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Abstract

Piecewise-smooth stochastic systems are widely used in engineering science. However,

the theory of these systems is only in its infancy. In this thesis, we take as an example the

Brownian motion with dry friction to illustrate dynamical properties of these systems

with respect to three interesting topics: (i) weak-noise approximations, (ii) first-passage

time (FPT) problems and (iii) functionals of stochastic processes. Firstly, we investigate

the validity and accuracy of weak-noise approximations for piecewise-smooth stochastic

differential equations (SDEs), taking as an illustrative example the Brownian motion

with pure dry friction. For this model, we show that the weak-noise approximation of

the path integral correctly reproduces the known propagator of the SDE at lowest order

in the noise power, as well as the main features of the exact propagator with higher-

order corrections, provided that the singularity of the path integral is treated with some

heuristics. We also consider a smooth regularisation of this piecewise-constant SDE and

study to what extent this regularisation can rectify some of the problems encountered

in the non-smooth case. Secondly, we provide analytic solutions to the FPT problem

of the Brownian motion with dry friction. For the pure dry friction case, we find a

phase transition phenomenon in the spectrum which relates to the position of the exit

point and affects the tail of the FPT distribution. For the model with dry and viscous

friction, we evaluate quantitatively the impact of the corresponding stick-slip transition

and of the transition to ballistic exit. We also derive analytically the distributions of the

maximum velocity till the FPT for the dry friction model. Thirdly, we generalise the

so-called backward Fokker-Planck technique and obtain a recursive ordinary differential

equation for the moments of functionals in the Laplace space. We then apply the

developed results to analyse the local time, the occupation time and the displacement of

the dry friction model. Finally, we conclude this thesis and state some related unsolved

problems.
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Chapter 1

Introduction

Dynamical systems with discontinuities are frequently used for the phenomenological

modelling in applied science and engineering. The impact of such discontinuities on

dynamical behaviour has attracted recently considerable attention from the general dy-

namical systems point of view (see, e.g., Ref. [65]). These dynamical systems are usually

modelled by piecewise-smooth differential equations, the study of which is a relatively re-

cent topic in the field of dynamical systems [34, 12, 65, 13, 25]. The dynamics generated

by these equations displays many unexpected phenomena, including stick-slip transi-

tions associated, for instance, with dry friction forces [16, 32, 73, 11], and bifurcations

that do not appear in the standard classification of catastrophes of smooth dynamical

systems [65, 13, 25]. They also show, in the case of systems with discontinuous deriva-

tives or forces (so-called Filippov systems [34]), multivalued solutions for a given initial

condition, leading to a loss of determinism [49].

In this thesis, we want to go beyond the deterministic dynamical systems setup and

intend to study stochastic versions of piecewise-smooth dynamical systems perturbed

by noises, which are also used as models of physical and biological systems. Stochas-

tic differential equations (SDEs) with piecewise-smooth drifts are commonly used, for

instance, in stochastic or Brownian ratchets [80, 79, 66], which serve as models of dif-

fusion and transport in a variety of biological motors [75, 37]. Another important class

of problem concerns diffusion of solid objects on solid surfaces, which can be modelled

phenomenologically using piecewise-smooth SDEs with dry friction forces [21, 5, 30, 48].

The dynamics in this case shows stick-slip transitions, as in the noiseless case, but also

new features due to the noise, such as directed motion in the absence of a mean force
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bias [7] and noise-dependent decay of correlation functions [88]. Non-Gaussian statistics

are found by the studies of stochastic systems with dry friction [53, 30, 48, 69, 86, 85].

Some of these features have also been shown in experiments, such as those investigated

recently by Chaudhury et al. [23, 42, 40, 41] and Gnoli et al. [38, 37].

For a few simple piecewise-constant or piecewise-linear SDEs, exact solutions of

the propagator (also called transition probability distribution) are known (see, e.g.,

Refs. [21, 10, 51, 95, 18, 88, 83]). Some studies have also looked at the large devia-

tions of SDEs with discontinuous drift (so-called SDEs with discontinuous statistics)

[56, 24, 15, 43]. However, the theory of piecewise-smooth SDEs is only in its infancy

compared to its noiseless counterpart. From the previous disconnected studies it is not

clear how non-smooth SDEs can be studied with techniques developed and used for

smooth systems. More efforts need to be done to understand the interrelation between

noise and discontinuities.

In this thesis, we focus on dynamical properties of piecewise-smooth SDEs with

respect to three interesting topics: (i) weak-noise approximations, (ii) first-passage time

(FPT) problems and (iii) functionals of stochastic processes. The reason to consider

these three topics is explained as follows. Firstly, the weak-noise limit is particularly

interesting from a physical point of view because a piecewise-smooth system does not

necessarily behave continuously with the magnitude of a force or noise and therefore

may behave in a non-trivial way in the limit of vanishing noise. While weak-noise

approximation has been widely used for smooth systems, it is not clear how to apply

this approximation for non-smooth systems. Moreover, the validity of a weak-noise

approximation for non-smooth systems needs to be checked. Secondly, FPT problems

are of great importance and are relevant in quite diverse disciplines, like mathematical

finance [60], biological modelling [90], complex media [72, 26], and others. However,

the effect of discontinuities on a FPT problem is not clear. Exact results for the FPT

problems of piecewise-smooth SDEs, to the best of my knowledge, are not available in

the literature. Thirdly, functionals of a process have been investigated intensively in

the past and have found numerous applications in physics [61]. Nevertheless, to find

stochastic properties of functionals is usually nontrivial and analytic results of this topic

are limited, especially for piecewise-smooth systems. Therefore, it is meaningful to study

the functional problems of piecewise-smooth SDEs, which are often used in science and

engineering.
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1.1. Brownian motion with dry friction

1.1 Brownian motion with dry friction

To address our purpose, we take as an example the model of Brownian motion with

dry (also called solid or Coulomb) friction [21, 30, 48]. This dry friction model is used

to describe the motion of a solid object moving over a vibrating plate subjected to a

dry friction force in addition to the viscous friction force commonly studied since the

works of Einstein and Langevin [36]. The main property of the dry friction is that a

certain threshold force should be applied to move the solid object resting on the plate.

The simplest way to model such a phenomenon mathematically is to consider a velocity

dependent force −µσ(v), where µ > 0 is a constant coefficient, denoting the strength of

the force, and σ(v) denotes the sign of the velocity v, i.e.,

σ(v) =





−1 for v < 0,

0 for v = 0,

1 for v > 0.

(1.1)

Instead of a horizontal plate considered by de Gennes [30], an inclined plate is considered

in this thesis following the experiment setups in Refs. [23, 42, 40] (see Fig. 1.1 and also

Ref. [88]). Then there is a biased force acting on the solid object due to the gravity

in addition to the dry and viscous friction forces. Moreover, we vibrate the plate as

shown in Fig. 1.1 randomly, namely, we add a noise to the plate. In the present thesis,

we confine our investigation to the Gaussian white noise. For convenience, we assume

the mass of the solid object to be one without loss of generality. Therefore, a simple

description of the velocity of the object in the reference frame of the plate can be

described phenomenologically by the Newtonian law, which reads

v̇(t) = −µσ(v(t)) − γv(t) + b+
√
Dξ(t), (1.2)

where the dot denotes the derivative with respect to time t. Here µ > 0 represents

the dry friction coefficient, γ > 0 denotes the linear viscous friction coefficient, b is a

constant biased force, and D > 0 is the strength of the Gaussian white noise ξ(t) with

zero mean

〈ξ(t)〉 = 0 (1.3)

and δ correlation

〈ξ(t)ξ(t′)〉 = 2δ(t− t′), (1.4)

12



1.1. Brownian motion with dry friction

biased force

pressure

noise

dry friction

viscous friction

moving plate

v

Figure 1.1: Model of Brownian motion with dry friction.

where 〈· · · 〉 stands for the average over all possible realisations of the noise and δ is the

Dirac delta function.

Since the motion of two solid objects over each other is a ubiquitous problem in

nature [59, 7, 8, 92, 78], the dry friction model (1.2) is important to understand the

underlying dynamics of the motion. Mathematically, Eq. (1.2) is a special case of the

following generic Langevin equation [76]

v̇(t) = −Φ′(v(t)) +
√
Dξ(t), (1.5)

where Φ(v) is the potential of the drift and the prime denotes the derivative with respect

to v. Since the noise considered here is additive, it does not matter whether Eq. (1.5)

is interpreted in terms of Ito integral or Stratonovich integral (see, e.g., Ref. [36]).

Moreover, since we are here concerned with the Gaussian white noise ξ(t), the propagator

of the velocity satisfies the following Fokker-Planck equation [76]

∂

∂t
p(v, t|v0, 0) =

∂

∂v
[Φ′(v)p(v, t|v0, 0)] +D

∂2

∂v2
p(v, t|v0, 0) (1.6)

with initial condition p(v, 0|v0, 0) = δ(v−v0). Here p(v, t|v0, 0) represents the probability
density that v(t) = v given the initial condition v(0) = v0. Corresponding to Eq. (1.2),

the potential in Eq. (1.6) reads

Φ(v) = µ|v|+ γv2/2− bv. (1.7)

13



1.1. Brownian motion with dry friction

Since the force for the dry friction model (1.2) is piecewise-linear, the corresponding

Fokker-Planck equation can be solved by using spectral decomposition method [76, 36,

88] or Laplace transform [89].

When the viscous force and the bias force vanish (i.e., γ = 0 and b = 0), Eq. (1.2)

reduces to the pure dry friction case (also called Brownian motion with two-valued drift

[83])

v̇(t) = −µσ(v(t)) +
√
Dξ(t). (1.8)

Mathematically, it is the simplest piecewise-smooth SDE whose time-dependent propa-

gator p(v, t|v0, 0) can be expressed in closed analytic form:

p(v, t|v0, 0) =
µ

D
p̂

(
µ

D
v,

µ2

D
t

∣∣∣∣
µ

D
v0, 0

)
, (1.9)

where

p̂(x, τ |x′, 0) = e−τ/4

2
√
πτ

e−(|x|−|x′|)/2 e−(x−x′)2/(4τ) +
e−|x|

4

[
1 + erf

(
τ − (|x|+ |x′|)

2
√
τ

)]

(1.10)

is the propagator in non-dimensional units and

erf(z) = 2

∫ z

0
e−t2dt/

√
π (1.11)

is the error function. This propagator can be obtained by explicitly solving the corre-

sponding time-dependent Fokker-Planck equation (see, e.g., Refs. [51, 52, 88]). Taking

the limit t → ∞ of p(v, t|v0, 0), we obtain the stationary probability density function of

Eq. (1.8):

p(v) =
µ

2D
e−µ|v|/D, (1.12)

which solves the corresponding time-independent Fokker-Planck equation of Eq. (1.8).

For the model (1.2) with dry and viscous forces (with or without bias), the associated

time-dependent propagator in closed analytic form is not known. However, we can solve

the corresponding Fokker-Planck equation (1.6) to obtain the propagator in terms of the

so-called parabolic cylinder function (see appendix A.9) by using spectral decomposition

method [88] or Laplace transform [89].
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1.2. Outline of this thesis

1.2 Outline of this thesis

The rest of this thesis consists of six chapters and an appendix. Chapter 2 is about ped-

agogical contributions, which are the essential theories to understand the main content

of this thesis. Even though they are well documented in the literature, we summarise

some of the main derivations for the purpose of making the presentation self-contained.

The other five chapters are the author’s own work, which are largely from the three

papers listed at the beginning of this thesis.

In chapter 3, we investigate how non-smooth SDEs can be studied with techniques

developed and used for smooth systems. As an example, we focus on the validity and ac-

curacy of weak-noise approximations for non-smooth systems. We address the question

by using path integral representation of propagators and the corresponding saddle-point

approximation of these integrals. In particular, we take the pure dry friction model

(1.8) as an example to investigate the validity of the weak-noise approximation and

some problems encountered in the non-smooth setup. For the model (1.8), we show

that the weak-noise approximation of the path integral correctly reproduces the known

propagator of the SDE at lowest order in the noise power. If some heuristics are used

to treat the singularity of the path integral, the weak-noise approximation can also

reproduce the main features of the exact propagator with higher-order corrections. Fur-

thermore, to remove this singularity we consider a smooth regularisation of the pure

dry friction model and study to what extent this regularisation can rectify some of the

problems encountered in the non-smooth case.

In chapter 4, we take the dry friction model (1.2) as an example to investigate the

interrelation between discontinuity and noise in FPT problems. For this model with or

without viscous friction, we provide analytic solutions to the FPT problems using two

different but closely related approaches. One is based on eigenfunction decompositions

and the other is on the backward Kolmogorov equation. For the pure dry friction

case, we find a phase transition phenomenon in the spectrum related to the position

of the exit point. This phenomenon finally results in different decay rates of the FPT

distribution. For the full model, we observe two additional transitions, i.e., the stick-slip

transition and the transition to ballistic exit. The impact of both transitions is evaluated

quantitatively.

In chapter 5, we provide analytic solutions of the distributions of the maximum

velocity till the FPT for the dry friction model. This problem is closely related to the
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1.3. A note to the examiners of this thesis

FPT problem investigated in chapter 4. We first solve the corresponding problem for the

pure dry friction case so as to address all the techniques used in the piecewise-smooth

systems. Then we present the corresponding solution for the full model.

In chapter 6, we first show that the moments of functionals of a generic Langevin

equation satisfy a recursive ordinary differential equation in the Laplace space. Then

for three important functionals (i.e., local time, occupation time and displacement), we

present some general results of the corresponding moments for the generic Langevin

equation. Finally, we apply the developed results to solve the corresponding functionals

of the dry friction model. Some analytic results of this model are obtained explicitly.

In chapter 7, concluding remarks are drawn from the previous chapters. In addition,

we give comments on some interesting unsolved problems.

To make this thesis more readable, some details of the derivations are put in the

appendix.

1.3 A note to the examiners of this thesis

Chapters 3–6 are my own work. The main content of chapter 3 comes from the publica-

tion: Y. Chen, A. Baule, H. Touchette, W. Just, Weak-noise limit of a piecewise-smooth

stochastic differential equation, Physical Review E 88, 052103 (2013), chapter 4 from

the publication: Y. Chen, W. Just, First-passage time of Brownian motion with dry

friction, Physical Review E 89, 022103 (2014), and chapter 6 from the paper: Y. Chen,

W. Just, On large deviation properties of Brownian motion with dry friction, accepted

for publication in Physical Review E. In these papers, I did most of the calculations and

the co-authors contributed to the writing and interpretation. Chapter 5 is written by

myself under the supervision of my main supervisor: Dr. Wolfram Just, which has not

been summarised as a paper and submitted to elsewhere.
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Chapter 2

Preliminaries

To keep the presentation self-contained we summarise in this chapter some preliminary

theoretical considerations even though they are well documented in the literature. These

theories are necessary to understand the main results of this thesis. In Sec. 2.1, we

summarise the essential features of path integral formulations of the propagator of SDEs

and their weak-noise approximations, which will be used in chapter 3 to investigate the

pure dry friction case. In Sec. 2.2, we revisit two different but closely related approaches

to FPT problems. One is based on a spectral decomposition method and the other is

on the backward Kolmogorov equation, both of which will be used to address the FPT

problem of Brownian motion with dry friction in chapter 4. In Sec. 2.3, we recall the

derivation of the distribution of the maximum velocity till the FPT. This derivation

will be used to solve the corresponding problem of the dry friction model in chapter

5. Finally, we present in Sec. 2.4 the backward Fokker-Planck technique of functionals,

which will be used in chapter 6.

2.1 Weak-noise approximation of path integrals

Path integral formulations of the propagator of SDEs and their expansion for weak-noise

are well established in the literature. To set the notation and to keep the thesis self-

contained, we summarise here the essential features, following the formulation presented

in Ref. [22]. Let us consider the one-dimensional Langevin equation (1.5). We can write

down the conditional probability distribution p(vt, t|v0, 0) by using the path integral
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2.1. Weak-noise approximation of path integrals

formula [22],

p(vt, t|v0, 0) =
∫ (vt,t)

(v0,0)
D[v]J [v]e−

∫
t

0
[v̇+Φ′(v)]2ds/(4D), (2.1)

where
∫
D[v] denotes the Wiener measure and the Jacobian term

J [v] = exp

(
1

2

∫ t

0
Φ′′(v)ds

)
(2.2)

originates from a transformation ξ(t) → v(t). Putting the two exponentials in Eq. (2.1)

together, we thus express the kernel of the path integral in terms of the action

S[v] =

∫ t

0
L(v(s), v̇(s))ds =

∫ t

0

{
[v̇(s) + Φ′(v(s))]2 − 2DΦ′′(v(s))

}
ds. (2.3)

All trajectories contribute to the path integral (2.1), but for small D, the largest

contribution will come from the trajectory with smallest action. At lowest order in D,

this contribution is found by minimising the action

S(0)[v] =

∫ t

0

[
v̇(s) + Φ′(v(s))

]2
ds, (2.4)

which does not take the contribution of Jacobian into account since it is multiplied by D.

The corresponding boundary value problem determined by the Euler-Lagrange equation

reads

v̈(0)(s) = Φ′(v(0)(s))Φ′′(v(0)(s)), v(0)(0) = v0, v(0)(t) = vt. (2.5)

Given the path minimising the action (2.4), the leading order approximation of the

propagator is thus given by

p(0)(vt, t|v0, 0) = N1e
−S(0)[v(0)]/(4D), (2.6)

where N1 is a (time-dependent) normalisation.

A simple way to improve the approximation (2.6) is to evaluate the action of Eq. (2.3)

with the Jacobian using the optimal path v(0) [see Eq. (2.5)]. This leads to the expression

p(0;1)(vt, t|v0, 0) = N2e
−S[v(0)]/(4D). (2.7)

A more coherent approach, perhaps, which keeps the spirit of the saddle-point approx-

imation (SPA) and ensures positivity of the propagator, is to evaluate the minimising
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2.2. Remarks on first-passage time problems

path with the Jacobian, leading to the following Euler-Lagrange equation:

v̈(1)(s) = Φ′(v(1)(s))Φ′′(v(1)(s))−DΦ′′′(v(1)(s)), v(1)(0) = v0, v(1)(t) = vt. (2.8)

In this case, the corresponding first-order expression for the propagator is given by

p(1)(vt, t|v0, 0) = N3e
−S[v(1)]/(4D). (2.9)

In general, it is not possible to solve the boundary value problem of the Euler-

Lagrange equations (2.5) or (2.8) analytically. Hence, numerical methods such as the

shooting method must be used. In this case, it is useful to respect the underlying

Hamiltonian structure of the Euler-Lagrange problem by using symplectic integration

methods [46], which preserve the Hamiltonian

H(0)(v, pv) = p2v/2 − [Φ′(v)]2/2 (2.10)

without the Jacobian or

H(v, pv) = p2v/2− {[Φ′(v)]2 +DΦ′′(v)}/2 (2.11)

with the Jacobian. Here pv = v̇. In this case, a symplectic Euler scheme (see appendix

A.2.1), for example, can be applied to integrate the corresponding canonical equations

of motion.

2.2 Remarks on first-passage time problems

In an abstract setting the FPT is defined as the time when a stochastic process, often

governed by a SDE, exits a given region for the first time (see Fig. 2.1). The theory

of FPT problems is well documented in the literature, and suitable expositions can be

found in standard textbooks, e.g., Ref. [76]. Here we just summarise the essential ideas

not only for the convenience of the reader but also to address the few technical issues

related to piecewise-smooth drifts. We will focus on the Langevin equation

v̇(t) = −Φ′(v(t)) + ξ(t), (2.12)
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2.2. Remarks on first-passage time problems

s

v(s)

0

a

FPT

Figure 2.1: Illustration of the FPT by using a sample of the process v(s), starting at
s = 0. The given exit region is chosen to be (a,∞) with a < 0.

where the potential Φ(v) is smooth everywhere apart from v = 0 where its derivative may

have a discontinuity, and ξ(t) is the Gaussian white noise that satisfies Eqs. (1.3) and

(1.4). In the following, we will present two different but closely related approaches based

on a spectral decomposition method on the one hand and on the backward Kolmogorov

equation on the other. The given region here is chosen to be (a,∞) with a being a

negative constant. However, it is straightforward to generalise the following theories to

other types of regions.

2.2.1 Spectral decomposition

For the stochastic dynamics according to Eq. (2.12) on the interval (a,∞) it is well known

that the corresponding distribution of the FPT for orbits starting at v(0) = v0 ∈ (a,∞)

is given by (see Ref. [76])

f(T, v0) = − ∂

∂T

∫ ∞

a
p(v, T |v0, 0)dv, (2.13)

where the propagator p(v, t|v0, 0) satisfies the corresponding Fokker-Planck equation

∂

∂t
p(v, t|v0, 0) =

∂

∂v

[
Φ′(v)p(v, t|v0, 0)

]
+

∂2

∂v2
p(v, t|v0, 0), (2.14)
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2.2. Remarks on first-passage time problems

with an initial condition

p(v, 0|v0, 0) = δ(v − v0), (2.15)

an absorbing boundary condition at the left interval endpoint

p(a, t|v0, 0) = 0, (2.16)

and a reflecting boundary, i.e., a vanishing probability current (see, e.g., Ref. [36]) at

infinity, [
Φ′(v)p(v, t|v0, 0) +

∂

∂v
p(v, t|v0, 0)

]∣∣∣∣
v→∞

= 0. (2.17)

To get the solution p(v, t|v0, 0) we follow a spectral decomposition method for piecewise-

smooth systems used, e.g., in Ref. [88], and first solve the associated eigenvalue problem

of Eqs. (2.14)–(2.16),

−ΛuΛ(v) = [Φ′(v)uΛ(v)]
′ + u′′Λ(v), (2.18)

with the (formal) boundary conditions

uΛ(a) = 0, [Φ′(v)uΛ(v) + u′Λ(v)]
∣∣
v→∞ = 0, (2.19)

which follow from Eqs. (2.16) and (2.17). Since we are here concerned with a piecewise-

smooth potential Φ(v), we have to solve Eq. (2.18) on the two domains v > 0 and v < 0,

respectively, and have to apply suitable matching conditions, i.e.,

uΛ(0−) = uΛ(0+) (2.20)

coming from the continuity of the eigenfunction and

Φ′(0−)uΛ(0−) + u′Λ(0−) = Φ′(0+)uΛ(0+) + u′Λ(0+) (2.21)

from the continuity of the probability current, which can be obtained by integrating

Eq. (2.18) on the interval (−ε, ε) in the limit ε → 0. As in the standard case of Fokker-

Planck equations with reflecting boundary conditions the eigenfunctions of the Fokker-

Planck operator and the eigenfunctions of the formally adjoint problem are related

to each other by an exponential factor containing the potential Φ(v) (see Ref. [76]).

Furthermore, both types of eigenfunctions are mutually orthogonal sets and thus result

21



2.2. Remarks on first-passage time problems

in the orthogonality relations:

∫ ∞

a
uΛm

(v)uΛn
(v)eΦ(v)dv = ZΛn

δmn, (2.22)

∫ ∞

a
uΛ(v)uΛ′(v)eΦ(v)dv = ZΛδ(Λ− Λ′), (2.23)

depending on whether the eigenvalue is contained in the discrete or continuous part of

the spectrum. These conditions implicitly take the reflecting boundary at infinity into

account [see Eq. (2.19) and also Ref. [36]]. Furthermore, it is worth to mention that the

reasoning for Fokker-Planck equations with reflecting boundary conditions can be also

applied to map the eigenvalue problem to a formally Hermitian positive operator (see

Refs. [76, 36]). Thus all eigenvalues are positive; in particular, they are real. Finally,

the solution of Eq. (2.14) is given by (see Ref. [94] for an accessible account on the

completeness of the spectrum)

p(v, t|v0, 0) = eΦ(v0)

(
∑

n

uΛn
(v0)uΛn

(v)e−Λnt/ZΛn
+

∫
uΛ(v0)uΛ(v)e

−Λt/ZΛdΛ

)
,

(2.24)

where the sum is taken over the discrete eigenvalues and the integral is taken over the

continuous part of the spectrum. The normalisation factors ZΛn
and ZΛ are determined

by Eqs. (2.22) and (2.23), respectively.

2.2.2 Backward Kolmogorov equation

It is well known that the propagator p(v, t|v0, 0), which determines the FPT distribution

(2.13), obeys the backward Kolmogorov equation (see, e.g., Ref. [36])

∂

∂t
p(v, t|v0, 0) = −Φ′(v0)

∂

∂v0
p(v, t|v0, 0) +

∂2

∂v20
p(v, t|v0, 0) (2.25)

with the initial condition (2.15), an absorbing boundary condition at v0 = a,

p(v, t|a, 0) = 0, (2.26)

and a reflecting boundary condition at infinity [36],

∂

∂v0
p(v, t|v0 → ∞, 0) = 0. (2.27)
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2.2. Remarks on first-passage time problems

Hence, according to Eq. (2.13) we can derive from Eq. (2.25) that the FPT distribution

also obeys a backward Kolmogorov equation:

∂

∂T
f(T, v0) = −Φ′(v0)

∂

∂v0
f(T, v0) +

∂2

∂v20
f(T, v0) (2.28)

with an initial condition

f(0, v0) = 0 for v0 > a. (2.29)

The two boundary conditions (2.26) and (2.27) translate into

f(T, a) = δ(T ) (2.30)

at the left interval endpoint, and into

∂

∂v0
f(T, v0 → ∞) = 0 (2.31)

at infinity. If we use the Laplace transform

f̃(s, v0) =

∫ ∞

0
f(T, v0)e

−sT dT, (2.32)

the partial differential equation (2.28) turns into the ordinary boundary value problem

∂2

∂v20
f̃(s, v0)− Φ′(v0)

∂

∂v0
f̃(s, v0)− sf̃(s, v0) = 0, (2.33)

where Eq. (2.30) obviously results in

f̃(s, a) = 1. (2.34)

As for the other boundary condition we observe that the Laplace transform (2.32) con-

verges uniformly in v0 for s being in the right half plane, as the integral converges

absolutely at s = 0. Hence Eq. (2.31) yields

∂

∂v0
f̃(s, v0 → ∞) = 0 for Re(s) > 0. (2.35)

Intuitively the two boundary conditions (2.34) and (2.35) take care of the fact that on

the one hand the FPT is δ distributed in the limit v0 → a and that on the other hand
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2.3. Maximum velocity till the first-passage time

the particle cannot exit the given region (a,∞) at infinity. In addition, Eq. (2.33) should

be solved for v0 > 0 and v0 < 0 separately with matching conditions at v0 = 0:

f̃(s, 0−) = f̃(s, 0+),
∂

∂v0
f̃(s, 0−) =

∂

∂v0
f̃(s, 0+), (2.36)

where the first condition follows from the solution f̃(s, v0) being continuous at v0 = 0

and the second one is derived by integrating Eq. (2.33) across v0 = 0 [see also Eq. (2.21)].

