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ABSTRACT
In multivariate time series systems, lead-lag relationships reveal
dependencies between time series when they are shifted in time
relative to each other. Uncovering such relationships is valuable in
downstream tasks, such as control, forecasting, and clustering. By
understanding the temporal dependencies between different time
series, one can better comprehend the complex interactions and
patterns within the system. We develop a cluster-driven methodol-
ogy based on dynamic time warping for robust detection of lead-lag
relationships in lagged multi-factor models. Since multivariate time
series are ubiquitous in a wide range of domains, we demonstrate
that our algorithm is able to robustly detect lead-lag relationships in
financial markets, which can be subsequently leveraged in trading
strategies with significant economic benefits.

KEYWORDS
Dynamic Time Warping; High-dimensional time series; Lead-lag
relationships; Unsupervised learning; Clustering; Financial markets

1 INTRODUCTION
Natural physical systems often produce high-dimensional, nonlin-
ear time series data, which are prevalent across various domains.
Numerous contributions have beenmade to analyze such time series
from different perspectives [8–11, 13, 23, 24, 29, 32]. For example,
[10] explored financial time series and emphasized various statisti-
cal properties such as distributional characteristics, tail properties,
and extreme fluctuations.

High-dimensional time series can offer valuable insights through
the discovery of latent structures, such as lead-lag relationships.
These relationships are commonly observed and play a significant
role in the field of finance [2, 5, 7, 19, 21, 25, 31, 35, 36], the en-
vironment [12, 34], and biology [26]. For instance, [5] created a
directed network to capture pairwise lead-lag relationships among

equity prices in the US market. The analysis revealed clusters with
significant directed flow imbalance.

Dynamic time warping (DTW) is an algorithm to quantify simi-
larities between two time series, even when they exhibit variations
in speed, enabling the calculation of an optimal alignment between
them [4, 6, 20, 28]. The versatility of DTW is evident in its applica-
tion to diverse domains, such as financial markets [16, 17, 19, 30],
bioinformatics [1, 14], and robotics [27]. For example, [19] intro-
duced Multinomial Dynamic Time Warping (MDTW) to explore
lead-lag relationships in FX market data. [17] applied DTW and
found that global market price discovery oscillates between S&P
500 futures and FTSE 100 futures. Despite the widely recognized
importance and potentially high impact of the problem, limited
progress has been made in robustly using DTW for the inference
of lead-lag relationships in lagged multi-factor models.

1.1 Summary of main contributions
We introduce a computationally scalable framework for lead-lag
detection in high-dimensional time series based on DTW, with
clustering used as a denoising step. We show it is capable of reliably
detecting lead-lag relationships in a variety of factor model-based
simulated high-dimensional time series. In financial markets, we
leverage the detected lead-lag relationships to construct a profitable
trading strategy and demonstrate that our algorithm outperforms
the benchmark in most cases. Our algorithm is also faster than the
benchmark in terms of computing time by a factor of 10.

2 DYNAMIC TIMEWARPING
In this section, we introduce the DTW algorithm. Suppose we
have two time series, denoted as 𝐴 and 𝐵 with lengths 𝑛 and 𝑚,
respectively, shown in Figure 1 Step 1.

𝐴 = 𝑎1, 𝑎2, . . . , 𝑎𝑖 , . . . , 𝑎𝑛

𝐵 = 𝑏1, 𝑏2, . . . , 𝑏 𝑗 , . . . , 𝑏𝑚
(1)
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Figure 1: Step 1: Two time series 𝐴 and 𝐵 are similar, but they
are out of phase with each other. Step 2: The distance matrix,
which the (𝑖th , 𝑗 th ) element of thematrix has the value of the
Euclidean distance 𝑑

(
𝑎𝑖 , 𝑏 𝑗

)
from 𝐴 and 𝐵, respectively. Step

3: The cost matrix, which contains the optimal warping path,
is visually indicated by the red line. Step 4: The resulting
alignment between the two time series, 𝐴 and 𝐵, is shown.

In order to align two time series utilizing DTW, the process
involves constructing an 𝑛×𝑚 matrix, where the

(
𝑖th , 𝑗 th

)
element

of the matrix contains the Euclidean distance 𝑑
(
𝑎𝑖 , 𝑏 𝑗

)
between

the two points 𝑎𝑖 and 𝑏 𝑗 from 𝐴 and 𝐵, respectively, i.e. 𝑑
(
𝑎𝑖 , 𝑏 𝑗

)
=(

𝑎𝑖 − 𝑏 𝑗
)2. Each matrix element (𝑖, 𝑗) corresponds to the alignment

between the points 𝑎𝑖 and 𝑏 𝑗 . Figure 1 Step 2 illustrates an example
of the distance matrix.

A warping path, denoted as𝑊 , represents a consecutive set of
matrix elements that capture the mapping between time series 𝐴
and 𝐵. The index of the DTW can be expressed as follows

𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑘 , . . . ,𝑤K} max(𝑚,𝑛) ≤ K < 𝑚 + 𝑛 − 1 (2)

where the 𝑘th element of𝑊 is denoted as𝑤𝑘 = (𝑖, 𝑗)𝑘 .
The warping path must adhere to several constraints:
• Boundary: The warping path starts at𝑤1 = (1, 1) and ends
at𝑤𝐾 = (𝑚,𝑛). This ensures that the warping path initiates
from the bottom-left corner cell and terminates at the top-
right corner cell of the matrix.

• Continuity: For a given𝑤𝑘 = (𝑥,𝑦), the preceding element
𝑤𝑘−1 = (𝑥 ′, 𝑦′), where 𝑥 − 𝑥 ′ ≤ 1 and 𝑦 − 𝑦′ ≤ 1. This
restriction allows only adjacent cell transitions within the
warping path.

• Monotonicity: For a given 𝑤𝑘 = (𝑥,𝑦), the preceding ele-
ment𝑤𝑘−1 = (𝑥 ′, 𝑦′), where 𝑥 − 𝑥 ′ ≥ 0 and 𝑦 −𝑦′ ≥ 0. This

constraint ensures that the points in𝑊 exhibit monotoni-
cally increasing indices over time.

