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We study the conditions under which 4d N = 2 superconformal field theories (SCFTs) have

multiplets housing operators that are chiral with respect to an N = 1 subalgebra. Our

main focus is on the set of often-ignored and relatively poorly understood B̄ representations.

These multiplets typically evade direct detection by the most popular non-perturbative 4d

N = 2 tools and correspondences. In spite of this fact, we demonstrate the ubiquity of B̄

multiplets and show they are associated with interesting phenomena. For example, we give

a purely algebraic proof that they are present in all local unitary N > 2 SCFTs. We also

show that B̄ multiplets exist in N = 2 theories with rank greater than one and a conformal

manifold or a freely generated Coulomb branch. Using recent topological quantum field

theory results, we argue that certain B̄ multiplets exist in broad classes of theories with

the Z2-valued ’t Hooft-Witten anomaly for Sp(N) global symmetry. Motivated by these

statements, we then study the question of when B̄ multiplets exist in rank-one SCFTs with

exactly N = 2 SUSY and vanishing ’t Hooft-Witten anomaly. We conclude with various

open questions.
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1. Introduction

Chiral operators play a fundamental role in 4D N = 2 quantum field theories (QFTs) at

all length scales. At short distances, the allowed N = 2-preserving relevant deformations

of N = 2 superconformal field theories (SCFTs) are chiral [1]. Expectation values of chiral

operators parameterize the N = 2 moduli spaces of these SCFTs and initiate renormal-

ization group (RG) flows to vacua where low-energy vector multiplets and hypermultiplets

live. These effective multiplets are also chiral.1

Since chiral operators are so ubiquitous, it is no surprise that many of the most im-

portant non-perturbative insights into 4d N = 2 QFTs are intimately connected with

these operators. For example, Seiberg-Witten geometries [2] encode the exact infrared (IR)

prepotential, which is a chiral object. Higgs branches enjoy various non-renormalization

1In this paper, unless otherwise specified, an operator is termed “chiral” if it is chiral with respect to

some N = 1 ⊂ N = 2 subalgebra and is non-trivial in the corresponding ring (see section 2 for more details).

A multiplet is considered chiral if it houses a chiral operator.
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theorems [3], and their associated chiral operators are closely related to 2d VOAs [4] and

hidden infinite-dimensional symmetries.

Given their prominence and the powerful geometrical and algebraic constraints on their

spectra, one may have the impression that chiral sectors of N = 2 theories are completely

understood, simple to characterize, and probe phenomena that are well known. Each of

these statements is far from the truth.

To better understand these points, it is helpful to first think about ultraviolet (UV)

physics and understand which superconformal representations house chiral operators. As

we will review in the next section, this question was answered in [5]. A basic but important

point is that the operators directly connected with the relatively well-understood Coulomb

branch physics of Seiberg-Witten theory and the physics of the Higgs branch sit in half-

BPS multiplets.2 In the nomenclature of [6], these are the Ē and B̂ multiplets (a more

detailed discussion appears in the next section).3 In particular, vevs for the superconfor-

mal primaries (SCPs) of these multiplets parameterize the Coulomb and Higgs branches

respectively.

However, N = 2 SCFTs contain less protected multiplets with chiral primaries, and

these multiplets give rise to interesting physics. For example, D̄ multiplets are also inti-

mately connected with 2d VOAs [4] and probe various subtle properties of the topology and

punctures of class S compactification surfaces (e.g., see [7]). Moreover, some D̄ multiplets

contain the extra supercurrents of N > 2 SCFTs while others capture the physics of the

Weinberg-Witten theorem.

Still, from a purely algebraic point of view, the above multiplets are not the most general

representations containing chiral operators. Indeed, while these multiplets have primaries

that depend on at most two quantum numbers, there are more general multiplets with

primaries that depend on three quantum numbers. These are the B̄ multiplets and are the

main focus of this paper.

Given the greater freedom in their quantum numbers, one might wonder if B̄ multi-

plets are ubiquitous in 4d N = 2 SCFTs. Unfortunately, the answer to this question is

2Even these sectors are not fully understood in general. For example, it is believed (without proof) that

any interacting 4d N = 2 SCFT has a Coulomb branch. But even basic properties of the Coulomb branch,

such as the most general conditions under which its corresponding chiral ring is freely generated, are not

known.
3More precisely, B̂ multiplets are chiral with respect to half the supersymmetry and anti-chiral with

respect to the other half. The remaining multiplets housing chiral operators (except for Ē) satisfy less

restrictive shortening conditions. See the next section for further details.
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obscured by the fact that these multiplets are under less control then the Ē , B̂, and D̄

representations. For example, B̄ multiplets are not captured by any of the special limits of

the superconformal index. Moreover, Seiberg-Witten theory and the 4d/2d correspondence

of [4] do not directly detect these degrees of freedom.4

One well-known instance where B̄ multiplets appear is whenever a UV theory has a

“mixed” branch. This is a branch of moduli space where low-energy vector multiplets and

hypermultiplets co-exist. In other words, mixed branches include a Coulomb branch and

a Higgs branch component at common points in moduli space. Therefore, we expect a B̄

multiplet to appear in the following operator product

Ē × B̂ ∋ B̄ , (1.1)

where the B̄ primary is a composite built out of a Coulomb branch Ē primary and a Higgs

branch B̂ primary. Giving an expectation value to the B̄ primary gives a vev to both Ē

and B̂ primaries and initiates an RG flow to a mixed branch. However, in many theories,

null relations set B̄ = 0 and lead to geometrically separate Coulomb and Higgs branches.

The main purpose of this paper is to explain a much broader array of phenomena that

are captured by B̄ multiplets beyond the existence of a mixed branch. Indeed, we will

argue that

• All local unitary 4d N > 2 SCFTs have B̄ multiplets. We give an algebraic proof of

this fact that follows purely from locality and unitarity (see Section 3.1).

• All higher-rank 4d N = 2 SCFTs with conformal manifolds parameterized by gauge

couplings5 have B̄ multiplets that exist at all points on the conformal manifold6 (see

Section 3.2).

4Seiberg-Witten curves indirectly detect certain B̄ multiplets in the low energy description of the Coulomb

branch.
5All known examples of 4d N = 2 conformal manifolds have a gauge coupling interpretation. Such

families of SCFTs generally have “matter” sectors that are interacting isolated SCFTs (as opposed to only

containing collections of free hypermultiplets whose symmetries are gauged).
6It is straightforward to construct B̄ multiplets that exist at special points on the conformal manifold (or,

more generally, for special values of a gauge coupling). For example, at zero gauge coupling we can construct,

for SU(N) (and N > 2), B̄ primaries of the schematic form Trφ2O, where O is a B̂R primary transforming

in the adjoint of SU(N), and φ is the corresponding vector multiplet scalar. However, such operators are not

protected from recombination and typically become part of long multiplets as we turn on the gauge coupling

(here we have taken the generic case R > 1/2; in the special case of a free matter sector with R = 1/2, we do

obtain a protected multiplet). Our interest is in B̄ multiplets that are robust against quantum corrections,

are present everywhere on the conformal manifold, and do not require considering special matter sectors.
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• All higher-rank 4d N = 2 SCFTs with freely generated Coulomb branches have B̄

multiplets (see Section 3.2).

• Any 4d N = 2 SCFT with an Sp(N) symmetry having a Z2-valued ’t Hooft anomaly

[8] has a B̄ multiplet if its Coulomb branch has at least one point consisting of purely

free fields (see Section 3.3).

Therefore, we will see that B̄ multiplets are indeed ubiquitous and that they are related to

various interesting phenomena.

Given the above results, we are also motivated to study rank-one SCFTs with purely

N = 2 SUSY, no Z2-valued ’t Hooft anomaly, and no mixed branch. Indeed, the existence

of B̄ multiplets in these theories is not implied by the above results. For example, in the

case of the rank-one N = 2 theory studied in [5], such multiplets were shown to be absent.

The main tool used in that paper was N = 2 superconformal representation theory coupled

with the dynamics of N = 1 → N = 2 SUSY enhancement along an RG flow to the IR.

Using similar techniques, we will study various other rank-one theories amenable to such

analysis. In all such isolated theories that we study (for simplicity, we stick to those of

Argyres-Douglas type), we will see that B̄ multiplets are absent.

The plan of the paper is as follows. In the next section, we introduce various details of

the superconformal analysis of chiral operators in 4d N = 2 SCFTs. In section 3 we present

the general results described in the bullet points above. We are then motivated to make

some conjectures on the spectrum of B̄ multiplets in general theories. In the remainder

of the paper, we study various rank-one SCFTs and conclude with a discussion of future

directions.

2. B̄ multiplets and superconformal representation theory

In this section, we briefly discuss the superconformal representation theory and ring struc-

ture of N = 2 multiplets that contain an operator that is chiral with respect to an

N = 1 ⊂ N = 2 subalgebra. We conclude by explaining where B̄ multiplets sit in this

universe.

Recall that an N = 2 superconformal field theory has an SU(2)R × U(1)R symmetry

with eight Poincaré and eight special supercharges transforming as doublets under the R

symmetry. Without loss of generality, we follow [5] and take our N = 1 subalgebra to be

4



generated by the following Poincaré supercharges

Q1α ∼ Q2
α ∈

(

1

2
, 0

)

− 1

2
,− 1

2

, Q̄1
α̇ ∼ Q̄2α̇ ∈

(

0,
1

2

)

1

2
, 1
2

, (2.1)

where the quantum numbers are (j, j̄)R,r, with (j, j̄) the left and right spin, R the SU(2)R

weight, and r the U(1)r charge (note that, to get a superconformal subalgebra, we should

also include the special supercharges S2α ∼ S1
α and S̄1α̇ ∼ S̄2

α̇).

With these conventions, the N = 1 chiral operators are those satisfying

[

Q̄1
α̇,O

}

= 0 , O 6=
{

Q̄1
α̇,O

′
]

. (2.2)

Such operators form a chiral ring (their OPEs are free from singularities), and the second

condition in (2.2) is equivalent to demanding that O is non-trivial in this ring (here O′ is

any well-defined local operator in the theory). Note that we have suppressed any SU(2)R

and Lorentz quantum numbers of O.

In the context of N = 2 SCFTs, operators satisfying (2.2) can sit in various represen-

tations. We find homes for our chiral operators in these multiplets by acting on chiral

superconformal primaries with the (chiral part) of the subalgebra orthogonal to (2.1) [5]

Q2α ∼ Q1
α ∈

(

1

2
, 0

)

1

2
,− 1

2

, Q̄2
α̇ ∼ Q̄1α̇ ∈

(

0,
1

2

)

− 1

2
, 1
2

. (2.3)

The analysis of [5] shows that operators satisfying (2.2) can only sit in the following posi-

tions in an N = 2 multiplet

O11···1
α1···α2j

∈ (j, 0)R,r
Q1

α−→ O11···11
α1···α2jα

⊕O11···11
α1···α2j−1α

∈

(

j +
1

2
, 0

)

R+ 1

2
,r− 1

2

⊕

(

j −
1

2
, 0

)

R+ 1

2
,r− 1

2

(Q1)2

−−−→ O11···111
α1···α2j

∈ (j, 0)R+1,r−1 , (2.4)

Here the leftmost operator is a chiral superconformal primary of an N = 2 multiplet (it

has highest SU(2)R weight), and the remaining operators are successive Q1
α descendants.

Depending on the multiplet in question, some of the descendants may be null.

In the language of [6], solutions to (2.4) are exhausted by multiplets in the so-called

“full chiral sector” (FCS) [5]

FCS := Ēr ⊕ B̂R ⊕ D̄R(j,0) ⊕ B̄R,r(j,0) . (2.5)

Let us analyse these multiplets in turn:
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• The Ēr primary is U(1)r charged but has R = j = j̄ = 0 [9]. It is annihilated by

all the Q̄i
α. In this sense, it is maximally protected. According to the standard

lore, it is also the most universal FCS multiplet: such multiplets exist in all known

interacting 4d N = 2 SCFTs, and their vevs give coordinates on the Coulomb branch

of these SCFTs. The superconformal primaries form the closed Coulomb branch chiral

(sub)ring.7 More generally, these multiplets house three N = 1 chiral operators from

(2.4)

O ∈ (0, 0)0,r
Q1

α−→ O1
α ∈

(

1

2
, 0

)

1/2,r−1/2

(Q1)2

−−−→ O11 ∈ (0, 0)1,r−1 . (2.6)

The descendant states do not form part of the Coulomb branch chiral ring.

