Functional impact of microRNA-34a on stem cell differentiation towards smooth muscle cell

By Xiaotian Yu

Supervisors: Professor Wen Wang
Dr Qingzhong Xiao

Submitted for the Degree of Doctor of Philosophy
Institute of Bioengineering
Queen Mary University of London
2014
Statement of originality

I, Xiaotian Yu, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author.
Details of collaboration and publications:

Human ES cell culture and treatment were carried out by Dr. Qingzhong Xiao and Dr. Zengling Luo. Dr. Qingzhong Xiao also helped me for experiments pertaining to flow cytometry and cell sorting. Dr. Guanmei Wen performed the in vivo Matrigel experiments. mRNA microarray assays were carried out with the help from Dr. Li Zhang at Zhejiang University. Dr. Yuan Huang, Mr. Qishan Chen and Mr. Hanqing Zhao helped me in creating miRNA reporters. RNA IP experiments were carried out with the help from Dr. Le Anh Luong. Lastly, Mr. David Sims and I worked together when performing collagen type I induced SMC differentiation.

Publications are listed in the following page.
List of publications

Journal Publications:

Conferences:

Acknowledgements

I would like to thank Professor Wen Wang for his supervision, invaluable advice, and encouragements, not only in research, but also in Philosophy of life during my PhD study. I am particularly grateful to Dr. Qingzhong Xiao for giving me the great opportunity to work in his lab, and would like to convey my gratitude to him for his tireless supervision, wisely training, critical guidance and advice during my research.

My project could not be completed without support and helps from my colleagues and collaborators. Particularly, I thank Professor Shu Ye from William Harvey Research Institute, and Dr. Li Zhang from Zhejiang University.

I would like to extend my gratitude to all the people who have helped me during my PhD study, especially to Mrs. Sue Shaw-Hawkins, Dr. Ian Joy and Dr. Steven R. Coppen,

Also, I really appreciate the people in Dr. Xiao's group at William Harvey Research Institute who have given me technical support, especially Dr Guanmei Wen, Dr Le Anh Luong, Dr Yuan Huang, Mr Hanqing Zhao and Mr Qishan Chen, for their support in in vivo SMC differentiation, experiments, RNA-IP experiments, and reporters cloning, respectively.
Thanks for other current and former group members, for the happiness and warmth you have given to me during my PhD study: Dr. Yiling Lu, Dr. Shangjun Ye, Dr. Chanyuan Chai, Dr. Yankai Liu, Dr. Hong Chang, Dr. Ke Bai, Mr. Devendra inder Deo, Mr. Zhengjun Lv, Mr. Xia Chen, Ms. Miao Lin, Ms. Junyao Yang and Ms. Baoqi Yu from Professor Wang’s group, and Dr. Xiangyuan Pu, Dr. Fu Ng, Dr. Kate Witowska, Dr. Changcun Fang, Mr. Luyang Lin, Mr. Andrew Moore, Ms. Rosie Zhang, Ms. Meixia Ren and Mr. Tayyab Adeel Afza from Professor Ye and Dr. Xiao’s group.

Many thanks for the financial support from Professor Wen Wang, Dr Qingzhong Xiao and Queen Mary, University of London. This work was supported by the British Heart Foundation (FS/09/044/28007, PG/11/40/28891 and PG/13/45/30326 to Dr Q Xiao).

Finally, I would like to express my great gratitude to my parents and all the family members. I could not have done my PhD without your selfless support and love. Last but not least, I thank Cheng, for your support and understanding during these years.
Abstract

MicroRNAs play an important role in biological regulation. Recently miR-34a has been reported to regulate tumour cell cycle progression and apoptosis. However, the functional role of miR-34a in smooth muscle cell (SMC) differentiation from stem cells is yet unclear. Main objectives of this PhD project are to determine the functional role of miR-34a and its target genes in SMC differentiation and underlying mechanisms.

Mouse embryonic stem (ES) cells were seeded on collagen coated flasks in differentiation medium to allow SMC differentiation. Upon analysis, miR-34a was significantly up-regulated during SMC differentiation. Results demonstrated that overexpression of miR-34a significantly promoted SMC-specific gene expression, while knockdown of miR-34a inhibited expression of SMC specific gene. Enforced expression and knockdown of miR-34a in differentiating ES cells up-regulated and down-regulated, respectively, several SMC transcription factors in a similar manner. It was also found that miR-34a overexpression in stem cells promoted SMC differentiation *in vivo*. Furthermore, deacetylase sirtuin 1 (Sirt1) was identified as one of the top targets of miR-34a. Surprisingly, Sirt1 was demonstrated to be positively regulated by miR-34a during SMC differentiation in a cellular context and RNA sequence dependent manner.
Mechanistically, the data suggested that miR-34a promoted differentiating stem cells arrest at G0/G1 phase, and a significant decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex was observed upon SMC differentiation. The results demonstrated that Sirt1 acted as a transcriptional activator in the regulation of SMC gene during ES cell differentiation. Finally, H3K9 tri-methylation around the promoter regions of the SMαA and SM22α genes was also found to be significantly inhibited by SirT1 overexpression.

These findings suggest that miR-34a plays an important role in SMC differentiation from ES cells. Meanwhile, Sirt1 can be regulated by miR-34a through an unexpected pathway and it was identified as a functional modulating target in miR-34a mediated SMC differentiation.
Table of contents

Statement of originality ... I

List of publications .. III

Acknowledgements ... V

Abstract ... VII

Table of contents ... IX

List of Figures .. XVI

List of Tables ... XIX

List of Abbreviation and Acronyms ... XX

CHAPTER 1 Introduction and background .. 1

1.1 Introduction ... 1

1.2 Stem cell ... 4

1.2.1 Categorization of stem cells ... 4

1.2.2 Embryonic stem cells ... 7

1.2.3 ES cell culture ... 11

1.2.4 ES cell differentiation in vitro .. 12
1.3 SMCs and their differentiation from stem cells .. 17

1.3.1 Smooth muscle cell .. 17

1.3.2 SMC differentiation from stem cell in vitro .. 18

1.3.3 Mechanisms of SMC differentiation from stem cell .. 21

1.4 MicroRNA ... 26

1.4.1 miRNA biogenesis .. 26

1.4.2 miRNAs Nomenclature .. 31

1.4.3 miRNAs regulate their target genes .. 32

1.4.4 Functional role of miRNAs in cardiovascular system and ES cell differentiation 37

1.5 Project Aim and objectives ... 42

CHAPTER 2 Materials and Methods ... 45

2.1 Cell Culture .. 45

2.1.1 Making ES cell basic medium (BM) ... 45

2.1.3 Maintaining mouse ES cell .. 46

2.1.4 Passaging mouse ES cells ... 46

2.1.5 Freezing stocks of mouse ES cells ... 46

2.2 Differentiation of mESCs towards smooth muscle cells .. 47

2.3 microRNA and plasmid transfection ... 48
2.3.1 Transfection of miRNA precursors or inhibitors .. 48
2.3.2 miR-34a and Sirt-1 siRNA co-transient transfection 49
2.3.3 Transfection of plasmids into ES cells ... 50
2.4 miR-34a overexpressing ES cells ... 51
2.4.1 Generation of miR-34a over-expression lentiviral particles 51
2.4.2 Lentiviral infection and cell sorting ... 51
2.4.3 SMC in vivo differentiation and immunofluorescent staining for sections 52
2.5 SIRT1 inhibitor and SIRT1 agonist treatment ... 54
2.5.1 SIRT1 inhibitor treatment ... 54
2.5.2 SIRT1 agonist treatment ... 54
2.6 RNA extraction and analysis .. 55
2.6.1 Extraction of total RNA from cells .. 55
2.6.2 MicroRNA extraction ... 57
2.6.3 Reverse Transcription-Polymerase Chain Reaction 58
2.6.4 Real-Time Polymerase Chain Reaction .. 59
2.7 Protein extraction and analysis ... 61
2.7.1 Chemicals and buffer ... 61
2.7.2 Protein extraction from cells ... 63
2.7.3 Western blot and immunodetection .. 64

2.8 Transient transfection and luciferase assay .. 66

2.8.1 SirT1 3’UTR reporter cloning and miR-34a binding sites mutation 66

2.8.2 Amplification and extract of plasmid .. 67

2.8.3 Luciferase activity assay ... 68

2.9 Immunoprecipitation ... 70

2.9.1 Chromatin immunoprecipitation (ChIP) assay 70

2.9.2 RNA immunoprecipitation (RNA-IP) assays 72

2.10 Flow cytometry, cell cycle, proliferation, and apoptosis analysis 73

2.10.1 Flow cytometry analysis ... 73

2.10.2 Cell cycle and apoptosis analysis ... 74

2.10.3 BrdU incorporation ... 75

2.11 Materials ... 76

2.12 Statistical analysis ... 77

CHAPTER 3 SMC differentiation induced by collagen 78

3.1 SMC specific genes were up-regulated during ES cell differentiation 79

3.2 SMC transcription factors gene expressions were activated during SMC differentiation. .. 82
3.3 Western blot analysis of SMC specific marker expression in differentiating ES cells. 84

Chapter 4 Function role of miR-34a in SMC differentiation from ES cells 86

4.1 Functional involvements of miR-34a in SMC differentiation *in vitro* and *in vivo* 86

4.1.1 Screening potential miRNA during ES cells differentiation towards SMCs 86

4.1.2 Investigating the role of miR-34a in SMC differentiation *in vitro* by miRNA gain/loss-of function analyses ... 91

4.1.3 miR-34a is involved in SMC differentiation *in vivo* .. 99

4.1.4 miR-34a also plays an important role in SMC differentiation from human ES cells. .. 104

4.2 SirT1 is identified as the mRNA target for miR-34a in SMC differentiation from ES cells ... 109

4.2.1 SirT1 was selected as potential mRNA target for miR-34a 109

4.2.2 Identifying SirT1 as mRNA target for miR-34a ... 112

4.3 miR-34a regulates SirT1 and cell cycle during SMC differentiation 115

4.3.1 miR-34a differently regulates SirT1 gene expression in undifferentiated ES cells and differentiated SMCs ... 115

4.3.2 miR-34a binding site alone is not sufficient for miR-34a mediated SirT1 gene expression. .. 117

4.3.3 miR-34a specifically up-regulates SirT1 during SMC differentiation 119
4.3.4 miR-34a promotes cell cycle arrest at G0/1 in differentiating ES cells 121

4.3.5 Less miR-34a and SirT1 mRNA were incorporated into Ago 2-RISC complex

upon differentiation .. 128

4.4 Role of SirT1 in miR-34a induced SMC differentiation 130

4.4.1 SirT1 activation is required for miR-34a mediated SMC differentiation 130

4.4.2 SirT1 regulates SMC transcription factors ... 136

4.4.3 SRF binding site is required for SirT1 mediated SMC gene expression 140

4.4.4 SirT1 inhibits H3K9 methylation around SMC gene promoters 145

CHAPTER 5 Discussion .. 147

5.1 SMC differentiation from ES cells .. 148

5.2 miR-34a and SMC differentiation ... 152

5.3 Up-regulation of SirT1 by miR-34a during SMC differentiation is a specific event. 158

5.4 SirT1 regulates SMC differentiation gene expression through a transcriptional

mechanism .. 163

CHAPTER 6 Conclusion, limitations and future plans .. 166

6.1 Conclusion ... 166

6.2 Limitation and further work .. 167

Chapter 7 Appendix and reference ... 170
7.1 Appendix .. 170

7.1.1 Primer sets used in the project ... 170

7.1.2 Microarray data from miR-34a overexpression ... 173

7.2 Reference ... 178
List of Figures

Figure 1 Stem cell hierarchy depicting the development from Zygote to Organs. 10

Figure 2 Three commonly used approaches for ES cell differentiation in vitro. 16

Figure 3 Role of Nox4 and signal pathways in SMC differentiation.......................... 25

Figure 4 Biogenesis of miRNAs ... 30

Figure 5 miRNA target recognition in plants and animals................................. 37

Figure 6 SMC specific gene expression over a period of 8 days 80

Figure 7 Stem cell specific transcription factors were silenced during SMC differentiation.. 81

Figure 8 Expression of SMC transcription factors gene over 8 days of SMC differentiation... 83

Figure 9 Western blot analysis of ES cells differentiation over 8 days............ 85

Figure 10 Real-Time PCR analysis of miR-34a during SMC differentiation......... 90

Figure 11 miR-34a overexpression up-regulates the expression of SMC markers in SMC differentiation ... 93

Figure 12 miR-34a knockdown inhibit expression of SMC markers in SMC differentiation... 95

Figure 13 Overexpression of miR-34a positively regulated SMC specific transcription factors... 97

Figure 14 Knockdown of miR-34a down-regulated the expression levels of SMC...
transcription factors

Figure 15 Generation of miR-34a over expression ES cells and differentiation towards SMCs

Figure 16 miR-34a promotes SMC differentiation from ES cells in vivo

Figure 17. SMC differentiation was up-regulated by miR-34a overexpression in vivo

Figure 18 SMC differentiation from human ES cells in vitro

Figure 19 SMC differentiation from human ES cells can be regulated by miR-34a

Figure 20 SirT1 is the potential mRNA target for miR-34a

Figure 21 SirT1 is identified as the mRNA target for miR-34a during SMC differentiation

Figure 22 SirT1 3’UTR reporter activity in naive stem cell or terminally differentiate SMCs

Figure 23 miR-34a binding site alone is not sufficient for SirT1 up-regulation

Figure 24 Other miRNA reporter were not affected by miR-34a over-expression

Figure 25 Less cell numbers were observed in the miR-34a over-expressing cells

Figure 26 Cell cycle analysis during SMC differentiation

Figure 27 miR-34a promotes cell cycle arrest at G0/1 and inhibits cell proliferation

Figure 28 miR-34a mediated SirT1 gene activation was further enhanced by G0/G1 cell cycle arrest inducer
Figure 29 Less miR-34a and SirT1 were loaded onto Ago 2-RISC complex during SMC differentiation ... 129

Figure 30. SirT1 overexpression or activation promotes SMC differentiation........ 132

Figure 31 Inhibition/knockdown of SirT1 abolished SMC specific gene up-regulation induced by miR-34a overexpression .. 134

Figure 32 SirT1 up-regulates SMC transcriptional factors 138

Figure 33 SirT1 directly binds to the promoter regions of SRF, MEF2c and Myocd genes ... 139

Figure 34 SRF binding site is required for SirT1 mediating SMC gene expression 142

Figure 35 SirT1 directly binds to specific SMC gene promoter regions and increases the binding ability of SRF to SMαA and SM22α ... 143

Figure 36 SirT1 promotes SMC gene expression through inhibiting H3K9me3 binding to SMC gene promoters ... 146

Figure 37 The predicted ARE regions and miR-34 binding sites within mouse SirT1 3’UTR are depicted in this illustration .. 161
List of Tables

Table 1 Cell density used for miRNA reverse transfection.................................. 49
Table 2 Recipes of buffer used in protein analysis.. 63
Table 3 Selected miRNAs expression profile during SMC differentiation from ES cells ... 89
List of Abbreviation and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>2-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>3-dimensional</td>
</tr>
<tr>
<td>AGO</td>
<td>Argonaute</td>
</tr>
<tr>
<td>ARE</td>
<td>AU-rich</td>
</tr>
<tr>
<td>atRA</td>
<td>all-trans RA</td>
</tr>
<tr>
<td>BM</td>
<td>Basic medium</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenetic protein</td>
</tr>
<tr>
<td>BrdU</td>
<td>5-bromo-2'-deoxyuridine</td>
</tr>
<tr>
<td>Ccnb</td>
<td>Cyclin B1</td>
</tr>
<tr>
<td>Cdx4</td>
<td>Caudal type homeobox 2</td>
</tr>
<tr>
<td>Chip</td>
<td>Chromatin immunoprecipitation</td>
</tr>
<tr>
<td>CM</td>
<td>ES cell culture medium</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DGCR8</td>
<td>DiGeorge syndrome critical region gene 8</td>
</tr>
<tr>
<td>DM</td>
<td>SMC differentiation medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double-stranded RNA</td>
</tr>
<tr>
<td>EB</td>
<td>Embryoid-body</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>ES cell</td>
<td>Embryonic stem cell</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>FXR1</td>
<td>Fragile X mental retardation–related protein 1</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>ICM</td>
<td>Inner cell mass</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iPSC</td>
<td>Induced pluripotent stem cell</td>
</tr>
<tr>
<td>Klf4</td>
<td>Kruppel-like factor 4</td>
</tr>
<tr>
<td>LIF</td>
<td>Leukemia inhibitory factor</td>
</tr>
<tr>
<td>MECP2</td>
<td>Methyl CpG binding protein 2</td>
</tr>
<tr>
<td>MEF2C</td>
<td>Myocyte-specific enhancer factor 2C</td>
</tr>
<tr>
<td>MEFs</td>
<td>Mouse embryonic fibroblasts</td>
</tr>
<tr>
<td>miRNA</td>
<td>Micro RNA</td>
</tr>
<tr>
<td>Nox4</td>
<td>NADPH oxidase 4</td>
</tr>
<tr>
<td>OCT</td>
<td>Octamer-binding transcription factor</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PDGFRβ</td>
<td>Platelet-derived growth factor receptor beta polypeptide</td>
</tr>
<tr>
<td>PGC</td>
<td>Primordial germ cells</td>
</tr>
<tr>
<td>Pri-miRNA</td>
<td>Primary miRNA</td>
</tr>
</tbody>
</table>
RA Retinoic acid
RISC RNA-induced silencing complex
RNA-IP RNA immunoprecipitation
ROS Reactive oxygen species
RT-PCR Reverse Transcription-Polymerase Chain Reaction
Sca-1+ Stem cell antigen-1 positive
SEM Standard error of the mean
SirT1 Deacetylase sirtuin 1
SM22α Smooth muscle 22 α
SMC Smooth muscle cell
SM-MHC Smooth muscle myosin heavy chain
SMαA Smooth Muscle α-Actin
SOX2 (Sex determining region Y)-box 2
SRF Serum response factor
SSC Somatic stem cell
SSEA Stage-specific embryonic antigen
STAT3 Signal transduction and activation of transcription 3
TGF Transforming growth factor
TNF Tumor necrosis factor
TRBP Tar RNA binding protein
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>VEGFR</td>
<td>Vascular Endothelial Growth Factor Receptor</td>
</tr>
<tr>
<td>VSMCs</td>
<td>Vascular smooth muscle cells</td>
</tr>
<tr>
<td>XPO5</td>
<td>Exportin-5</td>
</tr>
<tr>
<td>ZEB1</td>
<td>Zinc finger E-box-binding homeobox 1</td>
</tr>
</tbody>
</table>
CHAPTER 1 Introduction and background

1.1 Introduction

Regenerative medicine and tissue engineering are a rapidly developing field with the ultimate goal to repair, replace, or regenerate cells, tissues, or organs that are lost or damaged due to disease, injury, or ageing. Recent advances in this field have been greatly influenced by better understanding in multiple areas, including stem cell biology, tissue turnover and replacement in adult mammals, and embryonic development. Pluripotent stem cells including embryonic stem (ES) cells have been under intensive investigation for using in regenerative medicine because they hold significant potential for clinical therapies due to their distinctive capacity to both unlimited self-renew and differentiate into a wide range of specialized cell types, including vascular endothelial cells (Zeng et al., 2006, Xiao et al., 2006) and smooth muscle cells (SMCs)(Xiao et al., 2007, Xiao et al., 2012, Pepe et al., 2010, Huang et al., 2013). SMCs are a major component of the blood vessel wall and responsible for structure and contract ability of healthy blood vessels. Furthermore, SMC differentiation is a critical process during cardiovascular system development, and such differentiation is also involved in SMC proliferative related cardiovascular diseases, such as atherosclerosis and hypertension. Therefore, understanding the
transcriptional regulatory circuitry of SMC differentiation is fundamental to understanding human cardiovascular system development and realizing the therapeutic potential of these cells. However, the detailed molecular mechanisms of SMC differentiation from stem cells have not been fully clarified.