Among the various warping paths that adhere to the aforemen-
tioned constraints, our objective is to identify the path that mini-
mizes the warping cost

DTW(𝐴, 𝐵) = min

√√√ K∑︁
𝑘=1

𝑤𝑘 . (3)

To find this optimal path, dynamic programming techniques are
employed to evaluate the following subsequent recurrence relation,
which defines the cumulative distance 𝑐 (𝑖, 𝑗) as the distance 𝑑 (𝑖, 𝑗)
located in the current cell as well as the minimum of the cumulative
distances of the adjacent elements

𝑐 (𝑖, 𝑗) = 𝑑
(
𝑎𝑖 , 𝑏 𝑗

)
+min{𝑐 (𝑖 − 1, 𝑗 − 1), 𝑐 (𝑖 − 1, 𝑗), 𝑐 (𝑖, 𝑗 − 1)} (4)

In Figure 1 Step 3, the optimal path is depicted by a red line. The
resulting alignment can be seen in Figure 1 Step 4.

Note that the Euclidean distance between two time series can be
considered as a specific case of DTW, where the warping path𝑊 is
constrained such that 𝑤𝑘 = (𝑖, 𝑗)𝑘 with 𝑖 = 𝑗 = 𝑘 . In other words,
the window size 𝑆 is set to 0. This constraint is applicable only when
the two time series have the same length. A visual comparison of
the Euclidean distance and DTW is presented in Figure 2.

Euclidean DTW

Figure 2: Left: Euclidean distance measures direct the 𝑖th

point in one time series aligns with the 𝑖th point in another
time series, assuming the same length, which will yield a
pessimistic dissimilarity measure. Right: DTW accounts for
variations in speed and calculates optimal alignment between
two time series, allowing for different lengths, which is more
flexible in calculating the intuitive distance measure.

3 MODEL SETUP
In this section, we will introduce both the standard and lagged
versions of the multi-factor model, which we will adopt as the
underlying model for our time series data. Specifically, we will
employ the lagged multi-factor model to validate our algorithm
using synthetic data before applying it to real-world scenarios. The
fundamental idea behind these models is to represent a time series
as a (noisy) combination of factors, with each factor exhibiting
different levels of exposure. The model we propose for the detec-
tion of lead-lag relationships exhibits significant parallels with the
problem of multireference alignment (MRA), which is concerned
with the estimation of a single signal from a set of 𝑛 cyclically and
noisily shifted copies of itself, as shown in [3].
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3.1 Description
Let us begin by revisiting the standard multi-factor model for a
multivariate time series

𝑋 𝑡𝑖 =

𝑘∑︁
𝑗=1

𝐵𝑖 𝑗 𝑓
𝑡
𝑗 + 𝜖

𝑡
𝑖 𝑖 = 1, . . . , 𝑛; 𝑡 = 1, . . . ,𝑇 , (5)

where 𝑋 𝑡
𝑖
is the time series 𝑖 (e.g., the excess return of a financial

asset) at time 𝑡 , 𝑘 is the number of factors, 𝐵𝑖 𝑗 is the exposure of
time series 𝑖 to factor 𝑗 , 𝑓 𝑡

𝑗
is the factor 𝑗 at time 𝑡 , and 𝜖𝑡

𝑖
is the

noise at time 𝑡 , with variance 𝜎2. Furthermore, we have 𝑛 as the
total number of time series, and𝑇 as the total number of time steps.

In this paper, our emphasis is on the lagged version of the multi-
factor model, which can be expressed as follows

𝑋 𝑡𝑖 =

𝑘∑︁
𝑗=1

𝐵𝑖 𝑗 𝑓
𝑡−𝐿𝑖 𝑗
𝑗

+ 𝜖𝑡𝑖 𝑖 = 1, . . . , 𝑛; 𝑡 = 1, . . . ,𝑇 , (6)

where the primary distinction in the lagged multi-factor model, in
comparison to the standard multi-factor model, is the inclusion of
𝐿𝑖 𝑗 , representing the lag at which time series 𝑖 is exposed to factor
𝑗 . Consequently, 𝑓 𝑡−𝐿𝑖 𝑗

𝑗
corresponds to the value of factor 𝑗 at time

𝑡 − 𝐿𝑖 𝑗 .
In the laggedmulti-factormodel (6), we consider two key settings,

which are first introduced in [36]
• Single Membership: Each time series has a lagged expo-
sure to a single factor. We consider the following two main
categories.
– Homogeneous Setting: The model only has one factor,
i.e. 𝑘 = 1.

– Heterogeneous Setting: The model has more than one
factor, i.e. 𝑘 ≥ 2. However, each time series is exposed
only to a single factor.

• Mixed Membership: Each time series is permitted to have
a lagged exposure to more than one factor, resulting in a
mixed configuration. Therefore, the model comprises at least
two factors, indicated by 𝑘 ≥ 2.

In this paper, our primary objective is to perform inference on the
lag values 𝐿𝑖 𝑗 in the lagged multi-factor model, specifically focusing
on the single membership setting. We do not place emphasis on
the inference of the unknown coefficient matrix 𝐵 and factors 𝑓 . As
shown later, the estimation of 𝐿𝑖 𝑗 alone holds practical significance
in specific applications, such as finance. The investigation of the
mixed membership setting is left for future work.

4 METHODOLOGY
In this section, we propose a robust algorithm for detecting lead-
lag relationships using the combination of DTW and K-Medoids
(DTW_KMed).

