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Abstract

Automatic Performer Identification from the symbolic representation of

music has been a challenging topic in the field of Music Information Retrieval

(MIR). This thesis proposes various approaches for modeling and identifying

musical instrumentalists, with a specific focus on pianist identification, an

exceptionally challenging task that often requires trained/expert musicians.

Performers’ continuously modifying important parameters like tempo

and dynamics to stress specific notes or ‘shape’ certain passages in the

metrically-notated music are what makes them distinctive in their perfor-

mances. By comparing a performance to its notated score and the perfor-

mance norm (defined as a quasi-performance calculated by taking the aver-

age of all the performances of the same piece), a set of note-level expressive

features related to timing, dynamics, and articulation are proposed that are

capable of capturing an individual performer’s performance traits. To val-

idate the utility of these characteristic features, several statistical models

are used to model their distributions, followed by a similarity metric that

compares the distribution similarity of a candidate pianist with that of the

pianists in the dataset. The identification is done considering the distribu-

tion of each individual feature as well as a feature fusion technique. Results

show that features related to expressive timing and loudness are the most

informative about performers’ styles when fused together, followed by note

duration.

Hierarchical modelling of music can be useful for performer identifica-

tion, as it allows to capture the structure and organization of the music.

Specifically, Western classical music demonstrates a distinct hierarchical or-

ganization of elements (note, beat, measure, phrase level etc.). Utilizing

a convolutional neural network (CNN) for learning hierarchical representa-

tions of this data is a suitable approach. In this study, a pianist identification

model is proposed that employs a multichannel 1D CNN, designed to exploit

the hierarchical nature of Western classical music through the utilisation of

a beat-specific kernel in the first layer of the CNN, optimised to extract

musically salient features. Although the proposed model achieves good pre-

cision, it does not incorporate recurrence and, as such, is not aware of the

context of the music, which is highly dependent on context.



Central to this research is the creation of the Automatically Transcribed

Expressive Piano Performance (ATEPP) dataset. This extensive dataset,

comprising 11,742 virtuoso piano recordings spanning over 1,007 hours,

serves as a valuable resource. It facilitates the study of performer-specific

expressiveness and diverse playing styles in Western classical piano music,

providing a substantial foundation for further investigation and analysis.

Finally, to address the limitation of CNNs, a more complex and musi-

cally motivated model is proposed that utilizes Recurrent Neural Networks

(RNNs) and a multi-head attention mechanism over different hierarchical

levels to incorporate recurrence and attention. This facilitates the learn-

ing of both the local and global dependencies of the music structure and

expressive performance. Results from experimental evaluations reveal that

the suggested method outperforms the baseline models, demonstrating the

model’s discriminative power and ability to learn performer-specific styles.

In summary, this thesis aims to advance performer identification in sym-

bolic music data by uncovering key expressive features, proposing innovative

modeling techniques, and introducing a comprehensive dataset. These con-

tributions provide valuable insights and tools for the field of Music Informa-

tion Retrieval, enhancing our understanding of performer-specific musical

styles.
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Chapter 1

Introduction

1.1 Motivation

Music is a medium comprising various musical ideas arranged within a com-

position in a manner that elicits contrast and surprise, or a sense of familiar-

ity through repetition or alteration. These ideas are closely interconnected

and may be decomposed into shorter ideas due to their hierarchical orga-

nization. This hierarchical structure, known as musical form, reflects the

composer’s perspective on the piece and is manifest in the nested organiza-

tion of sounds. In Western classical music, the lowest level of the hierarchy

consists of notes and chords, which are linked together to form higher struc-

tural constructs such as measures, motives, and phrases, which define the

sections of the composition. This hierarchical structure can be represented

visually using a tree representation [3], and it plays a crucial role in the ease

with which a piece of music may be classified based on its emotional content.

Music, however, also needs the human performance for rendering the

musical ideas into acoustic realisations [4]. As defined by Kendall and

Carterette [5], music performance operates as a communicative system

wherein composers encode their artistic vision into notation, which is subse-

quently re-coded by performers through the execution of acoustical signals,

and ultimately decoded by listeners as a rendition of the original musical

ideas. The realization of these acoustic manifestations is achieved through

the interplay of three key elements of performance: interpretation, planning,

and movement, which often reflects the cognitive processes engaged by the

performer during the execution of a piece of notated music [6]. Interpreta-
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tion, in particular, pertains to the process of conceptually deciding how to

perform precise notations in a way that captures the emotional essence of

the music. It is a delicate balance of technical skill and artistic expression,

as the performer must navigate the structure of the piece while also adding

their own personal touch. However, music research has traditionally pro-

vided limited insight into the processes through which performers generate

their desired interpretations [7]. Nevertheless, several music theorists hold

the perspective that interpretation comprises essential components, includ-

ing structure, emotion, and physical movement [8, 9]. These elements are

considered fundamental contributors to how performers shape their inter-

pretations, shedding light on the complexities of musical expression.

Planning, on the other hand, pertains to the process by which a per-

former strategises the utilisation of musical structure to convey expression

through their unique style. For instance, the utilisation of specific tech-

niques such as variations in dynamics and tempo can serve to accentuate

the phrasing structure, thereby emphasizing the way in which the music is

divided into phrases, as demonstrated by studies such as [10, 11], and to

evoke a specific emotional response. The final aspect of performance, move-

ment, represents the concrete execution of the musical composition by the

performer, reflecting their interpretation and the plan. These movements

can be considered as embodied interactions between the performer and the

music, which have a significant impact on the manner in which the music is

performed and perceived [12].

All three above aspects is what constitutes a musical performance

through which performers express affective content in the music. These el-

ements, when combined, create a unique and dynamic interpretation of the

piece that greatly impacts the listener’s perception and enjoyment. The af-

fective content conveyed through a performance is subjective and can vary

greatly between different renditions of the same piece, leading to listener

preferences and appreciations for diverse interpretations. Virtuoso perform-

ers often distinguish themselves in their performances by constantly modi-

fying parameters such as tempo, timing, dynamics, and articulation, which

are not prescribed in the notated score but are used to produce an expres-

sive rendition of the composition which is known as expressive performance.

The manipulation of these parameters are clearly distinguishable by the lis-

teners and often brings out the dramatic, affective and artistic qualities of
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performers which in most cases, may affect and connect the listeners emo-

tionally. Thus, a comprehensive analysis of these parameters is imperative

for the study of musical expression, providing insight into the performer’s

distinct stylistic characteristics.

The complexity inherent in the interplay of structural and interpretative

factors renders the formalization of expressive piano performance a highly

challenging task in the field of Music Information Retrieval (MIR). Despite

this, the analysis of musical expression through quantitative methods is vi-

tal for various MIR endeavors, including automatic music generation, music

transcription, and music recommendation. In addition, this analysis holds

immense value in the realm of musical pedagogy and instruction, as it en-

ables the refinement of more efficacious methodologies for teaching, and

enables students to learn and measure the similarity of their performance

styles with those of renowned pianists. Moreover, quantifying expressive

piano performance enables musicologists to delve deeper into the history of

piano performance and the impact of various pianistic styles. Furthermore,

it facilitates music producers in creating piano pieces that exemplify a wide

array of styles by quantifying the characteristic styles of pianists.

The advent of deep generative models has sparked interest among re-

searchers in the realm of music generation, particularly with regards to style

specific music generation, where the focus is on emulating the styles of spe-

cific composers, genres, or performers. Another area of interest is style

specific music rendition, where a raw, non-expressive composition is trans-

formed into an expressive interpretation through the application of learned

performance styles derived from a corpus of music. Traditional methods of

evaluation for such models have relied on subjective listening tests. While

human experience is crucial in evaluating synthesized music, it is acknowl-

edged that individual responses may vary as music evokes different emo-

tions for different individuals. Therefore, to supplement and enhance the

evaluation of synthesized style specific music, a quantitative approach that

measures the similarity between the generated style and an existing style is

deemed necessary.

To address the above problems, the proposed thesis presents a compre-

hensive methodology for the study of expressive performance modeling and

pianist identification. Initially, a dataset of various interpretations of the

same composition by different performers is constructed to analyze simi-
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larities and differences among performers. Various expressive features are

extracted from this dataset based on the domain knowledge of piano play-

ing and statistical models are employed to estimate the distribution of each

feature, providing a compact representation of pianists’ playing styles. The

similarity of these distributions is calculated to identify pianists. In addition,

the use of Convolutional Neural Networks (CNNs) for learning hierarchical

representations of data is proposed as a musically motivated model for pi-

anist identification. Furthermore, a large-scale, performer-oriented dataset

of automatically transcribed expressive piano performances is proposed, al-

lowing for the exploration of performer-specific expressiveness and different

schools of playing. Finally, a hierarchical performer identification model is

proposed, integrating hierarchical RNNs with hierarchical multi-head atten-

tion, representing a novel approach in its ability to model the hierarchical

structure of Western musical compositions and the relationship between

structural and expressive performance parameters.

In the following section, a comprehensive review of the existing methods

for musical performer identification will be undertaken. The organization

of the thesis and the primary contributions of the research will be outlined

in Section 1.3, and any associated publications will be presented in Section

1.4.

1.2 Prior Research on Performer Identification

In this section, we provide an overview of existing research in the field of

performer identification. We start by reviewing the various applications

of computational models for automatic identification of music performers.

Through a review of previous studies, we aim to identify the challenges

and limitations in the current state of research and highlight the potential

avenues for future work.

The field of MIR has seen widespread use of computational models in

various applications, yet the application of these models for automatic iden-

tification of music performers remains an under-investigated area of study.

Despite this, prior research has focused on the use of computational mod-

els for performer identification. Repp [13] studied the statistical analysis of

temporal commonality and diversity of a well-known piece that also demon-

strates the distinctiveness of some well-known pianists. Stamatatos and
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Widmer [1] developed of a dataset consisting of 22 performers, extracting

expressive features, including timing, loudness, articulation and melody lead

[14] and proposed a system for automatic performer identification, which em-

ployed an ensemble of simple classification algorithms to identify the most

likely performer given a performance. Wang [15] and Saunders et al. [16]

similarly employed expressive features extracted from audio recordings of

piano performances to identify performers. Saunders et al. [17] presented a

novel application of string kernel to identify famous pianists based on their

unique style of playing. Grachten and Widmer [18] delved into the idea of

automatically recognizing pianists based on their execution of ritardandi,

utilizing deviations from the performance norm (average performance) to

differentiate between pairs of pianists.

In addition to pianist identification, research has been conducted to iden-

tify other forms of instrumentalists, though these efforts are limited in scope,

likely due to a lack of available large-scale datasets. For instance, Ramirez

et al. [19] proposed a machine learning-based approach for identifying jazz

saxophonists through the extraction of deviation features from monophonic

audio recordings, specifically analyzing variations in pitch, timing, ampli-

tude, and timbre of individual notes. They subsequently expanded upon

this work by examining violin performances, utilizing features such as artic-

ulation, timing, and amplitude to capture both note-level characteristics and

broader musical context central to violinist identification [20]. Additionally,

Zhao et al. [21] introduced a transfer learning strategy for identifying violin-

ists, leveraging pre-trained weights from music auto-tagging neural networks

and singer identification models.

Apart from instrumentalist identification, there has been research on

singer identification as well. Recently, the application of deep learning mod-

els has made it possible to identify singers automatically with greater accu-

racy, as opposed to utilizing hand-crafted features [22]. For example, Nas-

rullah and Zhao [23] proposed the use of a Convolutional Recurrent Neural

Network (CRNN) based network for artist classification utilizing the artist20

dataset [24]. Subsequently, Zhang et al. [25] employed a deep CRNN model

with an attention mechanism on the same dataset for singer identification,

achieving superior f1-scores. The model learns the local timbre feature rep-

resentation from the mixture of singer voice and background music, facilitat-

ing automatic singer identification. In a study by Kroher and Gómez [22],
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high-level features related to the performance character were extracted from

the predominant fundamental frequency envelope and automatic symbolic

transcriptions, in addition to timbre and vibrato descriptor, and a robust

system for modelling the singer’s typical performance was proposed, which

facilitates the identification of singers.

The majority of studies pertaining to pianist identification have been

compromised by the limited quantity of data available, thereby constraining

the applicability and generalizability of their findings. Additionally, major-

ity of these studies have employed the extraction of manually-engineered

performance features for identification, as opposed to utilizing deep learning

models, which have been demonstrated to be effective in identifying unique

patterns within the input data automatically. Furthermore, there has been

a lack of research examining the correlation between musical structural fea-

tures and performance features through the utilization of mathematical de-

scriptors or deep learning models. As highlighted in Section 1.3, this thesis

attempts to address these shortcomings through the presentation of novel

methodologies and the subsequent analysis of experimental results.

1.3 Thesis Structure and Contributions

Chapter 2 Background

This chapter provides the technical background of this thesis starting

by introducing the topic of musical expression and the factors that

influence it. It reviews various techniques and algorithms that have

been developed to analyze and replicate the expressive elements of

a musical performance using computational modeling approaches. It

also focuses on the use of expressive features to quantitatively mea-

sure the playing style of a performer. The chapter also provides an

overview of the use of statistical models and music similarity measure-

ment algorithms in the analysis of musical expression. Additionally,

it covers definitions of machine learning and deep learning algorithms

and how they may be used in music information retrieval. Finally, it

looks at various evaluation metrics and techniques developed to assess

the reliability and performance of computational models.

Chapter 3 Pianist Identification via Probabilistic Density Estima-

tion
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This chapter proposes a pianist identification method that utilizes sim-

ilarity calculation from note-level feature distribution. The method

leverages the global distribution of proposed expressive features to

characterize the performer’s style, and calculates similarity between

feature distributions of different performers using KL-divergence. It

then performs identification of the performer using this similarity.

Three distribution models - Histogram, Kernel Density Estimation

(KDE), and Gaussian Mixture Model (GMM) - are evaluated and

compared for their identification performance.

Chapter 4 Parametric Learning for Pianist Identification

This chapter proposes a novel approach for pianist identification using

a multichannel 1D convolutional neural network (CNN). The model

aims to capture the nuanced temporal contexts of piano performances

by establishing the CNN’s first layer with diverse filter shapes. The

model exploits the hierarchical structure of Western classical music

by incorporating a beat-specific kernel in the first layer of the CNN,

experimenting with varying kernel sizes that align with each beat in

the music. This allows the CNN to learn the micro-variations injected

by performers within each beat, such as variations in timing, velocity,

and articulation.

Chapter 5 Large Scale Dataset Construction

This chapter presents the Automatically Transcribed Expressive Piano

Performance (ATEPP) dataset, a comprehensive corpus of 11742 vir-

tuoso piano recordings, spanning a total duration of 1007 hours. The

dataset was generated by applying state-of-the-art piano transcription

models to audio recordings of performances, as opposed to MIDI files

recorded from computer-controlled pianos, enabling the inclusion of a

diverse set of performances and examination of performer-specific ex-

pressiveness and diverse playing styles. The validity of the transcribed

performances was established through an error analysis and listening

test of existing transcription models. The dataset serves as a valu-

able resource for researchers investigating expressiveness and styles in

Western classical piano music, and can be utilized for a wide range

of tasks including performance feature analysis, comparison of perfor-

mances and styles, stylistic performance generation, and performance
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visualization. The compilation of the dataset was a joint endeavor in

which I collaborated with two of my colleagues from the Center for

Digital Music (C4DM), Huan Zhang and Jingjing Tang. Each party

contributed equally to the construction of the dataset. The materials

presented in this chapter have been utilized with the express consent

of my aforementioned co-authors.

Chapter 6 Hierarchical Performance Modelling for Pianist Identi-

fication

This Chapter proposes a novel approach for pianist identification by

using a recurrent neural network-based hierarchical performance en-

coder model. The model first employs a beat-level Long Short-Term

Memory (LSTM) encoder that initially encodes performance informa-

tion at the beat level. The outputs are then summarized by a multi-

head attention mechanism, which serves as input to the measure-level

LSTM encoder. The model is trained using note-level features derived

from calculating the deviations of each performance from a mechanical

performance produced by a reference score, with the goal of predicting

the most likely pianist. The approach leverages the ability of LSTMs

to learn short musical ideas and utilizes a multi-head attention mech-

anism to address known limitations of LSTMs in learning long-term

dependencies.

Chapter 7 Conclusion

This chapter concludes this Thesis and identifies avenues for future

research. The ideas and methods presented throughout this thesis have

the potential to be expanded upon and further investigated, providing

a foundation for future work.

1.4 Associated publications

Portions of the work detailed in this thesis have been presented in national

and international scholarly publications, as follows:

• Chapter 3: Syed Rifat Mahmud Rafee, György Fazekas, and Geraint

A. Wiggins. Performer identification from symbolic representation of

music using statistical models. International Computer Music Con-

ference (ICMC 2021), 2021.
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Syed Rifat Mahmud Rafee, György Fazekas, and Geraint A. Wiggins.

Performer Identification using Note Level Expressive Features. The

Journal of New Music Research, 2022. (In Review)

• Chapter 5: Huan Zhang, Jingjing Tang, Syed Rifat Mahmud Rafee,

Simon Dixon and György Fazekas. ATEPP: A Dataset Of Automat-

ically Transcribed Expressive Piano Performance. In 23rd Interna-

tional Society for Music Information Retrieval Conference (ISMIR

2022)., 2022.

• Chapter 6: Syed Rifat Mahmud Rafee, György Fazekas, and Geraint

A. Wiggins. HIPI: A Hierarchical Performer Identification model

based on Symbolic Representation of Music. 2023 IEEE International

Conference on Acoustics, Speech and Signal Processing.

Syed Rifat Mahmud Rafee, György Fazekas, and Geraint A. Wiggins.

A Hierarchical Modelling Approach of Expressive Performance for Vir-

tuoso Pianist Identification. Transactions of the International Society

for Music Information Retrieval (TISMIR), 2023. (In Review)
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Chapter 2

Background

2.1 Introduction

This chapter presents the technical background of the thesis, beginning with

an introduction to musical expression and the factors that influence it. Then

we provide a detailed review of the various techniques and algorithms that

have been developed to analyze and replicate the expressive elements of a

musical performance using computational modelling approaches in Section

2.3. We then shift our focus on the use of expressive features to quantita-

tively measure the playing style of a performer in Section 2.4. In Section 2.5

we provide an overview of the use of statistical models and music similarity

measurement algorithms in the analysis of musical expression. This section

discusses the various techniques and approaches that have been developed in

this area, and how they can be used to identify patterns and characteristics

in a performer’s playing style. The definitions of machine learning and deep

learning algorithms are covered in Section 2.6, after which the discussion

moves to how these models may be used in music information retrieval. Fi-

nally, in Section 2.7, we look at various evaluation metrics and techniques

that have been developed to assess the reliability and performance of com-

putational models.

2.2 Expressive Music Performance

A fundamental concept in the study of music and its performance is that

listeners perceive music as expressive [26, 27, 28]. For many listeners, being
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“moved” by a performance is the pinnacle musical experience. The enjoy-

ment of the music greatly relies upon the manner in which a piece of music

has been performed. In addition to the emotional content of a composition

that is introduced by a composer by incorporating numerous musical ideas

into the composition’s structure to present contrast and surprise the lis-

teners, performers frequently improvise and express the affective emotional

content through their performances. They do not just play a piece of mu-

sic with the prescribed durations and the pitches printed in the notated

score. Instead, they speed up or slow down in certain places, emphasising

certain notes or passages in different ways to enhance the emotional expres-

sivity. The most important parameters that are available to a pianist are

timing, tempo, dynamics and articulation (the connection between the suc-

cessive notes and how each note is played). These subtle variations are not

stated in the notated score, yet they are vital for the music to be affective

and engaging. The art of continually shaping these important parameters

throughout a musical performance is also known as Expressive Performance.

Performers learn these performative rules through many years of dedicated

and rigorous training as well as from intellectual involvement with music.

Artists that can evoke strong feelings in their listeners tend to be more pop-

ular than just technically adept ones [29]. However, it goes without saying

that technical proficiency is vital, but the ability to really express oneself is

what sets great artists apart.

2.2.1 Different Aspects of Expressivity

The term ‘expression’ can be utilised in different ways depending on the

musical context in which it is being used. For example, it has been broadly

used to define the deliberate changes in acoustic features (such as tempo,

dynamics, articulation and timing) that differentiate one performance of the

same musical composition from another [6]. On the other hand, the word

expression has also been used to describe how listeners perceive musical

performance to be emotionally expressive [27]. Expressiveness in music,

however, is not limited to the simple expression of emotions; rather, it is

a phenomenon with several dimensions [30] that also includes the musical

sensitivity (knowing exactly how to perform a particular phrase or section)

of a performer and their ability to convey the emotion and meaning of a

piece of music through their performance [31].
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Studies of expressive music performances have generally taken one of

three approaches. The first is the philosophical point of view that has ex-

isted since ancient times and has been used to examine the question of how

music may be described as “expressive” [26, 32, 27, 33]. The musicological

perspective, which incorporates both music psychology and cognition, is a

second way of looking at expressive performance [34, 35, 36, 37, 38, 39, 40].

Since the advent of more precise data collection enabled by computers and

electronic devices in the late 1980s [41], a third approach has emerged, which

considers the study of expressive performance as an empirically tractable is-

sue that can be investigated through performance analysis [42, 28, 6] or

computational models [43, 44]. This study does not have the time or space

to provide a comprehensive analysis of all three approaches; rather, it focuses

on the third method, computational models of expressive piano performance,

as its primary emphasis.

2.2.2 Music Structure

The emotional content in music is often linked to two interdependent factors:

the structure laid down in the score by the composer and the interpretation

that the performers makes of it [45]. Musical structure is the arrangement of

many musical ideas inside a composition, most of which are offered to present

contrast and surprise the listener, while others are repeated or even altered to

create a feeling of familiarity. These musical ideas are closely connected and

may be decomposed into shorter ideas due to their hierarchical organisation.

The interaction between familiarity, novelty and hierarchical decomposition

of melodic patterns is coherently structured to reflect the composer’s view

of the piece of music.

This perspective of music as a whole is sometimes referred to as musical

form, and it is the most obvious manifestation of the hidden hierarchical

structures embedded in music. In Western classical music, for instance, the

lowest level of the hierarchy comprises of the notes and chords that make up

a piece. Further, by linking them together in a synchronous or sequential

fashion, we get higher structural constructs like measures, motives, and

phrases, which in turn help define sections. As depicted in Figure 2.1, these

high-level structural features dictate a composition’s overall layout, and the

resulting nested organisation of sounds makes it feasible to visualise the

hierarchical structure of a piece using tree representation of music [3].
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Figure 2.1: Visual representation of the metrical hierarchy of Western clas-
sical music.

2.2.3 Individual Styles of Performer

The inherent emotional content in the music flows from the composer to

the performer to the listener [5]. Performers play a vital role in communi-

cating the composer’s intent to the audience by conceptualising the music

in terms of a wide variety of abstract structures (motifs, phrases, sections

etc.) and then continuously “shaping” these structures via the use of tempo,

dynamics, and articulation. This often adds the emotional richness to the

composition and Palmer [6] refers to this as performer’s interpretation. To

put it more simply, it is the process for performers to decide how they will

perform the precise notated music to make it come colourfully and expres-

sively alive. Performance that conveys emotion and feeling can be seen as

a combination of the performer’s interpretation and the physical execution

of the piece. This is influenced greatly by the performer’s personal style,

as they infuse their own emotions, interpretation, and personality into the

piece, resulting in a wide range of expressive styles within a specific genre.

For instance, Some performers may be more dramatic and expressive, while

others may be more reserved in their musical expression. Some may focus on

technical precision and clarity, while others may prioritize emotional depth

and intensity.

Virtuoso performers typically convey their own musical styles by adding

a plethora of subtle variations to the most crucial expressive factors. How-
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ever, these subtle variations are not stated in the notated score, but they

convey and reflect the performer’s comprehension of the structure and affec-

tive content inherent in a composition, thereby highlighting the dramatic,

affective, and emotional qualities and potentially engaging and affecting the

listeners emotionally. This explains why the “Ode to Joy” performed by the

Berliner Philharmoniker is so much more lively and expressive than the one

on your cellular phone.

A performer’s expressive style to music may be shaped by their educa-

tion, upbringing, life experiences, and the historical and cultural context in

which they are performing. In addition to the ways in which individuals

approach expressivity, it’s possible that the ways in which various musical

traditions or genres approach expressivity varies from one another. For ex-

ample, classical music may place a greater emphasis on technical mastery

and formal structure, while jazz or folk music may place a greater empha-

sis on improvisation and personal expression. Overall, the combination of

these and other factors can contribute to the uniqueness of a performer’s

style, making them stand out from others in their genre. While it is possible

to conceptualize a music performer’s style theoretically, the use of compu-

tational models allows for a more systematic and precise examination of

expressive music performance. In the following section, we will explore the

application of these models to analyze and model musical expressivity.

2.3 Computational Modelling of Expressive Per-

formance

Computational modelling of expressive performance has attracted increasing

attention in recent years. The goal of computational modelling is to formu-

late hypotheses regarding expressive performance in the form of computer

programmes that can be validated empirically using real measured perfor-

mance data. Hence, it has been the subject of research and investigation in

a wide range of scientific and creative fields [46], including music psychology

and musicology, as well as computer science.

The motivations behind modelling expressive performance using com-

putational modelling can be grouped into two wider categories. Firstly,

Computational models may be used to examine how human perform music

[47, 48]. In addition to this, it enables us to study the relationship that
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exists between the composer, the performer and the listener [5, 49]. Sec-

ondly, they can be used to generate new performances of musical pieces

in a variety of contexts [50, 51, 52, 53]. Since it is beyond the scope of

this chapter to provide a comprehensive analysis of both categories, we will

instead concentrate on the former kind and explore computational models

as a way of understanding how performers perform music. In particular,

we try to quantify the stylistic features that characterises performers, which

then can be modelled by computational models for the purpose of performer

identification.

2.3.1 Modelling Relationship of Music Structure and Per-

formance

Computational models, as analytical tools, allow us to study how humans

perform music by investigating the relationship between musical features

like phrase structure and performance features like timing and dynamics.

A first notable trend in recent research is the growing importance of data-

driven techniques that depend on machine learning algorithms to learn the

relationship from a large corpus of real-world data. The research conducted

by Kosta et al. [54, 55, 56], for instance, which focuses on learning the

relationship between expressive dynamics and dynamic markings, is an ex-

ample of such approaches. Grachten and Widmer [51] proposes a modelling

framework that attempts to quantify the effect of annotated score descrip-

tors (pitch, dynamic markings and metrical positions) on expressive perfor-

mance parameters which includes expressive dynamics [57] and timing [58].

To represent the dynamics, articulation, and timbral aspects of expressive

ensemble performances,[59] investigate the use of score features characteris-

ing horizontal (i.e. melodic) and vertical (i.e. harmonic) contexts. Giraldo

and Ramirez [60] presented a data-driven computational approach including

machine learning and feature selection to induce expressive performance rule

models for note duration, onset, energy, and ornamentation transformations

in jazz guitar music.

The quantitative studies on how different structural features contribute

to the expressive performance not only demonstrate some well known rela-

tionship but also suggest that aspects of performance may be connected to

the structure of the music in many ways; for instance, phrasing has been

shown to be related to dynamics [61], and timing [62]. Leman et al. [63] de-
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veloped a computational model to examine the timing and phrasing of piano

performances to learn how these factors contribute to the performance’s ex-

pressiveness. Todd has proposed several structure level models for modelling

expressive timing [64, 65, 66] and dynamics [10]. Todd [64]’s findings support

his claim that performers tend to increase tempo and dynamics towards the

middle of the phrases and decreases towards the end so that listeners per-

ceive the hierarchical structure of the music. Another study by [67, 68] tried

to build a mathematical model of musical structure and expression based on

enormous theoretical background, namely, the “mathematical music theory”

[69]. Recent research by Gingras et al. [49] has provided more evidence of

the correlation between musical structure and performance, which in turn

serves as a reliable predictor of affective perception(listener).

