A STABILITY DICHOTOMY FOR DISCRETE-TIME LINEAR
SWITCHING SYSTEMS IN DIMENSION TWO

IAN D. MORRIS

ABSTRACT. We prove that for every discrete-time linear switching system in
two complex variables and with finitely many switching states, either the sys-
tem is Lyapunov stable or there exists a trajectory which escapes to infinity
with at least linear speed. We also give a checkable algebraic criterion to dis-
tinguish these two cases. This dichotomy was previously known to hold for
systems in two real variables, but is known to be false in higher dimensions
and for systems with infinitely many switching states.

1. INTRODUCTION

If A= {A;: i € T} is a bounded set of d x d real or complex matrices, a trajectory
of the discrete-time linear switching system defined by A is a sequence of vectors
(Un)pzo such that v, 11 = Asyv, for all n > 0. Here the sequence o: N — 7
is referred to as the switching law and vy the initial vector. The elements of A
are called the switching states of A and in most cases we will assume them to be
finite in number. Clearly we may write v, = Ag () -+ Ag)vo for every n > 1 and
we will prefer this formulation in the sequel. These systems arise as the discrete-
time analogues of the more widely studied continuous-time linear switching system,
which is the differential equation v'(¢t) = A(t)v(t) a.e. where A: [0,00) — A is
measurable and v: [0, 00) — R? is Lipschitz continuous.

This note is concerned with the worst-case stability properties of discrete-time
linear switching systems under arbitrary switching laws. Given a bounded nonempty
set of d x d matrices A = {A;: i € I} one may distinguish four distinct stability
regimes (as noted in, for example, [5, 16]):

1) Exponential stability: there exist C' > 0 and £ > 0 such that for every initial
vector vy and switching law o,

[ Ao(n) - - Aoayvo|| < Ce™™ Jluol|

for every n > 0.
2) Exponential instability: there exist C > 0, k > 0, an initial vector vy and a
switching law ¢ such that

[ Ao - Aeyvo|| = Ce™ [lug

for every n > 0.
3) Marginal stability: there exists C' > 0 such that for every initial vector vy and
switching law o,
[ Aoy -+ Aeyvol| < Cllvoll,
but exponential stability does not hold. In this case there necessarily exists a
trajectory which does not converge to the origin.
1
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4) Marginal instability: the system is not exponentially unstable, but there exists
an unbounded trajectory.

The four categories are mutually exclusive and every A belongs to exactly one of
the four categories. The discrete-time linear switching system defined by A may be
called Lyapunov stable if there exists a constant C' > 0 such that every trajectory
(vn)22, satisfies ||up|| < C|lvgl| for all n > 1, and clearly this occurs if and only
if the system is either exponentially stable or marginally stable. It is by now well
known (see for example [11]) that exponential stability and exponential instability
are characterised by the joint spectral radius of A,

R 1
Ay |lm = inf  sup |4, - Ayl

n2lgy . in€

o(A):= lim sup |A
=0 4, inE

Specifically, if o(A) < 1 then exponential stability holds, and if o(A) > 1 then
exponential instability holds. If o(A) = 1 the system is therefore either marginally
stable or marginally unstable, but distinguishing the two cases in practice has
proven quite difficult (see for example [4, 13]). The separate problem of computing
the joint spectral radius itself forms the subject of a substantial body of research:
see for example [8, 10, 11, 17, 20] and references therein.

The above four definitions leave open the question of what the rate of growth
of trajectories of a marginally unstable system can actually be. Given a bounded
nonempty set of d x d matrices A = {4;: i € Z} such that o(A) = 1, one may define
the rate of marginal instability to be the sequence

i’VL :

n+> sup sup HAU(n) e Ag(l)UOH
o: N=T [Jvg||=1

or more simply

(1) n— sup [A

01 yeeyin €L

i Ail ||

which is the best possible uniform upper bound on the growth of trajectories whose
initial vector lies in the unit ball. If A has only one switching state A then the
above sequence is simply the sequence n — ||A™||, and it is a simple consequence
of the Jordan form theorem that (assuming o(A) = 1) we have ||A"| ~ n* for
some non-negative integer k < d. Outside of this special case the behaviour of the
rate of marginal instability is rather less clear, and a by-now significant body of
work has attempted to characterise its behaviour (see for example [2, 3, 5, 9, 12,
13, 15, 19]). In general the problems both of distinguishing marginal stability from
marginal instability, and understanding the range of possible behaviours of the rate
of marginal instability, remain wide open.

