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Aims Coronary computed tomography angiography (CCTA) is inferior to intravascular imaging in detecting plaque morphology 
and quantifying plaque burden. We aim to, for the first time, train a deep-learning (DL) methodology for accurate plaque 
quantification and characterization in CCTA using near-infrared spectroscopy–intravascular ultrasound (NIRS–IVUS).

Methods 
and results

Seventy patients were prospectively recruited who underwent CCTA and NIRS–IVUS imaging. Corresponding cross sections 
were matched using an in-house developed software, and the estimations of NIRS–IVUS for the lumen, vessel wall borders, and 
plaque composition were used to train a convolutional neural network in 138 vessels. The performance was evaluated in 48 
vessels and compared against the estimations of NIRS–IVUS and the conventional CCTA expert analysis. Sixty-four patients 
(186 vessels, 22 012 matched cross sections) were included. Deep-learning methodology provided estimations that were clo
ser to NIRS–IVUS compared with the conventional approach for the total atheroma volume (ΔDL-NIRS–IVUS: −37.8 ± 89.0 vs. 
ΔConv-NIRS–IVUS: 243.3 ± 183.7 mm3, variance ratio: 4.262, P < 0.001) and percentage atheroma volume (−3.34 ± 5.77 vs. 
17.20 ± 7.20%, variance ratio: 1.578, P < 0.001). The DL methodology detected lesions more accurately than the conventional 
approach (Area under the curve (AUC): 0.77 vs. 0.67, P < 0.001) and quantified minimum lumen area (ΔDL-NIRS–IVUS: −0.35 ±  
1.81 vs. ΔConv-NIRS–IVUS: 1.37 ± 2.32 mm2, variance ratio: 1.634, P < 0.001), maximum plaque burden (4.33 ± 11.83% vs. 5.77 ±  
16.58%, variance ratio: 2.071, P = 0.004), and calcific burden (−51.2 ± 115.1 vs. −54.3 ± 144.4, variance ratio: 2.308, P < 0.001) 
more accurately than conventional approach. The DL methodology was able to segment a vessel on CCTA in 0.3 s.

Conclusions The DL methodology developed for CCTA analysis from co-registered NIRS–IVUS and CCTA data enables rapid and ac
curate assessment of lesion morphology and is superior to expert analysts (Clinicaltrials.gov: NCT03556644).
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Introduction
Coronary computed tomography angiography (CCTA) is an estab
lished non-invasive modality for quantifying and characterizing coronary 
atherosclerotic plaques with good diagnostic accuracy and high negative 
predictive value. Cumulative evidence has highlighted CCTA’s potential 
to identify high-risk plaques—i.e. plaques that are prone to progress 
and cause cardiovascular events1 and patients at risk,2–5 however 
with limited efficacy, that is inferior to high-resolution intravascular im
aging modalities.6–8 Moreover, accurate CCTA analysis is time- 
consuming and labour-intensive which further limits its use in the study 
of atherosclerosis. To unlock the full potential of CCTA, accurate image 
analysis and acceleration of CCTA workflow are required.9

Deep-learning (DL) methodologies have revolutionized medical ap
plications by facilitating rapid processing of large data sets. In the field 
of cardiac CT, the use of DL methods has enabled efficient data seg
mentation and reduced the time to diagnosis and analysis costs.10–13

So far, DL methodologies in CCTA have been trained using expert an
notations. However, CCTA has a limited accuracy in assessing ather
oma characteristics and plaque burden (PB), while expert analysts are 
prone to errors and have weak reproducibility that can affect the per
formance of the developed DL methodologies.14 Conversely, intravas
cular imaging modalities provide high-resolution images that enable 
more reproducible analysis and detailed assessment of atheroma char
acteristics and quantification of PB.15–17 In this study, for the first time, 
we used the estimations of high-resolution near-infrared spectros
copy–intravascular ultrasound (NIRS–IVUS) to develop a novel DL 
methodology for accurate CCTA segmentation, plaque detection, 
and characterization.

Methods
Study population
In brief, 70 patients with chronic coronary syndrome and obstructive cor
onary artery disease (CAD) on invasive coronary angiography requiring fur
ther assessment or treatment with percutaneous coronary intervention 
(PCI) were prospectively recruited. All patients underwent CCTA prior 
to having three-vessel NIRS–IVUS imaging followed by a PCI as per clinical 
indication. The study has been specifically designed to optimize CCTA seg
mentation. The study was conducted in accordance with the Declaration of 
Helsinki, and the study protocol was approved by the local ethics commit
tee (REC reference: 17/SC/0566). All participants provided written in
formed consent prior to study enrolment.

Coronary computed tomography angiography 
data acquisition
Coronary computed tomography angiography was performed using a 
3rd-generation dual-source CT scanner (SOMATOM Force, Siemens 
Healthineers, Forchheim, Germany). Prior to CCTA imaging, participants 
received sub-lingual nitroglycerin (400 µg), and those with a heart rate >  
70 b.p.m. were given intravenous metoprolol (maximum 40 mg), provided 
there were no contraindications. The scan parameters include prospective 
electrocardiogram-triggered sequential scan mode, gantry rotation time of 
250 ms, 128 × 2 × 0.5 mm collimation with z-flying focal spot for both de
tectors, minimum tube voltage of 100 kV defined by the CarekV algorithm, 
and tube current determined by the scanner. Computed tomography cal
cium scoring images were not obtained to reduce radiation and in line 
with the objective of the study for plaque detection and characterization. 
The full CCTA scanning protocol has been described previously.18 The 
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raw CCTA data were reconstructed with medium smooth kernel (b40f), 
slice thickness 0.50 mm with 0.30 mm increments, and highest strength 
model-based iterative reconstruction (ADMIRE 5) which allows the most 
accurate quantification of coronary atheroma.19

Near-infrared spectroscopy–intravascular 
ultrasound data acquisition
Near-infrared spectroscopy–intravascular ultrasound was performed in all 
three major epicardial vessels and where possible their side branches with a 
diameter ≥2 mm, using a 2.4F Makoto™ NIRS–IVUS 35–65 MHz Imaging 
System (Infraredx, Burlington, USA). The catheter was advanced to the dis
tal vessel and pulled back at a constant speed of 0.5 mm/s with images ac
quired at 30 fps. Lesion pre-dilatation was performed prior to NIRS–IVUS 
imaging with a 2 mm semi-compliant balloon, only in cases of critical 
stenoses where the advancement of NIRS–IVUS probe was not possible, 
to facilitate NIRS–IVUS imaging. There were no complications from the 
NIRS–IVUS imaging during this study. The full NIRS–IVUS imaging protocol 
has been described previously.18

Near-infrared spectroscopy–intravascular 
ultrasound and coronary computed 
tomography angiography data analysis and 
co-registration
Coronary computed tomography angiography analysis was performed by 
an experienced analyst (cardiologist with an expertise in imaging)—with a 
known reproducibility—blinded to the IVUS analysis using a commercially 
available CT plaque analysis software (QAngio CT Research Edition 3.1, 
Medis Medical Imaging Systems, the Netherlands). The coronary tree was 
extracted, and the most proximal and distal side branches that were visible 
on both CCTA and NIRS–IVUS were used to define as a segment of inter
est. In each CCTA cross section within the segment of interest, the analyst 
manually annotated the lumen and vessel wall borders (conventional 
approach).