MicroRNAs (miRNAs) are highly conserved, endogenous, short non-coding RNAs (usually contains 22 nucleotides). miRNAs have been recently identified in almost all species and recognized as important biological regulators in tissue development, cellular homeostasis, and diseases. The “classical” thinking of miRNAs’ function is that mature miRNAs work together with RNA-induced silencing complex (RISC), to suppress their target genes expression by inducing mRNA cleavage, mRNA decay or by inhibiting mRNA translation (Bagga et al., 2005, Giraldez et al., 2006, Filipowicz et al., 2008). However, recent studies suggested that instead of repression, miRNAs can up-regulate their target genes expression under specific circumstance (Vasudevan et al., 2007, Vasudevan et al., 2008). Importantly, Landgraf et al. (2007) reported that miRNAs are expressed in a tissue specific manner, indicating that miRNAs may play an important role in cell/tissue specification. Studies also suggest that miRNAs are involved in ES cells regulation, cardiovascular development and SMCs differentiation and proliferation. Dicer and Drosha are two rate-limiting enzymes involved in miRNA biogenesis. Murchison et al. (2005) and Wang et al (2007)
demonstrated that miRNAs play critical roles in stem cell self-renewal and differentiation by disrupting Dicer or Drosha expression. Loss of miRNAs in Dicer-deficient mice caused severe impairment of heart and blood vessel development, indicating the significance of miRNAs in cardiovascular development (Yang et al., 2005). In addition, Albinsson et al. (2010) further highlighted the importance of miRNAs in SMC growth, differentiation and function by pointing out that deletion of Dicer in vascular smooth muscle led to decreased SMC proliferation and differentiation, and caused thinner vessel walls, impaired contractility and hemorrhage due to the global loss of miRNAs in vascular smooth muscle. However the exact role of individual miRNAs in SMC differentiation from ES cell remains to be further investigated.

This project demonstrates for the first time that miR-34a play an important role in mouse and human ES cell differentiation towards SMC lineage in vitro and in vivo. More important, data from this project suggests that instead of repression, miR-34a positively regulates its target gene deacetylase sirtuin 1 (SirT1), which has been identified as a potential transcriptional activator of SMC genes in this project.
1.2 Stem cell

Stem cells have the ability to unlimited self-renew and undergo differentiation into various cell lineages (also known as pluripotent). Pluripotent stem cells have been under intensive study in the past years, because they hold great promise to be used as the critical tool in regenerative medicine and tissue engineering, for clinical cell therapy to treat current devastating and incurable diseases, such as type 1 diabetes, blindness, damaged articular cartilage, neurological diseases and terminal cardiovascular diseases. Also, stem cells provide a tractable, manipulable and cost-efficiency in vitro cell culture experimental system for researchers to study tissue development, genetics, pathology and physiology, due to their nearly unlimited sources (self-renew) and pluripotency, as compared with more expensive, hard to obtained in vivo materials.

1.2.1 Categorization of stem cells

Currently, stem cells are categorized in to three groups based on their sources: embryonic stem cells, adult stem cells and induced pluripotent stem cells (iPSCs) (Evans and Kaufman, 1981, Takahashi and Yamanaka, 2006). Adult stem cells, also known as somatic stem cells (SSCs), are “partially” pluripotent stem cells that found in tissues and organs, including skin, brain, bone marrow, intestine and neural tissue.
SSCs are primarily involved in maintaining and repairing/regenerating specific tissue, and under certain circumstances they may be involved in diseases development (Phinney and Prockop, 2007). SSCs used for potential stem cell therapy are autologous, as they are usually harvested from the patients hence there is almost no immunologic barriers. However, unlike ES cells, the pluripotency of SSCs is limited due to the fact that they are lineage commitment, which means they only hold the capacity to differentiate into specific cell lineages from given germ layer based on their origins. Furthermore, SSCs are limited in quantity due to their lower capacity to divide during in vitro culture. Evidently, some specific SSCs are hard to obtain from patients (Barrilleaux et al., 2006, Pittenger et al., 1999).

In 2006, Takahashi and Yamanaka (2006) reported that by transducing four key transcription factors: OCT4, SOX2, c-Myc and KLF4 into mouse somatic cells such as adult fibroblasts, these cells can exhibit the morphology and growth properties of ES cells, as well as expressing ES cell marker genes, designated as iPSCs. iPSCs were then successfully generated from human somatic cells by transduction of same transcription factors since 2007 (Takahashi et al., 2007, Park et al., 2008). Further analysis demonstrated that iPSCs not only expressed pluripotent markers, but also have the similar function of ES cells and hold the ability to differentiate into cell types from three germ layers, and contribute to embryonic development (Maherali et
al., 2007, Takahashi et al., 2007, Takahashi and Yamanaka, 2006). Since then, several studies have reported refined process of reprogramming iPSCs, including adjust
transcription factors and add extra enhancers (Park et al., 2008, Huangfu et al., 2008, Judson et al., 2009).

The recent achievements in charactering the full potentials of various iPSCs generated by using different techniques have advanced one step closer to patient-specific cell therapy of diseases, and construct in vitro models of specific human tissue development and diseases, especially for the cases where animal models cannot fully represent human models (Puri and Nagy, 2012). Patient-specific iPSCs generation means there is highly reduced immunologic barriers and ethical issues. Also, compared with SSCs, the materials for generating iPSCs are easier to obtain from patients. However, despite the advantages of iPSCs and the rapid development of iPSCs research area, there are still some concerns regarding the function or application of iPSCs. Although iPSCs do share similar pluripotent and other properties as ES cells, the understanding of iPSCs is still far from complete, including the mechanism of reprogramming and characterization of iPSCs (Puri and Nagy, 2012). Furthermore, the success rate of generating iPSCs was still low (Takahashi and Yamanaka, 2006), and iPSCs displayed a lower efficiency in neuroepithelia differentiation, as compared with ES cells (Hu et al., 2010). Also,
another major concern of iPSCs in clinical therapy is their tumorigenicity, as suggested by some studies (Knoepfler, 2009).

1.2.2 Embryonic stem cells

ES cells are pluripotent stem cells derived from inner cell mass of blastocyst, an early stage embryos approximately 3.5 days post coitum (Figure 1). Mouse ES cells were first isolated in 1981, and their pluripotency was demonstrated by their contributions to all the tissue developments in mice after injecting isolated ES cells back into host blastocysts (Evans and Kaufman, 1981, Martin, 1981, Bradley et al., 1984). After seventeen years, human ES cells were isolated in 1998 (Thomson et al., 1998). The isolation of ES cells have dramatically benefit researches in tissue development and regenerative medicine in the past years, due to the facts that ES cells have almost an unlimited self-renew potential and are capable of differentiating into all cell types from all the three germ layers (Figure 1).

As self-renew and pluripotency are the important features of ES cells, the first challenge in ES cells based research is to understand the mechanism by which controls self-renew and pluripotency of ES cells. Mouse ES cells were initially cultured and maintained with mouse embryonic fibroblasts (MEFs), which indicated that MEFs may provide the essential factors to maintain the undifferentiated ES cells.
Later several studies revealed that MEFs feeder-cell-derived leukemia inhibitory factor (LIF) is the critical factor in maintaining ES undifferentiated ES cells (Williams et al., 1988, Smith et al., 1988, Stewart et al., 1992). A more recent study by Ying et al. (2003) pointed out that bone morphogenetic protein (BMP4) can replace serum in the presence of LIF, to support ES cell cluture. LIF is a soluble glycoprotein of interleukin (IL)-6 family of cytokines, and functions through regulate signal transduction and activation of transcription 3 (STAT3) with gp130 signaling complex (Niwa et al., 1998, Matsuda et al., 1999, Wobus and Boheler, 2005). BMP4 support undifferentiated ES cells via Smad activation and inductions of helix-loop-helix Id factors (Keller, 2005). More recent studies showed that three transcription factors: Nanog, OCT3/4 and SOX2 are key factors that control self-renew and pluripotency of ES cells (Mitsui et al., 2003, Chambers et al., 2003, Niwa et al., 2000). OCT3/4 and SOX2 can form a complex that suppresses expression of Cdx2, and OCT4 is reported to interact with BMP4 pathway (Niwa, 2007, Wang et al., 2012, Niwa et al., 2005). Nanog is suggested to inhibit primitive endoderm and mesoderm differentiation through regulating Gata6 and brachrury, respectively, and study showed that Nanog is downstream effector of LIF-STAT3 pathway (Mitsui et al., 2003, Suzuki et al., 2006, Pan and Thomson, 2007, Nishikawa et al., 2007). More important, OCT3/4, Nanog and SOX2 can bind to each other’s promoter so that they form a core network to regulate ES cells, which involving various signal pathways
OCT3/4, SOX2 and Nanog play important roles in regulating self-renew and pluripotency of ES cells, and they are usually referred as stem cell undifferentiated markers. Regulation of undifferentiated ES cells is controlled by a complex network, and studies also revealed more ES cells regulator/markers, such as KIF-4, SSEA-1, SSEA-3/4 and GCTM-2 (Solter and Knowles, 1978, Henderson et al., 2002, Zhang et al., 2010, Reubinoff et al., 2000). Although OCT3/4, SOX2 and Nanog are expressed in both mouse and human ES cells, their functions and signal pathways may be slightly different in these of ES cells. Furthermore, some of the stem cell makers, such as SSEA-1, only expressed in mouse ES cells, while some others (e.g. SSEA-3/4) are detected in human ES cells (Wobus and Boheler, 2005).
ES cells are isolated from ICM at blastocyst stage. ICM develops into three primary germ layers: ectoderm, mesoderm and endoderm, as well as primordial germ cells (PGC). Specific progenitor cells are derived from relative germ layers, and further differentiate into various types of somatic cell, which form the organs (Wobus and Boheler, 2005).

Figure 1 Stem cell hierarchy depicting the development from Zygote to Organs.
1.2.3 ES cell culture

Two methods are commonly used for in vitro ES cell culture: ES cells are either cultured with feeder cells (in most of the case, MEFs are used as the feeder), or cultured on protein matrices with defined culture medium combined with LIF, Fetal bovine serum (FBS) and/or BMP4. ES cells cultured with inactive MEFs are the “traditional” way of maintaining undifferentiated ES cells. As mentioned earlier, MEFs can secrete factors that maintain undifferentiated ES cells; they also provide mechanical support for ES cell growing. ES cell cultured with MEFs is a well refined method and the outcome has been well validated in the past years (Williams et al., 1988, Stewart et al., 1992). However, it requires additional routinely maintaining of MEFs in the lab, and raise the risk of MEFs contamination. Another method is culturing ES cells on protein matrices (gelatin is well commonly used as the base layer), and use defined medium in supplemented with recombinant LIF and FBS, without feeder layer. Maintaining mouse ES cells in feeder free condition has achieved great success over the past years with the presence of LIF. On the other hand, LIF is not sufficient for maintain human ES cells (Daheiron et al., 2004, Humphrey et al., 2004). Human ES cells feeder free culture was reported by using MEF conditioned medium in 2001, although it is more complex than culturing mouse ES cells and usually requires basic Fibroblast Growth Factor (Xu et al., 2001, Amit et al., 2000). As compared with culturing on MEFs, the feeder-free culture method
requires less work to maintain ES cells and reduces the risk of contamination. However, it has some drawbacks. The culture medium must be well defined to ensure that it provide essential components to inhibit ES cell differentiation and support cell growing. This method usually requires presence of FBS to provide nutrients for ES cells; however the constituents of FBS are not fully defined, even after screening, which potentially induces differentiation. Even though mouse ES cell feeder free culture is well established, human ES cell culture in feeder free condition may not be as efficient as culturing with MEFs and the cost of human ES cell feeder free culture is relatively high due to the requirements on the medium and supplements.

1.2.4 ES cell differentiation in vitro

ES cells are regulated by a complex, “balanced” network to maintain their pluripotency through various signal pathways, and the mechanism has been under intensive study since ES cells were discovered. Compared with the understanding on maintaining pluripotency, ES cell differentiation, especially the mechanism and process, is still poorly defined. Withdraw of factors that maintain their stem cell function in cell culture, for example removal of LIF in mouse ES cell culture, usually triggers ES cell differentiation. However, ES cell differentiation is induced by a variety of stimulations, such as growth factors, extracellular matrix, mechanical stress and chemical stimulations (Niwa, 2007, Nishikawa et al., 2007).
Understanding ES cell differentiation \textit{in vitro} and \textit{in vivo} has always been a major challenge in stem cell research.

Currently, there are at least three common used approaches to induce ES cell differentiation \textit{in vitro}: embryoid-body (EB) culture, feeder-cell culture and extracellular matrix proteins culture, and each method has its own advantages and drawbacks (Figure 2).

\textit{EB culture}

The concept of EB culture is to mimics \textit{in vivo} germ layer formation from ICM and it was first used in 1975 for teratocarcinoma cells differentiation (Martin and Evans, 1975). EB culture was then used on ES cell differentiation from 1985 by several studies (Doetschman et al., 1985, Keller, 1995). In EB culture, supplements that maintaining pluripotency of ES cells were removed, and ES cells were allowed to aggregate and develop into three dimensional colonies known as EBs. EBs contains visceral endoderm in the outlayer with primitive ectoderm derived linages inside, although the structures of EBs are far less organized than actual \textit{in vivo} embryo. Most of the cell lineages including neuronal and mesoderm lineages, as well as germ cell precursors can be induced by EB culture, as reviewed by Nishikawa et al. (2007). EB culture is the most similar representation of \textit{in vivo} ES cell differentiation model,
and providing one of the best systems for some researches, i.e. in tissue development area. The initial induction of ES cell differentiation by EB culture is relatively easy, however it is extremely difficult to conduct guided differentiation in EB culture, and monitoring of cell behavior is tricky due to their 3D structure. Also, EB culture is quite time-consuming, as compared with other two methods.

Feeder-cell culture

Similar to maintaining ES cells on MEFs, ES cells are cultured on selected stromal cells. Differentiation of ES cells is supported by the surrounding feeder cells and given cell culture medium. OP9 stromal cell line is one of the most commonly used cell line, which can induce mesoderm lineages differentiation from ES cells (Nakano et al., 1994). The guided/selective differentiation in this method is slightly easier compared with EB culture. PA6 stromal cell line was reported to induce selective neuronal lineage differentiation from ES cells (Kawasaki et al., 2000). The drawbacks of this method are that the undefined factors generated by the feeder cells may affected the ES cell differentiation, and it requires additional maintenance of stromal cells. Furthermore, sometimes it is difficult to isolate differentiated ES cells from stromal cells. Even through guided differentiation is theoretically possible in this method; it still remains as a challenge.
Extracellular matrix proteins culture

In this method, ES cells are cultured in a monolayer of selected extracellular matrix proteins (also known as substrates) with highly refined cell culture medium and supplements (Nishikawa et al., 1998). In order to conduct guided ES cell differentiation, the culture medium usually contains defined supplements which potentially induce specific cell lineages differentiation, and the selection of substrates is critical for guided ES cell differentiation. This method minimum the influence of neighboring differentiating cells from EB culture, as well as that from stromal cells. The highly defined cell culture conditions are critical for investigating signal pathways. Furthermore, it is up to now the best method to induce selective ES cell differentiation and obtain high purity of specific differentiated cell types. Once the differentiation model is established, it is relatively easy to use such a model study the molecular mechanisms of cell differentiation with high reproducibility. It has been reported that ES cells can differentiate into smooth muscle cells and endothelial cells by using this method, respectively (Xiao et al., 2006, Luo et al., 2013). However, it has its own drawbacks. Establishing the specific differentiation model is a huge challenge, which requires continuing studies in this field and multiple repeated trials to ensure its efficiency. As a result, the numbers of specific ES cell differentiation induced by this method are still limited. Although the cell culture conditions are the most defined among these three methods, it still cannot fully eliminate the undefined
factors involved in the differentiation, such as that from FBS or subsequent changes of the cells. The requirements for culture medium is very high, as well as the supplements, which may significantly increase the cost.