The purpose of this note is to demonstrate that in the specific context of two-
dimensional linear switching systems over C with finitely many switching states,
both of these two questions have straightforward answers. In the case of such a
system which is known to be either marginally stable or marginally unstable, we will
show that the two possibilities can be distinguished from one another by a simple
algebraic criterion. Moreover, in the case where the system is marginally unstable,
we will show that its rate of marginal instability is asymptotically bounded above
and below by a linear sequence.

Theorem 1. Let A = {A1, As, ..., An} be a finite set of 2 X 2 complex matrices
such that o(A) = 1. Then:
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(i) If the matrices Ay, ..., An do not share a common eigenvector, or if the set
{A;: |det A;| = 1} is simultaneously diagonalisable, then there exists a con-
stant C > 0 such that for every switching sequence o: N — {1,... N} and
vector v € C* we have || Ay(n) - -+ Agyv|| < C|lv]| for all n > 1.

(ii) If the matrices As,..., AN share a common eigenvector and additionally the
set {Aj: |det A;| =1} is not simultaneously diagonalisable then there exist a
switching sequence 6: N — {1,..., N} and a nonzero vector v € C? such that

|
(2) liminf = As () -+~ As(uyvll > 0.

The sequence 6 may be chosen so that {Asny: n > 1} is not simultaneously
diagonalisable, such that |det As)| = 1 for every n > 1, and such that &
either is constant or takes exactly two distinct values. Furthermore for all
switching sequences o: N — {1,..., N} and vectors v € C?,

ety Ayl < (140 max 4,1 ) ol
for allm > 1.

The proof of Theorem 1 which we present is in principle constructive. In the
cases where the system is marginally stable we are able to give explicit uniform
upper bounds on the growth of trajectories, and in the marginally unstable case
we construct the escaping trajectory by an explicit inductive procedure. The limit
inferior (2) may also be made explicit in principle. However, the precise values of
these upper and lower bounds depend on constants induced by a change of basis
for C? and also depend on whether or not certain ratios of eigenvalues are roots
of unity. These explicit results are thus relatively complicated to incorporate into
the statement of Theorem 1 and we therefore leave them in the form of individual
propositions, listed in the next section, each of which corresponds to the proof of
one of the major sub-cases of Theorem 1. We do not attempt to estimate the value
of the limit inferior (2) in this note.

The following consequence of Theorem 1 is straightforward:

Corollary 1.1. Let B = {By, Ba,...,Bn} be a finite set of 2 x 2 complex matrices
and suppose that o(B) # 0. Define
bn = max HBH s Bi'n, ||
1<i1 yoein <N

for every n > 1. Then either the sequence by, /o(B)" is bounded away from zero and

infinity, or the sequence b, /(no(B)™) is bounded away from zero and infinity.

Theorem 1 is “fragile” in the sense that its conclusions can become false under
only minor modifications to the hypotheses. If the number of switching states is
allowed to be infinite then it is known that the rate of marginal instability can be
asymptotic to a polynomial sequence n® with 1+ < a < 1 (see [9]) and therefore
no dichotomy between boundedness and linear growth occurs. If the dimension
of the matrices is raised to three or higher but the number of switching states is
kept finite then similar phenomena may occur (see [15, 19]). In three dimensions it
is moreover shown in [13] that there exist examples with two switching states for
which both

lim inf % sup log|lA;, ---Ai ]| =0

n—oo 108N 4, ineT
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and

lim sup 1 sup log||A;, - Ayl =1
n—oo 1081 4 i eT

and in this case the rate of marginal instability is therefore not asymptotic to any

polynomial at all, even in the weakest of possible senses.

Theorem 1 is proved by the consideration of several sub-cases as follows. In the
case where no common eigenvector exists it is classical that the system is marginally
stable, and in some form this result goes back at least as far as the work of N.E.
Barabanov in [1]. Outside this special case the switching states A;,..., Ay can
be made simultaneously upper triangular by choosing a basis whose first element
is a common eigenvector, and if every switching state satisfies | det A;| < 1 then
marginal stability follows essentially by a result of N. Guglielmi and M. Zennaro
[9, Lemma 5.1]. The remaining substantial case is that in which there exist two
switching states A;, Ay such that |det A;| = |det Ax| = 1 and such that A; and
Ay are individually diagonalisable, simultaneously triangularisable, and not simul-
taneously diagonalisable. Prior to the present work this class of systems had been
successfully analysed only in certain special cases in which additional algebraic
relations exist between the eigenvalues (see [3, Theorem 10|, [9, Remark 5.1], [9,
Lemma 5.2] and remarks prior to Proposition 3 of [12]). The complete analysis of
this sub-case represents the principal new contribution necessary for the proof of
Theorem 1.