Stented segments were excluded from the analysis. In addition, segments 
with poor image quality, significant artefacts, and those that were 
pre-dilated (including the 5 mm proximal and distal segment) prior to 
NIRS–IVUS imaging were also excluded. Assessment of image quality was 
performed by two expert analysts; any disagreement was resolved by 
consensus.

Near-infrared spectroscopy–intravascular ultrasound segmentation was 
performed for the segment of interest by an independent analyst with an 
established reproducibility blinded to the CCTA data sets using the 
QCU-CMS software (version 4.69, Leiden University Medical Center, the 
Netherlands).18 The IVUS end-diastolic frames were automatically ex
tracted using an in-house DL methodology, and in these, the lumen and ex
ternal elastic membrane (EEM) borders were manually detected.18,20

Moreover, the presence and circumferential extent of the lipid core tissue 
in NIRS–IVUS frames was automatically extracted from the chemogram 
which is a two-dimensional (2D) colour-coded display of the lipid core dis
tribution with the x-axis representing position along the length of the vessel 
and the y-axis position along its circumference. In addition, the circumferen
tial distribution of the calcific tissue in each end-diastolic frame was manually 
annotated with an arc; calcific annotations were performed by two experi
enced analysts (A.R. and C.V.B.) whose reproducibility was tested in 220 
frames. In these frames, the 1st analyst performed this analysis twice and 
the 2nd analyst once; these estimations were used to report the intra- 
and inter-observer variability. The agreement of the analysts for the pres
ence of calcific tissue was assessed using the κ test of concordance, while 
the agreement of the analysts for the circumferential distribution of the cal
cific tissue was measured by estimating the mean ± standard deviation (SD) 
of the differences between the angles that defined its lateral extremities. 
Finally, the difference between the estimations of the analysts for the arc 
of calcium was used to assess their reproducibility for calcific tissue circum
ferential extent (expressed in degrees). Supplementary material online, 
Table S1, summarizes the findings of the reproducibility analysis; overall 
an excellent inter- and intra-observer agreement was found for the calcific 
tissue annotations.

The co-registration of CCTA and NIRS–IVUS cross sections was per
formed using an in-house, non-commercial software (QAngioCT IVUS 
Matcher, Medis Medical Imaging Systems Leiden, the Netherlands). This 
software enables simultaneous visualization of the CCTA and NIRS–IVUS 
images and matching of corresponding anatomical landmarks such as coron
ary ostia and side branches seen on both modalities. A linear interpolation 
was applied to co-register cross sections in between the matched land
marks. Every matched NIRS–IVUS cross section was then superimposed 
onto the corresponding CCTA frame to allow rotation and accurate align
ment of the two modalities (Figure 1).

The correctly orientated lumen and EEM borders and the circumferential 
distribution of the lipid core and calcific tissue in NIRS–IVUS were treated 
as the reference standard and used to train DL methods for detecting the 
lumen and vessel wall borders and characterizing the composition of the 
plaque in CCTA.

Training of the deep-learning methodology
A data set of 138 vessels (49 patients) was used to train the DL method
ology. The schematic design of the approach developed for the detection 
of the lumen and vessel wall in CCTA cross sections is given in Figure 2. 
The network architecture consists of a DenseUNet network with an input 
size of 64 × 64 × 7 voxels and an output size of 64 × 64 voxels and takes 
advantage of contextual information from three matched NIRS–IVUS 
frames before and after the centre frame to predict the lumen, the plaque, 
and the non-vessel (background) regions in the centre CTCA cross section. 
This is achieved using a softmax activation function, which forces each voxel 
to be classified in one of these three classes.

Several augmentations were applied during the optimization, such as flip
ping, rotation, moderate affine transformation, Gaussian noise, and Gamma 
transform. A post-processing stage was then implemented where the lar
gest regions of each label were used to define the lumen and vessel wall 
borders.

The optimization was performed using Adam optimizer with a batch size 
of 256. The overt loss in the validation set was monitored, in which 15 pa
tients are selected out of 49 patients (i.e. 30% of the training set). The best 
model weights were achieved after 142 epochs.

Plaque characterization in CCTA was performed using a convolutional 
neural network with a 2.5D U-Net architecture as proposed by Vu 
et al.21; in order to strengthen the connection between the different con
volutional layers, the convolutional bloc were modified to dense blocks. 
In the final layers, 3D dense blocks were used to handle the concatenation 
of skip connections and were split into two branches to predict lipid cores 
and calcium tissue separately.

The cross-sectional CCTA images and the circumferential distribution of 
the lipid core and calcific tissue in the corresponding NIRS–IVUS frames 
were used as input for the network. For the lipid core estimations, the 
arcs that had a probability of ≥0.6 to indicate lipid cores in NIRS were trea
ted as the ground truth. The lumen borders detected in CCTA images by 
the DL model developed for border detection were reduced by 1 mm 
and extended by 4 mm to define doughnut-shape regions of interest with 
a radius of 5 mm that were processed by the network to define plaque 
composition. A pixel-wise gradient sample weight was added to the loss 
function to make the network focus on the regions that were close to 
the lumen border (Figure 2). The final loss function is computed by the equa
tion:

loss = weightsample × (BCElipid + BCEcalcium + Augkernel) , 

where weightsample denotes the pixel-wise gradient sample weight and 
BCElipid and BCEcalcium are binary cross entropy of lipid core and calcific tis
sue, respectively. To avoid over-fitting, a L2 norm regularization term 
Augkernel with coefficient 1e-4 was added to each convolutional layer. 
Image augmentation such as flipping, rotation, and some small shifts was ap
plied during the training.

The output of the developed DL method is the circumferential distribu
tion of the lipid core tissue in one channel and of the calcific tissue in the 
second channel that are converted into one spread-out plot view similar 
to a NIRS chemogram with the x-axis indicating longitudinal position and 
the y-axis circumferential position of the detected tissue types.
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Comparison of the estimations of 
conventional analysis, deep-learning 
methodology, and near-infrared 
spectroscopy–intravascular ultrasound
The estimations of the conventional and the DL method were compared 
with the estimations of NIRS–IVUS in the test set of 48 vessels (15 patients) 
at segment level, lesion level, and cross-sectional levels: 

• Segment-level analysis: For each segment of interest, the lumen, vessel, to
tal atheroma volume (TAV) and per cent atheroma volume (PAV) were 
estimated by the conventional, the DL method, and the NIRS–IVUS and 
compared. The chemogram in NIRS–IVUS was used to estimate the lipid 
core burden index (LCBI) which corresponds to the fraction of pixels with
in the segment of interest that have ≥0.6 probability to portray lipid core 

tissue multiplied by 1000 and the maxLCBI4mm which is the maximum LCBI 
value within a 4-mm segment in the segment of interest.22 The calcific bur
den index (CaBI) was estimated from the annotations of the calcific tissue 
in IVUS frames as the fraction of the calcific extent along the circumference 
and length of the segment of interest multiplied by 1000.20 A similar ap
proach was used in CCTA to compute in the conventional and DL method 
the LCBI, maxLCBI4mm, and CaBI. On the conventional approach- 
established Hounsfield units (HU), cut-offs were used to define the pres
ence of lipid (−30 to 75 HU) and calcific tissue (>350 HU) in CCTA 
images, and this information was plotted in 2D maps portraying in the 
x-axis the axial position of these tissues along the length of the artery 
and in the y-axis their circumferential position. Similar maps were con
structed from the estimations of the DL method for the lipid and calcific 
tissue. The LCBI and CaBI were then calculated as the ratio of pixels of lipid 
and calcific tissue within the studied segment of interest multiplied by 1000.