We consider a set of time series denoted as 𝑋𝑛×𝑇 as our input.
Initially, we employ DTW to compute pairwise distances between
every pair of time series from 𝑋𝑛×𝑇 . Subsequently, we apply K-
Medoids clustering to group similar time series into clusters based
on the DTW distance matrix. The pairs of time series 𝑖 and 𝑗 are
denoted as {𝑋𝑖 , 𝑋 𝑗 }. For each cluster 𝜙𝑑 (𝑑 = 1, . . . , 𝐾), we record
the path𝑊 {𝑋𝑖 , 𝑋 𝑗 } by performing DTW on {𝑋𝑖 , 𝑋 𝑗 }. Then, we

calculate the difference for each index pair in the path𝑊 , denoted
as Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 }). The calculation can be expressed as follows

Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 }) = {Δ(𝑤1),Δ(𝑤2), . . . ,Δ(𝑤𝑘 ), . . . ,Δ(𝑤𝐾 )} (7)

where max(𝑚,𝑛) ≤ K < 𝑚 + 𝑛 − 1, and Δ(𝑤𝐾 ) = Δ((𝑖, 𝑗)𝑘 ) = 𝑖 − 𝑗 .
Then, the value of relative lags of {𝑋𝑖 , 𝑋 𝑗 } in 𝜙𝑑 (estimated by

mode or median) can be expressed as

𝛾{𝑋𝑖 , 𝑋 𝑗 } =
{
Mode(Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 })) Mode estimation
Median(Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 })) Median estimation (8)

For instance, once we have applied K-medoids clustering using
the DTW distance matrix computed from 𝑋𝑛×𝑇 , let’s consider two
time series, 𝑋1 and 𝑋2, that contain 100 data points and belong
to the same cluster, with a known ground truth lag value of 3.
Subsequently, we calculate the relative lags of Δ(𝑊 {𝑋1, 𝑋2}). Table
1 illustrates the relative lags obtained from {𝑋1, 𝑋2}.

Lag 0 1 2 3
Counts 2 13 24 75

Table 1: The relative lags from two time series.

By employing mode or median estimation of Δ(𝑊 {𝑋1, 𝑋2}), de-
noted as 𝛾{𝑋1, 𝑋2}, with a value of 3, as evident from Table 1, we
can conclude that the result remains consistent and robust with
respect to the ground truth value. Despite the presence of outliers,
such as {0, 1, 2}, in Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 }), the estimated lag value aligns
well with the ground truth value of 3.

Next step, the construction of the lead-lag matrix Γ𝑛×𝑛 is accom-
plished by

Γ𝑖 𝑗 =

{
𝛾{𝑋𝑖 , 𝑋 𝑗 } if 𝑋𝑖 and 𝑋 𝑗 are in the same cluster
0 otherwise

(9)
We summarize the above procedures in Algorithm 1.

Algorithm 1 DTW_KMed for Lead-lag Relationship Detection

Input: Time series matrix 𝑋𝑛×𝑇 . Output: Lead-lag matrix Γ𝑛×𝑛 .
1: Compute the DTW distance matrix from 𝑋𝑛×𝑇 .
2: Apply K-medoids clustering using the DTW distance matrix.
3: For each cluster 𝜙𝑑 (𝑑 = 1, . . . , 𝐾 ):
• Record path𝑊 from every pair of time series {𝑋𝑖 , 𝑋 𝑗 }.
• Calculate the difference Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 }) for every index pair
in the path𝑊

• Record lag 𝛾{𝑋𝑖 , 𝑋 𝑗 } by taking mode or median estimation
of the difference Δ(𝑊 {𝑋𝑖 , 𝑋 𝑗 }).

4: Calculate the lead-lag matrix Γ𝑛×𝑛 by setting 𝛾{𝑋𝑖 , 𝑋 𝑗 }, where
{𝑋𝑖 , 𝑋 𝑗 } is in the same cluster. Otherwise, the entry is set to 0.

5 SYNTHETIC DATA EXPERIMENTS
The synthetic data experiments serve the purpose of simulating
data generated by a multi-factor model with a known ground truth
lead-lag matrix 𝐿. The main objective is to evaluate and validate the
performance of our proposed algorithms under various scenarios.
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5.1 Synthetic data generating process
As noted earlier, our focus is the single membership setting. We
generate synthetic data from the lagged multi-factor model (6) with
𝑘 = {1, 2} factors. Furthermore, we specify the maximum number
of lags as𝑀 = 5 and the length of the time series as 𝑇 = 100. The
factors 𝑓 and noise 𝜖 are drawn from N(0, 1). We define 𝐵 and 𝐿 as
follows:
Homogeneous Setting (𝑘 = 1)

𝐵

1
1
1
1
1
1



𝐿

0
1
2
3
4
5



Heterogeneous Setting (𝑘 = 2)
𝐵

1 0
1 0
1 0
0 1
0 1
0 1



𝐿

0 0
2 0
4 0
0 0
0 2
0 4


Table 2: For each setting: Left: Loading matrix 𝐵. Right: Lag
matrix 𝐿.

For validation purposes, we set the number of time series as
𝑛 = 120 to demonstrate the effectiveness of our algorithms. When
estimating the lead-lag matrix, we use a sliding window of length
𝑙 = 21 and a shift of 𝑠 = 1. After estimating the lead-lag matrix, we
calculate the error matrix 𝐸 to evaluate the performance, which we
denote as

𝐸𝑛×𝑛 = Γ𝑛×𝑛 − Ψ𝑛×𝑛, (10)

where Γ𝑛×𝑛 is the estimated lead-lag matrix, and Ψ𝑛×𝑛 is the ground
truth lead-lag matrix, which can be obtained from 𝐿𝑛×𝑘 .

5.2 Simulation results
In the homogeneous setting (𝑘 = 1), as shown in Figure 3, all five
algorithms (KM as K-Means, Euc_KMed as Euclidean + K-Medoids,
Man_KMed as Manhattan + K-Medoids, Cos_KMed as Cosine +
K-Medoids, and DTW_KMed as DTW + K-Medoids) demonstrate
optimal performance with an Adjusted Rand Index (ARI) of 1. This
indicates that they successfully detect the lead-lag relationships
with high accuracy when there is only one underlying factor, and
this result is expected based on our experimental setup. However,
in the heterogeneous setting (𝑘 = 2), we observe a general de-
crease in ARI as the noise level 𝜎 increases. Despite this trend,
our proposed DTW_KMed algorithm achieves a consistently high
ARI value within the range of 𝜎 from 0 to 1.5. This performance
surpasses the other algorithms, which maintain relatively lower
ARI values across the noise levels. This observation highlights that
DTW excels in capturing intricate lead-lag patterns with a higher
level of robustness.