• The B̂R multiplets have r = j = j̄ = 0 and R > 0. All known examples of these mul-

tiplets parameterize Higgs branches of N = 2 SCFTs via the vevs of their primaries.

They form a closed Higgs branch chiral (sub)ring. Therefore, while these multiplets

are also common, they are more special than the Ē type. Indeed, the SCFT in ques-

tion has to have sufficient “matter” for a Higgs branch to exist. These multiplets form

Virasoro primaries under the 4d/2d map of [4] and hence are under good analytic

control. B̂R multiplets house only one N = 1 chiral operator (the primary)

O ∈ (0, 0)R,0
Q1

α−→ 0 . (2.7)

As a result, the primary is also anti-chiral with respect to the orthogonal algebra in

(2.3). Like the Ēr multiplet, B̂R is therefore maximally protected under the SUSY

algebra (although the primary is not annihilated by all of the same supercharges).

• The D̄R(j,0) multiplet has j̄ = 0 and r = 1 + j. In general, it has R, j > 0, but it

can also have j = 0 and R ≥ 0. This multiplet is ubiquitous in low energy effective

theories: the D̄0(0,0) multiplet contains the chiral half of the free vector and is therefore

present on the Coulomb branch of any theory. More generally, D̄ multiplets with

R > 0 appear if we also have decoupled hypermultiplets (or more complicated matter

sectors with Higgs branches) appearing on the Coulomb branch.8 Indeed, consider

7Such operators therefore give rise to coordinates in Seiberg-Witten geometries and their generalizations.

This fact explains their ubiquity, although it is not completely clear to us if their ubiquity is also a consequence

of the type of 4d N = 2 SCFTs we have been able to construct to date. Ideally, one would like to understand

if such multiplets emerge from some more minimal set of algebraic criteria.
8Such a phenomenon indicates the presence of a mixed branch.
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the following IR OPE

D̄0,(0,0) × B̂R ∋ D̄R(0,0) . (2.8)

By studying the OPE of primaries (since there are no singularities, this is just the

chiral ring product), we see that a D̄R(0,0) multiplet must appear on the righthand

side.

The D̄ multiplet is less ubiquitous in interacting theories. This relative scarcity is

because the D̄ U(1)r charge is fixed in terms of the multiplet’s spin to be at a unitarity

bound. Moreover, recall that in flows to the Coulomb branch, U(1)r is broken but

Lorentz symmetry is not. Therefore, it is common for D̄ multiplets to arise from UV

multiplets with larger U(1)r charge like Ē or B̄ multiplets.

However, D̄ multiplets always appear in local (interacting) theories with N > 2

SUSY since the D̄1/2(0,0) multiplet houses the extra SUSY currents. More generally,

D̄ multiplets appear in certain interacting N = 2 theories as well. For example,

they exist in class S theories whose corresponding Riemann surfaces have non-trivial

π1 (for more general examples, see [7]). These multiplets therefore seem to know

interesting things about topology. They also give rise to Virasoro primaries under

the 4d/2d map of [4] and are therefore under stringent analytic control. For generic

R and j, they house the following N = 1 chiral primaries

O11···1
α1···α2j

∈ (j, 0)R,j+1
Q1

α−→ O11···11
α1···α2jα

∈

(

j +
1

2
, 0

)

R+ 1

2
,j+ 1

2

(Q1)2

−−−→ 0 . (2.9)

• Finally, we consider the B̄R,r(j,0) multiplets of interest. They are clearly the most gen-

eral FCS multiplets in the sense that they have three independent quantum numbers

R > 0, j, and r > 1 + j (only j̄ = 0). Moreover, all states in (2.4) are present

O11···1
α1···α2j

∈ (j, 0)R,r
Q1

α−→ O11···11
α1···α2jα

⊕O11···11
α1···α2j−1α

∈

(

j +
1

2
, 0

)

R+ 1

2
,r− 1

2

⊕

(

j −
1

2
, 0

)

R+ 1

2
,r− 1

2

(Q1)2

−−−→ O11···111
α1···α2j

∈ (j, 0)R+1,r−1 . (2.10)

On a mixed branch, these multiplets are as common as D̄ multiplets. For example, in

the presence of free vectors, we have Ēn operators from the n-fold D̄×n
0(0,0) ∋ Ēn OPE.

We can then repeat the IR OPE in (2.8) but with D̄0(0,0) → Ēn and D̄R(0,0) → B̄R,n(0,0).

We will show below that B̄ multiplets exist whenever a theory has a freely generated

Coulomb branch of rank at least two (in this sense they are slightly less ubiquitous

than the D̄ multiplets since they do not appear in the theory of a single free vector

[5]).
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In interacting theories, we expect such multiplets to be more common than D̄ multi-

plets. This is because r > 1+ j is an inequality (as opposed to the equality in the D̄

case). For example, we expect

Ēr × B̂R ∋ B̄R,r(0,0) , (2.11)

whenever the SCFT supports a mixed branch. The vevs of the corresponding B̄R,r(0,0)

chiral primaries parameterize these mixed branches.

We can also find other chiral ring products giving rise to B̄R,r(j,0) multiplets.9 For

example, selection rules allow

D̄R(j,0) × D̄R′(j′,0) ∋ B̄R+R′,j+j′+2(j+j′,0) . (2.12)

Unless all the D̄ primaries are minimally nilpotent in the chiral ring, they must give

rise to corresponding B̄ multiplets.10 Combined with (2.11), this observation again

suggests that B̄ multiplets should be more common than D̄ multiplets in interacting

theories.

We can also imagine constructing B̄ multiplets via chiral ring products involving

descendants of the multiplets discussed in previous bullets.11 For example, we can

take

Ēr × Ēr′ ∋ OQ1
αO

′ + κQ1
α(O)O′ ∈ B̄1/2,r+r′−1/2(1/2,0) ,

Ēr × Ēr′ ∋ Q1αOQ1
αO

′ + κ1(Q
1)2(O)O′ + κ2O(Q1)2(O′) ∈ B̄1,r+r′−1(0,0) , (2.14)

where κ, κ1, κ2 ∈ C are required to make the above operators superconformal pri-

maries.12

9See [10] for B̄ production channels outside the chiral ring OPE (and footnote 6 for production channels

that do not involve OPEs of bulk local operators). We will not discuss these channels in this paper.
10Indeed, in the next section, we will use algebraic techniques to show that the D̄1/2(0,0) multiplets housing

extra N > 2 supercurrents are never minimally nilpotent.
11In some cases this is impossible. For example,

D̄R(j,0) × D̄R′(j′,0) ∋ O1···1
α1···α2j

Q1
αO

′1···1
α1···α2j′

+ κO
′1···1
α1···α2j′

Q1
αO

1···1
α1···α2j

∈ B̄R+R′+1/2,j+j′+3/2(j+j′+1/2,0)
∼= D̄R+R′+1/2(j+j′+1/2) , (2.13)

where κ ∈ C is required to make the operator in question a superconformal primary. More generally, if we

involve at most a single D̄R(j,0) primary, we must also take spin contractions (this is because the descendant

in (2.9) has r = j).
12Note that if O = O′, then the B̄1/2,r+r′−1(1/2,0) multiplet in (2.14) vanishes.
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More generally, it is apriori possible that B̄ multiplets can appear as chiral ring

generators.13

Finally, we note that, at the level of multiplication of superconformal primaries in

the chiral ring, B̄R,r(j,0) multiplets form (two-sided) ideals

Ēr × B̄R′,r′(j′,0) ∋ B̄R′,r+r′(j′,0) , B̂R × B̄R′,r′(j′,0) ∋ B̄R+R′,r′(j′,0) ,

D̄R(j,0) × B̄R′,r′(j′,0) ∋ B̄R+R′,r′+j+1(j+j′,0) ,

B̄R,r(j,0) × B̄R′,r′(j′,0) ∋ B̄R+R′,r+r′(j+j′,0) . (2.15)

Therefore, to summarize: in the absence of FCS chiral ring relations, we expect B̄ mul-

tiplets to be present whenever the theory is interacting (since we then expect Ē multiplets).

Moreover, we expect the corresponding chiral primaries to form ideals in the chiral ring

and therefore to be crucial in understanding the full local operator algebras of interacting

4d N = 2 SCFTs.

However, N = 2 theories often have FCS chiral ring relations14 (these relations will

feature prominently in our rank-one discussion below), and so the above conclusion is too

naive. Still, given how easy it is to generate such multiplets in the chiral ring, we expect

B̄ multiplets to be present in broad classes of theories and to detect various physical

phenomena. Indeed, we will arrive at a few general results on these multiplets in the next

section.

3. General results

In this section, we discuss several abstract results on the presence of B̄ multiplets in broad

classes of 4d N = 2 SCFTs. These results are connected with various physical phenomena.

3.1. Local unitary SCFTs with N ≥ 3 SUSY

Any local unitary SCFT with N ≥ 3 supersymmetry has a B̄ multiplet.15 Indeed, by

locality, any such theory has an N = 3 stress tensor multiplet. As a result, from an

13Although, outside of theories involving very special matter sectors, the only such examples we are aware

of are of the unprotected form discussed in footnote 6; one may also consider the possibility of obtaining such

generators from gauging a non-anomalous discrete symmetry.
14These relations need not involve only Coulomb branch primaries in general. Indeed, in the examples we

discuss below, they do not.
15This statement is highly non-trivial for local (non-Lagrangian) N = 3 SCFTs. Note that it also applies

to any potential (yet to be discovered) local non-Lagrangian N = 4 theories.
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N = 2 perspective, the theory has a U(1) flavor symmetry (descending from the N = 3

R symmetry), which we will call U(1)G. The Noether current for this symmetry sits in

a corresponding B̂0
1
∼= B1B̄1[0; 0]

(2;0),0 multiplet. Here we use the language of both [6]

and [11].16 The reason we introduce new nomenclature is that we will make a claim

regarding the presence of B̄ multiplets using N = 3 superconformal representation theory,

and [6] only discusses N = 2 representations.

The highest SU(2)R-weight component of this B̂1
∼= B1B̄1[0; 0]

(2;0) multiplet is the holo-

morphic moment map, M11. Together with the highest SU(2)R-weight operator in the

stress tensor multiplet, Ĉ0(0,0) ∼= A2Ā2̄[0; 0]
(0;0)
2 , and in the extra supercurrent multiplets,

D 1

2
(0,0)⊕D̄ 1

2
(0,0)

∼= A2B̄1[0, 0]
(1;2)⊕B1Ā2[0; 0]

(1;−2), M11 is related by the chiral algebra map

of [4] to the generators of a 2d N = 2 super-Virasoro VOA [13]

χ(M11) = J , χ(J11
++̇) = T , χ(J11

+ ) = G , χ(J11
+̇ ) = Ḡ . (3.1)

Here J is a U(1) affine current, T is the 2d EM tensor, and the remaining operators are

the 2d supercurrents (we refer the reader to [4, 13] for more detailed discussions of this

correspondence).

We claim that in any local unitary N ≥ 3 theory, the 4d OPE of the holomorphic

moment maps contains the following dimension-four SU(2)R weight-two operator

M11 ×M11 ⊃ (M11)2 , (3.2)

where (M11)2 ∈ B̂0
2
∼= B1B̄1[0; 0]

(4;0),0. We can argue for this statement by recalling the

following selection rules (e.g., see [14])17

B̂1 × B̂1 = B̂1 + B̂2 +
∞
∑

ℓ=0

Ĉ0( ℓ
2
, ℓ
2
) +

∞
∑

ℓ=0

Ĉ1( ℓ
2
, ℓ
2
) , (3.3)

and translating to the 2d VOA. Specializing to multiplets that can provide an h = E−R = 2

operator in the OPE, it turns out that the righthand side of (3.3) reduces to B̂1+B̂2+Ĉ0(0,0).