Figure 1 Intravascular ultrasound and coronary computed tomography angiography co-registration software. On the top panel, longitudinal view of 
a coronary computed tomography angiography segment of interest is shown with its corresponding longitudinal view on intravascular ultrasound on the 
bottom panel. Anatomical landmarks such as side branches are used to match the end-diastolic frames on intravascular ultrasound (red) and coronary 
computed tomography angiography cross sections (green) as shown the in the middle panel. The coronary computed tomography angiography frames 
in between the landmarks are interpolated. This software allows cross-sectional comparison between intravascular ultrasound and coronary computed 
tomography angiography. The left-hand side panel shows a corresponding coronary computed tomography angiography and intravascular ultrasound 
frames. The intravascular ultrasound frame is superimposed on the corresponding coronary computed tomography angiography cross section to allow 
rotation and accurate alignment between the two modalities; in this specific case, the intravascular ultrasound frame was titled 20° clockwise to match 
the corresponding coronary computed tomography angiography frame.
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• Lesion-level analysis: On NIRS–IVUS, a lesion was defined as a segment 
with a minimum PB ≥ 40% over three consecutive frames.23,24 Lesions 
are identified as separate if there was a segment with a length > 5 mm be
tween them. Receiver operating curve (ROC) analysis was performed in 
the output of the conventional and the DL method to identify the best 
cut-off that predicted a PB ≥ 40% on NIRS–IVUS, and this was used to 
define lesions in the test set. For each lesion, the following metrics 
were estimated and compared between NIRS–IVUS, the conventional, 
and the DL methods: lesion length, reference lumen, and vessel/EEM 
area (average of proximal and distal reference areas), minimum lumen 
area (MLA), vessel/EEM area at MLA, maximum PB, remodelling index, 
LCBI, MaxLCBI4mm, and CaBI.

• Cross-sectional level analysis: the lumen, vessel/EEM, plaque area, and PB 
estimated in matched cross sections by NIRS–IVUS, the conventional, 
and DL methods were estimated and compared. In addition, morpho
logical comparison between the estimations of the three approaches 
for the lumen and vessel/EEM borders was performed using the dice simi
larity coefficient (DSC), Hausdorff distance (HD), and mean distance.16

Statistical analysis
The distribution of continuous variables was assessed using the 
Kolmogorov–Smirnoff test. All continuous variables were normally 

distributed and presented as mean ± SD while categorical as absolute 
numbers and percentages. Continuous and categorical variables between 
the training and the test set were compared using independent sample 
t-test and χ2 test, respectively. ROC curve analysis was used to examine 
the efficacy of the conventional and DL method for detecting a PB ≥  
40% on NIRS–IVUS and determining the best PB cut-off. This cut-off 
was used to define lesions in the output of the conventional and DL 
analysis.

Mixed-effect models with random intercepts by patient and by patient 
and vessel type were used to account for clustering effects between mul
tiple lesions in the same vessel and multiple vessels in the same patient and 
were used to examine the effect of CCTA analysis (i.e. conventional meth
od vs. DL method) on the agreement between NIRS–IVUS and CT esti
mations. For lesion-level analysis, vessel type was nested within patients. 
The mean differences, intra-class correlation coefficient (ICC), variance 
of differences, and Bland and Altman analyses were used to compare 
the estimations between the conventional and the DL methodology 
against NIRS–IVUS. Significance was assessed using the F-ratio test for 
the equality of variances. The confidence interval of the variance ratio 
was estimated using bootstrap re-sampling in 1500 samples. 
Mixed-effect models and variance ratio in the lesion-level analysis included 
all the available lesions even if measurements in the conventional or DL 
method were unavailable for some observations. Statistical analyses 
were performed using Stata version 17.0 (StataCorp LLC); the statistical 
significance was set at P < 0.05.

Figure 2 Schematic design of the deep-learning methodology developed for border detection and plaque characterization in coronary computed 
tomography angiography. The contextual information from three matched near-infrared spectroscopy–intravascular ultrasound frames before and 
after the centre frame (frame or cross section of interest) is used as input to predict the lumen area, plaque area, and background using a 
DenseUNet network. Post-processing of the detected areas is performed to define the lumen and vessel wall borders. In the second stage, the pre
dicted lumen border is shrunk by 1 mm and extruded by 4 mm in these cross sections and defined area of interest together with the circumferential 
distribution of lipid core and calcific tissue in the corresponding near-infrared spectroscopy–intravascular ultrasound frames are utilized to train a 
DenseUNet network that estimates the circumferential distribution of the lipid and calcific tissue in the central coronary computed tomography angi
ography cross section. These estimations that are portrayed simultaneously in one spread-out plot, together with the lumen and vessel wall borders 
constitute the final output of the deep-learning methodology. EEM, external elastic membrane; IVUS, intravascular ultrasound; NIRS–IVUS, near- 
infrared spectroscopy–intravascular ultrasound.
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Figure 3 Study flowchart. CCTA, coronary computed tomography angiography; IVUS, intravascular ultrasound; NIRS–IVUS, near-infrared spectros
copy–intravascular ultrasound.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline demographics of the studied patients and vessels included in the analysis

Studied vessels (n = 64) Training set (n = 49) Test set (n = 15) P

Age (years) 62 ± 8 62 ± 9 61 ± 7 0.32
Gender (male) 5 (79.7%) 38 (77.6%) 13 (86.7%) 1.00

Current smoker 4 (6.3%) 3 (6.1%) 1 (6.7%) 1.00

Family history of CAD 40 (62.5%) 29 (59.2%) 11 (73.3%) 0.16
Co-morbidities

Diabetes mellitus 22 (34.4%) 19 (38.8%) 3 (20.0%) 0.19

Hypertension 35 (54.7%) 30 (61.2%) 5 (33.3%) 0.11
Hypercholesterolaemia 45 (70.3%) 35 (71.4%) 10 (66.7%) 0.58

Renal failurea 14 (21.9%) 10 (20.4%) 4 (26.7%) 1.00

Previous PCI 14 (21.9%) 13 (26.5%) 1 (6.7%) 0.019
LV function

Normal LV function 60 (93.8%) 46 (93.9%) 14 (93.3%) 0.33

Impaired LV functionb 4 (6.3%) 3 (6.1%) 1 (6.7%) 0.33
Studied vessels

Total number of frames 19 012 15 811 6201

Total number of vessels 186 138 48
LAD/diagonal branch 64 (34.4%) 48 (34.8%) 16 (33.3%)

LCx/intermediate/obtuse marginal branch 78 (41.9%) 59 (42.8%) 19 (39.6%)

RCA 44 (23.7%) 31 (22.5%) 13 (27.0%)
Matched NIRS–IVUS and CCTA cross sections 22 012 15 811 6201