For the systems considered in this note, the four stability regimes described at the
beginning of the introduction may be placed in a hierarchy of genericity as follows.
For fixed N > 2 we may identify the space of (ordered) tuples of complex 2 x 2
matrices (A1, ..., Ayx) with R®Y in the obvious manner. Exponential stability is
characterised by the condition that the joint spectral radius is strictly smaller than
one, so by continuity of the joint spectral radius (see e.g. [11, Proposition 1.10]) it
is satisfied on an open set; similarly, exponential instability is characterised by the
joint spectral radius being strictly greater than one and hence also corresponds to
an open set in the parameter space. The union of these two sets is moreover dense in
the parameter space since any tuple (Ay, ..., Ax) with joint spectral radius 1 may
be perturbed into exponential stability or instability simply by multiplying every
matrix A; by a constant e~¢ (for stability) or e® (for instability). The set of tuples
with joint spectral radius precisely 1 may now be seen to have (real) codimension
1 by the following argument. The set of all tuples having a shared eigenvector
clearly has codimension at least one, so it is enough to restrict attention to the set
of tuples which lack a common eigenvector. On this set the joint spectral radius
is Lipschitz by a result of F. Wirth in [21] (which is stated for real matrices, but
which goes through to complex matrices without modification). It follows by an
application of the coarea formula for Lipschitz functions (see e.g. [7, §3.2]) that
Lebesgue almost every level set of the joint spectral radius has Hausdorff dimension
8N — 1; but the joint spectral radius is homogenous with respect to multiplication
by a positive real scalar, all its level sets are exact scalar multiples of one another
and therefore each level set has dimension 8N — 1 as claimed. The set of tuples
with a common eigenvector is then seen to have dimension 6N + 1 since in any
basis which includes the common eigenvector, one of the off-diagonal zeros of the
first matrix is inherited by the other N — 1 matrices. Within this set, the set of
all examples containing at least one matrix whose determinant has absolute value
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1 is of real codimension at least 1, and by relabelling we may assume without loss
of generality that the matrix with this property is labelled A;. Adopting a basis
in which A; is upper triangular, two further cases may be distinguished: that in
which A; has both eigenvalues equal and is not diagonalisable (in which case one
additional real free parameter is lost, corresponding to the argument of the ratio of
the two eigenvalues) and that in which a second matrix, say A, exists which has
determinant of absolute value 1 and does not share an eigenbasis with A;. These
cases have dimension not greater than 6 N — 1 and 6N — 2 respectively. From this
perspective the key case analysed in this note may be seen to be the least generic
of all the possible cases.

We further comment on how the four stability regimes apply to tuples of 2 x 2
matrices belonging to less general classes than the class of matrices having unre-
stricted complex entries. In the case of real, strictly positive matrices, if the joint
spectral radius equals 1 then no individual matrix may have determinant 1 since
by the Berger-Wang formula (see e.g. [11, Theorem 2.3]) its leading eigenvalue
can be at most 1 and by the Perron-Frobenius Theorem its second eigenvalue must
be strictly smaller in absolute value. The second case of Theorem 1 thus cannot
hold and for real positive matrices marginal instability is impossible. If on the
other hand all matrices are assumed to be Hermitian — or more generally, if the set
of matrices being considered is closed with respect to the operation of conjugate
transpose — then the joint spectral radius of the set of matrices is easily seen to be
equal to the maximal Fuclidean operator norm of a matrix in the set, by a simple
modification of the argument of [11, §2.3.2]. In this case it is clear that marginal
instability is impossible since if the joint spectral radius is equal to 1 then the se-
quence (1) is constant. We lastly remark that in the case where every matrix has
only real entries, either appeal to [9, Lemma 5.3] or a careful reading of the proof
of Proposition 2.4 below demonstrates that while the second case of Theorem 1 can
indeed occur, in this situation the switching sequence in (2) may be chosen to be
periodic.

2. PROOF OF THEOREM 1

2.1. Three special cases. As was indicated in the preceding section, the proof
of Theorem 1 proceeds by reduction into three principal sub-cases. Each of these
is treated by one of the three propositions which follow. These special cases are
organised into a complete proof of the theorem in a subsequent subsection.