While previous research has explored the connections between music

structure and expressive performance parameters, there is an opportunity

for a more comprehensive approach. Existing studies have identified corre-

lations between specific elements like dynamics and timing and their impact

on musical performance. However, these studies have not fully exploited on

these findings, particularly in the context of performer identification. Addi-

tionally, the potential of deep learning techniques remains underutilized for

gaining a deeper understanding of these complex relationships. This study

aims to address these issues by proposing a hierarchical modelling approach

in Chapter 6 that concurrently models both the structural and performance

characteristics of music.

2.3.2 Comparing Expressive Performances

Comparing multiple performances of the same piece by different performers

to its notated score has been a popular method for modelling expressive per-

formance. This approach provides an opportunity to compare and analyse

the similarities and differences in how different performers interpret a piece

of music. However, obtaining a digital version of the notated score can be

challenging. Furthermore, directly comparing the dynamics (loudness) of

a digital score with those of an actual performance can be problematic, as

scores often lack precise information regarding dynamics.

Hence, some of the works follow an unsupervised approach, where the

average of multiple aligned performances of the same piece is compared with

the individual performances[1, 70, 71]. This stands in contrast to supervised

16



approach where each individual performance is compared with its respective

score. Repp [13] examined the statistical analysis of temporal similarity and

variety of a well-known composition that illustrates the individuality of a

number of renowned pianists. Another study by Sloboda [72] shows that it is

possible to deduce which notes were emphasised by measuring the differences

in the performers’ expressive variations, dynamic, and articulation.

A more recent study by Stamatatos [73] reveals that deviation from the

norm performance (average of timing and dynamics) is stronger in portray-

ing performer individuality than deviation from the printed score. Bernays

and Traube [74] investigated pianist’s individuality for the same piece per-

formed by different performers through the study of different performance

features measured from their gesture application on the keyboard. Their

study suggests that individual performance technique correlates to the ab-

stract concept of timbre and that pianists may express distinctive style

through specific timbral intentions. Another approach to compare expres-

sive timing is presented by Liem and Hanjalic [75] and Liem et al. [76], who

look at alignment patterns across different expressive performances of the

same work using standard deviations and entropy. Despite the fact that

computational models for performance comparison have yielded some fasci-

nating findings, very little progress has been made in really understanding

the way humans perform music expressively.

2.4 Expressive Features for Quantifying Per-

former’s playing Style

One of the most fascinating aspects of music performance is the way in which

performers bring their own unique style and interpretation to a piece of mu-

sic. This expressive quality, also known as “performer’s playing style,” can

be influenced by a variety of factors, including the performer’s training, tech-

nique, and artistic vision. To better comprehend and assess a performer’s

playing style, it is important to investigate the expressive elements that

contribute to this quality. In this dissertation, we aim to develop such fea-

tures that can be represented by a variety of numerical descriptors extracted

from the recorded piano performances. These features are further used to

discriminate and identify virtuoso piano performers. This section gives an

overview of the expressive features that have been used in the past and are
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still used to analyse musical expressions and model different playing styles

of performers.

Expressive features may be categorised according to the structural level

of music from which they were derived. The low-level features for example

tempo, timing and dynamic variations in a note level capture the small-scale

expressive elements. The mid-level features demonstrate the medium-scale

expressive elements that summarises the low level features, such as phras-

ing patterns, note duration patterns and articulation patterns. The high-

level features, which are sometimes also referred to as semantic features, are

what capture the large-scale expressive elements that reveal aspects that

are typically close to how humans perceive music [77]. These aspects in-

clude the overall tempo and the average loudness of the track, for example.

The most important expressive parameters available to piano performers are

tempo/timing, dynamics and articulation; thus, we will only discuss these

parameters, excluding additional aspects such as timbre, vibrato, and in-

tonation. In addition, we begin with a brief introduction of the basics of

symbolic representation.

2.4.1 Symbolic Representations

In general, there are two very common types of representations that may

be used to represent music: audio and symbolic. Audio representations,

such as WAV or MP3 files, encode sound as an electrical signal by digitiz-

ing and sometimes compressing the acoustic waves that are generated by

a sound source. These waves are the result of the vibrational motion of a

sound source, such as a string on a musical instrument or the vocal cords of a

singer, which produce changes in air pressure that travel through the air and

are detected by the human ear [78]. In contrast, symbolic music represen-

tations, such as MIDI, contain score information with an explicit encoding

of musical events, such as notes, and instrumentation, rather than simply

encoding the acoustic waves of the sound [78]. This allows for greater con-

trol and manipulation of the music, as well as the ability to more accurately

represent complex musical structures. That being said, we shall review the

fundamental characteristics of symbolic representations, with an emphasis

on MIDI, the de facto standard for controlling music synthesisers.

While notated scores, such as sheet music, are also considered symbolic

music, our focus here is on the digital representation of symbolic music.
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(a) MusicXML code snippet. (b) Excerpt of a MIDI file.

(c) Piano roll representation.

Figure 2.2: The different digital representations of symbolic music.

Hence, in Figure 2.2, we provide three very common digital representations

of symbolic music. The MusicXML markup language shown in Figure 2.2a

is a text-based structured representation tailored specifically to the needs

of musical applications [79]. It offers a standard format for exchanging and

storing musical data among music notation software, but it is too cumber-

some to be used directly by humans. The same applies for their usage as

representation for any machine learning task, despite the fact that they can

be converted to more readable formats like MIDI. Figure 2.2c, shows a pi-

ano roll representation of the notated score presented in Figure 2.2a. It is

a graphical representation of the music piece in which the horizontal axis

represents time and the vertical axis represents pitch. Since each note on

a piano roll is shown as a discrete event rather than as a part of a chord

or other musical structure, it is much simpler to manipulate and rearrange
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musical passages in a digital setting. Despite its popularity as a standard

representation for many machine learning algorithms, the absence of note-

off information makes it difficult to tell the difference between a sustained

note and a series of shorter ones [80].

Finally, Figure 2.2b displays the MIDI representation of the score shown

in Figure 2.2a, after being processed using a python library called mido

[81]. The Musical Instrument Digital Interface (MIDI) standard specifies a

protocol for the digital representation and exchange of musical and other

audio-related data [82]. In real time, they communicate note performance

data and control data through a series of event messages. As shown in Figure

2.2b, the note on event indicate that a note is played and the note off event

indicate the end of the note. Additionally, each MIDI event has a channel

number between 0 and 15, which specifies the instrument or track, a MIDI

note number, which specifies the note pitch and can take on integer values

between 0 and 127, a velocity, which specifies the loudness of a MIDI note

also represented by integer values between 0 and 127, and a time attribute,

which specifies the delta-time value in ticks. Ticks and beats are the basis of

MIDI file timing. You may think of a beat as a quarter note. The smallest

time measurement in MIDI is called a tick, and it is used to divide beats.

The ticks of each MIDI message indicates how much time has elapsed since

the previous message was received. One of the primary benefits of MIDI

is that it enables multiple devices to communicate and exchange music and

other data. As a result, MIDI has become a key technology for the music

production and distribution infrastructure, facilitating the use of a broad

variety of software and hardware for music composition, arrangement, and

editing.

2.4.2 Expressive Timing and Tempo

Expressive timing and tempo are vital components in music that add to

the piece’s overall emotional effect and character. They allow the musician

to create a sense of story within the music and express a broad variety of

feelings. The temporal position of musical events is typically conveyed via

the use of expressive timing and tempo. The tempo of a piece of music refers

to the speed at which it is played. It is indicated in beats per minute (bpm)

or a particular note value (such as quarter note, half note, etc.) and can

often refer to the global tempo of a performance or the local tempo. Global
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tempo refers to the overall speed at which a piece is performed and typically

indicated in the music notation using a metronome marking. Unless changed

by the composer or the performer, global tempo normally remains constant

throughout the whole composition. Local tempo, on the other hand, refers

to the speed at which a specific section or passage is performed and may be

viewed as local deviations from the global tempo [48].

Figure 2.3: Note Onset locations for a performance and its corresponding
score.

In music, timing refers to the exact location of musical events like the

placement of notes and rhythms inside a measure, and the music is often

perfectly quantised, meaning that note onsets are properly matched onto

the tempo. Expressive timing, however, refers to the intentional deviations

of those individual events from the local tempo [48]. Figure 2.3 provides an

illustration, with the top staffs depicting the exact onset positions of each

note in a score and the bottom staffs depicting the locations of the same

notes during a performance. Timing plays a significant role in expressive

performance, allowing the artist to shape the music and evoke the desired

feeling in the listener [83]. For example, a performer may inject those micro-

variations in timing in their performance to build up a sense of tension by

rushing ahead of the beat or to create a sense of anticipation by holding

back beat or two before resolving a musical phrase.

Expressive tempo and timing have been shown to have strong connec-

tions to musical expressiveness, music emotion cognition, and performers’

playing styles [50, 84, 65, 85, 83, 86, 47, 58, 87]. It is therefore assumed that

the expressive timing features can characterise performers’ unique playing
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style and may be used to differentiate across pianists. As discussed in sec-

tion 2.3.2, it is usual practise to compare a performance with its score to

determine the precise time at which each note occurs in both the score and

the performance [47, 88]. In addition, a quasi performance by taking the

average of several performances of the same piece can be used as a reference

point for comparison [70, 71, 1].

2.4.3 Expressive Dynamics

The term “expressive dynamics” is used to describe how a pianist changes

the loudness and intensity of a composition during a performance. For ex-

ample, they may accentuate or soften a certain musical idea to effectively

convey the structure and emotion to the listener [89]. While the term “dy-

namics” may refer to a wide variety of aspects of music [90], our focus here

is limited to those that relate to actual musical performance. Expressive dy-

namics, or the variations in loudness and intensity in a musical performance,

are controlled differently on different instruments. On the violin, expressive

dynamics are achieved through the use of bow velocity, bow pressure, and

bow position, whereas, on the piano, expressive dynamics are controlled by

the velocity of the hammer as it strikes the string [90].

Most studies of the expressive piano performance relies on the MIDI ve-

locity as a substitute for the exact volume of the sound produced during a

performance. Some previous research, such as the NAIST model [91], the

early versions of the Basis function model [51, 92], and the unsupervised

method developed by Van Herwaarden et al. [93], all made use of MIDI

velocity as an expressive objective for each individual note in the score.

Other research that focuses on polyphonic music use sequential models to

disentangle the melodic lines of each voice in a track and predict their indi-

vidual MIDI velocities of each voice [94, 95, 96]. These studies have shown

promising result in analysing expressive performance using the midi velocity,

despite the fact that, MIDI velocities do not represent the actual measured

or perceived loudness and may change from instrument to instrument [48].

2.4.4 Articulation

The term “articulation” is used to describe the manner in which a musician

plays or produces a certain note or succession of notes on an instrument.
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When it comes to playing the piano, articulation refers to the ratio between

the duration of a note as it is played and its written duration on the score,

which also determines the amount of overlap between consecutive notes [48].

Articulation is a key component of musical performance that enables artists

to transmit a broad variety of emotions and nuances to the audience, similar

to the way we articulate words while speaking [97]. There are many tradi-

tional articulation techniques that have been standardized in Western music

[97], but composers can also invent new ones as needed [98], and performers

have the freedom to interpret and apply articulation in their own way based

on their interpretation of the music and the context of their performance

[97]. However, the most prevalent articulation techniques in piano perfor-

mance include staccato (the note is brief or detached) and legato (a note to

be performed smoothly and connected with its successor).

A common approach of analysing articulation is to compare real per-

formances with their corresponding scores. For example, Bresin and Um-

berto Battel [99] analyzed how pianists used different articulation strategies

in expressive performances of a specific score, collecting measurements of key

overlap time and its relation to the inter-onset-interval for legato and stac-

cato notes and examining the resulting articulation applied by the right hand

through statistical analysis, with the aim of potentially creating articulation

rules for automatic piano performance. In contrast, other studies use linear

[100] or logarithmic [52, 96] scaling of parameters to describe articulation

quantitatively. More recently, [101] has made an effort to describe articula-

tion by first modelling the pedal information that has complex consequences

for note duration with the goal of automatic performance rendering.

2.5 Statistical Distribution Models and Music

Similarity

Distributions of expressive features can be a powerful tool for modelling and

understanding a piano performance. More importantly, we may use well-

established statistical models to capture and quantify a performer’s unique

style by modelling the distributions of different expressive variables over

all of his performances, under the assumption that distribution gives the

compact representation of a pianist’s style [102, 71]. There are various sta-

tistical models that can be used to model distributions of expressive features
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in piano performance. In this thesis, three well-known distribution models,

namely Histogram, Kernel Density Estimation (KDE), and the Gaussian

Mixture Model, are used, and then their modelling capabilities on pianist’s

style are compared. The definitions and applications of these models that

are used throughout this thesis are outlined in section 2.5. Next, music sim-

ilarity is thoroughly reviewed in section 2.5.2, since our proposed method

uses a combination of statistical models and music similarity measures for

pianist identification.

2.5.1 Statistical Distribution Models

Statistical modelling is the process of developing mathematical models that

characterise the interrelationships between different variables in order to

evaluate and interpret data [103]. This facilitates data analysts to easily

detect patterns and trends in data, make future predictions, and create

visually appealing representations of that data in an intuitive way. In the

context of music performance, statistical models may be used to examine

the feature distribution of hundreds or thousands of notes to provide insight

into the performer’s playing characteristics and style. This may be especially

beneficial in music information retrieval studies, where it can be difficult to

determine the link between a performer’s style and expressive elements at

the note level. Three specific statistical models that are commonly used in

this context are histograms, kernel density estimation, and Gaussian mixture

models. This section discusses the definition and calculation techniques of

these models, in addition to their application to the MIR research.

2.5.1.1 Histogram

A histogram provides the approximate estimation of how the numerical val-

ues in a dataset are distributed. It is a way to visualise the frequency or

occurrence of different values within certain ranges. Pearson [104] initially

proposed the concept in 1894, and since then it has been used as one of the

common approaches of density estimation, or more specifically, of estimat-

ing the Probability Density Function (PDF) that provides an approximate

estimation of the density of the underlying distribution of the data. The es-

timated PDF may then be used to compute the likelihood that the random

variable will take on a certain value or fall within a specified range of values
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[105].

In order to construct a histogram, one must first divide the possible

values into a series of intervals (or “bins”), with the width of each bin being

referred to as the “bin size,” and then determine how many values fall into

each interval. Typically, the bins will be defined as a series of discrete,

non-overlapping intervals of a variable and the intervals (or bins) must be

adjacent and are typically (but not always) the same size [106]. In the case

of equal size, the height of the bar over each bin is proportional to the

frequency of values in that bin. Alternatively, the bins can be of unequal

size, in which case the area of the rectangle over each bin is proportional to

the frequency of values in that bin [107]. There are no gaps between adjacent

bins in a histogram, this indicates that the original value is continuous [108].

In MIR, histograms are often used to illustrate the distribution of dif-

ferent musical properties or aspects. Using a histogram, one may see the

distribution of pitch or tempo in a music recording, for instance. This can

be useful for tasks such as genre classification [109], where the distribution

of certain features may be indicative of the style of music. Histograms can

also be used to identify patterns in the distribution of musical events over

time [110], and to visualize the distribution of timbral features such as spec-

tral content [111]. Overall, histograms are a useful tool for understanding

and summarizing the characteristics of music performance and for extracting

meaningful information from them.

2.5.1.2 Kernel Density Estimation

Kernel density estimation is a statistical method for estimating the proba-

bility density function (PDF) of a random variable based on a data sample

[112]. It is a non-parametric approach, meaning that no assumptions regard-

ing the shape of the underlying distribution are required. Instead, it operates

by assigning a “kernel” function to each data point and then summing these

functions to estimate the PDF of the variable. The kernel function is a

probability density function itself, which is typically a bell curve (normal

distribution) [113]. The resulting estimate is smooth and continuous, unlike

a histogram, which is discrete and represented by vertical bars. Here is the

formula for calculating kernel density estimation:

Let’s say we have a set of n data points {X1, X2, ..., Xn}. The kernel

density estimation for a point x is calculated as follows:
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f̂(x) =
1

nh

n∑
i=1

K(
Xi − x

h
) (2.1)

where h is the bandwidth that controls the smoothness of the estimate. A

smaller h results in a smoother estimate, while a larger h results in a more

jagged estimate. K is the kernel function evaluated at x for the ith data

point, and the sum is taken over all n data points to obtain the final PDF

curve. The kernel function (indicates a Gaussian kernel) itself is defined as

follows:

ki(x) =
1√
2π
∗ exp

−x2

2 (2.2)

Choosing the optimal bandwidth can be a challenge, and there are sev-

eral methods for doing so such as including Mean Integrated Squared Error

[114]and rule of thumb [112].

Previous studies have made use of KDE for the purpose of music classifi-

cation [115, 116], emotion recognition [117, 118], or music similarity analysis

[119] due to its robustness in modelling the distribution of data and its visu-

alisation. In light of this, we assume that KDE may be used to describe the

distributions of a performer’s expressive characteristics, therefore providing

a compact representation of their unique style.

2.5.1.3 Gaussian Mixture Model

The Gaussian mixture model is a parametric method for estimating the

probability density that is expressed as a weighted sum of a number of dif-

ferent distributions that follow the Gaussian distribution (often known as

the normal distribution) [120]. Each Gaussian distribution in the mixture

may be thought of as a separate component of the model, with its weight

representing the proportion of the likelihood that a given data point was

produced by that component. The GMM can be used for clustering, den-

sity estimation, and classification. In clustering, the model is used to find

groups of similar data points within the data. In density estimation, the

model is used to estimate the probability density function of the data. In

classification, the model is used to assign class labels to data points based

on the component of the mixture model that they are most likely to belong

to.
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The probability density function of the uni-variate or one-dimensional

Gaussian distribution can be formulated as below:

N (x|µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.3)

Where the µ refers to the distribution mean and σ2 refers to the variance.

However, for multivariate GMM with k components, the parameters can be

described as below:

The mean vectors of the component Gaussians, {µ1, µ2, . . . , µk}. The

covariance matrices of the component Gaussians, {Σ1,Σ2, . . . ,Σk}. The

mixing weights of the component Gaussians, {ω1, ω2, . . . , ωk}. These weights

sum to 1 and represent the probability that a data point was generated by

each component. Given a set of n data points {x1, x2, . . . , xn}, the likelihood

of the data given the GMM is given by:

p(X|ω, µ,Σ) =
n∏

i=1

k∑
j=1

ωjN (xi|µj ,Σj) (2.4)

with,

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.5)

where N (·|µ,Σ) is the Gaussian probability density function with mean

µ and covariance matrix Σ.

To fit the GMM to a set of data, the model parameters can be estimated

using the expectation-maximization (EM) algorithm. The EM algorithm

iteratively refines estimates of the model parameters by alternating between

the expectation step, in which the responsibility of each component for gen-

erating each data point is calculated, and the maximization step, in which

the model parameters are updated based on the responsibilities.

GMMs have been widely used in MIR and since they can represent com-

plex distributions over features extracted from music data, this makes them

well-suited for tasks such as genre classification [121, 116], musical emotion

modelling [122], and instrument classification [123, 124], where the goal is

to identify patterns in the data that are indicative of certain categories or

structures. Hence, we assume that GMMs can model the distribution of

various expressive features that are indicative of the pianist’s style.
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2.5.2 Music Similarity

Music similarity refers to how closely two pieces of music are related in terms

of their musical characteristics. A similarity score is used to numerically ex-

press the degree of resemblance; a higher number indicates a greater degree

of similarity. Many different methods have been developed to determine

how similar two musical works are. These include feature-based approaches,

which extract and compare musical features like pitch [125] and rhythm

[126]; content-based approaches [127, 128], which analyse the audio content

of the music to identify similar characteristics; and structural approaches

[129], which examine the structure of the music. The use of music similar-

ity in this thesis for the task of performer identification is motivated by its

widespread application to various Music Information Retrieval (MIR) tasks

such as music genre classification [130], instrument classification [131], emo-

tion detection [132], playlist generation [133] and music recommendation

[134].

To this extent, our similarity estimation method can be described in

three main steps. At first, given the presumption that performers continu-

ally modify the expressive parameters at a micro level, it is expected that

the expressive characteristics are collected from the variations of each note.

The next step is to conduct a statistical analysis of the expressive features at

the note level. This is necessary since expressive aspects at the note level are

not reflective of structural or global musical characteristics. Each feature’s

distribution may be modelled using different statistical models, and mean

and variance can be computed if they follow a known distribution. However,

more complicated or unknown distributions need the use of more sophisti-

cated statistical models with parameters that are learnt or trained from the

data in order to represent the properties of the distribution effectively. As

a final step, a measure of how musically similar two pieces are is created by

calculating the distance or divergence between their feature distributions.

Kullback-Leibler divergence [135] (also known as KL divergence or rela-

tive entropy), a measure of the difference between two probability distribu-

tions, is a popular method for calculating the divergence of two distributions.

Unlike JS divergence [136], it is a non-symmetric measure, meaning that the

KL divergence between distribution A and distribution B is not necessarily

the same as the KL divergence between distribution B and distribution A.
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The KL divergence between two distributions P and Q is defined as:

DKL(P ||Q) =
∑
x

p(x) log
p(x)

q(x)
(2.6)

where P refers to the distribution of the observed data and p(x) is the

probability of x under distribution P. Q refers to a model or approximation

of P and q(x) is the probability of x under distribution Q. It’s important to

note that P and Q distributions are defined on the same probability space.

However, it might be challenging to determine the KL divergence analyt-

ically, when the distributions contain complicated, multivariate probability

density functions (PDFs), such as in Gaussian mixture models. In such

cases, the KL divergence must be computed using approximations or alter-

nate methods, such as matching-based approximations [137]. Hence, this

can be formulated as below for two Gaussians N(µ1,Σ1) and N(µ2,Σ2):

DKL =
1

2

(
log
|Σ2|
|Σ1|

+ Tr
(
Σ−1
2 Σ1

)
+ (µ1 − µ2)

TΣ−1
2 (µ1 − µ2)

)
(2.7)

Where µ refers to the mean, Σ is the covariance matrix and Tr refers to

the trace of matrix.

2.6 Machine Learning

Machine learning is a subfield of artificial intelligence (AI) that involves the

design and development of algorithms that can learn from and make predic-

tions or decisions based on data. It’s the method of training a computer to

solve problems on its own by analysing large amounts of data and drawing

conclusions from those analyses. It is commonly used for classification and

regression tasks, in which the objective is to predict a discrete label or a

continuous value based on input data, respectively.

There are several categories of machine learning, including Supervised

learning, unsupervised learning and reinforcement learning. Supervised

learning involves training a model on labelled data, where the correct out-

put label is supplied for each example in the training set, also known as

ground truth. For example, let’s denote a dataset, X = {x1, x2..., xk} and

xk ∈ Rd, where k is the number of training samples and xi is d-dimensional
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feature vector and each corresponding output labels are denoted as Y =

{y1, y2..., yk}. During the training phase, data samples and their labels are

fed into the machine learning model, and the model’s output label, Ŷ is then

compared against the real label, Y using a loss function that measures how

far off the model’s prediction was. The trained model is then used to make a

prediction on a new sample that was not available during training. The pro-

cess of unsupervised learning includes training a model on unlabeled data,

in which the correct output is not supplied throughout the training process.

It is necessary for the model to uncover the underlying structure of the data

by using methods such as clustering. Finally, the fundamental principle of

reinforcement learning is that an agent may learn from its interactions with

its surroundings by receiving rewards and penalties as feedback.

In this Thesis, a supervised approach is taken for pianist identification.

Alongside the distribution-based similarity estimation for pianist identifica-

tion, two machine learning models, K-Nearest Neighbour (KNN) and Sup-

port Vector Machine have been used as a baseline model in Chapter 3.

Hence, the definition and the calculation method for these two models are

first described in this Section. We next introduce two well-known deep

learning models, the convolutional neural network and the recurrent neural

network, with the CNN and its many variants being used in Chapter 4 and

the variant of RNN network being used significantly in Chapter 6.

2.6.1 Supervised Learning Models

2.6.1.1 K-nearest neighbors

K-nearest neighbors (KNN) is a supervised non-parametric machine learn-

ing algorithm that was initially developed by Fix and Hodges [138] and

then further extended by Cover and Hart [139], for the purposes of both

classification and regression. However, since pianist identification can be

considered a multiclass classification problem, only the theory behind clas-

sification using KNN is discussed here. The basic principle behind KNN is

to first determine the K number of training instances that are closest (in

terms of some distance measure) to a new data point, and then to utilise

the labels of those training examples to generate a prediction about the new

data point.

The mathematical formulation of KNN is fairly straightforward. Given
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a set of training examples, X = {x1, x2, ..., xk}, where each xi is a d-

dimensional feature vector and a corresponding label yi, the goal is to predict

the label of a new data point x using the KNN algorithm. To do this, we

first need to define a distance metric. One common distance metric used

with KNN is Euclidean distance [140], which is defined as:

Euclidean Distance(x, xi) =

√√√√ d∑
j=1

(xj − xij)2 (2.8)

where xj and xij are the j-th features of x and xi respectively.

Once we have defined a distance metric, we can find the K nearest neigh-

bors of x by sorting the training examples by their distance to x and select-

ing the K examples with the smallest distance. The prediction for x is then

made by majority vote: if the majority of the K nearest neighbors belong

to a specific class, we predict that x belongs to the same class.

2.6.1.2 Support Vector Machine

Originally developed by Vapnik et al. and colleagues [141, 142, 143] at

AT&T Bell Laboratories, Support Vector Machines (SVMs) are a supervised

learning technique that may be used for both classification and regression

problems. The primary objective of a SVM is to find a hyperplane in a

high-dimensional space that most effectively divides the data into different

classes.

When the SVM is provided with a collection of training data points

belonging to two classes, it searches for the hyperplane that has the largest

minimum distance between those points. This distance is often referred to

as the margin. Out of a set of possible hyperplanes that the SVM algorithm

constructs, the aim is to choose a hyperplane that has the maximum margin

between it and the nearest points of either class in the training set, increasing

the likelihood that unlabelled data will be correctly classified. Therefore,

another term for the SVM is the Maximum Margin Classifier and the points

closest to the hyperplane are known as support vectors. Using a linear

kernel function, we fit a linear hyperplane across classes if the SVM data is

linearly separable. It’s called hard-margin [143]. Here is the mathematical

formulation for a linear SVM:

Given a training set {(x1, y1), (x2, y2), ..., (xk, yk)}, where xi ∈ Rd and
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yi ∈ {−1, 1}, the SVM algorithm aims to find the hyperplane w ∈ Rd and

b ∈ R that maximizes the margin between the positive and negative samples.

This can be formulated as the following optimization problem:

min
w,b

1

2
|w|2

subject to yi(w · xi + b) ≥ 1, i = 1, 2, ..., k

(2.9)

Here, ||w|| is the Euclidean norm of w and x, and b is the bias term. The

decision boundary of the SVM is given by the equation:

w · x + b = 0 (2.10)

Points on one side of the decision boundary are classified as one class,

and points on the other side are classified as the other class. In the event

that the data is not linearly separable, the soft margin approach [143] and

the kernel trick method [142] are presented as potential solutions for fitting

a non-linear boundary between classes; however, the specific mathematical

formulation of these methods is beyond the scope of this thesis but can

be checked in [144]. SVMs have been used extensively in various domains,

including music information retrieval. In MIR, SVMs have been used for

tasks like instrument classification [145], music genre classification [146],

emotion recognition [147] and artist identification[19]. Thus, the SVM is

utilised as a baseline to assess the effectiveness of our suggested strategy,

which will be discussed in detail in Chapter 3.

2.6.2 Deep learning models

The ability of deep learning to discover complicated patterns and trends in

the data has made it more relevant in music analysis. Music often exhibits

complex variations and structures that can be challenging to identify. Fur-

thermore, music is profoundly influenced by its performance context, and

these contextual variations can profoundly impact the inherent patterns and

trends. Deep learning algorithms show impressive generalisation abilities,

meaning they can successfully apply their knowledge to new data that may

be somewhat different from the data they were trained on. Hence, they can

be particularly useful for MIR tasks like pianist identification, where the
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input data may vary significantly from one performance to another.