LAD/diagonal branch 8284 (37.6%) 5922 (37.5%) 2362 (38.1%)

LCx/intermediate/obtuse marginal branch 6510 (29.6%) 4896 (31.0%) 1614 (26.0%)
RCA 7218 (32.8%) 4993 (31.6%) 2225 (35.9%)

CAD, coronary artery disease; LAD, left anterior descending artery; LCx, left circumflex artery; LV, left ventricle; PCI, percutaneous coronary intervention; RCA, right coronary artery. 
aRenal failure is defined as an estimated glomerular filtration rate of <60 mL/min/1.73 m2. 
bImpaired LV function is defined as LV ejection fraction of 40–50%.
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Results
Sixty-four patients (197 vessels) had NIRS–IVUS and CCTA imaging 
and were included in the final analysis (Figure 3). Thirty-five patients 
(54.7%) suffered from hypertension, 45 patients (70.3%) suffered 
from hypercholesterolaemia, and 60 patients (93.8%) had preserved 
left ventricular systolic function. Patients in the training set were 
more likely to have had a previous PCI than the patients in the test 
set, but otherwise, there was no difference in baseline demographics 
of the two groups (Table 1).

From the 197 vessels assessed with CCTA, 11 were excluded due to 
motion artefacts (eight vessels) and extensive calcification (three ves
sels) which made CCTA analysis impossible. A total of 186 vessels 
(22 012 matched end-diastolic NIRS–IVUS frames and CCTA cross 
sections) were included in the analysis: 138 vessels (15 811 frames) 
were included in the training set, and 48 vessels (6201 frames) were in
cluded in the test set.

Segment-level analysis
Tables 2 and 3 summarize the findings of the segment-level analysis. The 
conventional approach underestimated lumen, vessel volume, TAV, and 
PAV, while the DL method provided closer estimations and had nar
rower limits of agreement with the estimations of NIRS–IVUS for these 

metrics (see Supplementary material online, Figure S1). Both the con
ventional method and especially the DL method overestimated the 
LCBI and maxLCBI4mm compared with NIRS–IVUS but provided similar 
estimations for the CaBI. Mixed-effect models showed that the type of 
CCTA segmentation (conventional method vs. DL method) had an ef
fect on the agreement between CCTA and NIRS–IVUS for the vessel, 
TAV, and PAV suggesting a better performance of the DL method for 
these variables.

The ICC between NIRS–IVUS and DL method estimations was nu
merically higher than the ICC between NIRS–IVUS and the convention
al approach for all the studied variables (P < 0.001 for all the variables, 
Table 3). Variance ratio of differences analysis indicated that the DL 
method had a higher agreement with NIRS–IVUS than the conventional 
approach for all the studied variables apart from the maxLCBI4mm and 
CaBI.

Lesion-level analysis
The best PB cut-off for detecting PB ≥ 40% in NIRS–IVUS was 27% in 
the conventional method and 49% in the DL method. Using these cut- 
offs, the conventional approach was able to detect 70.1% (n = 61) of 
the 87 lesions detected by NIRS–IVUS compared with the DL method, 
detecting 78.2% of the lesions (n = 68, P < 0.001, Figure 4). The DL 
method was also less likely to falsely detect lesions—identified seven 
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Table 2 Segment and lesion-level comparison of the estimations of intravascular ultrasound, conventional analysis, and 
deep-learning methodology

NIRS–IVUS 
analysis

Conventional 
analysis

Δ NIRS–IVUS— 
conventional analysis

DL 
methodology

Δ IVUS—DL 
methodology

Pa

Segment-level analysis

Lumen volume (mm3) 531.3 ± 462.9 398.8 ± 321.8 132.5 ± 148.5 492.8 ± 377.7 38.5 ± 112.0 0.19

Vessel volume (mm3) 921.0 ± 707.6 545.2 ± 407.7 375.8 ± 310.6 920.3 ± 649.8 0.7 ± 126.3 0.001
TAV (mm3) 389.7 ± 267.8 146.4 ± 109.4 243.3 ± 183.7 427.5 ± 279.9 −37.8 ± 89.0 <0.001

PAV (%) 44.20 ± 9.09 27.02 ± 10.95 17.20 ± 7.20 47.58 ± 5.55 −3.34 ± 5.77 <0.001

LCBI 50.0 ± 72.1 62.4 ± 72.9 −12.4 ± 84.2 73.1 ± 62.9 −23.1 ± 53.0 0.09
MaxLCBI4mm 251.4 ± 201.2 265.9 ± 255.1 −14.5 ± 262.1 307.2 ± 204.8 −55.7 ± 213.9 0.28

CaBI 62.7 ± 62.2 56.7 ± 74.6 −5.97 ± 62.2 64.6 ± 81.8 −1.8 ± 37.3 0.60

Lesion-level analysis
Lesion length (mm) 21.37 ± 18.60 14.16 ± 15.44 9.54 ± 15.63 17.29 ± 17.50 4.77 ± 18.43 0.01

Reference lumen area (mm2) 10.71 ± 4.88 7.83 ± 3.49 3.97 ± 2.64 9.62 ± 3.87 1.93 ± 2.63 <0.001
Reference vessel/EEM area (mm2) 15.11 ± 6.29 9.33 ± 4.03 7.36 ± 3.36 16.19 ± 6.32 −0.06 ± 3.55 <0.001

MLA (mm2) 4.57 ± 3.43 3.29 ± 2.69 1.37 ± 2.32 4.55 ± 2.10 −0.35 ± 1.81 <0.001

Vessel/EEM at MLA (mm2) 12.71 ± 6.14 8.25 ± 4.79 5.06 ± 4.82 11.97 ± 4.64 0.29 ± 3.08 <0.001
Maximum PB 64.82 ± 13.51 60.55 ± 19.03 5.77 ± 16.58 61.48 ± 9.72 4.33 ± 11.83 0.16

Remodelling index 0.84 ± 0.21 0.87 ± 0.29 −0.09 ± 0.30 0.82 ± 0.21 0.01 ± 0.20 0.58

LCBI 55.6 ± 79.8 103.2 ± 123.2 −46.2 ± 133.5 115.8 ± 106.9 −55.3 ± 122.8 0.001
MaxLCBI4mm 189.2 ± 199.7 236.36 ± 237.2 −24.5 ± 258.3 282.1 ± 213.2 −62.3 ± 219.4 0.04

CaBI 97.7 ± 90.6 166.1 ± 158.2 −54.3 ± 144.4 154.5 ± 152.4 −51.2 ± 115.1 <0.001

Cross-sectional-level analysis
Lumen area (mm2) 8.54 ± 5.17 6.41 ± 3.77 2.12 ± 2.29 7.88 ± 4.05 0.66 ± 2.15 <0.001

EEM/vessel area (mm2) 14.68 ± 7.33 8.74 ± 4.77 5.94 ± 3.72 14.71 ± 6.63 −0.03 ± 2.77 <0.001

Plaque area (mm2) 6.15 ± 3.41 2.33 ± 2.36 3.81 ± 2.79 6.83 ± 3.12 −0.68 ± 2.21 <0.001
PB (%) 41.90 ± 14.90 25.41 ± 16.56 16.49 ± 14.87 46.74 ± 9.24 −4.83 ± 11.78 <0.001

CaBI, calcific burden index; DL, deep learning; EEM, external elastic membrane; IVUS, intravascular ultrasound; LCBI, lipid core burden index; MLA, minimum lumen area; PAV, percentage 
atheroma volume; PB, plaque burden; TAV, total atheroma volume. 
aP-value derived from the mixed-effects model estimations.
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lesions compared with the 14 lesions by the conventional approach that 
were not present on the NIRS–IVUS.

