4. In addition, the
radial velocity of the ring is given by the following relation,

uR,ring = −
3

Σring
√

R

∂

∂R

[
νΣring

√
R
]

(3)

We note that, Eq. (2) is only an approximate solution to the hy-
drodynamic equations (see Sect. 2.2), and assumes that the disk
is massless with highly supersonic and Keplerian azimuthal ve-
locity. Furthermore, one assumes that the kinematic viscosity, ν,
is much smaller than the specific angular momentum R2Ω, an as-
sumption that is violated close to the central object. A time evo-
lution of the viscous ring problem using our fiducial axisymmet-
ric numerical setup (described in Sect. 2.3) is shown in Fig. 1.

The problem was revisited by SK03, who showed that the
ring is subject to a viscosity-driven spiral instability in the az-
imuthal direction that results in the development of a leading
spiral arm that covers the full extent of the computational do-
main (see Fig. 3). They performed a detailed stability analysis
and showed that unstable modes with wave-numbers k develop
where

k2 >
3

RΣ0

∂Σ0

∂R
(4)

with Σ0 being the axisymmetric density profile. They further
showed that the spiral arm changes direction from leading to
trailing at around the peak of the ring (see second and third
panels of Fig. B.3), and verified their results with two funda-
mentally different codes: the finite-difference upwind grid code
RH2D (Kley 1989, 1999), and the smooth particle hydrodynamics
(SPH) code used by Flebbe et al. (1994).

2.2. Hydrodynamics

We consider the vertically-integrated hydrodynamics equations
for a gas with surface density Σ, velocity vector u, and nearly
zero pressure P at distance R,

∂Σ

∂t
+ ∇ · (Σu) = 0,

∂(Σu)
∂t
+ ∇ · (Σu ⊗ u) = −∇P − Σ∇Φ⋆ + ∇ · σ. (5)

The gas orbits around a star with mass M⋆ such that the grav-
itational potential is given by Φ⋆ = −GM⋆/R, with G being
the gravitational constant. The viscous stress tensor is repre-
sented with σ. We use a locally isothermal equation of state,
such that the gas has a (very small) sound speed cs =

√
P/Σ =

h
√

GM⋆/R = hRΩK, where h is the aspect ratio.

2.3. Numerical setup

For our standard setup, we used PLUTO version 4.3 (Mignone
et al. 2007), a finite-volume code with a second-order accurate
scheme (HLLC, Toro et al. 1994) and the van Leer flux lim-
iter (van Leer 1977). We followed the setup laid out in SK03 to
reproduce the original results. In this section, we provide a de-
tailed description of our model and its differences with the setup
in SK03.

To study the viscous ring and the related instability we used
a polar grid with computational domain R ∈ [0.2, 2] R0 and
ϕ ∈ [0, 2π). We used both logarithmic (∆R ∝ R) and arithmetic
(∆R = const.) scaling in the radial direction for comparison rea-
sons, but focus on logarithmic setups first. We also enabled the
FARGO transport scheme (Masset 2000) implemented in PLUTO
by Mignone et al. (2012), while the parabolic viscosity term is
handled using the explicit time stepping method in PLUTO. We
used a Courant number of 0.4 in all simulations, unless specified
otherwise. The system was then evolved for various grid resolu-
tions, the results of which are discussed in Sect. 3.2. The Carte-
sian setup used to measure the numerical viscosity is described
in Sect. 4.2.

To evolve the viscous ring problem, we initialized the surface
density using Eq. (2) at τ0 = 0.018 and added a small, constant
surface density floor Σfloor = 10−7 Σref , where Σref = Σring(τ0, 1).
We chose a set of code units where Ḡ = M̄⋆ = R̄0 = 1. This
leaves the kinematic viscosity as the only relevant physical con-
stant in this setup, which we chose to be ν̄ = 10−5. For this
viscosity, we get a viscous ring spreading time (i.e., τ = 1)
of 1326 orbital periods (P0) at R = R0. To facilitate develop-
ment of the spiral instability, the initial surface density distribu-
tion was seeded with a small amount of noise and evolved up to
t = 400 P0, or τ = 0.3.