Deep neural networks (DNN) have been increasingly popular in MIR

research, including music classification [148], transcription [149], and gener-

ation [150] as a means of automatically discovering the necessary represen-

tations to describe and identify musical expression. In light of this, we made

an effort to leverage some of the deep learning architectures, such as convo-

lutional neural networks and Recurrent Neural networks, both of which will

be covered in this section.

2.6.2.1 Convolutional Neural Network

In the realm of deep neural networks, Convolutional Neural Networks

(CNN), also known as convolutional networks, are a type of artificial neural

network that was first proposed by LeCun et al. [151]. It was developed

specifically for processing data organised in a grid-like fashion, such as im-

ages [152]. CNNs are more complex than Feed Forward Neural networks

(FFNs) because the hidden units of CNNs use convolution rather than the

more traditional matrix multiplication.

A typical CNN has a multi-layered architecture, with each layer per-

forming some operation on the input data before passing it on to the next

layer. The CNN typically consists of four types of layers: an input layer,

convolutional layers, pooling layers and fully connected layers. Input layer

is the initial CNN layer and receives input data. Input data is usually an

image or time series passed through the rest of the CNN for processing.

The function of convolutional layers is to discover spatial connections in the

input data. It is done by applying a set of filters, also known as convolu-

tional kernels, to the input data in order to identify patterns or features in

the data. The filters are typically small and are moved across (in a sliding

window fashion) the input data in a process called “convolution,” and the

output of the convolution operation is a set of feature maps, which allows

the CNN to learn patterns at different scales and locations in the data.

Typically, a pooling layer is used after a convolutional layer to down-

sample the input data and lower the dimensionality of the feature maps

generated by the convolutional layer. There are several types of pooling

layers, including max pooling [153] and average pooling [154], which take

the maximum or average value within a window of data points as the output

of the pooling operation, respectively. In order to bring non-linearity into a
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model, an activation function is often introduced after the convolution and

pooling layers. This nonlinearity enables CNN to discover more complex

data patterns. Finally, fully connected layers are used to make predictions

based on the information learned by the convolutional layers. This is done by

taking the dot product between the outputs of the convolution and pooling

layers with a set of weights that determine how much emphasis should be

placed on each feature in the final prediction.

Although CNNs were designed for learning internal representations from

two-dimensional data, the same technique can be leveraged using a one-

dimensional CNN for one-dimensional sequences of data, such as in the

instance of piano performance data for pianist identification. In recent years,

CNN has become the predominant paradigm for music classification and

music tagging tasks [155]. It is used in Chapter 4 to train a multiclass

classifier that can identify pianists based on their performances.

2.6.2.2 Recurrent Neural Network

A recurrent neural network, often known as an RNN [156], is a subcategory

of artificial neural networks developed specifically for processing input in

the form of sequences or time series. In contrast to feed forward neural

networks where data points are independent of each other, RNNs models

the temporal dependencies of a time series or sequential data where each

data point depends upon the previous data point. The idea of memory in

RNNs enables them to store the states or information from previous inputs

and use it to generate the next output in a series.

Figure 2.4: Example of an unrolled recurrent neural network.

As shown in 2.4, the internal structure of an RNN consists of a loop,

which is used to propagate information about the previous time step to the
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next one. At each time step, i, the RNN takes in an input, xi ∈ R, and

the previous hidden state, hi−1 ∈ R, and produces an output, yi ∈ R, and

a new hidden state, hi ∈ R. The hidden state is a record of all the inputs

and outputs that have come before it, and it records the relationships and

dependencies that exist between the various parts of the sequence. Mathe-

matically, an RNN can be represented as follows:

hi = f(Wxh · xi + Whh · hi−1 + b)

yi = g(Why · hi + b′)
(2.11)

Here, xi is the input at time step i, hi is the hidden state at time step

i, yt is the output at time step i, Wxh and Whh are the weight matrices for

the input and hidden state, respectively, and Why is the weight matrix for

the output. b and b′ are the bias terms for the hidden state and output,

respectively, and f and g are the activation functions for the hidden state

and output, respectively. Sigmoid [157], Relu [158], and Tanh [159] are the

most frequently used activation functions in RNNs. The symbol ∗ represents

matrix multiplication.

An RNN is trained by randomly setting its initial weights and biases,

forward passing the input through the network to produce an output, calcu-

lating the error between the predicted and target outputs with an objective

function, backpropagating the error through the network to determine its

gradient with respect to the weights and biases, and finally, updating the

weights and biases with the gradient and a learning rate. The same proce-

dure is repeated for each input-output pair in the training set, and as the

training progresses, the RNN should learn to accurately predict the output

given the input. However, one of the primary disadvantages of RNNs is that

they may suffer from a vanishing gradient problem [160], in which the gradi-

ents used to calculate the weight update may approach zero and prevent the

network from learning new weights. To address this limitation, Hochreiter

and Schmidhuber [161] proposed a variant of RNN which is known as Long

short-term memory (LSTM) network which we will briefly cover next.
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2.6.2.3 Long short-term memory Network

Long short-term memory, also known as LSTM, is a variant of RNN that was

developed to handle the vanishing gradient problem. It is capable of learning

long term dependencies by remembering information for long period of time

and particularly useful for tasks that require understanding of context over a

long period of time. An LSTM functions similarly to an RNN cell. It consists

of three different parts that interact with one another and are known as

gates: an input gate, an output gate, and a forget gate. They are responsible

for controlling the flow of information into and out of the cell. These gates

are implemented using sigmoid activation functions, σ, which produce a

number between 0 and 1 that represents the likelihood of an event occurring.

Figure 2.5: Internal architecture of a Long short-term memory network.

As depicted in Figure 2.5, an LSTM, like a regular RNN, has a hidden

state, denoted by ht−1 for the hidden state at time t− 1 and ht for the

hidden state at time t. Additionally, LSTMs contain a cell state denoted by

Ct−1 and Ct, where t − 1 is the prior time stamp and t is the current time

stamp. The input gate determines which values from the input sequence

should be passed on to the cell state. The forget gate determines which

values from the previous cell state should be discarded. And the output

gate determines which values from the cell state should be passed on to the
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output. Mathematically, the LSTM cell for time step t can be represented

as follows:

i = σ(Wix · xt + Wih · ht−1 + bi) (2.12)

f = σ(Wfx · xt + Wfh · ht−1 + bf ) (2.13)

o = σ(Wox · xt + Woh · ht−1 + bo) (2.14)

ct = f · ct−1 + i · tanh(Wcx · xt + Wch · ht−1 + bc) (2.15)

ht = o · tanh(ct) (2.16)

Here, xt is the input at time step t, ht is the output at time step t, ct is

the cell state at time step t, and i, f , and o are the input, forget, and output

gate activations, respectively. Wix, Wfx, Wox, Wcx are the weight matrices

for the input gate, forget gate, output gate, and cell state, respectively. Wih,

Wfh, Woh, Wch are the weight matrices for the hidden state. bi, bf , bo, and

bc are the bias terms for the input gate, forget gate, output gate, and cell

state, respectively.

The training process of LSTM is same as RNN which is discussed in

Section 2.6.2.2. Due to its capability of modelling long-term dependencies

in data, LSTMs have been widely used in the field of music information

retrieval. As a temporal series of events, music is well suited for LSTMs,

which are capable of capturing patterns and relationships through time.

This makes LSTMs useful for tasks that need a knowledge of the musical

context. For example, it has been widely used for tasks like music generation

[162], emotion recognition [163], beat tracking and tempo estimation [164],

genre classification [165] and composer classification [166]. In Chapter 6, it

is used to construct a hierarchical encoder model that is trained on a large-

scale dataset of piano performances and then used as a pianist identification

model.

2.7 Evaluation Methods

To quantitatively assess the performance of our pianist identification meth-

ods, we use classification evaluation metrics (F-score and Confusion Matrix)

which have been used universally to evaluate multi-class classification algo-

rithms. They provide for a standard by which model performance can be
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compared and the reliability of individual models can be evaluated. In ad-

dition, we use cross-validation in this thesis in order to mitigate the effects

of bias brought on by the straightforward partitioning of the dataset. The

concept of cross-validation and the evaluation metrics that have been stated

are defined in this section.

2.7.1 F-score

The F-score or F-measure is an objective evaluation metric of a model’s

performance that was first established to evaluate binary classification mod-

els where the model can only categorise “positive” or “negative” instances,

such as whether or not an email is spam. For both the ground-truth classes,

yi and the predicted classes, ŷi, positive instances are represented as “1”

and the negative instances are represented as “0”. Hence, the result of the

model is evaluated only for the positive label by default, using two sepa-

rate metrics, precision, P1 and recall, R1 and the overall model performance

is determined by the harmonic mean of precision and recall, which is the

F-measure. They can be defined as:

P1 =
NTP

NTP + NFP
(2.17)

R1 =
NTP

NTP + NFN
(2.18)

F1 = 2× P1 ×R1

P1 + R1
(2.19)

where precision, P1 is the proportion of true positives, NTP (where, yi = ŷi =

1) among all positive predictions made by the model. It is calculated as the

number of true positives, NTP divided by the sum of the true positives, NTP

and false positives, NFP (where yi = 0 but ŷi = 1). R1, also known as recall

or sensitivity, is the proportion of true positive, NTP predictions among all

actual positive cases. It is calculated as the number of true positives, NTP

divided by the sum of the true positives, NTP and false negatives, NFN

(where yi = 1 but ŷ = 0). F1 is the harmonic mean of P1 and R1, and is

calculated as 2 times the product of P1 and R1 divided by the sum of P1

and R1. It measures a model’s accuracy that balances precision and recall,

giving equal weight to both.

However, the standard F1 score is unsuitable for multi-class classification
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since it only takes into account the classifier’s overall performance, rather

than its performance for each individual class. This may be problematic

since it might result in a classifier with a high overall F1 score but poor

performance for certain classes. To address this issue, there are several

variations of the F1 score that can be used for multi-class classification

[167]. One of these variations is called the macro-averaged F1 score, and it

is derived by first calculating the F1 score for each class and then averaging

the results. This can be defined as:

Pmacro =
1

N

N∑
n=1

Pn (2.20)

Rmacro =
1

N

N∑
n=1

Rn (2.21)

Fmacro = 2 ∗ Pmacro ∗Rmacro

(Pmacro + Rmacro)
(2.22)

where, Pn and Rn are the precision and recall for class n, respectively and N

is the number of classes. Another variation is the micro-averaged F1 score,

which calculates the overall precision and recall for the classifier across all

classes and then calculates the F1 score using those values. This can be

defined as:

Pmicro =

∑N
n=1 TPn∑N

n=1(TPn + FPn)
(2.23)

Rmicro =

∑N
n=1 TPn∑N

n=1(TPn + FNn)
(2.24)

Fmicro = 2 ∗ Pmicro ∗Rmicro/(Pmicro + Rmicro) (2.25)

Where TPn is the number of true positive predictions for class n, FPn is the

number of false positive predictions for class n, FNn is the number of false

negative predictions for class n and N is the number of classes.

The macro-average method is more suitable when the goal is to evaluate

the performance of the classifier across all classes, and the data for each class

is of equal size. The micro-average method is more suitable when the data

for each class is not of equal size, or when the goal is to evaluate the overall

performance of the classifier across all data. In the context of this thesis,
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the goal is to evaluate the performance of the classifier across all classes,

and the data for each class is of equal size, so the macro-average F1 method

is preferred over micro-average F1.

2.7.2 Confusion Matrix

While the macro-averaged F1 score may be used to assess the overall per-

formance of a multi-class classifier, it does not provide detailed information

about the performance of the classifier for each individual class. In cases

when the performance of the classifier for each class is of particular interest,

such as pianist classification, this might be problematic since it is uncer-

tain whether or not all classifications are being predicted equally well. The

confusion matrix may be used to solve this issue since it provides a compre-

hensive evaluation of the classifier’s accuracy for each class. This has been

widely used in many MIR tasks [168, 25].

It is a matrix where each row represents a predicted class and each

column represents the actual class, and each entry represents the number of

samples that were predicted to belong to that class. For example, if we have

N classes in our dataset, the confusion matrix would be a N ∗N -dimensional

matrix. Elements on the diagonal show the percentage of samples for which

the predicted labels exactly match the actual labels. The samples that

the classifier incorrectly labelled make up the non-diagonal elements. A

heat map may also be used to display the confusion matrix, which can give

further insights into how well the classifier is performing.

In this thesis, the goal is to evaluate the performance of a classifier for

recognizing each piano performer in a dataset, and the confusion matrix is

being used to provide a detailed breakdown of the classifier’s performance

for identifying each performer.

2.7.3 Cross Validation

When evaluating a machine learning model’s performance, it is standard

practice to divide the dataset into a training set and a test set. After the

model has been trained using the training set, its effectiveness is measured

using the test set. However, a straightforward split can introduce bias or

exhibit selection bias problems [169], causing the model to overfit, as it

becomes highly sensitive to the training set’s characteristics.
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Figure 2.6: Graphical representation of the distinctions between the straight-
forward train/test split and the four-fold cross-validation technique

To mitigate this issue, cross-validation can be used to evaluate the

model’s generalization ability. It includes splitting the dataset into K folds

of equal size, training the model on K-1 folds, and then assessing it on the

final remaining fold. This procedure is carried out K times, with a new

fold serving as the evaluation set each time. The model’s peformance is

measured by averaging its results over all K folds. Figure 2.6, shows the

difference between a straightforward train/test split and a four-fold cross

validation technique. The procedure for performing a 4-fold cross-validation

can be described as below:

• Split the dataset into 4 folds of approximately equal size.

• For each unique fold, consider it as the test set and the remaining

3-folds as the training set.

• Train the model on the training set and evaluate it on the test set

using a set of evaluation metrics.

• Repeat this process four times for each fold and average the perfor-

mance across all folds to obtain the final performance measure.

To eliminate the possibility of bias in the folds, it is crucial that the

data be shuffled before being partitioned. It is common practise to set

the value of K between 5 and 10, however this is not a rule of thumb.
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Estimating the model’s performance using a higher K value takes more time,

but yields more reliable results. Many variations of cross-validation exist,

such as the Leave one/P out cross-validation and the Leave one/P group(s)

out cross-validation [170]. In this thesis, the performance of the pianist

identification system has been validated using Leave one group out cross-

validation (LOGOCV).

2.8 Summary

This chapter outlined the technical background of the thesis, starting with a

review of musical expression and the factors that affect it. The chapter then

delves into the various techniques and algorithms that have been developed

to analyze and replicate the expressive elements of a musical performance

using computational modeling approaches. The use of expressive features

to quantitatively measure a performer’s playing style is also explored which

will be used extensively in Chapter 3, 4, 6 and 7. The chapter includes an

overview of statistical models and music similarity measurement algorithms,

which are used in Chapter 3 to analyze musical expression and identify pat-

terns and characteristics in a performer’s playing style. The definitions of

machine learning and deep learning algorithms are also covered, as well as

their potential use in music information retrieval. Finally, the chapter dis-

cusses various evaluation metrics and techniques that have been developed

to assess the reliability and performance of computational models.
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Chapter 3

Pianist Identification via

Probabilistic Density

Estimation

3.1 Introduction

The artistry with which a pianist interprets and performs the notes of a piece

of music is often a reflection of their own personal style. It is crucial for a

pianist to play the notes and rhythms as they are written in the score, but

it is equally important for them to infuse each note with their own unique

and expressive style. Given that individual notes form the basic foundation

of all Western classical musical compositions [171] and pianists have the

ability to shape those notes to convey their emotions, this chapter will focus

on analyzing and understanding the styles of various pianists in terms of

individual notes. Therefore, features at the note level will be utilized to

model expressive performances.

While it is not common to identify performers based solely on their in-

terpretation of individual notes in real life, this approach can be useful as a

starting point for research. For example, it may be easier for researchers to

study the nuances of a pianist’s style by focusing on individual notes rather

than an entire piece of music. Additionally, it is also worth noting that the

variations in melody and rhythm that result from a succession of notes may

affect the overall musical style; but, it is not yet clear if individual notes

are capable of expressing style on their own. Further research is needed
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to investigate this question and determine the extent to which note-level

features contribute to a performer’s style. Moreover, understanding the re-

lationships between note-level expressive features and performers’ styles is

essential for researchers in the field of music information retrieval (MIR),

as it would provide a solid foundation for developing hierarchical analyses

of musical styles. By comprehending these relationships, MIR researchers

can also develop methods for quantifying and modifying musical styles as

well as reproducing them. These issues will be addressed in this chapter

by proposing a technique for identifying pianists using hand-crafted expres-

sive features extracted from isolated notes and modeling them using various

statistical models.

Among the various factors that shape the emotional impact and char-

acter of a piece of music, expressive tempo and timing are among the most

significant. They allow performers to create a sense of narrative within the

music and express a wide range of emotions. As previously discussed in

section 2.4.2, the tempo of a piece of music refers to the speed at which it

is played and can be indicated in beats per minute (bpm) or a specific note

value. Global tempo refers to the overall speed of a piece and is usually in-

dicated in the music notation with a metronome marking. Local tempo, on

the other hand, refers to the speed at which a specific section or passage is

played and may be considered as deviations from the global tempo. Timing,

on the other hand, refers to the precise placement of musical events such

as notes and rhythms within a measure, while expressive timing refers to

intentional deviations from the local tempo in order to shape the music and

evoke a desired emotion in the listener. These variations can be measured at

the note level by comparing the actual performance with a mechanically pre-

cise version of the piece. As previously reviewed in section 2.4.2, numerous

studies have also attempted to identify pianists based on timing and tempo

features. Therefore, we have selected these features as distinguishing factors

for identifying famous pianists, and section 3.3.2 proposes the technique for

feature extraction.

In addition to time and tempo considerations, the pianist’s expressive

dynamics and articulation also play a major role in shaping their unique

style. Expressive dynamics refer to the variation in volume and intensity

of the music, while articulation refers to the manner in which the notes

are played, such as the attack and decay of the sound, the use of legato or
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staccato, and the use of accents. These elements contribute to the overall

character and emotion of the music and can be controlled by the pianist

to add expressivity to their performance. In section 3.3.2, we propose a

technique for extracting expressive dynamics and articulation features at

the note level in order to better understand the styles of different pianists.

In conclusion, the interpretation and performance of individual notes

by a pianist plays a significant role in shaping their distinctive style. By

studying note-level features such astiming, dynamics, and articulation, re-

searchers and individuals can better understand and analyze the styles of

various pianists. This understanding can also have practical applications,

such as helping piano students to imitate the styles of virtuoso pianists or

developing methods for quantifying and modifying musical styles. In this

chapter, we propose techniques for extracting these expressive features at

the note level in order to better understand the relationships between them

and pianists’ styles.

The organization of the remainder of the chapter is as follows: In Section

3.2, a new dataset comprising 9 performers is introduced. The feature ex-

traction, feature distribution estimation, and pianist identification methods

are described in Section 3.3. The experiments and results of pianist identi-

fication are presented in Section 3.4, followed by a discussion and analysis

of the results in Section 3.4.3. Finally, the chapter is summarized in Section

3.5.

3.2 Dataset

The data used in this study is obtained from the International Piano-e-

competition [172] and consists of performances played and recorded on a

Yamaha CFX concert Grand Piano. As shown in Table 3.1, the dataset

includes performances by 9 virtuoso pianists playing the same four move-

ments of Sonata in B-flat Major, D960 by Franz Schubert. These move-

ments are Molto moderato, Andante sostenuto, Scherzo: Allegro vivace con

delicatezza – Trio, and Allegro ma non troppo – Presto. The number of

notes in each movement is described in Table 1. All of these performances

have been recorded in both raw audio and MIDI format using state-of-the-

art Disklavier Pro recording technology. According to a study by Goebl and

Bresin [173], the recording and reproducing capabilities of the Yamaha CFX
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Composer Piece Movement No.of Notes

F.Schubert
Sonata in

B-Flat Major,D960

I 7582
II 2005
III 2717
IV 4676

Table 3.1: Dataset details with the number of notes for each composition.

were tested and found to have slightly more precise onset capturing (+/- 10

ms) than its reproduction (-20 to +30 ms), and a systematic (linear) error

in recording over time. In terms of dynamics, the Yamaha CFX performed

well only in a wide middle range.

For the purposes of this thesis, we are primarily interested in working

with the symbolic representation of piano music, particularly MIDI data.

The advantage of MIDI over raw audio is that it explicitly describes each

note event with four parameters: onset (the start time of a note), offset

(the end time of a note), pitch (a numerical value for each note ranging

from 0 to 128), and velocity (loudness of the notes). This eliminates the

need for manual annotation of the data, which can be time-consuming and

require expert annotators. However, using symbolic data like MIDI may not

capture the nuances and richness of the raw audio data, although the audio

and MIDI files are aligned with an accuracy of approximately 3 milliseconds.

3.3 Methodology

As shown in Figure 3.1, the proposed method for pianist identification is

divided into four main stages. The first stage involves calculating the norm

performance by aligning multiple renditions of the same piece using a sym-

bolic music alignment method. This norm performance and the digital score,

both rendered in MIDI format, are then used to align with the correspond-

ing performances in the dataset, followed by the extraction of norm and

score deviation features. Next, we estimate the distribution of each feature

such that the distributions themselves may serve as a compact representa-

tion of the performers’ individual artistic style. Three statistical models are

thoroughly analyzed and presented for their suitability in modelling these

distributions in Section 3.3.3. Finally, we compute a similarity estimation

of the feature distribution for each individual feature as well as the fused
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features to identify pianists accurately, which is illustrated in Section 3.3.4.

3.3.1 Symbolic Music Alignment

Symbolic music alignment is a process that aligns a symbolic music repre-

sentation, such as a MIDI file, with a reference score or performance MIDI.

It is used to match each note in a music performance with the correspond-

ing note in a score or reference performance, allowing for the analysis and

comparison of the performance with the notated score. This is useful for a

variety of purposes, such as analyzing the expressive performance of a mu-

sician, comparing different performances of the same piece, or generating a

new symbolic representation of a performance from an audio recording.

For situations where a score MIDI is not available, symbolic music align-

ment can be used to compute the performance norm, which is the average

performance of a piece calculated using a different group of performers.

When comparing multiple performances, there may be timing and pitch

differences that make it difficult to accurately compare and determine the

average performance without an alignment algorithm. By using a symbolic

music alignment tool to align the notes of the same piece of music performed

by a group of different performers, these discrepancies can be minimized,

enabling an accurate calculation of the average performance. The average

performance can then be used as a reference signal to compare with in-

dividual performances and identify expressive variations. There are several

algorithms available for symbolic music alignment, including Hidden Markov

Model (HMM) based algorithms and state-of-the-art methods such as those

proposed by Gingras and McAdams [174], Chen et al. [175], Nakamura et al.

[176]. In this thesis, the HMM-based algorithm proposed by Nakamura et al.

[177] was used, which was found to have the highest accuracy for all datasets

and superior computational efficiency compared to other algorithms.

The HMM-based algorithm aligns the reference and performance sig-

nals using temporal HMMs, detects performance errors, and uses a merged-

output HMM [178] to automatically correct these errors in a post-processing

(realignment) step. The preliminary alignment and the realignment process

is illustrated in Figure 3.2 using brief excerpts from the 2nd movement

of Schubert Sonata in B-Flat Major, D960, obtained from the Schubert

dataset. In this visual representation, the reference signal represents the

score file, while the aligned signal corresponds to the performance. After
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Figure 3.1: Schematic diagram of the proposed method for pianist identifi-
cation
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Figure 3.2: Graphical illustration of the alignment and realignment process.

the preliminary alignment, an error detection algorithm is used to identify

pitch inaccuracies (highlighted in red), missing notes (in pink), and extra

notes (enclosed within cyan rectangles) within the given alignment result.

Segments referred to as error regions are then defined, encompassing both

the aligned and reference signals. The extent of alignment errors within

these regions is examined using segments of varying sizes. An automatic

post-processing realignment method is then used to rectify the error regions,

which combines the method using merged-output HMMs with a voice(hand)

separation method [179]. Importantly, this realignment method does not re-

quire prior knowledge of voice information, ensuring more accurate analysis

even when voice information is missing or unclear. Finally, In order to
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achieve accurate alignment with the score, every final alignment was man-

ually inspected, during which extra notes were removed, pitch errors were

fixed, and missing notes were interpolated.

There are two modes of the alignment process: the first one is Score-

to-MIDI alignment where the score file is a MusicXML file with no per-

formance parameters, and the second one is the MIDI-to-MIDI alignment.

The MIDI-to-MIDI alignment algorithm uses any two midi files to find the

corresponding notes between them. One of them can be used as a reference

signal and the other can be used as the performance signal. The reference

signal is first converted into a score file and the score-to-MIDI alignment

algorithm is then used for the converted score and the performance MIDI

file.

Symbolic music alignment is not only important for aligning score for

creating an average performance from several performances of the same com-

position because it allows for the precise alignment of the different perfor-

mances, enabling an accurate calculation of the average performance. With-

out symbolic music alignment, it would be difficult to accurately compare

the different performances and calculate the average performance, as there

may be timing and pitch discrepancies between the performances and the

reference score. By aligning the symbolic representations with the reference

score, these discrepancies can be minimized, allowing for a more accurate

calculation of the average performance.

Figure 3.3: MIDI velocities for the first 30 notes of the Sonata in B flat
major,D960, Mvmnt. II, as performed by pianists p01-p09
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3.3.2 Feature Extraction

3.3.2.1 Score Deviation Feature Extraction

Expressive performance can be defined as the intended deviation from the

score which is a purely mechanical rendition of the musical piece in terms

of tempo, dynamics and articulation with no expressive variations. These

deviations can be used to characterize the performer’s individual expressive

performance characteristics and to identify common expressive performance

principles shared by many performers, as well as the distinctions among

them.

In Figure 3.3, the performances of the first 30 notes of the Sonata in

B flat major,D960, Mvmnt. II by pianists p01-p09 from our dataset are

depicted in terms of midi velocity. To establish a relative standard of ref-

erence point for analysis, we used MuseScore software to transcribe the

musicXML scores into score MIDIs, with their pre-specified tempos as indi-

cated in their musicXML files. Each note in the score MIDI includes absolute

note-on, note-off, and default velocity values. The default midi velocities,

which represent a non-expressive and purely mechanical interpretation of

the score, is indicated by a straight blue line. The figure demonstrates that

the performers tend to deviate from these default velocity values, with some

performers exhibiting similar deviations (similar peaks and dips) in specific

notes or passages. As demonstrated by Stamatatos and Widmer [1] these

similarities may become more pronounced when we take a more global look

at each performance by smoothing over longer melodic segments as also il-

lustrated using our data in Figure 3.5a. This phenomenon could be due, to

a certain extent, to the correlation between expressive variations and struc-

tural elements in the music, such as phrase centers and phrase boundaries,

as discussed in prior studies by Clarke [180] and Palmer [181]. However,

if a more fine-grained analysis is performed by examining individual notes,

dissimilarities among performances can be observed. With the utilization

of MIDI data, which provides accurate note information, these expressive

variations can be quantified for each note, potentially contributing to the

characterization of individual performer’s styles.

To represent the expressive deviations, various expressive features can be

defined as shown in Figure 3.4. For example, onset time (OT) refers to the

starting time of a note, inter-onset interval (IOI) refers to the time between
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Figure 3.4: Graphical illustration of the parameters that are considered to
characterize note-level performance details adapted from Stamatatos and
Widmer [1].

the starting times of two consecutive notes, off-time duration (OTD) refers

to the time between the ending time of one note and the starting time of the

next note, velocity (VL) refers to the loudness or intensity of a note, and

note duration (ND) refers to the length of a note.

By comparing the values of these features as they are indicated in the

score to the values of the same features as they are played in a performance,

it is possible to quantify the deviations of the performance from the score.