Mixed-effect model analysis demonstrated that the type of CCTA 
segmentation (i.e. conventional vs. DL) significantly influenced the 
agreement between CCTA and NIRS–IVUS for all the studied variables 
apart from the maximum PB and the remodelling index (Table 2). For 
lesion length, the bias was smaller, and the limits of agreement were 
narrower between conventional and NIRS–IVUS than DL and NIRS– 
IVUS estimations indicating that the conventional approach provides 
closer estimations to NIRS–IVUS than the DL method (see 
Supplementary material online, Figure S2). Conversely, the DL method 
appears to enable more accurate assessment of the reference lumen 
area, MLA, vessel wall area at the MLA, and CaBI than the conventional 
approach. Moreover, the DL method had a smaller bias and wider limits 
of agreement with NIRS–IVUS for the reference vessel area but a larger 
bias but narrower limits of agreement for the LCBI and maxLCBI4mm 

than the conventional approach.
The ICC between NIRS–IVUS and the conventional or the DL ap

proach was statistically significant for all the lesion-based metrics 
(Table 3). The variance ratio of differences indicated that the DL 
method provides closer estimations to NIRS–IVUS than the conven
tional approach for the MLA, vessel area at the MLA, maximum PB, 
and CaBI.

Cross-sectional level analysis
The results of the cross-sectional level analysis are shown in Tables 2
and 3 and Supplementary material online, Figure S3. The bias was smal
ler, and the limits of agreement between NIRS–IVUS and DL method 
were significantly narrower than the limits of agreement between 
NIRS–IVUS and the conventional approach, while the ICCs were higher 
for all the studied variables (Table 3). Mixed-effect model analysis and 
variance ratio of differences confirmed that the DL method is superior 
to the conventional approach for assessing the lumen, vessel wall, pla
que area, and PB (see Supplementary material online, Table S2). Results 
were not different when analysis focused on frames with the presence 
of calcific and non-calcific tissues (see Supplementary material online, 
Table S3).

Manual CCTA segmentation (accurate annotation of every lumen 
and vessel wall border) of a 70-mm segment takes ∼5 h, while the 
DL methodology is able to estimate the lumen and vessel wall borders 
and characterize plaque composition within 40 s.

Discussion
In this study, for the first time, we introduced a DL methodology 
trained from co-registered NIRS–IVUS and CCTA data to detect the 
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Table 3 Segment-, lesion-, and cross-sectional-level intra-class correlation coefficient and variance ratio of differences 
between the estimations of near-infrared spectroscopy–intravascular ultrasound, the conventional, and deep-learning 
methodology

ICC between NIRS– 
IVUS and conventional 

analysis

P ICC between NIRS– 
IVUS and DL 
methodology

P Variance ratio of 
differences (95% CI)

Pa

Segment-level analysis

Lumen volume (mm3) 0.938 <0.001 0.980 <0.001 1.757 (1.459–2.904) <0.001
Vessel volume (mm3) 0.829 <0.001 0.991 <0.001 4.262 (1.831–9.537) <0.001

TAV (mm3) 0.520 <0.001 0.969 <0.001 4.262 (1.831–9.534) <0.001

PAV (%) 0.463 <0.001 0.786 <0.001 1.578 (1.032–2.449) <0.001
LCBI 0.492 0.011 0.794 <0.001 2.517 (1.278–4.501) 0.002

MaxLCBI4mm 0.522 0.007 0.605 0.001 1.500 (0.836–2.808) 0.17

CaBI 0.745 <0.001 0.931 <0.001 2.780 (0.652–8.172) 0.14
Lesion-level analysis

Lesion length (mm) 0.683 <0.001 0.644 <0.001 0.719 (0.427–1.163) 0.20

Reference lumen area (mm2) 0.721 <0.001 0.822 <0.001 1.006 (0.526– 1.838) 0.99
Reference vessel area (mm2) 0.578 <0.001 0.897 <0.001 0.900 (0.399–2.048) 0.23

MLA (mm2) 0.809 <0.001 0.828 <0.001 1.634 (1.147– 3.031) 0.001

Vessel/EEM area at MLA (mm2) 0.625 <0.001 0.890 <0.001 2.447 (1.457–4.205) 0.001
Maximum PB (%) 0.691 <0.001 0.677 <0.001 2.071 (1.445–3.217) 0.004

Remodelling index 0.498 0.011 0.666 0.001 1.972 (0.823– 3.877) 0.14

LCBI 0.252 0.111 0.249 0.090 1.181 (0.603–2.233) 0.51
MaxLCBI4mm 0.518 0.010 0.606 <0.001 1.418 (0.826–2.663) 0.23

CaBI 0.514 0.001 0.700 <0.001 2.308 (1.222–4.079) 0.002

Cross-sectional level analysis
Lumen area (mm2) 0.880 <0.001 0.939 <0.001 1.141 (1.104–1.180) <0.001

Vessel volume (mm2) 0.718 <0.001 0.959 <0.001 1.812 (1.742–1.885) <0.001

Plaque area (mm2) 0.456 <0.001 0.861 <0.001 1.601 (1.531–1.679) <0.001
Plaque burden (%) 0.527 <0.001 0.676 <0.001 1.594 (1.535–1.652) <0.001

CaBI, calcific burden index; DL, deep learning; EEM, external elastic membrane; ICC, intra-class correlation coefficient; IVUS, intravascular ultrasound; LCBI, lipid core burden index; MLA, 
minimum lumen area; PAV, percentage atheroma volume; PB, plaque burden; TAV, total atheroma volume. 
aP-value derived from the variance ratio test.
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lumen and vessel wall borders and quantify PB and composition in 
CCTA. We found that the developed method (i) enables more accur
ate volumetric analyses of the segment of interest in CCTA than the 
conventional analysis, (ii) has higher accuracy in detecting lesions and as
sessing the MLA and maximum PB, (iii) more accurately measures cal
cific burden and narrow limits of agreement but larger bias for the 
estimations of lipid burden than the conventional approach that relies 
on established HU cut-offs, and (iv) is fast, allowing fully automated 
and reproducible segmentation and plaque characterization of the cor
onary tree in a few seconds (see Supplementary material online, Videos 
S1 and S2).