We chose a strict outflow boundary condition in both ra-
dial directions such that ∂RΣ = 0, uR,in = −|uR(Rin)|, uR,out =
|uR(Rout)|. The azimuthal velocity is fixed to the Keplerian speed
corrected for pressure support uϕ = RΩK

√
1 − h2 at the bound-

aries. We explored various values of the aspect ratio, shown in
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Appendix A, and chose h = 0.005 for our simulations, as we
found it to be low enough for the gas to act like a pressure-
less fluid and high enough to ensure numerical stability in our
simulations. The RH2D setup in SK03 used a viscosity value of
ν̄ = 4.77 × 10−5 and an initial viscous time τ0 = 0.016, but this
has no effect on the subsequent evolution.

To corroborate our results, we used the FARGO code (legacy
version) (Masset 2000). Similar to the RH2D code used in SK03,
FARGO uses a finite difference scheme as described in Stone &
Norman (1992) with the second-order upwind algorithm by van
Leer (1977). Both codes therefore have similar behavior and we
used FARGO to compare our results to SK03.

3. Analysis of the viscous ring problem

In this section, we explore the spiral instability using logarith-
mically spaced polar grids. In such grids, the radial cell size ∆R
increases with distance such that the ratio ∆R/H remains compa-
rable throughout the domain (in the case of h = const., this ratio
is constant as H = hR). This makes logarithmically spaced grids
well-suited for general-purpose disk models, where gas dynam-
ics should be resolved over a scale height H using a reasonable
number of cells. We briefly describe the general behavior of the
viscous spreading ring and show that our fiducial model is nu-
merically converged.

3.1. Time evolution of the viscous ring

We begin our analysis with a 1D model of the viscously spread-
ing ring, using 465 cells logarithmic scaled in the radial direc-
tion. This resolution is chosen such that the gas is resolved with
at least one cell per scale height H = hR. Even though the prob-
lem is formally defined for a pressureless fluid (h = 0), Fig. 1 and
Fig. 2 show that our model adequately reproduces the analytical
equations of Eq. (2) and Eq. (3), respectively.
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Fig. 1: Evolution of the one-dimensional viscously spreading ring. The
colors indicate different timestamps, solid lines represent simulation re-
sults and dots follow the analytical solution at the corresponding time
according to Eq. (2).

To assess the robustness of the numerical methods used, we
quantified numerical errors in our results by measuring the aver-
age density-weighted relative deviation from the analytical solu-
tion of both the surface density Σ and radial velocity uR on the
grid, at various times. We find a maximum deviation of 0.74%
for Σ and 3.31% for uR. While these values are largely influ-
enced by regions close to the boundaries, where deviations are
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Fig. 2: Similar to Fig. 1 showing the evolution of radial velocity of the
ring compared to the analytical solution Eq. (3).

the largest, for most of the domain (0.4–1.8 R0) we find maxi-
mum deviations of 0.15% and 0.75%, for Σ and uR respectively.
In addition, we find that further reducing the aspect ratio h does
not substantially affect the measured errors.

We then expanded to a 2D {R, ϕ} domain, with a fiducial res-
olution of NR × Nϕ = 465 × 256. Here, we expect the same ra-
dial spreading of the ring but also development of the viscosity-
driven spiral instability discussed in SK03. Figure 3 shows a time
evolution of the ring spreading and of the instability which mani-
fests in the form of an outward-propagating spiral arm. Weak ra-
dial wave-like perturbations are launched immediately after the
start of the simulation (see panel (a)).

The perturbations are not affected by changes to pressure
or initial conditions, but they do become weaker and move to
smaller wavelengths with lower viscosity. This viscosity depen-
dency is in agreement with the viscous overstability (e.g., Latter
& Ogilvie 2006) but a more thorough study of the perturbations
is not within the scope of this work.

These initial waves leave the domain through the outer
boundary while the spiral instability begins to develop near the
inner boundary, with the spiral becoming apparent at τ ≈ 0.03
(panel (b)). The spiral continues to grow in amplitude and prop-
agate outwards until it eventually spans the entire radial extent
of the disk (panels (c), (d)).

In contrast to the results in SK03 we do not see a flip of the
direction of the spiral from leading to trailing around the peak
of the ring. Instead, we find that this flip is merely a numerical
artifact and does not appear in simulations with a high enough
radial resolution. We discuss this further in Appendix B.