With the recent development of engineering and material fields, more new techniques are used in maintaining undifferentiated stem cell, or inducing differentiation. For example, with the fast growing nano-technology, it has been reported that surface nanotopography has significant impact on stem cell self-renew and differentiation (Bae et al., 2014, Chen et al., 2012). Combining these new techniques with currently stem cell culture system will surely push forward the understanding in this field.

Figure 2 Three commonly used approaches for ES cell differentiation \textit{in vitro}.
There are three commonly used methods to induce ES cell differentiation in vitro. In EB culture (left) ES cells are allowed to aggregate into embryo-like EBs. Method using Feeder-cell (middle) cultured ES cells on selected stromal cells. While in extracellular matrix culture (right) ES cells are cultured on substrates under highly defined conditions (Nishikawa et al., 2007).

1.3 SMCs and their differentiation from stem cells

1.3.1 Smooth muscle cell

Smooth muscle is an involuntary non-striated muscle and it can be found from various locations of the human body, such as blood vessel walls, lymphatic vessels, bladder, uterus, and skin. Smooth muscle cells located in blood vessels, such as in large and small arteries and veins, are usually termed as vascular smooth muscle cells (VSMCs).

Initially derived from mesoderm, mature VSMCs originate from various sources of progenitors. VSMCs provide structural integrity and contribute to contraction and relaxation of the blood vessels, which alter blood vessel diameter. They also contribute to adjust blood flow and blood pressure. Unlike other muscle cells, VSMCs are not terminally differentiated in human tissues (Velican and Velican,
1980). VSMCs can switch between contractile and synthetic phenotypes, with different morphology, proliferative ability, migration properties and expression levels of SMC gene markers.

Besides providing structural and functional support to blood vessels, VSMCs proliferation, migration and differentiation from stem/progenitor cells are found to play an important role during vessel remodeling, post vascular injury and diseases, such as atherosclerosis (Owens et al., 2004, Ross, 1999, Xu, 2006). With the advanced in tissue engineering, VSMCs hold the potential ability to reconstruct human vascular tissue for clinical treatment. However, the limited lifespan of VSMCs may become the barrier for the cell therapy applications. Thus, better understanding of SMC differentiation from stem cell will benefit the recognition of diseases, tissue development and clinical tissue engineering applications.

1.3.2 SMC differentiation from stem cell in vitro

Several in vitro SMC differentiation model have been established to study the process of SMC differentiation from stem cells, and/or obtain functional SMCs (Xie et al., 2011, Xiao et al., 2010). P19 cell line was reported to have similar mechanism and features to ES cells for differentiation (Rideg et al., 1994). It has been reported that expose P19 cells to retinoic acid (RA) for 48 hours or treat with dimethyl
sulfoxide (DMSO) can induce these cell differentiate into fibroblast-like cells. The differentiated cells express SMC marker SMαA, and study also showed that they respond to angiotensin II and endothelin (Drab et al., 1997, Sinha et al., 2004). A404 cells, which are derived clonal cell line from P19 but have been genetically modified by harboring a SMαA promoter/intron-driven puromycin resistance gene (Manabe and Owens, 2001). Exposing these cells to all-trans RA (atRA) can induce SMC differentiation. More importantly, the differentiated SMC-like cells can be sorted out due to the presence of puromycin resistance gene, and results suggested that more 90% of cells express SMC markers, such as SMαA, calponin or smooth muscle myosin heavy chain (SM-MHC)(Manabe and Owens, 2001, Spin et al., 2004). Although P19 and A404 cell lines have similar differentiation ability to ES cells, and they have been successfully demonstrated to differentiate into SMC-like cells. However they are not “pure” ES cells. A404 cell lines are genetic modified with SMαA promoter and purmycin resistance genes, thus using these models is inappropriate for studying the mechanism of SMC differentiation from original ES cells. Furthermore the differentiation ratio from P19 cell line was reported very low (Manabe and Owens, 2001, Xie et al., 2011).

Mouse ES cells have been reported to differentiate into SMCs by using EB culture. After EB formation they were treated with atRA and dibutyryl-cAMP, and results
suggested that 67% of the cells in the EBs express SMC-like features, compared with 10% in the control group (Drab et al., 1997, Sinha et al., 2004). EB culture can also be used in SMC differentiation from human ES cells. CD34+ vascular progenitor cells isolated from human ES cells can differentiate into SMC-like cell with treatment of platelet-derived growth factor-BB (PDGF-BB). These SMC-like cells express SMαA, SM-MHC, SM22α and calponin. However, they also express some endothelial markers (Ferreira et al., 2007, Xie et al., 2007, Xie et al., 2011).

Recent studies also reported that SMC differentiation from stem cell can also be achieved by using substrates culture combined with defined culture medium and supplements. ES cells cultured on a monolayer and treated with atRA were induced to SMC differentiation, and up to 65% of cells expressed SM-MHC. They also express other SMC makers, as well as some SMC functions, such as contraction response to muscarinic agonist carbachol (Huang et al., 2006, Xie et al., 2009). ECM protein collagen type IV is also reported to induce SMC differentiation from stem cells. VEGFR2+ progenitor cells derived from human ES cells cultured on collagen type IV in the presence of PDGF can lead to SMC differentiation (Yamashita et al., 2000, Sone et al., 2003). Xiao et al. (2007) reported that ES cells can differentiate into SMCs by using ECM protein collagen type IV. ES cells were cultured on collagen type IV coated cell culture flasks or dishes and over 50% of the cells were
SMαA positive cells after 6 days. Furthermore, stem cell antigen-1 positive (Sca-1+) cells were isolated from ES cells cultured on collagen type IV coated flasks for 3 to 4 days, and cultured with or without PDGF-BB for 6 to 90 days. Data revealed that a highly purified SMCs (>95%) expressed high SMC markers, but not endothelial cell-specific markers, after 30 days of treatment.

In summary, different methods for SMC differentiation from stem cells, with the aim to study the mechanism and/or obtaining highly purified SMCs for potential cell therapy have been reported in several studies, although each model has its own advantages and drawbacks. RA/atRA and collagen type IV are reported to induce SMC differentiation in many studies, as combined with supplements, such as PDGF or dibutyryl-cAMP.

1.3.3 Mechanisms of SMC differentiation from stem cell

SMC differentiation from stem cell is a complex process, which is governed by a interacting network, including EMC proteins and intergrins, suerm response factors (SRF) and myocardin complex, reactive oxygen species, histone deacetylases, retinoid receptors, PDGF, and TGF family and others (Xiao et al., 2010). Furthermore, SMCs is derived from various sources in vivo, and they can undergo phenotype switching under certain conditions, which make it very difficult to define
“terminated differentiation” in SMCs. Regardless of progress made in understanding SMC differentiation in this field, the underlying mechanism is still poorly defined.

As suggested by several studies, collagen plays an important role in SMC differentiation from stem cell. ECM is a complex tissue surrounding the cells and providing structural support as well as other important functions, such as differentiation (Lozito et al., 2009). Collagen is one of the most important components of ECM, which containing more than 16 different members. Among them, collagen I, II and III can form fibrils similar structure and collagen IV is widely found in basal lamina (Rozario and DeSimone, 2010). Collagen induced SMC differentiation from stem cell is suggested to go through collagen type IV-integrin and PDGFRβ mediated signaling pathways (Xiao et al., 2007). In their study, high levels of integrin α1, αv, β1 and β3 were expressed in SMCs derived from ES cells, as well as Sca-1+ progenitor cells. Inhibition of integrin function and blocking antibodies against integrin α1, αv and β1 significantly inhibited SMC differentiation from stem cells. Interestingly, PDGF-BB is a well-known SMC differentiation inducer (Sone et al., 2003, Yamashita et al., 2000), but the effect of exogenous PDGF-BB is weak on SMC differentiation induced by collagen IV. However, inhibition of PDGF receptor significantly inhibits SMC differentiation. The downstream signal pathways of integrin which were activated by collagen IV in
SMC differentiation include focal adhesion kinase, paxillin, phosphatidylinositol 3-kinase (PI3-kinase) and PDGFRβ (Xiao et al., 2007).

TGF-β plays a critical role in activating SMC differentiation (Hirschi et al., 1998). TGF-β, PDGF-BB and ECM proteins and their secretions can activate NADPH oxidase 4 (Nox4), which further triggers a variety of downstream signal pathways (Xiao et al., 2009, Xie et al., 2011). Activated Nox4 generate reactive oxygen species (ROS), which further generate \(\text{H}_2\text{O}_2 \) and \(\text{O}_2^- \) (Deliri and McNamara, 2007, Sumimoto et al., 2005). \(\text{H}_2\text{O}_2 \) up-regulates SRF expression as well as phosphorylation. SRF can bind to CArG region of SMC gene promoter(s), where it recruits its co-activator myocardin to regulate SMC gene expression (Wang et al., 2003, Wang et al., 2004). On the other hand, \(\text{O}_2^- \) increased SRF-mediated SMC gene transcription activation through MAPK pathway in SMC differentiation (Xiao et al., 2009)(Figure 3). More recently, studies suggest that nuclear factor erythroid 2-related factor (Nrf3) can up-regulate Nox4 to generate more ROS to enhance SMC differentiation (Pepe et al., 2010, Xiao et al., 2012).

Histone modification is another important player in SMC differentiation (Tang et al., 2012, Lunyak and Rosenfeld, 2008), and methylation and acetylation are the two main forms of histone modification. Histone acetyl transferases (HATs) and histone
deacetylases determine the acetylation state of histone. Histone modification was first connected with SMC phenotype switching (McDonald et al., 2006, Xie et al., 2011). However, recently studies reported that spliced HDAC7 increase the binding between SRF and CArG region of SMC genes, by which it up-regulates SMC differentiation genes (Margariti et al., 2009).

Current studies have discovered, not all, but party of the factors that controlling the complex SMC differentiation. However, the importance of miRNAs in biological regulation has been rapidly recognized in the past years, and their functional role in SMC differentiation, is still largely unknown.
Activated Nox4 by TGF-β or other factors generates ROS. H_2O_2 up-regulates SRF.
and enhance SRF phosphorylation. Phosphorylated SRF binds to promoter region of SMC genes and work together with its co-activator myocardin to regulate SMC differentiation. O_2 triggers p38MAPK pathways to increase SRF-mediated gene transcription activation, further enhance SMC differentiation (Xiao et al., 2010).

1.4 MicroRNA

miRNAs were first found in *C. elegans* by Lee et al (1993), and then rapidly identified in almost all species. According to version 21 of miRNA database (http://www.mirbase.org/), 2588 human miRNAs have been reported to the database, while 1915 mature miRNAs were found in *Mus musculus*. In the past years miRNAs have been reported to play an important role in various biological processes and diseases, such as cardiogenesis, cancer or atherosclerosis.

1.4.1 miRNA biogenesis

miRNAs are endogenous, highly conserved short non-coding RNAs (usually contains 22 nucleotides). Initially, most of the miRNAs are transcribed by RNA polymerases II (RNA Pol II) from independent miRNA genes, polycistronic transcripts that often encode multiple related miRNAs, or from introns of protein coding genes. miRNA transcription is controlled by RNA PoL II related transcription
factors and epigenetic regulators (Cai et al., 2004, Lee et al., 2004). However, it has been reported that some miRNAs are transcribed by RNA Pol III (Pfeffer et al., 2005). The initial transcription generates a long (usually over 1kb) primary miRNA (pri-miRNA), which has a stem-loop structure containing mature miRNA sequences. Within the nucleus, the pri-miRNA is processed by ribonuclease III (RNase III) type endonuclease Drosha formed complex. The~160kDa nuclear protein, Drosha, acts specifically on double-stranded RNA (dsRNA). Drosha can directly cleave the 5’ and 3’ arms of the pri-miRNA hairpin, and it works together with its essential co-factor DiGeorge syndrome critical region gene 8 (DGCR8)/Pasha for processing the pri-miRNA (Han et al., 2004, Han et al., 2006). DGCR8 contains 2 dsRNA-binding domains (dsRBDs) which recognize pri-miRNA, while its C terminus interacts with Drosha. Drosha and DGCR8 form a complex called Microprocessor, which cleavages the stem-loop of the pri-miRNA to generate a small hairpin-shaped RNA with approximately 65 nucleotides in length, called pre-miRNA (Lee et al., 2003, Yeom et al., 2006, Han et al., 2006, Han et al., 2004). The majority of pre-miRNAs are generated by Drosha-DGCR8 pathway, however, it has been reported that a small amount of short intronic miRNAs (mirtrons) can bypass Drosha-DGCR8 pathway and processed into pre-miRNAs through splicing and lariat debranching enzyme (Okamura et al., 2007, Berezikov et al., 2007, Ruby et al., 2007).
Following nuclear processing, pre-miRNA is loaded into a transport complex which consists of Exportin-5 (XPO5) and GTP–binding nuclear protein RAN-GTP, and exported into the cytoplasm. GTP is hydrolysed through the nuclear pore complex and as the result, pre-miRNA is released into the cytosol from the disassembled complex (Yi et al., 2003, Ha and Kim, 2014).

In the cytoplasm, the loop of the pre-miRNA is cleaved by Dicer and generates a small (about 20-22 nucleotides) miRNA duplex (Bernstein et al., 2001, Hutvagner et al., 2001). Dicer is an RNase III endonuclease of roughly 200kDa and works specifically on dsRNAs. In human, Dicer interacts with the double-stranded RNA-binding domain proteins called Tar RNA binding protein (TRBP), to form a complex for pre-miRNA cleavage. Although TRBP is not essential for the cleavage of the pre-miRNAs mediated by Dicer, it stabilizes and enhances the process (Chendrimada et al., 2005, Haase et al., 2005, Lee et al., 2006). Also, for pre-miRNAs containing a high degree of complementarity along the hairpin stem, an Argonaute 2 (Ago2) induced endonucleolytic cleavage step takes place before Dicer mediated cleavage (Diederichs and Haber, 2007, Winter et al., 2009).

Once the pre-miRNA is cleaved by Dicer into small RNA duplex, it is loaded with an AGO protein to form the cytoplasmic effector complex called RNA – induced
silencing complex (RISC) (Hammond et al., 2001). Multiple AGO protein homologues were expressed in mammals, named AOG1-AGO 4 respectively. RISC loading is suggested to be regulated by RISC loading complex (RLC), which consists of Dicer, TRBP, protein activator of PKR (PACT) and the core component Ago protein (Gregory et al., 2005, Lee et al., 2006, Haase et al., 2005). During RISC forming, the double-stranded miRNA duplex is separated into a functional guide strand (mature miRNA), and a passenger strand which is typically degraded. The single stranded mature miRNA is fully incorporated with active RISC and ready to perform gene regulation (Figure 4). However, some studies pointed out that the passenger strand can also be loaded with RISC and perform active miRNA function (Ghildiyal et al., 2010, Okamura et al., 2009). The exact mechanism by which the guild strand is selected is still not very clear. Current studies suggest that the guild strand selection is determined during AGO loading step, and may mainly base on the relative thermodynamic stability of the base pairs at the two ends of the duplex: the strand with relatively lower stability is typically selected as the guide strand (Khvorova et al., 2003).
miRNAs are transcribed by RNA Pol II/III into pri-miRNAs and processed into pre-miRNAs in nucleus. Pre-miRNAs are exported from nucleus and become mature miRNAs incorporated with RISC through several steps in cytoplasm (Winter et al., 2009).
1.4.2 miRNAs Nomenclature

The nomenclature of miRNAs and their genes is slightly inconsistent, especially at the time when miRNAs were initially identified in the 90s (e.g. the first known miRNAs, let-7 and lin-4). A more “standard” nomenclature scheme for miRNAs was induced later as large numbers of miRNAs were discovered (Lagos-Quintana et al., 2001, Griffiths-Jones, 2006, AMBROS et al., 2003, Lee and Ambros, 2001). Briefly, mature miRNAs are named using prefix “miR” followed by a dash and unique identify number (e.g. miR-22). miRNA genes and precursors are also named using “prefix-dash-identify number” nomenclature system, except that “mir” is used instead of “miR” (e.g mir-22). The identify numbers are assigned sequentially, which indicates that a miRNA with higher identify number is likely to be discovered later than that with lower identify number. Although the “miR/mir - xxx” system is commonly used in studies, under some circumstances another 3 letters abbreviation is prefixed to indicate the organism, for example hsa-miR-xxx means that it is mature miRNA observed from human, and in the other hand mmu-miR-xxx stands for mouse miRNAs. However, identical miRNAs have the same identify number, regardless of organism. Mature miRNAs with identical structure (usually differ from 1 -2 nucleotides) have the same identify number but annotated with an additional lower case letter (e.g. miR-121a and miR-121 b are closely related miRNAs). It is possible that completely identical mature miRNAs are generated from different
pre-miRNAs and/or genetic loci, which are differed by number suffixes at the end, e.g. mir-125b-1 and mir-125b-2 can both generate mature miR-125b. In some cases if two mature miRNAs are produced from opposite arms of the same pre-miRNA precursor, they were denoted with letter suffix: -3p (from 3’arm) or 5p (from 5’arm). However, if two miRNAs are from the same miRNA precursor, the predominantly expressed miRNA is assigned with the name of mature miRNA, while the one from opposite arm is known as miRNA*. (e.g. miR-123 and miR-123*, where miR-123 expression is much higher than miR-123* in cells)

1.4.3 miRNAs regulate their target genes

Mature miRNAs cannot regulate their target genes by themselves. Instead, they are incorporated into RISC in vivo and act as the “seeker” to guide RISC to their target mRNAs. Each mature miRNA can recognized and bind to several different target mRNAs through Watson-Crick base pairing. In plants, miRNAs are fully or nearly perfect complementary to their target mRNAs, while animal miRNAs usually recognize partially complementary sequences (Voinnet, 2009, Filipowicz et al., 2008). Thus the target recognition for animal miRNAs is more complex (Figure 5). It has been reported that the complementary “seed” region, which contains nucleotides 2-8 from 5’ end of the miRNA, is critical for miRNA target recognition and gene regulation in animals. Also the mismatches must be located in the central region of
miRNA-mRNA duplex, and target mRNA should have reasonable complementarity to the 3’ half of miRNA to stabilize the interaction. (Filipowicz et al., 2008, Huntzinger and Izaurralde, 2011, Lewis et al., 2005, Grimson et al., 2007) Majority of the binding sites were identified on 3’UTR of the target mRNA, however some studies demonstrated that mature miRNAs can bind to amino acid coding sequence and regions in 5’UTR of target mRNA (Lytle et al., 2007).