Before stating the three propositions we note the following elementary estimate
which will simplify some subsequent calculations.

Lemma 2.1. The Fuclidean operator norm on 2 X 2 upper triangular matrices has
the following properties:

(i) Let A € M3(C) be upper triangular and let A" € My(C) be the matriz each of
whose entries is equal to the absolute value of the corresponding entry of A.
Then |[A]l = 4’|

(i) Let A, B € M5(R) be upper triangular and non-negative. If every entry of B
is greater than or equal to the corresponding entry of A, then ||A| < ||B||. If
the upper-right entry of B is strictly greater than that of A, then ||A|| < || B||.
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Proof. For every a,b,c € C we have

IG O =G 96 5) (" )

and when a, b, c are real and non-negative this last matrix is also real and non-
negative. It follows easily from the Perron-Frobenius theorem for non-negative
matrices that the spectral radius of the last matrix is non-decreasing as a function
of the non-negative real variables a, b and ¢, and this proves the first clause of (ii).
For every a, b, c € C we may further compute

1t

It is immediately clear from this expression that the norm of the matrix is un-
changed if a, b and c¢ are replaced with their absolute values, which gives (i). It is
also obvious that a strict increase in the value of |b| results in a strict increase in
the value of the norm, and this yields the second clause of (ii). (]

2

1

1
=5 (laf* + o + [c?) + 5\/(|0L|2 = 1e[2)? + [b]2 (2]al? + b[2 + 2c]2).

The following result is by now rather standard in the “qualitative” form

sup max |Ai, -+ A || < o0

n>101,.in€{1,...,N}

in

and in this form it can be obtained straightforwardly from such works as [1, 6, 11,
21] and many others besides. Since we can easily give an explicit bound on this
supremum, we include such a bound for interest.

Proposition 2.2. Let Ay,..., Ay be 2 X 2 complex matrices such that the joint
spectral radius o({A1, ..., An}) is equal to 1, and suppose that Ay, ..., An do not
have a common eigenspace. Then the real number

K:= min max (X u,v)|
llull,llvll=1 X€{I,A1,...,AN}

is nonzero, and we have

su max A; - Ayl < kT max || A
sup iAo A < A ma 4
Proof. By continuity and the compactness of the unit sphere in C? there exist unit
vectors u’, v’ € C? such that
max (Xu/,v")] = min max (X u,v)| =: K.
Xe{l,A,....,An} lull,lv]|=1 X€{I,A1,...,An}

If k = 0 then this implies that all of the vectors v/, A1/, ..., Ayu’ are perpendicular
to v’. Since the orthogonal complement of v’ is one-dimensional this implies that
all of the vectors u/, Aiu/, ..., Ayu’ are proportional to one another, which is to
say that v’ is a shared eigenvector for Ay, ..., Ax. This contradicts the hypotheses
and we conclude that x must be nonzero as required.

We now claim that for every pair of 2 x 2 complex matrices By and B,
(3) max [|BiXBa| = k|l - | Bal.

Xe{l,A,...,An}

By continuity it suffices to establish the result for invertible matrices B; and Bs.
Given invertible matrices B; and B choose unit vectors u,v € C? such that



STABILITY OF TWO-DIMENSIONAL DISCRETE LINEAR SWITCHING SYSTEMS 7

| Bv|| = ||B1]| and ||Bau|| = ||Ba||. Define two unit vectors by @ := ||Ba|~!Bau
and 9 := ||By||~!Bjv. Using the Cauchy-Schwarz inequality we obtain
max |1B1 X Bs| > max |(B1X Bau, v)|
Xe{l,A1,...,An} Xe{l,Ar,..., AN}

= max |(X Bou, Biv)|
Xe{I,A1,...,An}

. . 00N > .
IBul-[Ball- | msx | [(Xi6)] = By - [Bal

and we have proved (3).
Now define

Qg 1= max A - A
" jl,...,jne{l,.,-,N}H " al

for every n > 1. By the definition of the joint spectral radius we have lim,,_, o a}/ "=

o({41,...,An}). If n,m > 1 are arbitrary, choose j1, ..., Jn, k1, km € {1,..., N}
such that

an =45, - Aull,  am = Ak, - Ag, -
Applying (3) with By := A;, --- A;, and By := Ay, - - - A, we find that
n-r+m: n-r—m Z -A "'A'XA "'_A
max{tm, Xntm+1} Xe{lglli}.(“,AN} 145, J1 K Ml
2k (A Al Ak, - Ak