In the 2d picture, the B̂1 contribution to the OPE comes from χ(∂M11) = ∂J .

To verify (3.2), we therefore need to check that there are no null relations involving JJ ,

∂J , and T (otherwise, the 4d normal-ordered product in (3.2) vanishes according to the

16The additional superscript in B̂0
1
∼= B1B̄1[0; 0]

(2;0),0 refers to the fact that this multiplet has zero U(1)G

charge (we follow the conventions of [12]). We will only write this superscript explicitly in cases where the

U(1)G charge is relevant to the argument.
17We only keep track of so-called “Schur” multiplets in these selection rules. The reason is that these

multiplets house the operators subject to the correspondence in [4].
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general prescription in [4]). We can use the bosonic part of the super-Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 ,

[Jn, Jm] =
c

12
nδn+m,0 ,

[Ln, Jm] = −mJn+m , (3.4)

and compute the matrix of inner products







〈T |T 〉 〈T |JJ〉 〈T |∂J〉

〈JJ |T 〉 〈JJ |JJ〉 〈JJ |∂J〉

〈∂J |T 〉 〈∂J |JJ〉 〈∂J |∂J〉






=







〈L2L−2〉 〈L2J−1J−1〉 〈L2J−2〉

〈J1J1L−2〉 〈J1J1J−1J−1〉 〈J1J1J−2〉

〈J2L−2〉 〈J2J−1J−1〉 〈J2J−2〉







=







c/2 c/12 0

c/12 c2/72 0

0 0 c/6






. (3.5)

The above matrix has determinant c3(c−1)/864 and is therefore non-invertible for c = 0, 1.

Under the 4d/2d map of [4], these central charges map to 4d central charges c4d = 0,−1/12

and correspond to non-unitary 4d theories. Therefore, in a unitary 4d theory with N ≥ 3

SUSY, we see that we necessarily have a B̂2
∼= B1B̄1[0; 0]

(4;0) multiplet.

Where does the above multiplet sit in N = 3 representation theory? A moment’s

thought indicates it must sit inside the N = 3 stress-tensor multiplet self-OPE

B1B̄1[0; 0]
(1,1;0) × B1B̄1[0; 0]

(1,1;0) ∋ B1B̄1[0; 0]
(4;0),0 ∼= B̂2 . (3.6)

Note that the B1B̄1[0; 0]
(1,1;0) multiplet transforms in the 8 of SU(3)R. Now, recall that

8× 8 = 1+ 8+ 8+ 10 + 10+ 27 . (3.7)

Clearly, B1B̄1[0; 0]
(4;0),0 cannot sit in the first three SU(3)R representations above. Using

branching rules, it is also easy to check that (M11)2 transforms as part of a 27 of SU(3)R.

In terms of N = 2 SU(2)R representations, we have scaling dimension four Lorentz-scalar

primaries

27 = 1+ 2+ 2+ 3 + 3+ 3+ 4+ 4+ 5 . (3.8)

These operators must have U(1)N=3
R charge zero and so the lefthand side is a representa-

tion of type B1B̄1[0; 0]
(2,2;0). Therefore, on the righthand side the U(1)N=2

R charges of the

primaries satisfy

U(1)N=2
R =

2

3
U(1)SU(3)R = −2U(1)G . (3.9)

In terms of our conventions relative to [11], U(1)r :=
1
2
U(1)N=2

R .
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Now we are ready to analyze the righthand side of (3.8). The first representation must

be a long multiplet (since R = r = 0). The next two representations have R = 1/2 and

r = 1 and are also long multiplets (they cannot be Ĉ multiplets since they have scalar

primaries). The next three representations have R = 1 and r = 2, 0,−2. This gives

a B̄1,2(0,0) ⊕ Ĉ1(0,0) ⊕ B1,−2(0,0) triple.18 The next two representations have R = 3/2 and

r = 1,−1. These are D̄3/2(0, 0)⊕D−3/2(0,0). The final representation is B̂2.

As a result, we have arrived at our promised statement: any local unitary N ≥ 3 SCFT

has a B̄ multiplet. In N = 2 language, this multiplet can be understood as arising from

the normal-ordered product of the extra supercurrent multiplet19

D̄1/2(0,0) × D̄1/2(0,0) ∋ B̄1,2(0,0) (3.10)

This is a particular example of the more general channel described in (2.12).

Note that this discussion does not require the existence of a moduli space of vacua

(although all known examples of N ≥ 3 theories have such moduli spaces). Moreover,

although the 4d/2d VOA map of [4] doesn’t directly detect B̄ multiplets, we see that

we can combine that map with locality and N > 2 SUSY to deduce the existence of B̄

multiplets.

In summary, we have the following result:

Statement 1: Any local unitary 4d N ≥ 3 SCFT has a B̄1,2(0,0) multiplet.

3.2. Higher-rank SCFTs

In the previous section, we saw that all local unitary N ≥ 3 SCFTs have B̄ multiplets.

However, these theories are special by virtue of their enhanced symmetry. It is natural to

then wonder if B̄ multiplets are always related to symmetry enhancement or other more

special phenomena.

In this section, we will see the answer is no. In particular, we will demonstrate the

ubiquity of B̄ multiplets. Indeed, we will see that, under relatively relaxed assumptions,

higher-rank theories have such multiplets.

Let us begin with a rank N ≥ 2 SCFT that is part of an N = 2 or N = 4 conformal

manifold.20 All known exactly marginal deformations in N = 2 SCFTs involve gauge

18Note that the Ĉ1(0,0) multiplet is the universal multiplet described in [15] for an interacting theory with

a flavor symmetry.
19Note that D̄1/2(0,0) ×D1/2(0,0) ∋ Ĉ1(0,0).
20Recall that there are no N = 3-preserving exactly marginal deformations.
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couplings for some non-abelian group, G. Such theories always admit at least one weak

gauge coupling limit in which the theory factorizes into a sector consisting of the vector

multiplets, VG, and one or more matter sectors, Ti.
21 If the theory has rank N ≥ 2, this

means that the we have at least two generators of the Coulomb branch chiral ring. One

generator must be the quadratic Casimir, Ē2 ∈ VG, and the other generator is either a

higher Casimir of VG (e.g., if G = SU(3)) or else is a Coulomb branch generator, Ēr ∈ Ti.
22

In general there is no invariant distinction between these two possibilities (e.g., as can be

seen by looking at both sides of the duality in [16]).

Let us now set the G gauge coupling to zero. Then, we see that

O2,r,α := O2Q
1
α(Or) + κQ1

α(O2)Or , (3.11)

is a superconformal primary for a particular choice of κ ∈ C. Here O2 is the Ē2 supercon-

formal primary (it is related by supersymmetry to the exactly marginal deformation), and

Or is some other Coulomb branch chiral ring generator. As a result, (3.11) is a primary

of a B̄1/2,r+3/2(1/2,0) multiplet. Since B̄1/2,r+3/2(1/2,0) multiplets cannot recombine into long

multiplets, this multiplet remains at all points on the conformal manifold (unlike generic

operators of the form discussed in footnote 6). We therefore arrive at the following state-

ment:

Statement 2: In any rank N ≥ 2 4d N = 2 SCFT with an exactly marginal gauge

coupling, there is at least one r such that B̄1/2,r+3/2(1/2,0) is in the spectrum.

Next let us consider rank N ≥ 2 SCFTs that are not necessarily part of a conformal

manifold. For simplicity, let us assume that these theories have an N ≥ 2 dimensional

Coulomb branch that is freely generated.

Then, in the free IR theory we flow to by turning on a vev for a chiral operator in the

UV, we will encounter operators similar to those in (3.11). For example, we have

O3,i,jα := φi

(

φiQ
1
αφj −Q1

α(φi)φj

)

∈ B̄1/2,5/2(1/2,0) , i 6= j , (3.12)

where i, j = 1, · · · , N denote the particular free vector component in the U(1)N free super-

Maxwell theory present at generic points on the Coulomb branch. For N ≥ 2 such B̄ mul-

tiplets clearly exist, and this logic therefore explains the comment on higher-rank Coulomb

branches below (2.10).

21The Ti need not be weakly coupled themselves. For example, consider the Minahan-Nemeschansky E6

theory, MNE6
, appearing in the SU(2) duality frame of [16].

22As an example of this latter phenomenon, consider the case of Ē3 ∈ MNE6
in the example of [16].
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What can the multiplets in (3.12) descend from in the UV? Since superconformal recom-

bination of B̄1/2,r(1/2,0) multiplets is forbidden, it is tempting to argue that the multiplets in

(3.12) come from B̄1/2,r(1/2,0) multiplets in the UV theory. However, we should be careful: in

the flow back up to the UV we break superconformal (and U(1)r) symmetry. Therefore, we

should understand whether these multiplets can sit inside larger non-conformal multiplets.

To that end, let {λa} denote the (generally infinite) collection of irrelevant couplings in

the deformed IR theory that flows back up to the UV theory in question. Since supersymme-

try and SU(2)R symmetry are both preserved, these couplings should sit as superconformal

primaries in background / spurion multiplets with quantum numbers

R(λa) = j(λa) = j̄(λa) = 0 . (3.13)

If O3,i,j,α becomes part of a longer non-conformal representation but remains chiral and a

(SUSY) primary after introducing the λa, then, in the UV theory, we expect a corresponding

B̄1/2,r(1/2,0) multiplet when superconformal symmetry re-emerges. However, this scenario is

incompatible with spontaneous superconformal symmetry breaking.

Instead, let us suppose that O3,i,j,α is not a SUSY primary or is no longer chiral after

turning on the λa. To that end, first suppose O3,i,j,α is a SUSY primary satisfying

Q̄1
α̇O3,i,j,α = λaO3,i,j,αα̇ 6= 0 , (Q̄1)2O3,i,j,α = 0 . (3.14)

In the first equation in (3.14) we could have considered a more general linear combination

of operators multiplying different polynomials (series) in the λa. For simplicity, we have

written a single such term with a single power of a coupling (but our arguments can be

generalized straightforwardly to the most general case).

In the UV theory, the superconformal primary O3,i,j,α satisfies the shortening condition

in (3.14). It is therefore in either a B̄1/2,r(1/2,0) or a C̄1/2,r(1/2,0) multiplet (note that a

D̄1/2,(1/2,0) multiplet clearly contains too few degrees of freedom relative to the IR). We

claim neither possibility is consistent.

To find the contradiction, let us first suppose that O3,i,j,αα̇ is an IR superconformal

primary. Then it is a primary of an IR C̄1,r′(1/2,1/2) or Ĉ1(1/2,1/2) multiplet. However, such

multiplets cannot sit inside a UV B̄1/2,r(1/2,0) or C̄1/2,r(1/2,0) representation (they have more

degrees of freedom). On the other hand, suppose that O3,i,j,αα̇ is an IR superconformal

descendant. Then it is a Q̄1
α̇ descendant, but this contradicts (3.14).

Next, suppose that we have

Q̄1
α̇O3,i,j,α = λaO3,i,j,αα̇ 6= 0 , (Q̄1)2O3,i,j,α 6= 0 . (3.15)
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In this case, O3,i,j,αα̇ is highest SU(2)R weight and satisfies

(Q̄1)2O3,i,j,αα̇ = 0 . (3.16)

Let us now understand where O3,i,j,αα̇ can sit in the IR superconformal representation

theory. If O3,i,j,αα̇ is a superconformal primary, the shortening condition in (3.16) is in-

consistent unless O3,i,j,αα̇ is in a C̄1,r′(1/2,1/2) or Ĉ1(1/2,1/2) multiplet. However, (3.15) has at

most the number of degrees of freedom of a long multiplet of type A∆
1/2,r(1/2,0) and therefore

has fewer degrees of freedom than a C̄1,r′(1/2,1/2) multiplet. At the same time, it has sixteen

more degrees of freedom than the direct sum Ĉ1(1/2,1/2) ⊕ B̄1/2,5/2(1/2,0); however, we also

require in (3.15) that Q̄1α̇O3,i,j,αα̇ 6= 0. This implies an additional multiplet with R = 3/2,

and A∆
1/2,r(1/2,0) cannot accommodate the additional degrees of freedom.