The approach via the backward Kolmogorov equations enables us to obtain the

Laplace transform of the FPT distribution in closed analytic form. Even though it

may not be possible to perform the inverse transform by analytical means to compute

f(T, v0), by taking derivatives the moments of the FPT, 〈T n〉, are then easily evaluated

as

〈T n〉 = (−1)n
∂n

∂sn
f̃(s, v0)

∣∣∣∣
s=0

for n = 1, 2, 3, . . . . (2.37)

2.3 Maximum velocity till the first-passage time

For the FPT problem considered in the previous section, we study here the distribution

of the maximum velocity (MVD) till the FPT (see Fig. 2.2). The given exit region is till

chosen to be (a,∞) with a < 0. Following the method used in Ref. [54], we summarise

the derivation of the MVD till the FPT. Let us first denote the maximum velocity as

vm, which is a random variable. Then given an initial value v(0) = v0, using the Markov

property of the process v(t) we can obtain the following equation of the probability:

Pr(v < vm|v0) = 〈Pr(v < vm|v0 +∆v)〉∆v , (2.38)

where Pr(v < vm|v0) represents the probability that v < vm till the FPT given that

v(0) = v0, ∆v is an increment and 〈· · · 〉∆v denotes the average over all possible reali-

sations of ∆v. The right hand side of Eq. (2.38) can be expanded with respect to the

increment ∆v to obtain

〈Pr(v < vm|v0 +∆v)〉∆v = Pr(v < vm|v0) + 〈∆v〉∆v
∂

∂v0
Pr(v < vm|v0)

+
〈(∆v)2〉∆v

2

∂2

∂v20
Pr(v < vm|v0) + 〈O((∆v)3)〉∆v . (2.39)
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2.3. Maximum velocity till the first-passage time

Then substituting Eq. (2.39) into Eq. (2.38) results in

〈∆v〉∆v
∂

∂v0
Pr(v < vm|v0) +

〈(∆v)2〉∆v

2

∂2

∂v20
Pr(v < vm|v0) + 〈O((∆v)3)〉∆v = 0. (2.40)

From Eq. (2.12), we obtain

∆v = v(∆t)− v0 = −Φ′(v0)∆t+

∫ ∆t

0
ξ(s)ds +O((∆t)2). (2.41)

Hence, it follows from the properties (1.3) and (1.4) of the noise ξ(t) that

〈∆v〉∆v = −Φ′(v0)∆t+O((∆t)2), (2.42)

〈(∆v)2〉∆v = 2∆t+O((∆t)2), (2.43)

〈(∆v)3〉∆v = O((∆t)2). (2.44)

Therefore, by substituting Eqs. (2.42)–(2.44) into Eq. (2.40) it is easy to derive that

∂2

∂v20
Pr(v < vm|v0)−Φ′(v0)

∂

∂v0
Pr(v < vm|v0) = 0 for vm > a, (2.45)

where a stands for the exit point. The suitable boundary conditions for Eq. (2.45) are

Pr(v < vm|v0 = a) = 1, (2.46)

Pr(v < vm|v0 = vm) = 0, (2.47)

which are easy to observe according to the meaning of the notation Pr(v < vm|v0).

Since we are here concerned with the piecewise-smooth potential Φ(v0), we have to

solve Eq. (2.45) for the two domains v0 > 0 and v0 < 0, respectively. And then we

have to match the solution by using the condition coming from the continuity of the

probability when v0 changes sign,

Pr(v < vm|v0 → 0−) = Pr(v < vm|v0 → 0+), (2.48)

and the one coming form the integral of Eq. (2.45) across zero [see also Eq. (2.21)],

∂

∂v0
Pr(v < vm|v0 → 0−) =

∂

∂v0
Pr(v < vm|v0 → 0+). (2.49)
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s

v(s)

0

a

maximum velocity

Figure 2.2: Illustration of the maximum velocity till the first-passage time by using a
sample of the process v(s), starting at s = 0. The given exit region is chosen to be
(a,∞) with a < 0.

2.4 Functionals with positive support

Since functionals of a process v(t) are related to many practical problems, it is impor-

tant to know their statistical properties. Here we revisit the backward Fokker-Planck

technique developed for positive support functionals by Majumdar and Comtet [63]. For

the process v(t) obeying the Langevin equation (2.12), let us consider the functional

T =

∫ t

0
U(v(τ))dτ, (2.50)

where U(v) is a prescribed positive function. Since the functional T depends on both t

and v0, we denote its distribution as p(T, t, v0). Then according to the backward Fokker-

Planck technique, we can derive an ordinary differential equation for this distribution

in the double Laplace space. In the following, we summarise the main derivations. Let

us first introduce the Laplace transform

p̃(α, t, v0) =

∫ ∞

0
e−αT p(T, t, v0)dT =

〈
e−α

∫
t

0
U(v(τ))dτ

〉
, (2.51)
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where 〈· · · 〉 represents the average over all possible realisations of v. Then we have

p̃(α, t+∆t, v0) =
〈
e−α

∫
t+∆t

0 U(v(τ))dτ
〉

=
〈
e−α

∫∆t

0 U(v(τ))dτ−α
∫
t+∆t

∆t
U(v(τ))dτ

〉

=
[
1− αU(v0)∆t+O((∆t)2)

]
〈p̃(α, t, v0 +∆v)〉∆v, (2.52)

where 〈· · · 〉∆v denotes the average over all possible realisations of ∆v [see Eq. (2.41)].

Using Eqs. (2.42)–(2.44), we can expand 〈p̃(s, t, v0 +∆v)〉∆v to obtain

〈p̃(α, t, v0 +∆v)〉∆v = p̃(α, t, v0)− Φ′(v0)
∂p̃(α, t, v0)

∂v0
∆t+

∂2p̃(α, t, v0)

∂v20
∆t+O((∆t)2).

(2.53)

Therefore, substituting Eq. (2.53) into (2.52) and letting ∆t → 0 we obtain a partial

differential equation for the distribution p̃(α, t, v0):

∂

∂t
p̃(α, t, v0) = −αU(v0)p̃(α, t, v0)− Φ′(v0)

∂

∂v0
p̃(α, t, v0) +

∂2

∂v20
p̃(α, t, v0). (2.54)

Furthermore, if one uses the Laplace transform

q(α, s, v0) =

∫ ∞

0
e−stp̃(α, t, v0)dt, (2.55)

Eq. (2.54) reduces to the following ODE:

∂2

∂v20
q(α, s, v0)− Φ′(v0)

∂

∂v0
q(α, s, v0)− (αU(v0) + s)q(α, s, v0) = −1. (2.56)

The appropriate boundary conditions for q(α, s, v0 → ±∞) are to be derived from the

observation that if the particle starts at v0 → ±∞ it will never cross the origin in finite

time (see Sec. 6.2).

As an important result, we will show in Sec. 6.1 that the results presented here can

be generalised to handle functionals with general support.
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Chapter 3

Weak-noise limit of the pure dry

friction case

In this chapter, we will investigate how non-smooth SDEs can be studied with techniques

developed and used for smooth systems in a practical way by studying the pure dry

friction model (1.8). Here we focus on two of such techniques, namely, the path integral

representation of propagators and the corresponding weak-noise approximation. Since

the time-dependent propagator p(vt, t|v0, 0) of this model is known exactly [see Eq. (1.9)],

it is a good starting point for benchmarking results about non-smooth SDEs. Note

that the propagator p(vt, t|v0, 0) (1.9) and the stationary distribution p(v) (1.12) are

symmetric under the changes v0 → −v0 and v(t) → −v(t) due to the symmetric force

σ(v). Thus we can confine the analysis to the case v0 > 0 without loss of generality.

This chapter is arranged as follows. In Sec. 3.1, we compare the exact result (1.9),

which is valid for any noise power D, with various weak-noise approximations of the

path integral representation of p(vt, t|v0, 0) in order to test the validity and accuracy of

these approximations and to discuss subtle singularities arising in the path integral when

dealing with discontinuous drifts. Related path integrals were studied in Refs. [6, 9] for

a non-exactly solvable model of dry friction. For the pure dry friction model, we will

see that the weak-noise approximation gives the correct propagator at the lowest order

in D, as well as its main features with higher-order corrections, provided that some

heuristics are used to treat the singularities of the path integral.

To treat the singularity of the system in a more explicit and systematic way, we then
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consider in Sec. 3.2 a regularised version of the pure dry friction model, given by

v̇(t) = −µ tanh

(
v(t)

ε

)
+

√
D ξ(t), (3.1)

which recovers the original model (1.8) in the limit ε → 0. Although we do not have

an explicit expression for the propagator of this smooth (but nonlinear) model, we

show with Langevin simulations that the weak-noise approximation of the path integral,

which is now well-defined and shows no singularity, reproduces the main features of the

propagator at different orders of approximation, with roughly the same accuracy as for

the singular model. The regularised model also allows us to obtain analytical results

about the optimal path of the system, as presented in Sec. 3.3, which is the most probable

path singled out by the weak-noise approximation, and the so-called action functional

or quasi-potential, obtained by approximating the propagator at the lowest order in D

with the optimal path [44, 87, 35]. In addition, from these analytical results we are

able to study the evolution of the propagator of the regularised model in the weak-noise

limit. A summary of this chapter drawn from these results is finally given in Sec. 3.4.

3.1 Piecewise-smooth model

In this section, we compare the exact propagator of the piecewise-constant SDE (1.8)

with various approximations of the path integral representation of this propagator, so

as to discuss the validity of these approximations for a non-smooth SDE. From Sec. 2.1

we know that the path integral of Eq. (2.20) has the form

p(vt, t|v0, 0) =
∫ (vt,t)

(v0,0)
D[v]J [v] e−S(0) [v]/(4D), (3.2)

and involves two terms: the action functional [see Eq. (2.4)]

S(0)[v] =

∫ t

0
[v̇(s) + µσ(v(s))]2 ds, (3.3)

which is a measure of the probability of a path {v(s)}ts=0 in velocity space, and the

Jacobian functional

J [v] = exp

(
µ

∫ t

0
δ(v(s)) ds

)
, (3.4)
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3.1. Piecewise-smooth model

which is the Jacobian of the transformation ξ(t) → v(t). Here δ(v) is the Dirac delta

function.

For non-smooth SDEs, two problems arise in the path integral (3.2). The first is that,

since the noiseless system v̇ = −µσ(v) admits in general piecewise-linear trajectories that

are continuous but non-differentiable at points where v(t) vanishes, the minimisation of

the action must also be carried over these trajectories, which means that care must be

taken of the v̇ term in S(0)[v]. The second problem is that the Jacobian (3.4) is singular.

Below we show how to treat this singular contribution and how its inclusion or non-

inclusion in the saddle-point approximation of the path integral determines different

orders of approximation of the propagator as D → 0.

3.1.1 Zeroth-order saddle-point approximation

The lowest-order approximation of the propagator p(vt, t|v0, 0) is obtained in the noise-

less limit D → 0 by finding the path {v(0)(s)}ts=0 that minimises the action S(0)[v] so

as to write

p(0)(vt, t|v0, 0) = Ne−S(0)[v(0)]/(4D), (3.5)

where N is a normalisation constant. We refer to this approximation as the zeroth-order

saddle-point approximation or SPA(0) for short. The rationale for this approximation is

that, in the limit D → 0, the path integral (3.2) is dominated by the probability of the

optimal path {v(0)(s)}ts=0 having minimal action. The Jacobian J [v] can be neglected

at this level of approximation, since it does not depend on D.

The Euler-Lagrange equation associated with the minimisation of S(0)[v] in the re-

gions v > 0 and v < 0 is simply [see Eq. (2.5)]

v̈(0) = 0 (3.6)

and leads to straight paths

v
(0)
d (s) = (vt − v0)s/t+ v0, (3.7)

which we call direct paths. As mentioned above, in addition to these paths, we must

consider paths that follow the attractor v = 0, since these paths appear in the noiseless

system. As a result, the minimisation of S(0)[v] must be carried out over all continuous

and piecewise-linear paths consisting of direct paths and paths following the v = 0
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3.1. Piecewise-smooth model
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Figure 3.1: Different paths considered for minimising the action (3.3) for (a) vt > 0 and

(b) vt < 0. Here v
(0)
d denotes the direct path (3.7), v

(0)
ind the indirect path (3.9), and v

(0)
int

the intermediate path (3.9) with t1 = t2 = t0.

axis. This situation differs from smooth SDEs, for which the minimisation is generally

over all continuously differentiable paths, and leads us to define two important heuristic

principles for dealing with non-smooth SDEs: (i) the action of a path must be evaluated

as the sum of the actions of all its linear (or in general smooth) parts without regard

to its joining (non-smooth) points and (ii) any part of a path on the v = 0 axis (or,

in general, on an attractor of the noiseless system) must have a zero action, in analogy

with smooth systems.

In the present model, two types of optimal paths arise from the action minimisation.

The first consists of direct paths v
(0)
d (s), found above, which directly link the positive

initial velocity v0 to a final velocity vt (see Fig. 3.1), and whose action is

S(0)[v
(0)
d ] =

{
(vt − v0 + µt)2/t− 4µvt for vt < 0,

(vt − v0 + µt)2/t for vt > 0.
(3.8)

The second type of paths are the piecewise-linear paths mentioned above, consisting of

two straight lines in the region v > 0 or v < 0 connected by a straight line at v = 0.

The equation of these so-called indirect paths is

v
(0)
ind(s, t1, t2) =





(t1 − s)v0/t1 for s < t1,

0 for t1 < s < t2,

(s − t2)vt/(t− t2) for s > t2,

(3.9)

where t1 < t2 are arbitrary times at which a path reaches v = 0 (see Fig. 3.1). Following
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3.1. Piecewise-smooth model

the two principles above, we evaluate the action of these paths in a piecewise way with

S(0)[0] = 0 and minimise it for t1 < t2 to obtain

S(0)[v
(0)
ind] = 4µ|vt| (3.10)

for t1 = v0/µ and t2 = t− |vt|/µ. Since we require t1 < t2, the lower bound is reached

only if |vt| < µt − v0. Note that paths arising in the limit case where t1 = t2 ≡ t0

with v0vt < 0 corresponds to direct paths, whereas those that just “bounce” on the

v = 0 axis, i.e., t1 = t2 ≡ t0 but v0vt > 0 are called intermediate paths v
(0)
int (s, t0) [see

Fig. 3.1(a)] and have a minimal action equal to

S(0)[v
(0)
int ] = (|vt|+ v0 − µt)2/t+ 4µ|vt| (3.11)

for t0 = v0t/(v0 + |vt|).

It can be easily checked that any piecewise-linear paths other than those considered

above have a greater action, and so cannot be optimal. Since S(0)[v
(0)
d ] 6 S(0)[v

(0)
int ] holds

for any endpoint (vt, t), we know that the intermediate paths can not be the optimal

paths in the present approximation, but will be useful when we treat the Jacobian in

the next subsection. In addition, for vt < 0 we have −4µvt 6 S(0)[v
(0)
d ], whereas for

vt > 0 we have 4µvt 6 S(0)[v
(0)
d ] if and only if vt 6 (

√
v0 −

√
µt)2. Therefore, combining

these informations and the condition that S(0)[v
(0)
ind] attains the lower bound 4µ|vt| [see

Eq. (3.10)], i.e., |vt| < µt− v0, we can write the equation of the optimal path as

v(0)(s) =





v
(0)
d (s) for t < v0/µ,

v
(0)
ind(s, v0/µ, t− |vt|/µ) for t > v0/µ and vt ∈ [v−(t), v+(t)],

v
(0)
d (s) for t > v0/µ and vt 6∈ [v−(t), v+(t)],

(3.12)

where the limits of the velocity interval are defined by

v−(t) = v0 − µt, v+(t) =
(√

v0 −
√
µt
)2
. (3.13)

This shows that, if the endpoint (vt, t) lies in the area bounded by v−(s) and v+(s) with

s > v0/µ, as shown in Fig. 3.2, then the optimal path is an indirect path, otherwise it

is a direct path.

The SPA(0) approximation of the propagator is obtained from this result by substi-
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Figure 3.2: Regions in the vt−t plane for which the optimal path of the action at leading
order, Eq. (3.3), is given by an indirect (direct) path [shaded (white)] [see Eqs. (3.13)].
Here vc = v0/µ denotes the tip of the region.

tuting the corresponding action in Eq. (3.5). For t < v0/µ, we find

p(0)(vt, t|v0, 0) = N1

{
exp[−(vt − v0 + µt)2/(4Dt) + µvt/D] for vt < 0,

exp[−(vt − v0 + µt)2/(4Dt)] for vt > 0,
(3.14)

whereas for t > v0/µ, we find

p(0)(vt, t|v0, 0) = N2





exp[−(vt − v0 + µt)2/(4Dt) + vt/D] for vt < v−(t),

exp[−(vt − v0 + µt)2/(4Dt)] for vt > v+(t),

exp(−µ|vt|/D) for vt ∈ [v−(t), v+(t)],
(3.15)

where N1 and N2 are normalisation factors. This result is compared in Fig. 3.3 with

the exact propagator. There we see that SPA(0) is a good approximation of p(vt, t|v0, 0)
at short and long times, but does not capture the bimodal structure of the propagator

arising when the optimal path hits the origin for times close to t = v0/µ. While a kink

(non-smooth point) of the exact propagator shows up at time t < v0/µ in the region

vt > 0 [see Fig. 3.3(b)], the corresponding kink of the SPA(0) only appears at time

t > v0/µ [see Fig. 3.3(c) as well as Eqs. (3.14) and (3.15)]. For comparison, we also

show in Fig. 3.3 the result of the propagator obtained from Langevin simulations of the

SDE using the standard Euler-Maruyama integration scheme [55] (see also appendix
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3.1. Piecewise-smooth model

A.2.1). The application of this scheme is stable for the piecewise-smooth SDE and only

requires that we choose the integration time step small enough, so that we can reproduce

the cusp seen in its propagator.

We will see in the next subsection that the inclusion of the Jacobian in the saddle-

point approximation enables us to reproduce this bimodality more accurately. An im-

portant remark, before we get to that part, is that the SPA(0) yields the same approx-

imation as the exact propagator (1.9) in the noiseless limit. Indeed, it is not difficult to

verify that the limit

I(vt, t|v0, 0) = lim
D→0

−4D ln p(vt, t|v0, 0) = lim
D→0

−4D ln p̂

(
µ

D
vt,

µ2

D
t

∣∣∣∣
µ

D
v0, 0

)
, (3.16)

which defines in the Freidlin-Wentzell large deviation theory [35] the so-called pseudo- or

quasi-potential I(v, t|v0, 0), is equal to the SPA(0) action (see appendix A.1 for the proof

and also Fig. 3.4 for numerical comparisons). This means that the bimodal structure of

the exact propagator (1.9) at time t < v0/µ disappears when D → 0 [see Eq. (3.14)]. In

this piecewise case, the different optimal paths that we have found can be associated, in

the weak-noise limit, to two different physical modes of motion of the noiseless system:

direct paths represent slip motion, whereas indirect paths represent stick motion [6, 9].

For any fixed value of vt, the optimal path will always be an indirect path if the time

is sufficiently large, which means that all optimal paths are indirect paths in the limit

t → ∞.

3.1.2 Corrected action with zeroth-order path

One way to correct the SPA(0) is to use the candidate optimal paths obtained before

but to evaluate their action by including the Jacobian in the action [see Eq. (2.3)]:

S[v] =

∫ t

0

{
[v̇(s) + µσ(v(s))]2 − 4Dµδ(v)

}
ds. (3.17)

This defines a first-order saddle-point approximation, referred to as SPA(1), of the

propagator that retains the optimal paths of SPA(0) but includes the subdominant

correction of the Jacobian, which is multiplied by D.

To obtain this approximation, we need to evaluate how the contribution arising from

the δ function in Eq. (3.17) changes the action for the different paths considered. For

direct paths v
(0)
d (s), there is obviously only a contribution when the v = 0 axis is crossed,
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Figure 3.3: Propagator of the dry friction model (1.8) for initial velocity v0 = 2, µ =
1, D = 0.01 and different values of time: (a) t = 1, (b) t = 1.8, (c) t = 2.2, and
(d) t = 3. Here DF denotes the exact analytical result (1.9), MCS the Monte Carlo
simulation of Eq. (1.8) with step-size 0.0001 and an ensemble of 106 realisations, SPA(0)
the leading order saddle-point approximation [see Eqs. (3.14) and (3.15) in Sec. 3.1.1],
and SPA(1) the higher order saddle-point approximation [see Eqs. (3.19), (3.21) and
(3.23) in Sec. 3.1.2].
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the analytic solution (1.9) for initial velocity v0 = 2, µ = 1, D = 0.0001 and different
values of time: (a) t = 1.8, (b) t = 2, (c) t = 2.2, and (d) t = 2.5. Here DF denotes the
action of the exact analytical result (1.9) and SPA(0) the action of the leading order
saddle-point approximation [see Eqs. (3.14) and (3.15)].
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3.1. Piecewise-smooth model

so that ∫ t

0
δ(v

(0)
d )ds =

{
t/(v0 − vt) for vt < 0,

0 for vt > 0.
(3.18)

Thus, the corresponding corrected action of Eq. (3.8) is

S[v
(0)
d ] =

{
(vt − v0 + µt)2/t− 4µvt − 4Dµt/(v0 − vt) for vt < 0,

(vt − v0 + µt)2/t for vt > 0.
(3.19)

For intermediate paths v
(0)
int (s, t0), the evaluation of the Jacobian term is straightfor-

ward as well. Any sensible representation of the δ function will result in a symmetric

average of the inverse slopes of the path, leading to

∫ t

0
δ(v

(0)
int )ds =

1

2
∣∣v̇(0)int (t0−, t0)

∣∣ +
1

2
∣∣v̇(0)int (t0+, t0)

∣∣ =
t

v0 + |vt|
, (3.20)

where we have used the condition t0 = v0t/(v0+ |vt|). Hence, it follows from Eqs. (3.17)

and (3.20) that

S[v
(0)
int ] = (|vt|+ v0 − µt)2/t+ 4µ|vt| − 4Dµt/(v0 + |vt|). (3.21)

Indirect paths v
(0)
ind(s, t1, t2) require a closer inspection: these paths vanish over an

entire interval of time, so that the contribution originating from the Jacobian is ill

defined. To treat this, we follow the previous principle that paths on the attractor do

not contribute to the action and define the following two additional heuristic principles:

(iii) parts of indirect paths on the attractor are not considered as contributing to the

Jacobian and (iv) non-vanishing parts of indirect paths contribute, as for intermediate

paths, to the Jacobian in a weighted average way. With these principles, the corrected

action of indirect paths is finite and equal to

∫ t

0
δ(v

(0)
ind)ds =

1

2
∣∣v̇(0)ind(t1−, t1, t2)

∣∣ +
1

2
∣∣v̇(0)ind(t2+, t1, t2)

∣∣ =
1

µ
, (3.22)

where we have used the conditions t1 = v0/t and t2 = t−|vt|/µ. Thus, the corresponding
action (3.17) can be evaluated as

S[v
(0)
ind] = 4µ|vt| − 4D for |vt| < µt− v0. (3.23)
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3.1. Piecewise-smooth model

By properly comparing the corrected actions (3.19), (3.21) and (3.23), we can deter-

mine which path is minimal depending on vt and t to obtain the corresponding propaga-

tor p(0;1)(vt, t|v0, 0) [see Eq. (2.7)]. The result of this minimisation is shown in Fig. 3.3 as

SPA(1). We see that the inclusion of the Jacobian correction qualitatively improves the

propagator as compared to the lowest-order approximation, SPA(0) of Sec. 3.1.1, even

though there are still some deviations in the transient regime where the exact propagator

shows a bimodality. Especially, at time t < v0/µ the SPA(1) has already shown up the

kink corresponding to that of the exact propagator in the region vt > 0 [see Fig. 3.3(b)].

This phenomenon is different with that of the SPA(0), which does not have such a kink

at t < v0/µ. As we know, this kink is an artifact of weak-noise approximations and are

smoothed in the exact propagator by the finite diffusion.

3.1.3 Corrected action with corrected path

The SPA(1) corrects the SPA(0) by including the Jacobian term in the action, while

using the optimal paths of SPA(0), i.e., the paths that minimise the zeroth-order action

S(0)[v]. As a further correction to this approximation, it is tempting to obtain the opti-

mal paths by minimising the corrected action S[v] with the Jacobian, thus constructing

a “full” first-order approximation.

Unfortunately, this approach does not work as the action turns out to diverge for

vt = 0. To see this, evaluate the action of Eq. (3.17) for an intermediate path v
(0)
int with

a kink at t0 = t/2 (see Fig. 3.5):

S[v
(0)
int ] = 2µ(|vt| − v0) + µ2t+ 2(v20 + v2t )/t−Dµt (1/v0 + 1/|vt|) . (3.24)

This value is an upper bound for the minimum of the action, which determines the

density according to Eq. (2.9). The problem of this result is that S[v
(0)
int ] → −∞ when

vt → 0, leading to a (non-integrable) singularity for the propagator p(vt, t|v0, 0) at

vt = 0. Thus the approximation scheme based on obtaining the optimal paths from S[v]

results in a non-normalisable expression, which implies that a “full” first-order SPA is

not possible for the SDE of Eq. (1.8). It is clear that this problem will also arise in any

SDE having, as in Eq. (1.8), points where the force of the SDE is discontinuous. One

way to approach this problem is to explore regularisations of such discontinuities.
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3.2 Regularised SDE

As seen in the previous section, the weak-noise approximation of the path integral for

non-smooth SDEs faces some difficulties related to the minimisation of the action and

the singularity of the Jacobian term. To treat these problems, we now consider the

regularised SDE of Eq. (3.1) in which the discontinuous drift σ(v) is replaced by the

smooth drift tanh (v/ε) involving the additional (small) parameter ε (see Fig. 3.6). For

this smooth SDE, the aforementioned difficulties do not occur: we can minimise the

action over smooth differentiable paths and the Jacobian is well defined. In this section,

we are interested in understanding the weak-noise properties of this regularised SDE.
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To investigate the regularised model, we introduce non-dimensional units:

u = v/ε, τ = µt/ε. (3.25)

Equation (3.1) is then simply written as (see appendix A.3.1)

u̇(τ) = − tanh(u(τ)) +
√
D̃ ξ(τ), (3.26)

where D̃ = D/(εµ) is now the only parameter of the model, called the effective diffusion

constant. An important point to note is that the two limits ε → 0 and D → 0 do not

commute. In the following, we will be interested in the smooth model for small and

moderate effective noise amplitudes.