=K OpQ,
and since obviously a4m11 < (max; ||4;]]) - aptm we have

Gt > (max | 4])7 -

for every m,m > 1. It follows that if we define a further sequence (5,) by 8, =
(max; || A;|) *kay, then Byim > BnBm for all nym > 1. Fekete’s subadditivity
lemma therefore applies to the sequence (—log 3,) and provides

1 1 1
sup B = lim By = lim o = o({A1,...,An}) = 1.
n>1 n—oo n—oo

We conclude that 3, < 1 for every n > 1 and this is precisely the desired result. [

The following result is closely related to [9, Lemma 5.2], but we use an alternative
method of proof due to J. Varney (see [18, §3.1.2] and [14]). This method results
in an explicit bound which is not present in the earlier work [9].

Proposition 2.3. Let Aq,...,Ax be 2 X 2 upper-triangular complex matrices and
let A€ (0,1) and M > 0. Suppose that:

(i) The diagonal entries of every matriz A; have absolute value at most 1;
(i1) Every matriz A; either is diagonal, or has at least one diagonal entry with
absolute value smaller than \;
(i1i) Every off-diagonal entry of every A; has absolute value at most M.

Then
2M
sup max ||Ain"'Ai1H <14
n>1%1,-in€{1,....N} 1—\
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Proof. Define three matrices by

1 M A M 10
el ) e o)

By hypothesis, for every j = 1,..., N there exists k = k(j) € {1, 2,3} such that ev-
ery entry of the matrix A; has absolute value less than or equal to the corresponding
entry of the matrix By;). For every j =1,..., N let us write

(4 b
AJ_(O Cj>.

Ifn>1and ji,...,jn € {1,..., N} are arbitrary, then by repeated applications of
Lemma 2.1

In J1 0 . O .
Cin Ci1
n
_ (ajn crr Gy Zf:l Aj, - ajtz+1bjecj471 TGy
0

cjn e le

_ (|ajn ceag | [0 g, ageabce ey |> ”
0 |¢jn -

Gy
< <|ajn a3y lag, a0,y gy |) H
- 0 ¢ el

_ (|ajn |bjn>,,,<aj1| |bj1>H
O |cjn| O |cj1‘

< | Brgjo) -+ Briin || -
We conclude that
su max A; A <su max B; ---B;|.
o ine Y 4. all < ol e (1.2,3) 15, il

Moreover, since Bs is simply the identity matrix, its removal from a product

Bj, --- Bj, does not change the norm of that product. Therefore,
sup max B; ---Bj/||=sup max B, ---Bj|.
n>1d150in €11,2,3} B3 nl n>1 15 dn€41,2} 1B nl

Consider now a product Bj, ---Bj, of the matrices B; and By which has exactly
m instances of By and n — m instances of By. We claim that

I1Bj,. -~ Byl < | BI"By ™.

Suppose for a contradiction that Bj, --- B;, is a product which includes exactly m
instances of By and n — m instances of By, that ||B,, --- Bj, || is maximal among
all products with the former property, but that ||B;, --- Bj, || > || B7*Bs~"||. Since
B,, -+ Bj, # BT"B; ™™ the former product necessarily contains an instance of the

product B; B, so that we may write
Bjn T le = (Bj T Bje+3)BQBl (sz e Bj1)7

say. Define X := B; ---Bj,. The difference
Y= (B, -+ Biy, ) BiBa(By, -+ By,) = (B, -+ B

Je+3 Je+3

)B2B1(Bj, -+ Bj,)

is equal to
(Bj, -+ Bjis)(B1Bz — BaB1)(Bj, - - Bj,).
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By direct calculation

A 2M A 2MA 0 2M(1—\
BBy = BaBy = (0 A )"(o A ) - (0 (0 )>

and it follows easily that the matrix Y is non-negative and upper triangular and
its upper-right entry is positive. Consequently, by Lemma 2.1(ii),
1(Bj,, -+ Bjpa) BiB2(Bj, -+ By )| = [| X + Y|
> X = (B, - B

Je+3

n

)B2B1(Bj, -+ By, )||.