3.2. Resolution study

To ensure that we have properly resolved and developed the vis-
cous instability, we performed a resolution study by analyzing
its growth phase. For this, we measured the largest density devi-
ation from the azimuthally averaged profile at different radii and
tracked this quantity over time. In that sense, this quantity acts as
a proxy for the time evolution of the amplitude of the strongest
spiral at a given radius, which hints at the growth rate of the
spiral instability. Figure 4 shows this evolution for various res-
olutions. Alternatively, we also evaluated the amplitude of the
azimuthal Fourier modes of density rings at specific radii over
time. This method yields similar results to those obtained from
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Fig. 3: Snapshots of the normalized deviation from the analytical surface density distribution for our fiducial model at different times. The dashed
green line marks the position of maximal surface density that indicates the peak of the spreading ring. Initial waves (a) are seen as outward-moving
rings while the spiral instability develops as a spiral arm at the inner boundary (b) and spreads through the whole domain (c,d).
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Fig. 4: (a): Time evolution of the normalized maximal deviation from the azimuthally averaged surface density distribution for various numerical
configurations. Inadequate resolution in the R-direction can damp the viscous instability, with convergence being achieved for our fiducial model
with NR = 465. (b): Comparison of the same quantity for different azimuthal resolutions and NR = 465. The higher resolution of Nϕ = 1300
azimuthal cells results in square grid cells but does not influence the growth of the instability.

measuring the density deviations and are therefore not shown
here.

After comparing our results against a model with square cells
(NR × Nϕ = 465× 1300), we found that increasing the azimuthal
resolution beyond 256 cells has no effect on the growth rate of
the instability (see panel (b) in Fig. 4) and therefore fixed the
number of azimuthal cells to 256 in our resolution study. In the
radial direction we found a resolution of 465 cells to be suffi-
cient.

We confirmed our results using the FARGO code in Ap-
pendix B and achieved numerical convergence with both codes
at a resolution of 465 × 256 cells. We conclude that this resolu-
tion is sufficient to fully resolve the viscously spreading ring and

the development and saturation of spiral arms due to the spiral
instability.

4. The viscous ring problem in Cartesian
coordinates

Having profiled the viscous ring problem in a polar grid, we
now switch to Cartesian coordinates with our ultimate goal be-
ing the measurement of the numerical viscosity of PLUTO for
such a grid. For this set of models our computational domain
extends between x, y ∈ [−2, 2] R0, with a fiducial resolution of
Nx×Ny = 1024×1024 cells which corresponds to approximately
one cell per scale height at R =

√
x2 + y2 = R0. We note that,
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∆x = ∆y = const. in these models, and therefore our effective
resolution is significantly lower at smaller radii.

For a fair comparison with our models on a polar grid, we
retained the second-order accurate HLLC scheme with a lin-
ear spatial reconstruction and van Leer flux limiter for all sim-
ulations unless stated otherwise. In addition, we emulated the
inner radial boundary of a polar grid using a damping region,
where we damped Σ to Σring through Eq. (2) and uR to zero for
R < 0.2 R0. Finally, we set an outflow boundary condition at all
domain boundaries. To measure numerical viscosity in PLUTO
we used a similar setup but damped Σ to Σfloor following (de Val-
Borro et al. 2006), and provide a comparison using Athena++
version 21.0 (Stone et al. 2008).

4.1. Viscous evolution

We first analyze the evolution of the ring with standard viscos-
ity similar to Sec. 3. The radial ring spreading and the radial
velocity evolution can be seen in Fig. 5 and Fig. 6 respectively.
They match the analytical solution well except for noticeable de-
viations in uR close to the damping region and boundaries. We
again quantified the error by measuring the density-weighted rel-
ative deviations in the domain excluding the damping region and
found a maximum deviation of 0.71% for Σ and of 15.74% for
uR,ring. We note that, unlike the polar case, we find no develop-
ment of spirals in any Cartesian model. We suspect that the spiral
instability is suppressed as a result of the highly diffusive grid,
further discussed in Sec. 5. We see similar results at a lower and
higher resolution of 5122 and 20482 cells, respectively.
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Fig. 5: Snapshots of slices through the y = 0 plane showing the evo-
lution of surface density for our fiducial viscous Cartesian simulation.
The colors indicate different timestamps, solid lines represent simula-
tion results and dots follow the analytical solution at the corresponding
time according to Eq. (2). Unlike the 2D polar case, no spirals develop.