For example, the deviation of onset time from the score could be calculated

as the difference between the onset times as indicated in the score (OTs) and

the onset times as played in the performance (OTp). Similarly, the deviation

of inter-onset interval from the score could be calculated as the difference

between the inter-onset intervals as indicated in the score (IOIs) and the

inter-onset intervals as played in the performance (IOIp). The deviation

of additional features, such as the off time duration, note duration and the

velocity, can also be calculated in a similar manner.

Table 3.2, shows the proposed score deviation features where, D(x,y) is

a feature vector containing the deviations of each aligned note in reference

signal x and performance signal y. The features that are calculated by

comparing the performances to the score are represented as D(OTs,OTp),
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D(IOIs,IOIp), D(OTDs,OTDp), D(VLs,VLp) and D(NDs,NDp). Initially,

we extract note level features from each aligned note in both the score and

the performance midi, which include onset time (note starting time), inter-

onset interval, off-time duration (the time between the offset time of one

note and the onset time of the next note), velocity, and note duration. For

instance, OTs represents a vector containing the onset times of all notes in

the score MIDI, while OTp represents a vector containing the corresponding

onset times in the performance MIDI. We then calculate the deviation of

each aligned note of the score and performance midi which is represented

by D(OTs,OTp).

Original Feature
Name

Shortened
Name

Score Deviation
Features

Norm Deviation
Features

Onset Time OT D(OTs,OTp) D(OTn,OTp)
Velocity VL D(VLs,VLp) D(VLn,VLp)
Note Duration ND D(NDs,NDp) D(NDn,NDp)
Inter Onset Interval IOI D(IOIs,IOIp) D(IOIn,IOIp)
Off Time Duration OTD D(OTDs,OTDp) D(OTDn,OTDp)

Table 3.2: Summary of the proposed features.

3.3.2.2 Norm Deviation Feature Extraction

One potential problem with the feature extraction by comparing the per-

formances with their respective scores is the difficulty in obtaining digital

scores, particularly for older or lesser-known musical pieces. This is due

to several factors including: copyright restrictions limiting the accessibility

of digital scores without proper authorization from the copyright holder,

lack of digitization or online availability, and the possibility of inaccura-

cies in transcriptions of the original score leading to inaccurate performance

feature extraction. This issue can potentially be addressed by considering

performance norm, defined as the average performance of a specific piece

based on a group of performers, as a reference point for extracting features

to discriminate between individual performers.

The idea of performance norm can be better understood from the Figure

3.3, where the bold red line denotes the average performance calculated from

pianists p01-p09 playing the same piece in terms of midi note velocities. It is

evident that the performance norm closely follows the fundamental shape of

the individual performances. In comparison to the score deviation velocity
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(a) Velocity deviation from score.

(b) Velocity deviation from norm.

Figure 3.5: The smoothed deviation of velocity from the non-expressive score
interpretation (above) and from the norm (below) for pianists p01-p09.

feature analyzed in Section 3.3.2.1, the deviations from the performance

norm display less similarity, as evidenced by differences in peaks and dips,

when considering longer melodic segments through smoothing, as depicted

in Figure 3.5b. This suggests that the structural properties of the piece have

limited impact on the divergence of a particular performance from the norm,

making the norm an ideal candidate for characterizing individual performer

styles, as the features extracted from a norm-performance would exhibit

greater distinctiveness towards individual performers.

An empirical study by Stamatatos [73] found that deviation from the av-

erage performance is more powerful in representing performer’s individuality

than deviation from the printed score [182]. In addition, their result also

shows that the norm based features are proved to be very accurate for intra-
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piece tests (training and test set taken from the same piece) and inter-piece

tests (training and test set taken from different pieces). To represent these

deviations, the same expressive features as in the score feature extraction

method can be used. For example, the deviation of onset time from the per-

formance norm could be calculated as the difference between the onset times

as indicated in the performance norm (OTn) and the onset times as played

in the performance (OTp). Similarly, the deviation of inter-onset interval

from the performance norm could be calculated as the difference between

the inter-onset intervals as indicated in the performance norm (IOIn) and

the inter-onset intervals as played in the performance (IOIp). The deviation

of additional features, such as the off time duration, note duration and the

velocity, can also be calculated in a similar manner.

Table 3.2, shows the proposed norm deviation features where, D(x,y) rep-

resents the deviation of a vector of numerical values y from a reference vec-

tor x. The norm based deviation features are represented as D(OTn,OTp),

D(IOIn,IOIp), D(OTDn,OTDp), D(VLn,VLp) and D(NDn,NDp) where OTn,

IOIn, OTDn, VLn and NDn are onset time, inter-onset interval, off time

duration, velocity and note duration respectively, as calculated from the

performance norm. OTp, IOIp, OTDp, VLp and NDp represents the on-

set time, inter-onset interval, off time duration, velocity and note duration

respectively calculated from the real performance.

3.3.2.3 Feature Standardisation

Feature standardization is a common technique used in machine learning to

scale the features of a dataset so that they have zero mean and unit variance.

This is important because features with different scales may have a dispro-

portionate influence on the model, which can lead to poor performance. One

method of feature standardization is z-score normalization, where the fea-

tures are standardized by subtracting the mean of the feature values and

dividing by the standard deviation. This results in a new set of feature val-

ues with a mean of 0 and a standard deviation of 1. Mathematically, this

can be represented as:

z =
(x− µ)

σ
(3.1)

where x is the original feature value, µ is the mean of the feature values,
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and σ is the standard deviation of the feature values.

We use z-score feature standardization to standardize both the score

and norm deviation features. This allows the features to be compared on

the same scale, which is important for accurately measuring the differences

between performances. Additionally, z-score normalization can help to mit-

igate the effects of outliersand standardise the features which can improve

the performance of some machine learning models.

3.3.3 Feature Distribution Estimation

Different performers playing the same music piece will inevitably express

the piece in their own unique style, as depicted in Figure 3.3 where the

valocity variation for nine performers shows that each performer has their

own way of expressing the piece to the audience. The individual peaks and

dips show how much each performer deviates from both the score and the

average performance. These deviations characterize each performer indi-

vidually. To model the distinct characteristics of performers, we use the

distribution of different types of features extracted from the performance,

including score deviation features and norm deviation features. We model

these deviation distributions using Histograms, Kernel Density Estimations

(KDEs), and Gaussian Mixture Models (GMMs) to create compact repre-

sentations of the performers’ idiosyncratic style, which can later be used for

pianist identification.

3.3.3.1 Score Deviation Feature Distribution

Figure 3.6 shows a comparison of the distributions of three score deviation

features for two performers, Abdelmoula and ChangGuang, from the “Schu-

bert 4x9” dataset. The blue line in Figure 3.6 represents the estimated dis-

tribution resulting from the use of a Gaussian kernel to estimate the kernel

density of score deviation features data from Abdelmoula and ChangGuang.

This figure also shows that, the PDF curves of both performers show similar

properties to the histogram. The red line represents the Gaussian Mixture

Models. We trained the GMMs with 2,3,5 and 7 components. Empirical

results show that GMMs do not require more than 3 components to model

the distributions. The red pdf curve of the GMMs further demonstrates that

it accurately depicts the Histograms and KDEs. We can see the continuous
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distributions of features for each performer based on these curves, and their

differences should represent their individual characteristics.

For example, the global distribution of the Inter onset interval feature is

shown in Figure 3.6a and 3.6b and it is apparent that the two distributions

have slightly different shapes, where the distribution of ChengGuang looks

more symmetrical and has a more gentler slope in the right side than Ab-

delmoula. Similarly, Figure 3.6c and 3.6d show the global distributions of

velocity deviation features for Abdelmoula and ChengGuang, respectively;

it is clear that the shape of the two distributions is different, with Abdel-

moula’s distribution being more symmetrical and the peak appearing to be

very close to the point of origin. The distribution of ChengGuang, on the

other hand, does not follow a symmetrical pattern. Instead, it has two

peaks, one on the right side of the origin and the other on the left side of

the origin. The note duration deviation feature distributions for the two

performers are shown in the bottom two figures. Dissimilarities between the

two distributions may be seen in terms of slope, width, etc., but they are

not as readily apparent as in the first two sets of plots.

Based on observations similar to those for the other features, onset time

deviation, and off-time length deviation, we assume that the global feature

distributions reflect the performer’s playing style and the variations in the

distributions may be utilised to uniquely identify performers.

3.3.3.2 Norm Deviation Feature Distribution

Similar to the score deviation features, we model the norm deviation feature

distributions using Histograms, Kernel Density Estimations, and Gaussian

Mixture Models to create compact representations of the performers’ id-

iosyncratic style, which can later be used for pianist identification. Figure

3.7 compares the distributions of three norm deviation features for two per-

formers, Abdelmoula and ChangGuang, from the ”Schubert 4x9” dataset.

The blue line in the figure represents the estimated distribution using a

Gaussian kernel to estimate the kernel density of the norm deviation fea-

tures data from the two performers. The figure also shows that the proba-

bility density function (PDF) curves of both performers are similar to the

histogram. The red line represents the Gaussian Mixture Models, which

were trained with 2, 3, 5, and 7 components. Empirical results demonstrate

that the GMMs do not require more than 3 components to effectively model

57



(a) Abdelmoula. (b) ChengGuang.

(c) Abdelmoula. (d) ChengGuang.

(e) Abdelmoula. (f) ChengGuang.

Figure 3.6: Distribution of two performers score-deviation features.

the distributions. The red PDF curve of the GMMs further confirms that

it accurately represents the histograms and kernel density estimations. By

examining these curves, we can see the continuous distributions of norm

deviation features for each performer, and the differences between the two

distributions should reflect their individual characteristics.

For instance, Figure 3.7a and 3.7b depict the global distributions of
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the inter-onset interval norm deviation feature for Abdelmoula and Cheng-

Guang, respectively. It is apparent that the two distributions have a positive

skew with Abdelmoula’s distribution appearing more wider as compared to

ChengGuang’s distribution. Similarly, Figure 3.7c and 3.7d show the global

distributions of velocity norm deviation features for Abdelmoula and Cheng-

Guang, respectively. The shape of the two distributions is somewhat differ-

ent, with ChengGuang’s distribution being more symmetrical and the peak

appearing to be on the point of origin, while Abdelmoula’s distribution is

slightly positive skewed and the peak is away to the right of the point of the

origin. The note duration deviation feature distributions for the two per-

formers are shown in the bottom two figures and both of the distributions

seem to be positively skewed. In addition. Abdelmoula’s distribution seems

to peak somewhat to the right of the origin, whereas ChangGuang’s appears

to peak at the origin itself.

It is presumed that the global feature distributions indicate the per-

former’s playing style, and differences among the distributions may be

utilised to identify performers, similar to what we discussed in Section

3.3.3.1.

3.3.4 Pianist Identification using Feature Distribution

In this section, we describe the pianist identification that includes the feature

distribution estimation that we discussed in section 3.3.3 and a similarity

calculation. We first discuss the identification methods in terms of individual

features and then, we discuss a feature fusion technique.

3.3.4.1 Pianist Identification Using Individual Features

To quantify the differences between performers from the distributions, we

take a similarity measurement step of each feature distribution for every

performer in our dataset using Kullback-Leibler (KL) divergence [183]. The

mathematical formulation of KL-divergence is given below:

DKL(P∥Q) =
∑
x∈χ

P (x)log(
P (x)

Q(x)
) (3.2)

The Kullback-Leibler (KL) divergence, also referred to as relative entropy, is

a statistical measure used to quantify the dissimilarity between two probabil-
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(a) Abdelmoula. (b) ChengGuang.

(c) Abdelmoula. (d) ChengGuang.

(e) Abdelmoula. (f) ChengGuang.

Figure 3.7: Distribution of two performers norm-deviation features.

ity distributions. As represented by equation 3.2, it computes the likelihood

ratio between two distributions and tells how probability distribution Q di-

verges from the probability distribution P by computing the cross-entropy

minus the entropy.

We measure the KL-divergence for Kernel densities using the approach

introduced in [184]. We also calculate the KL-divergence of two GMMs, but

since the KL-divergence for two GMMs has no closed form expression, it is
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not analytically tractable. Hence, we use a variational Bayes approximation

method [185] to circumvent this issue. We use KL-divergence to calculate the

divergence between an unknown performer’s feature distribution and every

known performer’s feature distribution in the dataset in order to classify the

unknown performer. Finding the minimum divergence between the unknown

and the known performer’s distribution identifies the unknown performer.

3.3.4.2 Pianist Identification Using Feature Fusion Method

Besides classification using individual features, we use feature fusion tech-

niques that are able to combine multiple features. In this study, we combined

estimates of similarity across distributions of different features using linear

combination with equal weights. We use Leave One Group Out Cross Vali-

dation (LOGOCV) technique introduced by Pedregosa et al. [186] which is

a variant of k-fold cross validation. LOGOCV splits the data into groups or

clusters and systematically excluding one group during each validation cy-

cle, thus training the model on the remaining groups. Unlike conventional

cross-validation that randomly selects individual data points for testing,

LOGOCV involves leaving entire groups or clusters of data out during each

iteration.

First, We concatenate the same feature vectors extracted from all four

movements of D960 for each performer. Subsequently, we divided this con-

catenated feature vector into 8 folds, assigning a unique identification num-

ber to each data point within each fold. We then implemented LOGOCV

using a loop. In each iteration of the loop (P iterations in total, where P

is the number of performers), one performer’s data is held out as the test

set, while the data from all other performers are used for training. This

simulates leaving one performer out for testing. Within each iteration, we

modeled the training and test data using distribution models (Histogram,

KDE, or GMMs). We calculated the Kullback-Leibler (KL) divergence be-

tween the distributions of training and test data. This quantified the dissim-

ilarity of feature distributions for the held-out performer compared to the

others. The resulting KL divergence values for each iteration determined

which performer was most similar to the held-out performer. Finally, We

followed the same steps of similarity estimation for for different features.
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This is formulated in equation 3.3:

KLtotal =

|N |∑
i=1

wi ∗KLNi (3.3)

where, N = {N1, N2, N3, N4, N5} denotes the set of statistical models

corresponds to OT deviation, IOI deviation, OTD deviation, VL deviation

and ND deviation features respectively (see section 3.3.2) which are com-

puted separately. wi denotes the corresponding feature weight which is set

to one in our experiment. However, the feature fusion technique used in this

study is not unique. We can combine any 2, 3, 4 or 5 features together to

calculate the overall KL-divergence. In the next section, we discuss several

experiments using single and fused features to validate pianist identification

methods and assess how accurate the methods are for the task.

3.4 Experiments and Results

In this section, we assess the proposed pianist identification method using

the proposed “Schubert 4x9” dataset(see Section 3.2). We verify the models

effectiveness using Leave One Group Out Cross Validation (LOGOCV) tech-

nique and compute the classification results in terms of F-measure which is a

way to combine both precision and recall into a single measure that captures

both the properties. In addition, normalized confusion matrices are also used

to demonstrate the performance of identification for each performers in the

dataset.

3.4.1 Baseline Methods

We assess the effectiveness of the proposed features and our pianist identi-

fication algorithm against two baseline methods. To begin, we choose KNN

and SVM as baselines due to thier popularity in performer identification

tasks [170, 19] and apply them on our proposed dataset. Both of the base-

line techniques have been evaluated using the individual score and norm

deviation features, as well as the fused score and norm deviation features

extracted from the dataset.

In the case of performer identification using single feature, we extract

the deviation features as outlined in Table 3.2 for all four movements of
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D960 associated with each performer. Subsequently, we take each individual

feature vector and sliced it into uniform segments, each containing 200 notes.

In cases where a segment contains fewer than 200 notes, we apply zero-

padding to ensure uniform segment size. Each segment is considered an

independent data point that can be used either a training or test sample.

In the context of the fused feature scenario, wherein two or more features

are combined, we extract deviation features, as outlined in Table 3.2, for all

four movements of D960, each associated with a specific performer. De-

pending on the chosen combination (e.g., the combination of D(OTs, OTp),

D(IOIs, IOIp), and D(VLs, VLp)) for our test case, we initiate the process

by segmenting each feature sequence into uniform segments, each encom-

passing 200 notes. If a segment has less than 200 notes, it is padded with

zeros. Subsequently, we concatenate segments from each feature vector that

correspond to the same notes. For example, we concatenate the initial seg-

ment of the feature vector D(OTs, OTp), comprising 200 notes, with the

corresponding initial segments of D(IOIs, IOIp) and D(VLs, VLp)). This

process is illustrated in Figure 3.8 using a dummy example where A, B and

C are the feature vectors.

Figure 3.8: Illustration of the Slicing and Concatenation Technique for Com-
bined Features.

In both cases, each segmented feature vector is assigned with the per-

former ID that was originally assigned to their corresponding piece before

segmentation. The proposed dataset is then randomly divided into a train-

ing set and a test set, with the training set accounting for 80% and the test
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set for 20% of the data. During the training phase, feature vectors represent-

ing individual or fused features, together with the corresponding performer

IDs from the training set, are used to train the baseline models. During

testing, however, just the feature vectors are used, and the F-measure is

used for evaluation. In subsequent sections, we shall display the outcomes

of the two baseline models.

3.4.2 Pianist Identification Results

The effectiveness of the proposed features and the pianist identification tech-

nique will be assessed here using the proposed “Schubert 4x9” dataset. Fol-

lowing an initial evaluation and comparison of findings based on individual

score and norm deviation features, we will provide results based on a fusion

of these two sets of features.

3.4.2.1 Identification Results Using Individual features

In our experiment, a total of 16980 aligned notes have been extracted from

each pianist’s performance. Since we consider the note level local deviation

features in our experiment, the same amount of deviation features is also

extracted from the notes. We perform leave one group out cross-validation

to separate each performer’s data into 8 folds to maintain a high number

of cross-validation folds as well as to ensure there are enough data in every

test set.

Hence, 2122 notes are designated for each of the first 7 folds, and the last

fold contains 2126 notes. We then select a random performer out of the 9

performers and designate one fold of data from that performer as test data.

The rest of the folds are considered as training data. The distributions of

both the test and training set are calculated using Histogram, KDE and

GMMs. The Histogram bins, Kernel density bandwidth and the GMM

hyper-parameters are optimised in this experiment and optimum values for

each feature are kept constant.

Finally, we calculate the KL-divergence between the test distribution

and the training distribution for every performer in the dataset in order to

measure the similarity. The minimum KL-divergence value identifies the

unknown performer. In other words, we can say that, the corresponding

performer’s training distribution which has the minimum distance with the
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Model

F1-score Feature
∆OT ∆IOI ∆OTD ∆ND ∆V L

KNN(k=5) 0.200 0.016 0.006 0.015 0.018
SVM 0.032 0.036 0.026 0.008 0.018
Histogram 0.532 0.509 0.275 0.356 0.502
KDE 0.595 0.505 0.375 0.402 0.536
GMM 0.578 0.466 0.346 0.383 0.561

Table 3.3: Pianist identification results based on score deviation features
using different statistical models.

Model

F1-score Feature
∆OT ∆IOI ∆OTD ∆ND ∆V L

KNN(k=5) 0.344 0.096 0.108 0.135 0.170
SVM 0.220 0.084 0.114 0.219 0.146
Histogram 0.613 0.451 0.458 0.393 0.516
KDE 0.626 0.480 0.355 0.477 0.564
GMM 0.600 0.444 0.279 0.389 0.545

Table 3.4: Pianist identification results based on individual norm deviation
features using different statistical models.

test distribution is the identified performer. Table 3.3 shows the identifi-

cation result in terms of F1-score for each score deviation feature. At the

same time, Table 3.4 shows the identification results for each norm deviation

feature. Abbreviations used in the Table may be looked up in Table 3.2.

The results in bold represent the highest F1-score obtained by any model

for each feature. We observe that, of all the features, the onset time (OT)

deviation feature performs the best when considered alone. Also, compared

to the other models, KDE is the most successful overall. Moreover, both re-

sults indicate that our proposed techniques outperform the baseline models

for both score and norm features.

The normalized confusion matrices for both the score and norm deviation

onset time feature using KDE are also shown in Figure 3.9. The x-axis

corresponds to the predicted performers label and the y-axis corresponds to

the true performers label.

3.4.2.2 Identification Results Using Fused Features

As discussed in Section 3.3.4.2, feature fusion is a method of combining

two or more features to remove redundant and irrelevant features for better
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(a) Score. (b) Norm.

Figure 3.9: Normalized confusion matrix for pianist classification using OT
deviation.

Fused
Feature

Score Feature Norm Feature
Precision Recall F1-score Precsion Recall F1-score

2FF 0.808 0.722 0.762 0.808 0.722 0.762
3FF 0.829 0.806 0.817 0.871 0.819 0.844
4FF 0.828 0.778 0.802 0.828 0.778 0.802
5FF 0.724 0.708 0.716 0.715 0.708 0.711

Table 3.5: Pianist identification using Histogram for different combinations
of features.

classification accuracy. The combined features are tested against each sta-

tistical models for the pianist identification task. As we see from Tables 3.3

and 3.4, OT deviation and VL deviation features perform better than the

other features when considered individually. Hence, it would be practical to

consider a combination of features and test them against each model. We

show the result obtained by each distribution model for both the score and

norm deviation fused features using Equation 3.3.

The feature combination method is not unique and we combine any 2,

3, 4 or 5 features together and assess their performances for the performer

identification task. We tried every possible combination and the best com-

binations for which the Histogram model produces the best result are shown

in Table 3.5. We start by fusing the VL and IOI, which we name “2 Fused

Feature (2FF)” in Table 3.5. We then combine NL, VL, and IOI, which

we’ll refer to as 3FF; OTD, VL, IOI, and NL will be referred to as 4FF. Fi-
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nally, the OT fused with the VL, IOI, NL and OTD is denoted as 5FF. The

results in bold correspond to the best performing fusion features when mod-

elled using Histogram. We see that fusing features produces better pianist

identification results than using separate features, and 3FF performs best

in terms of F1-score regardless of whether we use score or norm deviation

features.

Fused
Feature

Score Feature Norm Feature
Precision Recall F1-score Precsion Recall F1-score

2FF 0.843 0.806 0.824 0.855 0.819 0.837
3FF 0.907 0.903 0.905 0.906 0.901 0.903
4FF 0.899 0.889 0.894 0.929 0.917 0.923
5FF 0.721 0.736 0.729 0.743 0.750 0.746

Table 3.6: Pianist identification using KDE for different combinations of
features.

Since, KDE performs better than any other models for the majority of

the individual features, we also use it for modelling the distribution of the

fused features and evaluate the results using Equation 3.3, which accounts

for both the score and the norm deviation of the fused features. To maintain

the generalization of the method, we use the same combination of features

as used for the Histogram. Hence, the abbreviations would correspond to

the same set of features. From Table 3.6, we observe that fusing features

produces better pianist identification results by KDE than using separate

features. Additionally, when comparing the score deviation fused features,

the 3FF performs the best and is more effective in characterising the playing

styles of players, whilst the 4FF feature outperforms all the norm features.

Fused
Feature

Score Feature Norm Feature
Precision Recall F1-score Precsion Recall F1-score

2FF 0.865 0.833 0.849 0.864 0.830 0.846
3FF 0.869 0.861 0.865 0.868 0.861 0.865
4FF 0.916 0.903 0.910 0.916 0.903 0.909
5FF 0.581 0.625 0.602 0.596 0.625 0.610

Table 3.7: Pianist identification using GMM for different combinations of
features.

Finally, we show the pianist classification result using the Gaussian Mix-

ture Model (GMM). Table 3.7 shows the classification result in terms of

F1-score where each deviation feature in the fused feature set is modelled

using a GMM and then using the Equation 3.3, the similarity estimation is
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Model

F1-score Feature 2FF 3FF 4FF 5FF

Score Norm Score Norm Score Norm Score Norm

KNN(k=5) 0.137 0.116 0.163 0.119 0.159 0.101 0.114 0.187
SVM 0.213 0.193 0.220 0.217 0.312 0.275 0.220 0.359
Histogram 0.762 0.762 0.817 0.844 0.802 0.802 0.716 0.711
KDE 0.824 0.837 0.905 0.905 0.894 0.923 0.729 0.746
GMM 0.849 0.848 0.865 0.865 0.910 0.909 0.602 0.610

Table 3.8: F1-score by various classification models for different feature
combination.

calculated for each feature in the feature set. The mean similarity of the

fused features are then used to classify the most propable pianist. The re-

sult show that fusing features produces better pianist identification results

by GMM than using separate features. In addition, the 4FF performs best

in terms of F1-score regardless of whether we use score or norm deviation

features.

We also present confusion matrices for 4FF-based pianist identification;

Figure 3.10a displays the results achieved by GMM for the 4FF score devia-

tion feature, and Figure 3.10b displays the results obtained by KDE for the

4FF norm deviation feature.

3.4.3 Analysis and Discussion

As discussed in Section 3.3.4, there are two main methods used for pianist

identification. First, we classify the performers using three distribution mod-

els considering the individual features and second, we use a feature fusion

method to identify each performer. Tables 3.3 and 3.4 present the F1-scores

for pianist identification based on individual features. Notably, the Kernel

Density Estimation (KDE) distribution consistently outperforms the base-

line models for both the score and norm deviation features. The onset

time deviation (OT deviation) feature, regardless of the model used, consis-

tently demonstrates strong performance compared to other features. This

suggests its potential in characterising pianist styles effectively. Norm devi-

ation features, in general, perform well in characterising pianist styles, with

the highest F1-score of 0.626 achieved using the KDE distribution.

To provide a more detailed understanding, we generated normalized con-

fusion matrices for the OT deviation feature using KDE. These matrices

(Figures 3.9a and 3.9b) showcase strong identification results for several pi-
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(a) Score. (b) Norm.

Figure 3.10: Normalized confusion matrix for pianist classification using
4FF fusion features.

anists, such as DeTurck, Krasnitski, Mordvinov, and Savitski, with F1-scores

of 0.75 or higher. Overall, the OT deviation feature performs reasonable well

for identifying performers as compare to other features, given that identi-

fying performers from their playing is an exceptionally challenging task.

However, certain performers can not be identified correctly since they may

share the similar OT feature characteristics.

Considering this problem, we use the feature fusion method (as described

in Section 3.3.4.2) for the performer identification task. The results in sec-

tion 3.4.2.2 demonstrate that fused features works much better than individ-

ual features for accurately identifying performers. Table 3.8 compares the

baseline models and our suggested models in terms of F1-score for a num-

ber of fused features. The performance of our proposed models outperforms

the baseline models and KDE performs better overall. The highest F1-

score acheived by KDE is 0.923 when we use 4FF norm deviation feature.

This indicates that characterising the pianists’ distinct styles is improved

by combining IOI, OTD, VL, and ND features. In addition, we find that

combining OT deviation with other features does not significantly increase

performance, despite the feature’s strong performance when evaluated alone.

Based on these results, we see that Single features are less effective for

pianist identification, while fusion features perform better. This suggests

that capturing a pianist’s unique style is complex, and a single character-
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istic may not suffice. The normalized confusion matrices in Figure 3.10

demonstrate the fusion features’ effectiveness. Both score and norm devia-

tion fusion features consistently and accurately identify Abdelmoula, Cheng-

Guang, Krasnitski, and Mordvinov. Additionally, Deturck, Johannson, and

Savitski can be identified with F1-scores of 0.75 or higher using both score

and norm features. However, the norm feature is more reliable in identifying

Rozanski. In conclusion, our findings illustrate the effectiveness of both the

fused features and the models for the identification of pianists, a job that is

extremely difficult and often needs expert musicians.

3.5 Summary

In this chapter, we presented an identification method for the recognition of

virtuoso pianists using our proposed dataset. To do this, we first designed

and extracted five expressive performance features—OT, IOI, OTD, VL,

and ND—to describe the playing style of a performer, and then we use

three statistical models to determine the distribution of each feature, thereby

providing a compact representation of the performer’s playing style. Next,

we used the LOGOCV technique to split our dataset into training and test

sets, and the similarity between the training and test data distributions was

computed to identify the pianists. Finally a feature fusion techniqe has been

proposed using these five expressive paramters.