In DTW, the window size 𝑆 defines the maximum allowed shifts
from the two diagonals smaller than this number. Hence, selecting
the appropriate window size 𝑆 is of critical importance in DTW.
The choice of 𝑆 affects how much temporal distortion is allowed
between time series, thereby influencing the alignment and cap-
turing the underlying lead-lag relationships effectively. Properly
tuning 𝑆 enables DTW to strike a balance between capturing com-
plex patterns while avoiding excessive warping that might lead to
misclassification.

Homogeneous Setting (𝑘 = 1) Heterogeneous Setting (𝑘 = 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.96

0.98

1.00

1.02

1.04

AR
I

KM
Euc_KMed
Man_KMed
Cos_KMed
DTW_KMed

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

KM
Euc_KMed
Man_KMed
Cos_KMed
DTW_KMed

Figure 3: Average and confidence interval for the ARI with
different𝜎 levels based on 100 simulations for every iteration.

Across the synthetic experiments, we set the true lag equal to 5.
In Figure 4, we observe similar results to the homogeneous setting
in Figure 3. However, in the heterogeneous setting, the ARI tends
to be relatively lower when the window size ranges from 0 to 5.
Conversely, when the window size equals or exceeds 5, the ARI
increases significantly.

This behaviour aligns with the rationale that DTW requires a
window size that equals or exceeds the true lag of 5. This enables
DTW to calculate the optimal alignment with enough flexibility to
capture the actual lead-lag relationship effectively. When the win-
dow size is too restrictive, it may not allow for sufficient temporal
distortion, leading to suboptimal alignment and lower ARI values
in the presence of multiple factors. As such, selecting an appropri-
ate window size is crucial to ensure accurate lead-lag relationship
detection with DTW.

Homogeneous Setting (𝑘 = 1) Heterogeneous Setting (𝑘 = 2)

0 1 2 3 4 5 6 7 8 9 10
S

0.96

0.98

1.00

1.02

1.04
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I

DTW_KMed

0 1 2 3 4 5 6 7 8 9 10
S

0.0

0.2

0.4

0.6

0.8

AR
I

DTW_KMed

Figure 4: Average and confidence interval for the ARI with
different window sizes 𝑆 based on 100 simulations for every
iteration (the true lag is 5).

As depicted in Figure 5, for both the homogeneous and hetero-
geneous settings, the Mean Squared Error (MSE) remains close to 0
when 𝜎 ranges from 0.0 to 0.5. However, as 𝜎 increases beyond 0.5,
the MSE rises significantly for both algorithms. Overall, both algo-
rithms demonstrate acceptable performance for low noise levels,
but the DTW_KMed mode estimation (DTW_KMed_Mod) exhibits
better performance across varying levels of noise than DTW_KMed
median estimation (DTW_KMed_Med).

With the true lag set as 5 and 𝜎 as 1, the DTW_KMed_Mod
algorithm outperforms the DTW_KMed_Med algorithm in the ho-
mogeneous setting (𝑘 = 1). In the heterogeneous setting (𝑘 = 2),
when the window size 𝑆 ranges from 0 to 5, the MSE is higher for
both algorithms. However, as the window size 𝑆 exceeds 5, both
algorithms achieve a lower MSE. This behaviour aligns with the
understanding that DTW requires a 𝑆 that equals or exceeds the
true lag of 5 to effectively calculate the optimal alignment. Thus,
when the 𝑆 is less than 5, the alignment may not fully capture the
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Homogeneous Setting (𝑘 = 1) Heterogeneous Setting (𝑘 = 2)
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Figure 5: Average and confidence interval for the MSE with
different𝜎 levels based on 100 simulations for every iteration.

true lead-lag relationship, resulting in higher MSE values. However,
when the 𝑆 is larger than or equal to 5, both algorithms achieve
better alignment, leading to reduced MSE values.

Homogeneous Setting (𝑘 = 1) Heterogeneous Setting (𝑘 = 2)
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Figure 6: Average and confidence interval for the MSE with
different window sizes 𝑆 based on 100 simulations for every
iteration (the true lag is 5, and 𝜎 is 1).

6 FINANCIAL DATA EXPERIMENTS
6.1 Data description
In this section, we conduct a large-scale experiment using financial
data to apply our algorithms. As mentioned earlier, this is a context
where lead-lag relationships naturally occur. For our financial data
experiments, we consider three different data sets, each varying
in terms of the number and type of assets, as well as the number
of days included in the data set. All the data sets are considered
at a daily frequency. The summarized details of the data sets are
presented in Table 3, and for more detailed information, see [36].

Data source Type Freq # of assets Start date End date # of days

Wharton’s CRSP Equity Daily 679 2000/01/03 2019/12/31 5211
Wharton’s CRSP ETF Daily 14 2006/04/12 2019/07/01 3324
Pinnacle Data Corp Futures Daily 52 2000/01/05 2020/10/16 5166

Table 3: Summary of the three financial data sets considered
in the numerical experiments.

6.2 Data pre-processing
With regard to the US equity and ETF data sets, we use the close-
to-close adjusted daily returns from Wharton’s CRSP. Due to the
large number of NaNs in the equity data set, we drop the days for
which more than 10% of the equities have zero returns as well as the
equities for which more than 50% of days have zero returns. Instead
of working with raw returns, we consider the market excess returns,
a standard measure of how well each equity performed relative
to the broader market. For both of these data sets, the return of

the S&P Composite Index is selected to compute the market excess
returns by subtracting it from the return of each asset (i.e., for
simplicity, we assume each asset has 𝛽 = 1 exposure to the market).
Also, we winsorize the extreme value of excess returns for which
any value is larger than 0.15 or smaller than -0.15.