Several methodologies have been introduced for automated seg
mentation of CCTA data.11–13,25,26 However, these approaches have 
limitations as some focused on assessing lesion severity,12 and some 
are only capable to provide qualitative information about plaque phe
notypes without measuring the PB,11,25 and others estimate vessel 
wall dimensions but cannot accurately characterize plaque morph
ology.13 More importantly, all these methods have been trained and 
tested against expert analysts, who have limited reproducibility and lim
ited efficacy in quantifying PB and phenotype27,28 while the only method 
that used intravascular imaging to train a DL method for differentiating 
lipid-rich from non-lipid-rich plaques in CCTA utilized integrated back
scatter IVUS analysis—a modality that is not widely available—and 
failed to demonstrate a superiority of the DL method over the human 
experts in assessing plaque composition.29

Our prospective study introduces a paradigm shift in coronary im
age analysis. We propose the use of intravascular imaging and, in par
ticular, of NIRS–IVUS—the only FDA-approved modality for 
detecting high-risk lesions to train a DL methodology for more accur
ate analysis of CCTA. In contrast to previous studies comparing 
intravascular imaging and CCTA,27,28 NIRS–IVUS was performed in 
all the major epicardial arteries, irrespective of the presence of dis
ease providing an ideal set for training of a DL method. Moreover, 
we took advantage of a well-validated DL approach to identify the 

end-diastolic frames in NIRS–IVUS and match these with the 
CCTA cross sections. The use of end-diastolic NIRS–IVUS frames 
minimized errors in data co-registration introduced by the longitu
dinal motion of the IVUS catheter30 and enabled more reproducible 
assessment of the lumen dimensions, as these changes up to 10% dur
ing the cardiac cycle.31–33 Finally, we designed a special module to 
co-register NIRS–IVUS and CCTA data that allow superimposition 
and rotational alignment of the lumen and EEM borders and of the 
estimations of NIRS–IVUS for the lipid core and calcific tissue on 
CCTA. These advances enable accurate data co-registration that 
was used to train DL algorithms for image segmentation and plaque 
characterization in CCTA.

Testing at a segment level demonstrated that the DL method is su
perior to conventional CCTA analysis for quantifying vessel wall vol
ume and, more importantly, TAV and PAV which are commonly used 
in serial coronary imaging studies to assess the efficacy of novel ther
apies targeting atherosclerosis.34–37 In addition, we included all ves
sels, including normal or with minor coronary artery disease 
irrespective of their disease burden, which reflects the vast majority 
of patients undergoing CCTA in clinical practice. The DL method ap
pears capable to assess LCBI which is an established predictor of 
worse outcomes in recent studies38 but is not superior to the conven
tional approach for the maxLCBI4mm and CaBI. These advantages and 
the fact that the DL method is fast have been incorporated in a user- 
friendly commercially available software (QAngioCT Research 
Edition) and provide a fully reproducible analysis, which renders it 
as the ideal methodology for risk stratification and segmentation of 
serial data collected in studies assessing the efficacy of novel 
pharmacotherapies.

Results were similar when analysis was performed at a lesion level. 
The DL methodology was superior to the conventional approach in de
tecting lesions and allowed a more accurate assessment of the MLA and 
maximum PB which are established predictors of plaque vulnerability. 
Moreover, the DL method enabled more accurate quantification of 
the CaBI that is important in treatment planning. Conversely, both ap
proaches had limited efficacy in measuring lesion length and the refer
ences lumen and vessel area as well as the lipid component (i.e. LCBI 
and maxLCBI4mm). The large discrepancy between CCTA and NIRS– 
IVUS estimations for lesion length and the reference lumen and vessel 
areas should at least partially be attributed to the present of tandem le
sions on NIRS–IVUS, which occasionally in CCTA analysis appear as 
one long lesion; conversely, many long lesions in NIRS–IVUS were often 
classified as tandem lesion in CCTA. Moreover, the limited efficacy of 
the conventional and the DL methods in detecting lipid core plaques 
is due to the fact that image features have limited value in assessing 
the biochemical composition of lipid tissue as NIRS imaging. This is a 
well-known limitation, not only of CCTA but also of intravascular im
aging,17 and was even more apparent in mixed plaques where the 
blooming artefacts from the calcium mask the surrounding tissues 
(Figure 5).

Limitations
Firstly, the number of vessels that were included for the training and 
testing of the DL algorithms are relatively small; a larger training set is 
expected to enhance the performance of the developed method and 
improve the segmentation and plaque characterization in CCTA. 
Secondly, despite the fact that an effort was made to optimize NIRS– 
IVUS and CCTA image co-registration by selecting only end-diastolic 
NIRS–IVUS frames, it is likely the lumen and vessel morphologies to 
have been distorted in some NIRS–IVUS frames by the intravascular im
aging catheter; this is more likely to have occurred in tortuous and an
gulated vessels resulting in erroneous estimations of the lumen and 
vessel wall borders. Thirdly, although the proposed DL method was su
perior to the conventional approach for detecting lipid cores, its 

Figure 4 Receiver operating curve analysis showing the efficacy of 
the conventional approach and deep-learning methodology for de
tecting lesions using near-infrared spectroscopy–intravascular ultra
sound as the gold standard. AUC: Area under the curve.
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correlation with NIRS–IVUS estimations remains weak. Moreover, the 
methodology developed for plaque characterization in CCTA is unable 
to provide information about the thickness and depth of the lipid cores 
in the plaque as it relies on NIRS–IVUS which only gives information 
about its circumferential extent. Additionally, the developed DL meth
od was trained and tested on data collected by a 3rd-generation CCTA 
scanner with a specific reconstruction approach. It is unclear whether 
the findings of this analysis can be generalized to CCTA images col
lected by different vendors. Finally, although superior to conventional 
CCTA segmentation, it’s unclear whether the DL methodology allows 
more accurate detection of high-risk lesions and patients, which re
quires a large-scale study.

Conclusions
We developed a novel DL methodology that was trained from the es
timations of NIRS–IVUS to accurately estimate the lumen and vessel 
wall dimensions and quantify PB and composition in CCTA images. 
The proposed methodology appears superior to the conventional 
analysis performed by experts in assessing vessel pathology and 
morphology and may have the potential to enhance the applications 
of CCTA in guiding PCI, assessing the efficacy of novel pharma
cotherapies in inhibiting plaque progression, and stratifying cardiovas
cular risk.
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Data availability
The data will be shared on reasonable request to the corresponding 
author.

Figure 5 Lumen, vessel wall, and plaque component estimations of the conventional and deep-learning method. The top panel portrays a longitudinal 
cross section of the segment of interest in a left circumflex coronary artery on near-infrared spectroscopy–intravascular ultrasound, the middle panel 
portrays the corresponding segment in coronary computed tomography angiography with the lumen and vessel wall borders detected by the conven
tional approach, and the bottom panel shows the output of the deep-learning method. The per cent atheroma volume and total atheroma volume 
estimations are also shown. The corresponding distribution of plaque components for the near-infrared spectroscopy–intravascular ultrasound, the 
conventional approach, and the deep-learning method are portrayed as spread-out plots (yellow indicating presence of lipid core and semi-transparent 
white showing the presence of calcific tissue) along with the estimations of lipid core burden index, maxLCBI4mm and calcific burden index. Lastly, the 
corresponding cross section portraying the minimum lumen area with lumen, vessel wall borders, and plaque components detected by each approaches 
is shown. CaBI, calcific burden index; DL, deep learning; LCBI, lipid core burden index; PAV, per cent atheroma volume; TAV, total atheroma volume.

10                                                                                                                                                                                          A. Ramasamy et al.



Supplementary material
Supplementary material is available at European Heart Journal Open 
online.