Our result shows that the proposed fusion features are robust and accu-

rate to discriminate each performer in the dataset. The classification accu-

racy results (92% F1-score) achieved by our model demonstrate promising

performance, indicating potential improvements over prior research [1]. It

is worth noting that 92% is a high success rate in a nine-class classification

task with evenly distributed classes, which is a task that is typically seen

hard for a human in a setting similar to ours. The comparison between the

score based features and the norm based features demonstrated that both

types of features works very well in capturing individual performer’s styles.

This eliminates the need to seek for digital score music, which may be a

time-consuming procedure and is sometimes rather difficult to track down.

Therefore, when there are several performances of the same work, it’s sensi-

ble to compare individual performance to an accepted quasi interpretation

than comparing to a mechanical performance derived from the score. Our
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results also demonstrate that features related to expressive timing and loud-

ness are the most informative when fused together followed by the aspect of

note duration.
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Chapter 4

Parametric Learning for

Pianist Identification

4.1 Introduction

Western classical music is a highly structured form of art, with a hierarchical

organization of elements. In order to accurately model a piano performance,

it is crucial to extract information from each level of this hierarchy. Per-

formers frequently engage with this structural information, for instance, they

must be aware of the transitions between movements or sections and convey

those transitions to the audience through their playing, while also adding

their personal artistic interpretation. Conventional statistical modelling ap-

proaches, as we have seen in Chapter 3, may not be able to effectively cap-

ture the complex relationship between the structure of the music and the

performer’s interpretation. This is due to their inability to incorporate the

context-dependent characteristics of musical performance, where the per-

former’s interpretation can vary based on the specific piece of music and

performance scenario. Conversely, Convolutional Neural Networks (CNNs)

are well-suited for learning hierarchical representations of data. However,

it’s worth noting that even Convolutional Neural Networks (CNNs), may

not fully encompass the broader ”performance scenario.” This aspect may

require additional considerations beyond the capabilities of CNNs. Never-

theless, CNNs remain a suitable choice for modeling piano performances,

particularly due to their proficiency in capturing local temporal dependen-

cies within the music, which aids in preserving the subtleties of a perfor-
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mance.

In this chapter, we propose a pianist identification model (convnet-beat)

that utilizes a multichannel 1D CNN, which is a type of neural network that

is particularly well-suited for processing data hierarchically. The proposed

model is designed specifically to exploit the beat level structure of Western

classical music by incorporating a beat-specific kernel in the first layer of

the CNN which is discussed broadly in Section 4.2.2. The filters in the

first layer are designed with the objective of efficiently learning musically

relevant features at the beat level,a crucial element of musical hierarchy.

This approach allows for a more powerful abstraction of the performance by

capturing the subtle variations in performances at the beat level.

The organization of this chapter is as follows: In Section 4.2, we first

present the techniques employed for data preprocessing and input-output

representation. We then proceed to describe the architecture of the pro-

posed multichannel 1D CNN in detail. In Section 4.3, we establish the

experimental setup and optimize the hyperparameters to identify the opti-

mal model. The results of these experiments, including those for various

hyperparameter settings, are presented in this section. We also conduct

a comparison of the optimal model with several state-of-the-art multidi-

mensional time series classification models. In Section 4.4, we analyze and

discuss the results obtained. Finally, in Section 4.5, we summarize the key

findings of this chapter.

4.2 Methodology

In this section, we first discuss the data and the preprocessing and repre-

sentation methods employed for the multi-channel one-dimensional convolu-

tional neural network (1D-CNN) used in this study. This includes informa-

tion on the input and output representations of the data used for training the

network. We also describe the multi-channel 1D-CNN architecture, which

has been specifically tailored to address the task of automatic performer

identification. We provide a detailed breakdown of the network’s compo-

nents, including the convolutional layers, pooling layers, and fully connected

layers, as well as any other relevant architectural elements. Additionally, we

discuss the various hyperparameters used in the network and their impact

on the performance of the model.
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Figure 4.1: Visualisation of classification framework using multivariate input
sequence.

4.2.1 Data Pre-Processing and Representation

In this chapter, we utilize the “Schubert 4x9” dataset, which is described

in Table 3.1, as the primary dataset for our experiments. The feature ex-

traction method employed is consistent with the method outlined in Section

3.3.2. Furthermore, the set of features used in this study is also identical

to those outlined in Table 3.2. In addition to the deviation features out-

lined previously, we also used the Onset Time (OT), Inter-Onset Interval

(IOI), Off Time Duration (OTD), Velocity (VL), and Note Duration (ND)

features as baseline features in this study. These features were computed

independently from any reference point, such as a score or norm, in order

to evaluate their effectiveness as a measure of performer style. To illustrate

more, we extracted precise onset times and velocity values for each note as

indicated in each performance MIDI and further calculated IOI, OTD, and

ND for the same set of notes.

Training CNNs to tackle music information retrieval tasks is a com-

putationally demanding process and needs an ideal input representation.

Hence, it is necessary to select an input representation that effectively en-

codes symbolic music data in a form that allows for efficient processing.

While spectrogram representation has been widely utilized for the represen-

tation of audio data [148, 187], piano-roll representation has been frequently

employed for the representation of symbolic music in the context of training

CNNs [188, 189].

Although piano-roll representation is widely used, it has its limitations,

including the inability to encode note-off information, which makes it diffi-

cult to differentiate between long notes and repeated short notes. This lack

of detail can hinder the accurate quantification of expressive performance in
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music. Therefore, we use an alternative technique to represent music data

as a multidimensional input sequence, where each data point corresponds to

a note and is ordered by its appearance order (onset time) and pitch in the

alignment result. Each dimension in the sequence corresponds to the specific

features extracted for each note. This is also visualised in Figure 4.1, where

the d-dimensional multivariate input sequence X = [X1, X2, X3, X4 . . . Xd]

consists of d different univariate sequences is the multidimensional input se-

quence with each Xi ∈ RM . Each Xi represents a separate univariate input

sequence, Xi = [x1, x2, x3, . . . , xM ], where the length of X is equal to the

number of notes, M. Each univariate sequence represents a deviation feature

calculated from each note position. Hence, when using a 1D CNN to pro-

cess the data, each feature sequence can be treated as a separate channel,

where a channel is a dimension of the input data that represents a different

feature or aspect of the data. To train our model, we initially converted

the performer name labels into one-hot vectors. These one-hot vectors are

structured such that for a given performer’s name, the vector contains a

’1’ in the position corresponding to the index of that performer, while all

other positions are ’0’. When we give the model some test data to classify,

it provides a score for each artist showing how likely the test data belongs

to each one. The artist with the highest score gets chosen as the final clas-

sification for the test data. To summarize, our dataset is represented as

D = (X1, Y1), (X2, Y2), . . . (XN , YN ), where N is the number of datapoints.

Each data pair (Xi, Yi) consists of a multivariate input sequence Xi and its

corresponding one-hot label vector Yi. The label vector has a length of C

(no. of different classes in our dataset), with each element, k ∈ [1, C] being

set to 1 if the class of Xi is k and 0 otherwise.

4.2.2 Multi-Channel 1D Convolutional Neural Network

Deep Convolutional Neural Networks were originally developed for image

recognition tasks, but have seen widespread success in a variety of other

domains [190]. Inspired by the impressive achievements of CNNs, researchers

have begun to apply them to the realm of music analysis, particularly music

classification [148]. While CNNs have been widely used in the audio domain,

there has been relatively little research on the symbolic representation of

music. In light of this, we propose the application of a multi-channel 1-

dimensional CNNs to hand-crafted feature sequences extracted from MIDI
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Figure 4.2: The architecture of our proposed multi channel 1D-CNN net-
work. The dropout operation is shown by dashed line.

data for the purpose of performer classification.

Drawing inspiration from the use of CNNs in multivariate time series

classification [191, 192, 193], our proposed multi-channel 1D-CNN network

employs a similar architecture with modifications in various layers. As illus-

trated in Figure 4.2, our model is built upon a foundation of convolutional

and max-pooling layers, which are followed by an Adaptive average pooling

layer and a single fully-connected layer with 9 softmax outputs. k denotes

the kernel size of the convolutional filter. Unlike 2D-CNN, which utilizes a

two-dimensional filter (width and height) to analyze images, the convolution

operation in our case involves the use of a one-dimensional filter (width) to

slide over a time series. The filter can be interpreted as a means of applying

a generic non-linear transformation to the time series. To illustrate this,

we visualise the first convolutional layer and the sunsequent max pooling

layer, along with the associated feature maps in Figure 4.3. The input time

series data, which typically comprises multiple channels, is processed by a

set of one-dimensional convolutional filters. The figure illustrates the pro-

cess of feature map generation through the application of the convolutional

filters, as well as the utilization of a max pooling layer to reduce the di-

mensionality of the feature maps, thus enabling more efficient processing in

subsequent layers. These feature maps encapsulate a wealth of information

that is crucial for the classification task.

The filters used within a convolutional neural network can be specifically

tailored to incorporate domain-specific knowledge, thereby enabling the ex-
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Figure 4.3: Visualisation of the first layer of the proposed multi-channel 1D-
CNN. The input is a sequence with n channels. The input to the network is
a sequence of data, with n channels. A set of one-dimensional convolutional
filters are implemented to learn the structure of the sequence and extract
underlying temporal features. Subsequently, a max pooling layer is applied
to reduce the dimensionality of the resulting feature map.

traction of specific features from the data. For instance, in image processing,

it is common to employ filters with shapes such as (5x5) or (12x12) [194].

Similarly, these shapes are often utilized in music information retrieval re-

search [195, 196]. In particular, the design of filter shapes in the very first

layer can be guided by domain knowledge to learn musically relevant con-

texts [197]. In determining the optimal value of (k,) for the first layer of our

CNN, we selected its values based on considerations related to the temporal

structure of western classical music, particularly in relation to beats. The

choice of k is made with an emphasis on effectively capturing musical ele-

ments within a temporal context, specifically, to encompass approximately

one beat.

While the time signature information is not included in MIDI files of real

musical performances, we found that the corresponding scores in our dataset

have time signatures such as 2
4 ,34 and 4

4 . These time signatures indicate the

number of beats per measure and the type of note that represents a beat.

For example, in 4/4 time, a quarter note or two eighth notes or four sixteenth

notes or eight thirty-second notes would receive one beat. In order to further

analyze the dataset, we applied the beat tracking algorithm proposed by

Dixon [198] to examine the number of notes appearing in each beat of each

performance. The histogram in Figure 4.4 illustrates the distribution of

notes in each beat. As seen in the histogram, most beats consist of 4, 5 and

6 notes. Therefore, we assessed the performance of our multi-channel 1D
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CNN on the validation dataset with kernel sizes {2, 4, 6, and 8} in addition

to the commonly used ones for the first convolutional layer, as described in

Section 4.3. The result of applying a convolutional filter to an input sequence

can be considered as a transformed version of the original sequence that has

undergone a filtering process.

Figure 4.4: Frequency distribution of the number of notes played for each
beat across all performances in the dataset.

In addition to the convolutional layer, we implement a batch normaliza-

tion layer [199] to normalize the activations of the layer across a batch of

input data. This serves to stabilize the distribution of activations within

each batch and can improve the convergence rate of the network. Addi-

tionally, batch normalization can improve the generalization performance

of the network by making it less sensitive to the scale of the input data.

The transformed data is then passed through a ReLU activation function

[158], followed by a max-pooling layer. To prevent overfitting, the data is

then input into a dropout layer, where a randomly selected subset (20%) is

set to zero. This helps to regularize the model and improve its generaliza-

tion performance as demonstrated in the study by Nasrullah and Zhao [23]

on artist classification. To further reduce the risk of overfitting, we use an

adaptive average pooling layer in the final convolutional layer. In this type

of pooling, the size of the pooling window and the stride are dynamically

determined based on the desired output size, allowing the pooling operation

to adapt to the characteristics of the input data. This helps to significantly
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reduce the dimensionality of the data. The final network consists of three

convolutional blocks, each with filter sizes of {128, 128, 128}, followed by

a fully connected layer. The final label is produced by applying a softmax

function to the output of the fully connected layer. Our basic convolutional

block can be formulated as:

y = W ⊗ x + b, (4.1)

b = BN(y), (4.2)

r = ReLU(b), (4.3)

O = fdropout(r). (4.4)

(4.5)

where, ⊗ is the convolution operation and BN stands for batch normalisa-

tion.

4.3 Experiments

In this section, we first detail the experimental setup and proceed to con-

duct hyperparameter optimization for the purpose of identifying the opti-

mal model for performer classification. We then present the results in terms

of accuracy and macro F1-score. To gain insight into the model’s decision-

making process, we apply the Class Activation Map (CAM) method to visu-

alize the class-specific regions within the input signal. Finally, we compare

the performance of our optimal convnet-beat model with state-of-the-art

multidimensional time series classification models.

4.3.1 Experimental Setup

When leveraging deep neural networks, specifically convolutional neural net-

works for sequence data modelling, the primary challenge is obtaining suf-

ficient amounts of representative training samples. The generalization ca-

pacity of CNNs is highly dependent on the quantity and diversity of the

training data. In scenarios like ours, where the available dataset for training

is limited, the model’s performance may be severely hindered due to over-

fitting and under-representation of the underlying data distributions. To
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mitigate the issue of limited training data, we employed data augmentation

by slicing the original multi-dimensional feature sequences into smaller, non-

overlapping subsets, thus increasing the size of the training dataset, draw-

ing inspiration from prior research conducted by [1] and [19] on automatic

performer identification. This enhances the number of samples available for

training, thereby facilitating the ability of the CNN to learn more expressive

representations of the underlying data distributions. We empirically deter-

mined an appropriate slicing window size of 200, resulting in 86 segments

per class in our dataset.

The augmented dataset was divided into 80%/20% to generate the train-

ing and validation sets respectively, resulting in 619 and 155 samples. We

ensured that a specific performer/piece combination could only appear in

either the training or the validation and test set. To ensure that the data ad-

heres to a standard scale, we applied z-score standardization to the dataset.

The model was trained utilizing the ADAM optimizer with a learning rate

of 0.001 and a batch size of 32. Training was terminated when the model’s

accuracy failed to improve for 10 consecutive epochs. The categorical cross-

entropy loss function was used to calculate the difference between the pre-

dicted and true labels. To assess the model’s discriminative power, we

employed the F-score metric as well as class-wise performance evaluation

through a confusion matrix.

Model
Kernel Size
(l1, l2, l3)

Accuracy (%) F1-Score

convnet - baseline (2,4,4) 54.22 51.89

convnet - beat

(3,4,4) 55.42 55.13
(4,4,4) 56.62 54.99
(5,4,4) 56.62 55.36
(6,4,4) 62.65 59.36
(7,4,4) 57.83 56.39
(8,4,4) 49.39 45.73

Average 56.11 54.12

Table 4.1: Comparison of Pianist Classification Performance using Baseline
Input features across various Models. li denotes the layer number.

4.3.2 Hyperparameter Optimisation and Results

In order to optimize the hyperparameters of our proposed multi-channel 1D-

CNN model for the classification of performers, we trained and evaluated the
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Model
Kernel Size
(l1, l2, l3)

Accuracy (%) F1-Score

convnet - baseline (2,4,4) 69.88 68.26

convnet - beat

(3,4,4) 71.08 69.87
(4,4,4) 75.90 74.37
(5,4,4) 78.31 76.95
(6,4,4) 78.31 77.29
(7,4,4) 75.90 74.69
(8,4,4) 73.49 71.08

Average 74.68 73.21

Table 4.2: Comparison of Pianist Classification Performance using Score-
Deviation Input Features across various Models.

Model
Kernel Size
(l1, l2, l3)

Accuracy (%) F1-Score

convnet - baseline (2,4,4) 85.93 84.44

convnet - beat

(3,4,4) 85.51 84.24
(4,4,4) 86.71 84.72
(5,4,4) 88.28 85.90
(6,4,4) 90.42 90.14
(7,4,4) 85.55 84.24
(8,4,4) 86.51 85.23

Average 86.98 85.55

Table 4.3: Comparison of Pianist Classification Performance using Norm-
Deviation Input Features across various Models

model with different configurations. We evaluated the model’s performance

utilizing three distinct feature sets, including baseline features (calculated

independently from any reference point), score deviation features, and norm

deviation features. The results of the model’s performance, represented in

terms of accuracy and macro F1-score, are presented in Tables 4.1, 4.2 and

4.3. As previously discussed in Section 4.2.2, we employed a beat-specific

kernel optimization strategy, wherein the assumption is that each kernel is

specifically attuned to accommodate the notes that correspond to a single

beat, to achieve optimal performance.

Based on the average accuracy and F1-score metrics, it is demonstrated

that the utilization of norm deviation input features results in a higher per-

formance. This suggests that norm deviation features are an appropriate

representation for the input to the model. The highest F1-score of 90.14,

as recorded in Table 4.3, was also attained with the use of norm deviation

features as input in the convnet-beat model, with a kernel size of 6 in the first
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convolutional layer. This serves as evidence that the beat-specific filters em-

ployed in the model are capable of learning relevant temporal dependencies

that are discriminative towards pianists.

convnet-beat Channel Layers Accuracy (%) F1-Score

Models with Reduced Channel
16 3 79.51 77.23
32 3 86.51 85.79
64 3 86.74 84.33

Models with Reduced Layer

16 2 60.24 53.89
32 2 74.69 73.60
64 2 79.52 77.30
128 2 84.33 82.38

Default Model 128 3 90.4 90.1

Models with More Channel
256 3 85.54 83.43
512 3 83.13 80.81

Models with More Layers
128 4 89.15 88.44
128 5 87.95 87.15

Table 4.4: Comparison of Pianist Classification Performance using Norm-
Deviation Input Features across variants of convnet-beat model.

In order to assess the relationship between model performance and the

number of channels and layers, we conducted a series of experiments on

the convnet-beat model, using a fixed kernel size of 6 and norm deviation

input features. We selected this particular model for experimentation due

to its superior performance, as evidenced by the highest accuracy and F1-

score values among all models tested. The results of this experimentation are

presented in Table 4.4, which shows the model performance for both reduced

and increased number of parameters, specifically channels and layers. It can

be observed that as the number of layers is decreased, there is a significant

reduction in performance, and although increasing the number of channels

does not result in an improvement in performance, increasing the number of

layers results in consistent performance. However, it should be noted that

an increase in the number of layers may result in overfitting, particularly

when working with a small dataset like the one in this case and this could

result in decreased accuracy on the validation set.

The convnet-beat model, configured with a kernel size of 6, channel count

of 128, and 3 layers, exhibited the highest performance among all mod-

els evaluated. Utilizing norm-deviation features as input data resulted in

improved performance, as indicated by the highest accuracy and F1-score

values in bold, shown in Table 4.4. This model was considered as the opti-
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mal configuration and was selected for comparison against state-of-the-art

multidimensional time series classification models in Section 4.3.4.

4.3.3 Identifying Contributing Regions for Performer Pre-

diction using Class Activation Maps

In order to gain a deeper understanding of the underlying mechanisms of the

convnet-beat in the context of performer identification, we employ the Class

Activation Map (CAM) method. CAM, first introduced by Zhou et al. [200],

is a visualization technique, commonly used for image-based tasks, allows

for the identification of discriminative regions within an images. A one-

dimensional CAM, which was previously presented by Wang et al. [193] for

time series classification, is employed in order to uncover the regions of the

input sequence that exert the most significant influence on the output at

each layer of our neural network, as depicted in Figure 4.5.

The incorporation of the Adaptive Average Pooling (AAP) layer, which

operates similar to a Global Pooling Layer (GAP), facilitates the compu-

tation of the CAM. For example, to compute the CAM for the final con-

volutional layer, we first extract the output of that layer, denoted as H(t),

a multivariate sequence with d variables. For each variable i ∈ [1, d], we

can represent the univariate sequence as Hi(t), which corresponds to the

activation of the ith filter in the final convolutional layer. The output of the

AAP for filter n can be formulated as:

Fi =
∑
t

Hi(t) (4.6)

Moreover, we can denote the softmax weights between the ith filter out-

put and the class output neuron as wc
i . Thus, the input to the final softmax

function can be represented mathematically as:

hc =
∑
i

wc
i

∑
t

Hi(t)

=
∑
i

∑
t

wc
iHi(t)

(4.7)

We finally calculate the Class Activation Map (CAM), which is a uni-

variate sequence. Each element at step t in the sequence is a weighted sum

of the M datapoints. The weights are learned by the convolutional layer
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through optimization during the training phase. The Class Activation Map

for class c can be mathematically defined as:

CMc(t) =
∑
i

wc
iHi(t) (4.8)

Where CMc(t) denotes the class activation map, a visual representation

of the regions of the input sequence that are most critical to the classification

process. It quantifies the importance of the activation at temporal location

t in relation to the classification of the input sequence as class c. To ensure

the output length of the last convolutional layer is the same as the input

length, we have upsampled the output with linear interpolation.

4.3.4 Comparison of convnet-beat with State-of-the-Art

time series classifcation Models

In this section, we present a comparison of the proposed convnet-beat model

with several state-of-the-art multidimensional time-series classification mod-

els using our “Schubert 4x9” dataset for pianist classification. All of these

models were trained for 100 epochs using the Adam optimizer, with categor-

ical cross-entropy as the loss function. Through experiments with various

epoch settings, we identified that 100 epochs represented the optimal point

where each model reached a performance plateau. The comparison of the

models is presented in Table 4.5, which displays the number of trainable pa-

rameters for each model and the corresponding classification accuracy. The

results indicate that the convnet-beat model outperforms the other models,

with a classification accuracy of 90.42%.

Model Total params Accuracy (%)

XceptionTime [201] 400770 84.33
ResCNN [192] 259210 83.13

InceptionTime [201] 456777 83.13
ResNet [193] 481417 81.92
FCN [193] 268809 80.72

LSTM {‘n layers’: 3, ‘bidirectional’: True} 570609 62.65

convnet-beat 202377 90.42

Table 4.5: Comparison of the Proposed convnet-beat Model with Other
State-of-the-Art Models on our dataset in terms of Classification Accuracy

Notably, the convnet-beat model has the lowest number of parameters
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Figure 4.5: Class Activation Map (CAM) illustrates the contribution of
various sequence regions in each layer to correct class identification for two
classes in our dataset using the conv-beat model. Dark Red regions indicate
high contribution, while yellow regions indicate minimal contribution.
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(a) Layer 1. (b) Layer 2. (c) Layer 3.

Figure 4.6: Visualization of learned filters from the convnet-beat model.
The filters shown represent a sample of filters from different channels, ci
and were learned during the training process of the first, second and third
convolutional layer.

among all the models, with 202377, while still achieving the highest classifi-

cation accuracy. On the other hand, the LSTM model, which is a commonly

used deep learning architecture for sequence data, has the largest num-

ber of parameters (570609) yet it achieves the lowest classification accuracy

of 62.65%. These results demonstrate the effectiveness of the convnet-beat

model for the task of multi-class pianist classification.

4.3.5 Comparison between convnet-beat and statistical mod-

els

In this section, we delve into a comparative analysis between the convnet-

beat model and the similarity-based identification models proposed in Chap-

ter 3. This comparison is essential to understand the strengths and limita-

tions of different approaches when it comes to pianist identification. Table

1 presents the performance of these models in terms of both the score and

norm deviation characteristics. Histogram provides a good balance between

precision and recall for both Score and Norm features, with Norm feature

slightly outperforming Score feature in terms of F1-Score. However, KDE
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Model
Score Feature Norm Feature

Precision Recall F1-score Precision Recall F1-Score

Histogram 0.829 0.806 0.817 0.871 0.819 0.844
KDE 0.907 0.903 0.905 0.929 0.917 0.923
GMM 0.916 0.903 0.910 0.916 0.903 0.909

convnet-beat 0.783 0.766 0.773 0.913 0.892 0.901

Table 4.6: Comparison of the proposed convnet-beat model with the simi-
larity based identification models proposed in Chapter 3.

shows excellent results, especially for the Norm feature, where it achieves

a precision of 0.929, a recall of 0.917, and an F1-score of 0.923. This indi-

cates that the KDE has been effective in capturing the nuanced aspects of

Norm performance. The Gaussian Mixture Model (GMM) exhibits similar

performance to that of KDE. It yields nearly identical results for both the

Score and Norm features, suggesting consistent performance irrespective of

the feature type. On the other hand, convnet-beat model achieves its best

performance using the Norm feature, with an F1-Score of 0.901. While this

is slightly lower than the KDE and GMM models for the Norm feature, it’s

noteworthy considering that neural network models often require substantial

data and fine-tuning.

In conclusion, Statistical models (KDE and GMM) seem to perform bet-

ter when modelling the pianists’ individual artistic style, especially with the

Norm feature. This could be due to their capability to capture the distribu-

tion of features effectively. The convnet-beat, despite being a neural model,

shows competitive performance. This indicates the power of neural net-

works in capturing subtle variations, especially when specialized structures

like beat-specific kernels are employed. This model might offer more nu-

anced insights into the data or even outperform the statistical models with

more data or further tuning. The differentiation in performance between

Score and Norm features across models indicates the importance of feature

selection in pianist identification. The Norm feature generally provides bet-

ter or comparable results, suggesting that the features extracted from norm

performance is a vital aspect of capturing the unique styles of pianists.
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4.4 Result Analysis and Discussion

The convnet-beat model’s predictions can be further understood by visual-

izing the learned filters from each layer, as depicted in Figure 4.6. This

allows for an interpretation of the information the model is learning from

each convolutional layer. The Gramian Angular Summation Field (GASF)

technique is utilized to transform the temporal filters in each layer into a 2D

image representation, as outlined in [202]. GASF is a method for intuitively

mapping multi-scale correlation in 1D space by representing each value in

a sequence as a pixel in an image. To acheive this, the input sequence is

first normalized to ensure that all values fall within the range of [0, 1]. Sub-

sequently, the sequence is mapped into polar coordinates by encoding the

values as the angular cosine and the time steps as the radius. For a given

sequence S = {s1, s2, . . . , sn}, the process of transforming the temporal fil-

ters in each layer of the convnet-beat model into a 2D image representation

is mathematically defined as follows:

s̃i0 =
si −min(S)

max(S)−min(S)
(4.9)

ϕ = arccos(s̃i), 0 ≤ s̃i ≤ 1, s̃i ∈ S̃ (4.10)

r =
ti
K

, ti ∈ N (4.11)

Where K is a constant factor that regularizes the span of the polar

coordinate system and ti represents the time step. The temporal correla-

tion within different time intervals can then be identified by considering the

trigonometric sum between each point, defined as:

GASF = cos(ϕi + ϕj)

= S̃′ · S̃ −
√
I − S̃2

′
·
√

I − S̃2
(4.12)

Where I = [1, 1, . . . , 1] is the unit row vector. The inner product can be

defined as < x, y >= x · y−
√

1− x2 ·
√

1− y2 and < x, y >=
√

1− x2 · y−
x ·

√
(1− y2) and Gramian angular summation field can be represented as

quasi-Gramian matrices [< s̃1, s̃1 >] [202].

In Figure 4.6, we visualize the filters of the first channel for all three layers
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in the convnet-beat model. The convolution operation is performed by sliding

the filters, which act as a weighted moving average, over the input data to

extract local temporal dependent features among different time intervals.

In time series data, these features may be the local maxima (peaks) and

minima (dips). As we move deeper in the layers, we can observe that the

filters have learnt more complex patterns, probably multiple peaks and dips.

Although there is similarity in the patterns observed across layers, there

are also unique patterns, indicating the heterogeneity of the local patterns

learned by the filters across multiple layers. Additionally, it is observed

that the weights in the first layer tend to have higher magnitudes compared

to those in subsequent layers. This could be a result of the filters in the

first layer capturing more information in the input data, which supports

the use of beat-specific kernels in the first layer to capture beat-level micro

information.