4.2. Inviscid models: estimates of numerical viscosity

The discretization in space and time inherent in the numeri-
cal schemes employed by our codes results in numerical errors
when solving the hydrodynamics equations. In our analysis in
Appendix C, we show that this error has the form of a numeri-
cal viscosity and can lead to ring spreading, even in the absence
of any physical viscosity. In this section, we repeat the models
shown in Sect. 4.1 with an inviscid prescription (ν = 0), and an-
alyze the subsequent ring spreading in an attempt to quantify the
numerical viscosity of the methods in PLUTO.
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Fig. 6: Similar to Fig. 5 showing the evolution of radial velocity of the
ring compared to the analytical solution Eq. (3).

Blue lines in Fig. 7 show the time evolution for our fiducial
inviscid model at a resolution of 1024× 1024. We found that the
ring spreading is indeed quite similar to viscous models, with
the exception that the peak of the ring is flatter compared to the
analytical solution. We then extracted a global estimate of the
numerical viscosity νnum by fitting the analytical solution Eq. (2)
to our data. The fitting method is described in Appendix D.

We repeated the simulation with a prescribed kinematic vis-
cosity equal to the measured numerical viscosity (ν = νnum) and
once again with ν = 2 νnum , the time evolution of which is shown
as orange and green lines respectively in Fig. 7. We found that
the ν = νnum model evolves twice as fast as our inviscid model,
and the ν = 2 νnum model evolves thrice as fast. This suggests that
all models evolve as if the total viscosity were νtot = ν+νnum. We
motivate our approach and rationalize this result in Appendix C.
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t = t0/2

t = t0/3

Fig. 7: Slices of surface density profiles for our fiducial inviscid Carte-
sian model (ν = 0, blue lines) at a given time t0 against the correspond-
ing viscous models with ν = νnum at t0/2 (orange) and ν = 2 νnum at
t0/3 (green). Solid and dashed lines correspond to t0 = 224 and 748
orbits at R0, respectively. The model with ν = νnum evolves twice as fast
as the inviscid simulation and the ν = 2 νnum model evolves thrice as
fast, indicating a viscous contribution by the non-negligible numerical
viscosity.
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4.2.1. Resolution scaling of the numerical viscosity

In our analysis of the numerical viscosity for a first-order solver
in Appendix C, we show that the numerical viscosity scales as
νnum ∝ ∆x for a first-order method. As we used a second-order
solver for our tests, we expect the numerical viscosity to scale
as νnum ∝ ∆x2 in our models. To test this, we conducted simula-
tions for grid resolutions of 2562, 5122, 10242, 20482 and 40962

cells. The resulting values of νnum as a function of cell count are
listed in Table 1 and shown in Fig. 8. We then fit a power law
to the relation νnum(∆x) and found that the numerical viscosity
scales as νnum ∝ ∆x2.09. We also found that reducing the max-
imum Courant number Cmax ≈ ∆t/min (∆x/u) from our nominal
value of 0.4, had no effect on the numerical viscosity, indicating
that the dependence of νnum on ∆x, ∆t and the Courant number
is more complicated than it would be for a first-order scheme.
While we find our νnum ∝ ∆x2 estimate to roughly describe the
convergence, we also find that the convergence rate is not con-
stant and increases with resolution. We found similar results us-
ing the code Athena++ (see Appendix E).
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fo

r
h

=
0
.0

5

Fig. 8: Numerical viscosity ν̄num in code units and the corresponding α
at R0 for h = 0.05 at different resolutions, extracted by fitting Eq. (2) to
our Cartesian grid results for both Athena++ and PLUTO. The two codes
agree very well for Ncells ≥ 10242. See Appendix E for details on the
Athena++ models.

For a realistic protoplanetary disk with h ∼ 0.05, the numer-
ical viscosity ν̄num = 4.16 × 10−7 √GM0R0 extracted from our
fiducial Cartesian model translates to an α viscosity parameter
(Shakura & Sunyaev 1973) of α ∼ 1.67 × 10−4/

√
R̄. More gen-

erally, we can write

α =
ν

csH
≈ 400 × ν̄

(
0.05

h

)2 √
R0

R
, (6)

5. Discussion

In this section, we compare our results on the spiral instability to
those found in SK03, and comment on the nature of numerical
viscosity.