Funding
This study is jointly funded by British Heart Foundation (PG/17/18/32883), 
University College London Biomedical Resource Centre (BRC492B), and 
Rosetrees Trust (A1773). A.R., R.B., A.M., A.B., and C.V.B. are funded by 
Barts NIHR Biomedical Research Centre, London, UK.

Conflict of interest: None declared.

References
1. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis 

C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi 
A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani 
Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, 
Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter 
MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull 
W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, 
Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT. 
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assess
ment strategies: part I. Circulation 2003;108:1664–1672.

2. Ferencik M, Mayrhofer T, Bittner DO, Emami H, Puchner SB, Lu MT, Meyersohn NM, 
Ivanov AV, Adami EC, Patel MR, Mark DB, Udelson JE, Lee KL, Douglas PS, Hoffmann U. 
Use of high-risk coronary atherosclerotic plaque detection for risk stratification of pa
tients with stable chest pain: a secondary analysis of the PROMISE randomized clinical 
trial. JAMA Cardiol 2018;3:144–152.

3. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, 
Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J. Computed tomographic angiography 
characteristics of atherosclerotic plaques subsequently resulting in acute coronary syn
drome. J Am Coll Cardiol 2009;54:49–57.

4. Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, Flather M, Forbes J, Hunter 
A, Lewis S, MacLean S, Mills NL, Norrie J, Roditi G, Shah ASV, Timmis AD, van Beek EJR, 
Williams MC. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl 
J Med 2018;379:924–933.

5. SCOT-HEART investigators. CT coronary angiography in patients with suspected an
gina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, mul
ticentre trial. Lancet. 2015;385:2383–2391.

6. Prati F, Romagnoli E, Gatto L, La Manna A, Burzotta F, Ozaki Y, Marco V, Boi A, Fineschi 
M, Fabbiocchi F, Taglieri N, Niccoli G, Trani C, Versaci F, Calligaris G, Ruscica G, Di 
Giorgio A, Vergallo R, Albertucci M, Biondi-Zoccai G, Tamburino C, Crea F, Alfonso 
F, Arbustini E. Relationship between coronary plaque morphology of the left anterior 
descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J 
2020;41:383–391.

7. Erlinge D, Maehara A, Ben-Yehuda O, Bøtker HE, Maeng M, Kjøller-Hansen L, Engstrøm 
T, Matsumura M, Crowley A, Dressler O, Mintz GS, Fröbert O, Persson J, Wiseth R, 
Larsen AI, Okkels Jensen L, Nordrehaug JE, Bleie Ø, Omerovic E, Held C, James SK, 
Ali ZA, Muller JE, Stone GW. Identification of vulnerable plaques and patients by intra
coronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective nat
ural history study. Lancet 2021;397:985–995.

8. Waksman R, Di Mario C, Torguson R, Ali ZA, Singh V, Skinner WH, Artis AK, Cate TT, 
Powers E, Kim C, Regar E, Wong SC, Lewis S, Wykrzykowska J, Dube S, Kazziha S, van 
der Ent M, Shah P, Craig PE, Zou Q, Kolm P, Brewer HB, Garcia-Garcia HM, 
Investigators LRP. Identification of patients and plaques vulnerable to future coronary 
events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, 
cohort study. Lancet 2019;394:1629–1637.

9. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, 
Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh 
BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, 
Achenbach S, Bax JJ. 2019 ESC guidelines for the diagnosis and management of chronic 
coronary syndromes. Eur Heart J 2020;41:407–477.

10. Muscogiuri G, Chiesa M, Trotta M, Gatti M, Palmisano V, Dell’Aversana S, Baessato F, 
Cavaliere A, Cicala G, Loffreno A, Rizzon G, Guglielmo M, Baggiano A, Fusini L, Saba 
L, Andreini D, Pepi M, Rabbat MG, Guaricci AI, De Cecco CN, Colombo G, Pontone 
G. Performance of a deep learning algorithm for the evaluation of CAD-RADS classifi
cation with CCTA. Atherosclerosis 2020;294:25–32.

11. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I. A recur
rent CNN for automatic detection and classification of coronary artery plaque and 
stenosis in coronary CT angiography. IEEE Trans Med Imaging 2019;38:1588–1598.

12. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, Berman DS, Li D, Kuo CC. 
Structured learning algorithm for detection of nonobstructive and obstructive coronary 
plaque lesions from computed tomography angiography. J Med Imaging (Bellingham) 
2015;2:014003.

13. Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J, Pieszko K, 
Razipour A, Grodecki K, Park C, Otaki Y, Doris M, Kwan AC, Han D, Kuronuma K, 
Flores Tomasino G, Tzolos E, Shanbhag A, Goeller M, Marwan M, Gransar H, 
Tamarappoo BK, Cadet S, Achenbach S, Nicholls SJ, Wong DT, Berman DS, Dweck 
M, Newby DE, Williams MC, Slomka PJ, Dey D. Deep learning-enabled coronary CT 
angiography for plaque and stenosis quantification and cardiac risk prediction: an inter
national multicentre study. Lancet Digit Health 2022;4:e256–e265.

14. Kim C, Hong SJ, Shin DH, Kim JS, Kim BK, Ko YG, Choi D, Jang Y, Hong MK. Limitations 
of coronary computed tomographic angiography for delineating the lumen and vessel 
contours of coronary arteries in patients with stable angina. Eur Heart J Cardiovasc 
Imaging 2015;16:1358–1365.

15. Rodriguez-Granillo GA, Vaina S, García-García HM, Valgimigli M, Duckers E, van Geuns 
RJ, Regar E, van der Giessen WJ, Bressers M, Goedhart D, Morel MA, de Feyter PJ, 
Serruys PW. Reproducibility of intravascular ultrasound radiofrequency data analysis: 
implications for the design of longitudinal studies. Int J Cardiovasc Imaging 2006;22: 
621–631.

16. Bajaj R, Huang X, Kilic Y, Ramasamy A, Jain A, Ozkor M, Tufaro V, Safi H, Erdogan E, 
Serruys PW, Moon J, Pugliese F, Mathur A, Torii R, Baumbach A, Dijkstra J, Zhang Q, 
Bourantas CV. Advanced deep learning methodology for accurate, real-time segmenta
tion of high-resolution intravascular ultrasound images. Int J Cardiol 2021;339:185–191.

17. Ramasamy A, Serruys PW, Jones DA, Johnson TW, Torii R, Madden SP, Amersey R, 
Krams R, Baumbach A, Mathur A, Bourantas CV. Reliable in vivo intravascular imaging 
plaque characterization: a challenge unmet. Am Heart J 2019;218:20–31.

18. Ramasamy A, Safi H, Moon JC, Andiapen M, Rathod KS, Maurovich-Horvat P, Bajaj R, 
Serruys PW, Mathur A, Baumbach A, Pugliese F, Torii R, Bourantas CV. Evaluation of 
the efficacy of computed tomographic coronary angiography in assessing coronary artery 
morphology and physiology: rationale and study design. Cardiology 2020;145:285–293.

19. Ramasamy A, Hamid AKA, Cooper J, Simon J, Maurovich-Horvat P, Bajaj R, Kitslaar P, 
Amersey R, Jain A, Deaner A, Reiber JH, Moon JC, Dijkstra J, Serruys PW, Mathur A, 
Baumbach A, Torii R, Pugliese F, Bourantas CV. Implications of computed tomography 
reconstruction algorithms on coronary atheroma quantification: comparison with intra
vascular ultrasound. J Cardiovasc Comput Tomogr 2022;17:43–51.