In order to gain a deeper understanding of the input signal’s contribu-

tion to the decision made by the convnet-beat, we have employed the use

of class activation maps (CAMs) to identify the specific regions within the

input signal that had the greatest impact on the network’s output. This is

demonstrated in Figure 4.5 using segments of Schubert’s Sonata in B-Flat

Major, D960, movement IV, performed by two different pianists, as part of

the test set. It is evident that for both of the performers, many discrim-

inative regions have been identified in the first layers, whereas there are

not many discriminative regions identified from the second and third layers.

This suggests that using a beat-specific filter in the first layer can learn the

micro-variations injected by performers to each note, such as variations in

timing, velocity and articulation. Additionally, this creates the avenue for

experimenting with a measure-specific filter that can capture the variations

within each measure, such as variations in dynamics, harmonic structure,

and melody, and eventually help to capture the global temporal relationship

of the performance. This can lead to a better understanding of how the

neural network is able to discern subtle variations in performances and aid

in the design of more sophisticated music-specific models.

Neural networks, particularly convolutional neural networks, are highly

prone to overfitting due to their inherent complexity and the potential for

training with limited data. In our case, the convnet model was expected

to exhibit overfitting given the small size of the dataset. However, we were
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able to mitigate this issue by implementing several techniques to improve the

model’s generalization capabilities. Specifically, we employed batch normal-

ization in each layer, which is known to improve training speed and general-

ization. Furthermore, the use of an Adaptive Average Pooling layer before

the fully-connected layer greatly reduced the number of parameters, thus

reducing the risk of overfitting. Additionally, the incorporation of dropout

in each layer further helped to alleviate overfitting. By incorporating these

technical tricks into the network architecture, we were able to achieve bet-

ter accuracy on our small dataset that consists of recorded MIDI files from

computer-controlled pianos, which are often limited in size and variety.

To sum up, our proposed convnet-beat model demonstrates the ability to

accurately identify performers from unseen musical excerpts. Despite being

trained on a relatively small dataset, the model exhibits minimal overfitting.

The utilization of a beat-specific filter in the first convolutional layer allows

for effective learning of micro-variations introduced by performers. Addi-

tionally, the model achieves superior F1-score performance when compared

to state-of-the-art multivariate time series classification models, while using

fewer parameters.

4.5 Summary

In this chapter, a deep learning technique, specifically convolutional neural

networks, was applied to the task of pianist identification using handcrafted

features extracted from the symbolic representation of music. The proposed

approach leveraged the ability of CNNs to learn a hierarchical representation

of the data, thus enabling the capture of unique performer styles. The results

of the study demonstrated the effectiveness of the proposed convnet-beat

model in identifying performers from unseen musical excerpts. Visualization

of the filters of the first channel for all three layers in the model revealed

that the filters had learnt more complex patterns as they moved deeper

into the layers. Furthermore, the use of class activation maps revealed that

many discriminative regions had been identified in the first layer, supporting

the use of beat-specific filters in the first layer to capture beat-level micro

information. To address the issue of overfitting, commonly encountered

in neural networks, particularly CNNs, several techniques such as batch

normalization, Adaptive Average Pooling and dropout were employed. The
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model also exhibited superior performance when compared to state-of-the-

art methods. These findings demonstrate the potential of the convnet-beat

model for pianist identification and provide a foundation for the development

of more advanced music-specific hierarchical model as presented in Chapter

6.
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Chapter 5

Large Scale Dataset

Construction

5.1 Introduction

In the field of expressive piano performance, data-driven approaches have

been used to analyze and generate realistic and expressive renditions of music

played on the piano. These approaches have gained popularity in recent

years, with an increasing focus on data-hungry, deep learning techniques

[48, 46]. However, in order to build comprehensive models and compare

different approaches, large-scale datasets of expressive piano performances

are required, and these datasets must adhere to certain standards. These

datasets should include multiple performances of the same piece of music

by multiple performers in order to capture expressive details and common

performance idioms, and should allow for the study of expressiveness and

styles across different performers. In the past, datasets with very limited

numbers of pieces were recorded and organized by researchers [203, 204, 205,

70], but the non-trivial task of Composition Entity Resolution (CER), which

involves aligning the complex naming schemes of classical music, has made

it difficult to obtain multiple performances of the same music at a larger

scale.

The representation of the data is also important. For instance, audio

recordings provide the most accurate representation of a performance, but

it is very challenging and labor-intensive to extract expressive features from

the waveform [206], and often requires complex processing. MIDI files, on
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the other hand, can serve as a mid-level, piano-roll like representation of

piano performances, but they may not be able to preserve as many fine-

grained details as audio files. The repertoire and diversity of the dataset

are also important considerations, as different datasets cover different time

periods and styles of music. A symbolic score, such as a MusicXML file, is

typically needed for tasks such as performance rendering [101], as it allows

for the observation of expressive deviations by comparing with a quantized,

dead-pan score. Furthermore, the size of the dataset is important, as large

datasets are essential for training deep neural networks.

To address the need for a large-scale dataset of expressive piano perfor-

mances, we propose a new performer-oriented dataset1 called Automatically

Transcribed Expressive Piano Performance (ATEPP) [2], which consists of

11742 virtuoso recordings with 1007 hours of music. This dataset is in-

tended for studying expressiveness and styles across different performers in

Western classical piano music. Unlike previous datasets, which were created

by recording MIDI files from computer-controlled pianos, our dataset was

created by applying state-of-the-art piano transcription models [207, 208] to

audio recordings of performances. This allows for the inclusion of a wider

range of performances and the exploration of performer-specific expressive-

ness and different schools of playing. In order to create our dataset, we

first performed an error analysis of existing piano performance transcription

models to verify the reliability of the transcribed performances in Section

5.2, followed by a listening test to evaluate the quality of the transcriptions

in Section 5.2.4. Finally, we construct the dataset by overcoming the chal-

lenge of Composition Entity Resolution (CER) which is discussed in Section

5.3.1, followed by an audio matching and solo filtering pipeline.

Overall, the release of our dataset represents a significant step forward in

the field of expressive piano performance, as it provides a dataset with suf-

ficient richness and variety for studying expressiveness and styles across dif-

ferent performers. The inclusion of audio recordings, rather than MIDI files,

allows for the exploration of performer-specific expressiveness and different

schools of playing, and the dataset can be used for a range of tasks beyond

just performance analysis and generation, such as performance attribute

1Released dataset and supplementary material (Appendix): https://github.com/

BetsyTang/ATEPP. The dataset is made available under Creative Commons Attribution
4.0 International Public License (CC BY 4.0).
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analysis [209, 210, 211], comparison of performances and styles [212], and

performance visualization [213]. The ATEPP dataset is a valuable resource

for researchers working in this field and has the potential to significantly

advance the state-of-the-art in expressive piano performance research.

The compilation of the dataset was a joint endeavor in which I collabo-

rated with two of my colleagues from the Center for Digital Music (C4DM),

Huan Zhang and Jingjing Tang. Each party contributed equally to the

construction of the dataset. My specific responsibilities included obtaining

performance recordings from the internet, aligning the performances with

the scores, calculating errors, and utilizing the transcribed data to train

a pre-existing performance rendering model, as well as analyzing the ren-

dered expressive performances to validate our transcribed data for musical

expression analysis. The materials presented in this chapter have been uti-

lized with the express consent of my aforementioned co-authors and this

work has been presented in the The 23rd International Society for Music

Information Retrieval Conference (ISMIR 2022).

The remaining portion of this chapter is organized as follows: We begin

by thoroughly examining the reliability of the state-of-the-art transcription

models through objective analysis and human listening tests in Section 5.2.

Next, we delve into the techniques used to gather and refine our data, includ-

ing audio matching and noise filtering, in Section 5.3. Finally, we present

an overview of the key statistics of our dataset in the same section. The

chapter concludes with a summary in Section 5.4.

5.2 Transcription Evaluation and Post-Processing

5.2.1 Automatic Piano Transcription

Automatic Music Transcription (AMT) is defined as the design of com-

putational algorithms to convert acoustic music signals into some form of

human-readable music notation. However, it is regarded as exceptionally

challenging due to the fact that it necessitates the estimation of multiple

subtasks, including (multi-)pitch estimation, onset and offset detection, in-

strument recognition, beat and rhythm tracking, interpretation of expressive

timing and dynamics, and score typesetting [149]. Recent state-of-the-art

AMT systems have achieved great precision with relatively low error rates
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Figure 5.1: Data representation on an AMT system, with the input wave-
form on top, the internal time-frequency representation in the middle, and
the unquantized piano-roll representation of the output at the bottom. The
example corresponds to L.V. Beethoven’s Piano Sonata No. 3. 2nd move-
ment (taken from our dataset).

thanks to deep learning models. For example, the Onsets and Frames tran-

scription model [214] that conditioned framewise note detection task on top

of determined piano onsets, a full piano roll with velocity was transcribed.

The High-resolution model developed by [207] improved the precision by

regressing the exact timestamp of each note. Recently, generic encoder-

decoder architecture [215] exploits language-like modelling that achieved

model simplicity while retaining performance. As demonstrated in Figure

5.1, a typical AMT system uses the raw audio waveform, which is shown at

the top of the figure, as its input. After that, it does an internal calculation
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Model HE SN MS Other

High-Resolution [207] 3.2% 1.5% 1.2% 5.6%
OnsetsFrames [216] 4.2% 2.4% 0.1% 6.7%

Seq2Seq [215] 8.1% 2.9% 0.3% 7.9%

Table 5.1: Error produced by the three transcription models on the Mazurka
dataset [2].

to determine the time-frequency representation, which is seen in the centre,

and then it generates an unquantized representation of the pitches over time

(also called a piano-roll representation, as shown at the bottom).

5.2.2 Common Transcription Errors

Despite having high accuracy by DNNs, a small amount of transcrip-

tion errors would negatively affect the expressive performance style mod-

elling. Consequently, we use three state-of-the-art transcription techniques

[207, 216, 215] and test them on the MazurkaBL [217] dataset to ensure

the reliability of the transcribed performances. To do this, the performed

Mazurkas in the dataset are first transcribed using all three transcription

models. Given that the MazurkaBL dataset has no ground truth data, we

use their MusicXML score files and a symbolic music alignment algorithm

(discussed in Section 3.3.1) proposed by [177] to align the performances

with their corresponding score files, assuming the performances match the

same score version. Finally, we compare the alignment result for each per-

formance with their corresponding score and observe three prevalent types

transcription errors:

• Harmonic Errors (HE): Incorrectly detecting notes that are harmon-

ically related to other played notes. This occurs when the harmonic

series of two notes overlap, leading to a missing or extra octave or fifth.

• Segmented Notes (SN): Notes that splits into two with a brief gap

(<10ms) between offset and onset and might be caused by amplitude

modulation [218].

• Mis-touched Short notes (MS): Random spurious short notes

(<16ms) appear in the transcription.
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In addition, we evaluate the presence of these errors in the Mazurka

performances transcribed by each of the three transcription models [207,

216, 215], and compute the error rate for each error category. As shown in

Table 5.1, the High-resolution model [207] creates the fewest overall errors

but produces more short notes than the other transcription models.

Figure 5.2: A comparison of the output pianorolls of the original High-
Resolution model (top) and the joint note-pedal model (bottom). Dashed
lines indicate pedal-on message with velocity. [2]

We further notice that the High-resolution [207] model stretches the du-

ration of notes in order to simulate the sustain effect, which is normally

achieved by the performer pressing a sustain pedal on a piano. However,

in MIDI rendering software, such stretching does not result in a perceptible

difference; nonetheless, correct end locations of each note are essential for

piano performance analysis. To address this problem, we make some ad-

justments to the original High-Resolution model [207] by including a joint

note-pedal training technique, which combines the 88 keys and 3 pedal chan-

nels of a piano into 91 prediction classes with velocity for each channel, and

removes the extension of note offsets. This is dissimilar to their original

training, where they trained separate networks for key activity and sustain

pedal with binary velocity. By conditioning the sustain effect on both the

key-down time and the pedal controls, the joint-note pedal training aims to

provide more precise note offset.

The transcription comparison in Figure 5.2 between the original High-

Resolution model and the modified joint-note pedal version demonstrates

that the note-pedal transcription produces more realistic note offsets that

are not prolonged with pedal, in addition to the velocity of sustain pedals.
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It also illustrates the concept of modelling the pianist’s key action rather

than the note’s damping time, which might be caused by the sustain pedal

or key stroke. Evaluation results showed that the onset F1 score (tol =

50 ms) after 300k iterations was 92.1%, and onsets and offsets evaluation

achieved 68.2%.

5.2.3 Score-to-Performance Alignment & Error Correction

Symbolic music alignment is a process of automatically matching a note

in a music performance with a corresponding note in a score or a reference

performance. We use a Hidden Markov Model (HMM) based symbolic music

alignment algorithm proposed by Nakamura et al. [177]. Although, the

algorithm achieved high accuracy, it could not outperform the current state-

of-the-art methods available in the literature [174, 175, 176]. These models,

on the other hand could only achieve great accuracy when applied to their

own data. The HMM-based algorithm was applied to those data as well as

their own data to evaluate its accuracy and computational efficiency. The

HMM-based algorithm obtained the highest accuracy accross all datasets

and the computational efficiency surpasses all the other algorithms.

To identify the errors with reference to score, we aligned the transcribed

recordings with their corresponding score using the alignment algorithm.

We corrected the transcription errors resulted from the alignment using

simple rules such as, 1) extra notes in the transcription but not in the score

are deleted, 2) mismatched pitches are corrected to the pitch written in the

score, and 3) missing notes are interpolated and written back to MIDI using

the following rule:

N(t) = N(t−∆p) + (N(t + ∆n)−N(t−∆p))
∆p

∆p + ∆n
(5.1)

where N(t) denotes the onset or offset timestamp of the missing note at

beat t, and ∆p,∆n represent the beat distances between the missing note

and the previous or next existing notes, respectively.

5.2.4 Listening Evaluation

To assess the perceptual quality of the transcribed piano performances, we

conducted a subjective listening test in which participants were asked to

rate the similarity of transcribed MIDI files to a reference recording. We
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compared the ground truth recording with four different transcribed MIDI

renderings produced by four different transcription systems: the original

High-Resolution system [207] (C1), a joint note-pedal model (as described

in Section 5.2.2) (C2), a score-corrected version (C3) of the joint note-pedal

model, and a language-model transcription system [215] (C4). Each MIDI

performance is rendered on a KAWAI CA49 electric piano and recorded

with a Zoom H4n Pro Recorder followed by a basic noise reduction using

Audacity.

The test was carried out using the MUSHRA protocol [219], and it con-

sisted of five 20-second classical piano excerpts with varying styles (Q1-Liszt,

Q2-Debussy, Q3-Bach, Q4-Rachmaninov, Q5-Mozart). Each style had five

recordings, including one reference and four transcribed stimuli. Partici-

pants were then asked to compare the transcribed MIDI renderings with the

reference recording and rate their similarity on a 100-point scale. They were

also asked to ignore the timbral or acoustic differences, but to base their

judgements on the expressive differences between the stimuli, such as dy-

namics and timing. We received a total of 1075 ratings from 43 participants,

with half of them having more than five years of piano playing experience.

Q1 Q2 Q3 Q4 Q5 Overall

Reference 4.42±0.24 4.17±0.29 4.24±0.31 4.28±0.31 4.46±0.27 4.30±0.12

C1 4.12±0.38 3.52±0.37 3.88±0.32 3.60±0.41 3.88±0.4 3.81±0.16
C2 3.83±0.42 3.86±0.39 4.28±0.31 3.97±0.42 4.06±0.45 4.01±0.17
C3 3.44±0.37 2.96±0.36 3.44±0.35 3.32 ±0.42 3.76±0.41 3.38±0.17
C4 3.88±0.34 2.32±0.47 3.60±0.29 3.84±0.33 3.68±0.37 3.46±0.18

Table 5.2: Listening test results interms of mean opinion scores (MOS) [2].

Table 5.2 presents the mean opinion scores converted from the original

ratings to a 5-point scale. Evidently, all stimulus groups varied considerably

from the reference, and there was a clear preference for the joint note-pedal

model (C2), whereas the score-corrected transcription (C3) and language-

model (C4) transcriptions were rated much lower. Based on these results, the

joint note-pedal model (C2) was used for transcribing our dataset. The re-

sults also revealed a perceptual difference in the transcription quality across

music styles, indicating a bias in transcription models towards transcrib-

ing fast, arpeggio-heavy passages being rated as lower perceptual quality.

On the other hand, good transcriptions sound considerably more like the

reference when the texture is slow and sparse.
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5.3 Dataset Overview

5.3.1 Data Acquisition & Refinement

Our data collection pipeline, illustrated in Figure 5.3, initiated with 49 fa-

mous pianists. We used the Spotify API2 to obtain metadata from their

discographies, encompassing details such as composer, performer, album, ti-

tle, and track duration. We then construct a composition-movement hierar-

chy by removing non-solo keywords like concerto or trio. Secondly, given the

heterogeneity of classical music naming conventions, the next challenge was

Composition Entity Resolution (CER) [220], defined as identifying tracks

that correspond to the same piece of music.

Figure 5.3: Data acquisition pipeline.

We take several steps to deal with CER which includes: 1) compiling a

lexicon of words for interchangeable phrases like Prelude ↔ Praeludium, 2)

extracting unique information like key and catalogue number (Opus. BWV,

K. D., etc.) from the title string, 3) matching composition title and move-

ment title by computing the similarity score using normalized Levenshtein

distance [221]. However, it is also important to remember that this approach

of string matching is not always reliable since many songs in our discography

have generic names like “Piano Sonata”. Thus, Algorithm 1 describes our

three-step approach to composition entity resolution, where inputs are com-

position title C, movement title M, and duration D. Finally, we download

each track from YouTube music based on the refined metadata and validate

using the same CER algorithm.

2https://developer.spotify.com/documentation/web-api/
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Algorithm 1 Composition Entity Resolution

# UniqueInfo extracts canonical key and composer-specific catalogue
number.
for k1, k2 in UniqueInfo(C1, C2) do
if k1 ̸= k2 then
return False

end if
end for
Sc ← 1− (Levenshtein(C1, C2))/max(|C1|, |C2|)
Sm ← 1− (Levenshtein(M1,M2))/max(|M1|, |M2|)

Sd ←
abs(D1 −D2)

max(D1, D2)

S ← Sc + Sm

2
− Sd

return S ≥ 0.6

5.3.2 Audio Verification

The CER algorithm described above provided us with grouped performance

audios by different compositions (or movements). Despite it’s high accuracy

of gathering performances interpreting the same pieces, a small portion of

performances were erroneously identified and assigned to a non-matched

movement. Therefore, to address this problem, we apply Chen et al. [222]’s

cover song detection algorithm within each group of performance to compare

each performance to a reference one. To determine the degree of similarity

between the reference and the performance, we initially extract the Har-

monic Pitch Class Profile (HPCP) [223] from both the audio signals. We

then calculate the similarity between the tracks using the Qmax measure

[224], which takes into account the maximum value of a cumulative matrix

derived from the HPCP descriptors. If the similarity is greater than 0.9, as

defined by Eq. 5.2, we confidently include the track in our dataset.

Sim = 1−Qmax , 0 < Qmax < 1 (5.2)

5.3.3 Noise Filtering

In order to create a dataset of high-quality solo piano recordings, we needed

to filter out any sounds that might not be part of a solo piano perfor-

mance. This includes extraneous sounds such as applause or speech from
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live recordings, which would be transcribed as random pitch in the MIDI

file. To accomplish this, we trained a deep learning model based on the

Musicnn architecture [225] to identify and remove non-solo-piano segments

from the audio. The model was trained using a binary classification ap-

proach, with a subset of AudioSet [226] containing various environmental

sounds as negative examples and solo piano recordings as positive examples.

Once the model had been trained, it was able to predict the probability that

a 1-second segment of audio contained non-piano sounds. Using this infor-

mation, we were able to apply a post-processing step to the audio tracks,

which searched for and removed the longest continuous stretches of non-solo

audio from the beginning and end of each track. Out of the 11742 tracks

in our dataset, 567 of them were found to contain such segments and were

successfully cleaned. Finally, we conducted a manual verification process to

ensure the accuracy of the audio splicing.

5.3.4 MusicSML Score Collection

In addition to collecting audio recordings of musical performances, we also

gather the corresponding musical scores in MusicXML that corresponds

to our performance data. These scores were obtained from two different

sources: 228 files were collected from the ASAP dataset [227], and an ad-

ditional 90 files were retrieved from the MuseScore3 online library. The

MuseScore online library is a collection of scores that have been created and

shared by users of the MuseScore software. In total, we collected 319 move-

ments, which correspond to 5124 tracks in our dataset (43% of all tracks).

To ensure that the scores and performances match up correctly, we used

an automated process to determine the score-performance correspondence

based on name matching, followed by a manual correction step to address

any discrepancies.

5.3.5 Dataset Statistics and Content

The dataset represents a comprehensive and diverse collection of solo piano

music, with 11742 tracks comprising 1580 movements in total. These tracks

exhibit a low degree (0.2%) of overlap with the GiantMidiPiano dataset

[228], making our dataset a valuable and unique resource for music research.

3https://musescore.com/sheetmusic
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Figure 5.4: Distribution of movements by number of performances. E.g.
12% of our data have more than 15 performances [2].

The distribution of movement-performance occurrences within the dataset

is depicted in Figure 5.4, with 44% of the 1580 movements having more than

5 recorded performances. This allows us to investigate a diverse range of

interpretations for the same piece of music.

In addition, we show the distribution of the top 25 pianists’ performances

in our dataset, as shown in Figure 5.5, with Sviatoslav Richter with the most

contributions to the dataset. In terms of composers, the our dataset includes

solo piano works from 25 Western classical composers, covering a wide range

of time periods from the Baroque to the Modern era.

To gain insights into the expressive nature of the performances in our

dataset, we made a rough estimate of the deviations present by calculating

the standard deviation of note velocities (σvel) and the standard deviation of

inter-onset-intervals (σioi) for each piece. These deviations are depicted in a

box plot and compared with those of other datasets containing piano MIDI

data [229, 230, 231, 228] in Figure 5.6. For the purposes of this analysis,

the velocity values were normalized from the range [0, 127] to [0, 1], and

the inter-onset-intervals were expressed in seconds. This analysis provides a

useful overview of the expressive characteristics of the performances in our

dataset.
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Figure 5.5: Statistics of the top 25 pianists in-terms of their performances
in our dataset [2].

Figure 5.6: Note velocity deviation and IOI deviation for 5 datasets [2].

5.4 Summary

In this Chapter, we introduced an Automatically Transcribed Expressive

Piano Performance (ATEPP) dataset, a comprehensive collection of 11742
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virtuoso piano recordings totaling 1007 hours of music. The dataset was

created using state-of-the-art piano transcription models applied to audio

recordings of performances, rather than MIDI files recorded from computer-

controlled pianos as in previous datasets. This allows for the inclusion of

a wider range of performances and the exploration of performer-specific ex-

pressiveness and different schools of playing. To ensure the reliability of

the transcribed performances, we conducted an error analysis and listen-

ing test of existing transcription models in Section 5.2. We also addressed

the challenge of Composition Entity Resolution (CER) in constructing the

dataset and implemented an audio matching and solo filtering pipeline in

Section 5.3. The dataset is a valuable resource for researchers studying ex-

pressiveness and styles in Western classical piano music, and can be used

for a variety of tasks including performance feature analysis, comparison of

performances and styles, stylistic performance generation and performance

visualization.
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Chapter 6

Hierarchical Performance

Modelling for Pianist

Identification

6.1 Introduction

Previous studies in the literature have established a relationship between the

structure of a piece of music and its performance characteristics, with certain

structural elements influencing expression and emotion in the performance

[180, 181]. For example, decrease in tempo and dynamics are commonly

used to mark the boundaries of phrases [232], and the degree of slowing at

these boundaries can indicate the importance of the phrase within the over-

all structure of the music [64, 65]. Furthermore, it has been observed that

the most pronounced expressive differences between notated and performed

interpretations tend to occur at lower levels of phrase structure [181, 13],

while expressive timing and loudness exhibit a strong relationship at in-

termediate phrase levels [39, 10]. Additionally, metrical structure plays a

significant role in shaping the expressiveness of a performance, particularly

through the manipulation of accentuation through variations in duration

and timing [232].

Computational models allow us to investigate these relationships be-

tween musical structures, such as phrase structure, and performance ele-

ments like timing and dynamics in human performance. However, there

has been limited research on how to capture these relationships with math-
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ematical descriptors, which could be used to identify the unique style of

individual performers and build automatic performer identification systems.

This is primarily because (a) all studies are limited to small dataset contain-

ing a small selection of pieces or performers, (b) characterising expressive

performance requires a sophisticated feature extraction method, and (c) the

information provided by the expressive performance model is not yet fully

understood for the task of performance based performer identification. In

addition, majority of the previous studies make use of features that only

captures the tiny local context of the music, resulting in models that are

unable to account for the long temporal relationship, which is essential for

understanding the global aspects of performance expression.

To address these limitations, we (i) construct a substantial subset of

the ATEPP dataset (see Chapter 6) with multiple performances of the same

piece by different performers (ii) investigate the individual performance style

by analysing different expressive performance features that characterizes a

performer, and (iii) model the expressive features using a Recurrent Neural

Network (RNN) based hierarchical approach for the task of automatic per-

former identification. To the best of our knowledge, the majority of previous

works attempted performer identification using traditional statistical models

or machine learning algorithms. However, deep learning models, in particu-

lar RNNs, have never been used to distinguish pianists, despite their demon-

strated ability in modelling sequence data representing features or charac-

teristics of musical expression for various MIR applications [101, 53, 233].

In order to evaluate the hypothesis that the hierarchical representation of

Western classical music can improve representation accuracy, we propose the

Hierarchical Performer Identifier (HIPI ) model. This model utilizes a beat

and measure level hierarchical structure, inspired by the work of Yang et al.

[234] in language modeling. The HIPI model consists of three encoders; a

note encoder, a beat encoder, and a measure encoder, all based on Bi-LSTM

architecture and incorporating beat and measure level attention mechanism

[235, 236]. The idea is to construct a beat level representation by summaris-

ing note representations using a beat level attention mechanism and then

create a measure level representation by summarising beat-level representa-

tions using a measure level attention mechanism. This approach enables the

model to learn information from the very granular to a higher-level perspec-

tive of musical performances, resulting in a comprehensive representation
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of the performer’s playing style. The input to the model is comprised of

note-level features calculated from the deviations of each performance from

a reference score, and the output is the prediction of the most probable

pianist.

The remainder of the chapter is organized as follows: Section 6.2 presents

a performer-oriented dataset, derived from the ATEPP dataset [2], contain-

ing 6 performers playing the same compositions. In Section 6.3, the data pre-

processing techniques are described, including the alignment of the score and

actual performance, the extraction of score deviation features (as listed in

Table 3.2), the hierarchical position encoding of each note level feature, and

the formation of the input representation. The architecture of the proposed

hierarchical model and the pianist classification process are also detailed in

the same section. Section 6.4 outlines the baseline models, the experimental

setup, and the case studies for segment-wise and piece-wise pianist classifi-

cation. The results are analyzed and discussed comprehensively in Section

6.5. Finally, in Section 6.6, the chapter is summarized, highlighting the

contributions and offering potential avenues for future research.

6.2 Dataset

Data-driven approaches for performers’ style analysis need large corpora of

music performances to derive expressive performance parameters. One pos-

sible reason for Deep Neural Networks (DNNs) not being used for performer

identification is the lack of large-scale datasets with overlapping perfor-

mances by different performers. In addition, constructing such a large-scale

dataset is not a trivial job since the dataset must comprise both the recorded

performances (as audio or MIDI files) and their corresponding scores. Be-

sides, the scores and performances need to be aligned in such a way that

we can obtain a mapping between elements in the performance (temporal

position for audio recordings or pitch, onset and offset times for MIDI) and

the elements in the corresponding score (a mapping between a performed

MIDI note and a note in the score). These details are essential for cal-

culating expressive features, for example, expressive timing, which may be

conceptualised as the amount by which onset and offsets deviate from the

times shown in the score.