For the futures data set, we use the close-to-close price series
from the Pinnacle Data Corp CLC data set, and discard the days
for which more than 10% of the futures have zero prices in the
respective dates, and drop the futures for which more than 160
days have zero prices. Afterwards, we first use forward-fill, then
backward-fill to fill out the zero prices. Lastly, we compute the
log-return from the close-to-close price. The remainder of the data
pre-processing is the same as above.

6.3 Benchmark
In order to evaluate our proposed methodology, we also introduce
a benchmark to detect lead-lag relationships without the use of
clustering. It is very common to compute a sample cross-correlation
function (CCF) between two time series. Also, we use four algo-
rithms (KM_Mod, KM_Med, SP_Mod, and SP_Med) as our bench-
mark from [36].

6.4 Trading strategies
In this section, we present the trading strategies employed in this
paper. Our approach involves a series of steps applied to a dataset
consisting of 𝑛 time series, each having a length of 𝑇 . Firstly, we
extract the data by implementing a sliding window approach with
a fixed length of 𝑙 = 21. Subsequently, we employ the DTW_KMed
algorithm to detect the lead-lag relationship, which is further vali-
dated through a synthetic data experiment. Once the lead-lagmatrix
is obtained, We then utilize the lead-lag matrix to rank the time
series from the most leading to the most lagging using the Row-
Sum ranking [15, 18], in order to then group the time series into
leaders and laggers, where the leaders are employed to forecast the
behaviour of the laggers.

In our trading strategy, we identify the top 𝛼 = 0.75 fraction of
the time series as Leaders 𝐷𝛼 , while the remaining bottom fraction
𝛽 = 1 − 𝛼 is classified as Laggers 𝐺𝛽 . To predict the future per-
formance, we employ the exponentially weighted moving average
(EWMA) signal, considering the past 𝑝 = {1, 3, 5, 7} days of average
winsorized time series excess returns from𝐷𝛼 . This prediction aims
to estimate the average excess returns of 𝐺𝛽 and 𝐷𝛼 in the subse-
quent 𝛿 = {1, 3, 5, 7} days. We assume that 𝐺𝛽 can catch up with
𝐷𝛼 , while 𝐷𝛼 provides the necessary momentum to sustain the
trend over the 𝛿 days. To ensure continuous trading, we shift the
sliding window by ℎ = 1 and repeat the lead-lag matrix calculation
and ranking steps until the end of the time series. Figure 7 provides
a depiction of our trading pipeline at time 𝑡 .

6.5 Performance evaluation
When assessing the effectiveness of various trading strategies, we
rely on the following metrics to evaluate their performance. We
compute the Profit and Loss (PnL) of 𝐺𝛽 on a given day 𝑡 + 𝛿 as

PnL𝑡+𝛿
𝐺𝛽

= sign(EWMA(𝑟𝑒𝑡𝑡−𝑝
𝐷𝛼

: 𝑟𝑒𝑡𝑡𝐷𝛼
)) · 𝑟𝑒𝑡𝑡+𝛿

𝐺𝛽
, 𝑡 = 𝑙, . . . ,𝑇 − 𝛿,

(11)
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Figure 7: Illustration of the trading pipeline at time 𝑡 , given
the EWMA of past 𝑝 days of average winsorized time series
excess returns to predict future 𝛿 days average excess returns.

since the strategy makes profits whenever the sign of the forecast
agrees with the sign of the future return. Correspondingly, the PnL
of 𝐷𝛼 on a given day 𝑡 + 𝛿 is given by

PnL𝑡+𝛿
𝐷𝛼

= sign(EWMA(𝑟𝑒𝑡𝑡−𝑝
𝐷𝛼

: 𝑟𝑒𝑡𝑡𝐷𝛼
)) · 𝑟𝑒𝑡𝑡+𝛿

𝐷𝛼
, 𝑡 = 𝑙, . . . ,𝑇 − 𝛿,

(12)
where 𝑟𝑒𝑡𝑡−𝑝

𝐷𝛼
and 𝑟𝑒𝑡𝑡

𝐷𝛼
are the excess return of 𝐷𝛼 at 𝑡 − 𝑝 and 𝑡 ,

respectively, while EWMA(𝑟𝑒𝑡𝑡−𝑝
𝐷𝛼

: 𝑟𝑒𝑡𝑡
𝐷𝛼

) denotes the exponen-
tially weighted moving average from the excess return of 𝐷𝛼 from
𝑡 −𝑝 to 𝑡 . Furthermore, 𝑟𝑒𝑡𝑡+𝛿

𝐺𝛽
depicts the mean of the excess return

of 𝐺𝛽 at 𝑡 + 𝛿 , and 𝑟𝑒𝑡𝑡+𝛿
𝐷𝛼

is the mean of the excess return of 𝐷𝛼 at
𝑡 + 𝛿 .

We rescale the PnL by their volatility to target equal risk assign-
ment, and set our annualized volatility target 𝜎tgt to be 0.15.

PnLrescaled =
𝜎target

STD(PnL) ·
√
252

· PnL. (13)

Based on PnLrescaled, we proceed to calculate the following an-
nualized metrics, in line with the works of [22, 33, 36].

• Profitability: cumulative PnL, annualized expected excess
return (E[Returns]), hit rate.

• Risk: volatility, downside deviation, maximum drawdown.
• Performance: Sortino ratio, Calmar ratio, average profit /
average loss, PnL per trade, Sharpe ratio, P-value.

6.6 Results
In the case of the equity data set, our findings indicate that utilizing
the EWMA on the past seven days of the average winsorized time
series excess returns of the 𝐷𝛼 , with 𝛼 = 0.75, for predicting the
average future seven days of the excess return of the 𝐺𝛽 and 𝐷𝛼
consistently yields favourable performance across all algorithms.
Figure 8 presents a comparison of cumulative PnL for the 𝐺𝛽 strat-
egy (left) and 𝐷𝛼 strategy (right). In the 𝐺𝛽 strategy, before 2008,
the Sharpe ratio (SR) of DTW_KMed_Mod and DTW_KMed_Med
outperformed the other algorithms. However, after 2008, except
for CCF, all algorithms displayed a substantial growth trend and
eventually achieved similar performance levels. On the other hand,
in the 𝐷𝛼 strategy, before 2008, all algorithms performed at roughly
the same level. However, after 2008, DTW_KMed_Med emerged
as the most profitable strategy, clearly outperforming others with
an SR of 0.93. Additionally, Tables [4, 5] present the performance
of DTW_KMed_Mod, DTW_KMed_Med, and other algorithms for
the𝐺𝛽 strategy and 𝐷𝛼 strategy based on various metrics (rescaled
to target volatility).