5.1. Comparison to previous results

Analyzing the spreading ring on a polar grid in Sect. 3, we could
confirm the main findings from SK03 that the viscous pressure-
less spreading ring is subject to a viscous instability that mani-
fests as a leading spiral arm. On the other hand, we found their
described flip from a leading to a trailing spiral to be purely of

numerical origin. As shown in Appendix B, we attribute the spi-
ral flip to an under-resolved inner disk; the quantity ∆R/R in-
creases for small radii in an arithmetic grid like that of SK03,
while a constant smoothing length in their SPH simulations re-
sults in effectively the same issue. In our adequately resolved
models (NR ≥ 465), we find many azimuthal spiral modes grow-
ing at the beginning of our simulation with their amplitude de-
caying exponentially with mode number. In our arithmetic, low-
resolution analog of SK03, however, the growth of azimuthal
Fourier mode amplitudes is delayed, weaker and their amplitude
decays faster with increasing mode number (Fig. B.2). We pro-
vide more details in Appendix B, but conclude here that any ef-
fects beside the leading spiral found in SK03 was due to their
poor numerical resolution.

5.2. Differences between physical and numerical viscosity

In Sect. 3.1 we showed the development of the spiral instabil-
ity for our fiducial polar model (Fig. 3) and its growth (Fig. 4).
Unlike the polar grid, our Cartesian models did not develop this
instability, even at comparatively higher resolutions. This can be
attributed to the lack of angular momentum conservation, which
results in a dramatically high numerical diffusivity. We confirm
this by analyzing the growth rates of the instability just like for
the polar case in Fig. 9, and show that azimuthal wavenumbers in
Cartesian runs saturate at levels that are six orders of magnitude
weaker compared to polar runs.

Furthermore, we interpolated our fiducial polar run with a
fully developed spiral onto a Cartesian grid and noticed that
the spiral features of the viscous instability completely vanished
within a span of 2–4 orbits after continuation. This suggests that
even though numerical diffusion causes an effect akin to physical
viscosity, the properties of numerical and physical viscosity are
not the same. Both physical and numerical viscosity lead to a vis-
cous spreading of the initial ring distribution, whereas a physical
viscosity is necessary for the development of the spiral instabil-
ity. The same effect cannot be replicated by numerical diffusion
alone.
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Fig. 9: Fourier amplitude normalized to azimuthally averaged density
at R = 0.5 R0 for m = 1, 2, 3 for the fiducial polar simulation (dashed
lines) and interpolated fiducial Cartesian simulation (solid lines). The
spiral instability does not develop, with amplitudes up to six orders of
magnitude weaker compared to the polar case.
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Table 1: Numerical viscosity νnum with one standard deviation errors in code units for different grid types and resolutions. An equivalent αnum at
R0 and a realistic h = 0.05 is also listed.