As mentioned at the beginning of this chapter, the propagator of the regularised

model does not have a known closed analytic form. Thus, for benchmarking the weak-

noise approximation results, we need to resort to numerical simulations obtained by the

Euler-Maruyama scheme (see appendix A.2.1), which accurately reproduce, as for the

piecewise-smooth SDE, all the features of the propagator, provided that we choose the

integration time step small enough.

As before, the leading order of the weak-noise approximation of Eq. (3.26) is deter-

mined by the action [see Eqs. (2.4) and (2.6)]

S(0)[u] =

∫ τ

0
[u̇(s) + tanh(u(s))]2 ds (3.27)

evaluated for the solution of the Euler-Lagrange boundary value problem [see Eq. (2.5)]

ü(0)(s) = tanh(u(0)(s))/ cosh2(u(0)(s)), u(0)(0) = u0, u(0)(τ) = uτ . (3.28)

The leading order may be improved by taking consistently first-order contributions into

account. The propagator (2.9) is then determined by the action [see Eq. (2.3)]

S[u] =

∫ τ

0

{
[u̇(s) + tanh(u(s))]2 − 2D̃/ cosh2(u(s))

}
ds (3.29)

evaluated at the first-order path that obeys the boundary value problem (2.8)

ü(1)(s) =
(
1 + 2D̃

)
tanh(u(1)(s))/ cosh2(u(1)(s)), u(1)(0) = u0, u(1)(τ) = uτ . (3.30)

The two boundary value problems (3.28) and (3.30) just differ by a rescaling of time,
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3.2. Regularised SDE

and can be solved by using a numerical shooting method (see Sec. 2.1).

Figure 3.7 compares the numerical Monte Carlo simulations of Eq. (3.26) with the

zeroth- and first-order weak-noise approximations for small and moderate noise ampli-

tudes. We see that, while the short and long time behaviours are captured well by the

lowest-order approximation, substantial transient deviations are visible when the maxi-

mum of the propagator approaches the origin. The first-order approximation is in fact

able to deal with such a feature, even for substantial noise amplitudes. Thus, the scheme

outlined above can be considered as a candidate to deal with the weak-noise limit even

in systems which mimic the discontinuous drift.

Naturally, from our study of the discontinuous model, we cannot expect the weak-

noise approximation to yield the full propagator of the smooth model in the asymptotic

limit ε → 0. However, it should be possible to obtain, at a quantitative level, the main

features of the propagator for suitable small values of D and ε. Of course, an improved

scheme such as the first-order approximation needs to be applied, as one cannot rely

on extremely small values of the effective diffusion to cover cases which are sufficiently

close to a discontinuous drift. Indeed, Fig. 3.8 shows that this is the case if we translate

the results obtained via Eqs. (3.29) and (3.30) to the dimensional units via Eq. (3.25).

The SPA(1) performs well in short time and is also able to capture the main profiles

of the piecewise-smooth SDE in moderate and long times. Larger deviations between

the discontinuous and the regularised results appear only in a neighbourhood of size ε

of the discontinuity. Hence, we may conclude that, in these particular cases, a suitable

regularisation and first-order saddle-point approximation is able to capture the essential

features of the piecewise-smooth SDE.

To close this section, let us comment on the kinks appearing in the quasi-potential

corresponding to the minimised action. Since Eqs. (3.28) and (3.30) only differ by a

rescaling of time and since we are here mainly concerned with the essential structure of

the quasi-potential, we just focus on the simple zeroth-order approximation (3.27) and

(3.28). Figure 3.9 shows the solution of the boundary value problem using the shooting

method for a given value of u0. At some finite value of τ , the boundary value problem

develops a cusp singularity, beyond which three solutions occur in a finite interval of uτ

values, corresponding to smooth versions of the previously-identified direct, indirect and

intermediate paths. For instance, we take two typical endpoints from Fig. 3.9(c) and

compare their optimal paths with the dry friction case (1.8) in the original scale [see

Eqs. (3.25) and (3.1)], as shown in Fig. 3.10. Even though these two kinds of optimal
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Figure 3.7: Propagator of Eq. (3.26) for small and moderate values of the effective
diffusion, (a)–(c) D̃ = 0.01 and (d)–(f) D̃ = 0.1, initial condition u0 = 10 and three
different values of τ . Here MCS denotes the Monte Carlo simulations of the Langevin
equation (3.26) with time step 0.005 and an ensemble of 106 realisations, SPA(0) the
lowest order of the saddle-point approximation using the action of Eq. (3.27) [see also
Eq. (2.6)], and SPA(1) the first order of the saddle-point approximation using the action
of Eq. (3.29) [see also Eq. (2.5)].
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Figure 3.8: Comparison of the propagators of the dry friction model (1.8) and of the
regularised scheme (3.1) for µ = 1, D = 0.01, ε = 0.05, initial condition v0 = 2 and
three different values of time: (a) t = 1, (b) t = 1.9, and (c) t = 3. Here DF denotes
the analytical result for the propagator of the dry friction model [see Eq. (1.9], MCS
the Monte Carlo simulation of the Langevin equation (3.1) with time-step 0.005 and
an ensemble of 106 realisations, and SPA(1) the first-order saddle-point approximation
scheme using the action of Eq. (3.29). The inset in (b) shows the SPA(1) of the smooth
case (solid line) and the SPA(1) of the dry friction case [dashed line, see Eqs. (3.19),
(3.21), and (3.23)]. Both of these graphs have a kink which matches the structure
appearing in the exact solution of the dry friction model (DF). The inset in (c) shows the
data for DF and SPA(1) on a larger scale in a semi-logarithmic plot. Large quantitative
deviations appear only in a neighbourhood of size ε of the discontinuity.
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paths differ from each other, they have the same path structure.

A non-unique solution to the boundary value problem implies that the actual opti-

mising path has to be determined from minimising Eq. (3.27) among the three possible

paths. In our case, Fig. 3.9 shows that the optimal path is either a direct or an indirect

path, as for the piecewise-constant SDE. The intermediate path is always a saddle point

of the action, which implies that the quasi-potential consists of two analytic branches,

with a kink appearing when the type of optimal paths changes [see Figs. 3.8(b), 3.11(b)

and 3.11(c)]. The kink, which also shows up in the numerical solution of the Fokker-

Planck equation, is an important feature of the quasi-potential: it appears at finite time

and then moves to larger uτ values [see Fig. 3.11(c)]. This feature, which is related

to the convergence of the propagator towards the stationary distribution, is studied in

detail next.

3.3 Analytic properties of the action

The previous analysis was mainly based on a numerical solution of the boundary value

problem (3.28) and the evaluation of the corresponding action integral (3.27) (see Ref. [20]

for a related numerical study). In this section, we try to obtain further insights into the

weak-noise limit by studying some analytical properties of the quasi-potential, focusing

on the zeroth-order approximation of the action. The first-order approximation of the

action can be analysed along similar lines.

3.3.1 Action integral

The Euler-Lagrange equations (3.28) are equivalent to a conservative system with Hamil-

tonian

H(u, pu) = p2u/2− tanh2(u)/2, (3.31)

where pu = u̇ [see Eq. (2.10)]. The phase portrait of this system, shown in Fig. 3.12,

is important to understand the structure of the boundary value problem. The origin in

phase space is a hyperbolic equilibrium point. Regions of positive and negative energy,

respectively, are bounded by the separatrix of this fixed point. Solutions of the equation

of motion (3.28) are given by constant energy levels

u̇ = pu = ±
√
tanh2(u) + 2H, (3.32)
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Figure 3.9: Solution of the boundary value problem (3.28) with the shooting method
for the given value u0 = 4 and three different values of τ . (a)–(c) Solutions of the
differential equation (3.28) for different values of the initial slope u̇(0)(0) = pu(0). (d)–
(f) Dependence of the final value uτ = u(0)(τ) on the initial condition u̇(0)(0) = pu(0)
of the differential equation (3.28), indicated by the solid line. The symbols indicate the
solution which minimises the action (3.27).
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Figure 3.10: Comparison of the optimal paths of the dry friction model (1.8) (dashed)
and of the regularised model (3.1) (solid) for two typical endpoints taken from Fig. 3.9(c).

where the sign determines whether the path is in the positive or negative momentum

region of phase space. The zeroth-order action (3.27) for a path with energy H, starting

at u0 and terminating at uτ can then be written as

S(0)[u] = S(u0, uτ , τ,H) = 2

∫ uτ

u0,H
pu(s)du(s) + 2 ln

(
cosh(uτ )

cosh(u0)

)
− 2Hτ (3.33)

if we take the expression (3.31) for the Hamiltonian into account. The duration τ of

this path from u0 to uτ is evaluated as

τ =

∫ uτ

u0,H

du(s)

pu(s)
(3.34)

and allows us to express the energy in Eq. (3.33) in terms of the time. Thus the problem

has been reduced to evaluating two integrals and solving algebraic equations. To take

care of the correct sign in Eq. (3.32), we have to distinguish three cases, according to

the sign of the terminal point uτ .

Case 1: uτ < 0 < u0

As can be seen from the phase portrait of Fig. 3.13(a), there is for given energy H > 0

a unique path connecting the two boundary points. Along this path Eq. (3.32) holds
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Figure 3.11: Quasi-potential of the regularised model (3.26) for initial condition u0 = 4,
D = 0.0001 and three different values of time: (a) τ = 4, (b) τ = 7, and (c) τ = 10.
Here FP (dashed line) denotes the potential −4D ln p(uτ , τ |u0, 0) computed by numerical
integration of the corresponding Fokker-Planck equation (see appendix A.2.3 for the
numerical scheme) and SPA(0) (solid line) the result of the leading order SPA, i.e.,
minimised action (3.27). The inset in (c) shows the position of the kink uk as a function
of the time τ , as obtained from SPA(0). The closed circle shows the time and the
position where the kink emerges (see also Fig. 3.16).
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with a minus sign, and the expression relating energy and time, Eq. (3.34), results in

τ =

∫ u0

uτ

du√
tanh2(u) + 2H

=
1√

1 + 2H

∫ u0

uτ

d sinh(u)√
sinh2(u) + 2H/(1 + 2H)

= θ−(u0, uτ ,H), (3.35)

where

θ−(u0, uτ ,H) =
1√

1 + 2H
ln


 sinh(u0) +

√
2H/(1 + 2H) + sinh2(u0)

sinh(uτ ) +
√

2H/(1 + 2H) + sinh2(uτ )


 . (3.36)

It is easy to show that in the rangeH > 0 and uτ < 0 < u0, Eq. (3.36) is a monotonically

decreasing function of H [see Fig. 3.13(b) and also appendix A.5.1 for the proof], i.e.,

Eq. (3.35) defines the energy H as an analytic expression of τ and of the boundary

points. As for the integral which enters the action (3.33), using the relations (3.32) and

(3.35) we obtain

∫ uτ

u0,H
pu(s)du(s) =

∫ u0

uτ

√
tanh2(u) + 2Hdu

=

∫ u0

uτ

1 + 2H − 1/ cosh2(u)√
tanh2(u) + 2H

du

= (1 + 2H)τ − σ−(u0, uτ ,H), (3.37)

where we have introduced the abbreviation

σ−(u0, uτ ,H) = ln


 tanh(u0) +

√
2H + tanh2(u0)

tanh(uτ ) +
√

2H + tanh2(uτ )


 . (3.38)

Therefore the entire action (3.33) finally reads

S(u0, uτ , τ,H) = 2(1 +H)τ + 2 ln

(
cosh(uτ )

cosh(u0)

)
− 2σ−(u0, uτ ,H). (3.39)

Since the inverse of the energy-time relation (3.35) is single valued, the expression for

the action defines an analytic expression of time τ and of the boundary points in the
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Figure 3.14: (a) Phase portrait of the Hamiltonian (3.31) with direct (1) and indirect
(2) paths connecting boundary points 0 < uτ < u0. (b) Energy time relations (3.35)
(solid line) and (3.40) (dashed line) for small values of u0 (u0 = 2, uτ = 1) with unique
inverse. (c) Energy time relations (3.35) (solid line) and (3.40) (dashed line) for larger
values of u0 (u0 = 3, uτ = 2) with multivalued inverse in a finite time interval.

region uτ < 0 < u0 (see also Fig. 3.11).

Case 2: 0 < uτ < u0

For boundary points 0 < uτ < u0 the phase portrait 3.14(a) and Eq. (3.31) show that

the connecting path has energy H > Hmin = − tanh2(uτ )/2. On the one hand, for

energies H > Hmin, there exists a direct path whose duration is given by Eq. (3.35) and

whose action is determined by Eq. (3.39). On the other hand, for Hmin < H < 0, there

exists an indirect path with a turning point at umin = artanh(
√
−2H). The duration

of this path is obtained from Eq. (3.34) by splitting the path into two parts and using
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appropriate signs in Eq. (3.32):

τ =

∫ umin

u0

du

−
√

tanh2(u) + 2H
+

∫ uτ

umin

du√
tanh2(u) + 2H

= θ+(u0, uτ ,H), (3.40)

where

θ+(u0, uτ ,H) =

ln

[
sinh(u0) +

√
2H/(1 + 2H) + sinh2(u0)

]

√
1 + 2H

+

ln

[
sinh(uτ ) +

√
2H/(1 + 2H) + sinh2(uτ )

]

√
1 + 2H

+
ln [(1 + 2H)/(−2H)]√

1 + 2H
. (3.41)

Similarly, the integral appearing in the action (3.33) can be evaluated as [see Eq. (3.37)]

∫ uτ

u0,H
pu(s)du(s) = −

∫ umin

u0

√
tanh2(u) + 2Hdu+

∫ uτ

umin

√
tanh2(u) + 2Hdu

= (1 + 2H)τ − σ+(u0, uτ ,H), (3.42)

where we have introduced the abbreviation

σ+(u0, uτ ,H) = ln

[
tanh(u0) +

√
2H + tanh2(u0)

]

+ ln

[
tanh(uτ ) +

√
2H + tanh2(uτ )

]
− ln(−2H). (3.43)

Thus, for the action (3.33) of this path we obtain

S(u0, uτ , τ,H) = 2(1 +H)τ + 2 ln

(
cosh(uτ )

cosh(u0)

)
− 2σ+(u0, uτ ,H). (3.44)

To find the minimising path, we have to take a closer look at the energy-time rela-

tion. This relation consists of two branches [see Figs. 3.14(b) and 3.14(c)]. The branch

determined by Eq. (3.35) is defined for all energies H > Hmin and is a monotonically de-

creasing function for 0 < uτ < u0 (see appendix A.5.1). The second branch, defined for

negative energies Hmin < H < 0 only, is given by Eq. (3.40). This branch is monotoni-

cally increasing for small values of u0 and develops an inflection point if the boundary

points exceed a critical value (see appendix A.5.2), which implies that, for small values
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Figure 3.15: (a) Phase portrait of the Hamiltonian (3.31) with direct (1) and indirect
(2) orbits connecting boundary points 0 < u0 < uτ . (b) Minimal action (3.33) as a
function of uτ in the interval uτ > u0 = 10 for different values of the time τ , showing a
kink moving to the right.

of u0, the relation determines the energy in terms of time and boundary points uniquely.

However, if the initial condition is beyond the critical regime, the energy time relation

has a multivalued inverse within a finite time interval [see Fig. 3.14(c)]. The value of the

action entering the propagator is then the minimum among the three possible inverse

values. The data show that for fixed values of u0 and uτ the minimum is given by the low

energy solution, i.e., by the direct path, up to a critical value of τ while the minimum

for larger values of τ is given by the high energy solution, i.e., the indirect path. The

intermediate path, i.e., the solution with energy in between, is always of saddle type. As

a consequence, the action, considered as a function of uτ , switches the analytical branch

and develops a kink [see Figs. 3.11(b) and 3.11(c) and 3.15(b)].

Case 3: 0 < u0 < uτ

As in the previous case there are two types of paths to consider: in the energy range

H > Hmin = − tanh2(u0)/2, there exists a direct path connecting the two boundary

points, while for negative energies Hmin < H < 0, there exist in addition indirect paths

with a turning point at umin = artanh(
√
−2H). This is similar to the previous case and

the relevant integrals can be dealt with by applying the symmetry of the phase portrait

[see Fig. 3.15(a)]. To find the duration of the direct path (3.34), we just observe that

by swapping the boundary points and reversing the direction of the path we obtain a

corresponding mirror orbit with the same duration, which we have dealt with in the
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previous case. Thus, Eq. (3.35) tells us that

τ =

∫ uτ

u0

du√
tanh2(u) + 2H

= θ−(uτ , u0,H). (3.45)

Since the integral entering the action (3.33) has the same symmetry, we obtain the result

stated in Eq. (3.37) by swapping u0 and uτ on the right-hand side. Thus the action

(3.33) finally reads

S(u0, uτ , τ,H) = 2(1 +H)τ + 2 ln

(
cosh(uτ )

cosh(u0)

)
− 2σ−(uτ , u0,H). (3.46)

The action itself does not share the aforementioned symmetry because of the additional

terms appearing in Eq. (3.33).

For the indirect path the same reasoning applies. The duration of the path, given

by Eq. (3.40), applies since the right hand side is symmetric in u0 and uτ and swapping

both arguments does not have any effect. In fact, the same argument is valid for the

integral which enters the action. Therefore, Eq. (3.42) holds, since the right hand side is

a symmetric expression in the boundary points, and the corresponding action is indeed

given by Eq. (3.44).

Overall, we see that the energy-time relationship is at the heart of understanding the

structure of the optimal paths, the minimised action, and finally the propagator of the

SDE. As in the previous case, the relation consists of two branches [see Figs. 3.14(b) and

3.14(c)]. The lower branch is given by the direct path (3.45), which is a monotonically

decreasing function on its domain H > Hmin. The second branch for negative energies

Hmin < H < 0 is determined by Eq. (3.40) and thus largely the discussion of the previous

section applies. If the initial condition is small, so that no cubic singularity appears for

0 < uτ < u0 (case 2), then such a singularity will finally develop for sufficiently large

value of uτ resulting in a non-analytic minimised action. If, on the contrary, u0 is so

large that the occurrence of the kink has already happened in the domain 0 < uτ < u0,

then the kink just propagates to larger values of uτ [see Fig. 3.15(b)].

3.3.2 Asymptotics of the action

The analytic expressions derived in the previous subsection allow us to study in some

detail the properties of the propagator shown, e.g., in Fig. 3.11. Of particular relevance
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is the approach to the stationary state, the tail behaviour of the distribution, and the

emergence and dynamics of non-analyticities of the quasi-potential.

Approach to equilibrium

To study the convergence of the propagator towards the stationary distribution, we

consider a fixed value of u0 and uτ and take the asymptotic limit τ → ∞. It is obvious

from the phase portrait or from the energy-time relation [see Figs. 3.13(b), 3.14(b) and

3.14(c)] that the asymptotic limit implies H → 0. Hence the energy-time relation is

determined by Eq. (3.35) or (3.40), depending on the sign of uτ . For the convenience of

the reader, the details of the following derivations are presented in appendix A.4.1. In

both cases uτ < 0 and uτ > 0, a straightforward expansion yields [see Eqs. (A.37) and

(A.39)]

τ = ln[2 sinh(u0)] + ln[− sinh(uτ )/H] +O(H ln |H|) . (3.47)

For the action, either Eq. (3.39) or (3.44) applies, depending on the sign of uτ , yielding

the expansion [see Eqs. (A.38) and (A.40)]

S(u0, uτ , τ,H) = 2(1 +H)τ + 2 ln

(
cosh(uτ )

cosh(u0)

)

−2 {ln [2 tanh(u0)] + ln [− tanh(uτ )/H]}+O(H). (3.48)

By solving Eq. (3.47) to leading order for H, i.e.,

H = −2 sinh(u0) sinh(uτ )e
−τ , (3.49)

Eq. (3.48) yields, as expected, the potential of the stationary distribution

S(u0, uτ , τ,H) = 4 ln[cosh(uτ )] +O(τe−τ ). (3.50)

The full action as well as the propagator at finite time depends on the intial condition u0

and hence does not have a symmetry with respect to uτ . However, the stationary action

and the corresponding stationary distribution is independent of u0 [see Eq. (3.50)] in the

limit τ → ∞. In that limit the symmetry under the change uτ → −uτ is restored [see

also Eq. (1.12)]. Above all, the saddle-point approximation preserves all the symmetries

of the underlying equations of motion.
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3.3. Analytic properties of the action

Tail behaviour of the propagator

To investigate the action for large values of arguments, we consider the asymptotic limit

|uτ | → ∞ for fixed values of time τ and initial condition u0, which implies, from the

phase portraits of Figs. 3.13(a) and 3.15(a), H → +∞. The energy-time relation is

determined by Eq. (3.35) or (3.45), depending on the sign of uτ , and a direct expansion

results in the expression (see appendix A.4.2)

τ =
1√

1 + 2H

[
|uτ − u0|+O(H−1)

]
, (3.51)

which is valid irrespective of the sign of uτ . This expression is easily inverted to obtain

1 + 2H = (uτ − u0)
2/τ2 +O(u−1

τ ). (3.52)

For the action Eq. (3.39) or (3.46) apply, depending on the sign of uτ . Expansion in

terms of H yields σ− to be of order O(H−1/2) (see appendix A.4.2) so that

S(u0, uτ , τ,H) = 2(1 +H)τ + 2 ln

(
cosh(uτ )

cosh(u0)

)
+O(H−1/2). (3.53)

Hence, using Eq. (3.52) we end up with

S(u0, uτ , τ,H) =
(uτ − u0)

2

τ
+ τ + 2 ln

(
cosh(uτ )

cosh(u0)

)
+O(u−1

τ ). (3.54)

To leading order, the tails of the propagator have a Gaussian shape, as expected, while

the subleading terms indicate a transition from the Gaussian shape to the exponential

shape of the stationary distribution.

Emergence and propagation of the kink

As mentioned before, a kink in the minimised action appears when the energy-time

relation has multivalued inverse. Since θ−(u0, uτ , τ,H) is a monotonically decreasing

function of H (see appendix A.5.1), the kink appears when θ+(u0, uτ , τ,H) develops a

crossover from a monotonically increasing shape into a cubic shape [see Figs. 3.14(b)

and 3.14(c)]. Hence, the time τc when the kink appears and its position uτ as functions
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Figure 3.16: Time τc and position uτ for the emergence of the kink in the minimised
action as a function of the initial condition u0 [see Eq. (3.55)]. The closed circle indicates
the starting point of the kink for u0 = 4, as in Fig. 3.11(c).

of initial position u0 are determined by

τ = θ+(u0, uτ ,H),
∂θ+
∂H

= 0,
∂2θ+
∂H2

= 0. (3.55)

Figure 3.16 shows the solution of these equations obtained numerically. For small values

of u0, both the time and the position for the emergence of the kink become large. For

large values of u0, the time becomes large again but the kink appears close to the

origin. At an intermediate scale of the size of the regularisation length the time for

the occurrence of the kink becomes minimal, and the kink appears close to the initial

condition.

After its appearance the kink starts to move with positive velocity [see Fig. 3.15(b)

and Fig. 3.11(c)]. We can quantify such a dynamical feature in terms of an asymptotic

expansion for large τ and large uτ , keeping the ratio c = uτ/τ of order O(1). The key

to the analysis is the shape of the energy-time relation in such a limit (see Fig. 3.17).

The relation consists of the monotonic lower branch (3.45) determined by θ− and

a cubic shaped upper branch (3.40) determined by θ+. Depending on the value of τ

the action takes its minimum either on the lower branch at an energy H− which stays

of order O(1) or on the upper branch at an energy H+ which tends to zero in the
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Figure 3.17: Energy time relation, Eqs. (3.45) and (3.40) for u0 = 2 and uτ = 5. The
action takes its minimum on the lower branch AB if τ < 10.5 and on the upper branch
CD if τ > 10.5.

asymptotic limit considered here. Hence, Eqs. (3.45) and (3.40) yield

τ = θ−(uτ , u0,H−) =
uτ√

1 + 2H−
+O(1), (3.56)

τ = θ+(uτ , u0,H+) =
uτ − ln(−2H+)√

1 + 2H+
+O(1). (3.57)

The expression of Eq. (3.56) is easily inverted to obtain

1 + 2H− = (uτ/τ)
2 +O(τ−1). (3.58)

Since we are concerned with c = uτ/τ = O(1), it can be derived from Eq. (3.57) that

τH+ tends to zero in the limit considered here. Hence from Eq. (3.57) we have

ln(−2H+) = uτ − τ +O(1). (3.59)

As for the value of the action along the lower branch Eq. (3.46) yields, if we observe

that σ− [see Eq. (3.38)] is of O(1),

S− = 2(1 +H−)τ + 2uτ +O(1) = τ
(uτ
τ

+ 1
)2

+O(1), (3.60)
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where we have also used the result of Eq. (3.58). For the action along the upper

branch (3.44) we have to take into account that σ+ [see Eq. (3.43)] can be expressed as

− ln(−2H+) +O(1) so that

S+ = 2τ + 2uτ + 2 ln(−2H+) +O(1) = 4uτ +O(1), (3.61)

where we have employed Eq. (3.59) and used the fact that τH+ tends to zero in the

limit considered here. The kink’s position is then determined by equating the leading

terms of the expressions (3.60) and (3.61), resulting in uτ = τ , so that the kink moves

with unit speed. Finally, the minimised action to the lowest order reads

S =

{
4uτ for uτ < τ,

τ(uτ/τ + 1)2 for uτ > τ,
(3.62)

which indeed describes the numerical findings shown in Fig. 3.11.

3.4 Summary of chapter

We have studied in this chapter the pure dry friction model (1.8) in order to understand

to what extent saddle-point approximations of the path integral representation of the

propagator, which is the basis of weak-noise approximations, can be carried out. The

advantage of the model that we have considered is that its propagator is known exactly,

so that any saddle-point approximations can be compared to the exact result.

For the model (1.8), we have seen that the lowest-order saddle-point approximation

yields the correct approximation of the exact propagator in the noise power, and is

able to reproduce some features of the propagator for moderate noise power, such as

its tail behaviour and its convergence towards the stationary distribution, but not the

bimodality of the exact propagator appearing at intermediate times. This bimodality can

be recovered by the higher-order approximation. However, the construction of higher-

order approximation is plagued by a fundamental singularity of the Jacobian term of

the path integral.