Finally, if O3,i,j,αα̇ is a superconformal descendant, then it must be a superconformal

Q̄1
α̇ descendant, but this statement contradicts (3.15). Therefore, (3.15) is inconsistent.

Next let us consider the case that

Q̄1
α̇O3,i,j,α = 0 , (3.17)

even after the irrelevant deformation. Then, to try to avoid a potential B̄1/2,r(1/2,0) multiplet

in the UV, let us suppose O3,i,j,α is now a descendant

Q̄1α̇Õ3,i,j,αα̇ = λbO3,i,j,α ⇒ (Q̄1)2Õ3,i,j,αα̇ = 0 . (3.18)

Let us first imagine that Õ3,i,j,αα̇ is a SUSY primary after the irrelevant deformation. Then,

in the UV it satisfies the shortening condition in (3.18). UV superconformal invariance

implies that Õ3,i,j,αα̇ is a C̄ (or Ĉ) superconformal primary. However, (3.18) contradicts the

spontaneous breaking of U(1)r in the flow to the IR.

Let us suppose instead that Õ3,i,j,αα̇ is a SUSY descendant. Then, it is a Q̄1
α̇ descendant,

and we require that

(Q̄1)2Õα = λbO3,i,j,α . (3.19)

Note that in the IR SCFT, Õα cannot be a descendant since then it is a Q̄1
α̇ descendant,

and (3.19) cannot hold. Suppose Õα is an IR superconformal primary. Then, in the IR

SCFT, it must be in a D̄, B̄, Ĉ, or C̄ multiplet with R ≥ 1/2. From (3.19), we see that Õα

would be a member of such a multiplet with smaller scaling dimension than the operators

in (3.12). More precisely, the irrelevant couplings have non-positive mass dimension and so

in the IR SCFT ∆(Õα) ≤ ∆(O3,i,j,α)− 1 = 5/2. Then, the only possibility is that Õα is an

IR D̄1/2(1/2,0) primary. However, there are always fewer such operators than B̄ operators of

15



the type described in (3.12) as long as the Coulomb branch is genuine (i.e., just consisting

of U(1)N super-Maxwell theory at generic points). More generally, as long as the Coulomb

branch is freely generated, we can repeat the analysis starting around (3.14) for D̄1/2(1/2,0)

to arrive at

Statement 3: In any rank N ≥ 2 4d N = 2 SCFT with an N -dimensional freely generated

Coulomb branch, there is at least one r such that B̄1/2,r(1/2,0) is in the spectrum.

In particular, this result implies that B̄1/2,r(1/2,0) multiplets are ubiquitous: most known

higher-rank N = 2 SCFTs have freely generated Coulomb branches.

3.3. B̄ multiplets and the Witten anomaly

In theories with an Sp(n) global flavor symmetry (here Sp(1) ∼= SU(2)), we may find a

Z2-valued ’t Hooft anomaly arising from large (background) gauge transformations asso-

ciated with π4(Sp(N)) ∼= Z2 [8]. We will argue that, under fairly lax assumptions, any

theory possessing such an anomaly has a B̄1,r(0,0) multiplet (here r is the U(1)r charge of

a generator of the Coulomb branch chiral ring).

To understand this statement, we note that these anomalies are invariants of Sp(n)-

preserving RG flows. Since Coulomb branch operators are necessarily uncharged under

flavor symmetries [17], RG flows onto the Coulomb branch triggered by turning on vevs

for Coulomb branch chiral primaries preserve Sp(n) flavor symmetry.

Therefore, let us assume that the theory has a Coulomb branch, and let us study flows

onto this space. To get a handle on the possibilities in the IR, note that the arguments

in [18] show the Z2-valued anomaly cannot be saturated by a TQFT (see [19] for another

application of this fact). Therefore, on the Coulomb branch, we require massless degrees

of freedom that match the UV Sp(n) anomaly.

A simple example is the SU(2) N = 4 SYM theory. This theory has, from the N = 2

perspective, an Sp(1) flavor symmetry under which the components of the adjoint hyper-

multiplet, (Qa, Q̃a) transform as doublets.23 Since a = 1, 2, 3, we have an odd number of

doublets and hence a Z2 anomaly. Now, consider the Sp(1)-preserving RG flow gotten by

turning on a vev for the vector multiplet scalars. This vev results in an IR theory which

is just U(1) N = 4 SYM. The abelian effective theory has a single doublet, (q, q̃), which

realizes an Sp(1) symmetry and therefore also gives rise to a Z2 anomaly.

23The corresponding holomorphic moment maps are QaQa, Q̃
aQ̃a, and QaQ̃a.
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A more elaborate example involves the rank-one theory with Sp(5) symmetry discovered

in [20]. There we can also turn on an expectation value for the Coulomb branch generator

and flow to a Coulomb branch which has five hypermultiplets at generic points. These

fields realize the Sp(5) symmetry and exhibit the Z2 anomaly as well (the hypermultiplets

form a single 10 representation of Sp(5)).

Now, let us suppose we flow onto the Coulomb branch of a theory exhibiting the Z2

’t Hooft anomaly by spontaneously breaking superconformal symmetry via a vev for a

Ē primary. Since no IR TQFT saturates the anomaly, we have a decoupled massless

sector furnishing an Sp(n) holomorphic moment map, µ (we assume the flavor symmetry

is locally realized). Therefore, in conjunction with the Coulomb branch operator, φ2, we

can construct the normal-ordered product

OW := φ2µ ∈ B̄1,2(0,0) , (3.20)

which is clearly a superconformal primary of the correct type (recall that µ has R = 1 and

r = 0). Note that this multiplet transforms in the adjoint of Sp(n). For technical reasons

that will become apparent later, let us assume that the IR theory is completely free (i.e.,

it consists of free vectors and hypers).

Next, suppose we deform the theory and flow back up to the UV. What can (3.20)

come from in the UV? We repeat the logic beginning around (3.14). In particular, to avoid

a B̄1,r(0,0) multiplet in the UV, we need to have that (3.20) becomes a SUSY descendant

or is no longer chiral after turning on some (generally infinite) irrelevant couplings, {λa},

and flowing back to the UV.

To that end, first suppose OW is a SUSY primary satisfying24

Q̄1
α̇OW = λaOWα̇ 6= 0 , (Q̄1)2OW = 0 . (3.21)

At short distances, the superconformal primary, OW , satisfies the shortening condition in

(3.21) and is therefore in either a B̄1,r(0,0) or a C̄1,r(0,0) multiplet (note that a D̄1,(0,0) multiplet

clearly contains too few degrees of freedom relative to the IR). As in the related proof of

statement 3, neither possibility is consistent.

Indeed, let us first suppose that OWα̇ is an IR superconformal primary. Then it is a

primary of an IR C̄3/2,r′(0,1/2) or Ĉ3/2(0,1/2) multiplet. However, such multiplets cannot sit

inside a UV B̄1,r(0,0) or C̄1,r(0,0) representation (they have more degrees of freedom). On

24As in the discussion around (3.14), we make the same simplifying assumptions on the appearance of the

λa in our multiplets described below. This is for the sake of simplicity of presentation.
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the other hand, suppose that OWα̇ is an IR superconformal descendant. Then it is a Q̄1
α̇

descendant, but this contradicts (3.21).

Next, suppose that we have

Q̄1
α̇OW = λaOWα̇ 6= 0 , (Q̄1)2OW 6= 0 . (3.22)

In this case, OWα̇ is highest SU(2)R weight and satisfies

(Q̄1)2OWα̇ = 0 . (3.23)

Let us now understand where OWα̇ can sit in the IR superconformal representation theory.

If OWα̇ is a superconformal primary, the shortening condition in (3.23) is inconsistent unless

OWα̇ is in a C̄3/2,r′(0,1/2) or Ĉ3/2(0,1/2) multiplet. However, (3.22) has at most the number of

degrees of freedom of a long multiplet of type A∆
1,r(0,0) and therefore has fewer degrees of

freedom than a C̄3/2,r′(0,1/2) multiplet or a Ĉ3/2(0,1/2) multiplet.

Finally, if OWα̇ is a superconformal descendant, then it must be a superconformal Q̄1
α̇

descendant, but this statement contradicts (3.22). Therefore, (3.22) is inconsistent.

Next let us consider the case that

Q̄1
α̇OW = 0 , (3.24)

even after the irrelevant deformation. Then, to try to avoid a potential B̄1,r(0,0) multiplet

in the UV, let us suppose OW is now a descendant

Q̄1α̇ÕWα̇ = λbOW ⇒ (Q̄1)2ÕWα̇ = 0 . (3.25)

Let us first imagine that ÕWα̇ is a SUSY primary after the irrelevant deformation. Then,

in the UV it satisfies the shortening condition in (3.25). UV superconformal invariance

implies that ÕWα̇ is a C̄ (or Ĉ) superconformal primary. However, (3.25) contradicts the

spontaneous breaking of U(1)r in the flow to the IR.

Let us suppose instead that ÕWα̇ is a SUSY descendant. Then, it is a Q̄1
α̇ descendant,

and we require that

(Q̄1)2ÕW = λbOW . (3.26)

Note that in the IR SCFT, ÕW cannot be a descendant since then it is a Q̄1
α̇ descendant,

and (3.26) cannot hold. Suppose ÕW is an IR superconformal primary. Then, in the IR

SCFT, it must be in a D̄, B̄, Ĉ, or C̄ multiplet with R ≥ 0. From (3.26), we see that ÕW

would be a member of such a multiplet with smaller scaling dimension than the operators

in (3.20). More precisely, the irrelevant couplings have non-positive mass dimension and
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so in the IR SCFT ∆(ÕW ) ≤ ∆(OW ) − 1 = 3. Then, the only possibilities are that ÕW

is an IR D̄1(0,0), B̄1/2,2(0,0), Ĉ1/2(0,0), or a C̄0,1(0,0) primary. From (3.20), it is clear that this

operator must transform in the adjoint of Sp(n).

Let us suppose that we can go to a point on the Coulomb branch where the theory

is completely free (this includes free hypermultiplets). Then, we see that to get an Sp(n)

adjoint primary, we require two hypermultiplet scalars. This logic leaves a single free

vector scalar for us to adjoin to get an operator of dimension three. As a result, we can

immediately rule out the B̄, Ĉ, and C̄ options.25

We are left with the D̄ option. For higher-rank Coulomb branches, we can always build

more B̄ operators of type (3.20), but in the rank-one case we cannot. Instead, for rank one,

we can repeat the logic around (3.21) for φµ ∈ D̄1(0,0) rather than φ2µ ∈ B̄1,2(0,0). Therefore,

we arrive at

Statement 4: Consider a 4d N = 2 SCFT with an Sp(n) flavor symmetry having a

non-vanishing Z2-valued anomaly. If the theory possesses points on the Coulomb branch

consisting purely of free fields, then it has a B̄1,r(0,0) multiplet, where r is the U(1)r charge

of a Coulomb branch generator. This multiplet transforms in the adjoint of Sp(n).26

3.4. Free theories and a conjecture on general 4d N = 2 SCFTs

In this section, we would like to prove a few statements about the spectrum of B̄ multiplets

in free 4d N = 2 SCFTs and then use these statements to conjecture a general constraint

on 4d N = 2 SCFTs.

To that end, we begin with the following observation:

Fact 1: In a theory of N free vectors and M free hypermultiplets, all B̄R,r(j,0) and D̄R(j,0)

multiplets satisfy j ≤ R.

To understand this statement, note that a free vector and a free hypermultiplet have the

chiral fields listed in table 1. Let us construct highest SU(2)R and Lorentz-weight primaries

of B̄ and D̄ multiplets in a theory of N free vectors and M free hypers. The only sources of

j are the gauginos, λ1
i,α (in particular, derivatives would lead to operators that are trivial in

25For the latter case, note that to get R = 0 we should anti-symmetrize the free hyper SU(2)R indices.

This implies that the operator is not in the adjoint of the flavor symmetry.
26We can arrive at this result more simply if we are willing to invoke the lore that a mixed branch implies

the existence of operators in the (2.11) channel. Indeed, the existence of the mixed branch follows from the

discussion around (3.20).