The understanding of miRNAs’ function has been remarkably advanced in the past few years, but the exact mechanism by which miRNAs regulate gene expression is still unclear, especially for the effect of individual miRNA on their target genes. The “classical” thinking of miRNA-target gene regulatory machinery is that miRNAs guide RISC to their target mRNA and suppress the genes expression. The repression of target gene expression induced by miRNAs is commonly divided into three processes: i. directly site-specific cleavage. ii. mRNA decay/degradation. iii. mRNA translation inhibition (Bagga et al., 2005, Giraldez et al., 2006, Filipowicz et al., 2008). Initially, most of the discovered plant miRNAs were reported to regulate target gene through mRNA cleavage as a result of perfect or nearly perfect complementary matching, and the process is suggested to go through RNA interference (RNAi)-like pathways. Unlike plants, most of the animal miRNAs imperfectly pair with their target mRNA, and suppress their target genes expression.
at translation level. However, more recent studies suggest that miRNAs can also induce mRNA degradation in animals, and conversely, in plants miRNAs can lead to translation inhibition (Brodersen et al., 2008, Gu and Kay, 2010, Selbach et al., 2008, Guo et al., 2010). Furthermore, it is still not clear that whether the target genes silencing induced by miRNAs is predominantly by mRNA degradation or translation inhibition, or combination of both pathways (Huntzinger and Izaurralde, 2011). Importantly, each miRNA can potentially regulate several target genes by using different pathways, and the regulation of target genes by individual miRNA can be affected by many factors, such as species, biological environment/conditions (Ameres and Zamore, 2013).

As mentioned earlier, mature miRNAs guide RISC to the mRNAs of their target genes and suppress genes expression. RISC is a multiprotein complex and the exact constituents of RISC are still not clear. Currently the key and best characterized components of RISC are AGO proteins (Peters and Meister, 2007, Tolia and Joshua-Tor, 2007). AGO proteins not only take part in biogenesis of miRNAs, but also play critical roles in miRNA induced gene repression (Kiriakidou et al., 2007). Mammals contain four AGO proteins, namely AGO 1 to AGO 4. All of the four AGO proteins are involved in miRNA induced repression, but only AGO2 functions like RNAi to cleavage mRNA in animals. Up to now it is suggested that AGO proteins
interact with G182 proteins and cytoplasmic poly(A) binding protein (PABPC) to carry out miRNA induced gene repression (Huntzinger and Izaurralde, 2011, Filipowicz et al., 2008). However, the downstream pathways by which AGO proteins use to suppress gene expression are largely depending on specific miRNA-mRNA interaction and other factors, which require more investigation into this field.

Although majority of the reported miRNAs go through the “classical” miRNA-target gene regulatory machinery, recent reports demonstrated that miRNA can up-regulate their target genes expression under certain circumstances. Vasudevan et al. (2007) reported that human miR-369-3 can up-regulate its target gene reporter: tumor necrosis factor–α (TNFα) containing AU-rich elements (AREs) under cell cycle arrest in HEK 293 cells. Importantly, miR-369-3 can only activate TNFα-ARE reporter under cell cycle arrest, and switch back to traditional repression in growing cells. They also conducted additional experiments by using reporters targeted by Let-7 and synthetic miRNA miRcxcr4, respectively, and the results pointed out that the reporters were up-regulated by the miRNAs under cell cycle arrest. This was the first time that miRNAs are reported to switch from repression to activation of its target gene expression. In the study Vasudevan et al. (2007) concluded the essential factors that lead to such up-regulation induced by miRNAs in their experiments: First, this
up-regulation only occurred upon cell cycle arrest at G0/1, but not other cell cycle phase or in growing cells. Second, presence of AREs in 3’UTR of TNFα mRNA is required for such activation. Third, AGO2- fragile X mental retardation–related protein 1 (FXR1) complex is required. In the following study, the importance of cell cycle arrest in mRNA induced target gene activation was further confirmed (Vasudevan et al., 2008). Other laboratories also reported miRNA induced expression of target genes. Place et al. (2008) reported that miR-373 can target promoter sequences of E-cadherin and cold-shock domain-containing protein C2, and induces their gene expression in PC-3 cells. Huang et al. (2011) reported that the promoter region of Cyclin B1 (Ccnb1) mRNA contains high-complementary sites for miR-744, and expression of Ccnb 1 can be induced by miR-744 in mouse cell line. Interestingly, miRNAs target the promoter regions of their target genes in these cases, implying that the location of the binding sites for miRNAs may also affect their function. Also, miR-155 was reported to directly and indirectly enhances its target gene TNF-α translation in macrophages (Tili et al., 2007), and miRNAs have also been suggested to up-regulate their target genes in immature oocytes (Mortensen et al., 2011).
miRNAs recognize their targets by Waston-Crick base pairing. In plants base pairing between miRNA and mRNA is perfect or nearly perfect, while animal miRNAs recognize partially complementary binding sites (Huntzinger and Izaurralde, 2011).

1.4.4 Functional role of miRNAs in cardiovascular system and ES cell differentiation

Accumulating evidences suggest that miRNAs play important roles in biological regulation of cardiovascular system development and diseases. The importance of miRNAs in such fields was first highlighted by inhibiting or disrupting miRNA
biogenesis to knockdown the “global” miRNAs level. Yang et al. (2005) generated Dicerex1/2 mice with two deleted essential exons for the function of Dicer, and reported that homozygous Dicerex1/2 died between day 12.5 and 1.45 of gestation. They also reported that from E11.5 Dicerex1/2 embryos displayed an impaired growth and development phenotype, and blood vessel formation was severely compromised in Dicerex1/2 embryos and yolk sacs. Another study carried out by Albinsson et al. (2010) pointed out that transgenic mice with deletion of Dicer in vascular smooth muscle resulted in late embryonic lethality at embryonic day 16 to 17 due to decreased SMC proliferation and differentiation, which caused thinner vessel walls, impaired contractility and hemorrhage. These data suggest that loss of miRNAs due to Dicer knockout has significant impact on embryo growth and cardiovascular system development. With the recent achievements on understanding the biogenesis and function of miRNAs, now research focus on the functional role of individual miRNA in cardiovascular system and diseases. Small et al. (2010) summarized a subset of miRNAs expressed in cardiovascular system and diseases. In the study they highlighted the important roles of miR-1, miR-21, miR-133 and miR-208a in cardiomyocyte hypertrophy, miR-195, miR-199a and miR-320 in cardiomyocyte apoptosis and regeneration, miR-21, miR-145, miR-221 in restenosis, and finally miR-221 and miR-222, miR-210, miR-126 and miR-17-92 cluster in angiogenesis. Taken together, these data clearly indicate the important roles of
miRNAs from early embryo development to regulation of mature cardiovascular system and diseases.

Stem cell differentiation plays an important role during tissue development and pluripotent stem cells hold significant potential for clinical therapies. SMC differentiation is a critical process during cardiovascular system formation and development, as well as SMC proliferative related cardiovascular diseases, such as atherosclerosis. As suggested by Landgraf et al. (2007), many miRNAs are expressed in a tissue-specific manner, implying that miRNAs may have significantly impact in cell/tissue specification. Deletion or disrupting of dicer or dorsha in ES cells lead to compromised stem cell self-renew and differentiation due to loss of “global” miRNAs, providing an overall valuation of miRNA pathways in ES cells (Murchison et al., 2005, Wang et al., 2007).

Furthermore, many recent studies have discovered the specific functional role of individual miRNA in ES cell differentiation. miR-21 is a well-known ES cell related miRNA. It has been reported that miR-21 level increased while ES cell started to differentiate (Singh et al., 2008). Further analysis showed that mRNAs of SOX2 and Nanog have potential binding sites for miR-21. SOX2 and Nanog are key factors for regulating stem cell self-renewal, and their expressions were repressed by induction
of miR-21 under stem cell maintaining condition. Furthermore, RE1-silencing transcription factor (REST), a highly expressed protein in mouse ES cells, is proved to maintain self-renewal and pluripotency of mouse ES cells through suppressing miR-21 (Singh et al., 2008). Also, miR-134, miR-296 and miR-470 were found to target mRNAs of Nanog, SOX2 and OCT4 to induce ES cell differentiation (Tay et al., 2008, Gangaraju and Lin, 2009). These findings suggest that miRNAs can directly target the key factors that controlling ES cell differentiation, and/or acting as downstream pathways of other regulators.

In additional to direct targeting the key genes which maintaining stem cell self-renewal and pluripotency, some miRNAs are also suggested to regulate stem cell differentiation in a more “complex and indirect” pathway, or even feedback loops. miR-290-295 cluster were reported to highly expressed in mouse ES cells, and controlled by a complex regulatory network consisting of Nanog, OCT4 and SOX2 (Marson et al., 2008). miR-290-295 cluster were reported to regulate OCT4 indirectly through DNA methylation. Furthermore, some studies report that miR-290-295 cluster can promote pluripotency of ES cells through regulation of cell cycle, paired-box transcription factor 6, or even promote the production of mouse iPSC (Sinkkonen et al., 2008, Lichner et al., 2011, Kaspi et al., 2013, Judson et al., 2009).
Beside the important roles of miRNAs in maintaining self-renewal and pluripotency, several studies have also suggested that miRNAs are essential players in specific SMC differentiation, and one of the best examples are miR-143/145. Human miR-143/145 cluster are located on chromosome 5q33 and regulated by a common promoter (Iio et al., 2010). miR-143/145 are suggested to be co-transcribed as a bicistronic unit, and they are direct targets of SMC transcriptional factors: SRF and myocardin, as well as Jag-1/Notch pathway (Boucher et al., 2011, Xin et al., 2009). Mice lacking of miR-143/145 have minor structural and functional defect in blood vessels but impaired neointima formation in response to vascular injury due to defect SMC migratory ability (Xin et al., 2009). More importantly, miR-145 has been proved to induce SMC differentiation from different types of stem cells by repressing their self-renewal through OCT4, SOX2 and KLF4 pathways, and increase myocardin protein through feedback from SRF-myocardin complex formation (Xin et al., 2009, Cordes et al., 2009, Xu et al., 2009). While miR-143 repress myocardin’s competitor, Elk-1, to promote SMC differentiation (Wang et al., 2004, Cordes et al., 2009).

Taken together, the importance of miRNAs has been well recognized since they were found in 1993, and the understanding of miRNAs biogenesis and functions has been well advanced over the last twenty years. However, the miRNA-target gene
regulatory machinery in stem cell differentiation is still poorly defined due to the limited knowledge in the complex RISC, various downstream signal pathways involved in stem cell differentiation and specific miRNA-mRNA interaction. Further investigation into the function role of miRNAs in vascular cell differentiation from stem cells will benefit the understanding of vascular system development and disease applications.

1.5 Project Aim and objectives

SMC differentiation from stem cells plays an important role in cardiovascular system development and diseases. Better understanding of the complex molecular mechanisms underlying SMC differentiation could contribute to our knowledge of tissue development, diseases and regenerative medicine, especially in the fields of atherosclerosis, hypertension and angiogenesis. This PhD project aims to identify the potential miRNA(s) involved in SMC differentiation from ES cells and investigate the functional role of selected miRNA(s) in SMC differentiation *in vivo* and *in vitro*, as well as providing a profound study of its (their) downstream signal pathways by which mediates stem cell differentiation towards SMCs.

The objectives of this PhD project are:
1. Further validating the previous established collagen-based in vitro SMC differentiation model (Xiao et al., 2006) by using another ECM protein collagen type I and mouse ES cells. SMC differentiation will be assessed at RNA level and protein level. Furthermore, expression of ES cell makers and SMC transcriptional factors will also be assessed.

2. Using well established in vitro SMC differentiation model and the relative information collected from literatures to perform miRNA microarrays analysis. Potential miRNAs involved in SMC differentiation will be initially screened at this step, and subjected to further confirmation from in vitro experiment.

3. Further confirm the results from miRNA microarrays analysis by checking the expression of potential miRNAs during SMC differentiation using Real-Time qPCR. Once the selected miRNA(s) is confirmed, perform gain/loss-function experiments to determine their roles in SMC differentiation from both human and mouse ES cells in vitro.

4. If results from in vitro gain/loss-function experiments are satisfied, determine whether the selected miRNA(s) has similar role in SMC differentiation in vivo by using Matrigel implants in mice.

5. Determine the potential target gene(s) for the selected miRNA(s)

6. Further confirm the exact target gene(s) for the selected miRNA(s). The
target mRNA(s) for selected miRNA(s) will be assessed by using gain/loss of function experiments combined with luciferase reporter assay.

7. Investigate the downstream pathways of selected miRNA(s) and its (their) target(s), including specific miRNA-mRNA interaction and their impact on SMC differentiation.
CHAPTER 2 Materials and Methods

2.1 Cell Culture

2.1.1 Making ES cell basic medium (BM)

ES cell basic medium (BM) in this project is defined as KnockOut™ D-MEM (Gbico, Invitrogen) supplemented with 100 U/ml penicillin and 100 ug/ml streptomycin. BM was stored at 4°C fridge for maximum 4 weeks.

2.1.2 Making complete ES cell culture medium (CM)

It is important to use the right culture medium for maintain ES cell to prevent differentiation. Complete ES cell culture medium was prepared into small amount (usually 50ml) and stored at 4°C fridge for maximum 8 days. To make 50ml of CM, 5ml of Foetal Bovine serum (FBS) for stem cell (Gibco, Invirtogen) was added into 45ml of BM, followed by adding 500µl of 100 × MEM Non-Essential Amino Acids Solution (MEM-NEAA, Gibco, invirtogen), 50µl Recombinant Human Leukemia Inhibitory Factor (LIF, 10µg/ml, Prospeic) and 5µl of 1M 2-Mercaptoethanol (Sigma-Aldrich).
2.1.3 Maintaining mouse ES cell

Mouse embryonic stem cells (ES-D3 cell line, CRL01934, ATCC, USA) were maintained in T25 flask with 5ml of complete ES cell culture medium (CM) in 37°C and 5% CO₂ incubator. ES cells were passaged every 2 or 3 days when reached over 70% confluency, and in a ratio of 1:6 to 1:10.

2.1.4 Passaging mouse ES cells

New T25 flask was coated with pre-warmed 0.04 % gelatin (Sigma-Aldrich) in PBS and incubated at 37°C for at least 30 minutes. After removing old medium, ES cells were washed with PBS then treated with trypsin-EDTA for 1mins in 37°C incubator. Pre-warmed CM was added into the flask to neutralize the trypsin and cells were dissociated into single cell suspension by pipetting up and down several times. ES cells were then passaged at a ratio of 1:6 to 1:10 into the pre-coated T25 flask and incubated in a 37°C, 5% CO₂ incubator for 2 to 3 days.

2.1.5 Freezing stocks of mouse ES cells

The culture medium was removed from flasks and cells were washed with PBS once, and then treated with trypsin-EDTA (Sigma-Aldrich) for 1 minute in a 37°C
incubator. BM containing 10% FBS was added into flasks to neutralize reaction, and the cell suspension was transferred into a 15ml tube and spun at 1,000 × g for 5 minutes. Supernatant was then discarded and ES cells were re-suspended in freezing medium (FM) consisting of 50% DMEM (Sigma-Aldrich), 40% FBS and 10% Dimethyl sulfoxide (DMSO; Sigma-Aldrich). The cell suspension was split into cryovials a ratio of 1:4, placed into a cooling container (Mr. Frosty) and placed in a -80°C freezer overnight. Cryovials were transferred into liquid nitrogen the next day for long-term storage.