To remove this singularity, we have regularised the discontinuity of the SDE with a

smooth nonlinear drift involving a small parameter controlling the limit to the piecewise-

smooth drift. The price paid for introducing this regularisation is that the two limits,

small diffusion and small regularisation, do not commute and that the propagator of
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3.4. Summary of chapter

the regularised SDE is no longer known exactly. Nevertheless, we have shown with

simulation results that the weak-noise limit of the regularised SDE captures the main

features of the piecewise-smooth SDE. In particular, the optimal path structure of the

regularised SDE in terms of direct, indirect and intermediate paths is similar to the

optimal path structure inferred heuristically for the piecewise-smooth SDE. In addition,

the analysis of the regularised SDE justifies the heuristic principles that we have defined

and used to perform the saddle-point approximation of the piecewise-smooth SDE. For

the regularised SDE considered here, we have finally been able to study the quasi-

potential associated with the propagator in a largely analytical way.
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Chapter 4

First-passage time of Brownian

motion with dry friction

In this chapter, we intend to study the interrelation between noise and discontinuities

with respect to FPT problems. The study of FPT problems has a very long tradition

with its roots in the first half of the last century by the seminal study of Kramers

on chemical kinetics [57] (see also Ref. [47] for an excellent review). Renewed interest

in FPT problems has been triggered by studies to characterise large deviation proper-

ties, extreme events, and nonequilibrium processes in many particle systems (see, e.g.,

Refs. [74, 17]). FPT problems are normally non-trivial to solve and a deeper analytical

understanding of FPT properties, e.g., the dependence on parameters of the system is

often hampered by the lack of analytically tractable model systems. There exists a vast

literature about this topic, whereby applications often require the application of numer-

ical tools. Various simple model systems can be handled by analytical means. Among

those are the pure diffusion process [61], the Brownian motion with constant drift [54],

to some extent the Ornstein-Uhlenbeck process [81, 4] and Bessel processes [39, 31]. We

aim at an analytic investigation of the model of Brownian motion with dry friction.

In our investigation, we consider the exit from a semi-infinite escape interval (a,∞)

with a < 0 as stated in Sec. 2.2 (other interval problems can be analysed analogously).

We address the FPT problem for Eq. (1.2) by solving a corresponding Fokker-Planck

equation via a spectral decomposition method on the one hand (see Sec. 2.2.1), and by

solving a corresponding backward Kolmogorov equation on the other (see Sec. 2.2.2).

In Sec. 4.1, we apply these methods to solve the pure dry friction case. This simple

example already shows a phase transition phenomenon in the spectrum which is related
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4.1. Pure dry friction case

to the position of the exit point. Thereafter, in Sec. 4.2 the FPT distribution is derived

for the model including viscous friction and external force. There the focus will be on

the stick-slip transition and a transition to ballistic exit. Results are summarised in

Sec. 4.3.

4.1 Pure dry friction case

Let us first consider the pure dry friction model (1.8). We consider this simplest case

as it already shows, somehow counterintuitively, the main phase transition behaviour in

the FPT distribution. As a by-product we can also illustrate all the analytical tools in

a very transparent setup.

For the pure dry friction case (1.8), we choose µ = D = 1 without loss of generality.

Other non-vanishing values are covered by the appropriate rescaling (see appendix A.3.2)

u = µv/D, τ = µ2t/D. (4.1)

Hence, in this case Eq. (1.8) can be written in the form (2.12) with

Φ(v) = |v|. (4.2)

4.1.1 Analysis of spectrum

We first solve the FPT problem of the model (1.8) by using the spectral decomposition

method presented in Sec 2.2.1. The corresponding eigenvalue problem (2.18) consists of

a discrete eigenvalue for Λ < 1/4 and a continuous spectrum for Λ > 1/4. The details

of the derivation are summarised in appendix A.6 for the convenience of the reader.

Case 1: Λ < 1/4

For Λ < 1/4, the sole eigenfunction is given by [see Eqs. (A.53) and (A.55)]

uΛ(v) =

{
2λe−(λ+1/2)v for v > 0,

e(λ+1/2)v + (2λ− 1)e−(λ−1/2)v for a < v < 0,
(4.3)
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4.1. Pure dry friction case

where λ =
√

1/4 − Λ > 0. The discrete eigenvalue is determined by the absorbing

boundary condition (2.19), which results in

e2λa = 1− 2λ for λ > 0. (4.4)

It is obvious that Eq. (4.4) has no real solution for λ in the region [1/2,∞). Hence,

we have Λ > 0. The solution of Eq. (4.4) for λ is only possible in the region (0, 1/2).

Since e2λa is convex as a function of λ and the right hand side of Eq. (4.4) is a straight

line, it is easy to verify [see Fig. 4.1(a)] that Eq. (4.4) has no real solution in (0, 1/2)

when a > −1 and admits a unique solution, denoted by λ0, when a < −1. The unique

eigenvalue Λ0 = 1/4−λ2
0 can be obtained numerically from Eq. (4.4), being a monotonic

function of the parameter a [see Fig. 4.1(b)]. As an aside we remark that the solution

of Eq. (4.4) can be expressed in terms of the main branch of the Lambert W function

[27]. In fact, Eq. (4.4) can be rearranged to be

a(1− 2λ)ea(1−2λ) = aea for λ > 0. (4.5)

Hence, the solution of Eq. (4.4) in terms of the Lambert W function can be expressed

as

λ0 = 1/2 −W (aea)/(2a), (4.6)

where W (z) is the main branch of the Lambert W function satisfying z = W (z)eW (z).

The other quantities which enter the FPT distribution [see Eq. (2.24)] are easily com-

puted. For the normalisation factor, Eqs. (2.22) and (4.3) yield

ZΛ0 =

∫ ∞

a
u2Λ0

(v)e|v|dv =
[
(1/2 − λ0)

2e−2aλ0 − e2aλ0

]
/λ0 − 4λ0 + 2(1 + a). (4.7)

The integral of the eigenfunction which enters the FPT distribution [see Eqs. (2.13) and

(2.24)] is evaluated as

∫ ∞

a
uΛ0(v)dv = 2e(1/2−λ0)a − e(1/2+λ0)a/(1/2 + λ0). (4.8)
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Figure 4.1: (a) Graphical solution of Eq. (4.4) in terms of the convex function exp(2aλ)
and the straight line 1 − 2λ. As examples, a = −0.5 and a = −2 are used here to
illustrate the shapes of the function exp(2aλ) for the two phases a > −1 and a < −1,
respectively. (b) The discrete eigenvalue Λ0 for a < −1. When a = −1, the discrete
eigenvalue merges with the continuous spectrum Λ > 1/4.

Case 2: Λ > 1/4

For Λ > 1/4, the eigenfunction can be obtained explicitly as [see Eqs. (A.53) and (A.57)]

uΛ(v) =

{
sin(κa) sin(κv)e−v/2 + κ sin[κ(v − a)]e−v/2 for v > 0,

κ sin[κ(v − a)]ev/2 for a < v < 0,
(4.9)

where κ =
√

Λ− 1/4 > 0. Moreover, the normalisation factor in Eq. (2.23) is given by

[see Eq. (A.59)]

ZΛ = π[κ2 + κ sin(2aκ) + sin2(aκ)]/2, (4.10)

and the integral over the eigenfunction which enters the FPT distribution [see Eqs. (2.13)

and (2.24)] is evaluated as

∫ ∞

a
uΛ(v)dv = κ2ea/2/(1/4 + κ2). (4.11)

Thus, the spectrum consists of a continuous part Λ > 1/4 and an additional discrete

lowest eigenvalue Λ0 for a < −1 which merges with the continuous spectrum at a = −1

[see Fig. 4.1(b)]. Hence we expect qualitative changes to appear at such a critical value.
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4.1. Pure dry friction case

4.1.2 FPT distribution

By using Eqs. (2.13) and (2.24) we obtain the FPT distribution as follows

f(T, v0) = χ{a6−1}Λ0uΛ0(v0)e
|v0|−Λ0T

∫ ∞

a
uΛ0(v)dv/ZΛ0

+
2

π
e|v0|−T/4+a/2

∫ ∞

0
κ2uΛ(v0)e

−κ2T /[κ2 + κ sin(2aκ) + sin2(aκ)]dκ, (4.12)

where χ{a6−1} denotes the indicator function of the set {a 6 −1}, uΛ0(v0) the eigen-

function of the discrete eigenvalue (4.3), and uΛ(v0) the eigenfunction of the continuous

part of the spectrum (4.9). The normalisation ZΛ0 and the integral
∫∞
a uΛ0(v)dv are

given by Eqs. (4.7) and (4.8), respectively. In the trivial case a = 0 the discontinuity

does not enter the FPT problem and the pure dry friction model is equivalent to that

of the one-dimensional Brownian motion with a constant drift [54]. In such a case, the

first term in Eq. (4.12) does not contribute and the integral can be evaluated in closed

analytic form to yield

f(T, v0) =
2

π
ev0/2−T/4

∫ ∞

0
κ sin(κv0)e

−κ2Tdκ

=
1

2
√
π

v0
T 3/2

e−(T−v0)2/(4T ) for v0 > 0, (4.13)

a result which is consistent with Refs. [54, 62]. Apart from this trivial case it seems to

be difficult to obtain a closed analytic expression from the representation (4.12).

Certainly the FPT distribution changes qualitatively at a = −1 when the contribu-

tion in Eq. (4.12) coming from the discrete eigenvalue comes into play. That can be

demonstrated by focussing on the tail behaviour of the distribution which in itself is of

interest when rare events are of interest. First of all it is obvious that for a < −1 the

first term in Eq. (4.12) determines the decay which is plainly exponential exp(−Λ0T ).

For a > −1, the first term in Eq. (4.12) vanishes, as the coefficient of the characteristic

function vanishes at a = −1, and the tail is determined by evaluating the Laplace-

type integral in the second term. If we have a closer look at the kernel entering the

Laplace-type integral:

ρ(κ, a) = κ2uΛ(v0)/[κ
2 + κ sin(2aκ) + sin2(aκ)], (4.14)
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Figure 4.2: Kernel ρ(κ, a) [see Eq. (4.14)] appearing in the spectral decomposition (4.12)
for two different values of v0 and various values of the exit point a. Here uΛ(v0) is given
by Eq. (4.9).

it is evident that for a > −1 the properties

lim
κ→0

ρ(κ, a) = 0, lim
κ→0

∂κρ(κ, a) = 0, lim
κ→0

∂2
κρ(κ, a) 6= 0 (4.15)

hold (see Fig. 4.2). Hence, it is straightforward to evaluate the Laplace-type integral

to obtain a decay as T−3/2 exp(−T/4) for a > −1. For the critical value a = −1 the

situation differs as

lim
κ→0

ρ(κ,−1) =

{
1 for v0 > 0,

1 + v0 for − 1 < v0 < 0
(4.16)

holds. Here the Laplace method yields T−1/2e−T/4 for a = −1. To summarise, in the

long time limit we have

f(T, v0) ∼





e−Λ0T for a < −1,

T−1/2e−T/4 for a = −1,

T−3/2e−T/4 for a > −1.

(4.17)

To obtain closed analytic expressions for FPT distributions we alternatively can

resort to the Laplace transform of the backward Kolmogorov equation (see subsection

2.2.2). In this pure dry friction case Eq. (2.33) reads [see Eq. (4.2)]

∂2

∂v20
f̃(s, v0)− σ(v0)

∂

∂v0
f̃(s, v0)− sf̃(s, v0) = 0, (4.18)
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4.1. Pure dry friction case

where the solution has to satisfy the boundary conditions (2.34) and (2.35) as well as

the matching condition (2.36) at v0 = 0. It is in fact rather straightforward to compute

the solution of this second order problem and we end up with

f̃(s, v0) =

{
exp

{
[
√
1 + 4s(a− v0) + a+ v0]/2

}√
1 + 4s/θ(s, a) for v0 > 0,

exp
[
(1 +

√
1 + 4s)(a− v0)/2

]
θ(s, v0)/θ(s, a) for a < v0 < 0,

(4.19)

where we have introduced the abbreviation

θ(s, a) = ea
√
1+4s +

√
1 + 4s − 1 (4.20)

for the contribution appearing mainly in the denominator. Clearly Eq. (4.19) has a

branch cut for s < −1/4 which relates to the continuous spectrum found previously. In

addition the condition θ(s, a) = 0, which is equivalent to Eq. (4.4), determines a pole for

a < −1. Hence, when a < −1, the simple pole dominates the FPT distribution in the

tail to yield an exponential decay [93]. Overall, the analytical structure of the Laplace

transform reflects the spectral properties mentioned previously.

In general the inverse Laplace transform of Eq. (4.19) does not seem to be available

in closed analytic form. Only in the trivial case a = 0, Eq. (4.19) with a simple form

f̃(s, v0) = e(1−
√
1+4s)v0/2 for v0 > 0, (4.21)

as before can be handled with ease resulting in Eq. (4.13) (e.g., using the table of Laplace

transforms in Ref. [3]). For the other cases we resort to the so-called Talbot method

[84, 1, 2] to compute the distribution of the FPT in the time domain1. Figure 4.3 shows

that the expressions (4.12) and (4.19) give identical results, as expected. In addition,

evaluations of those expressions confirm as well the asymptotic decay given by Eq. (4.17)

(see Fig. 4.4).

The closed form of the characteristic function (4.19) allows us to obtain easily the

moments of FPT via Eq. (2.37). For the first moment, i.e., for the mean first-passage

time (MFPT) we have

〈T 〉 =
{

2e−a + a+ v0 − 2 for v0 > 0,

2e−a + a− v0 − 2e−v0 for a < v0 < 0.
(4.22)

1A Mathematica implementation of this method is available at
http://library.wolfram.com/infocenter/MathSource/5026/.
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Figure 4.3: FPT distribution of the pure dry friction case [see Eq. (4.2)] for two values
of initial velocity, v0 = 2 and v0 = −0.2, and different escape ranges. Lines correspond
to a numerical inversion of Eq. (4.19), and points to the evaluation of Eq. (4.12).

a = -1.2

a = -1

a = -0.8

20 50 100 200 500
10-4

0.01

1

100

104

T

eT
�4

f
HT

,
v 0
L

Figure 4.4: Comparison of the FPT distribution obtained from Eq. (4.12) (solid) with
the asymptotic result (4.17) (dashed) for the initial velocity v0 = −0.2 and different
escape ranges. Data are plotted on a doubly logarithmic scale to uncover the power-law
corrections to the leading exponential behaviour.
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Figure 4.5: MFPT 〈T 〉 for different escape ranges. Lines correspond to the analytical
result (4.22), and points to a numerical evaluation of the first moment by using the
spectral representation (4.12).

The first moment clearly displays a transition when the initial condition changes sign

(see also Fig. 4.5). For v0 > 0 the MFPT depends linearly on the initial velocity. No

particular feature is visible at the transition at a = −1, as a change in the tail behaviour

has no impact on the low-order moments of the distribution.

4.2 Full model

In this section, we consider the full model (1.2) and set γ = D = 1 without loss of

generality. Other cases can be covered by using the appropriate rescaling (see appendix

A.3.3)

u =
√

γ/D v, τ = γt. (4.23)

Thus, the model (1.2) can be written as Eq. (2.12) with

Φ(v) = (|v|+ µ)2/2− bv. (4.24)

4.2.1 Analysis of spectrum

In the spectral decomposition method (see Sec. 2.2.1), the corresponding eigenvalue

problem (2.18) with potential (4.24) can be solved by using parabolic cylinder functions
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(see appendix A.9), which are denoted by Dν(z). For the convenience of the reader we

summarise the details of the derivation in appendix A.7.

In this case, the eigenvalues are discrete and are determined by the characteristic

equation [see Eq. (A.69)]

θ̄(Λ, a, µ, b) = Γ(1− Λ){[DΛ(µ+ b)DΛ−1(µ− b) +DΛ(µ− b)DΛ−1(µ + b)]DΛ(a− µ− b)

−[DΛ(−µ− b)DΛ−1(µ− b)−DΛ(µ− b)DΛ−1(−µ− b)]DΛ(−a+ µ+ b)}
= 0. (4.25)

In particular, for µ = 0 the model considered here reduces to the Ornstein-Uhlenbeck

process and if one uses the property (A.85) the characteristic equation (4.25) can be

simplified as

DΛ(a− b) = 0, (4.26)

which agrees with the standard result of the Ornstein-Uhlenbeck process (see, e.g.,

Ref. [81]).

To link the current result with the previous section let us first consider the special case

without bias (b = 0). Intuitively, we expect that if the dry friction term dominates the

viscous friction force then the particle will behave like the one subjected to dry friction

only. Hence the spectrum obtained from Eq. (4.25) for large values of µ should resemble

the spectrum described in the previous section [see, e.g., Fig. 4.1(b)]. In particular,

it means that a large gap should develop between the lowest eigenvalue and a quasi-

continuous part for small negative values of a. For comparison of the models with and

without viscous friction [see Eqs. (4.2) and (4.24)] we observe that the rescaling

u = µv, τ = µ2t (4.27)

transforms the SDE with dry and viscous friction to the model with dry friction and a

small viscous part of O(1/µ2) which vanishes in the limit µ → ∞ (see appendix A.3.3),

i.e.,

u̇(τ) = −σ(u(τ)) − u(τ)/µ2 + ξ(τ). (4.28)

Thus, to compare the eigenvalues obtained from the characteristic equation (4.25) with

the spectrum computed in the previous section we rescale velocities by µ and eigenvalues

by 1/µ2. Then, indeed numerical evaluation of Eq. (4.25) confirms what one expects

intuitively (see Fig. 4.6). The eigenvalues as a function of the exit position a develop
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Figure 4.6: First five rescaled eigenvalues Λn/µ
2 for the full model without bias (b = 0)

as a function of the rescaled exit point µa for two different values of the dry friction µ,
according to Eq. (4.25). The dashed line in (b) depicts the discrete branch of the model
with dry friction only [see Fig. 4.1(b)]

.

a gap if µ is sufficiently large, even though the transition is smoothened by the finite

viscous friction. If dry and viscous friction become comparable, i.e., if µ becomes too

small such a feature is going to disappear.

If we impose a force on the particle the finite bias will cause a stick-slip transition

at |b| = µ where the minimum of the potential (4.24), i.e., the deterministic station-

ary state, changes from vanishing to finite velocity [see Eq. (4.24) and Fig. 4.7]. The

characteristics of such a transition are also reflected by the eigenvalue spectrum (see

Fig. 4.8). For small value of the bias, i.e., |b| < µ, a case which we will call for brevity

the dry phase, a substantial spectral gap appears between the lowest and the subleading

eigenvalues. This gap shrinks when the transition at |b| = µ is approached. The spectral

gap corresponds to a fast decay of velocity correlations in the system with small bias

(see Ref. [88]). If the bias is sufficiently negative, i.e., b < −µ, a case which we will call

the wet phase, the potential (4.24) develops a quadratic minimum (see Fig. 4.7) and

the spectrum resembles that of the Ornstein-Uhlenbeck process. As with regards to the

exit time problem a second transition will occur when on decreasing the force further

the quadratic minimum of the potential moves beyond the exit point at b = −µ + a

(Fig. 4.7). Then the exit of the region occurs in a purely ballistic way which decreases

the exit time considerably. Hence that transition is related to an increase of the lowest

eigenvalue (see Fig. 4.8). These two transitions are clearly visible if the diffusion is

sufficiently small, i.e., µ sufficiently large. But they become obscured by noise for large

diffusion, i.e., if µ becomes too small.
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4.2.2 FPT distribution

As we have access to the entire spectrum we can derive from Eqs. (2.13) and (2.24) the

FPT distribution

f(T, v0) = eΦ(v0)
∑

Λ

ΛuΛ(v0)e
−ΛT

∫ ∞

a
uΛ(v)dv/ZΛ, (4.29)

where the sum is taken over all the discrete eigenvalues [see Eq. (4.25)], uΛ(v0) refers to

the eigenfunction given by Eq. (A.63), the integral
∫∞
a uΛ(v)dv is stated in Eq. (A.70)

and the normalisation factor ZΛ is given by Eq. (A.72). When µ = 0, the problem con-

sidered here reduces to the Ornstein-Uhlenbeck case. In this case, the FPT distribution

simplifies considerably and reads

f(T, v0) =
∑

Λ

Λe−ΛT e(v0−b)2/4DΛ(v0 − b)DΛ−1(a− b)

e(a−b)2/4DΛ+1(a− b)∂ΛDΛ(a− b)
, (4.30)

where the sum is taken over the discrete eigenvalues that satisfy Eq. (4.26). From

Eq. (4.29), it is straightforward to evaluate the shape of the distribution function (see,

e.g., Fig. 4.9). While it seems to be difficult to obtain a closed analytic expression for

this distribution we may pursue the approach used in the previous section and focus on

the Laplace transform. In fact, Eq. (2.33) tells us that [see also Eq. (4.24)]

∂2

∂v20
f̃(s, v0)− [v0 + µσ(v0)− b]

∂

∂v0
f̃(s, v0)− sf̃(s, v0) = 0, (4.31)

where the Laplace transform f̃(s, v0) has to obey the boundary conditions (2.34) and

(2.35) as well as the matching condition (2.36). Solving Eq. (4.31) is rather straightfor-

ward, as the boundary value problem for the Laplace transform is the formally adjoint

of the eigenvalue problem [see Eqs. (A.61) and (A.62)]. It is well known and easy to

confirm that the solution of the adjoint problem can be written in terms of the analytic

expression for the eigenfunction (see Ref. [36]) if we multiply the eigenfunction with

an exponential factor exp[Φ(v0)] containing the potential (4.24). Thus, the solution of

Eq. (4.31) can be written down directly as

f̃(s, v0) =
e(a−µ−b)2/4−Φ(a)

θ̄(−s, a, µ, b)
eΦ(v0)u−s(v0) for v0 > a, (4.32)
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where u−s(v0) refers to Eq. (A.63), and the additional normalisation factor containing

the characteristic function θ̄ [see Eq. (4.25)] is obtained by using the boundary condition

(2.34). Obviously the poles of the Laplace transform are determined by the characteristic

equation (4.25) and thus reflect the spectral structure discussed previously. In addition,

the largest simple pole determines the exponential tail of the FPT distribution f(T, v0).

As stated before, for µ = 0 the model investigated here corresponds to the exit time

problem of the Ornstein-Uhlenbeck process, which has been paid much attention to

in the past (see, e.g., Refs. [4, 91, 81, 29, 14, 58]). In this case Eq. (4.32) simplifies

considerably and reads [see Eqs. (4.25) and (A.63)]

f̃(s, v0) =
e(v0−b)2/4D−s(v0 − b)

e(a−b)2/4D−s(a− b)
for v0 > a, (4.33)

which is consistent with the standard result stated, e.g., in Ref. [81].

The analytic expression (4.29) or (4.32) now allows us to discuss the dependence of the

exit time problem on the initial velocity v0. Both expressions, if properly evaluated, give

of course identical results (see Fig. 4.9). Here we are going to pay particular attention

to the impact of the discontinuity appearing at the origin. Depending on the sign of the

initial velocity the particle has to pass the discontinuity at v = 0 before exiting at a < 0.

Thus, a qualitative change of the FPT distribution is expected depending on the sign

of v0. In fact, such a feature is already visible from Eq. (4.32), as different analytical

branches of the eigenfunction (A.63) come into play if v0 changes sign. The dependence

on v0 is still smooth but not differentiable of higher order. The FPT distribution for

small positive and small negative values of v0 look distinctively different, as shown in

Fig. 4.9. For v0 > 0, the particle has to pass through v = 0 before exiting and thus

sticks at the origin at least if the bias is small, causing larger exit times. Thus, the

distribution overall is shifted to the right, compared to the case v0 < 0.

The just mentioned phenomenon can be better illustrated by looking at the MFPT

which can be obtained in closed analytic form via Eqs. (2.37) and (4.32). While the

analytic expression can be written down we just refer to the graphical evaluation of

the expressions (see Fig. 4.10). For small bias, |b| < µ, i.e., in the dry phase, there is

a possibility that the particle sticks at the origin which will impact on the MFPT. If

the particle starts at v0 < 0 it has less chance to stick at the origin when v0 becomes

smaller, and the change of the MFPT with regards to v0 becomes fairly large. On

the contrary, if we choose a positive initial velocity v0 > 0, the particle has always to
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Figure 4.9: Distribution of the FPT for µ = 1, a = −1, two values of initial velocity,
v0 = 0.2 (solid) and v0 = −0.2 (dashed), and different values of the bias b. Lines
correspond to a numerical inversion of the Laplace transform (4.32), and points to the
evaluation of Eq. (4.29) taking the first 20 modes into account. A larger number of
modes would be required to reproduce the exact result for very small values of t.

pass v = 0 before exiting at a < 0. Thus, no huge variation of the MFPT with v0 is

detected. If we decrease the bias and enter the wet phase b < −µ, the particle does not

stick any more and the just mentioned feature almost disappears. This scenario is much

more pronounced if we look at the first derivative ∂v0〈T 〉 [see Fig. 4.10(b)]. Like the

distribution function itself the MFPT is continuously differentiable, but loses analyticity

due to the discontinuity at v0 = 0. A kink can be seen clearly at the origin for small

bias |b| < µ, which separates the two different regions of the MFPT for negative and

positive initial velocities. This feature is suppressed if we decrease the bias and finally

enter the wet phase with b < −µ, where the kink almost disappears.

4.3 Summary of chapter

In this chapter we have studied the FPT problem of Brownian motion with dry and

viscous friction, which can be largely solved by analytical means. This is one of the few

models for which the FPT distribution can be obtained analytically either by solving the

Fokker-Planck equation via a spectral decomposition method or by solving the backward

Kolmogorov equation in the Laplace space. While the first method gives more insight

into the underlying dynamical mechanisms through the additional spectral information,
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Figure 4.10: (a) MFPT 〈T 〉 as a function of the initial value v0 for µ = 1, exit condition
a = −1, and different values of the bias, covering the dry phase |b| < µ as well as the
wet phase b < −µ. (b) First derivative of the MFPT with respect to the initial value
for the same data.

the second is able to deliver closed analytic expressions for the MFPT.