This inequality contradicts the presumed maximality of || B;, - - - Bj, ||. We conclude
that if B;, ---Bj, is composed of exactly m instances of By and n —m instances of
B then necessarily

1B, -+~ Bl < || BBy ~™||
as claimed. Since m and n were arbitrary it follows that

su max B: ---B. |l <sup max ||B™Br—™||.
nZIijl?“-vjne{va} | " Jl I< nzli 0<m<n || 172 H

By direct calculation

m—1 n—n n—m—1
B{nt*m — (1 MZZ:O Aé) ()‘ " MZZ:O )\E)

0 A™ 0 1
(M (SN Y
- 0 )\TL—’HL

and using Lemma 2.1 once more

su ma A, A < su ma. B; ---B;
Do i€ (LN s, < o 1 12} 1. nl
< sup max || By B
00y
< 1 2M 3,2 A
- 0 1
10 0 2M Y 2 A
< £=0
<[ D6
2M
— 14+
i
completing the proof of the proposition. ([

Our third proposition provides the core novelty needed to prove Theorem 1.

Proposition 2.4. Let Ay, Ay be 2 X 2 upper-triangular complex matrices which
are diagonalisable but not simultaneously diagonalisable, which both have spectral
radius equal to 1, and which satisfy |det A1| = |det As| = 1. Then there exist a
sequence o: N — {1,2} and vector v € C? such that

n—oo

hHan%|L£ﬂny-~Aauﬂ4|>(l

Proof. Clearly both diagonal entries of both matrices are complex numbers of unit
modulus. Since the conclusion is unaffected by replacing A; with e=%* A; and A,
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with e=%92 A, for some 6,0y € R, we assume without loss of generality that the
lower-right entry of each of A; and As is equal to 1, so that

e q e b
a=(5 1) a=(70).

say. If we had €’ = 1 then since A; is diagonalisable it would have to be the
identity, and in any basis such that As is diagonal, both matrices would be diagonal,
contradicting the hypotheses. We therefore must have e’® # 1 and by the same
reasoning also e'¥ # 1. To prove the proposition we will treat three cases in turn:
that in which both €’ and e'¥ are roots of unity; that in which neither is a root of
unity; and that in which exactly one of the two numbers is a root of unity.

First case. Suppose first that both e!® and e’ are roots of unity. The conclusion
of the proposition is unaffected by a change of basis for C2, so we will begin by
rewriting the matrices A; and As in a convenient form. By an upper-triangular
change of basis for C2 we may obtain

e a e 0
Al_(o 1>’ AQ_(O 1>’

say. Since A; and A, are not simultaneously diagonalisable a’ cannot be zero.
Making use of the fact that e® — 1 and a’ are nonzero we have
-1

el 0 cit o el-l 0 it it _ 1
0 1/ etd—1 0 1 0 1/ e“i’ - 0 1 ’
N - —1
ev ol 0 <eiw 0) £¢ 1 0 - <6m 0>
0 1/ 61(2/71 0 1 0 1/ e’¢ 0 1

for any consistently-chosen square root of (¢’* — 1)/a’, so by a second change of
basis we may assume without loss of generality that

et et —1 e 0
Al_(o 1) A= 1)

We observe that for every n,m € Z

n einqﬁ eind) -1 m eiml/} 0
4 :( 0 v ) A=y 1)

Choose integers q1,qa2 > 2 such that e??® = ¢%2®% = 1 and observe that A{' =
A% = I so in particular A7 ™" = A7 and AL = A5, We directly calculate

_ el e — 1 e 0 A | e”W 0
1
Adadiag! ( ) DC )0 )

et(B+)  pid _ 1\ [e—ild+d) =it _q
0 1

( e _ ez(¢+w> 1ol 1)

o

1

1 (1—¢ —1))

o
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and thus AlAgA‘fl_lAg?_l = A1A2A1_1A2_1 is a nontrivial Jordan matrix since
the upper-right entry is necessarily nonzero. If we define o: N — {1,2} to be the
periodic switching signal with period g1 + g2 such that o(j) =2 for 1 < j < gy —1,
o(j)=1forgs <j<q+q—2,0(q1+¢2—1)=2and o(q; + ¢2) = 1 then it is
clear that

lim inf l ||Aa(n) s Aa(l)”” >0

n—oo M

where v € C? is any vector with nonzero second co-ordinate. This concludes the

proof of the proposition in the case where e'® and e are both roots of unity.
Second case. We now consider the case in which neither e’® nor e*¥ is a root

of unity. In this case we make an identical basis transformation so that

e? e —1 ev 0
Al_(o 1) A= 1

and so that we again have for every n,m € Z

n einqﬁ eind) -1 m eiml/} 0
AT :( 0 1) A= 1)