Tables [6, 7] along with Figure 9 present the results for the ETF
data set using the same settings as for the equity data. In the 𝐺𝛽
strategy, we do not find evidence of consistently detecting lead-lag
relationships that lead to a profitable outcome. However, in the 𝐷𝛼
strategy, the SR of SP_Med and DTW_KMed_Mod are leading with
SR values of 0.8 and 0.78, respectively.

Results for the futures data, using the same settings as for the
equity data, are presented in Tables [8, 9], along with Figure 10. For
this data set, we do not observe the ability to consistently detect
profitable lead-lag relationships for any of the strategies.
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Figure 8: Equity data set: cumulative PnL for 𝐺𝛽 strategy
(left) and 𝐷𝛼 strategy (right) - rescaled to target volatility.
The experiment has been set with the values 𝑝 = 7, 𝛿 = 7,
𝛼 = 0.25, and 𝐾 = 5.

𝐺𝛽 strategy Benchmark Proposed

CCF KM_Mod KM_Med SP_Mod SP_Med DTW_KMod_Mod DTW_KMod_Med

E[Returns] 0.089 0.126 0.118 0.127* 0.104 0.109 0.115
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.105 0.103 0.101* 0.103 0.105 0.106 0.107
Maximumdrawdown -0.313 -0.26 -0.215 -0.214 -0.287 -0.205 -0.188*
Sortino ratio 0.85 1.222 1.166 1.237* 0.988 1.026 1.084
Calmar ratio 0.285 0.484 0.548 0.594 0.362 0.531 0.614*
Hit rate 0.499 0.521* 0.51 0.516 0.519 0.514 0.512
Avg. profit / avg. loss 1.117* 1.068 1.107 1.091 1.051 1.08 1.1
PnL per trade 3.542 4.996 4.672 5.041* 4.119 4.317 4.581
Sharpe ratio 0.595 0.839 0.785 0.847* 0.692 0.725 0.77
P-value 0.009 0* 0* 0* 0.002 0.001 0.001

Table 4: Equity data set: performance metrics for𝐺𝛽 strategy
- rescaled to target volatility. The experiment has been set
with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25, and 𝐾 = 5.

𝐺𝛽 strategy Benchmark Proposed

CCF KM_Mod KM_Med SP_Mod SP_Med DTW_KMod_Mod DTW_KMod_Med

E[Returns] 0.101 0.122 0.095 0.129 0.134 0.128 0.14*
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.105 0.107 0.108 0.106 0.105 0.103 0.102*
Maximumdrawdown -0.288 -0.251 -0.21* -0.283 -0.227 -0.276 -0.297
Sortino ratio 0.964 1.148 0.876 1.222 1.269 1.238 1.376*
Calmar ratio 0.352 0.488 0.452 0.456 0.59* 0.463 0.472
Hit rate 0.518 0.521 0.513 0.522 0.525* 0.52 0.523
Avg. profit / avg. loss 1.05 1.069 1.066 1.072 1.065 1.078* 1.078*
PnL per trade 4.018 4.856 3.765 5.121 5.312 5.073 5.557*
Sharpe ratio 0.675 0.816 0.632 0.86 0.892 0.852 0.934*
P-value 0.003 0* 0.005 0* 0* 0* 0*

Table 5: Equity data set: performance metrics for 𝐷𝛼 strategy
- rescaled to target volatility. The experiment has been set
with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25, and 𝐾 = 5.
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Figure 9: ETF data set: cumulative PnL for 𝐺𝛽 strategy (left)
and 𝐷𝛼 strategy (right) - rescaled to target volatility. The
experiment has been set with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25,
and 𝐾 = 5.

𝐺𝛽 strategy Benchmark Proposed

CCF KM_Mod KM_Med SP_Mod SP_Med DTW_KMod_Mod DTW_KMod_Med

E[Returns] -0.019 0.02 0.022 0.033 -0.024 0.021 0.045
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.116 0.115 0.116 0.113 0.123 0.111 0.115
Maximumdrawdown -0.668 -0.525 -0.465 -0.38 -0.653 -0.507 -0.428
Sortino ratio -0.165 0.176 0.188 0.294 -0.192 0.186 0.394
Calmar ratio -0.029 0.038 0.047 0.088 -0.036 0.041 0.106
Hit rate 0.492 0.512 0.499 0.509 0.509 0.512 0.513
Avg. profit / avg. loss 1.006 0.978 1.034 1.009 0.935 0.98 1.005
PnL per trade -0.76 0.8 0.87 1.325 -0.939 0.818 1.799
Sharpe ratio -0.128 0.134 0.146 0.223 -0.158 0.137 0.302
P-value 0.644 0.628 0.598 0.421 0.568 0.619 0.275

Table 6: ETF data set: performance metrics for 𝐺𝛽 strategy
- rescaled to target volatility. The experiment has been set
with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25, and 𝐾 = 5.