Code Grid Resolution ν̄num αnum at R0

PLUTO Cartesian 256 × 256 (4.68 ± 0.19) × 10−6 (1.87 ± 0.08) × 10−3

PLUTO Cartesian 512 × 512 (1.48 ± 0.01) × 10−6 (5.92 ± 0.04) × 10−4

PLUTO Cartesian 1024 × 1024 (4.16 ± 0.03) × 10−7 (1.67 ± 0.01) × 10−4

PLUTO Cartesian 2048 × 2048 (9.45 ± 0.11) × 10−8 (3.78 ± 0.04) × 10−5

PLUTO Cartesian 4096 × 4096 (1.32 ± 0.08) × 10−8 (5.29 ± 0.31) × 10−6

PLUTO polar 465 × 256 (3.89 ± 0.94) × 10−15 (1.56 ± 0.38) × 10−12

Athena++ Cartesian 256 × 256 (7.31 ± 0.22) × 10−6 (2.92 ± 0.08) × 10−3

Athena++ Cartesian 512 × 512 (2.04 ± 0.05) × 10−6 (8.16 ± 0.19) × 10−4

Athena++ Cartesian 1024 × 1024 (4.26 ± 0.11) × 10−7 (1.70 ± 0.04) × 10−4

Athena++ Cartesian 2048 × 2048 (1.11 ± 0.02) × 10−7 (4.44 ± 0.08) × 10−5

5.3. Effect of characteristic limiting on numerical viscosity

A commonly used method to reduce diffusive numerical ef-
fects is characteristic limiting (henceforth “CL”, implemented
by Mignone et al. 2012), which performs spatial reconstruction
on characteristic variables instead of the primitive variables in
the system. We assessed the effect of this method by comparing
to our inviscid 512 × 512 Cartesian simulation with otherwise
identical parameters. The low resolution was chosen to highlight
the substantial difference while using CL. As shown in Fig. 10,
the simulation with CL is less diffusive, evident by the lack of a
flattened peak and an overall less-diffused ring. On average, the
model with CL had roughly half the numerical viscosity as the
standard inviscid 512 × 512 model.
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Fig. 10: Inviscid Cartesian 5122 simulation utilizing characteristic lim-
iting (dashed line) compared to out standard inviscid models at resolu-
tion 5122 and 10242 (solid lines), after 150 orbits at R0. Characteristic
limiting reduces numerical viscosity roughly by a factor of 2 at 5122

resolution. It also better maintains local features of the ring, especially
the density peak which is rather flattened by numerical viscosity in the
compared models. A dotted black line shows the fit using the analytical
ring profile for the 5122 simulation.

6. Conclusions

We revisited the viscous ring problem in SK03 using the finite-
volume codes PLUTO and Athena++ as well as the finite-
difference code FARGO, in an attempt to measure the numerical
viscosity of hydrodynamical codes.

We first reproduced the viscous ring spreading in one dimen-
sion and the spiral instability in two dimensions on a polar grid.
We analyzed the growth of the instability and showed that SK03
had insufficient spatial resolution to properly resolve the insta-
bility growth.

We then evolved the viscous ring spreading in two dimen-
sions on a Cartesian grid, applying the same viscosity ν as used
in the polar grid run. The evolution matched the analytical so-
lution to good accuracy but failed to develop the spiral instabil-
ity even at higher resolutions. We attributed the absence of spi-
ral development to the lack of angular momentum conservation
and subsequently high numerical diffusion inherent to Cartesian
grids. Our findings suggest that a high physical viscosity is not
the only ingredient to developing the spiral instability, but also
a numerical setup with very good angular momentum conserva-
tion and low numerical diffusivity.

The viscous spreading ring was then used to measure the nu-
merical viscosity in Cartesian grids. This was done by evolving
the viscous ring for an inviscid setup and fitting the simulated
ring evolution with the analytical solution in Eq. (2) as a func-
tion of time. As the ring evolution depends only on the viscosity
ν, this method allowed us to extract the viscosity over which the
system evolved, which for an inviscid system is the numerical
viscosity. We then showed a scaling relation between numerical
viscosity and resolution that, for second-order methods, corre-
sponds to ν̄num ≈ 0.63∆x2. Translating our results to a Shakura–
Sunyaev α parameter, we found a relation α ≈ 2 × 10−4/

√
R̄ for

our fiducial model with ν̄num ≈ 4 × 10−7 and a realistic aspect
ratio h = 0.05.

We highlight that our models all utilize second-order accu-
rate schemes in both space and time. Even though the effects
of numerical viscosity can be mitigated to some degree by us-
ing higher order spatial reconstruction and time marching algo-
rithms, further study needs to be done on that matter.

Our results show the existence of moderate diffusive effects
in Cartesian grids and quantify the resulting numerical viscosity
for standard numerical parameters and different grid resolutions.
We also lay out a method that can be used to quantify the numer-
ical viscosity to good accuracy. This information can be utilized
to make informed decisions on how to measure and minimize
numerical diffusion in hydrodynamics simulations of accretion
disks, and is especially useful in the context of low-viscosity
or even inviscid configurations of circumbinary or protoplane-
tary disks on Cartesian grids, as well as for inherently Cartesian
codes.
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Appendix A: Effect of pressure scale height on the
viscous ring spreading and spiral instability

The analytical solution for the viscous ring spreading and the
the stability analysis of the spiral instability studied in SK03 as-
sumes a disk without pressure. For a locally isothermal system,
this would imply an aspect ratio of h = 0 but the PLUTO solver
becomes numerically unstable under this condition. To ensure
that the pressure in our simulations is small enough to properly
simulate the spiral instability we compared the maximal spiral
amplitude time averaged over τ = 0.2-0.3 for different values of
aspect ratio h in Fig. A.1.