2.2 Differentiation of mESCs towards smooth muscle cells

Cell culture flasks or plates were coated with 5ug/ml collagen I/IV in cold PBS for at least 2 hours at room temperature. Undifferentiated ES cells were washed with PBS, treated with trypsin-EDTA, dissociated into single cells and seeded onto the pre-coated flasks or plates, followed by cultured in SMC differentiation medium (DM) [MEM alpha modification (Sigma-Aldrich) supplemented with 10% FBS (Gibco, Inviro), 0.05mM 2-mecraptoethanol, 100 U/ml penicillin and 100 ug/ml streptomycin] for 0 to 9 days prior to further treatment. The medium was refreshed every other day from day 2.
2.3 microRNA and plasmid transfection

2.3.1 Transfection of miRNA precursors or inhibitors

Transfection is the process of introducing foreign nucleic acids into cells. miRNA precursors or inhibitors and respective miRNA negative control were transfected into ES cells by using siPORT™NeoFX™ transfection agent (Ambion, Applied Biosystem) according to the manufacturer’s instructions. Before preparing transfection complexes, cells were washed with PBS, dissociated into single cell with trypsin-EDTA, counted by using a hemocytometer, and re-suspended in culture medium at the correct cell density according to Table 1, and stored in 37°C and 5% CO₂ incubator while transfection complex was prepared. Warm Opti-MEM (Gibco, Invitrogen) was mixed with warm siPORT™NeoFX™ agent by pipetting and incubated for 10 minutes at room temperature, while miRNA precursors or inhibitors and their respective negative controls (10µM, Ambion, Applied Biosystems) were diluted by warm Opti-MEM in other tubes. After incubation, an equal volume of diluted siPORT™NeoFX™ agent was mixed with diluted miRNA by pipetting and incubated for another 10 minutes at room temperature to allow transfection complex to form. After final incubation, the transfection complex was add directly to pre-coated cell culture flasks or plates, followed by re-seeding the cells in culture medium as prepared above. The flaks or plates were gently tilted back and forth to evenly distribute transfection complex and cells, and incubated in 37°C and 5% CO₂.
incubator. In our preliminary studies, we observed the optimized concentration of miRNA precursors or inhibitors for transfection was 30nM. Culture medium was changed 24 hours post transfection, and cells were harvested 48 hours to 72 hours after transfection for further analysis.

<table>
<thead>
<tr>
<th></th>
<th>T25 flask</th>
<th>6 well plate</th>
<th>24 well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of cells</td>
<td>6×10^5</td>
<td>3×10^5</td>
<td>4×10^4</td>
</tr>
</tbody>
</table>

Table 1 Cell density used for miRNA reverse transfection

2.3.2 miR-34a and Sirt-1 siRNA co-transient transfection

Mouse ES cells were seeded on collagen coated T25 flasks in differentiation medium for 2-3 days before transfection. On the day of transfection, miR-34a mimics (MISSION® microRNA Mimic has-miR-34a, Sigma-Aldrich), SirT1 specific siRNA (Mission esiRNA targeting mouse SIRT-1, Sigma-Aldrich), or respective miRNA/siRNA negative controls (25nM each) were transfected into cells by using siPORT™ NeoFX™ agent in a similar method as described in 2.3.1. Transfected cells were cultured in 5µg/ml collagen coated flasks or plates for 48 to 72 hours in the SMC differentiation medium before harvest.
2.3.3 Transfection of plasmids into ES cells

Related plasmids or respective control were transfection into cells by using Fugene-6 (Roche) or Turbofect transfection agent (Thermo) according to the manufacturer’s instructions. Briefly, the ratio of transfection agent to DNA is 1:3 for Fugene-6 and 1:2 for Turbofect. On the day of transfection, normal cell culture medium was replaced by 50% volume of antibiotics free medium with 5% FBS at least 1 hour prior to transfection. Transfection agent was first diluted with serum free Opti-MEM and incubate at room temperature for 5 minutes. After incubation the diluted transfection agent was mixed with plasmids by pipetting up and down several times and incubated at room temperature for 15 to 20 minutes. After incubation the transfection complex was drop-wise added to cell culture plates or flasks with antibiotics free cell culture medium contains 5% FBS and incubated in a 37°C and 5% CO2 incubator for 6 to 8 hours. Same volume of cell culture medium with 15% FBS was add to the cell/transfection mixtures to restore the level of FBS back to 10% and the cells were left in a 37°C and 5% CO2 incubator overnight. On the next day the old medium was replaced by normal cell culture medium and incubated at 37°C and 5% CO2 till 48 to 72 hours post transfection for analysis.
2.4 miR-34a overexpressing ES cells

2.4.1 Generation of miR-34a over-expression lentiviral particles

Control and miR-34a over-expression lentiviral particles were produced by using control (pLL-3.7-GFP, Addgene, Plasmid 11795) and miR-34a (pLL3.7-GFP-miR-34a, Addgene, Plasmid 25791) plasmids DNA respectively. 293T cells were cultured in T75 flask at least 24 hours prior to transfection, and then co-transfected with pLL3.7-GFP (control) or pLL3.7-GFP-miR-34a (miR-34a over-expression) and three packaging plasmids [pMDLg/pRRE (Addgene, 12251), pRsv-Rev (Addgene, 12253) and pMD2.G (Addgene, 12259)] by using Fugene-6 transfection agent. On the next day the old medium was replaced by fresh complete medium. Supernatant containing the lentivirus was collected into 15 ml tubes 48 hours post transfection and spun at 3,000 RPM for 5 minutes at room temperature. The supernatant was filtered with 0.45 µm filters, aliquoted and stored at -80 °C for future using.

2.4.2 Lentiviral infection and cell sorting

Mouse ES cells were seeded on T25 flaks 24 hours prior to infection and incubated in 37°C and 5% CO₂ incubator. 1ml of respective lentiviral particles was added into culture medium with 10µg/ml polybrene (hexadimethrine bromide, H9268;
Sigma-Aldrich) and incubate at 37°C and 5% CO₂ for 24 hours. Medium containing viral constructs was replaced with complete medium after 24 hours of incubation. Cells were cultured for further 2 to 3 days and GFP-positive cells were sorted out by using anti-GFP antibody and anti-FITC microbeads (Miltenyi Biotec Ltd.) according to the manufacturer’s instructions. In some cases, sorted GFP-positive cells were subjected to flow cytometry analyses to evaluate its cell purity. GFP-positive ES cells were cultured in ES cell medium for 2 to 3 passages before using.

2.4.3 SMC in vivo differentiation and immunofluorescent staining for sections

SMC in vivo differentiation was conducted as described in our previous studies (Xiao et al., 2012, Huang et al., 2013). Briefly, control or miR-34a overexpression ES cells (1 × 10⁶ cells) were mixed with 50 µl of Matrigel (Becton Dickinson Labware) and PDGF-BB (100 ng/ml) at 4 °C and subcutaneously injected into C57BL/6J mice. After 10 to 13 days, mice were sacrificed and the implants (Matrigel plugs) were harvested. Half of each Matrigel plug was snapped frozen with liquid nitrogen and subjected to cryo-sectioned for detection of cell markers, and the rests were lysed for total RNA and protein extraction to examine related gene expression levels by Real-Time PCR and Western blot, respectively. All animal experiments were carried out according to protocols approved by the Institutional Committee for Use and Care.
For immunofluorescent staining, sections were cut at 8 µm for optimum cutting temperature compound-embedded Matrigel implants, every 40 µm along the longitudinal axis of Matrigel plugs. The cut sections were numbered and given numbered sections (for instance, sections 5, 15, and 25) were picked up on Superfrost Microscope Slide (Thermo Scientific) subjected to immunohistological analysis with respective antibodies. Frozen sections were air-dried for at least 30 minutes followed by fixed in cold acetone for 15 minutes. The sections were then washed with PBS and blocked with 5% BSA (Sigma-Aldrich) in PBS for 1 hour at room temperature in a humid chamber. After 1 hour the samples were incubated with primary antibodies against SM-MHC, GFP or IgG controls in blocking buffer in a cold room (4 °C) overnight. On the next day the samples were washed with PBS then incubated with appropriate FITC or TRITC conjugated secondary antibodies for 60 minutes at room temperature. After incubation the samples were washed with PBS. Finally the samples were incubated with DAPI (1:1,000, Sigma-Aldrich) for 5 minutes, washed with PBS then mounted with glycerol-PBS. Images were assessed with Axioplan 2 imaging microscope with Plan-NEOFLUAR 20X, NA 0.5 objective lenses, AxioCam camera and Axiovision software (Carl Zeiss MicroImaging, Inc) at room temperature, and processed with Photoshop software (Adobe). The percentage

of Laboratory Animals.
of GFP-labeled SM-MHC positive cells per field was counted by two trained independent investigators blinded to the treatment from random high power fields (200×) in each sections, 3 sections from each implant and four implants from each group.

2.5 SIRT1 inhibitor and SIRT1 agonist treatment

2.5.1 SIRT1 inhibitor treatment

SIRT1 inhibitor (SIRT1 inhibitor III, EMD Millipore) were diluted in DMSO and stored in aliquots at – 20 °C. Control (pLL3.7-GFP) and miR-34a over-expressing (pLL3.7-GFP-miR-34a) were seeded on collagen coated T25 flasks in differentiation medium for 4 days to induce differentiation. On day 4, SIRT1 inhibitor (500 nm) or same volume of carrier vehicle (DMSO) were added into fresh differentiation medium and incubated at 37°C and 5% CO₂ for 6 or 12 hours before harvest.

2.5.2 SIRT1 agonist treatment

Resveratrol (Sigma-Aldrich) were diluted in ethanol at 100mM and stored at -20°C. Mouse ES cells were seeded on collagen coated flasks or plates in differentiation medium to allow SMC differentiation before treatment. Day 2-3 differentiating ES cells were incubated with fresh medium containing resveratrol (5 or 10 µm) or same
volume of carrier vehicle (ethanol) for 24 to 28 hours before harvest.

2.6 RNA extraction and analysis

2.6.1 Extraction of total RNA from cells

Before harvesting, cell scrapers were sterilized in 70% Ethanol for 10 minutes then rinsed in cold 1X PBS. Cell culture medium from flasks or plates was discarded and washed with 1X PBS once. Cells were scrapped in cold PBS to minimum enzyme activity. Scrapped cells in cold PBS were collected in sterilized 1.5 ml tubes and centrifuged at 4°C, 6,000×g for 2 minutes. Supernatant was discarded and cell pellet were either proceed to RNA extraction or stored at -80°C.

All RNA related work was performed in a sterile and RNase free manner. Working surface was cleaned by using 70% Ethanol. Pipette tips and tubes were autoclaved before use to minimum the risk of RNA degradation or contamination. Total RNA was extracted by using GenElute™ Mammalian Total RNA Miniprep Kit (Sigma-Aldrich) according to the manufacture instruction. 2-mercaptoethanol was added into Lysis Solution for that day’s use at a ratio of 1:100 to fully inactivate RNase. For each tube of cell pellet (up to 5 x 10⁵ cells), 250µl of Lysis Solution/2-mercaptoethanol mixture was added into the tube and vortexed till all
Clumps disappear. Each sample was then transferred to a GenElute™ Filtration Column placed in a 2 ml collection tube, and centrifuged at room temperature, 16,000 × g for 2 minutes. Filtration Column was discarded from collection tube, and 250 µl 70% Ethanol was added to the collected supernatant then mixed well by pipetting up and down to precipitate the RNA. Up to 500 µl of lysate/ethanol mixture from each sample was transferred into a GenElute™ Binding Column placed in a 2 ml receiving tube and centrifuged at 16,000 × g for 15 seconds. After discarding the flow-through, GenElute™ Binding Column was placed back into the receiving tube. 500 µl of Wash Solution 1 was added to each column and spun at 16,000 × g for 15 seconds. The binding Column was transferred to a new collection tube. 500 µl Wash Solution 2 was added to each tube and centrifuged at 16,000 × g for 15 seconds. After discarding flow-through sample was washed again with 500 µl Wash Solution 2 and spun at 16,000 × g for 2 minutes. Wash Solution was removed from collection tube and samples were centrifuged again at 16,000 x g for 1 minute to fully remove ethanol. Binding column was transferred to a new RNase free collection tube. 50 µl of elution solution was added to each column and incubate for 1 minutes at room temperature. Samples were spun at 16,000 × g for 1 minute and RNA samples were placed on ice after centrifugation. The concentration of RNA samples was then measured with Nanodrop spectrophotometers and RNA samples were stored at –80 °C.
2.6.2 MicroRNA extraction

Total RNAs includes small RNAs were isolated from cells by using TRI Reagent® (Sigma-Aldrich) according to manufacturer’s instructions. Cells were scrapped from flasks in cold 1X PBS into RNase free tubes as described in 2.6.1. 1ml of TRI Reagent® (Sigma-Aldrich) was added to each tube of cell pellet and mixed by pipetting up and down. For cells cultured in 6-well plates, 1ml of TRI Reagent® was directly added to each well and the cell lysate was pipetted through a pipette tip several times to form a homogenous lysate, and transferred to RNase free tube. The samples were left at room temperature for 5 minutes to ensure complete dissociation of nucleoprotein complexes. 0.2 ml of chloroform (Sigma-Aldrich) was added to each tube and shook vigorously for 15 seconds. The mixture was left at room temperature for 5 minutes and then centrifuged at 12,000 × g for 15 minutes at 4 °C. Only colorless upper aqueous phase was transferred to a new RNase free tube, and 0.5 ml of 2-propanol was added to each tube. Samples were left at room temperature for 10 minutes then centrifuged at 12,000 × g for 10 minutes at 4 °C. The supernatant was removed and RNA pellet was washed by using 1 ml of 75% ethanol and vortexed. The samples were centrifuged at 7,500 × g for 5 minutes at 4 °C and the supernatant was discarded. RNA pellet was air dried for 10 minutes. 30 µl of RNase free water was added to each RNA pellet and mixed by
pipetting. The RNA samples were then incubated at 55 °C for 10 minutes to facilitate dissolution and placed on ice, while the concentration of RNA samples was measured by Nanodrop. The RNA samples were stored at – 80 °C

2.6.3 Reverse Transcription-Polymerase Chain Reaction

Prior to Reverse Transcription-Polymerase Chain Reaction (RT-PCR) the RNA samples (excluding small RNAs) were mixed by vortex. 1 µg of RNA was diluted with RNase-free water to make a total volume of 9 µl and mixed with 1 µl of Random Primer (50ng/µl, Promega). The samples were placed on a Thermal Cycler (Techne, Staffordshire, UK), which ran a program of 70 °C for 5 minutes followed by cooling down to 4 °C to destabilize RNA secondary structures and enhance primer binding. The master mix for RT-PCR was prepared while the program was running. The volume of master mix for each reaction is 15 µl, which consists of 4.5 µl of RNase-free water, 5 µl of 5X Reaction buffer (Promega), 3 µl of 25mM magnesium chloride (MgCl₂), 1 µl of 25mM 2'-deoxynucleoside 5'-triphosphate (DNTPS; Invitrogen), 1 µl of Improm-II reverse transcriptase and 0.5 µl of RNasin Plus RNase inhibitor (Promega). The master mix was combined with samples and placed into the block of Thermal Cycler, which ran a program of 25 °C for 5 minutes for annealing followed by an extension at 42 °C for 90 minutes. The reaction was then stopped by enzyme denaturation at 70 °C for 15 minutes, then cooled down and
hold at 4°C. The final concentration of each synthesized complementary Deoxyribonucleic acid (cDNA) samples was diluted to 5ng/µl and stored at -20 °C.

NCode™ VILO™ miRNA cDNA Synthesis Kit (Invitrogen) was used to synthesize ploy(A) tails of all the microRNA, and then synthesizing cDNA from the tailed population in a single reaction. Each reaction consists of 500 ng RNAs, 2 µl of 5× Reaction Mix, 1 µl of 10× SuperScript® and topped up to 10 µl with RNase-Free water. The samples were vortexed to mix and centrifuged briefly before placing in a Thermal Cycler, which ran a program set at 37 °C for 60 minutes then raised to 95 °C for 5 minutes to terminate the reaction, and held at 4 °C at the end. The cDNA samples were diluted to 5ng/ µl and stored at -20 °C.

In some experiments, negative control or mock reverse transcription containing all the RT reagents, except the reverse transcriptase (for normal RNA) or 10× SuperScript® (for miRNA), respectively, were conducted to distinguish genomic DNA contamination.

2.6.4 Real-Time Polymerase Chain Reaction

The working area was cleaned with 70% Ethanol and only sterilized pipette tips and
tubes were used when preparing Real-Time Polymerase Chain Reaction
(RealTime-PCR) samples. cDNA samples were thawed from -20 °C and placed on
ice. The master mix for one reaction of RT-PCR for mRNA contained 5 µl of KAPA
SYBR FAST qPCR Master Mix (Kapa Biosystems). 0.75 µl of 2 µM forward primer,
0.75 µl of 2um reverse primer and 1.5 µl of RNase-free water. For microRNA
samples, the master mix consists of 5 µl of NCode™ EXPRESS SYBR®
GreenER™ qPCR SuperMix, 0.75 µl of 2 µM miRNA specific forward primer,
0.75 µl of 2 µM miRNA Universal Primer (Invitrogen) and 1.5 µl of RNase-free
water. The master mix was vortexed then aliquoted at 8 µl for each reaction in a well
of a MicroAmp® Optical 384 wells plate. 2 µl of 5 ng/µl cDNA sample was added
into its respective well and each sample was carried out in duplicates. The 384 wells
plate was sealed with MicroAmp® PCR film, vortexed briefly and centrifuged at
1,200 × g for 1 minute. ABI HT 7900 was used to run the PCR reaction, which has a
program of 50°C for 2minutes, 95°C for 10 minutes, 40 cycles of 95 °C for 15
seconds and 60°C for 1 minute. Once the reaction has completed, the result was
analyzed with SDS 2.3 software (Applied Biosystems). The Pfaffl’s method (Pfaffl,
2001) was applied to determine the different expression levels of a gene of interest
between a control and a treated sample. Briefly, the amount of the target gene is
normalized towards an internal control housekeeping gene (in this case the 18S gene
or U6 RNA) in both the control and the treated sample and it is expressed by the
formula: $2^{-\delta\delta C_t}$, where $\delta\delta C_t = \delta C_t,T - \delta C_t,C$, with $\delta C_t,T$ as the difference between the Ct of the gene of interested and the housekeeping gene in the treated sample and $\delta C_t,C$ as difference between the Ct of the gene of interested and the housekeeping gene in the control sample.