19



R r j E δ

φi 0 1 0 1 0

λ1
i,α 1/2 1/2 ±1/2 3/2 0

qa 1/2 0 0 1 0

q̃a 1/2 0 0 1 0

Table 1: List of chiral fields in a theory with N abelian free vector multiplets (i = 1, · · · , N)

and M free hypermultiplets (a = 1, · · · ,M).

the chiral ring and hence not highest-weight primaries of B̄ or D̄ multiplets). Since j ≤ R

for the gaugino (and all other chiral fields), any word constructed out of letters in table 1

has j ≤ R. �

While the above argument provides a bound on spin versus SU(2)R quantum numbers,

it is natural to ask if we can realize all of the above multiplets with j ≤ R. Indeed, this is

the case:

Fact 2: In a theory of N = 2n free vectors and M ≥ 1 free hypermultiplets, there

exist values of r such that we have at least one B̄R,r(j,0) and one D̄R(j,0) multiplet for all

R ≤ (N − 1)/2 and j ≤ R.

To derive this set of facts, note that

Ou,v = quφv
1 , (3.27)

is a highest-weight primary of a B̄u/2,v(0,0) multiplet if v > 1 and a D̄u/2(0,0) multiplet if

v = 1 (clearly the above component fields are superconformal primaries and therefore so

too is the product).

Next, let us construct D̄(2m−1)/2((2m−1)/2,0) and D̄m−1(m−1,0) multiplets. To that end, note

that

O(1,2m),+2m−1 :=
2m
∑

i=1

(−1)iφi

2m
∏

j=1,j 6=i

λ1
j,+ , 1 ≤ m ≤ n ,

O(1,2m−1),+2m−2 :=
2m−1
∑

i=1

(−1)iφi

2m−1
∏

j=1,j 6=i

λ1
j,+ , 1 < m ≤ n , (3.28)

are highest-weight primaries of a D̄(2m−1)/2,((2m−1)/2,0) multiplet and a D̄m−1,(m−1,0) multiplet

respectively. Indeed, r = 1+ j by construction, and the above operators are annihilated by
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all S and S̄ supercharges. Now consider the operators

quO(1,2m),+2m−1 ∈ D̄(2m−1+u)/2((2m−1)/2,0) , quO(1,2m−1),+2m−2 ∈ D̄m−1+u/2(m−1,0) , (3.29)

This operator is a primary of a D̄ multiplet since q is a superconformal primary with

r = j = 0. Allowing u to be arbitrary, we have proven our claim for D̄ multiplets.

To arrive at the claim for B̄ multiplets, we can simply take the above operators and

multiply by φi

φiq
uO(1,2m),+2m−1 ∈ B̄(2m−1+u)/2,(2m+3)/2((2m−1)/2,0) ,

φiq
uO(1,2m−1),+2m−2 ∈ B̄m−1+u/2,m+1(m−1,0) , (3.30)

Indeed, this statement follows from the fact that φi is a superconformal primary and has

r = 1 and j = 0. �

This logic also implies the following fact:

Fact 3: For any j ≤ R, there exist values of r and a local unitary 4d N = 2 SCFT, T ,

such that B̄R,r(j,0) and D̄R(j,0) is in the spectrum of T .

If we consider the full set of free theories, it is reasonable to imagine that we see

all possible superconformal representations up to deformations of the U(1)r charge. The

heuristic reason for this belief is that, in a general theory, we expect interactions to lead to

new null states. At the same time, interactions cannot change the SU(2)R and Lorentz-spin

quantization (they can only lead to changes in the quantization of U(1)r).

Moreover, the general arguments of [21] show that any local 4d N = 2 SCFT only has

D̄R(j,0) multiplets for j ≤ R. Therefore, we are led to the following conjecture:

Conjecture: B̄R,r(j,0) multiplets with j > R are forbidden in general local unitary 4d

N = 2 SCFTs.27

Note that a bound of the above form on B̄ implies the bound on D̄ found in [21]. Indeed,

suppose this were not the case. Then, we would have a D̄R(j,0) multiplet with j > R. Taking

the product of the corresponding highest-weight primary with a free vector φ primary would

give a B̄ multiplet with j > R. On the other hand, note that the D̄ bound does not imply

the B̄ bound since not all B̄ operators need to come from a product of the form D̄ × Ē .

27In fact, the analysis of [21] can be used to directly prove our conjecture for the special case of r < j +2.

We thank A. Manenti for pointing this fact out to us and for collaboration on upcoming work on this

conjecture [22].
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Note also that the above bound on B̄ implies a known bound on Ēr(j,0) ruling out j > 0

in these latter multiplets [9]. Indeed, suppose that there were a j > 0 such that Ēr(j,0)

existed in some SCFT, T . Then, we could take N decoupled copies of T to get Ēr′(j′,0)

with arbitrarily large j′ > 0. Therefore, multiplying with a free hypermultiplet would give

B̄ violating the conjecture by an arbitrarily large amount.

4. B̄ multiplets in Rank-one theories

We have shown that, from relatively minimal assumptions, theories with N > 2 SUSY,

higher rank and a conformal manifold, a Z2-valued Sp(N) anomaly, or with freely generated

higher-dimensional Coulomb branches must possess B̄ multiplets. Therefore, in this section,

we specialize to rank-one theories that do not satisfy any of these properties (and also have

no mixed branches) in order to understand whether any of these theories have B̄ multiplets.

We focus on a subset of such theories that can be described by certain non-conformal

N = 1 Lagrangians with accidental IR enhancement to N = 2 (e.g., see [23]). In this

context, a necessary condition for a Lagrangian to be useful in carrying out precision

spectroscopy is for the IR superconformal U(1)r and SU(2)R Cartan to be visible in the

UV and unbroken along the RG flow. This property is typically absent in N = 2 RG flows

and hence explains the utility of constructions involving accidental SUSY enhancement.

4.1. General Strategy

As described in section 2, the spectrum of all multiplets in the FCS except the B̄ multiplets

can easily be determined either from a Seiberg-Witten description (in the case of the

Ē multiplets) or from the associated 2d VOA (in the case of the B̂ and D̄ multiplets).

Therefore, to get a handle on the B̄ spectrum, our strategy will be similar to the one

adopted in [5]: we will study rank-one N = 2 theories with weakly coupled UV descriptions

in terms of an N = 1 gauge theory that is connected to our SCFT of interest by a

sufficiently “smooth” RG flow (here we require that the superconformal IR symmetry is

visible along the RG flow).

More precisely, we will use the fields in these Lagrangian descriptions to write down

the full set of gauge-invariant local operators that are candidates to generate the N = 1

chiral ring (we assume the RG flow only acts to truncate this ring). This is the set of

chiral operators that cannot be expressed as a product of two nontrivial chiral operators.28

28The identity operator is defined as the trivial chiral operator.
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We whittle down this list by demanding that these generators sit in certain IR N = 2

superconformal representations.

In fact, in all the rank-one theories we will consider, we never find a situation where

an operator in this smaller list belongs to a B̄ multiplet. While we do not have a full

understanding of when B̄ multiplets do and do not furnish generators of the chiral ring

more generally, this observation plays an important role in further results we derive about

the spectrum of chiral operators in the particular theories we study.

As a consistency check of our method, we can make contact with known results on

the non-B̄ part of the FCS when characterizing our generators. We can then use these

operators to exhaustively attempt to construct B̄ operators through chiral ring fusion.

In particular, rank-one theories have a one-complex-dimensional Coulomb branch. We

will study examples where the corresponding Coulomb branch chiral ring is freely generated.

At the level of superconformal representation theory, this means that we have a single Ēr

generator giving rise to an N = 2 chiral ring of primaries via the n-fold OPEs (for n ∈ Z>0),

Ē×n
r ∋ Ērn.

Most of the rank-one theories we study also have an N = 2 flavor symmetry. As we

have seen in previous sections, the Noether currents sit in corresponding B̂1 multiplets

transforming in the adjoint of the flavor symmetry. These multiplets are associated with

the Higgs branch. For all the theories we consider, the B̂1 multiplets generate the Higgs

branch chiral ring.

Moreover, all the examples we study here can be mapped to known 2d VOAs, and we

can use these associated VOAs to conclude that there are no D̄ multiplets in our spectra.

As a result, the B̄ generation channel in (2.12) is not available (recall that none of the

theories we study here have N > 2 SUSY and so the result of section 3.1 does not apply).

Therefore, any B̄ multiplets in our theories of interest must be linear combinations

of normal-ordered products of chiral operators sitting in Ēr and / or B̂1 multiplets. We

construct all such products allowed by the OPE constraints and chiral ring relations in the

theory, and we consider their linear combinations.

Two kinds of B̄ multiplets will be of particular interest in our analysis, so we single

them out beforehand. These are obtained from the OPE in (2.11) and the second OPE in

(2.14). In the rank-one theories we consider, these B̄ multiplets often vanish as a result of

chiral ring relations arising from the dynamics of the N = 1 → N = 2 RG flows.

We now proceed to our analysis of the N = 1 chiral spectra of individual rank-one

SCFTs. For simplicity, we stick to isolated theories of Argyres-Douglas type and to the

SU(2) theory with four flavors.
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Fields SU(2)gauge R r

φ adj 0 1/5

λα adj 1/2 1/2

q 2 1/2 2/5

q̃ 2 1/2 -1/5

M 1 0 6/5

X 1 1 3/5

Table 2: UV fields in the N = 1 description of the (A1, A2) theory [27,28]. Here r and R

are the IR U(1)r and SU(2)R Cartan respectively.

4.2. The (A1, A2) ∼= MAD ∼= H0
∼= a0 theory

The chiral ring of this theory was analyzed in detail in [5], and so we merely summarize

the story here. Recall that this is the original Argyres-Douglas theory [24] (referred to

in [5, 15, 25] as the “Minimal” Argyres-Douglas (MAD) theory). It has a Coulomb branch

chiral ring generator of dimension 6/5 sitting as a primary in a Ē6/5 multiplet. The theory

has no Higgs branch, and, consistent with this fact, the associated 2d VOA is the Lee-

Yang Virasoro vacuum module [26]. Arguments in [15] then imply that there are no B̂ or

D̄ multiplets in this theory.

The N = 1 SU(2) gauge theory Lagrangian with fields in Table 229 and superpotential

[27, 28]

W = Xφ2 +Mφq′q′ + φqq , (4.1)

was used in [5] to argue that there are no B̄ multiplets and

FCS(A1,A2) = 〈E6/5〉 , (4.2)

where the chiral operators in Ē6/5 are located as follows

M ∈ (0, 0)0,6/5
Q1

α−→ φλα ∈

(

1

2
, 0

)

1/2,7/10

(Q1)2

−−−→ qq′ ∈ (0, 0)1,1/5 . (4.3)

The basic idea of the proof in [5] was to write down all possible chiral ring generators

and argue that none can sit in B̄ representations (i.e., generators cannot sit at locations

described in (2.10)). Then, dynamical constraints from the superpotential (4.1) rule out

chiral ring products of operators in (4.3) giving rise to a B̄ multiplet (crucially, the channel

described in (2.14) does not create B̄ chiral operators).

29Our naming conventions differ slightly from [5]. In particular, q̃ → q′.
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Fields SU(2)gauge R r

φ adj 0 1/3

λα adj 1/2 1/2

q 2 1/2 -1/6

q̃ 2 1/2 -1/6

α0 1 0 4/3

β2 1 1 1/3

Table 3: UV fields in the N = 1 description of the (A1, A3) theory [27,32]. Here r and R

are the IR U(1)r and SU(2)R Cartan.

4.3. The (A1, A3) ∼= H1
∼= a1 theory

This theory was not analyzed in [5]. It is the simplest Argyres-Douglas theory with flavor

symmetry [29] (SO(3) for the untwisted Hilbert space in this case [30]). The Coulomb

branch chiral ring generator has dimension 4/3 and sits as a primary in an Ē4/3 multiplet.