The simplest case, where only dry friction acts on the particle, already shows one of

the main features, a phase transition phenomenon in the spectrum which is related to

the position of the exit point. A unique discrete eigenvalue links up with the continuous

part of the spectrum at a critical size of the exit region. Such a transition translates into

different asymptotic properties of the FPT distribution. The signature of this transition

persists if the viscous friction and the external bias are taken into account, even though

the transition is blurred by the finite diffusion. In the full model two new features occur,

i.e., a stick-slip transition and a transition to a ballistic exit of the particle. All three

transitions are clearly visible in the discrete spectrum of the full model, especially at low

diffusion, signalling the different rates of asymptotic decay of the FPT distribution. As

an aside, the analysis of the full model covers as special cases the Ornstein-Uhlenbeck

process on the one hand, and the previously discussed dry friction case on the other.
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Chapter 5

Maximum velocity till the

first-passage time

In this chapter, we aim to derive the exact solution of the distribution of the maximum

velocity (MVD) till the FPT (see Sec. 2.3) for the dry friction model (1.2). The maximum

velocity problem till the FPT is one of the extreme value problems that have many

applications, such as in queueing theory [61], fluctuating interfaces [64, 64] and networks

[45]. Here the exit range of the FPT problem is chosen to be (a,∞) with a < 0, which

is the same as that in chapter 4. This chapter is arranged as follows. In Sec. 5.1, we

present the exact solution of the MVD of the pure dry friction case to illustrate all the

techniques encountered in the piecewise-smooth systems. Then in Sec. 5.2, we solve

the corresponding problem for the full model. Finally, we summarise this chapter in

Sec. 5.3.

5.1 Pure dry friction case

For the pure dry friction model (1.8), as stated in Sec. 4.1 we can specialise to consider

µ = D = 1, i.e., Eq. (2.12) with the potential Φ(v) = |v| without loss of generality (see

also appendix A.3.2). In this case, Eq. (2.45) reads

∂2

∂v20
Pr(v < vm|v0)− σ(v0)

∂

∂v0
Pr(v < vm|v0) = 0 for vm > a. (5.1)
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Solving this equation separately for v0 > 0 and v0 < 0 results in

Pr(v < vm|v0) =
{

Aev0 +B for v0 > 0,

Āe−v0 + B̄ for v0 < 0.
(5.2)

Here the four coefficients A, B, Ā and B̄ are determined by the boundary condi-

tions (2.46) and (2.47), and the matching conditions (2.48) and (2.49). In this case,

Eqs. (2.46), (2.48) and (2.49) yield

Āe−a + B̄ = 1, (5.3)

A+B = Ā+ B̄, (5.4)

A = −Ā. (5.5)

For the condition (2.47) we have to distinguish the sign of vm and obtain

Aevm +B = 0 for vm > 0, (5.6)

Āe−vm + B̄ = 0 for vm < 0. (5.7)

Therefore, for vm > 0 the coefficients in Eq. (5.2) are determined by Eqs. (5.3)–(5.6)

and are easily evaluated as

A =
1

2− evm − e−a
, (5.8)

B =
evm

evm + e−a − 2
, (5.9)

Ā =
1

evm + e−a − 2
, (5.10)

B̄ =
evm − 2

evm + e−a − 2
. (5.11)

For vm < 0 the coefficients are determined by Eqs. (5.3)–(5.5) and (5.7) yielding

A =
evm

1− evm−a
, (5.12)

B =
2evm − 1

evm−a − 1
, (5.13)

Ā =
evm

evm−a − 1
, (5.14)

B̄ =
1

1− evm−a
. (5.15)
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In summary, since the solution (5.2) depends on the sign of v0 and the boundary

condition (2.47) depends on the sign of vm, we have first to distinguish the two cases

v0 > 0 and v0 < 0. For the case v0 > 0 we have vm > 0 as vm > v0, whereas for the case

v0 < 0 we have further to distinguish the two domains vm > 0 and vm < 0.

5.1.1 Case 1: v0 > 0

In this case, vm can only be positive. So it follows from Eqs. (5.2), (5.8) and (5.9) that

Pr(v < vm|v0) =
evm − ev0

evm + e−a − 2
for vm > v0. (5.16)

Then differentiating Eq. (5.16) with respect to vm yields the distribution of the maximum

velocity

p(vm|v0) =
evm(ev0 + e−a − 2)

(evm + e−a − 2)2
for vm > v0. (5.17)

Since

∂

∂vm
p(vm|v0) =

evm(ev0 + e−a − 2)(e−a − 2− evm)

(evm + e−a − 2)3
for vm > v0, (5.18)

it is easy to check that the distribution p(vm|v0) is monotonically decreasing for a0 <

a < 0 and has a quadratic maximum for a < a0 in the defined region vm > v0 (see

Fig. 5.1), where

a0 = − ln(ev0 + 2) < 0. (5.19)

This quadratic maximum is attained at the point vm = ln(e−a − 2) with the value

p(ln(e−a − 2)|v0) =
ev0 + e−a − 2

4(e−a − 2)
for a < a0. (5.20)

Since for fixed v0, on average the particle has to spend more time in the region (a,∞) for

smaller a and hence has more chance to have large velocities before exit (see Fig. 5.1).

In addition, in the asymptotic limit vm → ∞, we have

p(vm|v0) = e−vm(ev0 + e−a − 2) +O(e−2vm), (5.21)

which indicates that the MVD decays exponentially.

Finally, we remark that in the trivial case a = 0 the problem considered here reduces
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to that of the Brownian motion with constant drift [54] as the discontinuity does not

enter the FPT problem (see also Sec. 4.1).

5.1.2 Case 2: a < v0 < 0

In this case, vm can be negative or positive. For negative vm, the coefficients Ā and B̄

are determined by Eqs. (5.14) and (5.15), whereas for positive vm the coefficients are

determined by Eqs. (5.10) and (5.11). Hence from Eq. (5.2) we have the probability

Pr(v < vm|v0) =
{

(evm−v0 − 1)/(evm−a − 1) for v0 < vm < 0,

(evm + e−v0 − 2)/(evm + e−a − 2) for vm > 0.
(5.22)

Then differentiating Eq. (5.22) with respect to vm yields the distribution of the maximum

velocity

p(vm|v0) =
{

evm(e−a − e−v0)/(evm − ea)2 for v0 < vm < 0,

evm(e−a − e−v0)/(evm + e−a − 2)2 for vm > 0.
(5.23)

Since

∂p(vm|v0)
∂vm

=

{
evm−a(1− ev0−a)(evm−a + 1)/(evm−a − 1)3 for v0 < vm < 0,

evm−v0(ev0−a − 1)(e−a − 2− evm)/(evm + e−a − 2)3 for vm > 0,

(5.24)

it is easy to see that the distribution p(vm|v0) in this case is a monotonically decreasing

function of vm in the region v0 < vm < 0. Whereas in the region vm > 0, the distribution

p(vm|v0) is monotonically decreasing for a > − ln(3) and has a quadratic maximum for

a < − ln(3) (see Fig. 5.2). This maximum is attained at vm = ln(e−a−2) with the value

p(ln(e−a − 2)|v0) =
e−a − e−v0

4(e−a − 2)
for a < − ln(3). (5.25)

As shown in Fig. 5.2, the distribution (5.23) is non-smooth at vm = 0. As we know,

the non-smooth point at vm = 0 is caused by the dry friction, which leads to different

solutions of Eq. (5.1) when v0 changes sign and finally results in different solutions of the

distribution for different signs of vm due to the boundary condition (2.47). In addition,

for fixed value of v0, the Brownian particle has more chance to attain large maximum

velocities for smaller a, as explained in the case v0 > 0 after Eq. (5.20).
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Figure 5.1: MVD till the FPT (vm > v0) of the pure dry friction case for v0 = 2. (a)
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Figure 5.2: MVD till the FPT (vm > v0) of the pure dry friction case [see Eq. (5.23)]
for negative initial velocity v0 = −0.5 and three different values of a.

In this case, the distribution (5.23) also decays exponentially as we have

p(vm|v0) = e−vm(e−a − e−v0) +O(e−2vm) (5.26)

in the asymptotic limit vm → ∞.

5.2 Full model

For the full model (1.2), as discussed in Sec. 4.2 we can consider γ = D = 1 without

loss of generality (see also appendix A.3.3), i.e., Eq. (2.12) with the potential Φ(v) =

(|v|+ µ)2/2− bv. In this case, Eq. (2.45) reads

∂2

∂v20
Pr(v < vm|v0)− [µσ(v0) + v0 − b]

∂

∂v0
Pr(v < vm|v0) = 0 for vm > a. (5.27)

This equation can be solved separately for positive and negative v0 to yield

Pr(v < vm|v0) =





A erfi

(
v0 + µ− b√

2

)
+B for v0 > 0,

Ā erfi

(
v0 − µ− b√

2

)
+ B̄ for v0 < 0,

(5.28)
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where erfi(z) is the imaginary error function defined by the error function (1.11) via

erfi(z) = −i erf(iz) =
2√
π

∫ z

0
et

2
dt. (5.29)

Here i denoting the complex image number. Hence we have the following properties:

erfi(−z) = −erfi(z),
d

dz
erfi(z) =

2√
π
ez

2
. (5.30)

Moreover, we have in the leading order that

erfi(z) ≃ 1√
πz

ez
2

(5.31)

in the asymptotic limit z → ∞.

As for the pure dry friction case, the coefficients in Eq. (5.28) are determined by the

boundary conditions (2.46) and (2.47), and the matching conditions (2.48) and (2.49).

Eqs. (2.46), (2.48) and (2.49) give

Ā erfi

(
a− µ− b√

2

)
+ B̄ = 1, (5.32)

A erfi

(
µ− b√

2

)
+B = Ā erfi

(−µ− b√
2

)
+ B̄, (5.33)

Ae(µ−b)2/2 = Āe(µ+b)2/2, (5.34)

and the boundary condition (2.47), which depends on the sign of vm, results in

A erfi

(
vm + µ− b√

2

)
+B = 0 for vm > 0, (5.35)

Ā erfi

(
vm − µ− b√

2

)
+ B̄ = 0 for vm < 0. (5.36)

Here we have used the differential property in Eq. (5.30) to derive Eq. (5.34). Therefore,
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for vm > 0 we can solve Eqs. (5.32)–(5.35) to obtain

A = e2bµ/C+, (5.37)

B = erfi

(
µ− b+ vm√

2

)
e2bµ/C+, (5.38)

Ā = 1/C+, (5.39)

B̄ = 1− erfi

(
a− b− µ√

2

)
/C+, (5.40)

where

C+ = erfi

(
a− b− µ√

2

)
+ erfi

(
b+ µ√

2

)
+

[
erfi

(
b− µ− vm√

2

)
+ erfi

(
µ− b√

2

)]
e2bµ.

(5.41)

For vm < 0 we have to solve Eqs. (5.32)–(5.34) and (5.36) resulting in

A = e2µb/C−, (5.42)

B =

[
erfi

(
b+ µ− vm√

2

)
− erfi

(
b+ µ√

2

)
− e2bµerfi

(
µ− b√

2

)]
/C−, (5.43)

Ā = 1/C−, (5.44)

B̄ = erfi

(
b+ µ− vm√

2

)
/C−, (5.45)

where

C− = erfi

(
a− µ− b√

2

)
+ erfi

(
b− µ− vm√

2

)
. (5.46)

Similarly to the dry friction case, we can now write down the MVD till the FPT

explicitly in the two cases v0 > 0 and v0 < 0.

5.2.1 Case 1: v0 > 0

In this case, vm can only be positive. So it follows from Eqs. (5.28), (5.37) and (5.38)

that the probability

Pr(v < vm|v0) =

[
erfi
(
b−µ−vm√

2

)
− erfi

(
b−µ−v0√

2

)]
e2bµ

erfi
(
a−b−µ√

2

)
+ erfi

(
b+µ√

2

)
+
[
erfi
(
b−µ−vm√

2

)
− erfi

(
b−µ√

2

)]
e2bµ

(5.47)
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for vm > v0. Hence differentiating Eq. (5.47) with respect to vm we obtain the MVD

p(vm|v0) =
√

2

π
e(vm+µ−b)2/2+2µb

{
erfi

(
b+ µ− a√

2

)
− erfi

(
b+ µ√

2

)

+

[
erfi

(
b− µ√

2

)
− erfi

(
b− µ− v0√

2

)]
e2bµ

}/
C2
+ for vm > v0, (5.48)

where C+ is defined in Eq. (5.41). As shown in Fig. 5.3, when the bias b becomes

larger the Brownian particle has more chance to attain large maximum velocities, as

expected. From numerical results, we observe that depending on the values of v0 and

the parameters µ, a and b, the distribution p(vm|v0) is monotonically decreasing or has

a quadratic maximum in the domain vm > v0. In addition, by using the asymptotic

property (5.31) it is easy to evaluate Eq. (5.48) to obtain that in the leading order the

distribution (5.48) decays as

p(vm|v0) ∼ (vm + µ− b)e−(vm+µ−b)2/2. (5.49)

Intuitively, for the full model without bias (b = 0) we expect that if the dry fric-

tion dominates the viscous friction the tail behaviour of the corresponding distribution

p(vm|v0) should resemble that of the pure dry friction case. In order to compare the tail

behaviour of the models with and without viscous friction, we consider the full model

(1.2) with µ = D = 1 and b = 0, i.e.,

v̇(t) = −σ(v(t))− γv(t) + ξ(t). (5.50)

From appendix A.3.3 we know that we can obtain the MVD of Eq. (5.50) from Eq. (5.48)

by using the transformation

vm → √
γvm, µ → µ/

√
γ (5.51)

and then letting µ = 1. As shown in Fig. 5.4, the MVD of Eq. (5.50) approaches the

decay rate of the dry friction case when the viscous coefficient γ becomes small, as

expected.
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Figure 5.3: MVD till the FPT (vm > v0) of the full model [see Eq. (5.48)] for positive
initial velocity v0 = 2, µ = 1, a = −1. (a) MVD till the FPT for three different values of
b. Here b0 ≈ 0.819. When b > b0, a quadratic maximum appears in the distribution. (b)
MVD till the FPT as a function of vm and b. The red curve indicates the distribution
for b = b0.
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Figure 5.4: Tail behaviour of the MVD till the FPT of the model (5.50) (full) for
µ = D = 1 and three different values of γ. The dashed line shows the result of the pure
dry friction model (1.8) with the same arguments [see Eq. (5.17)].

5.2.2 Case 2: a < v0 < 0

In this case, vm can be negative or positive. It follows from Eqs. (5.28), (5.44) and (5.45)

that the probability

Pr(v < vm|v0) =
erfi
(
v0−b−µ√

2

)
+ erfi

(
b+µ−vm√

2

)

erfi
(
a−b−µ√

2

)
+ erfi

(
b+µ−vm√

2

) (5.52)

for v0 < vm < 0, and from Eqs. (5.28), (5.39) and (5.40) that

Pr(v < vm|v0) =
erfi
(
b+µ√

2

)
+ erfi

(
v0−b−µ√

2

)
+
[
erfi
(
b−µ−vm√

2

)
+ erfi

(
µ−b√

2

)]
e2bµ

erfi
(
b+µ√

2

)
+ erfi

(
a−b−µ√

2

)
+
[
erfi
(
b−µ−vm√

2

)
+ erfi

(
µ−b√

2

)]
e2bµ

(5.53)

for vm > 0. Hence differentiating Eqs. (5.52) and (5.53) with respect to vm yields the

MVD till the FPT:

p(vm|v0) =

√
2
π

[
erfi
(
µ+b−a√

2

)
+ erfi

(
v0−µ−b√

2

)]
e(b+µ−vm)2/2

[
erfi
(
a−b−µ√

2

)
+ erfi

(
b+µ−vm√

2

)]2 (5.54)
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Figure 5.5: MVD till the FPT (vm > v0) of the full model (1.2) [see Eqs. (5.54) and
(5.55)] for negative initial velocity v0 = −0.5, µ = 1, a = −1 and three different values
of b.

for v0 < vm < 0, and

p(vm|v0) =

√
2
π

[
erfi
(
µ+b−a√

2

)
+ erfi

(
v0−µ−b√

2

)]
e(vm+µ−b)2/2+2µb

{
erfi
(
a−µ−b√

2

)
+ erfi

(
b+µ√

2

)
+
[
erfi
(
b−µ−vm√

2

)
− erfi

(
b−µ√

2

)]
e2bµ

}2 (5.55)

for vm > 0. As shown in Fig. 5.5, a non-smooth point is observed at vm = 0, which

indicates the effect of the dry friction in the MVD problem. As the bias b becomes

larger, the distribution has smaller value for small vm and has larger value for large vm,

as expected. It is easy to check that the distribution (5.55) decays like Eq. (5.49) in the

asymptotic limit vm → ∞. In addition, as the case v0 > 0 we can use the transformation

(5.51) to obtain the distribution p(vm|v0) of the model (5.50). Finally, we find that in

this case the decay rate of the MVD also approaches that of the dry friction case when

the viscous coefficient γ becomes small, in consistence with the results shown in Fig. 5.4.

In the trivial case µ = 0, the problem considered here reduces to that of the Ornstein-

Uhlenbeck process. It is easy to check that in this case Eqs. (5.48), (5.54) and (5.55)

agree with each other and result in the same expression

p(vm|v0) =

√
2
π

[
erfi
(
b−a√

2

)
+ erfi

(
v0−b√

2

)]
e(b−vm)2/2

[
erfi
(
a−b√

2

)
+ erfi

(
b−vm√

2

)]2 for vm > v0. (5.56)
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5.3 Summary of chapter

In this chapter, we have shown that the MVD till the FPT can be solved analytically

for the pure dry friction case and the full model, respectively. In both cases, we have

to distinguish the two cases v0 > 0 and v0 < 0. For v0 > 0, the maximum velocity is

positive and only one branch of the solution enters the distribution, which is smooth in

the defined region vm > v0. However, for v0 < 0 the maximum velocity can be negative

or positive, and we have to solve the corresponding problem on the two domains vm > 0

and vm < 0, respectively. Since the distribution functions are different for positive and

negative vm, a non-smooth point is observed at vm = 0, which as we know is caused by

the dry friction and is a ubiquitous feature of piecewise-smooth stochastic systems.
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Chapter 6

Functionals of Brownian motion

with dry friction

Functionals of a process v(t) have been investigated intensively in the past and have

found numerous applications in physics [61]. For instance, two of the popular functionals

are the local time
∫ t
0 δ(v(τ))dτ and the occupation time

∫ t
0 θ(v(τ))dτ (see, e.g., Ref. [77]),

which describe how much time the process v(t) has visited the origin and how long it

has spent on the upper half plane in the time window [0, t], respectively. Here δ(v) is the

Dirac delta function and θ(v) is the step function with θ(v) = 1 for v > 0 and θ(v) = 0

for v 6 0. In addition, the area under the process, i.e.,
∫ t
0 v(τ)dτ , which is referred to

as displacement if v(t) denotes the velocity of an object, is of particular importance due

to its physical meaning.

However, to find statistical properties of functionals is usually non-trivial even for

some of the simplest functionals, such as the local time and the occupation time. For

the displacement, which is equivalent to solve a stochastic differential equation with

inertial term, one often restricts the study to the overdamped case, in which limit the

inertial term can be neglected [76]. To the best of my knowledge, the distributions of

the displacement are only available in closed analytic form for the cases of the pure

diffusion process and the Ornstein-Uhlenbeck process [57]. To compute the distribution

of a functional, there are two significant achievements, i.e., the celebrated Feynman-

Kac formula developed by Kac [50] and the so-called backward Fokker-Planck technique

proposed by Majumdar and Comtet [63] (see also Sec. 2.4), both of which tackle positive

support functionals. The former enables one to obtain a corresponding Schrödinger
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equation for the distribution of a functional and the later results in a backward Fokker-

Planck equation for the distribution. The advantage of the later over the former is that

the later depends only on the initial condition of the process, no extra integral over v is

required to obtain the distribution of the functional.

In this chapter, we first extend the backward Fokker-Planck technique for a positive

support functional (see Sec. 2.4) to an arbitrary support functional T =
∫ t
0 U(v(τ))dτ

in Sec. 6.1 by replacing the Laplace transform for T with a Fourier transform. Here

U(v) is an arbitrary-prescribed function and the process v(t) obeys the generic Langevin

equation (2.12). Rather than solving the backward equation directly, we then derive from

this equation a recursive ordinary differential equation (ODE) for the moments of the

functional. In Sec. 6.2 we show that the moments of the local time and the occupation

time in the Laplace domain are given explicitly by the solution of the corresponding

homogeneous ODE. Then we apply the results to consider the pure dry friction model

(1.5) in Sec. 6.3 and the full model (1.2) without bias in Sec. 6.4, respectively. For this

two models, we show that the moments of the local time, the occupation time and the

displacement can be obtained in closed analytic form in the Laplace space. Finally, a

summary of this chapter is given in Sec. 6.5.

6.1 Functionals with generic support

For the Langevin equation (2.12) let us first consider the quantity T =
∫ t
0 U(v(τ))dτ

(2.50) with an arbitrary-prescribed function U(v). As in Sec. 2.4, let us denote its

distribution as p(T, t, v0). Since T can be negative here, rather than using the Laplace

transform (2.51) we apply the following Fourier transform

p̄(k, t, v0) =

∫ ∞

−∞
p(T, t, v0)e

−ikTdT =
〈
e−ik

∫
t

0 U(v(τ))dτ
〉
. (6.1)

Then, following the same derivation procedure in Sec. 2.4, we obtain [see also Eq. (2.54)]

∂

∂t
p̄(k, t, v0) =

∂2

∂v20
p̄(k, t, v0)− Φ′(v0)

∂

∂v0
p̄(k, t, v0)− ikU(v0)p̄(k, t, v0). (6.2)

If one uses the following Laplace transform in t direction:

r(k, s, v0) =

∫ ∞

0
p̄(k, t, v0)e

−stdt, (6.3)
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the partial differential equation (6.2) can be reduced to the following ODE:

∂2

∂v20
r(k, s, v0)−Φ′(v0)

∂

∂v0
r(k, s, v0)− [ikU(v0) + s]r(k, s, v0) = −1, (6.4)

where we have used the condition p(T, 0, v0) = δ(T ), which results in p̄(k, 0, v0) = 1 [see

Eq. (6.1)]. The appropriate boundary conditions for r(k, s, v0 → ±∞) are to be derived

from the observation that if the particle starts at v0 → ±∞ it will never cross the origin

in finite time. In particular, we have

p(Tloc, t, v0 → ±∞) = δ(Tloc) (6.5)

for the local time, and

p(Tocc, t, v0 → ∞) = δ(Tocc − t), p(Tocc, t, v0 → −∞) = δ(Tocc) (6.6)

for the occupation time. Here we have used the notations Tloc and Tocc to denote the

local time and the occupation time, respectively. Later on, we will use the notation Tdis

for the displacement.

In general, it is difficult to derive the exact expression of the distribution p(T, t, v0).

However, for a stable potential in Eq. (2.12), i.e., Φ(v) → ∞ when v → ±∞, the

distribution p(T, t, v0) is simply Gaussian around its mean in the long time limit, as

pointed out in Ref. [77] for the local time and the occupation time. Thus the limiting

distribution around mean is characterised only by the first and the second moments,

denoted as

pasym(T, t, v0) =
1√

2πVar(T )
exp

[
−(T −M1(t, v0))

2

2Var(T )

]
, (6.7)

where

Var(T ) = M2(t, v0)−M2
1 (t, v0) (6.8)

stands for the variance of T , M1(t, v0) and M2(t, v0) are the first and the second mo-

ments. As stated in Ref. [77], the argument is as follows: at large time t the process

v(t) [see Eq. (2.12)] becomes mixing and the corresponding propagator p(v, t|v0, 0) tends
to the stationary distribution exp[−Φ(v)]/Z, where Z is a normalisation factor. Thus,

at time increments which exceed the correlation time of the system (2.12), the random
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variables U(v(τ))−〈U(v(τ))〉 are only weekly correlated. Therefore, using the definition

T − 〈T 〉 =
∫ t

0
[U(v(τ)) − 〈U(v(τ))〉] dτ, (6.9)

we expect the central limit theorem to hold in the limit that when t is much larger

than the relaxation time and the correlation time of the two aforementioned variables,

which yields a Gaussian distribution for the functional T around its mean. Hence, for

a stable potential, in order to determine the limiting distribution of T around its mean

we only need to know the first and the second moments, which can be obtained by using

the results stated in the following subsections. Since the dry friction model (1.2) has a

stable potential, we will see later in Secs. 6.3 and 6.4 that the distributions of the local

time, the occupation time and the displacement can be given explicitly in the long time

limit.

In general, it is difficult to solve the inhomogeneous ODE (2.56) or (6.4) directly.

Hence, rather than considering the solutions of these ODEs, we derive an equation for

the moments of functionals in the following subsection. This equation will turn out to

be much easier to handle than Eq. (2.56) or (6.4).

6.1.1 Moments of the functional

Here we assume the potential Φ(v) in Eq. (2.12) to be continuous and smooth everywhere

apart from a non-smooth point at v = 0 for the purpose of considering the dry friction

model (1.2). But the result can be of course applied to a smooth potential. Now let us

assume that the n-th moment Mn(t, v0) of T exists. Then its Laplace transform in time

direction is simply given by

M̃n(s, v0) =

∫ ∞

0
Mn(t, v0)e

−stdt = in
∂n

∂kn
r(k, s, v0)

∣∣∣∣
k=0

for n > 1, (6.10)

where r(k, s, v0) is defined in Eq. (6.3) and satisfies Eq. (6.4). Thus acting the operator

in ∂n

∂kn on Eq. (6.4) and setting k = 0, we obtain for M̃n(s, v0) a recursive differential

equation

∂2

∂v20
M̃n(s, v0)− Φ′(v0)

∂

∂v0
M̃n(s, v0)− sM̃n(s, v0) = −nU(v0)M̃n−1(s, v0). (6.11)
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The initial iterative value is given by [see Eqs. (6.1) and (6.3)]

M̃0(s, v0) = r(0, s, v0) =
1

s
. (6.12)

Similarly, it is easy to verify that Eq. (6.11) can be derived from Eq. (2.56) as well.

However, Eq. (2.56) is only for functionals with non-negative support. Hence, in order

to consider the displacement it is necessary to use the generalised backward Fokker-

Planck technique [see Eq. (6.4)].

6.1.2 Boundary conditions

In order to solve Eq. (6.11), it is important to know the corresponding boundary con-

ditions for v0 → ±∞. Using Eq. (6.5) and the uniform convergence of the Laplace

transform (6.10) for Re(s) > 0 it follows that the moments of the local time obey

M̃n(s, v0 → ±∞) = 0 for Re(s) > 0 and n > 1, (6.13)

whereas a similar argument and Eq. (6.6) yield for the moments of the occupation time

that

M̃n(s, v0 → ∞) =
n!

sn+1
, M̃n(s, v0 → −∞) = 0 for Re(s) > 0 and n > 1.