2.7 Protein extraction and analysis.

2.7.1 Chemicals and buffer

<table>
<thead>
<tr>
<th>Name</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPA buffer</td>
<td>Tris-HCl: 50mM, pH 7.4.</td>
</tr>
<tr>
<td></td>
<td>NP-40:1%</td>
</tr>
<tr>
<td></td>
<td>Na-deoxycholate: 0.25%</td>
</tr>
<tr>
<td></td>
<td>NaCl: 150mM</td>
</tr>
<tr>
<td>5× SDS loading buffer</td>
<td>Tris-Cl (0.25 M, pH 6.8)</td>
</tr>
<tr>
<td></td>
<td>SDS (sodium dodecyl sulfate; 10%)</td>
</tr>
<tr>
<td></td>
<td>Glycerol (50%)</td>
</tr>
<tr>
<td></td>
<td>Bromophenol blue (0.25%)</td>
</tr>
<tr>
<td></td>
<td>DTT (dithiothreitol; 0.5 M)</td>
</tr>
<tr>
<td>Buffer Type</td>
<td>Composition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>10× Tris Glycine buffer, pH8.4</td>
<td>Tris base: 30.3g
Glycine: 144.1g
Distilled water to 1 Liter</td>
</tr>
<tr>
<td>1× Running buffer</td>
<td>10× Tris Glycine buffer: 100 ml
10% SDS: 10ml
Distilled water to 1 Liter</td>
</tr>
<tr>
<td>1× Transfer buffer</td>
<td>10× Tris Glycine buffer: 100 ml
Methanol: 200ml
Distilled water to 1 Liter</td>
</tr>
<tr>
<td>10× TBS buffer</td>
<td>Tris HCl: 24g
Tris Base: 5.6g
NaCl: 88g
Distilled water to 1 Liter</td>
</tr>
<tr>
<td>1× TBS-T</td>
<td>10× TBS: 100ml
Tween® 20: 500µl
Distilled water to 1 Liter</td>
</tr>
</tbody>
</table>
Table 2 Recipes of buffer used in protein analysis

All chemicals were from Sigma Aldrich unless specifically indicated.

2.7.2 Protein extraction from cells

Cell pellets were collected by using cell scrappers in cold 1× PBS. After removing of PBS, the cell pellets were either stored at -80°C or proceed to protein extraction. Each cell pellet was mixed with 100 µl of Lysis buffer [RIPA buffer containing Protease Inhibitor Cocktail (Sigma-Aldrich)] and sonicated at 4°C to disrupt cell membrane and release protein contents. The lysates were left on ice for 1 hour and vortexed every 15 minutes to allow fully lysis of cells. After incubation the samples were centrifuged at 16,000 × g for 10 minutes at 4 °C. Up to 100 µl of supernatant from each sample was transferred into new pre-cooled 0.5 ml tubes and placed on ice. The concentrations of proteins were measured by using BIORAD Protean assay solution (BIO-RAD, Herts, UK). The assay solution was first diluted at 1:5 by using Distilled water. 2 µl of each protein sample was added to 998 µl of diluted BIORAD Protean assay solution, vortexed and incubated for 10 minutes at room temperature. Protein concentrations were measured by using a spectrophotometer (SmartSpec™ 3000; BIO-RAD). Lysis buffer and warmed 5× sodium dodecyl sulfate (SDS) protein loading buffer were then added into each sample to adjust the concentration. The
protein samples were placed into a heat block and denatured at 95°C for 10 minutes, followed by vortexing and then centrifuged briefly. After cooled down at room temperature for 3 minutes, the samples were stored at –80°C.

2.7.3 Western blot and immunodetection

Electrophoresis was carried out with Mini-PROTEAN® Tetra Cell system (BIO-RAD, UK) and the protein was separated by SDS PAGE with 6-10% Tris-clycine gel. The gels were prepared on the day of experiment, and 4ml of 10% separating gel consists of 1.6ml double-distilled water, 1.635ml of 30% Acrylamide (National diagnostics, USA), 1ml of 1.5M Tris buffer pH 8.8, 40µl of 10% SDS, 40µl of 10% APS and 4 µl of TEMED, while 2.5 ml of 6% Stacking gel consists of 1.3 ml of double-distilled water, 0.5 ml of 30% Acrylamide, 0.625 ml of 0.5M Tris buffer pH 6.8, 25 µl of 10% SDS, 25 µl of 10% APS and 2.5 µl of TEMED. 4ml of separating gel was first added into the glass casting chamber followed by 1ml of butanol (Sigma-Aldrich) to flatten the gel. After 10 minutes, the butanol was discarded from the chamber and 2.5 ml of stacking gel was added on top of the separating gel. Plastic comb was placed into the gel to create 10 wells in each gel, and incubated at room temperature for 10 minutes. 40 µg of each protein sample was added into the wells of the gel, with 15 µl of ColorPlus Prestained Protein Ladder (New ENGLAND BioLabs®inc) loaded in the first well of the gel. The gels were run
at a fix voltage of 160 V for 1 hour 15 minutes in 1× running buffer at room temperature. Polyvinylidene difluoride (PVDF) membranes (GE Healthcare) were first activated in methanol (Sigma-Aldrich) then soaked in 1× transferring buffer. Blotting sponges were washed with distilled water then soaked in 1× transfer buffer with filter papers. The gels were transferred into blotting cassettes with pre-wetted membranes, blotting sponges and filter papers. The assembly was carried out in 1× transfer buffer and air bubbles were removed by rolling over the surface with a roller. The blotting cassettes were inserted into a Mini Trans-Blot Central Core (BIORAD) and placed back to the running cell filled with cold 1× transfer buffer and a cooling pack. The proteins were electro-transferred to membranes for 2 hours 30 minutes at 60 V.

The membranes were removed from blotting cassettes after transfer and blocked in 5% silk milk in TBST buffer on a 2-D rocker, with the protein facing upwards for 1 hour at room temperature. The membranes were then incubated with primary antibodies in 5% silk milk in TBST on a slow roller at 4 °C overnight.

The membranes were taken out from primary antibodies and washed with 1× TBST 3 times for 10 minutes each wash on a shaker, and then incubated with horseradish peroxidase conjugated secondary antibodies in 5% milk TBST for 1 hour at room
temperature. After incubation, the membranes were washed again with 1× TBST 3 times for 10 minutes each wash. Finally the membranes were incubated with ECL-PLUS reagent (Amersham Biosciences, Stockholm, Sweden) for 3 minutes at room temperature. After removing the excess ECL reagent, the membranes were wrapped in a clean plastic film and placed in an autoradiographic cassette. Membranes were exposed to Hyperfilm ECL (GE Healthcare) for normally 10 seconds to 2 minutes (depending on signal strength) in a dark room, and films were developed with an X-Ray film processor (SRX-101A. Konica Minolta, USA).

2.8 Transient transfection and luciferase assay

2.8.1 SirT1 3’UTR reporter cloning and miR-34a binding sites mutation

Reporter vector harboring sequences of murine SirT1 was created using cDNA from differentiating ES cells. The 3’-flanking untranslated region (2306bp/3636bp) of murine SirT1 gene (NM_019812.2) containing two miR-34a binding sites was amplified by PCR with primers shown in appendix, and cloned into pmiR-reporter-basic vector (Ambion, Applied Biosystem) at Mlu I and Sac I sites, designated as pmiR-Luc-SirT1-WT. miR-34a binding sites 1,2 mutation alone or
dual mutation were introduced into pmiR-Luc-SirT1-WT by using QuickChange™ site-directed mutagenesis kit (Agilent Technologies) according to manufacturer’s instructions. They were designated as pmiR-Luc-SirT1-BS1mu, pmiR-Luc-SirT1-BS2mu and pmiR-Luc-SirT1-BS1/2mu mutants, respectively. An artificial miR-34a binding site from SirT1 3’UTR was introduced into pmiR-Luc by using PCR based on QuickChange™ site-directed mutagenesis, designated as pmiR-Luc-miR-34a binding site. All vectors were verified by DNA sequencing from Genome Centre, WHRI.

\subsection*{2.8.2 Amplification and extract of plasmid}

Transformation was used to amplify DNA. Tubes and pipette tips were sterilized before use and working area were sterilized with 70\% Ethanol. Competent cells (JM109) were taken out from -80\degree C and thaw on ice. The cells were aliquoted into cold 0.5ml tubes (20\mu l/tube) and mixed with 1 \mu l of plasmids/DNA or negative control (DDH\textsubscript{2}O). The mixture was incubated on ice for 30 minutes then placed into a heat block at 42\degree C for 60 to 70 seconds, followed by incubating on ice for 1 minute. 500\mu l of LB medium was added into each tube and the samples were incubated at 180 RPM, 37 \degree C in a floor shaker for 1 hour. The mixture was then centrifuged at 5,000 x g for 5 minutes, and 400 to 450 \mu l of supernatant was discarded. The cells were re-suspended in the remaining supernatant and added into LB-plates drop-wise
with appropriate antibiotics by pipetting. The LB-plates were lightly smashed with sterilized “L” rode and placed into a 37 °C incubator to culture overnight. On the next day, single clone was taken into 14ml tubes containing 5ml LB with antibiotics and placed into a floor shaker at 200 RPM, 37 °C to culture for 12 to 18 hours. The samples were centrifuged at 4,000 × g for 10 minutes and supernatant was discarded to collect the cell pellets. Plasmids were extracted using GenElute™ Plasmid Miniprep Kit (Sigma-Aldrich) according to manufacturer’s instruction. The concentrations of plasmid were measured using NanoDrop and plasmids were stored at – 20 °C.

2.8.3 Luciferase activity assay

Undifferentiated, day 2-4 differentiating ES cells or terminally differentiated (Day 8) SMCs (40,000 cells per well of 24-well plate) were co-transfected with individual reporter gene (pmiR-Luc-SirT1-WT, pmiR-Luc-SirT1- BS1^mu, pmiR-Luc-SirT1-BS2^mu, pmiR-Luc-SirT1-BS1/2^mu, pmiR-Luc-ZEB1 (Luo et al., 2013), pmiR-Luc-MECP2 or pmiR-Luc-miR-34a binding site, 180 ng/well), pRenilla (20 ng/well), and mir-34a precursor and negative control miRNA precursor (30nM) by using siPORT™NeoFX™ according to the manufacturer’s instructions. The cells were cultured on gelatin or collagen coated 24-well plate for 48 hours after transfection, with 1 medium change at 24 hours post transfection.
After 48 hours of incubation, culture medium was removed from wells and the cells were washed with 1× PBS once. After removing of PBS, 100µl of Reporter Lysis Buffer (Promega) was added into each well and the cell culture plate was placed on a 2-D rocker at 200RPM for 20 minutes at room temperature. The cell culture plate with Lysis buffer was placed into a -80°C freezer for at least 2 hours and thaw on a 2-D rocker again at 200 RPM for 20 minutes at room temperature. The lysates from each well were transferred into 1.5ml tubes and centrifuged at 16,000 x g at 4 °C for 5 minutes. 15 µl of supernatant from each samples were mixed with Luciferase or Renilla substrates (Promega) to detect the activities with a Single-Tube Luminometer (Turner BioSystem, Sunnyvale, CA, USA). Relative Luciferase unit (RLU) was defined as the ratio of Luciferase versus Renilla activities with that of the control set as 1.0.

For Gene promoter luciferase activity assays, day 2 – day 4 differentiating cells cultured in 24-well plate (40,000 cells) were co-transfected with respective gene promoter reporter (pGL-3-Luc-gene, 150 ng/well), pshuttle2-LacZ (200 ng/well) or control plasmid (pcDNA 3.1, 200 ng/well), or SirT1 overexpression plasmids (pcDNA3.1-SirT1, 200 ng/well) using Fugene-6 (Roche) or Turbofect transfection agent (Thermo) according to the manufacturer’s instructions. The cells were cultured
in differentiation medium for 48 to 72 hours after transfection with 1 medium change at 24 hours post transfection. The gene promoter reporters used in this study were generated in our previous studies (Huang et al., 2013, Margariti et al., 2009), including pGL3-Luc-SmαA, pGL3-Luc-SM22α, pGL3-Luc-SMαA-SRFmu, pGL3-Luc-SM22α-SRFmu, pGL3-Luc-SRF pGL3-Luc-MEF2c and pGL3-Luc-Myocardin. pShuttle2-LacZ (0.20 μg/2.5 × 10^4 cells) was included in all transfection assays as internal control. Luciferase activity was detected as described above and β-galactosidase activity was measured using a standard protocol. Relative Luciferase Unit (RLU) was defined as the ratio of Luciferase versus β-galactosidase activities with that of the control set as 1.0.

2.9 Immunoprecipitation

2.9.1 Chromatin immunoprecipitation (ChIP) assay

Differentiating ES cells were transfected with control (pcDNA3.1) or SirT1 over-expression (pcDNA3.1-SirT1) plasmids using Turbofect transfection agent (Thermo) in T75 flasks and cultured for 48 hours after transfection, with one medium change at 24 hours. 1% (v/v) of formaldehyde was added into cell culture medium in T75 flasks, incubated at room temperature for 10 minutes and then quenched with
glycine. The medium was removed and cells were harvested, resuspended in SDS lysis buffer and sonicated. The sheared samples were diluted into 1ml of immunoprecipitation buffer containing 25mM Tris-HCL, pH 7.2, 0.1% NP-40, 150 mM NaCl. 1mM EDTA, and immunoprecipitation were carried out with antibodies (2µg/immunoprecipitation) raised against SirT1 (rabbit, H-300, sc-15404, Santa Cruz), SRF (rabbit, G-20, sc-335, Santa Cruz) or H3K9me3 (mouse, 05-1250, Millipore) together with single-strand salmon sperm DNA saturated with protein-G-Sepharose beads. Equal amount of normal rabbit IgG or mouse IgG was used as control. The samples were placed on a roller and incubated at 4 °C overnight. The immunoprecipitations were eluted from the beads using 100 µl elution buffer (50mM NaHCO₃, 1% SDS). 200 µl of proteinase K solution was added to each samples and incubated in a heat block at 60 °C overnight. Immunoprecipitated DNA was extracted, purified and then used to amplify target DNA sequences by Real-Time PCR with specific primers. Relative DNA level (or promoter DNA enrichment) was defined as the ratio of immunoprecipitated promoter DNA level to its input level with that of the control sample (pcDNA3.1) set as 1.0. PCR amplification of the adjacent promoter regions or regions lacking of SRF binding sites (without CArG region) were included as additional control for specific promoter DNA enrichment. The respective target promoter DNA was almost undetectable or with much higher CT value in normal IgG control samples. The data was obtained from four independent
experiments.

2.9.2 RNA immunoprecipitation (RNA-IP) assays

Undifferentiated ES cells or day 4 to day 6 differentiating SMCs were treated with 1% formaldehyde at room temperature for 10 minutes and then quenched with glycine at room temperature. Cells were harvested, resuspended in Lysis buffer containing RNase inhibitor, and sonicated in a sonicate machine (Spishaer™ Probe Sonicator). The sheared samples were diluted into 1ml immunoprecipitation buffer and incubated with 5µg of Ago 2 antibody (Fisher Scientific, MA5-14861) or equal amount of rabbit IgG together with protein-G Dynabeads® saturated with single-strand samon sperm DNA at 4 °C overnight. The immunoprecipitates were saturated with DNAse and eluted from the beads using 100 µl of elution buffer. The immunoprecipitaed RNA was extracted, purified and then used to synthesize cDNA by using NCode™ VILO™ miRNA cDNA Synthesis Kit according to manufacturer’s instructions. The cDNA samples were used to amplify target RNA sequences by Real-Time PCR using specific primers. The respective target RNA/miRNA levels were almost undetectable or with much higher CT value in normal IgG control samples. RNA enrichment with specific antibody was calculated using percent input method with that of the IgG control set as 1.0. The relative level of RNA enrichment was defined as the ratio of RNA enrichments in the treatment
groups (differentiated SMCs) to the control groups (undifferentiated ES cells) with that of the control samples set as 1.0. PCR amplification of the murine SirT1 coding region was included as additional control for specific RNA enrichment.

2.10 Flow cytometry, cell cycle, proliferation, and apoptosis analysis.

2.10.1 Flow cytometry analysis

Flow cytometry analysis were performed either using direct or indirect method depending on the antibodies of interest. Differentiated ES cells were dissociated into single cells by trypsin-EDTA, counted in culture medium and centrifuged at 1,000 xg for 5 minutes. The cell pellets were collected and washed with cold 1× PBS containing 10% FBS. 1 ml of cold 4% Paraformaldehyde (PFA, for per 1 × 10⁵ to 5 × 10⁵ cells) was mixed with cells and incubated on ice for 15 minutes. The mixture was then centrifuged and supernatant was removed. For intracellular markers detection, 1 ml of cold permeabilization buffer (PBS-0.1% Tritron X-100, per 1 × 10⁵ to 5 × 10⁵ cells) was added to the cell pellet, vortexed and incubated on ice for 5 to 10 minutes. Permeabilization buffer was removed by centrifuged and the cell pellets were resuspended in 10 % FBS in PBS to adjust the cell concentration to 1 × 10⁷ per ml, and incubated on ice for 20 minutes to block non-specific antibody
binding. 100 µl of single cell suspension was aliquoted into individual tubes and stained with either antibodies against GFP, SMαA, SM-MHC, or Isotype IgG negative controls. The mixture was vortexed and incubated for 1 hour at room temperature in a dark box. After 1 hour, each tube was washed with 1 ml of cold PBS and supernatant was removed by centrifugation and pipetting. Appropriate amount of secondary antibodies (1:50 to 1:100) was diluted with PBS containing 10% FBS and mixed with the respective cell pellets. The mixture was incubated at room temperature in a dark box for 30 minutes and then washed twice with cold PBS. After removing of PBS, the cell pellets were re-suspended in 400 µl of 1% PFA and analyzed using a FACSCalibur sorting system (Becton Dickinson).