Unlike the previous case, the theory has a one-quaternionic-dimensional Higgs branch with

the Higgs branch chiral ring generated by the holomorphic SO(3) moment map µa ∈ B̂a
1

(here a = ±, 0 indicates SO(3) flavor weight) subject to the relation

µ+µ− ∼ (µ0)2 . (4.4)

This theory also has a known associated VOA [31]: the ŝu(2)−4/3 affine Kac-Moody

(AKM) algebra. This fact allows us to immediately rule out D̄ multiplets. Indeed, ŝu(2)−4/3

is (strongly) generated by the affine current (related, by the map in [4], to µa which has

r = 0). This means that any operator in the 2d VOA is built from normal-ordered products

of (derivatives) of this current. Since the procedure in [4] used to construct the VOA

respects the U(1)r symmetry, we conclude that all Schur operators in the (A1, A3) theory

are U(1)r neutral. Since D̄ Schur operators necessarily have r 6= 0, they cannot be present.

Therefore, the FCS can at most consist of Ē , B̂, and B̄ multiplets. To get a handle on

these latter multiplets, we consider the N = 1 Lagrangian with fields given in Table 3 and

superpotential [27, 32]

W = α0qq̃ + β2φ
2 . (4.5)

As in the (A1, A2) case, the UV theory is an SU(2) N = 2 gauge theory. However, this

time the superpotential preserves the SU(2) flavor symmetry under which (q, q̃) transforms

as a doublet. This fact is crucial in order to reproduce the IR symmetry discussion around

(4.4).
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Operator R r j

α0 0 4/3 0

β2 1 1/3 0

φ2 0 2/3 0

λ2 1 1 0

qq̃ 1 -1/3 0

φqq 1 0 0

φqq̃ 1 0 0

φq̃q̃ 1 0 0

φλα 1/2 5/6 1/2

qqλα 3/2 1/6 1/2

qq̃λα 3/2 1/6 1/2

q̃q̃λα 3/2 1/6 1/2

φqqλα 3/2 1/2 1/2

φqq̃λα 3/2 1/2 1/2

φq̃q̃λα 3/2 1/2 1/2

φλαλβ 1 4/3 1

qqλαλβ 2 2/3 1

qq̃λαλβ 2 2/3 1

q̃q̃λαλβ 2 2/3 1

λαλβλγ 3/2 3/2 3/2

Table 4: List of N = 1 chiral generator candidates in the (A1, A3) theory. Here r and R

are the IR U(1)r and SU(2)R Cartan, and j is the left spin.

26



Let us first study the potential chiral ring generators. To that end, we have listed the

candidates in Table 4. In compiling this list, we have used the fact that δab ∼ Tr(T aT b)

and ǫabc ∼ Tr([T a, T b]T c) to express any chiral ring generator in terms of at most three

adjoints. Note that this does not imply that the chiral ring generators will obey classical

relations in the quantum theory.30

We begin by identifying the known Ē and B̂ generators of the FCS in terms of the

operators in Table 4. To that end, note that unitarity bounds imply that the chiral op-

erators in the B̂1 multiplets and the primary and level-one descendants of Ē4/3 cannot be

composites built out of products of gauge-invariant operators (the level-two descendant of

Ē4/3 can at most be built out of a product of two gauge invariant operators). Therefore,

we can immediately identify

µ+ = φqq ∈ B̂+
1 , µ0 = φqq̃ ∈ B̂0

1 , µ− = φq̃q̃ ∈ B̂−
1 . (4.6)

For the Ē4/3 multiplet we have

α0 ∈ (0, 0)0,4/3
Q1

α−→ φλα ∈

(

1

2
, 0

)

1/2,5/6

(Q1)2

−−−→ β2 ∈ (0, 0)1,1/3 . (4.7)

We have mapped β2 to the level-two descendant of Ē4/3 using the fact that there is no other

candidate built from a single generator in Table 4 or a product of two such generators that

has the correct quantum numbers (by construction, φ2 decouples from the IR chiral ring).

What about B̄ generators? Our analysis so far implies that any chiral operator, O, that

is not in an Ē or B̂ multiplet must be in a B̄ multiplet. Therefore, N = 2 superconformal

representation theory implies that O must have r > j (and r > 1+j to be a superconformal

primary in such a multiplet; see (2.10)).

We only have two fields in the list of candidate chiral generators that could potential sit

as B̄ descendants, namely λ2 and φλαλβ. Moreover, there are no candidates for B̄ primaries

among the list in Table 4.

Now, if λ2 is a level-one descendant, then the primary has R = 1/2, r = 3/2, j = 1/2.

But this is the superconformal primary of a D̄1/2(1/2,0) multiplet, which we know is absent.

If λ2 is a level 2 descendant, then the primary has R = 0, r = 2, j = 0, which is the

superconformal primary of a Ē2 multiplet. We know that such a multiplet does not exist

in the (A1, A3) theory. Therefore, λ2 must be trivial in the IR chiral ring.

Let us perform the same analysis for φλαλβ. If this is a level-two descendant, the

primary has R = 0 and r = 7/3, which corresponds to an Ē multiplet. However, no such

30Indeed, as in footnote 15 of [5], we can argue that generators in the quantum theory are built from

traces involving two or three adjoints.
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multiplet exists in the theory. If this is a level-one descendant, then the primary has

R = 1/2, r = 11/6, j = 1/2 (it cannot have j = 3/2, since we would then require that

r > 5/2). However, there is no product of generators in Table 4 that has these quantum

numbers. Therefore, φλαλβ must be trivial in the IR FCS.

As a result, we see that we have the following characterization of the generators of the

FCS and the FCS itself

FCS(A1,A3) = 〈Ē4/3 , B̂a
1〉/I , (4.8)

where I is the ideal generated by the constraint in (4.4). We would like to understand if

these generators can give rise to a B̄ multiplet

FCS(A1,A3)

?
∋ B̄ . (4.9)

In particular, we can try to form B̄ multiplets by taking products of operators in (4.6)

and (4.7). At the quadratic level, there are several possibilities, that we now proceed to

study.

• α2
0: This is the superconformal primary of the Ē8/3 multiplet. In fact, since the

Coulomb branch is freely generated, αk
0 will be the superconformal primary of the

Ē4k/3 multiplet for all k ∈ N.

• α0φλα: This is the level one descendant of the Ē8/3 multiplet. Similar to the case

above, αk−1
0 φλα will be the level-one descendant of the Ē4k/3 multiplet for all k ∈ N.

• β2φλα: This is ruled out by the superpotential constraint,

∂W

∂φa
· λa

α = 0 . (4.10)

This constraint cannot receive quantum corrections because they would involve terms

with R = 3/2 and r = 7/6 (recall that φ2 hits a unitarity bound and decouples).

• α0β2 and (φλα)
2: One linear combination of these two operators will be the level-

two descendant of the Ē8/3 multiplet. Can we find a linear combination of these two

operators that would be a superconformal primary? We see that the only candidate

for the level-one descendant of such a multiplet is β2φλα. However, this has already

been set to zero by (4.10). Therefore, no linear combination of these two operators

can be a superconformal primary.

• β2
2 (R = 2, r = 2/3, j = 0): Since r < 1 + j, this is not a superconformal primary.

If it is a level-one descendant, then the primary has (R = 3/2, r = 7/6, j = 1/2).
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The candidate operators with R = 3/2 and j = 1/2 are αm
0 β2φλα = 0 (by (4.10)),

αm
0 (φqq)φλα, αm

0 (φqq̃)φλα, αm
0 (φq̃q̃)φλα, but none of these can lead to r = 7/6. If

it is a level-two descendant, then the primary has (R = 1, r = 5/3, j = 0). The

candidate operators with R = 1 and j = 0 are (φλα)
2 and α0β2, but since the level-

one descendant of this potential B̄ multiplet vanishes, this is ruled out. Therefore,

the operator β2 must be nilpotent in the IR chiral ring (as implied by the discussion

in [33]).

• α0φqq, α0φqq̃, and α0q̃q̃: These are ruled out by the superpotential constraints,

∂W

∂q̃j
= α0qj = 0 ,

∂W

∂qj
= α0q̃j = 0 . (4.11)

Therefore,31

α0qq = α0qq̃ = α0q̃q̃ = 0 . (4.12)

These constraints cannot receive quantum corrections because they would involve

operators with R = 1 and r = 4/3 (and having the same SO(3) weight as the

operators in question).

• (φλα)(φqq), (φλα)(φqq̃), and (φλα)(φq̃q̃) (R = 3/2, r = 5/6, j = 1/2): Since r < 1+ j,

this is not a superconformal primary. If it is a level-one descendant then the primary

has (R = 1, r = 4/3, j = 0). The candidate operators with R = 1 and j = 0 are

αm
0 φqq, αm

0 φqq̃, αm
0 φq̃q̃, αm

0 (φλα)
2, and αm

0 β2. Among these operators only α0φqq̃

has compatible r charge. However, it is removed by the superpotential constraint

in (4.11). If it is a level-two descendant then the primary has R = 1/2, r = 11/6,

j = 1/2. The only candidate with R = 1/2 is αm
0 φλα, but this does not have r = 11/6.

Therefore, this operator must be trivial in the IR chiral ring.

• β2φqq, β2φqq̃, and β2φq̃q̃: These operators vanish in the chiral ring as a result of the

superpotential constraints,

∂W

∂φa
· (qq)a =

∂W

∂φa
· (qq̃)a =

∂W

∂φa
· (q̃q̃)a = 0 . (4.13)

These constraints cannot receive quantum corrections because they would involve

other operators with R = 2 and r = 1/3 (and having the same SO(3) weight as the

operators in question) since φ2 decouples.

31Alternatively, we could arrive at the same conclusion by using the first equation in (4.11) and invoking

SU(2) flavor covariance.
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Field Rep U(1)B U(1)m R r

φ adj 0 0 0 1/2

λα adj 0 0 1/2 1/2

q1 � 1 3 1/2 1/4

q̃1 �̄ -1 -3 1/2 1/4

q2 � 1 -1 1/2 -1/4

q̃2 �̄ -1 1 1/2 -1/4

M2 1 0 0 0 3
2

β2 1 0 0 1 0

Table 5: UV fields in the N = 1 description of the (A1, D4) theory [34, 35]. Here r

and R are the IR U(1)r and SU(2)R Cartan. U(1)B and U(1)m are flavor symmetries

corresponding to Cartans of the IR SU(3) flavor symmetry.

We see that the only products that survive at the quadratic level are α2
0, α0φλα, (φλα)

2,

and α0β2. Of these, the last two cannot be superconformal primaries (nor can any of their

linear combinations be).

We therefore see that the most general product of operators from the generating set

that we can write down and which is a superconformal primary has the form

αm1

0 , (φqq)m2(φqq̃)m3(φq̃q̃)m4 , m1 , m2 , m4 ∈ N , m3 = 0, 1 . (4.14)

These are the Coulomb and Higgs branch operators respectively (recall the constraint in

(4.4) that constraints m3). Therefore, there are no B̄ multiplets in the (A1, A3) theory.

4.4. The (A1, D4) ∼= H2
∼= a2 theory

This Argyres-Douglas theory has SU(3) flavor symmetry and was originally discovered

in [29]. Its Coulomb branch chiral ring generator has dimension 3/2 and is a primary

in a Ē3/2 multiplet. This theory has a two-quaternionic-dimensional Higgs branch and a

corresponding chiral ring generated by the holomorphic SU(3) moment map transforming

in the 8 (adjoint) representation, µa ∈ B̂a
1 (here we will take a to be an adjoint index)

subject to the Joseph ideal constraint.

As in the previous cases, this theory has a known associated 2d VOA [31]: the ŝu(3)−3/2

AKM algebra. Using the same logic we used in the case of the (A1, A3) theory in previous

subsection, we can again rule out D̄ multplets here too.

As a result, the FCS can again at most consist of Ē , B̂, and B̄ multiplets. To understand

the spectrum of the B̄ multiplets we study an N = 1 Lagrangian theory with fields given
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in Table 5 and superpotential [35]

W = M2q2q̃2 + φq1q̃1 + β2φ
2 . (4.15)

Note that (as in the closely related (A1, A3) case) the φ2 operator hits a unitarity bound

and decouples in the IR. Moreover, only a SU(2) × U(1) ⊂ SU(3) flavor symmetry is

manifest. Under this symmetry, (q2, q̃2) transforms as a doublet (and q1, q̃1 are singlets).