(6.14)

For the displacement, in general we are not able to find an accurate boundary condition.

But we expect that for |v0| ≫ t the velocity of the particle does not change much in the

time window [0, t] and the displacement should be at the scale of v0t. Hence the n-th

moment of the displacement as a function of v0 should be bounded by a polynomial of

order n in v0. We will see later that this condition is sufficient for us to determine the

solution of the dry friction model (1.2).

6.1.3 Matching conditions

Since we are here concerned with a piecewise-smooth potential Φ(v0), we have to solve

Eq. (6.11) for the two domains v0 > 0 and v0 < 0, respectively. Then we have to match

the solutions by using the continuity condition at v0 = 0, i.e.,

M̃n(s, 0−) = M̃n(s, 0+), (6.15)
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and the matching condition [depends on U(v)] obtained by integrating Eq. (6.11) across

v0 = 0, which is

∂

∂v0
M̃n(s, 0+)− ∂

∂v0
M̃n(s, 0−) = −nM̃n−1(s, 0) (6.16)

for the local time, and
∂

∂v0
M̃n(s, 0+) =

∂

∂v0
M̃n(s, 0−) (6.17)

for both the occupation time and the displacement. Here we have used the shorthand

notation ∂
∂v0

M̃n(s, 0±) to denote ∂
∂v0

M̃n(s, v0)|v0→0±.

6.1.4 Structure of the solution

Let us briefly discuss how we are going to approach the analytic solutions of Eq. (6.11)

for a general potential Φ(v) with a discontinuity at v = 0. Suppose that the appropriate

fundamental piecewise-smooth solution ϕ(s, v0) of the corresponding homogeneous ODE

of Eq. (6.11) is known, which vanishes for Re(s) > 0 when v0 → ±∞. The solution obeys

∂2

∂v20
ϕ(s, v0)− Φ′(v0)

∂

∂v0
ϕ(s, v0)− sϕ(s, v0) = 0 (6.18)

for v0 6= 0 and we assume ϕ(s, v0) to be continuous at v0 = 0. In addition, let us

denote one particular piecewise-smooth solution of Eq. (6.11) as M̃p
n(s, v0) (may be dis-

continuous at v0 = 0), which satisfies the appropriate boundary conditions of Eq. (6.11)

(see subsection 6.1.2) and solves Eq. (6.11) on the two domains v0 > 0 and v0 < 0,

respectively. Then the general solutions of Eq. (6.11) can be expressed as

M̃n(s, v0) = M̃p
n(s, v0) +

{
C+
n ϕ(s, v0) for v0 > 0,

C−
n ϕ(s, v0) for v0 < 0,

(6.19)

where the coefficients C±
n are determined by the matching conditions at v0 = 0 (see

subsection 6.1.3). In general, we may not be able to do the inverse inverse Laplace

transform analytically to obtainMn(t, v0). However, in the long time limit the behaviour

of the moments is dominated by the singular terms of the Laplace transform and those

are often not too difficult to evaluate. We can also resort to numerical Laplace inversion,

such as the so-called Talbot method [1] (see the footnote on page 66), which usually gives

accurate results even at a very short time.
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6.2 Local time, occupation time and displacement

In this section, we will demonstrate that for the cases of the local time and the occupation

time the formula (6.19) can be simplified considerably and that the Laplace transforms

of the moments can be expressed in terms of the solution ϕ(s, v0). The situation for the

displacement is slightly more involved and we will discuss this case at the end of this

section.

6.2.1 Local time

In this case, we only need to solve the corresponding homogeneous ODE of Eq. (6.11)

as M̃p
n(s, v0) vanishes in the solution (6.19). Hence, by using the matching conditions

at v0 = 0 [see Eqs. (6.15) and (6.16)] it can be easily derived from Eq. (6.11) that the

moments of the local time satisfy the following recursive relation

M̃n(s, v0) =
nϕ(s, v0)M̃n−1(s, 0)

∂
∂v0

ϕ(s, 0−) − ∂
∂v0

ϕ(s, 0+)
for n > 1. (6.20)

Therefore, using the condition (6.12) we can check that the higher moments are deter-

mined by the first moment via

M̃n(s, v0) = n!
[
sM̃1(s, 0)

]n−1
M̃1(s, v0), (6.21)

where

M̃1(s, v0) =
ϕ(s, v0)/s

∂
∂v0

ϕ(s, 0−)− ∂
∂v0

ϕ(s, 0+)
. (6.22)

This simple relation enables us to obtain the distribution of the local time explicitly in

the Fourier-Laplace space, which reads [see Eq. (6.3)]

r(k, s, v0) =

∞∑

n=0

(−ik)n

n!
M̃n(s, v0) =

M̃1(s, v0)

sM̃1(s, 0)

1

1 + iksM̃1(s, 0)
. (6.23)

Then the Laplace transform of the local time distribution with respect to time t can be

obtained by inverting the Fourier transform with respect to k:

u(Tloc, s, v0) =
M̃1(s, v0)

s2M̃2
1 (s, 0)

exp

(
− Tloc

sM̃1(s, 0)

)
for Tloc > 0, (6.24)
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6.2. Local time, occupation time and displacement

which indicates that the distribution of the local time is fully determined by the Laplace

transform of its first moment. The result (6.24) extends that obtained in Ref. [77] to

be valid for arbitrary v0 [see Eq. (30) therein]. In general, we may not be able to

do the inverse Laplace transform for Eq. (6.24) analytically. However, we can resort to

numerical inversion (e.g., the Talbot method [1]) to produce the distribution p(Tloc, t, v0)

numerically, especially for short time t.

6.2.2 Occupation time

Since in this case U(v0) = θ(v0) is piecewise-constant in Eq. (6.11), it is possible to

obtain particular solutions M̃p
n(s, v0) in Eq. (6.19) explicitly in terms of the solution

ϕ(s, v0). For this purpose, let us first introduce the operator

Ls =
∂2

∂v20
− Φ′(v0)

∂

∂v0
− s. (6.25)

Then differentiating the following equation [see Eq. (6.18)]

Lsϕ(s, v0) = 0 (6.26)

m times with respect to s results in

Ls
∂m

∂sm
ϕ(s, v0) = m

∂m−1

∂sm−1
ϕ(s, v0). (6.27)

Now we can start to derive the solution of Eq. (6.11) for n = 1 by noting that in this

case a particular solution of Eq. (6.19) is

M̃p
1 (s, v0) =

{
1/s2 for v0 > 0,

0 for v0 < 0.
(6.28)

Using the property (6.27) and the inductive method (see appendix A.8 for the details),

we end up with the following formula for the moments of the occupation time from

Eqs. (6.11) and (6.19),

M̃n(s, v0) =

{
n!/sn+1 +

∑n−1
m=0(−1)m

(n
m

)
C+
n−m

∂m

∂smϕ(s, v0) for v0 > 0,

C−
n ϕ(s, v0) for v0 < 0,

(6.29)
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6.2. Local time, occupation time and displacement

where
(n
m

)
= n!/[m!(n − m)!] is the binomial coefficient. The coefficients C+

n and C−
n

are determined by the first-order smooth matching condition at v0 = 0 [see Eqs. (6.15)

and (6.17)]. Thus, we obtain the explicit formulae

C±
1 =

∂
∂v0

ϕ(s, 0∓)

s2ϕ(s, 0)
[

∂
∂v0

ϕ(s, 0+) − ∂
∂v0

ϕ(s, 0−)
] , (6.30)

and for n > 1

C±
n =

{
n−1∑

m=1

(−1)m
(
n

m

)
C+
n−m

[
∂

∂v0
ϕ(s, 0∓)

∂m

∂sm
ϕ(s, 0) − ϕ(s, 0)

∂m

∂sm
∂

∂v0
ϕ(s, 0+)

]

+n!
∂

∂v0
ϕ(s, 0∓)/sn+1

}/{
ϕ(s, 0)

[
∂

∂v0
ϕ(s, 0+)− ∂

∂v0
ϕ(s, 0−)

]}
. (6.31)

While such expressions are certainly more involved than those for the local time problem

we can still express the entire moment problem in terms of the fundamental solution of

the homogeneous equation.

6.2.3 Displacement

For the displacement, by using the first-order smooth matching condition [see Eqs. (6.15)

and (6.17)] the coefficients in Eq. (6.19) are determined to be

C±
n =

{
ϕ(s, 0)

[
∂

∂v0
M̃p

n(s, 0+)− ∂

∂v0
M̃p

n(s, 0−)

]
− ∂

∂v0
ϕ(s, 0∓)

[
M̃p

n(s, 0+)

−M̃p
n(s, 0−)

]}/{
ϕ(s, 0)

[
∂

∂v0
ϕ(s, 0+)− ∂

∂v0
ϕ(s, 0−)

]}
. (6.32)

However, in this case particular solutions M̃p
n(s, v0) of the corresponding inhomogeneous

ODE (6.11) are not simple to write down in general. So a general formula as Eq. (6.21)

or (6.29) is not available. Fortunately, for the dry friction model (1.2) we will see in the

following sections that particular solutions can be constructed straightforwardly.

In the next two sections, we first consider the simplest dry friction case, i.e., the pure

dry friction case, in order to show the effectiveness of our method and then consider

the dry and viscous friction case, both of which have a symmetric potential. Since the

full model with bias does not have a symmetric potential, the formulae are much longer

compared to these two symmetric cases. Hence the corresponding formulae will not be
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6.3. Pure dry friction case

presented here. However, it is straightforward to generalise the formulae of the dry and

viscous friction case to the full model with bias. As the computations in the following

two sections are difficult to handle by hand, we have used Mathematica to do most of

the symbolic computations.

6.3 Pure dry friction case

Firstly, let us consider the model (1.2) with only dry friction, i.e., γ = b = 0. This

simplest stochastic model with dry friction is an ideal model to show the effectiveness

of our method. It is worth to notice that the local time and the occupation time of this

simple case have been investigated in Refs. [63, 77] even though the authors did not

attempt to study dry friction effect in a stochastic setting. An integral representation

of the occupation time distribution of this piecewise-constant stochastic model has also

been derived in Ref. [82]. But the recursive relations for the moments of the local time

and the occupation time have not been given explicitly. To the best of my knowledge

analytic results of the displacement for the pure dry friction model are not available in

the literature.

In this case, we let µ = D = 1 without loss of generality (see Sec. 4.1 and also

appendix A.3.2). Hence the pure dry friction case can be written in the form (2.12) with

a stable potential Φ(v) = |v|. The appropriate fundamental solution of the homogeneous

ODE (6.18) is

ϕ(s, v0) = e(1−
√
1+4s)|v0|/2, (6.33)

which vanishes for Re(s) > 0 in the limit v0 → ±∞.

Then, from Eqs. (6.24) and (6.22) we obtain the local time distribution in the Laplace

space with respect to time t:

u(Tloc, s, v0) =

√
1 + 4s− 1

s
e−(

√
1+4s−1)(Tloc+|v0|/2) for Tloc > 0. (6.34)

Using the substitution s = α− 1/4, Eq. (6.34) reads

u(Tloc, α− 1/4, v0) = 2eTloc+|v0|/2 e
−√

α(2Tloc+|v0|)
√
α+ 1/2

. (6.35)

From the table of Laplace transforms in Ref. [3] we have the following inverse Laplace
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6.3. Pure dry friction case

transform

L−1

(
e−k

√
α

b+
√
α

)
=

e−k2/(4t)

√
πt

− bebk+b2terfc

(
b
√
t+

k

2
√
t

)
= F (t, b, k), (6.36)

where L−1 denotes the operator of the inverse Laplace transform with respect to α and

erfc(z) = 1 − erf(z) = 2
∫∞
z e−t2dt/

√
π is the complementary error function. Hence,

using the shifting property of Laplace transform, we obtain from Eq. (6.35) the inverse

Laplace transform of u(Tloc, s, v0), i.e, the local time distribution

p(Tloc, t, v0) = 2eTloc+|v0|/2−t/4F (t, 1/2, 2Tloc + |v0|)

=
2√
πt

e−(2Tloc+|v0|−t)2/(4t) − e2Tloc+|v0|erfc

(√
t

2
+

2Tloc + |v0|
2
√
t

)
(6.37)

for Tloc > 0, which generalises the result in Ref. [77] to be valid for any v0 [see Eq. (A4)

therein].

The moments of the local time are given explicitly by [see Eqs. (6.21) and (6.22)]

M̃n(s, v0) =
n!

4nsn+1
(
√
1 + 4s + 1)ne(1−

√
1+4s)|v0|/2, (6.38)

which have a single pole at s = 0 and a branch cut for s < −1/4. Using the integral

path as shown in Fig. 6.1 with s0 = −1/4, R → ∞ and ε → 0, and the residue theory

for the (n+ 1)-th order pole at s = 0, we can evaluate the inverse Laplace transform of

M̃n(s, v0) to obtain in the long time limit that (see Ref. [71])1

Mn(t, v0) = 4−n ∂n

∂sn

[
(
√
1 + 4s+ 1)ne(1−

√
1+4s)|v0|/2+st

]∣∣∣∣
s=0

+O(e−(1/4−o)t). (6.39)

In particular, the first two moments read

M1(t, v0) =
t

2
+

1− |v0|
2

+O(e−(1/4−o)t), (6.40)

M2(t, v0) =
t2

4
+

(2− |v0|)t
2

+
v20 − 2|v0| − 2

4
+O(e−(1/4−o)t), (6.41)

1In Eq. (6.39) the notation o stands for an arbitrary small positive correction to 1/4. This correction
is due to a power-law correction to the leading exponential behaviour. The same notation will be used
in the rest of this chapter.
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6.3. Pure dry friction case

which result in the variance

Var(Tloc) =
t

2
− 3

4
+O(e−(1/4−o)t). (6.42)

Finally the limiting distribution (6.7) reads

pasym(Tloc, t, v0) =
1√

π(t− 3/2)
exp

[
−(2Tloc − t+ |v0| − 1)2

4t− 6

]
+O(e−(1/4−o)t). (6.43)

Figure 6.2 shows the comparison of the limiting distribution (6.43) in leading order and

the analytic expression (6.37). As we can see, the small deviations visible for short times

disappear at large times. In the long time limit, from Eq. (6.39) we can evaluate the

third and the fourth cumulants as (see Ref. [76])

K3 =M3(t, v0)− 3M1(t, v0)M2(t, v0) + 2M3
1 (t, v0) = 7/4 +O(e−(1/4−o)t), (6.44)

K4 =M4(t, v0)− 3M2
2 (t, v0)− 4M1(t, v0)M3(t, v0) + 12M2

1 (t, v0)M2(t, v0)− 6M4
1 (t, v0)

= −45/8 +O(e−(1/4−o)t), (6.45)

which are both negligible compared to the first two moments [see Eqs. (6.40) and (6.41)]

and thus are consistent with the limiting Gaussian distribution (6.43).

For the occupation time, it is straightforward to obtain the moments in the Laplace

space by using the formula (6.29). The first two moments are given explicitly by

M̃1(s, v0) =
1

2s2

{
2− e−(

√
1+4s−1)v0/2 for v0 > 0,

e(
√
1+4s−1)v0/2 for v0 < 0,

(6.46)

M̃2(s, v0) =
1

4s3





8− 5
√
4s+ 1 + 4v0s+ 1√

4s + 1
e−(

√
4s+1−1)v0/2 for v0 > 0,

3
√
4s+ 1− 1√
4s+ 1

e(
√
4s+1−1)v0/2 for v0 < 0.

(6.47)

As for the local time, one can evaluate the moments in the time domain by using the

integral path as shown in Fig. 6.1 to obtain (see Ref. [71])

M1(t, v0) =
t

2
+

v0
2

+O(e−(1/4−o)t), (6.48)

M2(t, v0) =
t2

4
+

1 + v0
2

t+
v20 − 6

4
+O(e−(1/4−o)t). (6.49)
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Figure 6.1: Integral path used to evaluate the inversion of Eq. (6.38). s0 is the maximal
singularity on the negative real axis.
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Figure 6.2: Local time distribution of the pure dry friction case for v0 = 0 and two
different times: (a) t = 5 and (b) t = 20. Lines correspond to the leading order limiting
distribution (6.43), and points to the analytic expression (6.37).
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Figure 6.3: Occupation time distribution of the pure dry friction case for v0 = 0 and
two different times: (a) t = 5 and (b) t = 20. Lines correspond to the leading-order
asymptotic distribution (6.51), and points to the Monte Carlo simulation of the Langevin
equation (1.8) by using the Euler-Maruyama scheme with time-step ∆t = 0.0001 and
an ensemble of 106 realisations.

Thus the variance is

Var(Tocc) =
t

2
− 3

2
+O(e−(1/4−o)t), (6.50)

and the limiting distribution (6.7) reads

pasym(Tocc, t, v0) =
1√

π(t− 3)
exp

[
−(2Tocc − t− v0)

2

4t− 12

]
+O(e−(1/4−o)t). (6.51)

As shown in Fig. 6.3, at large time this limiting distribution in leading order matches

well with the Monte Carlo simulation of the corresponding Langevin equation by using

the Euler-Maruyama scheme (see appendix A.2.1). In addition, using the formula (6.29)

and the integral path as shown in Fig. 6.1, we can obtain in the long time limit that the

third and the fourth cumulants in this case are

K3 = O(e−(1/4−o)t), K4 = −45/4 +O(e−(1/4−o)t), (6.52)

which are both very small and are again in line with the limiting Gaussian distribution.

For the displacement, i.e., U(v0) = v0, it is obvious that a particular polynomial

solution of Eq. (6.11) for n = 1 is

M̃p
1 (s, v0) =

sv0 − σ(v0)

s3
. (6.53)
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6.3. Pure dry friction case

Hence, the first moment can be obtained from Eqs. (6.19) and (6.20) to yield

M̃1(s, v0) =
sv0 − σ(v0)

s3
+

σ(v0)

s3
e(1−

√
1+4s)|v0|/2. (6.54)

Since

|v0|e(1−
√
1+4s)|v0|/2 = −

√
4s + 1

∂

∂s
e(1−

√
1+4s)|v0|/2, (6.55)

we can use the property (6.27) for m = 1 to construct a particular solution of Eq. (6.11)

for n = 2 as

M̃p
2 (s, v0) =

(2s|v0| − 3)2 + 8s + 3

2s5
+

√
1 + 4sv20 + 2|v0|
s3(1 + 4s)

e(1−
√
1+4s)|v0|/2, (6.56)

where the first term is the polynomial solution due to Eq. (6.53) and the second term

is caused by the second term of Eq. (6.54). Then the second moment is determined by

Eqs. (6.19) and (6.32), yielding

M̃2(s, v0) = M̃p
2 (s, v0)−

(11s + 3)
(√

4s + 1 + 1
)

s5(4s + 1)
e(1−

√
1+4s)|v0|/2. (6.57)

Therefore, using the integral path as shown in Fig. 6.1 we obtain in the long time limit

that (see Ref. [71])

M1(t, v0) = v0(1 + |v0|/2) +O(e−(1/4−o)t), (6.58)

M2(t, v0) = 10t+ v40/4 + 5|v0|3/3 + 5v20 − 54 +O(e−(1/4−o)t). (6.59)

Thus the variance is given by

Var(Tdis) = 10t+ 2|v0|3/3 + 4v20 − 54 +O(e−(1/4−o)t), (6.60)

and the limiting distribution reads

pasym(Tdis, t, v0) =
1√
2πσ2

exp

[
−(Tdis − v0 − v0|v0|/2)2

2σ2

]
+O(e−(1/4−o)t), (6.61)

where

σ2 = 10t+ 2|v0|3/3 + 4v20 − 54. (6.62)

As shown in Fig. 6.4, at large time this limiting distribution in leading order matches

well with the Monte Carlo simulation of the corresponding Langevin equation. In this

case, the higher moments can be obtained as well if one uses the properties (6.55) and
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Figure 6.4: Displacement distribution of the pure dry friction case for v0 = 0 and
two different times: (a) t = 300 and (b) t = 800. Lines correspond to the leading-order
asymptotic distribution (6.61), and points to the Monte Carlo simulation of the Langevin
equation (1.8) by using the Euler-Maruyama scheme with time-step ∆t = 0.001 and an
ensemble of 106 realisations (see appendix A.2.1).

(6.27)2. A quite tedious but straightforward computation (using Mathematica) finally

results in that the third and the fourth cumulants in the long time limit read

K3 =

{
O(1) for v0 6= 0,

0 for v0 = 0,
K4 = 21120t +O(1), (6.63)

which show that the fourth cumulant depends linearly on time. Hence, even though the

displacement around mean is Gaussian in the long time limit the entire distribution is

not strictly Gaussian.

6.4 Dry and viscous friction case

For the full model (1.2) without bias (b = 0), i.e., the dry and viscous friction case,

we set γ = D = 1 without loss of generality (see Sec. 4.2 and also appendix A.3.3).

Hence the dry and viscous friction case can be written as the form (2.12) with a stable

potential

Φ(v) = (|v|+ µ)2/2. (6.64)

2The main idea is to use the property (6.55) to express the right hand side of Eq. (6.11) only in terms
of a polynomial in v0 and the sum of derivatives of ϕ(s, v0) with coefficients that are independent of v0.
Then it is easy to find separately a particular solution for the polynomial by matching coefficients and
a particular solution for the term including derivatives of ϕ(s, v0) by using the property (6.27).
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6.4. Dry and viscous friction case

The fundamental solution of the homogeneous ODE (6.18) is

ϕ(s, v0) = e(|v0|+µ)2/4D−s(|v0|+ µ), (6.65)

which vanishes for Re(s) > 0 when v0 → ±∞. Here the function Dν(z) denotes the

parabolic cylinder function (see appendix A.9).

For the local time, we have from Eqs. (6.21) and (6.22) that

M̃n(s, v0) =
n!

2nsn+1

(
D−s(µ)

D−s−1(µ)

)n−1 e(|v0|+µ)2/4D−s(|v0|+ µ)

eµ
2/4D−s−1(µ)

. (6.66)

For real argument z the parabolic cylinder function fulfills Dν(z) 6= 0 for any ν with

nonvanishing imaginary part and Dν(z) > 0 for any negative real values of ν (see

appendix A.9). Hence, we conclude that all the singularities of Eq. (6.66) lie on the

non-positive real axis as µ > 0. In addition, all these singularities are poles. The largest

negative pole which determines the asymptotic properties of the moments is given by

s0 = max{s : D−s−1(µ) = 0} < −1. (6.67)

The dependence of this value on the dry friction coefficient µ is displayed in Fig. 6.5

and turns out to be a monotonically decreasing function. Thus it is straightforward to

evaluate Eq. (6.66) to obtain

Mn(t, v0) =
e(|v0|+µ)2/4

2neµ2/4

∂n

∂sn

[(
D−s(µ)

D−s−1(µ)

)n−1 D−s(|v0|+ µ)

D−s−1(µ)
est

]∣∣∣∣∣
s=0

+O(e(s0+o)t),

(6.68)

where s0 + o < 0. In particular, the first two moments in the long time limit are given

explicitly as follows:

M1(t, v0) =
D0(µ)t

2D−1(µ)
+

D0(µ)

2D−1(µ)

(
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (|v0|+ µ)

D0(|v0|+ µ)

)
+O(e(s0+o)t), (6.69)

M2(t, v0) =
D2

0(µ)t
2

4D2
−1(µ)

+
D2

0(µ)

2D2
−1(µ)

(
2
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (µ)

D0(µ)
− D

(1,0)
0 (|v0|+ µ)

D0(|v0|+ µ)

)
t+O(1),

(6.70)

where the notation D
(1,0)
Λ (z) denotes the derivative of the parabolic cylinder function

with respect to its index, i.e., ∂
∂νDν(z)

∣∣
ν=Λ

. Thus we obtain the variance in leading
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Figure 6.5: Maximal solution s = s0 (6.67) of the equation D−s−1(µ) = 0 as a function
of µ.

order that

Var(Tloc) =
D2

0(µ)

2D2
−1(µ)

(
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (µ)

D0(µ)

)
t+O(1). (6.71)

Here we have stated the results for the second moment and the variance up to O(1)

as the constant term is too cumbersome to write down explicitly. Of course, including

such a term the expression is correct up to O(e(s0+o)t) as that of the first moment.

The same reasoning will apply in the rest of this section. As shown in Fig. 6.6, at large

time the corresponding limiting distribution (6.7) in leading order matches well with the

numerical evaluation of Eq. (6.24). In the long time limit, we can check from Eq. (6.68)

that the third and the fourth cumulants satisfy

K3 = c3(µ)t+O(1), K4 = c4(µ)t+O(1), (6.72)

where the coefficients c3(µ) and c4(µ) are both independent of the initial value v0 and can

be computed explicitly by using Mathematica. Since the expressions are too cumbersome

to write down, we only give a graphical discussion here. Intuitively, we expect that if

the dry friction term dominates the viscous friction force then the cumulants of the

local time in this case will behave like those of the pure dry friction case [see Eqs. (6.44)

and (6.45)], i.e., the coefficients c3(µ) and c4(µ) in Eq. (6.72) tend to zero for large µ.

Indeed, numerical evaluation of the coefficients confirms what we expect intuitively (see

Fig. 6.7).