2.10.2 Cell cycle and apoptosis analysis

Mouse ES cells at the indicated time points or with different treatments were dissociated into single cells using trypsin-EDTA and collected in cell pellets. The cell pellets were washed with PBS twice and then re-suspended in 300 µl of PBS. 3 ml of 70% ethanol was added drop-wise into the cell pellets and incubated at 4 °C for at least 30 minutes. Fix cells were then washed twice with PBS, and incubated in PBS containing 0.01 % Triton X-100, 40 µg/ml RNase and 50 µg/ml propidium iodide (All from Sigma-Aldrich) for 45 minutes at 37 °C. The samples were washed again with PBS the re-suspended in PBS and cell cycle distribution was analyzed using a
FACSCalibur sorting system (Becton Dickinson).

For apoptosis analysis, day 2 to day 3 differentiating ES cells were transfected with miR-34a precursor or negative control and cultured in differentiation medium for 48 hours after transfection. The cell pellets were collected and subjected to apoptosis analysis using Annexin V-FITC/P1 kit (BMS306F1; Bender MedSystem) according to manufacturer’s instructions. The binding buffer was first diluted at 1:4 in distilled water. The cell pellets were washed with PBS and resuspended in the diluted binding buffer to adjust the cell density to $2 \sim 5 \times 10^5$ per ml. 195 µl of cell suspension was mixed with 5 µl of Annexin V-FITC and incubated for 10 minutes at room temperature. After incubation the samples were washed with PBS once, centrifuged and re-suspended in 190 µl of diluted binding buffer. 10 µl of 20 µg/ml Propidium iodide stock solution was added into each sample and cell apoptosis was analyzed with FACSCalibur sorting system.

2.10.3 BrdU incorporation

Cell proliferation was evaluated using 5-bromo-2'-deoxyuridine (BrdU) Labeling and Detection Kit III (Roche) according to the manufacturer’s instructions. Day 2 to day 3 differentiating ES cells were transfected with miR-34a precursor or negative control and seeded in gelatin coated 96-well plates (5×10^3 cells per well) for 18
hours. Cells were then incubated with fresh differentiation medium containing 10 µM BrdU for 12 hours. After removal of culture medium, the cells were washed with wash medium containing 10% FBS and then fixed with 200 µl of precooled fixative for 30 minutes at – 20 °C. The fixed cells were washed with 10% FBS wash medium, and cellular DNA was digested with nuclease by incubating with 100 µl of nuclease working solution per well for 30 minutes at 37 °C. The samples were washed with washing buffer containing 10 % FBS and labeled with peroxidase-conjugated anti BrdU antibody (100 µl/well) for 30 minutes at 37 °C, followed by washing 3 times with wash solution II and then incubated with peroxidase substrate (100 µl/well) at room temperature until positive samples showed a green color. The absorbance of the samples was measured by a microplate reader at 450nm with a reference wave-length at approx. 490 nm.

2.11 Materials

Antibodies against SirT1 (rabbit, H-300, sc15404), SRF (rabbit, G-20,sc-335) and MEF2c (goat, sc-13268) were from Santa Cruz Biotech, USA. Antibody against Smooth Muscle Mayosin Heavy Chain (SM-MHC) was from AbD Serotec (Rabbit, AHP1117). Antibodies against SM22α (Rabbit, AB14106) and calponin (rabbit, Ab46794) were from Abcam, UK. Antibodies against α-tubulin (mouse), SMαA (Clone 1A4, A5228) GAPDH (mouse) and GFP (G6539) were from Sigma Aldrich.
Antibody against H3K9me3 (mouse, 05-1250) was from Millipore. All secondary antibodies were from Dako, Denmark. Random siRNA control (MISSION® esiRNA, Negative Control) was from Sigma Aldrich. Other materials used in this study were from Sigma Aldrich unless specifically indicated.

Primers for PCR related work and gene cloning were listed in Appendix.

2.12 Statistical analysis

Data were presented as mean ± standard error of the mean (SEM) and analyzed using a two-tailed student’s *t*-test for two group comparison or one-way ANOVA followed by Turkey’s HSD multiple comparison post-hoc test for comparing different groups. P value less than 0.05 were considered statistically significant.
CHAPTER 3 SMC differentiation induced by collagen

Pluripotent mouse ES cells can differentiate into different types of cells, including vascular SMCs. It has been reported that one of extracellular matrix (ECM) proteins, collagen type IV, promotes SMC differentiation by activating several signal pathways (Huang et al., 2013, Pepe et al., 2010, Xiao et al., 2012, Xiao et al., 2011, Xiao et al., 2007). Interestingly, in these studies another ECM protein, type I collagen has also been suggested to play a similar role in SMC differentiation. To further confirm such a possibility, mouse ES cells were cultured in collagen type I coated T25 flasks and culture in SMC differentiation medium (DM) in the absence of LIF for 2 to 8 days to allow for SMC differentiation. A set of SMC markers, as well as SMC transcription factors and undifferentiated ESC markers were analyzed using real-time PCR and western blot, respectively. Taken together, the data demonstrated an increase expression of all the SMC specific genes examined in this study and several transcription factors over 8 days of differentiation, mostly reaching maximum level at day 6, while the gene expression levels of several undifferentiated ESC-specific transcription factors were significantly decreased from day 4, further validating the collagen-based SMC differentiation model.
3.1 SMC specific genes were up-regulated during ES cell differentiation

Undifferentiated ES cells were cultured in collagen type I coated T25 flaks and cultured in differentiation medium in the absence of LIF. Cells were harvested at the indicated time points (day 0 to day 8). Total RNA was extracted and subjected to real-time PCR analysis. mRNA level of SMC specific genes, including SMαA, SM-MHC, Calponin and SM22α was significantly up-regulated from day 4 of differentiation as compared with that of day 0 (undifferentiated ES cells) and reached maximum level at day 6 (Figure 6). In contrast, expression level of undifferentiated markers including OCT3/4, Nanog and KLF4 was significantly decreased from day 2 as compared with that of day 0 (Figure 7).
Figure 6 SMC specific gene expression over a period of 8 days

Undifferentiated ES cells were cultured on collagen type I coated flasks and cultured for 2, 4, 6 and 8 days. Day 0 represent undifferentiated ES cells. Cells were harvested at indicated time points to extracted total RNA and subjected to real-time PCR with specific primer for SMαA, SM22α, calponin and SM-MHC. Data represent mean ± SEM of three independent experiments (n=3). mRNA level was normalized to 18s and presented relative to day 0 expression. Significant difference from control (day 0), *P<0.05.
Figure 7 Stem cell specific transcription factors were silenced during SMC differentiation

Same total RNA samples were harvested as described in Figure 1 and subjected to real-time PCR with specific primer for OCT3/4, Nanog and KLF4. Data represent mean ± SEM of three independent experiments (n=3). mRNA level was normalized to 18s and presented relative to day 0 expression. Significant difference from control (day 0), *P<0.05.
3.2 SMC transcription factors gene expressions were activated during SMC differentiation.

SRF, Myocardin and MEF2C play an important role in SMC differentiation from ES cells. To establish the expression profiles of these SMC transcription factors in the SMC differentiation method, undifferentiated ES cells were induced to differentiate into SMCs as described above and cells were harvested at indicated time points. Total RNA was extracted and subjected to Real-Time PCR analysis. The results suggest that mRNA level of SRF and MEF2C significant increased from day 4, and reached maximum level at day 6 (Figure 8A and B), while mRNA level of myocardin increased at day 6 and reached maximum value at day 8 (Figure 8C), as compared with mRNA level of respective SMC transcriptional factors from undifferentiated ES cells.
Figure 8 Expression of SMC transcription factors gene over 8 days of SMC differentiation

Same total RNA samples were harvested as described in Figure 1 and subjected to real-time PCR with specific primers for SRF (A) Myocardin (B) and MEF2C (C). Data present mean ± SEM of 6 independent experiments. mRNA level was normalized to 18s and presented relative to day 0 expression. Significant difference from control (day 0), *P<0.05.
3.3 Western blot analysis of SMC specific marker expression in differentiating ES cells.

Western blot was carried out to determine SMC specific gene expression product at indicated time points during SMC differentiation. Strong protein expressions of both SMαA and calponin was detected from day 6, while undifferentiated ES cells (day 0) did not express any SMC specific markers (Figure 9).
Figure 9 Western blot analysis of ES cells differentiation over 8 days.

Undifferentiated ES cells were seeded on collagen coated flasks and cultured for 2, 4, 6 and 8 days. Day 0 represented undifferentiated ES cells. The samples were detected by western blot analysis with antibodies against SMαA (Top) and calponin (Middle), respectively. α-tubulin was used as housekeeping protein (Bottom). The data presented here is representative of 3 independent experiments.
Chapter 4 Function role of miR-34a in SMC differentiation from ES cells

Data from chapter 3, as well as other studies (Huang et al., 2013, Pepe et al., 2010, Xiao et al., 2012, Xiao et al., 2011, Xiao et al., 2007) suggested that collagen based stem cell differentiation model is a simple but efficient SMC differentiation model, which provides a useful platform to investigate the potential role of individual miRNA during SMC differentiation.

4.1 Functional involvements of miR-34a in SMC differentiation in vitro and in vivo

4.1.1 Screening potential miRNA during ES cells differentiation towards SMCs

In order to identify potential miRNA candidates for SMC differentiation from ES cells, total RNA including small RNA from undifferentiated ES cells and differentiated ES cells over 4 days or 8 days were harvested and subjected to microRNA microarrays analysis (Miltenyi Biotec GmbH, Germany). Data from microarrays revealed that except miR-294, all other five members of miR-290 family, which were reported to be mouse ES cells specific miRNA cluster (Houbaviy et al.,
2003), were down-regulated especially at day 8 of differentiation, further confirming cell differentiation (Table 3) SMC differentiation related miRNAs such as miR-143, miR-145 and miR-133 were increased in the SMC differentiation model, while miR-21 which involved in SMC proliferation was undetected at early stage of differentiation (day 4) but significantly increased at late stage (day 8), indicating that some miRNAs (eg. miR-143/145) may initiate SMC differentiation whereas others (eg. miR-21) may play important roles in the late stage of SMC differentiation where differentiated SMC proliferation is required to complete the SMC differentiation process. No significant changes were observed for other cell lineages specific miRNAs, such as miR-146 for T lymphocyte, miR-107 for monocytes, miR-203 for epidermal cell, miR-206 for myogenic cells, miR-124 for neural cells and miR-126 for endothelial cells (Table 3). Taken together, these findings confirm the specificity of SMC differentiation. More important, the data suggested that miR-34a, a reported cell cycle mediator (He et al., 2007), was up-regulated to a greater magnitude over 8 days of differentiation than some best known SMC differentiation related miRNAs miR-143 and miR-145. Expression level of miR-34a during SMC differentiation was further validated using real-time PCR analysis, and the result showed that miR-34a expression was significantly increased during SMC differentiation (Figure 10), indicating that miR-34a may be involved in the SMC differentiation system.
<table>
<thead>
<tr>
<th>Name</th>
<th>Fluorescence signal</th>
<th>Reported functions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-290-5P</td>
<td>0.775761</td>
<td>Day4/day0</td>
<td>ES cell specific</td>
</tr>
<tr>
<td></td>
<td>0.286816</td>
<td>Day8/day0</td>
<td>Houbaviy et al(2003)</td>
</tr>
<tr>
<td>miR-291a-5P</td>
<td>0.925415</td>
<td>Day4/day0</td>
<td>ES cell specific</td>
</tr>
<tr>
<td></td>
<td>0.271932</td>
<td>Day8/day0</td>
<td>Houbaviy et al(2003)</td>
</tr>
<tr>
<td>miR-292-3P</td>
<td>1.427017</td>
<td>Day4/day0</td>
<td>ES cell specific</td>
</tr>
<tr>
<td></td>
<td>0.468515</td>
<td>Day8/day0</td>
<td>Houbaviy et al(2003)</td>
</tr>
<tr>
<td>miR-293</td>
<td>1.18702</td>
<td>Day4/day0</td>
<td>ES cell specific</td>
</tr>
<tr>
<td></td>
<td>0.411204</td>
<td>Day8/day0</td>
<td>Houbaviy et al(2003)</td>
</tr>
<tr>
<td>miR-294</td>
<td>1.146818</td>
<td>Day4/day0</td>
<td>ES cell specific</td>
</tr>
<tr>
<td></td>
<td>1.367687</td>
<td>Day8/day0</td>
<td>Houbaviy et al(2003)</td>
</tr>
<tr>
<td>miR-295</td>
<td>1.062308</td>
<td>Day4/day0</td>
<td>ES cell specific</td>
</tr>
<tr>
<td></td>
<td>0.265621</td>
<td>Day8/day0</td>
<td>Houbaviy et al(2003)</td>
</tr>
<tr>
<td>miR-143</td>
<td>1.470071</td>
<td>Day4/day0</td>
<td>SMC differentiation</td>
</tr>
<tr>
<td></td>
<td>1.237568</td>
<td>Day8/day0</td>
<td>Cordes et al(2009)</td>
</tr>
<tr>
<td>miR-145</td>
<td>2.113956</td>
<td>Day4/day0</td>
<td>SMC differentiation</td>
</tr>
<tr>
<td></td>
<td>1.460188</td>
<td>Day8/day0</td>
<td>Cordes et al(2009)</td>
</tr>
<tr>
<td>miR-21</td>
<td>UD</td>
<td>Day4/day0</td>
<td>SMC proliferation</td>
</tr>
<tr>
<td></td>
<td>9.848351</td>
<td>Day8/day0</td>
<td>Ji et al(2007)</td>
</tr>
<tr>
<td>miR-22</td>
<td>2.20227</td>
<td>Day4/day0</td>
<td>Tumour suppressor</td>
</tr>
<tr>
<td></td>
<td>11.205712</td>
<td>Day8/day0</td>
<td>Xiong et al(2010)</td>
</tr>
<tr>
<td>miR-24</td>
<td>0.987122</td>
<td>Day4/day0</td>
<td>Heart contraction and</td>
</tr>
<tr>
<td></td>
<td>3.597099</td>
<td>Day8/day0</td>
<td>myoblast differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Li et al (2013b), Sun et</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>al(2008)</td>
</tr>
<tr>
<td>miR-214</td>
<td>3.451106</td>
<td>Day4/day0</td>
<td>Muscle cell specification and</td>
</tr>
<tr>
<td></td>
<td>2.024559</td>
<td>Day8/day0</td>
<td>myogenesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flynt et al(2007), Liu et</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>al(2010)</td>
</tr>
<tr>
<td>miR-146a</td>
<td>1.225387</td>
<td>Day4/day0</td>
<td>T lymphopoiesis</td>
</tr>
<tr>
<td></td>
<td>UD</td>
<td>Day8/day0</td>
<td>Georgantas et al(2007)</td>
</tr>
<tr>
<td>miR-16</td>
<td>0.668986</td>
<td>Day4/day0</td>
<td>Universal expression</td>
</tr>
<tr>
<td></td>
<td>1.187912</td>
<td>Day8/day0</td>
<td>Landgraf et al (2007)</td>
</tr>
<tr>
<td>miR-107</td>
<td>0.754878</td>
<td>Day4/day0</td>
<td>Monocytopenesis</td>
</tr>
<tr>
<td></td>
<td>0.861935</td>
<td>Day8/day0</td>
<td>Georgantas et al(2007)</td>
</tr>
<tr>
<td>miR-203</td>
<td>1.103917</td>
<td>Day4/day0</td>
<td>Epidermal differentiation</td>
</tr>
<tr>
<td></td>
<td>UD</td>
<td>Day8/day0</td>
<td>Yi et al(2008)</td>
</tr>
<tr>
<td>miR-206</td>
<td>1.563997</td>
<td>Day4/day0</td>
<td>Myogenic cells</td>
</tr>
<tr>
<td></td>
<td>1.063436</td>
<td>Day8/day0</td>
<td>Rao et al(2006), Kim et</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>al(2006)</td>
</tr>
<tr>
<td>miR-124</td>
<td>0.707948</td>
<td>Day4/day0</td>
<td>Brain specific</td>
</tr>
<tr>
<td></td>
<td>0.458512</td>
<td>Day8/day0</td>
<td>Landgraf et al (2007)</td>
</tr>
<tr>
<td>miR-126-3P</td>
<td>1.455875</td>
<td>Day4/day0</td>
<td>Endothelial cells</td>
</tr>
<tr>
<td></td>
<td>UD</td>
<td>Day8/day0</td>
<td>Fish et al(2008)</td>
</tr>
<tr>
<td>miR-133a</td>
<td>2.509492</td>
<td>1.42217</td>
<td>Cardiac cells</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>miR-133b</td>
<td>2.094272</td>
<td>1.293552</td>
<td>Cardiac cells</td>
</tr>
<tr>
<td>miR-34b-5P</td>
<td>1.869908</td>
<td>UD</td>
<td>cell cycle arrest</td>
</tr>
<tr>
<td>miR-34c-5P</td>
<td>1.726008</td>
<td>1.060224</td>
<td>cell cycle arrest</td>
</tr>
</tbody>
</table>

Table 3 Selected miRNAs expression profile during SMC differentiation from ES cells
Figure 10 Real-Time PCR analysis of miR-34a during SMC differentiation

Undifferentiated ES cells were seeded on collagen coated flasks and cultured for 2, 4, 6 and 8 days in differentiation medium. Day 0 represented undifferentiated ES cells. Cells were harvested at indicated time points to extracted total RNA including small RNA, and subjected to real-time PCR analysis. The data represent mean ± SEM of three independent experiments. * P<0.05 (verse day 0)
4.1.2 Investigating the role of miR-34a in SMC differentiation in vitro by miRNA gain/loss-of-function analyses

To investigate whether miR-34a promotes SMC differentiation, gain-of-function experiments were carried out by using Pre-miR™ mmu-miR-34a miRNA Precursor (Ambion) in differentiating ES cells as described in Chapter 2. Real-time PCR result showed that miR-34a expression was significantly increased after transfection, and miR-34a overexpression significantly up-regulated the expression of SMC-specific genes, such as SMαA, SH22α, h1-calponin and SM-myh11 (Figure 11A). Western blot analysis was also carried out to determine whether protein level of SMC markers was affected by overexpression of miR-34a during SMC differentiation. Data from Figure 11B showed that the protein levels of SMαA and SM-MHC were significantly up-regulated in miR-34a overexpression groups, as compared to negative control group.