𝐺𝛽 strategy Benchmark Proposed

CCF KM_Mod KM_Med SP_Mod SP_Med DTW_KMod_Mod DTW_KMod_Med

E[Returns] 0.056 0.065 0.022 0.05 0.121 0.117 0.091
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.097 0.097 0.105 0.104 0.098 0.093 0.095
Maximumdrawdown -0.362 -0.267 -0.385 -0.298 -0.22 -0.256 -0.31
Sortino ratio 0.581 0.676 0.213 0.474 1.236 1.257 0.955
Calmar ratio 0.156 0.245 0.058 0.166 0.548 0.456 0.293
Hit rate 0.504 0.502 0.5 0.508 0.513 0.521 0.517
Avg. profit / avg. loss 1.056 1.077 1.027 1.03 1.097 1.056 1.039
PnL per trade 2.234 2.591 0.889 1.965 4.784 4.635 3.608
Sharpe ratio 0.375 0.435 0.149 0.33 0.804 0.779 0.606
P-value 0.169 0.105 0.588 0.229 0.003 0.004 0.026

Table 7: ETF data set: performance metrics for 𝐷𝛼 strategy
- rescaled to target volatility. The experiment has been set
with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25, and 𝐾 = 5.
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Figure 10: Futures data set: cumulative PnL for 𝐺𝛽 strategy
(left) and 𝐷𝛼 strategy (right) - rescaled to target volatility.
The experiment has been set with the values 𝑝 = 7, 𝛿 = 7,
𝛼 = 0.25, and 𝐾 = 5.

𝐺𝛽 strategy Benchmark Proposed

CCF KM_Mod KM_Med SP_Mod SP_Med DTW_KMod_Mod DTW_KMod_Med

E[Returns] 0.013 -0.001 0.004 -0.005 -0.024 0.047 0.036
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.104 0.102 0.103 0.107 0.109 0.103 0.104
Maximumdrawdown -0.535 -0.587 -0.538 -0.544 -0.698 -0.316 -0.376
Sortino ratio 0.121 -0.01 0.042 -0.049 -0.217 0.453 0.347
Calmar ratio 0.024 -0.002 0.008 -0.01 -0.034 0.147 0.096
Hit rate 0.502 0.498 0.494 0.497 0.497 0.506 0.505
Avg. profit / avg. loss 1.007 1.008 1.028 1.006 0.984 1.033 1.023
PnL per trade 0.499 -0.039 0.173 -0.206 -0.94 1.848 1.427
Sharpe ratio 0.084 -0.007 0.029 -0.035 -0.158 0.31 0.24
P-value 0.705 0.976 0.896 0.876 0.476 0.159 0.278

Table 8: Futures data set: performancemetrics for𝐺𝛽 strategy
- rescaled to target volatility. The experiment has been set
with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25, and 𝐾 = 5.

𝐺𝛽 strategy Benchmark Proposed

CCF KM_Mod KM_Med SP_Mod SP_Med DTW_KMod_Mod DTW_KMod_Med

E[Returns] 0.061 0.036 0.036 0.005 0.012 0.029 0.021
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.107 0.108 0.108 0.11 0.105 0.107 0.107
Maximumdrawdown -0.393 -0.412 -0.404 -0.581 -0.524 -0.424 -0.502
Sortino ratio 0.574 0.337 0.331 0.042 0.112 0.269 0.193
Calmar ratio 0.156 0.088 0.089 0.008 0.022 0.068 0.041
Hit rate 0.511 0.502 0.499 0.491 0.496 0.498 0.501
Avg. profit / avg. loss 1.032 1.038 1.05 1.042 1.032 1.042 1.022
PnL per trade 2.439 1.445 1.424 0.183 0.468 1.139 0.822
Sharpe ratio 0.41 0.243 0.239 0.031 0.079 0.191 0.138
P-value 0.064 0.272 0.28 0.889 0.723 0.387 0.533

Table 9: Futures data set: performancemetrics for𝐷𝛼 strategy
- rescaled to target volatility. The experiment has been set
with the values 𝑝 = 7, 𝛿 = 7, 𝛼 = 0.25, and 𝐾 = 5.

7 ROBUSTNESS ANALYSIS
We test the robustness of the DTW_KMod_Mod and
DTW_KMod_Med by conducting experiments with differ-
ent numbers of clusters 𝐾 . Specifically, for the equity data set,
we consider 𝐾 = {5, 10, 15, 20}. In Table 10, we observe that the
performance of both algorithms does not change significantly
while maintaining a high SR. It is worth noting that the P-values
are almost all lower than 0.05, indicating that all the results are
statistically significant in our experiments.

Table 11 presents the performance of the DTW_KMod_Mod and
DTW_KMod_Med tested on the ETF data set. Due to the smaller
cross-section for this data set, we only consider the 𝐾 values of 5
and 10. Both algorithms demonstrate fairly good performance for
high alpha in the 𝐷𝛼 strategy.

Table 12 presents the performance of the DTW_KMod_Mod and
DTW_KMod_Med on the futures data set, with 𝐾 ranging from 5
to 20 in increments of 5. It is observed that for this data set, the SR
for the 𝐷𝛼 strategy tends to be more sensitive to changes in 𝐾 , and
achieving profitability becomes challenging.



ICAIF ’23, November 27–29, 2023, New York City, NY Yichi Zhang, Mihai Cucuringu, Alexander Y. Shestopaloff, and Stefan Zohren

DTW_KMod_Mod 𝐺𝛽 strategy 𝐷𝛼 strategy

𝐾 5 10 15 20 5 10 15 20

E[Returns] 0.109 0.098 0.098 0.096 0.128 0.106 0.114 0.101
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.106 0.107 0.108 0.108 0.103 0.105 0.105 0.105
Maximum drawdown -0.205 -0.192 -0.198 -0.235 -0.276 -0.27 -0.221 -0.272
Sortino ratio 1.026 0.92 0.908 0.891 1.238 1.007 1.084 0.961
Calmar ratio 0.531 0.512 0.497 0.408 0.463 0.392 0.514 0.372
Hit rate 0.514 0.512 0.516 0.514 0.52 0.519 0.522 0.519
Avg. profit / avg. loss 1.08 1.075 1.058 1.066 1.078 1.051 1.05 1.044
PnL per trade 4.317 3.9 3.906 3.805 5.073 4.201 4.511 4.012
Sharpe ratio 0.725 0.655 0.656 0.639 0.852 0.706 0.758 0.674
P-value 0.001 0.004 0.004 0.005 0 0.002 0.001 0.003