For the occupation time, the first two moments in the Laplace space can be obtained
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Figure 6.6: Local time distribution of the dry and viscous friction case for v0 = 0 and
two different times: (a) t = 5 and (b) t = 30. Lines corresponds to the leading-order
limiting distribution (6.43), and points to the numerical evaluation of Eq. (6.24).
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Figure 6.7: Coefficients c3(µ) and c4(µ) in the third and the fourth cumulants of the
local time of the dry and viscous friction case [see Eq. (6.72)].
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easily from Eq. (6.29) as follows,

M̃1(s, v0) =
1

2s2D−s(µ)

{
2D−s(µ)− ev

2
0/4+µv0/2D−s(µ + v0) for v0 > 0,

ev
2
0/4−µv0/2D−s(µ − v0) for v0 < 0,

(6.73)

M̃2(s, v0) =
ev

2
0/4+µv0/2D−s(µ+ v0)

2s3D−s−1(µ)D
2
−s(µ)

{
D−s(µ)

[
sD

(1,0)
−s−1(µ)− 2D−s−1(µ)

]

+D−s−1(µ)
[
sD

(1,0)
−s (µ)−D−s(µ)

]}
+

2

s3

−ev
2
0/4+µv0/2

s2D−s(µ)
D

(1,0)
−s (µ + v0) for v0 > 0, (6.74)

M̃2(s, v0) =
ev

2
0/4−µv0/2D−s(µ− v0)

2s3D−s−1(µ)D2
−s(µ)

{
D−s(µ)

[
sD

(1,0)
−s−1(µ) +D−s−1(µ)

]

−sD−s−1(µ)D
(1,0)
−s (µ)

}
for v0 < 0. (6.75)

As for the local time, all the singularities of these two moments lie on the non-positive

real axis. The maximal negative singularity is s0 + 1, where s0 is defined in Eq. (6.67)

(see also Fig. 6.5). Hence, we obtain in the long time limit that

M1(t, v0) =
t

2
+

σ(v0)

2

(
D

(1,0)
0 (|v0|+ µ)

D0(|v0|+ µ)
− D

(1,0)
0 (µ)

D0(µ)

)
+O(e(s0+1+o)t), (6.76)

M2(t, v0) =
t2

4
+

σ(v0)

2

(
D

(1,0)
0 (|v0|+ µ)

D0(|v0|+ µ)
− D

(1,0)
0 (µ)

D0(µ)

)
t

+
1

2

(
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (µ)

D0(µ)

)
t+O(1). (6.77)

Therefore, the corresponding variance of the occupation time reads

Var(Tocc) =
1

2

(
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (µ)

D0(µ)

)
t+O(1). (6.78)

As shown in Fig. 6.8, at large time the corresponding limiting distribution (6.7) matches

well with the Monte Carlo simulation of the corresponding Langevin equation. In the

long time limit, we can check from Eq. (6.29) that the third and the fourth cumulants

satisfy

K3 = O(1), K4 = c4(µ)t+O(1), (6.79)

where c4(µ) is independent of the initial value v0. As for the local time, for large µ the

cumulants (6.79) in this case should behave like those of the pure dry friction case [see

108



6.4. Dry and viscous friction case

æ æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ æ

HaL t=5

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

Tocc

p
HT

o
cc

,t
,v

0L

æ æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ

HbL
t=20

6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

Tocc

p
HT

o
cc

,t
,v

0L

Figure 6.8: Occupation time distribution of the dry and viscous friction case for v0 = 0,
µ = 1 and two different times: (a) t = 5 and (b) t = 20. Lines correspond to the
leading-order asymptotic distribution (6.7), and points to the Monte Carlo simulation
of the corresponding Langevin equation by using the Euler-Maruyama scheme with
time-step ∆t = 0.0001 and an ensemble of 106 realisations (see appendix A.2.1).

Eq. (6.52), i.e., the coefficient c4(µ) in Eq. (6.79) decays to zero]. Indeed, numerical

evaluation of this coefficient confirms our expectation (see Fig. 6.9).

For the displacement, one particular polynomial solution of Eq. (6.11) for n = 1 is

M̃p
1 (s, v0) =

sv0 − µσ(v0)

s2(s+ 1)
. (6.80)

Hence the first moment is given by Eqs. (6.19) and (6.32):

M̃1(s, v0) =
sv0 − µσ(v0)

s2(s + 1)
+ µσ(v0)

e(|v0|+µ)2/4D−s(|v0|+ µ)

s2(s+ 1)eµ2/4D−s(µ)
. (6.81)

Using the recurrence relation of the parabolic cylinder function [see Eq. (A.80)], we have

|v0|e(|v0|+µ)2/4D−s(|v0|+ µ) = e(|v0|+µ)2/4
[
D−s+1(|v0|+ µ)− sD−s−1(|v0|+ µ)

−µD−s(|v0|+ µ)
]

= ϕ(s − 1, v0)− sϕ(s+ 1, v0)− µϕ(s, v0). (6.82)

Then using the property (6.27) and the following properties of the operator Ls [see

Eqs. (6.25) and (6.26)],

Lsϕ(s+m, v0) = mϕ(s +m, v0) for any m, (6.83)
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Figure 6.9: Coefficient c4(µ) in the fourth cumulant of the occupation time of the dry
and viscous friction case [see Eq. (6.79)].

we can construct a particular solution of Eq. (6.11) for n = 2 as

M̃p
2 (s, v0) =

2µe(|v0|+µ)2/4

s2(s+ 1)eµ2/4D−s(µ)

[
D−s+1(|v0|+ µ) + sD−s−1(|v0|+ µ)

+µ
∂

∂s
D−s(|v0|+ µ)

]
+

2v20
s(s+ 1)(s + 2)

− 2µ(3s + 2)|v0|
s2(s+ 1)2(s+ 2)

+
4(s + µ2)(s+ 1) + 2µ2s

s3(s+ 1)2(s + 2)
, (6.84)

where the first term is caused by the second term of Eq. (6.81) and the last three terms

are the polynomial solution due to Eq. (6.80). Thus the second moment is determined

by Eqs. (6.19) and (6.32):

M̃2(s, v0) = M̃p
2 (s, v0)−

2µe(|v0|+µ)2/4D−s(|v0|+ µ)

s3(s+ 1)2(s+ 2)eµ
2/4D−s(µ)D−s−1(µ)

×
{
µ(s+ 1)(s + 2)

[
D−s−1(µ)− sD

(1,0)
−s−1(µ)

]

+s(s2 + 2s+ 2)D−s(µ) + s(s+ 1)2(s+ 2)D−s−2(µ)
}
. (6.85)

In this case, by expansion we can check that s = −1 and s = −2 are removable sin-

gularities for the first two moments and the maximal negative singularity is still given

by s0 + 1, where s0 has been introduce in Eq. (6.67) (see also Fig. 6.5). Hence, we can

evaluate the corresponding inverse Laplace transforms to obtain in the long time limit
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that

M1(t, v0) = v0 + µσ(v0)

(
D

(1,0)
0 (µ)

D0(µ)
− D

(1,0)
0 (|v0|+ µ)

D0(|v0|+ µ)

)
+O(e(s0+1+o)t), (6.86)

M2(t, v0) = 2

[
1 + µ2

(
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (µ)

D0(µ)

)
− 2µ

D−2(µ)

D−1(µ)

]
t+O(1). (6.87)

Therefore the variance is

Var(Tdis) = 2

[
1 + µ2

(
D

(1,0)
−1 (µ)

D−1(µ)
− D

(1,0)
0 (µ)

D0(µ)

)
− 2µ

D−2(µ)

D−1(µ)

]
t+O(1). (6.88)

As shown in Fig. 6.11, at large time the corresponding limiting distribution (6.7) in lead-

ing order matches well with the Monte Carlo simulation of the corresponding Langevin

equation. In this case, the higher moments can also be obtained if one uses the properties

(6.27) and (6.83) of the operator Ls as well as the recurrence relation of the parabolic

cylinder function (6.82) (see also the footnote on page 104). But we should resort to

software to do the corresponding symbolic calculations. Finally, we confirm that the

third and the fourth cumulants satisfy

K3 =

{
O(1) for v0 6= 0,

0 for v0 = 0,
K4 = c4(µ)t+O(1), (6.89)

which are consistent with those of the pure dry friction case [see Eq. (6.63)]. Here the

coefficient c4(µ), which is shown in Fig. 6.10 as a function of µ, does not depend on

the initial value v0. Again, the entire distribution in the long time limit is not strictly

Gaussian as the fourth cumulant depends linearly on time.

In addition, to compare our analytical results with that obtained in Ref. [70] by

solving the corresponding Fokker-Planck equation numerically, we need to specialise

our general expressions to the case v0 = 0 and translate our expressions, given in non-

dimensional units, to the original scale (1.2) via [see appendix A.3.3]

µ → µ/
√

Dγ, M2(t, v0) → DM2(γt,
√

γ/Dv0)/γ. (6.90)

As shown in Fig. 6.12, one can see that the figures of the second moment and the dis-

tribution recover the numerical results presented in Ref. [70] (see Figs. 5 and 9 therein).
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Figure 6.10: Coefficient c4(µ) in the fourth cumulant of the displacement of the dry and
viscous friction case [see Eq. (6.89)].
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Figure 6.11: Displacement distribution of the dry and viscous friction case for v0 = 0,
µ = 1 and two different times: (a) t = 20 and (b) t = 50. Lines correspond to the leading-
order asymptotic distribution of Eq. (6.7), and points to the Monte Carlo simulation of
the corresponding Langevin equation by using the Euler-Maruyama scheme with time-
step ∆t = 0.001 and an ensemble of 106 realisations (see appendix A.2.1).
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Figure 6.12: Analytic results of the full model without bias in the original scaling sys-
tem (1.2) for γ = 1 and v0 = 0. (a) The second moment in leading order obtained
from Eq. (6.87) via the transforms (6.90); (b) the limiting displacement distribution
in leading order obtained from Eqs. (6.7), (6.86) and (6.88) via the transforms (6.90).
Lines correspond to the results of µ = 6 and D = 5.4, and points to µ = 1.1 and D = 1.
These two sets of arguments are properly chosen according to a fluctuation dissipation
relation presented in [70], ensuring that the numerical results coincide with each other.
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6.5. Summary of chapter

6.5 Summary of chapter

In this chapter, we have extended the backward Fokker-Planck technique developed in

Ref. [63] to compute stochastic properties of a general support functional. For a generic

Langevin equation, the recursive differential equation for the moments of functionals has

been derived and solutions have been provided for the local time and the occupation time

in terms of the solution of the corresponding homogeneous equation. In addition, the

distribution of the local time in the Laplace space has been shown to be fully determined

by the Laplace transform of the first moment.

The developed results have been applied to consider functionals of the dry friction

model. In particular, three of the simplest functionals have been considered, i.e., the

local time, the occupation time and the displacement, which allow us to obtain some

analytic results. The moments of these three functionals have been shown explicitly in

the Laplace space for the pure dry friction case and the dry and viscous friction case,

respectively. It is interesting to observe that in the long time limit the first two moments

satisfy M1(t, v0) ∼ t and M2(t, v0) ∼ t2 identically for the local time and the occupation

time, and M1(t, v0) = O(1) and M2(t, v0) ∼ t for the displacement. Intuitively, the

difference between them should not come as a surprise as the local time and occupation

time are nonnegative while the displacement can be negative. However, in the dry

friction case all the variances for the three functionals satisfy Var(T ) ∼ t in the long

time limit.

Since the dry friction model has a stable potential, the distributions of the three

functionals around means are simply Gaussian distributions in the long time limit, which

are determined by the first two corresponding moments. In addition, these limiting

distributions have been shown to match well with the analytic results of the local time

and the results of Monte Carlo simulations of the occupation time and the displacement,

respectively. The results obtained here for the dry and viscous friction case can be

extended straightforwardly to the full model (1.2) with bias term, in which case we may

analyse stick-slip transitions depending on the bias.
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Chapter 7

Concluding remarks and outlook

Conclusions of this thesis

In this thesis, we have investigated dynamical properties of piecewise-smooth stochastic

systems with respect to weak-noise approximations, FPT problems and some simple

functionals. In particular, we took the model of Brownian motion with dry friction as

an example to illustrate some interesting phenomena of the piecewise-smooth cases. The

most important results of this thesis are concluded as follows.

In chapter 3, we have used the pure dry friction model as an example to study

the validity and accuracy of weak-noise approximations for piecewise-smooth stochas-

tic systems. Our study shows that the conclusion of the weak-noise approximation is

ambivalent. While the weak-noise approximation, if some heuristics are used, is able to

reproduce main features of piecewise-smooth systems, its predictive features are limited

as one usually does not have a priori control over higher order terms and as one deals

with expressions that are not smooth. Nevertheless, the study of the pure dry friction

model shows that we can put some confidence in formal expansions if results are consid-

ered with some common sense, i.e., if some heuristic principles are applied. To avoid the

singularity caused by the dry friction, we have also regularised the discontinuity with a

nonlinear smooth drift to obtain a smooth version of SDE. We have shown with simula-

tion results that the weak-noise limit of the regularised SDE captures the main features

of the piecewise-smooth SDE, even though the weak-noise limit does not commute with

the limit of the regularised model approaching the singular case. For this regularised

SDE, which is interesting in itself, we have studied the quasi-potential associated with
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the propagator in a largely analytical way.

In chapter 4 we switched our investigation to the impact of discontinuities on FPT

problems of piecewise-smooth stochastic systems. In order to obtain some analytic

results, we confined our investigation to the model of Brownian motion with dry friction.

We have provided analytic solutions to the FPT problem of this dry friction model

using two different but closely related approaches which are based on eigenfunction

decompositions on the one hand and on the backward Kolmogorov equation on the

other. For the pure dry friction case, we have found an unexpected phase transition

phenomenon of the spectrum related to the exit point. Depending on the exit point,

there exists an isolated eigenvalue or not. This phase transition phenomenon finally

results in different tail decay rates of the FPT distribution. For the full model, we

have observed in the spectrum two additional phase transitions which are the stick-slip

transition and the transition to ballistic exit. As we know, these transitions are induced

by the dry friction force. We expect that similar phase transitions can be found in other

piecewise-smooth stochastic systems.

Immediately after chapter 4, we investigated in chapter 5 the MVD till the FPT. We

have obtained the analytic solution of the maximum velocity till the FPT of the model

of Brownian motion with dry friction. For the considered FPT problem, a kink may

occur in the MVD depending on the sign of the initial velocity. This kink is induced by

the dry friction force, which is discontinuous at the origin. We have used this particular

problem as a testbed for piecewise-smooth stochastic systems and to illustrate how to

handle discontinuities in a stochastic setup which is often referred to when extreme

events, here the maximum velocity, are at stake.

Finally, in chapter 6 we studied a more challenging problem, i.e., functionals of

piecewise-smooth stochastic systems. As in the previous chapters, in order to obtain

some analytic results we have taken the dry friction model as a starting example to

address this problem. For this model, we have considered three of the simplest function-

als, i.e., the local time, the occupation time and the displacement. By generalising the

backward Fokker-Planck technique, we have developed a recursive differential equation

for the moments of arbitrary support functionals of a generic Langevin equation. For

the local time and the occupation time, we have derived in the Laplace space the gen-

eral formulae of the moments, which only depends on the solution of the corresponding

homogeneous equation of the recursive moment equation. In addition, the local time

distribution in the Laplace space has also been shown to be fully determined by its
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first moment. We have applied the results to consider the dry friction model. For this

model, we have shown that the moments of the local time, the occupation time and

the displacement can be obtained explicitly in the Laplace domain. In the long time

limit, the behaviour of the moments has also been analysed asymptotically. For this dry

friction model with a stable potential, we have obtained the limiting distributions of the

three considered functionals around means, which are all Gaussian. In addition, these

limiting distributions are shown to match well with the analytic results of the local time

and the results of Monte Carlo simulations of the occupation time and the displacement,

respectively.

Some open problems

The availability of analytic results for high dimensional stochastic models is rather lim-

ited, contrary to the one-variable case. Even the computation of the stationary dis-

tribution is often a challenge if detailed balance is violated, and dynamical quantities,

like correlations or exit probabilities, are certainly out of reach. As examples, some

interesting problems closely related to this thesis are listed below.

(1) It would be interesting to obtain the exact propagator of the displacement of the

dry friction model (1.2) with a piecewise-smooth potential. For this purpose, we

can try to solve the two-dimensional Fokker-Planck equation

∂

∂t
p(x, v, t|x0, v0, 0) = −v

∂

∂x
p(x, v, t|x0, v0, 0) +

∂

∂v
[Φ′(v)p(x, v, t|x0, v0, 0)]

+
∂2

∂v2
p(x, v, t|x0, v0, 0), (7.1)

where x stands for the displacement and v for the velocity, Φ(v) is stated in Eq. (1.7)

with a non-smooth point at v = 0. Here p(x, v, t|x0, v0, 0) represents the joint

probability density that x(t) = x and v(t) = v given the initial conditions x(0) = x0

and v(0) = v0. This problem can be regarded as a simple model to investigate

the impact of discontinuities on high dimensional variables in a stochastic setup.

However, this two-dimensional problem is much more difficult to solve than the

one-dimensional case. Moreover, since the potential Φ(v) does not depend on x,

stationary joint distribution does not exist in this case. Alternatively, we can try

to analyse the backward Fokker-Planck equation (6.4) directly, but the solution of

which is also difficult to obtain.
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(2) To investigate the validity of the weak-noise approximation of the pure dry friction

model with inertia term. For this purpose, we can also use the path integral repre-

sentation of the propagator and the saddle-point approximation. In this case, the

propagator in terms of path integral reads

p(xt, vt, t|x0, v0, 0) =
∫ (vt,t)

(v0,0)
D[v]J [v]e−

1
4D

∫
t

0 [v̇+µσ(v)]2dsδ

(
xt − x0 −

∫ t

0
v(s)ds

)
,

(7.2)

i.e., the path integral (3.2) with the constraint

∫ t

0
v(s)ds = xt − x0. (7.3)

Here the Jacobian term

J [v] = exp

(
µ

∫ t

0
δ(v)ds

)
(7.4)

comes from the transformation ξ(t) → v(t). The saddle-point approximation of the

path integral (7.2) may be analysed similarly with Eq. (3.2). For the details of how

to find the optimal path of Eq. (7.2), we refer to Ref. [22]. For instance, at the

lowest order we have to minimise the action

S(0)[v] =

∫ t

0
[v̇(s) + µσ(v)]2ds (7.5)

subjected to the boundary conditions

v(0) = v0, v(t) = vt (7.6)

and the constraint (7.3). This problem can be solved by using the method of La-

grangian multiplier. In a preliminary study of this problem, we found that the

optimal paths are not straight but parabolic. The challenge here is that the opti-

mal indirect paths are not available analytically as in this case the t1 and t2 like

those of the one-dimensional case [see Eq. (3.9)] cannot be determined exactly. In

addition, since an analytic solution of the propagator is not available in this case,

it is hard to check whether the weak-noise approximation is effective or not for this

two-dimensional problem.

(3) To obtain analytic results for the FPT distribution with respect to the displacement.

Suppose that we put a small object on an one-dimensional horizontal table with finite

length L. And the velocity of the object obeys the dry friction model (1.2) without
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bias. Then it would be very interesting to know the mean time when this object falls

down the table. In fact, here we have to solve a FPT problem for the displacement.

Suppose the table is on the interval [0, L] and the initial displacement of the object

is x(0) = x0 ∈ (0, L). Then we have to solve the two-dimensional Fokker-Planck

equation (7.1) with boundary conditions (see Ref. [76])

p(0, v, t|x0, v0, 0) = 0 for v > 0, (7.7)

p(L, v, t|x0, v0, 0) = 0 for v < 0. (7.8)

To the best of my knowledge there is no exact analytic solution to the problem

(7.1), (7.7) and (7.8) so far [67]. Even for the pure diffusion process, i.e., Φ(v) = 0

in Eq. (7.1), only the mean FPT of the displacement is available in an asymptotic

way (see Refs. [67, 68]). While one of course could proceed a numerical solution of

this particular problem, the focus here would be the impact of discontinuities on

the two-dimensional FPT problem, e.g., transition phenomenon related to the exit

point, as in the one-dimensional case. Since this phenomenon is hard to observe

numerically, it is desirable to obtain an analytic solution to this two-dimensional

FPT problem. In addition, it would be interesting to have some experimental data

for this FPT problem with respect to the displacement.

(4) Throughout this thesis, we have only analysed the interrelation between Gaussian

white noise and discontinuity. The results of the interrelation of dry friction and

other kinds of noise are very limited. As far as I know, some analytic results of this

topic are only available for the model with dry friction and Poissonian shot-noise

[7, 8]. Thus, it is meaningful to study the impact of discontinuities on other kinds of

noise. For instance, we can replace the Gaussian white noise ξ(t) in Eq. (1.2) with

an Ornstein-Uhlenbeck noise η(t) characterised by

η̇(t) = −βη(t) +
√
Dξ(t), (7.9)

where β is a positive constant. Then similarly to the first item for the displacement,

we have to solve the following two-dimensional Fokker-Planck equation

∂

∂t
p(v, η, t|v0, η0, 0) =

∂

∂v

{[
Φ′(v) − η

]
p(v, η, t|v0, η0, 0)

}
+ β

∂

∂η
[ηp(v, η, t|v0, η0, 0)]

+D
∂2

∂η2
p(v, η, t|v0, η0, 0), (7.10)

119



where Φ(v) is stated in Eq. (1.7). Even though we may resort to numerical methods

to obtain the solution of Eq. (7.10) numerically, analytic results are desirable, for

instance, if we are interested in the weak-noise limit and in the limit of the coloured

noise approaching the white noise.

(5) It would be interesting to compare the analytic results derived in this thesis with

experimental data. For instance, we may apply the mechanical experiment setups

used in Refs. [23, 42, 40, 41] to obtain experimental data. Then comparing these

data with the analytic FPT distribution and the MVD till the FPT we may check

whether there is a dry friction effect between a solid object and a solid surface. In

addition, we can also compare the experimental results with the theoretical results of

the occupation time and the displacement with respect to moments and distributions

in order to check the usefulness of the dry friction model for an experiment setup.
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Appendix A

A.1 Analytic action of Eq. (1.9) in the weak-noise limit

For our purpose, let us first consider in the following the approximation of p̂(x, τ |x′, τ)
(1.10) for x′ > 0 in the limit

|τ − |x| − x′|
2
√
τ

→ ∞. (A.1)

Using the leading-order term of the error function (1.11) in the limit |z| → ∞ (see, e.g.,

Ref. [3]):

erf(z) =
2√
π

∫ z

0
e−t2dt ≃

{
1− e−z2/(

√
πz) for z > 0,

−1− e−z2/(
√
πz) for z < 0,

(A.2)

it follows from Eq. (1.10) that

p̂(x, τ |x′, 0) ≃ e−τ/4

2
√
πτ

e−(|x|−x′)/2e−(x−x′)2/(4τ) − e−(τ−|x|−x′)2/(4τ)−|x|

2
√

π/τ(τ − |x| − x′)
+

e−|x|

2
(A.3)

for τ > |x|+ x′, and

p̂(x, τ |x′, 0) ≃ e−τ/4

2
√
πτ

e−(|x|−x′)/2e−(x−x′)2/(4τ) − e−(τ−|x|−x′)2/(4τ)−|x|

2
√

π/τ (τ − |x| − x′)
(A.4)

for τ < |x|+ x′.
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A.1. Analytic action of Eq. (1.9) in the weak-noise limit

Case 1: τ < x′

In this case, Eq. (A.4) applies. Since the terms that enter the exponentials of Eq. (A.4)

satisfy

−τ/4− (|x| − x′)/2 − (x− x′)2/(4τ) > −(τ − |x| − x′)2/(4τ) − |x| (A.5)

for all x, we have in the leading order that

ln p̂(x, τ |x′, 0) ≃ −τ/4− (|x| − x′)/2 − (x− x′)2/(4τ). (A.6)

Case 2: τ > x′

In this case we have to derive the asymptotic results for τ < |x| + x′ and τ > |x| + x′

separately. On the one hand, for τ < |x|+x′, Eq. (A.4) applies and results in Eq. (A.6).

On the other hand, under the condition τ > |x|+ x′, it is straightforward to check that

−τ/4− (|x| − x′)/2− (x− x′)2/(4τ) 6 −|x| (A.7)

if and only if x 6 (
√
τ −

√
x′)2. Therefore, for τ > |x|+ x′ we obtain from Eq. (A.3) in

the leading order that

ln p̂(x, τ |x′, 0) ≃ −|x| (A.8)

for x ∈ [x′ − τ, (
√
τ −

√
x′)2], and Eq. (A.6) for x /∈ [x′ − τ, (

√
τ −

√
x′)2].

Now we apply the above analysis to evaluate the analytic propagator (1.9)

p(vt, t|v0, 0) =
µ

D
p̂

(
µ

D
vt,

µ2

D
t

∣∣∣∣
µ

D
v0, 0

)
. (A.9)

We can use the results of p̂(x, t|x′, 0) [see Eqs. (A.6) and (A.8)] directly by letting

x =
µ

D
vt, x′ =

µ

D
v0, τ =

µ2

D
t. (A.10)

Hence, it is easy to know that the action I(vt, t|v0, 0) (3.16) in the limit D → 0 is

I(vt, t|v0, 0) = (vt − v0)
2/t+ 2µ(|vt| − v0) + µ2t (A.11)
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A.2. Some numerical schemes

for t < v0/µ, and

I(vt, t|v0, 0) =
{

(vt − v0)
2/t+ 2µ(|vt| − v0) + µ2t for vt 6∈ [v0 − µt, (

√
µt−√

v0)
2],

4µ|vt| for vt ∈ [v0 − µt, (
√
µt−√

v0)
2]

(A.12)

for t > v0/µ. These actions are exactly the same as those of the SPA(0) [see Eqs. (3.14)

and (3.15)] since

(vt − v0)
2/t+ 2µ(|vt| − v0) + µ2t =

{
(vt − v0 + µt)2/t− 4µvt for vt < 0,

(vt − v0 + µt)2/t for vt > 0.
(A.13)

A.2 Some numerical schemes

A.2.1 Euler-Maruyama scheme

We integrate the generic Langevin equation (1.5) on the interval [0,∆t] to obtain

v(∆t)− v(0) = −
∫ ∆t

0
Φ′(v(s))ds +

√
D

∫ ∆t

0
ξ(s)ds, (A.14)

where ∆t is a small time-step. Since ξ(s) is Gaussian, the integral
∫ ∆t
0 ξ(s)ds is also

Gaussian. From Eqs. (1.3) and (1.4) we have

〈∫ ∆t

0
ξ(s)ds

〉
=

∫ ∆t

0
〈ξ(s)〉ds = 0, (A.15)

〈(∫ ∆t

0
ξ(s)ds

)2
〉

=

∫ ∆t

0

∫ ∆t

0
〈ξ(s)ξ(s′)〉dsds′ =

∫ ∆t

0

∫ ∆t

0
2δ(s − s′)dsds′ = 2∆t.

(A.16)

Following Eq. (A.14) and the above properties of the integral
∫∆t
0 ξ(s)ds, we can obtain

for the generic Langevin equation (1.5) the so-called Euler-Maruyama scheme

vn+1 = vn − Φ′(vn)∆t+
√
2D∆tW, (A.17)

where vn stands for the approximation to v(n∆t) and W the standard Normal random

variable. In chapter 6, we simulate the functional T =
∫ t
0 U(v(τ))dτ by using the scheme

Tn+1 = Tn − U(vn)∆t (A.18)
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A.2. Some numerical schemes

with the initial condition T0 = 0. Here Tn is the approximation to the functional T at

time n∆t.