In this section, a subset of the ATEPP dataset (detailed in Chapter 5)
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Dataset Compositions Movements Performances Composers Performers

Vienna 4x22 [[237]] 4 4 88 4 22
Schubert 4x9 [[238]] 1 4 36 1 9

Repp [[88]] 4 4 120 4 10

Proposed Dataset 19 35 474 2 6

Table 6.1: An overview of major symbolic piano datasets with multiple
performances of the same piece by different performers, compared to our
proposed dataset.

Composer Composition Performers

Beethoven

Piano Sonata No. 3 in C Major, Op. 2 No. 3

Alfred Brendel, Claudio Arrau, Daniel Barenboim,
Friedrich Gulda, Sviatoslav Richter, Wilhelm Kempff.

Piano Sonata No. 7 in D Major, Op. 10 No. 3
Piano Sonata No. 8 in C Minor, Op. 13 Pathetique

Piano Sonata No. 9 in E Major, Op. 14, No. 1
Piano Sonata No. 10 in G Major, Op. 14 No. 2

Piano Sonata No. 17 in D Minor, Op. 31 No. 2 Tempest
Piano Sonata No. 18 in E-Flat Major, Op. 31 No. 3 The Hunt

Piano Sonata No. 19 in G Minor, Op. 49, No. 1
Piano Sonata No. 20 in G Major, Op. 49 No. 2

Piano Sonata No. 22 in F Major, Op. 54
Piano Sonata No. 23 in F Minor, Op. 57 Appassionata

Piano Sonata No. 27 in E Minor, Op. 90
Piano Sonata No. 28 in A Major, Op. 101
Piano Sonata No. 30 in E Major, Op. 109

Piano Sonata No. 31 in A-Flat Major, Op. 110
Piano Sonata No. 32 in C Minor, Op. 111

Sonata No. 12 In A Flat Op. 26

Mozart
Fantasia in C Minor, K. 475

Piano Sonata No.8 in A minor, K.310

Table 6.2: An overview of the composers, compositions, and performers in
our proposed dataset.

is introduced, consisting of multiple performances of a single composition

by different performers. This subset is based on the premise that datasets

containing multiple performances of a single piece by various performers can

be utilized to model the similarities and differences among performers. Our

dataset1 comprises of 6 virtuoso pianists, each with 79 performances, for a

total of 474 Western classical piano recordings in MIDI format as presented

in Table 6.1. Notably, our dataset contains multiple performances of the

same piece by each performer. The dataset was obtained by filtering out

compositions with at least one distinct performance by each performer. This

resulted in a corpus of 19 compositions and 35 movements from composers

Ludwig van Beethoven and Wolfgang Amadeus Mozart as shown in Table

6.2.

To maintain a balanced dataset, the minimum number of performances

among all the performers per composition was calculated and any excess

1Released dataset: https://doi.org/10.5281/zenodo.7222768. The dataset is made
available under Creative Commons Attribution 4.0 International Public License (CC BY
4.0).
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Figure 6.1: Schematic overview of the hierarchical performer identification
model with all the main steps of its workflow.

performances were disregarded (using the alignment results, errors such as

extra notes, mismatched pitch and missing notes were calculated and per-

formances with higher error rate were disregarded). This approach also

eliminates any potential performer-composer correlation bias, as all per-

formers performed the same compositions by both composers. However, the

limitation lies in its focus on only two composers, restricting the diversity

of musical styles in the data and potentially not fully representing variation

in pianist styles. We use MIDI since extracting expressive features from raw

audio requires complex processing, whereas MIDI can be seen as a mid-level,

piano-roll-like representation.

6.3 Methodology

As outlined in Figure 6.1, we design this section with respect to the fol-

lowing steps: a note-level alignment of score and the real performances,

extraction of meaningful expressive performance parameters, a hierarchical

position mapping where we find the beat and measure position of each note

from the musicXML score file and create a mapping with the corresponding

performed note, creation of a meaningful input representation for our hier-

archical model and finally a comprehensive description of our hierarchical

performer identification model.

110



6.3.1 Data Pre-processing

6.3.1.1 Alignment & Feature Extraction

The concept of expressive performance can be understood as the deviation

from the notated score, which is a mechanical representation of a piece of

music in terms of tempo, dynamics, and articulation. Performers deviate

from the score for two main reasons: it can be challenging to perform the

music exactly as written, and these deviations can enhance the dramatic, af-

fective, and artistic qualities of the performance, which can emotionally con-

nect with listeners. Thus, quantifying these deviations through expressive

parameters can characterize the unique style of each performer. Previous

research, such as the study by Stamatatos [182], has demonstrated the use of

score deviation features to successfully discriminate between performances

by skilled pianists playing the same piece.

Since the most important expressive parameters available to a performer

are tempo, dynamics and articulation and the micro variations happen while

playing each note, it is essential to perform a score to performance align-

ment to have a note level mapping. Consequently, we use the algorithm for

symbolic music alignment proposed by [177] to align the notes in the score

MIDI and the notes in the corresponding performance MIDI. This enables us

to compute note level deviations and quantify them using a similar method

presented in Section 3.3.2 that encompasses a set of note level performance

parameters. The proposed note-level performance features (See Table 3.2)

include onset time (exact time when a note is performed) deviation, Inter

Onset Interval (time interval between the onsets of two notes of the same

voice) deviation, offset to onset time interval(time interval between the offset

of a note and the onset of the next note of the same voice) deviation, dy-

namic level (the loudness of a note) deviation and note duration deviation.

For the rest of the article, we’ll abbreviate as follows: OT = Onset Time;

IOI = Inter Onset Interval; OTD = Off Time Duration; DL = Dynamic

Level; ND = Note Duration.

6.3.1.2 Hierarchical Position Mapping

Western classical music has a hierarchical nature in its structure and mod-

elling real performances using hierarchical approach may lead to a better

representation of performers’ individual style. However, real recorded per-
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formances in MIDI format do not always contain the hierarchical information

encoded in them. These details can only be found in the actual composi-

tion, which is written out as either sheet music or transcribed as musicXML

format. To overcome this limitation, we first make a matching between the

notes in the musicXML file and their corresponding notes in the synthesized

score MIDI which provides a mapping of the beat and measure positions for

each matched pairs. Finally, we create a mapping of these matched pairs

with the aligned pairs in the alignment result file generated from the MIDI-

to-MIDI alignment (as discussed earlier in this section ) that eventually gives

us the mappings of beat and measure positions of the real performance.

6.3.1.3 Feature Representation

One of the most challenging aspects of using neural networks on music data

is determining how to represent the musical content as input. A widely

used input format is a piano-roll representation, which represents music as

a time-pitch 2D matrix with the columns representing the time steps and

the rows representing the pitches [239, 240]. Despite its popularity, piano-

roll representation has its drawbacks; for instance, it is difficult to tell the

difference between a long note and a repeated short note since no note-off

information is available. Since these details are important for quantifying

expressive performance, we follow the representation technique presented

in [241, 242, 243], where music data is modelled as a 1D input sequence by

ordering note events with its time position and pitch. In addition, we make a

small modification by stacking each handcrafted note level deviation features

together and transforming them into a multidimensional input sequence as

depicted in Figure 4.1.

6.3.2 Hierarchical Performer Identifier (HIPI)

Our proposed model is based on Hierarchical attention network [234], a type

of stacked RNN model designed with the goal of modeling sequential data

(texts, music, video streams etc.) that has some sort of hierarchical struc-

tures. Recent studies demonstrated that better performance can be achieved

using hierarchical approach in RNN models [234, 244]. Given that Western

classical music has a hierarchical nature in its structure (note, beat, measure,

phrase etc.), we model the expressive performance using an LSTM-based

112



Figure 6.2: An overview of the Hierarchical Performer Identifier architecture
for pianist classification.

hierarchical attention network and try to predict the most likely performer

from a sequence of performance parameters.

The proposed system, depicted in Figure 6.2, incorporates a hierarchical

structure composed of three levels: note, beat, and measure. Each level

is encoded by a Bi-directional Long Short-Term Memory (Bi-LSTM) net-

work with varying hidden nodes and layers. The system also includes beat

and measure level attention mechanisms that summarize lower-level repre-

sentations at each hierarchical boundary by computing a weighted sum, as

described by Yang et al. [234]. We modify the context attention mechanism

proposed by Yang et al. [234] to incorporate multi-head attention, as pro-

posed by Vaswani et al. [245]. This involves splitting the input dimension

into several heads, each with its own set of weights, allowing each attention

head to focus on different types of notes. The Bi-LSTM architecture was
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chosen due to the context-dependency inherent in music and the need for

sequential information in both forward and backward directions. For the

purposes of this study, we assume that a piece consists of L measures, Mi

and each measure contains Bi beats and each beat contains N notes. Thus,

nit with t ∈ [1, N ] represents the notes in the ith beat and bit with t ∈ [1, B]

represents the beats in the ith measure.

6.3.2.1 Note Encoder

Initially, the note input sequence nit, t ∈ [1, N] is fed into a dense layer that

serves as an embedding layer where the input sequence gets multiplied by an

embedding matrix, Ne generating an embedding vector, xit = Ne nit. The

Bi-LSTM receives the embedded vector as input and generates the hidden

states by summarising information from both directions for notes, thereby

including contextual information into the hidden states. The Bi-LSTM is

comprised of two LSTMs: a forward LSTM
−→
f that reads the notes from ni1

to niN and a backward LSTM
←−
b that reads the notes from niT to ni1. This

can be formulated as below:

xit = Nenit, t ∈ [1, N ], (6.1)
−→
hit =

−−−−→
LSTM(xit), t ∈ [1, N ], (6.2)

←−
hit =

←−−−−
LSTM(xit), t ∈ [N, 1]. (6.3)

The forward hidden state,
−→
hit and the backward hidden state,

←−
hit are con-

catenated to provide a single hidden state, hit = [
−→
hit,
←−
hit], of a given note

nit, which summarises the whole note sequence centred around note nit.

6.3.2.2 Beat Attention

We introduce a beat level attention mechanism with the notion that not all

note level features are equally important for the representation of performer’s

style. The attention mechanism pays special attention to the important

local aspects of the performances. To compose a beat level node, we use

the beat position for each note that we obtain by parsing the musicXML

score file. Notes that belong to the same beat are indexed with t ∈ [nf , nl],

where nf and nl denote the index of the first and last notes in the selected
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beat boundary. The lower level hidden states, hit, produced by the note

encoder for sequence t in each beat boundary are summarized by the context

attention to compose a beat-level node mi.

The attention mechanism is a single feed-forward neural network that

takes the hidden states, hit, as input and applies a softmax function to get

the attention weights, αit, and produce a context vector as a weighted sum

of the hidden states based on the weights. The attention mechanism can be

formulated as below:

uit = tanh(Wnhit + bn),

αit =
exp(u⊤itun)∑
t exp(u⊤itun)

,

mi =
∑
t

αithit,

(6.4)

Where mi is the beat level node summarized through the attention and

Wn, bn and un are the parameters learned by the attention model after

random initialisation.

6.3.2.3 Beat Encoder

Given the beat level nodes, bi, that summarises the notes to a beat level

representation, the beat encoder takes them as input and outputs the hidden

states, hit. Similar to the note encoder, the Bi-LSTM encodes the beats by

using the forward and the backward LSTMs. This is formulated as below:

−→
hit =

−−−−→
LSTM(bit), t ∈ [1, B], (6.5)

←−
hit =

←−−−−
LSTM(bit), t ∈ [B, 1]. (6.6)

The hidden state of a given beat, bit is obtained by concatenating the

forward hidden state,
−→
hit, with the backward hidden state,

←−
hit, yielding

the single hidden state, hit = [
−→
hit,
←−
hit], which summarises the whole beat

sequence centred around beat bit.

6.3.2.4 Measure Attention

The purpose of adding measure level attention is to account for long tem-

poral dependencies, which are crucial to understanding global aspects of

115



performance expression. This is done by summarising the beat level infor-

mation into a measure level node using a measure level attention mechanism.

To create a measure level node, we use the measure position obtained by

parsing the musicXML score file for each beat. Beats belonging to the same

measure are indexed with t ∈ [bf , bl], where bf and bl are the indexes of

the first and final beats in the given measure boundary. The lower level

hidden states, hit, produced by the beat encoder for sequence t in each

measure boundary are summarized by the context attention to compose a

measure-level node mi.

uit = tanh(Wbhit + bb),

αit =
exp(u⊤itub)∑
t exp(u⊤itub)

,

mi =
∑
t

αithit,

(6.7)

Where mi is the measure level node summarized through the attention

and Wb, bb and ub are the parameters learned by the attention model after

random initialisation. This is similar to beat attention as illustrated in

Equation 6.4.

6.3.2.5 Measure Encoder

Given the measure level nodes mi, the measure encoder takes them as input

to the Bi-LSTM network and generates the piece level representation. The

forward and backward LSTM encodes the measure level information and

produce the hidden states in both direction as follows:

−→
hit =

−−−−→
LSTM(mit), t ∈ [1,M ], (6.8)

←−
hit =

←−−−−
LSTM(mit), t ∈ [M, 1]. (6.9)

Concatenating the forward hidden state,
−→
hit, with the backward hidden

state,
←−
hit, yields the single hidden state, hit = [

−→
hit,
←−
hit], which summarises

the whole measure sequence centred around the measure mit.
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6.3.3 Pianist Classification

The hidden states, denoted as hit, produced by the measure encoder are

input into a fully-connected layer to obtain the piece-level representation

vector, denoted as q, which encapsulates a comprehensive high-level view of

the performance and may be utilized as a criterion for the performer clas-

sification task. The outputs of the fully-connected layer are then processed

through a softmax activation function, which calculates the posterior prob-

abilities over all possible performer classes. The performer classification can

be expressed mathematically as follows:

P = softmax(Wcq + bc). (6.10)

Since, this is a multi-class classification problem, where the goal is to

train our algorithm to predict one of several possible outcomes, we use cat-

egorical cross-entropy to calculate the loss between the true label and the

predicted label. The loss function is formulated as follows:

LCE = −
C∑
i=1

yilog(ŷi), (6.11)

where yi is the true class label and ŷi is the predicted class label.

6.4 Experiments

In this section, we first discuss several baseline models that are used to

evaluate the performance of our proposed model. Secondly, we describe

the model configuration and the training method of our proposed model.

Finally, we provide two experiments on identifying virtuoso pianists based

on their playing style, one in which we train our model using segmented

piece and attempt to classify performer based on each segment, and another

in which we train and classify each performer considering the full piece of

music.

6.4.1 Baseline Models

We compare our Hierarchical Performer Identifier (HIPI ) model with the

following baseline models:
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(a) 3-SF (b) 4-SF

(c) 5-SF

Figure 6.3: Training example length in terms of number of notes vs. classi-
fication accuracy for different feature combination.

1. Bi-LSTM: This model is a baseline single layer bidirectional LSTM

[246] model with a hidden size of 64 and dropout 0.5. The output from

the Bi-LSTM is fed into a fully connected layer and a softmax func-

tion is applied for the classification. The model has 167814 trainable

parameters.

2. Transformer: With state-of-the-art performance shown by trans-

former models across a range of time series forecasting problems

[247, 248, 249], we use the transformer encoder model introduced

by [245] as a performer classification model. This model consists of
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two encoder layer made up of 2048-node feed-forward neural network

with an 8-head attention mechanism and dropout 0.2. The model has

562950 trainable parameters.

3. Hierarchical Network (HN): The purpose of this model is to do an

ablation study, which aims to investigate the benefits of the attention

mechanism. This is very similar to HIPI but consists of 3 stacked

Bi-LSTM layers without any attention mechanism. This model has

498182 trainable parameters.

4. HIPI-B: This is a variant of our proposed model with only beat level

hierarchy. This model also serves as an ablation study to observe the

importance of modelling performances in different hierarchical level

for the task of performer identification. The model comprises a note

encoder, a note level attention, a beat encoder, and a beat level at-

tention, with each encoder including two layers of 64-node Bi-LSTM.

This model contains 183558 trainable parameters.

5. HIPI-VAE: Although a typical Variational Auto-Encoder consists of

an encoder, qθ(z|x), a decoder pϕ(x|z) and a latent variable z, only the

encoder part is stacked on top of the HIPI model. The goal of the VAE

is to find a distribution qθ(z|x) of some latent variables which can be

sampled from a known prior distribution p(z). It is also known as the

reparameterisation trick where the VAE imposes a prior distribution

p(z) on the latent variable z where z = µ + ϵσ. Here, µ and σ are the

mean and standard deviation of the latent distribution. Both µ and σ

are modelled by the encoder. Latent variable, z can be considered as

a style vector. This model has 530950 trainable parameters.

For the sake of a fair comparison, we maintain the same training hyper-

parameter settings for each of these models like our proposed system. Before

being fed to each model, the note level inputs pass through a dense layer

that acts as an embedding layer and generates an embedding vector that

serves as an input to these models, as proposed by our model.

6.4.2 Model Configuration & Training

In our proposed system, the note-level performance encoder is comprised of

a dense network with a hidden size of 64 and a Tanh activation function that
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3-SF 4-SF 5-SF

Model precision recall F1-score precision recall F1-score precision recall F1-score

Bi-LSTM 0.414 0.401 0.406 0.455 0.451 0.450 0.466 0.461 0.462
HN 0.476 0.459 0.457 0.599 0.560 0.542 0.540 0.542 0.520
Transformer 0.416 0.406 0.411 0.455 0.435 0.445 0.527 0.513 0.519
HIPI-B 0.703 0.672 0.671 0.655 0.628 0.632 0.674 0.652 0.653
HIPI-VAE 0.668 0.664 0.660 0.681 0.680 0.689 0.646 0.634 0.631
HIPI 0.762 0.759 0.756 0.759 0.752 0.750 0.754 0.737 0.737

Table 6.3: Segment-wise precision, recall and F1-score by various model
architectures for different feature combination as compared to our proposed
model.

acts as an embedding layer, as well as a layer of Bi-LSTM with a hidden size

of 64. The beat level encoder and the measure level encoder both consist of

two layers of Bi-LSTMs with a hidden size of 64. For all three encoder layers,

we set the dropout to 0.5. The dataset was divided into train-validation-

test split with a ratio of 8:1:1. We have 378 training samples, with 366 from

Beethoven and 12 from Mozart, along with 48 validation samples and 48 test

samples. Our primary criterion for constructing the validation and test sets

was to select compositions that has at least three distinct performances by

each performer. This means that for a given composition, each performer

would have multiple interpretations or performances of it. Thus, in the

train, validation and test sets, every performer has distinct performances

of the same composition. Essentially, while the piece remains consistent,

the interpretation or style of performance by each pianist varies, ensuring a

rich variety for evaluation. Each input sequence was sliced into equal size

of 1000 notes in the measure level and if any piece contains less than 1000

notes we padded the sequence with 0. Each multidimensional input sequence

is normalised to have zero mean and unit standard deviation. The model

is trained using ADAM optimiser with a leaning-rate of 3e-3 and a weight

decay of 1e-5. We also clipped the gradients with the maximum norm of 5

in the back-propagation. The model has 398854 trainable parameters.

6.4.3 Experiment 1: Segment-wise Performer Identification

Although RNNs, in particular LSTMs [161], have been used extensively

for music modelling, they struggle to learn long term dependencies due to

the vanishing gradient problem as the sequence length gets longer [250].

The inability of LSTMs to deal with music structure at different temporal
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resolutions hinders the modelling of expressive performance. Another major

obstacle to training data-hungry deep learning models is the lack of large-

scale performer datasets. Regardless of the fact that our dataset is one of

the largest performer dataset in terms of individual performances, a complex

model like ours would greatly benefit from being trained on more data. One

common approach to circumvent this issue is to split each training sequence

into a number of shorter sub-sequences. Therefore, each performance in the

dataset is segmented into a least size of 1000-note slices, and every slice

containing less than 1000 notes is padded with zero. The slicing happens in

a measure level. If the end note of the slicing window comes in the first half

of a measure boundary, we take the first note in the measure boundary as

the end note, and if it appears in the latter half, we use the last note in the

measure boundary as the end note of the slicing window.

Results:

The correlation between the length of the training examples and the

classification accuracy achieved by our proposed model is illustrated in Fig-

ure 6.3 for various feature combinations. In accordance with our previous

study [238], we selected the optimal combination of features, and combined

at least three features to create a new feature for the classification task.

Figures 6.3a, 6.3b, and 6.3c subsequently display the accuracies for a combi-

nation of three features (IOI, DL, ND), four features (IOI, DL, ND, OTD),

and five features (IOI, DL, ND, OTD, OT) stacked together to create a sin-

gle multidimensional feature sequence, represented by 3-SF (three stacked

features), 4-SF(four stacked features), and 5-SF(five stacked features) re-

spectively. These figures demonstrate that the model’s accuracy improves

with an increasing training sample size, and that the model performs best

when the sequence length is 1000 for all feature settings.

To evaluate the performance of our proposed model and the effective-

ness of the combined features for performer classification, we compared our

model with various baseline models as described in Section 6.4.1. Table 6.3

illustrates the results of the model evaluations for different feature combi-

nations in terms of precision, recall, and F1-score. The results indicate that

our proposed model surpasses all other models in terms of performance for

all three feature settings, with the highest precision (0.762) achieved by our

model when using the 3-SF feature. The table reveals that the Bi-LSTM
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3-SF 4-SF 5-SF

Model precision recall F1-score precision recall F1-score precision recall F1-score

Bi-LSTM 0.443 0.441 0.441 0.531 0.522 0.526 0.575 0.562 0.565
HN 0.575 0.528 0.537 0.620 0.597 0.571 0.654 0.653 0.622
Transformer 0.641 0.632 0.636 0.660 0.651 0.655 0.673 0.666 0.669
HIPI-B 0.799 0.764 0.767 0.799 0.764 0.769 0.778 0.764 0.760
HIPI-VAE 0.776 0.778 0.775 0.797 0.792 0.790 0.724 0.708 0.710
HIPI 0.842 0.833 0.832 0.820 0.819 0.816 0.779 0.767 0.773

Table 6.4: Piece-wise precision, recall and F1-score by various model ar-
chitectures for different feature combination as compared to our proposed
model.

network exhibited inferior performance in identifying performers for all three

features. The results also demonstrate the importance of the attention mech-

anism for performer identification, as the Hierarchical Network (HN), which

lacks the hierarchical attention mechanism, performed less favorably when

compared to our model. These results further validate the proposed hierar-

chical modeling approach, as it is shown that all models (HIPI-B, HIPI-VAE,

and HIPI ) that encode the input representation hierarchically produce high

precision compared to non-hierarchical models.

6.4.4 Experiment 2: Piece-wise Performer Identification

In accordance with the discussions presented in Section 6.4.3, a prevalent

technique in deep learning is to segment musical pieces into smaller se-

quences, thereby increasing the diversity of training examples and mini-

mizing the sequence length to mitigate the vanishing gradient problem in

recurrent neural networks. However, this approach limits the ability of the

models to learn across time scales larger than the predefined window size.

Given the hierarchical nature of musical structure and performance, it is

imperative that neural networks are able to model these longer-term re-

lationships in order to learn the global aspects of performance expression

necessary for tasks such as performer identification and expressive perfor-

mance generation. Despite this need, the challenge of modeling very long

temporal sequences with deep learning remains unresolved [251].

In order to address this issue, we propose a new training approach that

involves dividing each multi-dimensional feature sequence, representing an

individual performance within a batch of training data, into smaller con-

tiguous segments with a size of 1000 notes each. This segmentation size was
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selected as the optimal value based on empirical results in segment-wise pi-

anist classification (see Figure 6.3). Any segments with less than 1000 notes

are padded with zeros. Each segment within the batch is labeled with the

original performer label that was assigned to the corresponding performance.

The segments of each performance within the batch are then presented to

the model as a single mini-batch, with a mini-batch size equal to the number

of segments per performance. The loss is computed as the sum of individual

loss values across the mini-batch, resulting in a scalar value representing the

loss for a single, non-segmented performance. Summing the losses over ob-

servations for each mini-batch is considered more appropriate, as it provides

a direct measure of the total loss across all segments of a performance within

a batch. Finally, the mean cross-entropy loss for each mini-batch within the

batch is calculated, resulting in a scalar value representing the average loss

over all examples in a batch. This mean loss is then back-propagated to

adjust the model’s weights. The loss function can be formulated as follows:

LCETotal
= − 1

K

K∑
j=1

C∑
i=1

yilog(ŷi), (6.12)

where K is the total sequences in a batch and j is the sequence index.

During the inference, the same approach is employed, in which a test

piece is divided into equal parts using a window size of 1000 notes. The

resulting segments are then presented to the model as a single batch. The

final classification is obtained by averaging the model’s outputs for that

specific batch and applying the log-softmax function to the averaged output.

Results:

In order to validate our proposed model and the combined features for

piece level performer classification, we compare its performance to that of

several baseline models (see Section 6.4.1) trained and tested on our pro-

posed dataset. Table 6.4 shows the classification results in terms of precision,

recall and F1-score for various baseline models as well as our proposed model

using three different combination features. The results demonstrate that the

combination of IOI, DL and ND deviation features represented as 3-SF out-

performs the other two feature category and our proposed model produces

the best overall outcome. We also observe that the OT (onset time) devi-

ation feature adversely affect our hierarchical models when combined with
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Figure 6.4: Normalised confusion matrix of 6-performer classification with
HIPI using 3-SF feature.

the IOI, DL, and ND deviation features.

As can be seen in Table 6.4, our proposed model achieves the highest

precision of 0.842 as compared to the baselines, whereas the vanilla Bi-LSTM

network performs the poorest for any combination features. Moreover, given

that the Hierarchical Network (HN) is identical to our model except for the

lack of hierarchical attention mechanism, the results also demonstrate the

significance of the attention mechanism for performer identification. We

also notice that all the hierarchical models (HIPI-B, HIPI-VAE and HIPI )

outperform the Transformer model. We assume that this is due to the fact

that some musical pieces in our dataset exhibit strong local structures and

transformer model equipped with multi-head attention mechanism is well

known for capturing the long-term dependencies but fails to capture the local

structures in sequence. On the contrary, our proposed hierarchical models

capture both the local and global dependencies using different hierarchical

level of attention.
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3-SF 4-SF 5-SF
Model seg-acc(%) piece-acc(%) seg-acc(%) piece-acc(%) seg-acc(%) piece-acc(%)

Bi-LSTM 40.3 44.1 45.0 52.4 47.1 57.3
HN 46.3 50.0 51.0 58.3 53.0 65.2
Transformer 41.2 63.8 44.5 66.7 52.0 67.5
HIPI-B 69.4 76.4 66.3 72.2 66.5 79.2
HIPI-VAE 66.7 77.8 69.2 77.8 64.9 69.4
convnet-beat 79.1 81.9 81.8 84.2 81.8 83.3
HIPI 76.0 84.7 75.2 81.9 69.5 76.4

Table 6.5: Comparison of our proposed models with various baseline models
for different feature combinations in terms of segment and piece wise accu-
racy(in percentage).

6.5 Analysis & Discussion

As illustrated in Section 6.4.3 and 6.4.4, there are two experiments pre-

sented on identifying virtuoso pianists based on their playing styles. The

first experiment involves attempting to identify pianists based on segmented

piece of music, whereas, the second one investigates the same problem while

considering the full piece of music. For both of the case studies we used our

proposed dataset presented in Section 6.2 and applied different combination

features for performer identification. Additionally, a study contrasting the

performance of several classification models in terms of precision, recall, and

F1-score is provided for both the cases. Finally, comparing the two sets of

results obtained from the two case studies indicates that the proposed com-

bination features contain sufficient information to identify the performers in

our dataset, and the exploration of various deep learning methods demon-

strates the ability to learn performance patterns that help distinguish these

performers

Table 6.5 shows the classification results of our proposed models, HIPI

and convnet-beat (see Chapter 4), as well as various baseline models for

different feature combinations in terms of segment and piece-wise accuracy.