For aspect ratios h > 0.006, the spiral instability is strongly
damped and the ring structure deviates substantially from the
analytical solution. For aspect ratios h < 0.006, the instability
becomes stronger, and is fully saturated at our fiducial aspect
ratio of h = 0.005. We also tested and confirmed (not shown)
that the numerical viscosity measured in our Cartesian runs is
fully converged for h = 0.005. Nevertheless, our fiducial aspect
ratio is small enough for the gas to be considered pressureless,
and we found that the noise we observed in the amplitude of
the instability (see e.g., Fig. 4) fades away for even lower aspect
ratios and the time evolution becomes smoother like it is in our
FARGO simulations (see Fig. B.1).
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Fig. A.1: Time average of the maximal spiral amplitude at R = 0.5 R0
between τ = 0.2–0.3 for different values of aspect ratio h. The spiral
instability is strongly damped for h > 0.006 while spiral amplitudes
converge for h < 0.005.

Appendix B: Comparison of codes and the spiral
flip in SK03

To test the robustness of our results on the spiral instability we
performed a similar suite of simulations using the FARGO code.
Figure B.1 shows the growth of the spiral instability for different
resolutions. We see that a resolution of 465 × 256 is sufficiently
converged, with full convergence at 1024× 256 and above. Even
though PLUTO achieved convergence at a lower resolution of
465×256, FARGO shows slight improvements in the growth onset
and amplitudes for higher resolutions. Regardless, we can con-
clude that the results are consistent between both codes. We note
that just like PLUTO, the spiral flip vanishes before it reaches the
ring in FARGO simulations for resolutions with more that 465 ra-
dial cells.

To further understand the spiral flip results shown in SK03
we replicated their setup in FARGO, with a 256 × 256 arithmeti-
cally spaced polar grid. Our simulation reproduces their Fig. 6
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Fig. B.1: Time evolution of the normalized maximal deviation from the
initial surface density distribution for different FARGO simulations com-
pared to the fiducial PLUTO simulation.

very well, but is run for longer. The spiral flip pattern emerges
after τ = 0.04 and gradually morphs into a single leading spiral
for τ > 0.43 (see Fig. B.3). We conducted additional simulations
with higher resolutions and also on logarithmic grids. Each time
the resolution was increased on an arithmetic grid, the flip oc-
curred further inward and turns into a leading spiral earlier into
the simulation. On a logarithmic grid, the inner region is better
resolved and the flip always vanishes early into the simulation
and never reaches the spreading ring, see Fig. B.3.

A comparison of the growth rates between the SK03 setup
and a high resolution FARGO run is shown in Fig. B.2. As the grid
is the only difference between the simulations, the flip seems to
be a numerical effect that is exacerbated when using an arith-
metic grid, which has a lower resolution at the inner boundary.
The constant smoothing length used for the SPH code in SK03
has the same resolution effect as an arithmetic grid, which ex-
plains why their simulations are in agreement. We conclude that
the flipped spiral structure with a trailing spiral observed at the
inner domain in SK03 is merely a numerical effect.
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Fig. B.2: Time evolution of the first three Fourier azimuthal modes at
R = R0. Solid lines represent a high-resolution (2048 × 256) simulation
using a logarithmic grid, and the dashed lines represent results from an
identical setup as in SK03, with a 256 × 256 arithmetic grid.
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Fig. B.3: Surface density deviation heatmaps similar to Fig. 3, for FARGO simulations at a resolution of 256 × 256 on an arithmetic grid (top)
and at 456 × 256 on a logarithmic grid (bottom). Top: this setup reproduces the results of SK03 (see Fig. 6 therein). The flip from a leading to
trailing spiral is visible in the middle two panels, before it disappears into a single leading spiral. Bottom: this setup is equivalent to our fiducial
PLUTO model, and behaves very similar to our results in Fig. 3. Here, spirals develop earlier and the initial flip is short-lived and closer to the inner
boundary.