DTW_KMod_Med 𝐺𝛽 strategy 𝐷𝛼 strategy

𝐾 5 10 15 20 5 10 15 20

E[Returns] 0.115 0.097 0.083 0.092 0.14 0.116 0.099 0.112
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.107 0.107 0.109 0.109 0.102 0.104 0.105 0.104
Maximum drawdown -0.188 -0.197 -0.226 -0.21 -0.297 -0.226 -0.241 -0.274
Sortino ratio 1.084 0.907 0.76 0.844 1.376 1.112 0.946 1.083
Calmar ratio 0.614 0.493 0.367 0.437 0.472 0.513 0.413 0.41
Hit rate 0.512 0.513 0.509 0.513 0.523 0.519 0.514 0.517
Avg. profit / avg. loss 1.1 1.069 1.07 1.065 1.078 1.067 1.067 1.068
PnL per trade 4.581 3.851 3.293 3.646 5.557 4.596 3.948 4.459
Sharpe ratio 0.77 0.647 0.553 0.612 0.934 0.772 0.663 0.749
P-value 0.001 0.004 0.015 0.007 0 0.001 0.003 0.001

Table 10: Equity data set: robustness analysis for 𝐾 - rescaled
to target volatility. The experiment has been set with the
values 𝑝 = 7, and 𝛿 = 7.

DTW_KMod_Mod 𝐺𝛽 strategy 𝐷𝛼 strategy

𝐾 5 10 5 10

E[Returns] 0.021 0.058 0.117 0.07
Volatility 0.15 0.15 0.15 0.15
Downside deviation 0.111 0.116 0.093 0.098
Maximum drawdown -0.507 -0.353 -0.256 -0.321
Sortino ratio 0.186 0.505 1.257 0.715
Calmar ratio 0.041 0.166 0.456 0.219
Hit rate 0.512 0.506 0.521 0.505
Avg. profit / avg. loss 0.98 1.059 1.056 1.067
PnL per trade 0.818 2.321 4.635 2.783
Sharpe ratio 0.137 0.39 0.779 0.468
P-value 0.619 0.161 0.004 0.088

DTW_KMod_Med 𝐺𝛽 strategy 𝐷𝛼 strategy

𝐾 5 10 5 10

E[Returns] 0.045 0.063 0.091 0.061
Volatility 0.15 0.15 0.15 0.15
Downside deviation 0.115 0.113 0.095 0.098
Maximum drawdown -0.428 -0.415 -0.31 -0.388
Sortino ratio 0.394 0.561 0.955 0.621
Calmar ratio 0.106 0.153 0.293 0.157
Hit rate 0.513 0.508 0.517 0.507
Avg. profit / avg. loss 1.005 1.054 1.039 1.045
PnL per trade 1.799 2.514 3.608 2.413
Sharpe ratio 0.302 0.422 0.606 0.405
P-value 0.275 0.128 0.026 0.14

Table 11: ETF data set: robustness analysis for 𝐾 - rescaled to
target volatility. The experiment has been set with the values
𝑝 = 7, and 𝛿 = 7.

8 CONCLUSION AND FUTUREWORK
In this study, we introduce a Dynamic Time Warping (DTW) based
approach for robustly detecting lead-lag relationships in high-
dimensional multivariate time series, with a specific focus on lagged
multi-factor models. Our proposed algorithms show promising
Sharpe Ratios when applied to financial data sets, indicating their
potential economic benefits compared to the benchmark.

To enhance the methodology further, a possible future direction
could involve exploring dynamic selection of the number of clusters

DTW_KMod_Mod 𝐺𝛽 strategy 𝐷𝛼 strategy

𝐾 5 10 15 20 5 10 15 20

E[Returns] 0.047 0.051 0.064 0.055 0.029 0.042 0.048 0.04
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.103 0.102 0.103 0.104 0.107 0.105 0.105 0.105
Maximum drawdown -0.316 -0.412 -0.421 -0.338 -0.424 -0.468 -0.459 -0.455
Sortino ratio 0.453 0.496 0.618 0.528 0.269 0.395 0.457 0.378
Calmar ratio 0.147 0.123 0.152 0.163 0.068 0.089 0.105 0.087
Hit rate 0.506 0.5 0.501 0.508 0.498 0.5 0.5 0.499
Avg. profit / avg. loss 1.033 1.065 1.08 1.04 1.042 1.05 1.058 1.055
PnL per trade 1.848 2.015 2.534 2.19 1.139 1.649 1.908 1.577
Sharpe ratio 0.31 0.338 0.426 0.368 0.191 0.277 0.321 0.265
P-value 0.159 0.124 0.053 0.095 0.387 0.21 0.147 0.231

DTW_KMod_Med 𝐺𝛽 strategy 𝐷𝛼 strategy

𝐾 5 10 15 20 5 10 15 20

E[Returns] 0.036 0.05 0.061 0.055 0.021 0.033 0.053 0.039
Volatility 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Downside deviation 0.104 0.104 0.105 0.106 0.107 0.105 0.106 0.105
Maximum drawdown -0.376 -0.376 -0.428 -0.365 -0.502 -0.465 -0.475 -0.479
Sortino ratio 0.347 0.48 0.583 0.521 0.193 0.313 0.505 0.374
Calmar ratio 0.096 0.133 0.143 0.151 0.041 0.071 0.112 0.082
Hit rate 0.505 0.502 0.505 0.506 0.501 0.499 0.504 0.499
Avg. profit / avg. loss 1.023 1.055 1.057 1.048 1.022 1.045 1.052 1.054
PnL per trade 1.427 1.978 2.436 2.184 0.822 1.305 2.115 1.556
Sharpe ratio 0.24 0.332 0.409 0.367 0.138 0.219 0.355 0.261
P-value 0.278 0.132 0.063 0.096 0.533 0.321 0.108 0.237

Table 12: Futures data set: robustness analysis for𝐾 - rescaled
to target volatility. The experiment has been set with the
values 𝑝 = 7, and 𝛿 = 7.

𝐾 . Additionally, another interesting direction would be to delve into
the more intricate mixed membership model described in Section
3, which poses a more challenging task. Investigating intraday
lead-lag relationships using, for example, minutely data, could be
another fruitful area of research.
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