It shows that our proposed model, HIPI, achieves the highest test accuracy

(84.7%) for piece wise classification. On the other hand, our other pro-

posed model convnet-beat, achieves its highest accuracy in the 4-SF feature

combination, with piece-wise accuracy reaching 84.2%, closely matching the

performance of HIPI. HIPI, with its hierarchical structure of note, beat,

and measure encoders, offers a more in-depth analysis of performance de-

tails, capturing nuances across multiple musical granularities. In contrast,
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the convnet-beat, designed for beat-level nuances, excels in rhythmic dis-

tinctions but may miss broader patterns. While both models exhibit high

accuracy, the complexity and adaptability of HIPI seem to give it an advan-

tage in the diverse challenges of pianist identification.

In addition, an accuracy of 84.7% is indeed a high success rate in a 6-

way classification task while this would be an extremely challenging task

even for a trained musician; imagine being required to listen to six different

pianists play the same piece, and then having to identify the pianists in

a recording of a different piece. It is also evident that the classification

accuracy is correlated with the model complexity, where a simple model,

such as Bi-LSTM, achieves the lowest accuracy and, as we go down the rows

in Table 6.5, the model complexity increases so as the accuracy for both the

segment and piece wise classification. This is comprehensible, since gaining

insight from such lengthy musical sequences requires a complex modelling

approach.

The performance of transformer network appears to be poor as compared

to our proposed models for both the segment and piece wise classification

cases, despite their potential for modelling and generating music with in-

creased structural complexity [252, 253, 248]. We hypothesise that the mu-

sical pieces in our dataset have significant local structural dependencies, and

that the transformer models, supported by a multi-head attention mecha-

nism, learn the global temporal relationship but have trouble learning the

local contextual dependencies. Unlike RNNs, which contain recurrence in

their structure (where previous information is propagated over future time

steps), the original transformer model does not, instead relying on a method

called positional encoding to try to capture the temporal relationships be-

tween sequence elements. However, positional encoding hinders the model’s

ability to learn the precise representation of the input. The hypothesis is

supported by the findings of our study, which show that the transformer

model performs well for the piece level classification as opposed to the seg-

ment level classification.

A confusion matrix generated by our model for the piece-level classifi-

cation using combination feature 3-SF is depicted in Figure 6.4, showing

the class-wise accuracies. This demonstrates the utility of the feature for

characterising individual performance style that facilitates the identification

of performers. We can see that using the combination of IOI, DL and ND
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deviation features, our model can identify the performers most of the time.

For instance, the model correctly identifies Alfred Brendel, Claudio Arrau

and Sviatoslav Richter more often than it does Daniel Barenboim, Friedrich

Gulda and Wilhelm Kempff. The identification of Alfred Brendel, Claudio

Arrau and Sviatoslav Richter are mostly reliable with a precision of more

than 90%.

6.6 Summary

In this chapter, we present a hierarchical approach for sequence modeling

that addresses the challenge of automatic identification of virtuoso pianists

based on their playing style. The proposed model integrates Recurrent Neu-

ral Networks (RNNs) and hierarchical multi-head attention to exploit the

benefits of both recurrence and attention for music modeling. The combina-

tion of recurrence and attention is crucial for capturing both the short-term

and long-term structures in pianist performances. Recurrence in the pro-

posed model enables the learning of short-term structural dependencies in

music. Meanwhile, the attention mechanism enhances the learning of long-

term structural dependencies. Capturing both the short-term and long-term

structures is important for pianist identification as it enables the model to

take into account both the individual notes being played and the overall

structure and progression of the piece.

The attention mechanism in the proposed model enables the model to

focus on the most relevant parts of the input, such as highlighting the notes

emphasized by a specific pianist or specific measures where the pianist ap-

plied more variations. This can be thought as an attention-based pool-

ing approach, where lower-level information is summarized by the attention

mechanism to form a higher-level representation (beats or measures), which

is analogous to a pooling layer in Convolutional Neural Networks. This al-

lows the network to focus on the most important parts of the input and

create a more compact and discriminative representation while retaining

information that is relevant to the task.

We also construct a dataset of six virtuoso pianists performing the same

set of music pieces derived from the ATEPP dataset (as presented in Chapter

5), which allows the exploration of expressive characteristics of different

performance styles. Furthermore, incorporating a context-aware multi-head
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attention mechanism and training the model with a combination of note-

level timing, dynamics, and articulation features both result in improved

performance (85%) at a piece-level performer classification. These results

indicate that the hierarchical approach for music modeling is effective in the

challenging task of performer identification, which typically requires trained

musicians.

In conclusion, we hypothesise that the proposed RNN-based HIPI model

is more effective for performer identification compared to the convnet-beat

model (Chapter 4). Although the convnet-beat model may achieve slightly

higher accuracy, it is trained on a small, less diverse dataset and only con-

siders a single level of hierarchy in the music. In contrast, the HIPI model is

trained on a larger and more diverse dataset with multiple levels of musical

hierarchy and the ability to capture sequential dependencies, leading to its

superiority over the convnet-beat model. A potential future direction could

be training the convnet-beat with the same subset of the ATEPP dataset

and compare their performance for the identification task. In addition, we

could consider comparing individual performances to an accepted quasi-

interpretation and extract performance-related features instead of compar-

ing to a mechanical performance derived from the score.
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Chapter 7

Conclusions and Further

work

This Dissertation encompasses the comprehensive investigation of design-

ing and evaluating pianist identification methodologies. The present Chap-

ter encapsulates the seminal contributions and derives fundamental conclu-

sions from the elaborate system design and empirical evaluations chronicled

throughout the Dissertation. The potential avenues for future advancement

of this research are also outlined later in this chapter.

7.1 Summary of contributions

The primary contributions of this thesis can be succinctly outlined in the

following five aspects:

• Performer oriented novel datasets construction.

• Development of expressive features for describing pianists’ playing

style.

• Comprehensive statistical algorithms for modelling and identifying pi-

anist’s style.

• A musically motivated deep learning based approach for pianists iden-

tification from small scale dataset.

• A hierarchical approach for pianist identification.
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7.1.1 Datasets Construction

The development of data-driven models for expressive piano performance

requires a corpus of musical performances from which the expressive com-

ponents can be derived. A significant challenge in this domain is the scarcity

of suitable datasets. Unlike other areas of Artificial Intelligence where the

availability of large, standard datasets has facilitated comparison and ad-

vancement, only a limited number of publicly accessible datasets exist for

piano performance. This is partly due to the stringent requirements that

these datasets must fulfill, including: consistent data collection with high

recording quality to ensure reliable training, validation and testing; rep-

resentation that effectively captures the temporal and expressive aspects

of performance; coverage of diverse musical genres, styles and periods; in-

clusion of symbolic scores as a ground truth performance representation;

multiple performances of the same piece of music by multiple performers to

encompass expressive nuances and performance idioms; precise performer

information to enable expressiveness and style analysis across different per-

formers; and sufficient dataset size to allow the model to generalize to new

examples.

In order to address the challenges of limited availability of suitable

datasets for piano performance, we initially developed a solo-piano dataset

derived from the International Piano-e-competition [172] featuring 9 vir-

tuoso pianists. This dataset, described in detail in Chapter 3, contains

performances played and recorded on a Yamaha CFX concert Grand Piano.

High-quality recordings were ensured through the utilization of state-of-the-

art Disklavier Pro recording technology, capturing the performances in both

raw audio and MIDI formats. However, to simplify the analysis and elim-

inate the need for manual annotation, we opted to use the MIDI format,

as it conveniently describes individual note events through onset, offset,

pitch, and velocity information. Although MIDI recordings may not fully

encompass the intricacies and richness of raw audio recordings, they still

serve as a useful representation of the performance. In addition to the MIDI

recordings, we also obtained the corresponding MusicXML score files for

each performance in the dataset. This dataset was utilized to evaluate the

proposed pianist identification methods in Chapters 3 and 4.

The dataset described in Chapter 3 while large in terms of number of
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notes, was limited in terms of composition and performance diversity. To

address this constraint, a new performer-focused, large-scale dataset called

Automatically Transcribed Expressive Piano Performance (ATEPP) was

constructed (see Chapter 5). This dataset comprises 11742 recordings by

49 virtuoso pianists and encompasses 1007 hours of music recordings, cre-

ated through the application of state-of-the-art piano transcription models

to audio recordings of performances. This allows for a wider range of perfor-

mances and the examination of performer-specific expressiveness and playing

styles. A subset of this dataset was utilized in Chapter 6 to train a hier-

archical RNN model for performer identification. The ATEPP dataset is a

valuable resource for researchers working in this field, as it has the potential

to significantly advance the state-of-the-art in expressive piano performance

and it can be used for a range of tasks beyond just performance analysis

and generation such as performance attribute analysis, comparison of per-

formances and styles, style transfer and performance visualization.

7.1.2 Expressive Feature Development

Following the creation of datasets, a crucial aspect of our methodology in-

volves modeling expressive performance features of pianists. These features

play a significant role in accurately capturing and characterizing the unique

performance characteristics and individual playing styles of each pianist.

Expressive performance in music refers to the intentional deviation from the

musical score, which generally indicates tempo, velocity, and articulation

without expressive variations. However, it is worth noting that scores may

also contain dynamic markings and other indications related to expression

and playing style. The variations in the actual performance compared to

the score are a result of the performer’s interpretive choices and stylistic de-

cisions. To quantitatively represent these variations, we propose to use five

expressive features such as onset time, inter-onset interval, off-time duration,

dynamic level, and note duration.

The comparison of the values of these musical features between a score

and a performance enables the calculation of the deviation of the perfor-

mance from the original musical score. This deviation captures the musical

expressiveness and personal interpretation added by the performer, reveal-

ing their unique musical style and interpretation. The comparison of these

values can provide a detailed understanding of how the performer deviated
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from the written score and what musical elements were emphasized or altered

in their performance. Additionally, it allows the identification of common

expressive performance principles shared by many performers, as well as the

distinctions among them in note level.

However, the score-based feature extraction method is encumbered by

limitations in acquiring digital scores for older or lesser-known pieces of mu-

sic, primarily arising from factors such as copyright restrictions that impede

access without proper authorization, limitations in digitization processes,

and potential inaccuracies in transcriptions of the original scores. Further-

more, the score-based features exhibit similarities (i.e. similar peaks and

valleys) among performers as a result of being influenced by the structure

of the piece (see Section 3.3.2.1). A potential resolution to these issues is

the utilization of performance norm (as discussed in Section 3.3.2.2) as a

reference point for comparison with actual performances. Our analysis in-

dicates that performance norms, being insensitive to the structure of the

music, yield more unique features (i.e. dissimilar peaks and valleys) for

characterizing pianist’s style (see Figure 3.5).

In order to measure the deviations between performance norms and ac-

tual performances, we first compute the same expressive features as used

in score-deviation feature extraction, including onset time, inter-onset in-

terval, off-time duration, dynamic level, and note duration, from both the

norm and the actual performance, and subsequently calculate their differ-

ences. For instance, we determine the deviation of onset time from the

performance norm by computing the difference between the onset times

specified in the performance norm and those executed in the performance.

Similarly, we determine the deviations of the remaining expressive features,

thereby providing a more comprehensive comprehension of the performer’s

expressive decisions and the extent to which they deviate from a standard

quasi interpretation.

In the analysis presented in Chapter 3 and Chapter 4, both score devi-

ation and norm deviation features were extensively utilized for the task of

performer identification. The results demonstrated the effectiveness of these

proposed features in identifying pianists from given excerpts. Additionally,

in Chapter 6, the score deviation features were modeled hierarchically for

pianist identification, further highlighting their utility in this context.
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7.1.3 Pianist Identification Using Statistical Distribution

Models

The application of modeling techniques is imperative in the identification

of pianists through the utilization of expressive performance features. The

expressive performance features, although essential in capturing individual

playing styles and characterizing the unique performance characteristics of

each pianist, are not adequate for differentiating between pianists. Thus, as

an initial study, we propose a pianist identification method that utilizes simi-

larity calculation from note-level feature distribution. We leverage the global

distribution of expressive features to characterize the performer’s style, and

calculate similarity between feature distributions of different performers us-

ing KL-divergence. Based on this similarity, we perform identification of the

performer. We evaluate three distribution models - Histogram, Kernel Den-

sity Estimation (KDE), and Gaussian Mixture Model (GMM) - to model

the distribution of features in Chapter 3, and compare the identification

performance of each model. Our results demonstrate that KDE yields the

best performance for both score and norm deviation features. Addition-

ally, we compare our proposed method against standard machine learning

methods such as KNN and SVM, commonly used for similar Music Informa-

tion Retrieval tasks, and show that our proposed method outperforms these

machine learning models.

In addition, we compared the pianist identification performance based

on individual score and norm deviation features. Moreover, regardless of

the model used, the onset time deviation feature tends to perform better

out of all other individual features. Overall, the norm deviation individ-

ual features perform best in characterizing pianist’s styles, with the highest

F1-score achieved using the KDE distribution (0.626). However, since iden-

tifying performers from their playing is an exceptionally challenging task,

using a single feature to capture a pianist’s style is not sufficient. There-

fore, we proposed a feature fusion method in Chapter 3 for the performer

identification task. The results show that fused features perform signifi-

cantly better than individual features for accurately identifying performers.

The highest F1-score achieved by KDE is 0.923 when using the 4FF norm

deviation feature. This indicates that characterizing the pianist’s distinct

styles is improved by combining IOI, OTD, VL, and ND features. Overall,
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our study has demonstrated the effectiveness of the proposed fusion features

and the modelling techniques in identifying virtuoso pianists from unseen

data, which is a challenging task even for trained musicians. However, using

these simple models to model features has a drawback in that they cannot

capture the intricate interplay between the music’s structure and the per-

former’s interpretation, where the performer’s interpretation is influenced

by aspects of the music’s structure, such as its phrase structure.

7.1.4 Musically Motivated Convolutional Neural Network

for Pianist Identification

Given the limitation of the statistical modeling approach outlined in Chapter

3, we present a novel pianist identification technique utilizing a multichannel

1D Convolutional Neural Network (CNN) in Chapter 4. Our model seeks

to capture the nuanced temporal aspects of piano performance by incorpo-

rating musically motivated filter shapes in the first layer of the CNN. To

specifically address the hierarchical nature of Western classical music, we

implement a beat-specific kernel in the first layer, experimenting with var-

ious kernel sizes aligned with the music’s beats. This enables the CNN to

learn the micro-variations introduced by performers within each beat, such

as timing, velocity, and articulation variations. Furthermore, this approach

presents the opportunity to experiment with measure-specific filters to cap-

ture variations within each measure, including dynamics, harmonic struc-

ture, and melody, thus enabling the capture of the performance’s global

temporal relationship.

Evaluation of the proposed convnet-beat model demonstrates its effec-

tiveness in identifying performers from unseen musical excerpts. Further

analysis through visualization of the filters in the first channel for all three

layers in the model reveals that the filters have learnt increasingly complex

patterns as they progress deeper into the layers. Utilizing class activation

maps (CAMs) also highlights the identification of many discriminative re-

gions in the first layer, supporting the effectiveness of beat-specific filters in

capturing beat-level micro-information. To mitigate the issue of overfitting,

commonly encountered in neural networks, particularly CNNs, we employed

various techniques such as batch normalization, Adaptive Average Pooling,

and dropout. Furthermore, our model exhibits superior performance when

compared to state-of-the-art methods. These findings showcase the potential
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of the convnet-beat model for pianist identification and provide a foundation

for the development of more advanced music-specific models in Chapter 6.

7.1.5 Hierarchical Performance Modelling

The success of utilizing musically motivated convnet-beat model for model-

ing the hierarchical unit of Western classical music has inspired us to delve

deeper into the exploration of music’s hierarchical structures. To this end,

we propose the implementation of a recurrent neural network-based hierar-

chical performance encoder model. The model employs a beat-level Long

Short-Term Memory (LSTM) encoder that initially encodes performance

information at the beat level. The outputs are then summarized by a multi-

head attention mechanism, which serves as input to the measure-level LSTM

encoder. The model is trained using note-level features derived from calcu-

lating the deviations of each performance from a mechanical performance

produced by a reference score, with the goal of predicting the most likely

pianist. Our approach leverages the ability of LSTMs to learn short musical

ideas, while utilizing a multi-head attention mechanism to address known

limitations of LSTMs in learning long-term dependencies, as previously high-

lighted by Bengio et al. [160].

Our proposed hierarchical model has been demonstrated to exhibit su-

perior performance in comparison to baseline models for both segment-level

and piece-level classification tasks. Furthermore, the utilization of the pro-

posed model for performer identification at the piece-level achieved an im-

pressive 85% accuracy, outperforming the segment-level classification model

which achieved 76% accuracy. This serves as compelling evidence of the de-

pendence and benefit of the proposed features on traditional musicological

definitions of musical structure. Additionally, we observed that the proposed

model also benefits from the integration of a context-aware attention mech-

anism, as it demonstrated higher accuracy in classification than a vanilla

Hierarchical Recurrent Neural Network (RNN) model. This supports our

hypothesis that the incorporation of context-aware attention to gain knowl-

edge of song structure and integrate it into the model structure can lead to

the generation of superior representations.
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7.2 Further work

7.2.1 Transfer Learning for Performer Identification

Deep learning models, despite their demonstrated capability for learning

tasks across various domains, require a significant quantity of data for train-

ing to achieve optimal performance. Specifically, a substantial amount of

labeled data is required during the training phase, which can be a time-

consuming and labor-intensive process. In particular, when dealing with

the task of learning the playing styles of different pianists, it is essential to

train the model with large datasets that possess sufficient richness and di-

versity, yet existing performer-oriented solo piano performance datasets are

limited and small in size. Furthermore, when applying a pre-trained model

to tasks outside of its original training scope, it is imperative to ensure con-

sistency in the feature space and distribution of the test data with that of

the training data in order to prevent suboptimal performance.

To address these challenges and further generalize the pianist identifica-

tion method, transfer learning can be employed. Transfer learning is defined

as the enhancement of learning in a new task, referred to as the target task,

through the transfer of knowledge from a related task, referred to as the

source task, that has already been learned [254]. One common approach in

transfer learning is to fine-tune a pre-trained model from the source task to

better align with the characteristics of the target task. This is because the

learned features in the initial layers of the pre-trained model tend to be more

generic, while those in the later layers are more specific to the source task

dataset. The fine-tuning process entails making adjustments to the weights

of the latter layers only, in order to optimize performance on the target task.

Transfer learning, a technique that leverages knowledge gained from re-

lated tasks to improve performance on a new task, has been widely adopted

in various fields [255, 256, 257]. It has proven particularly effective in com-

puter vision, as convolutional neural networks (CNNs) excel in capturing rich

basic visual information, such as fundamental shapes or prototypical tem-

plates of objects, in the early layers. This knowledge can then be transferred

to target tasks, such as object detection [258] or person re-identification

[259], resulting in improved performance. Although pre-trained models

specifically for pianist identification are not available, pre-trained networks
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trained on large datasets for this task can be used. For example, music

auto-tagging models has been employed for tasks such as genre classifica-

tion [260], violinist identification [261], and musical event classification [168]

as they can learn low-level features like tempo, pitch, local harmony, or enve-

lope in the early layers [195, 262]. By using a pre-trained music auto-tagging

model, it is possible to transfer this low-level information to the task of pi-

anist identification, which is crucial for understanding the individual style

of pianists, as micro-variations in performance are often injected at a very

low level.

7.2.2 Exploration of New Features

The proposed features in this study have been demonstrated to effectively

represent the individual stylistic characteristics of performers. However, it is

imperative to note that further exploration into performance-related features

may yield even more profound results. One such avenue for investigation

is the melody lead phenomenon [263], which is employed by musicians as a

means of accentuating a particular voice above others, and has been shown

through previous research [264] to be correlated with both expressiveness

and the skill level of the performer. Additionally, while we have employed

the use of precise onset times as recorded in MIDI files in our current study,

it may be beneficial in exploring the calculation of note onset in relation to

its in-tempo position based on predefined tempo within the score, as this

could provide further insight into the nuances of performance.

The utilization of various pedals in the piano is a significant aspect of

musical performance, allowing performers the ability to add subtle nuances

and variations in tone and expression to their playing. This enhances their

control over the sound of the piano, enabling the production of more dy-

namic and nuanced performances. However, the utilization of pedals can

vary greatly among performers, with some using them frequently while oth-

ers abstaining entirely. Nevertheless, the usage of pedal information can be

obtained from MIDI files and employed as performance features. For exam-

ple, Pedal information can be encoded at the note level by analyzing the

pedal state at various points within the note, such as the onset, offset, and

minimum pedal value between the note onset and offset, as well as between

the offset and the next onset [265].
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[238] Syed Rifat Mahmud Rafee, Gyorgy Fazekas, and Geraint A. Wiggins.

Performer identification from symbolic representation of music using

statistical models. In Proceedings of the International Computer Music

Conference (ICMC), 2021.

[239] Iman Malik and Carl Henrik Ek. Neural translation of musical style.

arXiv preprint arXiv:1708.03535, 2017.

[240] Akira Maezawa. Deep piano performance rendering with conditional

vae. In 19th International Society for Music Information Retrieval

Conference (ISMIR) Late Breaking and Demo Papers, 2018.

[241] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen

Simonyan. This time with feeling: Learning expressive musical per-

formance. Neural Computing and Applications, 32(4):955–967, 2020.

[242] Ian Simon and Sageev Oore. Performance rnn: Generating music with

expressive timing and dynamics, 2017, 2017.

[243] Dasaem Jeong, Taegyun Kwon, and Juhan Nam. Virtuosonet: A

hierarchical attention rnn for generating expressive piano performance

from music score. In Neurips 2018 workshop on machine learning for

creativity and design, 2018.

[244] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical mul-

tiscale recurrent neural networks. ICLR, 2017.

162



[245] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. Advances in neural information processing systems,

30, 2017.

[246] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models

for sequence tagging. arXiv preprint arXiv:1508.01991, 2015.

[247] Jake Grigsby, Zhe Wang, and Yanjun Qi. Long-range transformers for

dynamic spatiotemporal forecasting. arXiv preprint arXiv:2109.12218,

2021.

[248] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep trans-

former models for time series forecasting: The influenza prevalence

case. arXiv preprint arXiv:2001.08317, 2020.

[249] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li,

Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer

for long sequence time-series forecasting. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 35, pages 11106–11115,

2021.

[250] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber,

et al. Gradient flow in recurrent nets: the difficulty of learning long-

term dependencies, 2001.

[251] Trieu H. Trinh, Andrew M. Dai, Minh-Thang Luong, and Quoc V. Le.

Learning longer-term dependencies in rnns with auxiliary losses, 2018.

[252] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam

Shazeer, Ian Simon, Curtis Hawthorne, Andrew M Dai, Matthew D

Hoffman, Monica Dinculescu, and Douglas Eck. Music transformer.

arXiv preprint arXiv:1809.04281, 2018.

[253] Kristy Choi, Curtis Hawthorne, Ian Simon, Monica Dinculescu, and

Jesse Engel. Encoding musical style with transformer autoencoders.

In International Conference on Machine Learning, pages 1899–1908.

PMLR, 2020.

163



[254] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of re-

search on machine learning applications and trends: algorithms, meth-

ods, and techniques, pages 242–264. IGI global, 2010.

[255] Stevo Bozinovski. Reminder of the first paper on transfer learning in

neural networks, 1976. Informatica, 44(3), 2020.

[256] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE

Transactions on knowledge and data engineering, 22(10):1345–1359,

2010.

[257] Ankit Narendrakumar Soni. Application and analysis of transfer

learning-survey. International Journal of Scientific Research and En-

gineering Development, 1(2):272–278, 2018.

[258] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu,

Isabella Nogues, Jianhua Yao, Daniel Mollura, and Ronald M Sum-

mers. Deep convolutional neural networks for computer-aided detec-

tion: Cnn architectures, dataset characteristics and transfer learning.

IEEE transactions on medical imaging, 35(5):1285–1298, 2016.

[259] Mengyue Geng, Yaowei Wang, Tao Xiang, and Yonghong Tian.

Deep transfer learning for person re-identification. arXiv preprint

arXiv:1611.05244, 2016.

[260] Beici Liang and Minwei Gu. Music genre classification using trans-

fer learning. In 2020 IEEE Conference on Multimedia Information

Processing and Retrieval (MIPR), pages 392–393. IEEE, 2020.

[261] Yudong Zhao, György Fazekas, and Mark Sandler. Transfer learning

for violinist identification. In 2022 30th European Signal Processing

Conference (EUSIPCO), pages 239–243. IEEE, 2022.

[262] Keunwoo Choi, George Fazekas, and Mark Sandler. Explaining deep

convolutional neural networks on music classification. arXiv preprint

arXiv:1607.02444, 2016.

[263] Werner Goebl. Melody lead in piano performance: Expressive device

or artifact? The Journal of the Acoustical Society of America, 110(1):

563–572, 2001. doi: 10.1121/1.1376133.

164



[264] Caroline Palmer. On the assignment of structure in music perfor-

mance. Music Perception, 14(1):23–56, 1996.

[265] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. Score

and performance features for rendering expressive music performances.

In Music encoding conference, pages 1–6. Music Encoding Initiative

Vienna, Austria, 2019.

165


	Introduction
	Motivation
	Prior Research on Performer Identification
	Thesis Structure and Contributions
	Associated publications

	Background
	Introduction
	Expressive Music Performance
	Different Aspects of Expressivity
	Music Structure
	Individual Styles of Performer

	Computational Modelling of Expressive Performance
	Modelling Relationship of Music Structure and Performance
	Comparing Expressive Performances

	Expressive Features for Quantifying Performer's playing Style
	Symbolic Representations
	Expressive Timing and Tempo
	Expressive Dynamics
	Articulation

	Statistical Distribution Models and Music Similarity
	Statistical Distribution Models
	Music Similarity

	Machine Learning
	Supervised Learning Models
	Deep learning models

	Evaluation Methods
	F-score
	Confusion Matrix
	Cross Validation

	Summary

	Pianist Identification via Probabilistic Density Estimation
	Introduction
	Dataset
	Methodology
	Symbolic Music Alignment
	Feature Extraction
	Feature Distribution Estimation
	Pianist Identification using Feature Distribution

	Experiments and Results
	Baseline Methods
	Pianist Identification Results
	Analysis and Discussion

	Summary

	Parametric Learning for Pianist Identification
	Introduction
	Methodology
	Data Pre-Processing and Representation
	Multi-Channel 1D Convolutional Neural Network

	Experiments
	Experimental Setup
	Hyperparameter Optimisation and Results
	Identifying Contributing Regions for Performer Prediction using Class Activation Maps
	Comparison of convnet-beat with State-of-the-Art time series classifcation Models
	Comparison between convnet-beat and statistical models

	Result Analysis and Discussion
	Summary

	Large Scale Dataset Construction
	Introduction
	Transcription Evaluation and Post-Processing
	Automatic Piano Transcription
	Common Transcription Errors
	Score-to-Performance Alignment & Error Correction
	Listening Evaluation

	Dataset Overview
	Data Acquisition & Refinement
	Audio Verification 
	Noise Filtering
	MusicSML Score Collection
	Dataset Statistics and Content

	Summary

	Hierarchical Performance Modelling for Pianist Identification
	Introduction
	Dataset
	Methodology
	Data Pre-processing
	Hierarchical Performer Identifier (HIPI)
	Pianist Classification

	Experiments
	Baseline Models
	Model Configuration & Training
	Experiment 1: Segment-wise Performer Identification
	Experiment 2: Piece-wise Performer Identification

	Analysis & Discussion
	Summary

	Conclusions and Further work
	Summary of contributions
	Datasets Construction
	Expressive Feature Development
	Pianist Identification Using Statistical Distribution Models
	Musically Motivated Convolutional Neural Network for Pianist Identification
	Hierarchical Performance Modelling

	Further work
	Transfer Learning for Performer Identification
	Exploration of New Features