To obtain the conclusion we will prove the following claim: there exists M > 1 such
that for every a € C, there exist integers n, m in the range 1 < n,m < M such

that the vector
n m «
(7) = v (3)

satisfies || > |a| + 1. Once this has been proved it follows immediately that for
any initial vector v € C? with second co-ordinate equal to 1, we may apply the
claim inductively to construct a switching sequence o: N — {1,2} which satisfies
| Ag(ny) -~ Agyvll > K along a sequence of times (1), such that n; = 0 and
2 <ngy1 —ni < 2M for every k > 1. Given any integer m > 1, choose the largest
possible k£ > 1 such that ni < m; we have 0 < m —ng < ng+1 — nx < 2M and
m < npy1 < 2ME, so

-1
[ Aatm -+ Aotayel] = || (Aotm -+ Astuesn) ™| < [Aotn -+ Ascayo]

(omim {77 Az 7)ok
G (A L) R

- 2M

\%

Thus
|
lim inf EHAa(m) ~Agyv] >0

m— o0
and the conclusion of the proposition follows from the validity of the claim.

Let us therefore prove the claim. By Kronecker’s theorem, {¢"?: n € N} and
{ei™: n € N} are both dense in the unit circle in C. It follows that there exists
M > 1 such that both of the sets {?: 1 < n < M} and {e™¥:1 < n < M}
intersect every arc in the unit circle whose angular length is at least 27/3. Given
a=re? e C, choose m such that 1 < m < M and such that

e €q€ € 3 +3
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and then choose n such that 1 < n < M and such that
) , 2 4
et e {6“9: 9 e (—9—mw+§,—9—mw+;)}.

We then have

et o0 (45.)

and
) : 2 Axw
i(my+ng+0) . 9 20 =7
: e { e ( e )}
so that )
R (e_i("”z””a)) =R (ei(mw”)) = cos(mp + 6) > 3
and

R (efi(mw+n¢+9)> R (ei(m¢+”¢+9)) = cos(my) +ng +0) < f%.

We calculate that

B " re'
(1 = AT
B ein®  ping _ eimy 0 Tei@ B ein¢<1 + rei(mw-‘r@)) -1
o 0 1 0 1 1 o 1

and since

8] =

ind (1 i Tez‘(mww)) _ 1‘ _ ‘T 1 e—ilmyt6) _ e—i(mw+n¢+9)‘
> R (’I" + e*i(mw+0) o efi(mernd)JrB))

4R (e—i(mw+9)) R (e—i(mw+n¢+e))
>r+1
=la|+1

this proves the claim. The conclusion of the proposition in the second case now
follows by inductive application of the claim.

Third case. It remains only to treat the case in which one of ¢’® and e is a
root of unity and the other is not. Using the symmetry between the two matrices

e q e b
= (9 5 = ).

by swapping the labels of the two matrices if necessary we may without loss of
generality assume that e*¥ is a root of unity and that ¢’ is not. But then the two
matrices

i} i(h+ed)  gid
Bl = A1 = <60 T) ; B2 = A1A2 = <6 0 ¢ b1+ a)

are both upper-triangular with lower-right entry equal to 1 and with upper-left
entry lying on the unit circle but not a root of unity. We observe that B; and Bj
cannot be simultaneously diagonalised, since if they were diagonal in some basis
then both A; = B; and Ay = Al_lAlAg = Bl_lBg would be diagonal in that basis
which contradicts the hypotheses of the proposition. We may therefore apply the



STABILITY OF TWO-DIMENSIONAL DISCRETE LINEAR SWITCHING SYSTEMS 13

already-proved second case of the proposition to By and By to obtain a switching
sequence 6: N — {1,2} and vector v € C? such that

.1
liminf — || By () -+ Boayv|| > 0.
By replacing every instance of 2 in the switching sequence 6 with an instance of 2
followed by an additional instance of 1, it is clear that we may define a new switching
sequence o: N — {1,2} and sequence of times (nx);2, such that n; € {1,2} and
such that we have both Ay, )+ As(1)v = Bo(k) - Bo(yv and 1 < ngyq —ng < 2
for every k > 1. In particular & < ny < 2k for every k£ > 1 and it follows easily that
-1
1 ATt
liminf — ||Ag(n) S Ag(l)UH > %

n—oo N

o
Himinf | By ) -+ Boqyo| > 0.