We can construct a list of naive multiplets using exactly the same set of procedures as

in the previous subsection. Although the number of fields involved here is larger, we have

done this in Tables 6 and 7.

It will again prove useful to identify the Ē3/2 and B̂1 chiral operators. Unitarity implies

that the primaries of the B̂1 multiplets and the primary and level-one descendant of the

Ē3/2 multiplet cannot be composites built out of products of gauge-invariant operators (the

level-two descendant of Ē3/2 can at most be built out of a product of two gauge invariant

operators). Therefore, we can immediately identify the holomorphic moment maps

µa ∈ {β2 , q̃2q1 , q1q2 , q̃1q̃2 , q̃1q2 , φq̃2q̃2 , φq̃2q2 , φq2q2} ∋ B̂a
1 . (4.16)

For the Ē3/2 multiplet we have

M2 ∈ (0, 0)0,3/2
Q1

α−→ φλα ∈

(

1

2
, 0

)

1/2,1

(Q1)2

−−−→ q̃1q1 ∈ (0, 0)1,1/2 . (4.17)

We have mapped q̃1q1 to the level-two descendant of Ē3/2 using the fact that there is no other

candidate built from a single generator in Table 4 or a product of two such generators that

has the correct superconformal quantum numbers and is SU(2)× U(1) ⊂ SU(3) invariant

(recall also that, by construction, φ2 decouples from the IR chiral ring).

In what follows, we will make use of the following superpotential constraints,

∂W

∂β2
= Tr(φ2) = 0 ,

∂W

∂M2

= Tr(q̃2q2) = 0 ,

∂W

∂q̃a1
= (φq1)a = 0 ,

∂W

∂qa1
= a(q̃1φ) = 0 . (4.18)

Let us now proceed to discuss potential B̄ chiral generators of the theory

• Any operators with r = j in Tables 6 and 7 cannot sit in B̄ multiplets (see (2.10)).

Since they are no D̄ multiplets, these operators (modulo those in (4.16)) are trivial
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Operators R r j U(1)B U(1)m

M2 0 3/2 0 0 0

β2 1 0 0 0 0

φ2 0 1 0 0 0

λ2 1 1 0 0 0

q̃1q1 1 1/2 0 0 0

q̃2q2 1 -1/2 0 0 0

q̃2q1 1 0 0 0 4

q1q2 1 0 0 2 2

q̃1q̃2 1 0 0 -2 -2

q̃1q2 1 0 0 0 -4

φq1q1 1 1 0 2 6

φq̃1q1 1 1 0 0 0

φq̃1q̃1 1 1 0 -2 -6

φq̃2q̃2 1 0 0 -2 2

φq̃2q2 1 0 0 0 0

φq2q2 1 0 0 2 -2

φq̃2q1 1 1/2 0 0 4

φq1q2 1 1/2 0 2 2

φq̃1q̃2 1 1/2 0 -2 -2

φq̃1q2 1 1/2 0 0 -4

φλα 1/2 1 1/2 0 0

q1q1λα 3/2 1 1/2 2 6

q̃1q1λα 3/2 1 1/2 0 0

q̃1q̃1λα 3/2 1 1/2 -2 -6

q2q2λα 3/2 0 1/2 2 -2

q̃2q2λα 3/2 0 1/2 0 0

q̃2q̃2λα 3/2 0 1/2 -2 2

q̃2q1λα 3/2 1/2 1/2 0 4

q1q2λα 3/2 1/2 1/2 2 2

q̃1q̃2λα 3/2 1/2 1/2 -2 -2

q̃1q2λα 3/2 1/2 1/2 0 -4

Table 6: List of candidate chiral ring generators for the (A1, D4) theory (continued in

Table 7). Here R, r, and j are the IR SU(2)R Cartan, U(1)r charge, and left spin. U(1)B

and U(1)m are N = 2 flavor symmetries.
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Operators R r j U(1)B U(1)m

φq1q1λα 3/2 3/2 1/2 2 6

φq̃1q1λα 3/2 3/2 1/2 0 0

φq̃1q̃1λα 3/2 3/2 1/2 -2 -6

φq2q2λα 3/2 1/2 1/2 2 -2

φq̃2q2λα 3/2 1/2 1/2 0 0

φq̃2q̃2λα 3/2 1/2 1/2 -2 2

φq̃2q1λα 3/2 1 1/2 0 4

φq1q2λα 3/2 1 1/2 2 2

φq̃1q̃2λα 3/2 1 1/2 -2 -2

φq̃1q2λα 3/2 1 1/2 0 -4

φλαλβ 1 3/2 1 0 0

q1q1λαλβ 2 3/2 1 2 6

q̃1q1λαλβ 2 3/2 1 0 0

q̃1q̃1λαλβ 2 3/2 1 -2 -6

q2q2λαλβ 2 1/2 1 2 -2

q̃2q2λαλβ 2 1/2 1 0 0

q̃2q̃2λαλβ 2 1/2 1 -2 2

q̃2q1λαλβ 2 1 1 0 4

q1q2λαλβ 2 1 1 2 2

q̃1q̃2λαλβ 2 1 1 -2 -2

q̃1q2λαλβ 2 1 1 0 -4

λαλβλγ 3/2 3/2 3/2 0 0

Table 7: Remaining candidate chiral ring generators for the (A1, D4) theory (continued

from Table 6). Here R, r, and j are the IR SU(2)R Cartan, U(1)r charge, and left spin.

U(1)B and U(1)m are N = 2 flavor symmetries.
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in the IR chiral ring. This logic removes the following potential chiral ring generators

q̃2q1λα , q1q2λα , q̃1q̃2λα , q̃1q2λα , φq2q2λα , φq̃2q2λα , φq̃2q̃2λα , q̃2q1λαλβ ,

q1q2λαλβ , q̃1q̃2λαλβ , q̃1q2λαλβ , λαλβλγ . (4.19)

• Similar logic rules out operators with r < j. This reasoning removes the following

potential chiral ring generators

q̃2q2 , q2q2λα , q̃2q2λα , q̃2q̃2λα , q2q2λαλβ , q2q̃2λαλβ , q̃2q̃2λαλβ . (4.20)

• Other operators are removed from the IR chiral ring via superpotential constraints.

Indeed, constraints in (4.18) remove

φq1q1 , φq̃1q1 , φq̃1q̃1 , φq̃2q1 , φq1q2 , φq̃1q̃2 , φq̃1q2 . (4.21)

Note that there are no quantum corrections to these superpotenial removals since

these are the unique operators with their superconformal and flavor quantum num-

bers.32

• λ2 has (R, r(j, j̄)) = (1, 1, (0, 0)). If it were a level-one descendant, the primary would

have (R, r(j, j̄)) = (1/2, 3/2, (1/2, 0)). However, this would be a primary of a D̄

multiplet, which we know is absent.33 If it were a level-two descendant, the primary

would have (R, r(j, j̄)) = (0, 2, (0, 0)), which would be an Ē2 primary, which is again

absent. Therefore, λ2 must be trivial in the IR N = 1 chiral spectrum.

• φq1q1λα, φq1q̃1λα, and φq̃1q̃1λα have (R, r(j, j̄)) = (3/2, 3/2, (1/2, 0)). If they are level-

one descendants, then the primary has (R, r(j, j̄)) = (1, 2, (1, 0)) (but then r = 1 + j,

and we know there are no D̄ multiplets) or (R, r(j, j̄)) = (1, 2, (0, 0)) (but such a

primary cannot be constructed out of the list of SU(2)-neutral generators). If it is a

level-two descendant, then the primary has (R, r(j, j̄)) = (1/2, 5/2, (1/2, 0)) (M2φλα

has these quantum numbers, but it is a descendant in an Ē3 multiplet).

• φλαλβ has (R, r(j, j̄)) = (1, 3/2, (1, 0)). If it is a level-one descendant, then the pri-

mary has (R, r(j, j̄)) = (1/2, 2, (1/2, 0)) or (R, r(j, j̄)) = (1/2, 2, (3/2, 0)) (but neither

can be constructed from the list of generators). If it is a level-two descendant, then

the primary has (R, r(j, j̄)) = (0, 5/2, (1, 0)) (which cannot be constructed from the

list of generators since φ2 decouples).

32This logic relies on the fact that φ2 decouples due to unitarity bound violations or equivalently, for this

purpose, φ2 is set to zero in the IR chiral ring by a superpotential constraint.
33Also, the primary cannot be constructed out of the list of chiral generators.
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• q1q1λαλβ, q1q̃1λαλβ, and q̃1q̃1λαλβ have (R, r(j, j̄)) = (2, 3/2, (1, 0)). If they are level-

one descendants, then the primaries have (R, r(j, j̄)) = (3/2, 2, (1/2, 0)) (such oper-

ators cannot be constructed from the list of generators because of the vanishing of

the operators (4.19) in the IR chiral ring and the vanishing of φ2 in the IR the-

ory) or (R, r(j, j̄)) = (3/2, 2, (3/2, 0)) (these operators also cannot be constructed

from the list of generators). If it is a level-two descendant, then the primary has

(R, r(j, j̄) = (1, 5/2, (1, 0)) (such an operator cannot be constructed from the list of

generators since φ2 decouples).

• q1q1λα, q̃1q1λα, and q̃1q̃1λα have (R, r(j, j̄)) = (3/2, 1, (1/2, 0)). These operators can-

not be B̄ superconformal primaries since r < 1 + j. If they are level-one descen-

dants, then the primary has (R, r(j, j̄)) = (1, 3/2, (0, 0)) (such operators can poten-

tially be constructed by taking a products of M2 and one of the eight B̂1 primaries;

we will say more about this multiplet later) or (R, r(j, j̄)) = (1, 3/2, (1, 0)) (this is

ruled out, as r < 1 + j, and because such operators cannot be constructed out

of the list of generators). If it is a level two descendant, then the primary has

(R, r(j, j̄)) = (1/2, 2, (1/2, 0)) (which cannot be constructed from list of generators).

• φq̃2q1λα, φq1q2λα, φq̃1q̃2λα, and φq̃1q2λα have (R, r(j, j̄)) = (3/2, 1, (1/2, 0)). These

operators cannot be B̄ superconformal primaries since r < 1 + j. If they are level-

one descendants, then the primaries have (R, r(j, j̄)) = (1, 3/2, (1, 0)) (which fails

due to r < 1 + j) or (R, r(j, j̄)) = (1, 3/2, (0, 0)) (such primaries can potentially be

constructed by multiplying M2 with a B̂1 primary; we will say more about these

operators later). If these operators are level-two descendants, then the primary has

(R, r(j, j̄)) = (1/2, 2, (1/2, 0)) (but such primaries cannot be constructed from list of

generators since φ2 decouples).

Therefore, in order to construct a B̄ superconformal primary, we must build it out of

products of chiral operators in the Coulomb branch multiplet Ē3/2 (i.e., {M2, φλα, q1q̃1})

and the Higgs branch multiplets B̂1 (i.e., {q1q2, q1q̃2, q̃1q2, q̃1q̃2, φq2q2, φq2q̃2, φq̃2q̃2, β2}).

We can use the superpotential in (4.15) to constrain these products. To that end, we

consider each quadratic product build out of the Ē3/2 and B̂1 chiral operators separately

• M2
2 and M2φλα: These are the primary and the level-one descendant of the Ē3 mul-

tiplet.

• M2q1q̃1 and (φλα)
2: One linear combination is the level-two descendant of Ē3. The

other independent linear combination, if nonzero, is a primary of a B̄ multiplet. There
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is a unique candidate for the level-two descendant of this multiplet, (q1q̃1)
2. As we will

show below, this operator vanishes in the IR chiral ring as a result of a superpotential

constraint. Therefore, this B̄ multiplet cannot exist in the (A1, D4) theory.