Appendix C: Numerical diffusion as a consequence
of advection

We consider the 1D advection equation of a quantity q for a fluid
moving at constant velocity u > 0

∂q
∂t
+ u
∂q
∂x
= 0. (C.1)

We can discretize this equation to a first-order upwind
scheme (e.g., Courant et al. 1952) where q′ = q(t + ∆t) on a
grid where i is the cell index such that qi−1 = q(xi − ∆x)

q′i − qi

∆t
+ u

qi − qi−1

∆x
= 0. (C.2)

By Taylor-expanding q′i and qi−1 to second order in time and
space respectively, and substituting a wave-like solution qtt =
uqxx, we arrive at a modified upwind equation:

∂q
∂t
+ u
∂q
∂x
= D
∂2q
∂x2 , D =

u∆x
2

(1 −C), C ≡ u
∆t
∆x

(C.3)

which corresponds to an advection–diffusion equation with dif-
fusion coefficient D. This term, while not physically motivated,
allows the upwind scheme to remain stable for Courant numbers
0 < C < 1.

This approach does not exactly relate to our results since
the gas velocity is not constant and we further use second-order
schemes with PLUTO. Nevertheless, we can expect that our nu-
merical scheme will give rise to a similarly-motivated numerical
diffusion term such that Eq. (5) effectively becomes

∂(Σu)
∂t
+ ∇ · (Σu ⊗ u) = −∇P − Σ∇Φ⋆ + ∇ · (σ + σnum), (C.4)

with σ ∝ ν and σnum ∝ νnum. Given that our inviscid Cartesian
models behave similarly to viscous models with viscosity νnum
as far as ring spreading is concerned, it is therefore unsurprising
that a ring in a viscous model with ν ∼ νnum should spread as if
the total viscosity were νtot ≈ ν + νnum.

We also note that, for a given Courant number C, the diffu-
sion coefficient in Eq. (C.3) is proportional to ∆x for the first-
order method we considered, and expect a ∆x2 scaling for a
second-order method in 1D. Given that the viscous ring prob-
lem evolves on both the x and y directions in 2D, doubling the
resolution would require increasing the number of cells in both
directions by a factor of 2 (thus increasing grid cell count by a
factor of 4). In doing so, we would expect a scaling νnum ∝ ∆x2,
which is verified in Fig. 8.

Finally, we found that doubling the resolution in only one
direction (such as Nx × Ny = 512 × 1024) results in a numeri-
cal viscosity estimate that is much closer to the value expected
for the low-resolution direction (in this case, Nx) than to an esti-
mate dictated by ∆x × ∆y. This rules out that the numerical dif-
fusion we observe depends linearly on ∆x and ∆y and suggests
that it more accurately depends on min(∆x,∆y)2, highlighting
the second-order accuracy of our solver.

Appendix D: Measuring numerical viscosity

To measure the numerical viscosity in our inviscid simulations
we utilize the relation between the viscous time scale τ for the
ring spreading and the orbital time t at R0 given by τ = 12νt/R2

0.
We note that for a given viscosity ν, this equation represents the
slope–intercept form of an equation for a line with slope m =
12ν/R2

0 and intercept zero.
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To do so, first we fit the analytical solution to a slice of
the two-dimensional data at time t to compute τ. Repeating this
procedure for all snapshots generates a curve for τ(t) shown in
Fig. D.1. We then fit a straight line to the τ(t) curve for the last ∼
180 orbits. The slope of this straight line fit gives the numerical
viscosity using the above relation for the slope m.
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t(R0)

0.020

0.025

0.030

τ

fit

Fig. D.1: The τ(t) curve for our inviscid 1024 model. The dashed line
shows the fit over the last 180 time units. The slope of this line is used
to extract the numerical viscosity.

Appendix E: Inviscid Cartesian simulations with
Athena++

For the suite of Cartesian models using Athena++we implement
an equivalent setup to the PLUTO runs, as described in Sect. 2.
A locally isothermal disk is achieved by using an adiabatic
equation of state combined with a thermal relaxation timescale
τcool = 0.01Ω−1

K . The viscous ring sits on top of a constant den-
sity background with Σbgr = 10−7 Σref, however the density floor
of the domain was set to Σfloor = 10−15 Σref as interactions with
the density floor created numerical instabilities.

Our results are listed in Table 1 and shown in Fig. 8. Both
codes agree very well for Ncells ≥ 10242, which corresponds to
our fiducial resolution. The expected behavior of νnum ∝ ∆x2 is
also found with Athena++.
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