We have proved the proposition in the third case, and the proof of the proposition
is now complete. (I

2.2. The proof of Theorem 1. We may now prove Theorem 1. Let Ay,..., Ay
be 2 x 2 complex matrices and suppose that their joint spectral radius is equal to
1. If Ay,..., Ax do not have a common eigenspace then

sup max A

o Ay < o0
n>111,0in €{1,....N}

in
by Proposition 2.2 as required, so for the remainder of the proof we assume the
existence of a common eigenvector v, € C2.

Suppose that {A4;: |det A;| = 1} is simultaneously diagonalisable. If this set
is nonempty let vy € C? be a common eigenvector of these matrices which is not
proportional to vy; if the set is empty, choose arbitrarily a vector v, € C? which
is not proportional to v1. In the basis (v, ve) for C? the matrices A;,..., Ay are
all upper triangular. Their diagonal entries are their eigenvalues, and it follows by
Gelfand’s formula that the absolute value of their eigenvalues is bounded above by
the joint spectral radius of A1,..., Ay, which is 1. Thus the diagonal entries of the
matrices Ay, ..., Ay are all less than or equal to 1 in absolute value. If there exists
at least one matrix A; such that |det A;| < 1, let A € (0,1) be the maximum of
/| det A;| among all such matrices, and if no such matrix exists let A € (0,1) be
arbitrary. Let M > 0 be the maximum of the absolute values of the off-diagonal
entries of the matrices Ai,...,An. For every A; such that |det 4;| < 1, one of
the diagonal entries must have absolute value less than or equal to A and the other
clearly has absolute value less than or equal to 1; and the entry above the diagonal
has absolute value at most M. On the other hand every A; such that |det A;| =1
is diagonal in the basis (v1,v3) and has both nonzero entries bounded above by
1 in absolute value. The hypotheses of Proposition 2.3 are therefore satisfied by
Aq,...,An and consequently

sup max A

. . T Ail ” <00
n>1%1,-in€{1,....N}

in
as required.

Finally suppose that {A4;: |det A;| = 1} is not simultaneously diagonalisable.
Choose an orthonormal basis (ui,us) for C? in which u; is proportional to v;.
Since this basis is related to the standard basis by a unitary transformation, in
this basis the norms || A;|| all take their original values. Clearly in this basis every
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A;j is upper triangular. If there exists A; such that |det A;] = 1 and A; is not
diagonalisable then A; is a nontrivial Jordan matrix and we trivially have

lim — ||A"v” >0

n—o00 N

for every v € C? not proportional to v;. Otherwise, every A; which satisfies
|det A;| =1 is diagonalisable. It is easily seen that if every pair of matrices Ay, Ay
satisfying | det Ag| = | det Ay| can be simultaneously diagonalised then all matrices
Aj such that |det A;| = 1 can be diagonalised simultaneously, which we know is
not the case, so there must exist two matrices Ay, A, satisfying |det Ax| = | det Ay|
which are not simultaneously diagonalisable. The spectral radii of these two matri-
ces are at most 1 by earlier reasoning and are therefore exactly 1 by consideration of
the determinant. We may therefore apply Proposition 2.4 to Ay and Ay to conclude
that there exist a switching sequence 6: N — {k, £} and vector v € C? such that

lim inf f||Ao.(n - Agyv]| > 0.

n—oo
To complete the proof of the theorem we must show that
(4) o omax Ay - Ay | < T4 max [[Ay]

i1, 000 €{1,...,N} J

for every n > 1. We argue similarly to the proof of Proposition 2.3. Let us write

_(a; bj
AJ_(O Cj)

for every j =1,...,N. For every n > 1 and ji,...,Jj, we clearly have

e . — a]n b]n a’jl b]l
1A, - A = ( ) (0 b

n
©ajy ZZ:l aj,, "'aje+1b]ecji 10 >H

Cipn =" Cjy
|ajn ! a]1| ‘ZE 1@ " aje+1bjzcj271 cr Gy )”

(™

- (s ey
(
(

< |aJn ’ aj1| ZZ:l |ajn T ajz+1bjzcjz—1 © Gy |> H
o 0 |cjn e C]‘1|
< 1 ZZ 1 |b]2|
- 0
0 S b
< =1 1"J¢
<[ D6 >
<

1+ n - max |bj]
J

<1+ n-max |4,
J

where we have used Lemma 2.1 and the fact that max; max{|a;|,|c;|} < 1. The
inequality (4) is proved and we have completed the proof of the theorem.
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