• (q1q̃1)
2 (R, r(j, j̄)) = (2, 1, (0, 0)): We have the following superpotential constraint

∂W

∂φa
(q1q̃1)

a = 0 , (4.22)

which leads to,

2β2φq1q̃1 + δab(q1q̃1)
a(q1q̃1)

b = 0 . (4.23)

We have already shown that φq1q̃1 is trivial in the IR N = 1 chiral spectrum. There-

fore, we are left with,

δab(q1q̃1)
a(q1q̃1)

b = 0 . (4.24)

This constraint cannot receive quantum corrections since all other operators with the

same superconformal quantum numbers have already been shown to vanish in the IR

chiral ring.

• M2B̂1 has (R, r(j, j̄)) = (1, 3/2(0, 0)): Here we consider the eight so-called “mixed

branch” primaries consisting of the product of the primaries in the Coulomb and

Higgs branch chiral ring generators. The following chiral ring relation causes them

to vanish:
∂W

∂q2
φq2 = M2φq2q̃2 = 0 . (4.25)

By an SU(3) flavor rotation, all other products of the form M2B̂1 also vanish in the

IR chiral ring.

• φλαB̂1 has ((R, r(j, j̄)) = (3/2, 1(1/2, 0))): These eight operators cannot form a B̄

primary since r < 1 + j.34

• q1q̃1B̂1 has ((R, r(j, j̄)) = (2, 1/2(0, 0)): These operators cannot be B̄ primaries since

r < 1.35

34In fact, we can show these operators are trivial in the IR chiral ring. Indeed, if they form a level-

one descendant, then the primary has ((R, r(j, j̄)) = (1, 3/2(0, 0)), but this B̄ multiplet has already been

removed by the superpotential constraint above. If they form a level-two descendant, then the primary has

(R, r(j, j̄)) = (1/2, 2(1/2, 0)), and the only candidate operator is M2φλα. However, this is itself a level-one

descendant.
35In fact, these operators are trivial in the IR chiral ring. Indeed, if they form a level-one descendant,

then the primary has (R, r(j, j̄)) = (3/2, 1(1/2, 0)), but this also has r < 1+ j. If it is a level-two descendant,
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Field R r j SU(2)gauge SO(8)

φ 0 1 0 adj. 1

λα 1/2 1/2 1/2 adj. 1

Qa 1/2 0 0 2 8

Table 8: List of chiral fields appearing in the Lagrangian of the SU(2) theory with four

fundamental flavors. Here r, R, and j are the U(1)r, SU(2)R Cartan, and left spin re-

spectively. In the rightmost column we record the representation under the SO(8) flavor

symmetry (the matter fields transform in the vector representation). If we want to write

our matter field charges in terms of SU(4) ⊂ SO(8), we can define qi := Qi and q̃i := Qi+4

where i = 1, · · · , 4.

Therefore, we see that we cannot construct a B̄ primary, and so there are no B̄ multiplets

in the (A1, D4) SCFT.36 In particular, we see that

FCS(A1,D4) = 〈Ē3/2, B̂1〉/I , B̄ 6∈ FCS(A1,D4) , (4.26)

where I is the Joseph ideal constraint.

4.5. SU(2) SQCD with Nf = 4

Finally, we discuss the N = 2 Lagrangian theory of SU(2) SQCD with four flavors. Unlike

the previous cases, this theory is not isolated (it has an exactly marginal coupling).

In the interacting theory, we can again show that all chiral ring generators are in the

Coulomb branch and Higgs branch chiral subrings.37 In this case, this means the chiral

ring generators live in Ē2 or B̂M
1 multiplets (with M an SO(8) adjoint index). Since the

gauge group is SU(2), the naive list of chiral generators is very similar to the lists in the

Argyres-Douglas examples we treated before (which were based on SU(2) gauge theory

Lagrangians), so we will keep the discussion brief.

We use Table 8 to write down the list of UV chiral fields. The Lagrangian in this case

is

W = τφ(QaQa) . (4.27)

then the primary has ((R, r(j, j̄)) = (1, 3/2(0, 0)), but we have already eliminated this B̄ multiplet by the

superpotential constraint.
36In fact, using the argument in footnotes 34 and 35, we directly see that all operators except those in the

Coulomb branch and Higgs branch chiral rings vanish in the IR FCS.
37By the interacting theory, we mean the interacting theory at generic points on the conformal manifold.
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Note that in terms of SU(4) ⊂ SO(8), we can define qi := Qi and q̃i := Qi+4 where

i = 1, · · · , 4.

The naive chiral ring generators are the following:

• φ2, φλα, λ2: These are, respectively, the primary, the level one, and the level-two

descendants of the Ē2 multiplet. In the interacting theory, λ2 mixes with φ(QaQa)

via (4.27).

• Mab = Q[aQb] (there are 28 of these operators transforming in the adjoint of SO(8)).

These are the B̂A
1 Higgs branch generators housing the Noether currents of the flavor

symmetry.

• The other possible operators with j = 0 have the following form: φQQ (R = 1,

r = 1). If they are non-trivial in the chiral ring, these operators can only sit in D̄

multiplets. In the interacting theory, one linear combination with λ2 becomes the

level-two descendant of Ē2.

• At j = 1/2, the possible operators have either of two forms, (1) QQλ (R = 3/2,

r = 1/2). If they are non-trivial in the chiral ring, these operators can only be

descendants of D̄1(0,0) multiplets, or (2) φQQλ (R = 3/2, r = 3/2). These operators

can be primaries of D̄ 3

2
,( 1

2
,0) multiplets or descendants of B̄1,2(0,0), D̄1,(1,0), or B̄ 1

2
, 5
2
( 1
2
,0)

multiplets.

• At j = 1, the possible generators are of the following forms, (1) φλλ (R = 1, r = 2).

These can be a primary of a D̄1(1,0) multiplet or descendants of B̄ 1

2
, 5
2
( 1
2
,0) or D̄ 1

2
( 3
2
,0),

or (2) QQλλ (R = 2, r = 1). These can only be descendants of D̄ 3

2
,( 1

2
,0) or B̄1,2(0,0)

multiplets.

• At j = 3/2, the only possible generator is of the form λλλ (R = r = 3/2), which can

only be the descendant of a D̄1(1,0) multiplet.

To summarize, we see that these operators may lie in the following multiplets: (1) D̄

multiplets. However, in the interacting theory, these multiplets are not present due to the

same logic as in the (A1, A3) and (A1, D4) cases: the associated chiral algebra is of AKM

type (ŝo(8)−2 in this case [4]). To see this statement more concretely, note that, when we

turn on interactions, thirty six linear combinations of the φQQ and λ2 operators discussed

above pair up with thirty-six of the thirty-seven stress tensor multiplets in the free theory

to become long multiplets (the remaining stress tensor multiplet is protected along the full

conformal manifold; see [36] for further details of this argument). (2) As descendants in
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a B̄ 1

2
, 5
2
( 1
2
,0) multiplet. However, we cannot construct a candidate for the superconformal

primary of this multiplet in a rank-one theory. (3) As a descendant in a B̄1,2(0,0) multiplet

(we can construct a candidate primary for this multiplet, but the multiplet itself is known

to be absent in this theory since it does not have a mixed branch; more on this later).

Therefore, we conclude that, in the interacting theory, the only non-trivial chiral generators

lie in Ē2 or B̂1 multiplets.

Once again, we proceed to take normal-ordered quadratic products of the above Coulomb

and Higgs branch generators. There are two possible sources of B̄ multiplets which we can

form by taking products of the above generators. We now study each case individually.

The Coulomb branch multiplet, Ē2, has the following chiral operators (for simplicity, we

define M2 at τ = 0),

M0 := φ2 , M1α := φλα , M2 = λ2 . (4.28)

Since the theory is rank one, there is no candidate for a superconformal primary of a

B̄1/2,3/2,(1/2,0) multiplet.

We can take a linear combination of these operators

O := M0M2 + κM2
1 , (4.29)

where κ ∈ C, and O is a superconformal primary of a B̄1,3(0,0) multiplet. It is trivial

to check that this operator is present in the free theory. In the index, it is also easy

to check that there is no B̄1,3(0,0) contribution at the leading order it can appear. The

reason is that there are thirty-eight C̄0,2(0,0) multiplets in the free theory: thirty-seven from

Ē2 × Ĉ0(0,0) and one of the form fABCǫ
αβǫIJλ

IA
α λJB

β φC , where we have contracted SU(2)R

and Lorentz indices of the gauginos (note that the anti-symmetrization of gauge indices

makes this latter operator a superconformal primary). On the other hand, there are thirty-

seven B̄1,3(0,0) multiplets: thirty-six arising from Ē2 × D̄1(0,0) and one linear combination as

in (4.29). The corresponding index contributions cancel up to a net C̄0,2(0,0) contribution

(note that three of the C̄0,2(0,0) multiplets are flavor singlets and so are two of the B̄1,3(0,0)

contributions).

At leading order in the gauge coupling (i.e., at leading order in τ), it is easy to see

that two flavor-neutral C̄0,2(0,0) multiplets and the B̄1,3(0,0) multiplet in (4.29) remain as

short multiplets (unlike other C̄0,2(0,0) and B̄1,3(0,0) pairs in the theory that become long

multiplets at leading order when we turn on the superpotential in (4.27)). The B̄1,3(0,0)

multiplet is not protected from recombination at higher orders in the coupling (but there

is always a protected C̄0,2(0,0) multiplet).
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Finally, we can form a potential primary of a B̄1,2(0,0) multiplet from the operator,

M0Tr(QQ) , (4.30)

which would correspond to a mixed branch. These operators vanish in the chiral ring at

leading order in the coupling (they pair up with an adjoint-valued C̄0,1(0,0) multiplet to

become long multiplet descendants). This statement is consistent with the fact that the

theory does not have a mixed branch. In fact, any such candidate obtained from the

Ē2m × B̂n OPE for m,n ∈ N will not correspond to a B̄n,2m(0,0) multiplet for the same

reason.

5. Conclusion

In this paper, we have explored various new roles that B̄ multiplets play in 4d N = 2

SCFTs. We have shown that these operators are ubiquitous and are connected to many

interesting phenomena. Our work also raises several questions:

• Can our algebraic proof that the product of primaries in D̄1/2(0,0) × D̄1/2(0,0) is non-

vanishing and produces a B̄ multiplet be generalized to show that any N > 2 theory

has an infinite chiral ring generated by the primary of D̄1/2(0,0)?
38 Since this multiplet

houses the extra supercurrents in its higher components, it would be interesting to

understand if such an infinite chiral ring exists as a consequence of physics related

to Ward identities for extended SUSY. If so, this may be a step in an abstract CFT-

based proof that all N > 2 theories have a mixed branch of moduli space.

• We saw that the existence of (adjoint valued) B̄ multiplets can be a diagnostic of

the Z2-valued Sp(N) ’t Hooft anomaly in [8]. What about more general ’t Hooft

anomalies? Can these operators help diagnose the existence of 2-groups and other

more elaborate structures?

• We saw that B̄ multiplets form a natural ideal in the FCS ring. Can we use this fact

to prove new results about chiral rings in 4d N = 2 SCFTs?

• The B̄ production channels we discussed do not lead to B̄ chiral ring generators.

It would be interesting to understand the most general conditions under which B̄

multiplets can and cannot house chiral ring generators (see footnote 6). Can gauging

discrete symmetries help?

38Such a ring would contain an infinite number of B̄ multiplets.
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• We conjectured a bound on the quantum numbers of B̄ multiplets. It would be

interesting to prove (or disprove) this bound.

• We have seen that the particular isolated rank-one theories we studied do not have B̄

multiplets (of course, rank one theories that violate some of the criteria we imposed

do have B̄ mulitplets; examples include SU(2) N = 4 SYM among others). It would

be interesting to better understand why this is the case (and to extend our analysis to

other cases with N = 1 Lagrangians). Our analysis relied on the existence of certain

N = 1 Lagrangians that flow to N = 2 in the IR. Can we give an abstract argument,

perhaps using properties of ’t Hooft anomalies and a-maximization, that any rank-one

IR SCFT of the general type we studied arising from an N = 1 Lagrangian has no B̄

multiplets? Can we extend our analysis to other rank-one theories even when there

is no known Lagrangian? Can we give a more manifest and dynamical proof that the

rank-one theories we studied do not have B̄ multiplets?

We hope to return to some of these questions soon.
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