20. Bourantas CV, Serruys PW, Nakatani S, Zhang YJ, Farooq V, Diletti R, Ligthart J, Sheehy 
A, van Geuns RJ, McClean D, Chevalier B, Windecker S, Koolen J, Ormiston J, 
Whitbourn R, Rapoza R, Veldhof S, Onuma Y, Garcia-Garcia HM. Bioresorbable vascu
lar scaffold treatment induces the formation of neointimal cap that seals the underlying 
plaque without compromising the luminal dimensions: a concept based on serial optical 
coherence tomography data. EuroIntervention 2015;11:746–756.

21. Vu MH, Grimbergen G, Nyholm T, Löfstedt T. Evaluation of multislice inputs to convo
lutional neural networks for medical image segmentation. Med Phys 2020;47:6216–6231.

22. Goldstein JA, Madden SP, Sum ST, Dixon SR, Madder RD, Muller JE. Assessment of pla
que composition with near-infrared spectroscopy. Curr Cardiovasc Imaging Rep 2011;4: 
298–308.

23. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, 
McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys 
PW. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 
2011;364:226–235.

24. Garcia-Garcia HM, Gomez-Lara J, Gonzalo N, Garg S, Shin ES, Goedhart D, Serruys 
PW. A comparison of the distribution of necrotic core in bifurcation and non- 
bifurcation coronary lesions: an in vivo assessment using intravascular ultrasound radio
frequency data analysis. EuroIntervention 2010;6:321–327.

25. Choi AD, Marques H, Kumar V, Griffin WF, Rahban H, Karlsberg RP, Zeman RK, Katz 
RJ, Earls JP. CT evaluation by artificial intelligence for atherosclerosis, stenosis and vas
cular morphology (CLARIFY): a multi-center, international study. J Cardiovasc Comput 
Tomogr 2021;15:470–476.

26. Hong Y, Commandeur F, Cadet S, Goeller M, Doris MK, Chen X, Kwiecinski J, Berman 
DS, Slomka PJ, Chang HJ, Dey D. Deep learning-based stenosis quantification from cor
onary CT angiography. Proc SPIE Int Soc Opt Eng 2019;10949:109492I.

27. Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, Belur P, Hulten E, Villines TC. 
Coronary atherosclerosis imaging by coronary CT angiography: current status, correl
ation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 2011; 
4:537–548.

28. Fischer C, Hulten E, Belur P, Smith R, Voros S, Villines TC. Coronary CT angiography 
versus intravascular ultrasound for estimation of coronary stenosis and atherosclerotic 
plaque burden: a meta-analysis. J Cardiovasc Comput Tomogr 2013;7:256–266.

29. Masuda T, Nakaura T, Funama Y, Oda S, Okimoto T, Sato T, Noda N, Yoshiura T, Baba 
Y, Arao S, Hiratsuka J, Awai K. Deep learning with convolutional neural network for es
timation of the characterisation of coronary plaques: validation using IB-IVUS. 
Radiography 2022;28:61–67.

30. Arbab-Zadeh A, DeMaria AN, Penny WF, Russo RJ, Kimura BJ, Bhargava V. Axial move
ment of the intravascular ultrasound probe during the cardiac cycle: implications for 

Deep-learning for coronary CT angiography plaque quantification and characterization                                                                                          11

http://academic.oup.com/ehjopen/article-lookup/doi/10.1093/ehjopen/oead090#supplementary-data


three-dimensional reconstruction and measurements of coronary dimensions. Am 
Heart J 1999;138:865–872.

31. Weissman NJ, Palacios IF, Weyman AE. Dynamic expansion of the coronary arteries: 
implications for intravascular ultrasound measurements. Am Heart J 1995;130:46–51.

32. Ge J, Erbel R, Gerber T, Gorge G, Koch L, Haude M, Meyer J. Intravascular ultrasound 
imaging of angiographically normal coronary arteries: a prospective study in vivo. Br 
Heart J 1994;71:572–578.

33. Erdogan E, Huang X, Cooper J, Jain A, Ramasamy A, Bajaj R, Torii R, Moon J, Deaner A, 
Costa C, Garcia-Garcia HM, Tufaro V, Serruys PW, Pugliese F, Mathur A, Dijkstra J, 
Baumbach A, Zhang Q, Bourantas CV. End-diastolic segmentation of intravascular ultra
sound images enables more reproducible volumetric analysis of atheroma burden. 
Catheter Cardiovasc Interv 2022;99:706–713.

34. Tufaro V, Serruys PW, Raber L, Bennett MR, Torii R, Gu SZ, Onuma Y, Mathur A, 
Baumbach A, Bourantas C. Intravascular imaging assessment of pharmacotherapies tar
geting atherosclerosis: advantages and limitations in predicting their prognostic implica
tions. Cardiovasc Res 2023;119:121–135.

35. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, Raichlen JS, Uno 
K, Borgman M, Wolski K, Nissen SE. Effect of two intensive statin regimens on progres
sion of coronary disease. N Engl J Med 2011;365:2078–2087.

36. Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, Koenig W, 
Somaratne R, Kassahun H, Yang J, Wasserman SM, Scott R, Ungi I, Podolec J, Ophuis 
AO, Cornel JH, Borgman M, Brennan DM, Nissen SE. Effect of evolocumab on progres
sion of coronary disease in statin-treated patients: the GLAGOV randomized clinical 
trial. JAMA 2016;316:2373–2384.

37. Budoff MJ, Bhatt DL, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, May HT, Shaikh 
K, Shekar C, Roy SK, Tayek J, Nelson JR. Effect of icosapent ethyl on progression of cor
onary atherosclerosis in patients with elevated triglycerides on statin therapy: final re
sults of the EVAPORATE trial. Eur Heart J 2020;41:3925–3932.

38. Oemrawsingh RM, Cheng JM, Garcia-Garcia HM, van Geuns RJ, de Boer SP, Simsek C, 
Kardys I, Lenzen MJ, van Domburg RT, Regar E, Serruys PW, Akkerhuis KM, Boersma E. 
Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary 
artery disease. J Am Coll Cardiol 2014;64:2510–2518.

12                                                                                                                                                                                          A. Ramasamy et al.


	Novel near-infrared spectroscopy–intravascular ultrasound-based deep-learning methodology for accurate coronary computed tomography plaque quantification and characterization
	Introduction
	Methods
	Study population
	Coronary computed tomography angiography data acquisition
	Near-infrared spectroscopy–intravascular ultrasound data acquisition
	Near-infrared spectroscopy–intravascular ultrasound and coronary computed tomography angiography data analysis and co-registration
	Training of the deep-learning methodology
	Comparison of the estimations of conventional analysis, deep-learning methodology, and near-infrared spectroscopy–intravascular ultrasound
	Statistical analysis

	Results
	Segment-level analysis
	Lesion-level analysis
	Cross-sectional level analysis

	Discussion
	Limitations

	Conclusions
	Lead author biography
	Data availability
	Supplementary material
	Funding
	References