A.2.2 Symplectic Euler scheme

For the Hamiltonian system

ṗ(t) =
∂

∂q
H(p, q), (A.19)

q̇(t) = − ∂

∂p
H(p, q) (A.20)

with a separated Hamiltonian [see also Eqs. (2.10) and (2.11)]

H(p, q) = U(p) + V (q), (A.21)

the so-called symplectic Euler scheme reads

pn+1 = pn +∆tV ′(qn), (A.22)

qn+1 = qn −∆tU ′(pn+1). (A.23)

This scheme is called symplectic scheme since it can preserve the discrete symplectic

structure of the Hamiltonian system (A.19) and (A.20), i.e., for the above scheme we

have dpn+1∧dqn+1 = dpn∧dqn. This symplectic scheme can preserve the Hamiltonian of

the original system better than other non-symplectic scheme in the long time simulation

(see, e.g., Ref. [46]).

A.2.3 Numerical scheme for the Fokker-Planck equation

For the Fokker-Planck equation (1.6), in the weak-noise limit we assume the time-

dependent solution has the form

p(v, t|v0, 0) = Ne−ϕ(v,t)/D , (A.24)

where N is a normalisation constant. Then substituting Eq. (A.24) into Eq. (1.6) results

in

−∂ϕ(v, t)

∂t
= DΦ′′(v)− Φ′(v)

∂ϕ(v, t)

∂v
−D

∂2ϕ(v, t)

∂v2
+

(
∂ϕ(v, t)

∂v

)2

. (A.25)
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A.3. Rescaling transforms of the Fokker-Planck equation

We can approximate the above equation by the Euler scheme in time and space directions

to obtain

ϕn
k − ϕn+1

k

∆t
= DΦ′′(vn)− Φ′(vn)

ϕn
k+1 − ϕn

k

∆v
−D

ϕn
k+2 − 2ϕn

k+1 + ϕn
k

(∆v)2
+

(
ϕn
k+1 − ϕn

k

∆v

)2

,

(A.26)

where ϕn
k is the approximation to ϕ(vk, tn), ∆t is the time-step and ∆v is the space-step.

Rearranging Eq. (A.26) yields the final scheme

ϕn+1
k = ϕn

k −∆tDΦ′′(vn) + ∆tΦ′(vn)
ϕn
k+1 − ϕn

k

∆v
+∆tD

ϕn
k+2 − 2ϕn

k+1 + ϕn
k

(∆v)2

−∆t

(
ϕn
k+1 − ϕn

k

∆v

)2

. (A.27)

In practice, we have to truncate the infinite domain into a finite domain, dented as

[−L,L]. Here we use the following numerical boundary conditions

ϕ(−L, t) = ϕ(−L+∆v, t) + ∆v, ϕ(L, t) = ϕ(L−∆v, t) + ∆v, (A.28)

and the initial value condition

ϕ(v,∆t) =
(v − v0 +Φ′(v0)∆t)2

4∆t
. (A.29)

This initial value condition comes from the following derivation. For short time ∆t,

we can get an approximation to v(∆t) from the corresponding Langevin equation [see

Eq. (1.5)] of the Fokker-Planck equation (1.6):

v(∆t) ≈ v0 − Φ′(v0)∆t+
√
D

∫ ∆t

0
ξ(s)ds. (A.30)

Hence, we know that v(∆t) is an approximately Gaussian random variable [see appendix

A.2.2] with mean v0−Φ′(v0)∆t and variance 2D∆t. So the appropriate initial condition

for ϕ(v,∆t) is derived in Eq. (A.29).

A.3 Rescaling transforms of the Fokker-Planck equation

Even though transformation of variables can be done for the generic Langevin equation

(1.5) directly (see Ref. [76]), it is easier to understand the transformation by looking at
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A.3. Rescaling transforms of the Fokker-Planck equation

the corresponding Fokker-Planck equation (1.6).

Let τ = αt and u = βv, and assume f(u, τ |u0, 0) = p(v, t|v0, 0)/β, denoting the new

propagator. Then we have

∂p

∂t
= αβ

∂f

∂τ
,

∂2p

∂v2
= β3 ∂f

∂u2
,

∂

∂v
[Φ′(v)p] = β2 ∂

∂u

[
Φ′
(
u

β

)
f

]
. (A.31)

Substituting the above equations into Eq. (1.6) yields

∂

∂τ
f(u, τ |u0, 0) =

β

α

∂

∂u

[
Φ′
(
u

β

)
f(u, τ |u0, 0)

]
+

Dβ2

α

∂2

∂u2
f(u, τ |u0, 0). (A.32)

A.3.1 Case 1: Φ′(v) = µ tanh (v/ε)

In this case, Eq. (A.32) reads

∂

∂τ
f(u, τ |u0, 0) =

β

α

∂

∂u

[
µ tanh

(
u

βε

)
f(u, τ |u0, 0)

]
+

Dβ2

α

∂2

∂u2
f(u, τ |u0, 0). (A.33)

Hence, it is obvious that the choices βε = 1 and βµ/α = 1, i.e., α = µ/ε and β = 1/ε,

result in the Fokker-Planck equation corresponding to the Langevin equation (3.26).

A.3.2 Case 2: Φ′(v) = µσ(v)

In this case, Eq. (A.32) reads

∂

∂τ
f(u, τ |u0, 0) =

β

α

∂

∂u
[µσ(u)f(u, τ |u0, 0)] +

Dβ2

α

∂2

∂u2
f(u, τ |u0, 0) (A.34)

for β > 0. Therefore, the choices α = µ2/D and β = µ/D > 0 lead to the Fokker-Planck

equation corresponding to the pure dry friction case (1.8) with µ = D = 1.

A.3.3 Case 3: Φ′(v) = µσ(v) + γv − b

In this case, Eq. (A.32) reads

∂

∂τ
f(u, τ |u0, 0) =

β

α

∂

∂u

[(
µσ(u) + γ

u

β
− b

)
f(u, τ |u0, 0)

]
+

Dβ2

α

∂2

∂u2
f(u, τ |u0, 0)

(A.35)
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A.4. Asymptotic analysis

for β > 0. Hence, if one chooses γ/α = 1 and Dβ2/α = 1, i.e., α = γ and β =
√

γ/D,

Eq. (A.35) results in

∂

∂τ
f(u, τ |u0, 0) =

∂

∂u

[(
µ√
Dγ

σ(u) + u− b√
Dγ

)
f(u, τ |u0, 0)

]
+

∂2

∂u2
f(u, τ |u0, 0).

(A.36)

Therefore, we can consider the full model (1.2) for γ = D = 1 without loss of generality.

For the special case with b = 0 and γ = D = 1, the choices βµ/α = 1 and β2/α = 1,

i.e., α = µ2 and β = µ, result in a Fokker-Planck equation corresponding to the the

Langevin equation (4.28) in chapter 4.

A.4 Asymptotic analysis

A.4.1 Asymptotic limit τ → ∞

In this asymptotic limit, H tends to zero. For the case uτ < 0 < u0, we have H > 0.

Then we can derive from Eq. (3.36) that

θ−(u0, uτ ,H) = ln[2 sinh(u0)] +O(H)− 1√
1 + 2H

ln

[
− H

sinh(uτ )
+O(H2)

]

= ln[2 sinh(u0)] +O(H)− [1−H +O(H2)] {− ln [− sinh(uτ )/H] +O(H)}
= ln[2 sinh(u0)] + ln [− sinh(uτ )/H] +O[H ln(H)], (A.37)

and from Eq. (3.38) that

σ−(u0, uτ ,H) = ln[2 tanh(u0)] +O(H)− ln[−H/ tanh(uτ ) +O(H2)]

= ln[2 tanh(u0)] + ln[− tanh(uτ )/H] +O(H). (A.38)

For the case u0 > 0 and uτ > 0, we have H < 0. Hence we can derive from Eq. (3.41)

that

θ+(u0, uτ ,H) = ln[2 sinh(u0)] + ln[2 sinh(uτ )] +O(H) +
ln(1 + 2H)√

1 + 2H
− ln(−2H)√

1 + 2H

= ln[2 sinh(u0)] + ln[2 sinh(uτ )] +O(H)− [1−H +O(H2)] ln(−2H)

= ln[2 sinh(u0)] + ln [− sinh(uτ )/H] +O[H ln(−H)], (A.39)
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A.4. Asymptotic analysis

and from Eq. (3.43) that

σ+ = ln[2 tanh(u0)] + ln[2 tanh(uτ )] +O(H)− ln(−2H)

= ln[2 tanh(u0)] + ln[− tanh(uτ )/H] +O(H). (A.40)

Therefore, from Eqs. (A.37) and (A.39) we know both the energy-time relations (3.35)

and (3.40) result in Eq. (3.47) in the limit considered here.

A.4.2 Asymptotic limit |uτ | → ∞

Let us first consider the case uτ < 0 < u0. Since H → +∞ when uτ → −∞, we have

[see Eq. (3.36)]

θ−(u0, uτ ,H) =
1√

1 + 2H
ln

[
sinh(u0) +

√
2

2 +H−1
+ sinh2(u0)

]

− 1√
1 + 2H

ln

[
sinh(uτ ) +

√
2

2 +H−1
+ sinh2(uτ )

]

=
1√

1 + 2H

{
ln [sinh(u0) + cosh(u0)] +O(H−1)

}

− 1√
1 + 2H

{
ln [sinh(uτ ) + cosh(uτ )] +O(H−1)

}

=
1√

1 + 2H
[u0 − uτ +O(H−1)]. (A.41)

Similarly, for the case uτ > u0 > 0, we have

θ−(uτ , u0,H) =
1√

1 + 2H
[uτ − u0 +O(H−1)]. (A.42)

Hence, we obtain Eq. (3.51) for |uτ | → ∞.

For H → +∞, we have

ln

[
tanh(u0) +

√
2H + tanh2(u0)

]
= ln


√2H


tanh(u0)√

2H
+

√

1 +
tanh2(u0)

2H






= ln(
√
2H) +O(H−1/2). (A.43)
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A.5. Energy-time relation

Similarly, we obtain

ln

[
tanh(uτ ) +

√
2H + tanh2(uτ )

]
= ln(

√
2H) +O(H−1/2). (A.44)

Hence, substituting Eqs. (A.43) and (A.44) into Eq. (3.38) we obtain σ−(u0, uτ ,H) =

O(H−1/2). In addition, the same analysis applies to yield σ−(uτ , u0,H) = O(H−1/2).

A.5 Energy-time relation

A.5.1 Monotonicity of θ−

Consider the expression defined in Eq. (3.36) either for uτ < 0 < u0 and H > 0, or

for 0 < uτ < u0 and H > Hmin = − tanh2(uτ )/2. The argument of the logarithm in

Eq. (3.36) can be written as

g(x) =
a+

√
x+ a2

b+
√
x+ b2

, (A.45)

where a = sinh(u0), b = sinh(uτ ) and x = 2H/(1+2H), being a monotonically increasing

function of H. It is easy to see that g(x) > 1 in the given parameter ranges, i.e, either

b < 0 < a and x > 0, or 0 < b < a and x > −b2. In addition, it follows by differentiation

that g′(x) < 0, i.e., g is monotonically decreasing. Hence, θ− considered as a function

of H is the product of two positive monotonically decreasing functions so that θ− itself

is monotonically decreasing.

A.5.2 Critical points of θ+

Since Eq. (3.41) is a symmetric expression in the first two arguments it is sufficient to

consider the case 0 < uτ < u0 and Hmin = − tanh2(uτ )/2 < H < 0. The critical points

are determined by the vanishing derivative of θ+. It is more convenient to consider the

expression in terms of the new variable χ ∈ [0, uτ ] defined by H = − tanh2(χ)/2, where

−χ represents the turning point of the indirect path, introduced in the case 2 of section

3.3.1. Then differentiation gives

∂θ+(u0, uτ ,− tanh2(χ)/2)

∂χ
= h(sinh(u0), sinh(χ)) + h(sinh(uτ ), sinh(χ)), (A.46)

129



A.6. Eigenvalue problem for the pure dry friction case

where we have introduced

h(a, z) = z ln
(
a/z +

√
(a/z)2 − 1

)
− (1 + z2)a

z
√
a2 − z2

, (0 < z < a). (A.47)

The critical points of θ+ are thus determined by the solutions of the equation

h(sinh(u0), z) + h(sinh(uτ ), z) = 0. (A.48)

We now show that the right-hand side of Eq. (A.46) is a concave function of z = sinh(χ),

so that there exist at most two solutions. To do so, compute the second derivative of

Eq. (A.47):

∂h(a, z)

∂z
= ln

(
a/z +

√
(a/z)2 − 1

)
+ a

z4 − 2(a2 + 1)z2 + a2

z2 (a2 − z2)3/2
, (A.49)

∂2h(a, z)

∂z2
= −a

z4(6 + 2a2) + z2(−5a2 + a4) + 2a4

z3 (a2 − z2)5/2

= −a
6(z2 − a2/2)2 + 2a2z4 + a2(a2 + 1)z2 + a4/2

z3 (a2 − z2)5/2
. (A.50)

It is easy to see that the second derivative is negative for any (positive) values of a. The

same holds for Eq. (A.48), proving concavity.

Finally, it is obvious from Eq. (3.41) that θ+(u0, uτ ,H) tends to ∞ as H → 0−
and that θ+(u0, uτ ,Hmin) is finite and positive, resulting altogether in a monotonically

increasing shape [see Fig. 3.14(b)] or a cubic shape [see Fig. 3.14(c)] for the graph of

θ+(u0, uτ ,H).

A.6 Eigenvalue problem for the pure dry friction case

Without viscous damping and driving Eq. (2.18) reads [see Eq. (4.2)]

− ΛuΛ(v) = u′′Λ(v) + u′Λ(v) for v > 0 (A.51)

−ΛuΛ(v) = u′′Λ(v)− u′Λ(v) for a < v < 0. (A.52)

Let

uΛ(v) = e−|v|/2ϕΛ(v), (A.53)
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then Eqs. (A.51) and (A.52) can be written as

ϕ′′
Λ(v) = (1/4 − Λ)ϕΛ(v) for v 6= 0. (A.54)

On the one hand, for Λ < 1/4 let us introduce the positive variable λ =
√

1/4− Λ.

Then the solution of Eq. (A.54) which results in a finite normalisation factor [see

Eq. (2.22)] is given by

ϕΛ(v) =

{
Aλe

−λv for v > 0

Bλe
λv + Cλe

−λv for a < v < 0.
(A.55)

Choose Aλ = 2λ and use the matching conditions (2.20) and (2.21) to determine the

other two coefficients in Eq. (A.55) as

Bλ = 1, Cλ = 2λ− 1. (A.56)

The eigenvalue is now determined by the absorbing boundary condition (2.19), i.e.,

ϕΛ(a) = 0, which results in Eq. (4.4).

On the other hand, for Λ > 1/4 the solution of Eq. (A.54) which vanishes at v = a,

i.e., which satisfies the absorbing boundary condition (2.19), is given by

ϕΛ(v) =

{
Āκ sin(κv) + B̄κ cos(κv) for v > 0

C̄κ sin[κ(v − a)] for a < v < 0,
(A.57)

where we have introduced the abbreviation κ =
√
Λ− 1/4 > 0. Choose C̄κ = κ, then

by using the matching conditions (2.20) and (2.21), the two parameters Āκ and B̄κ are

evaluated as

Āκ = κ cos(aκ) + sin(aκ), B̄κ = −κ sin(aκ). (A.58)

Hence, Eq. (4.9) follows from substituting Eq. (A.57) into Eq. (A.53). For the normali-
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sation, Eqs. (A.53) and (A.57) result in

∫ ∞

a
uΛ(v)uΛ′(v)e|v|dv =

∫ ∞

0
[Āκ sin(κv) + B̄κ cos(κv)][Āκ′ sin(κ′v) + B̄κ′ cos(κ′v)]dv

+

∫ 0

a
κκ′ sin[κ(v − a)] sin[κ′(v − a)]dv

=

∫ ∞

0

{
1

2

(
ĀκĀκ′ + B̄κB̄κ′

)
cos[(κ− κ′)v]

+
1

2

(
B̄κB̄κ′ − ĀκĀκ′

)
cos[(κ+ κ′)v]

+
1

2

(
ĀκB̄κ′ − Āκ′B̄κ

)
sin[(κ− κ′)v]

+
1

2

(
ĀκB̄κ′ + Āκ′B̄κ

)
sin[(κ+ κ′)v]

}
dv − κĀκB̄κ′ − κ′Āκ′B̄κ

κ2 − κ′2

=
π

2
(Ā2

κ + B̄2
κ)δ(κ − κ′), (A.59)

which shows that the normalisation factor ZΛ satisfies Eq. (4.10) if we take Eq. (A.58)

into account. To derive Eq. (A.59), we have used the standard identities for the δ and

the principal-value distribution:

∫ ∞

0
cos(κv)dv = πδ(κ),

∫ ∞

0
sin(κv)dv = P

(
1

κ

)
=

{
0 for κ = 0,

1/κ for κ 6= 0.
(A.60)

A.7 Eigenvalue problem for the full model

For the full model (1.2), the eigenvalue problem (2.18) reads [see Eq. (4.24)]

− ΛuΛ(v) = [(v + µ− b)uΛ(v)]
′ + u′′Λ(v) for v > 0, (A.61)

−ΛuΛ(v) = [(v − µ− b)uΛ(v)]
′ + u′′Λ(v) for a < v < 0. (A.62)

These two equations are a special case of the so-called Kummer’s equation, which can be

solved in terms of parabolic cylinder functions (see Ref. [88] and also appendix A.9). The

solution of Eqs. (A.61) and (A.62) which vanishes at infinity is given by (see Refs. [19,

89])

uΛ(v) =

{
AΛe

−(v+µ−b)2/4DΛ(v + µ− b) for v > 0,

e−(v−µ−b)2/4 [BΛDΛ(v − µ− b) + CΛDΛ(−v + µ+ b)] for a < v < 0,

(A.63)
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where DΛ(z) denotes the parabolic cylinder function. Here we have used a fundamental

system in terms of Dν(z) and Dν(−z) to write down the solution. Such a fundamental

system degenerates for ν being an integer. Thus, our expressions may contain spurious

singularities at integer values of Λ which have to be taken care of. The coefficients AΛ,

BΛ and CΛ depend on the parameters b and µ as well, but are independent of v.

Using Eq. (A.63) the matching conditions (2.20) and (2.21) result in a set of linear

homogeneous equations

BΛDΛ(−µ− b) + CΛDΛ(µ+ b) = eµbAΛDΛ(µ− b), (A.64)

BΛD1+Λ(−µ− b)− CΛD1+Λ(µ+ b) = eµbAΛ[D1+Λ(µ− b)− 2µDΛ(µ − b)], (A.65)

when the property (A.84) of the parabolic cylinder function is employed. For AΛ we

choose

AΛ =
√
2πe−µb. (A.66)

Then, the other two coefficients in Eq. (A.63) follow as

BΛ = Γ(1− Λ)[DΛ(µ+ b)DΛ−1(µ− b) +DΛ(µ− b)DΛ−1(µ+ b)], (A.67)

CΛ = −Γ(1− Λ)[DΛ(−µ− b)DΛ−1(µ − b)−DΛ(µ − b)DΛ−1(−µ − b)], (A.68)

where we have used the identities (A.80) and (A.85) to simplify the above two expres-

sions.

The characteristic equation simply follows from the boundary condition (2.19), and

is thus given by

BΛDΛ(a− µ− b) + CΛDΛ(−a+ µ+ b) = 0 , (A.69)

which results in Eq. (4.25) if we take Eqs. (A.67) and (A.68) into account.

For the integral over the eigenfunction which enters the FPT distribution (4.29) we

obtain by using the differential identity (A.84)

∫ ∞

a
uΛ(v)dv = e−(a−µ−b)2/4[BΛDΛ−1(a− µ− b)− CΛDΛ−1(−a+ µ+ b)]

−e−(µ+b)2/4[BΛDΛ−1(−µ− b)− CΛDΛ−1(µ + b)]

+AΛe
−(µ−b)2/4DΛ−1(µ − b). (A.70)
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Finally to compute the normalisation let us consider the integral

(Λ− Λ′)
∫ ∞

a
e[v+µσ(v)]2/2−bvuΛ(v)uΛ′(v)dv

= e−µb−b2/2(Λ− Λ′)
∫ 0

a
[BΛDΛ(v − µ− b) + CΛDΛ(−v + µ+ b)]

×[BΛ′DΛ′(v − µ− b) + CΛ′DΛ′(−v + µ+ b)]dv

+eµb−b2/2(Λ− Λ′)AΛAΛ′

∫ ∞

0
DΛ(v + µ− b)DΛ′(v + µ− b)dv

= e−µb−b2/2(Λ− Λ′)
∫ −µ−b

a−µ−b
[BΛDΛ(v) + CΛDΛ(−v)][BΛ′DΛ′(v) + CΛ′DΛ′(−v)]dv

+eµb−b2/2(Λ− Λ′)AΛAΛ′

∫ ∞

µ−b
DΛ(v)DΛ′(v)dv

= e−µb−b2/2
{
−BΛDΛ+1(a− µ− b)[BΛ′DΛ′(a− µ− b) + CΛ′DΛ′(µ− a+ b)]

+BΛ′DΛ′+1(a− µ− b)[BΛDΛ(a− µ− b) + CΛDΛ(µ − a+ b)]

+CΛDΛ+1(µ− a+ b)[BΛ′DΛ′(a− µ− b) + CΛ′DΛ′(µ − a+ b)]

−CΛ′DΛ′+1(µ− a+ b)[BΛDΛ(a− µ− b) + CΛDΛ(µ − a+ b)]
}
. (A.71)

For the last computational step we have used the properties (A.83) and (A.84). Indeed,

if we choose for Λ and Λ′ two different eigenvalues we obtain (bi-)orthogonality of the

eigenfunctions if the characteristic equation (A.69) is taken into account. Furthermore,

dividing Eq. (A.71) on both sides by Λ−Λ′ and taking the limit Λ′ → Λ we end up with

the normalisation factor

ZΛ = e−µb−b2/2 [BΛDΛ+1(a− µ− b)− CΛDΛ+1(µ− a+ b)]

×∂Λ [BΛDΛ(a− µ− b) + CΛDΛ(µ − a+ b)] . (A.72)

A.8 Moments of the occupation time

Substituting Eq. (6.28) into Eq. (6.19) results in the first moment of the occupation

time:

M̃1(s, v0) =

{
1/s2 + C+

1 ϕ(s, v0) for v0 > 0,

C−
1 ϕ(s, v0) for v0 < 0,

(A.73)

where the coefficients C±
1 are determined by the first-order smooth matching condition

at v0 = 0 [see Eqs. (6.15) and (6.17)]. Then using the property (6.27) it is easy to derive
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from Eq. (6.19) that the second moment can be expressed as

M̃2(s, v0) =

{
2/s3 − 2C+

1
∂
∂sϕ(s, v0) + C+

2 ϕ(s, v0) for v0 > 0,

C−
2 ϕ(s, v0) for v0 < 0.

(A.74)

Similarly, the third moment reads

M̃3(s, v0) =

{
3/s4 + 3C+

1
∂2

∂s2
ϕ(s, v0)− 3C+

2
∂
∂sϕ(s, v0) + C+

3 ϕ(s, v0) for v0 > 0,

C−
3 ϕ(s, v0) for v0 < 0.

(A.75)

Here the coefficients C±
2 and C±

3 are again determined by the matching conditions (6.15)

and (6.17). By observing the first three moments presented here, we can already guess

that the n-th moment has the form as shown in Eq. (6.29). Indeed, using the inductive

method it is easy to prove our guess since the moments defined in Eq. (6.29) satisfy

Eq. (6.11) with

U(v0) = θ(v0) =

{
1 for v0 > 0,

0 for v0 6 0.
(A.76)

A.9 Properties of parabolic cylinder function

The parabolic cylinder functions are a class of functions sometimes called Weber func-

tions (see, e.g., Refs. [33, 19, 28]). Here we denote them as Dν(z), which satisfy the

following differential equation

d2Dν(z)

dz2
−
(
z2

4
− ν − 1

2

)
Dν(z) = 0 (A.77)

and read

Dν(z) =





e−z2/4

Γ(−ν)

∫ ∞

0
t−ν−1e−zt−t2/2dt for Re(ν) < 0,

ez
2/4

√
π/2

∫ ∞

0
tνe−t2/2 cos(zt− νπ/2)dt for Re(ν) > −1,

(A.78)

where Γ(z) denotes the Gamma function [28]. The two branches of this formula agree for

−1 < Re(ν) < 0. From the expression (A.78) it is easy to see that if ν < 0 thenDν(z) > 0

for any real values of z. If ν is not an integer, Dν(z) andDν(−z) are independent and the

solutions of Eq. (A.77) can be expressed in terms of this fundamental system. Moreover,
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Figure A.1: Parabolic cylinder function Dν(z) for z = 1 normalised by the asymptotic
growth Dasymp (A.79) for large ν. The resulting expression remains bounded.

if we consider Dν(z) as a function of the index ν for fixed z, it is useful to normalise it

by the asymptotic growth

Dasymp = 2ν/2Γ((1 + ν)/2) (A.79)

for large ν (see Refs. [3, 88] and also Fig. A.1)

For the parabolic cylinder functions, we have the following recurrence relation

Dν+1(z) = zDν(z)− νDν−1(z), (A.80)

and the differential identity

D′
ν(z) +

z

2
Dν(z) = νDν−1(z). (A.81)

By using Eq. (A.80), we can obtain another differential identity from Eq. (A.81), i.e.,

D′
ν(z)−

z

2
Dν(z) = −Dν+1(z). (A.82)

Then from Eqs. (A.81) and (A.82) it is straightforward to derive the following two
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standard differential identities

dez
2/4Dν(z)

dz
= νez

2/4Dν−1(z), (A.83)

de−z2/4Dν(z)

dz
= −e−z2/4Dν+1(z), (A.84)

which are the essential properties used to prove the orthogonal properties of the eigen-

functions in chapter 4. In addition, we have the following property for the fundamental

system (Dν(z),Dν(−z)):

Dν(z)Dν+1(−z) +Dν(−z)Dν+1(z) =

√
2π

Γ(−ν)
. (A.85)

In particular, we have

D−1(z) =
π

2
ez

2/4erf

(
z√
2

)
, (A.86)

D0(z) = e−z2/4. (A.87)

Based on these two equations, all other expressions for the parabolic cylinder functions

with integer index ν can be obtained by using the recurrence relation (A.80). For

instance, we have

D−2(z) = D0(z) − zD−1(z) = e−z2/4 − πz

2
ez

2/4erf

(
z√
2

)
, (A.88)

D1(z) = zD0(z) = ze−z2/4, (A.89)

D2(z) = zD1(z)−D0(z) = (z2 − 1)e−z2/4. (A.90)
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