To further test whether activation of miR-34a is essential for SMC differentiation, lose-of-function experiments were performed by using Anti-miR™ miR-34a inhibitor (Ambion) in differentiating ES cells. As miR-145 is a well-known SMC differentiation related miRNA, MISSION® microRNA Inhibitor has-miR-145-5p (Sigma-Aldrich) was used as positive control. The study showed that knockdown of miR-34a during differentiation inhibited the expression of SMC specific markers at
both RNA (Figure 12A) and protein levels (Figure 12B). Taken together, these data suggest that miR-34a plays an important role in SMC differentiation from ES cells.

To further understand the molecular mechanism by which miR-34a regulated SMC differentiation from ES cells, differentiating ES cells were transfected with miR-34a precursor or negative control, and subjected to microarray analyses performed by GENErgy BIO. (Beadchip: mouseWG-6_V2_0_R311278593-A;) to examine the gene expression profiling that affected by miR-34a overexpression during SMC differentiation. Data (Listed in appendix) demonstrated that a panel of SMC specific genes such as CNN1, Acta2, Tagln2, Aebp1, Smtn, Des, Cald1, Mylk Myh11 and Vcl (highlighted) were positively regulated by miR-34a overexpression. More importantly, several SMC transcription factors including SRF, Myocardin and MEF2c were also up-regulated by miR-34a, alongside SirT1. Therefore, Real-Time PCR and western blot analysis on differentiating SMCs with miR-34a overexpression or inhibition were performed to confirm the findings from microarray. The result suggested that overexpression of miR-34a up-regulated SRF, myocardin and MEF2C, while knockdown of miR-34a down-regulated these genes (Figure 13A and Figure 14A). Similar results were obtained from protein analysis, while protein levels of SRF and MEF2c were up-regulated by miR-34a overexpression but down-regulated by knockdown of miR-34a (Figure 13B and Figure 14B).
Figure 11 miR-34a overexpression up-regulates the expression of SMC markers in SMC differentiation

Undifferentiated ES cells were seeded on collagen coated flasks and cultured in differentiation medium. Day 2–3 differentiating ES cells were transfected with miR-34a precursor or negative control and cultured for another 48 to 72 hours. Cells were harvested and subjected to real-time PCR and western blot analysis, respectively. (A) Real-time PCR analysis of SMC gene expression after miR-34a overexpression. (B) Western blot analysis of SMC markers after miR-34a overexpression. miR-145 precursor was included as positive control. α-tubulin was
used as housekeeping protein. The data presented here are representative or mean ± SEM of three to six independent experiments. *P<0.05 (versus control)
Figure 12 miR-34a knockdown inhibit expression of SMC markers in SMC differentiation

Day 2~3 differentiating ES cells were transfected with miR-34a inhibitor or negative control. miR-145 inhibitor was included as positive control. Differentiating ES cells were seeded on collagen coated flasks and cultured in differentiation medium for 48 hours after transfection. Cells were harvested and subjected to real-time PCR and
western blot analysis, respectively. (A) Real-Time PCR analysis of SMC gene and miRNA expression level in miR-34a knockdown experiment. (B) Western blot analysis of SMC markers protein expression with inhibition of miR-34a, where α-tubulin was used as housekeeping protein. The data presented here are representative or mean ± SEM of three to six independent experiments. *P<0.05 (versus control)
Figure 13 Overexpression of miR-34a positively regulated SMC specific transcription factors

Day 2~3 differentiating ES cells were transfected with miR-34a precursor or negative control and cultured for further 48 hours. Cells were harvested and subjected to real-time PCR and western blot analysis, respectively. (A) Real-Time PCR analysis of SMC transcription factor gene expression, which was up-regulated in miR-34a overexpression experiments. (B) Western blot analysis of SRF and MEF2c protein level. Protein level of SRF and MEF2c was up-regulated by overexpression of miR-34a. miR-145 precursor treatment was included as positive control. α-tubulin was used as housekeeping protein. The data presented here are representative or mean ± SEM of three independent experiments. *P<0.05 (versus control)
Figure 14 Knockdown of miR-34a down-regulated the expression levels of SMC transcription factors

Day 2~3 differentiating ES cells were transfected with miR-34a inhibitor or negative control. Differentiating ES cells were cultured in collagen coated flasks in differentiation medium for 48 hours after transfection. Cells were harvested and subjected to real-time PCR and western blot analysis, respectively. (A) Real-Time PCR analysis of SMC transcription factor gene expression from miR-34a knockdown experiments. (B) Western blot analysis of SMC transcription factor protein level from miR-34a knockdown experiments. The data presented here are representative or mean ± SEM of three independent experiments. *P<0.05 (versus control)
4.1.3 miR-34a is involved in SMC differentiation in vivo

To carry out in vivo cell implantation study, miR-34a overexpressing (pLL3.7 – GFP-miR-34a) and control (pLL3.7-GFP) ES cell lines were generated by using miR-34a overexpression (pLL3.7–GFP-miR-34a) and control (pLL3.7-GFP) lentivirus respectively, as described in chapter 2. GFP-positive cells with high purity were sorted out (Figure 15A) and maintained in ES cell culture medium. No significant differences were observed between sorted cells and their parent undifferentiated ES cells in terms of morphology, self-renew and pluripotency when they were maintained in ES cell culture medium for up to 5 passages. The miR-34a overexpressing and control ES cells were induced to differentiate SMCs using in vitro SMC differentiation method as described above. Cells were harvested at day 0 and 8 post-differentiation and subjected to real-time PCR and flow cytometry analysis, respectively. Compared to control ES cells, the expression of miR-34a in miR-34a overexpression ES cells was slightly higher at day 0 (undifferentiated cells), but significantly increased at day 8 of differentiation (Figure 15B), suggesting that miR-34a expression was successfully up-regulated in these cells during SMC differentiation. Importantly, more SMCs were differentiated from miR-34a overexpression ES cells as compared with control ES cells at day 8 (Figure 15C), further confirming the important role of miR-34a in SMC differentiation.
To determine the functional importance of miR-34a in SMC differentiation in vivo, pLL-3.7-GFP-miR-34a and pLL-3.7-GFP ES cells were subcutaneously injected into C57BL/6J mice with 100ng/ml of PDGF-BB to promote in vivo SMC differentiation as described in chapter 2. As expected, Results from Immunofluorescence staining showed that the majority of cells within Matrigel implants from both treatments were GFP-positive (Green signal), indicating its exogenous origins. Importantly, more SM-MHC positive cells were observed in the implants of miR-34a overexpressing ES cells (Figure 16A and B). Furthermore, the expression of miR-34a, SMαA, SM-MHC and SirT1 in Matrigel implants of miR-34a overexpression ES cells was significantly higher than that of control ES cells, as demonstrated in both real-time PCR (Figure 17A) western blot analysis (Figure 17B). Taken together, these data suggest an important role of miR-34a in SMC differentiation from ES cells in vivo.
Figure 15 Generation of miR-34a over expression ES cells and differentiation towards SMCs

(A) miR-34a overexpression and control ES cell line were generated as described in chapter 2. Higher than 94% of sorted cells were GFP-positive as examined by flow cytometry analyses. (B) ES cell lines were cultured in collagen coated flasks in differentiation medium for 8 days. Cells were harvest and subjected to real-time PCR analysis. *P<0.05 (versus day 0), #P<0.05 (pLL3.7-GFP-miR-34a versus pLL3.7 GFP). (C) After 8 days of differentiation, more SMCs were differentiated from miR-34a overexpressing ES cells. Data presented here are representative or mean ±SEM of three independent experiments.
Figure 16 miR-34a promotes SMC differentiation from ES cells *in vivo*

Matrigel plugs implanted with miR-34a overexpressing (pLL-GFP-miR-34a) or control (pLL-3.7-GFP) ES cells were harvested, sectioned and subjected to immunofluorescence staining using antibodies against GFP and SM-MHC or SirT1 alone. (A) Representative images from immunofluorescence staining, Green: GFP or SirT; Red: SM-MHC; Blue: DAPI. (B) Quantitative data of the percentage of SM-MHC positive cells. The percentage of GFP-labeled SM-MHC positive cells per field was counted by two trained independent investigators blinded to the treatment from four random high power fields (200x) in each sections, three sections from each implant and four implants from each group.*P<0.05
Figure 17. SMC differentiation was up-regulated by miR-34a overexpression *in vivo*

Matrigel plugs implanted with miR-34a overexpressing (pLL-GFP-miR-34a) or control (pLL-3.7-GFP) ES cells were harvested. Total RNA including small RNA, and protein were extracted from Matrigel implants and subjected to real-time PCR (A) and western blot (B) analysis, respectively. α-tubulin was used as housekeeping protein. The data presented here are representative or mean ± of four Matrigel implants. *P<0.05
4.1.4 miR-34a also plays an important role in SMC differentiation from human ES cells.

As the current result suggested that miR-34a plays an important role in SMC differentiation from mouse ES cells, it was still not clear that whether miR-34a was involved in SMC differentiation from human ES cells. To address this issue, human ES cells were induced to differentiate towards SMC by using a similar differentiation method as used in the mouse ES cell differentiation study. The result demonstrated that human ES cells can be successfully differentiated into SMCs, based on the data from real-time PCR (Figure 18A), Western blot (Figure 18B), immunofluorescence staining (Figure 18C) and flow cytometry (Figure 18D) analyses. miR-34a level was also significantly increased during SMC differentiation from human ES cells (Figure 19A). Similar to the result obtained from murine ES cells, SMC markers was up-regulated by miR-34a overexpression (Figure 19B and C), while miR-34a knockdown inhibited SMC marker expression in differentiating human ES cells (Figure 19D and E). These finding further confirmed a critical role of miR-34a in human SMC differentiation.
Figure 18 SMC differentiation from human ES cells *in vitro*

Undifferentiated human ES cells were seeded into collagen coated flasks and cultured in differentiation medium for 3, 5, 7 and 9 days respectively. Total RNA
(including small RNA) and protein were extracted and subjected to real-time PCR (A) and Western blot (B) analysis, respectively. Day 0 represented undifferentiated human ES cells. (C) Immunofluorescence analysis of SMαA expression in differentiated SMCs (day 9). Representative of phase-control image and IgG control were also included. (D) Flow cytometry analyses of SMC markers expression in differentiated SMCs from human ES cells by using antibodies against SMαA or SM-MHC. The data presented here are representative of mean ± SEM of three independent experiments. *P<0.05 (versus day 0)
Figure 19 SMC differentiation from human ES cells can be regulated by miR-34a

(A) Expression of miR-34a was up-regulated during SMC differentiation from human ES cells. Undifferentiated human ES cells were seeded into collagen coated flasks and cultured in differentiation medium for 3, 5, 7 and 9 days, respectively. Total RNA (including small RNA) was extracted and subjected to real-time PCR analysis. *P<0.05 (verse day 0). (B-E) Day 2 ~3 differentiating human ES cells were transfected with miR-34a precursor or inhibitor, or respective negative controls then cultured in SMC differentiation medium for 48 to 72 hours after transfection. Total RNA (including small RNA) and protein were extracted and subjected to Real-Time
PCR (B and D) and Western blot (C and E) analysis, respectively. Expression of
SMC specific marker was up-regulated by miR-34a overexpression (B and C), and
inhibited by knockdown of miR-34a (D and E). The data presented here are
representative or mean ± of three independent experiments (n=3). *P<0.05 (versus
negative control).
4.2 SirT1 is identified as the mRNA target for miR-34a in SMC differentiation from ES cells

To further investigate the mechanism by which miR-34a regulates SMC differentiation from ES cells, potential mRNA targets of miR-34a were scrutinized and SirT1 was predicted as one of the top targets of miR-34a in several computational algorithmic databases, such as Targetscan (www.targetscan.org), pictar (www.pictar.mdc-berlin.de), and miRanda (www.microrna.org). Two highly conserved binding sites for 5’ end (code sequence) of miR-34a were located on the 3’UTR of SirT1 (Figure 21A).

4.2.1 SirT1 was selected as potential mRNA target for miR-34a

To investigate whether SirT1 is the mRNA target for miR-34a, SirT1 gene expression was analyzed during SMC differentiation from ES cells. Unexpectedly, SirT1 gene expression was up-regulated (Figure 20A) and displayed a positive correlation with expression of miR-34a during SMC differentiation (Figure 10), suggesting that miR-34a may positively regulated SirT1 gene expression. This hypothesis was supported by the findings that SirT1 gene and protein levels were significantly up-regulated by miR-34a overexpression, while inhibition of miR-34a down-regulated SirT1 expression levels (Figure 20B and C). These data suggested
that SirT1 is positively regulated by SirT1 directly or indirectly.

Figure 20 SirT1 is the potential mRNA target for miR-34a

(A) Undifferentiated ES cells were seeded on collagen coated flasks and cultured in differentiation medium for 2, 4 and 6 days. Day 0 represented undifferentiated ES cells. Total RNA was extracted and subjected to Real-Time PCR analyses. SirT1 expression was up-regulated during SMC differentiation. (B-C) SirT1 is positively regulated by miR-34a. Day 2~ 3 differentiating ES cells were transfected with miR-34a precursor or miR-34a inhibitor with respective negative control then cultured in differentiation medium for 48 hours. Total RNA (including small RNA)
and protein were extracted and subjected to Real-Time PCR (B) and Western blot (C) analyses, respectively. The data presented here are representative or mean ± S.E.M. of three to four independent experiments. *P<0.05 (versus day 0) in (A). *P<0.05 (treatment verse control) in (B and C)
4.2.2 Identifying SirT1 as mRNA target for miR-34a

To further confirm whether SirT1 is the mRNA target for miR-34a during SMC differentiation, the 3’UTR of SirT1 which contained two binding sites for miR-34a was cloned into a luciferase reporter (pmiR-Luc-SirT1-WT). This reporter was co-transfected with miR-34a precursor or negative control into differentiating ES cells. Result from miRNA reporter assay showed that the activity of luciferase from construct harboring the 3’UTR was significantly up-regulated by overexpression of miR-34a. To better understand this result, mutation of the binding sites for miR-34a on the 3’UTR of SirT1 from pmiR-Luc-SirT1-WT was carried out to generate luciferase reporter containing individual binding site mutation (pmiR-Luc-SirT1-BS1^mu and pmiR-Luc-SirT1-BS2^mu), or dual binding sites mutation (pmiR-Luc-SirT1-BS1/2^mu) by site-direct mutagenesis. These miRNA reporters were transfected into differentiating ES cells with miR-34a precursor, and the result showed that luciferase activities of reporter containing binding site 2 mutation(BS2^mu) or dual binding sites mutation(BS1/2^mu) were not up-regulated by miR-34a overexpression, indicating that the binding site 2 is mainly responsible for the up-regulation of SirT1 3’UTR reporter luciferase activity which mediated by miR-34a overexpression. Taken together, these data has firmly confirmed that SirT1 is the mRNA target, which is positively regulated by miR-34a during SMC differentiation.
Figure 21 SirT1 is identified as the mRNA target for miR-34a during SMC differentiation.

(A) Two potential binding sites for miR-34a on 3’UTR of SirT1 predicted by Targetscan are depicted in this illustration. (B) miR-34a binding site 2 on 3’UTR of SirT1 is required for miR-34a mediated SirT1 gene activation. Wild type SirT1 3’UTR reporter (pmiR-Luc-SirT1-WT) or three mutants (pmiR-Luc-SirT1-BS1mu, pmiR-Luc-SirT1-BS2mu and pmiR-Luc-SirT1-BS1/2mu) were co-transfected with miR-34a precursor or negative control into day 2~3 differentiating ES cells and
luciferase activity was measured 48 hours after transfection. Reporter luciferase activities were up-regulated by miR-34a overexpression in WT and BS1mu group, but not in BS2mu or BS1/2mu group. The data presented here are mean ± S.E.M. of four independent experiments. *P<0.05 (treatment versus control) # P<0.05 (binding site mutants versus wild type).
4.3 miR-34a regulates SirT1 and cell cycle during SMC differentiation

Current data suggested that SirT1 is the mRNA target of miR-34a and can be up-regulated by miR-34a during SMC differentiation. However, the mechanism by which miR-34a positively regulates SirT1 is still not clear and requires more investigation.

4.3.1 miR-34a differently regulates SirT1 gene expression in undifferentiated ES cells and differentiated SMCs

In order to investigate if miR-34a up-regulated the expression of its target gene, SirT1, during SMC differentiation is cellular context specific, miR-34a over-expression or inhibition experiments and luciferase activity assays were conducted in naïve stem cells (undifferentiated ES cells) and terminally differentiated SMCs {It has been reported that day 8 differentiated SMCs are fully/terminally differentiated SMCs(Xiao et al., 2009)}, respectively. Interestingly, the data showed that SirT1 3’UTR reporter activity was significantly suppressed by miR-34a overexpression, but up-regulated by inhibition of miR-34a in undifferentiated ES cells (Figure 22A). As expected, SirT1 3’UTR reporter activity was significantly up-regulated by miR-34a overexpression, and decreased by knockdown of miR-34a in terminally differentiated SMCs (Figure 22B). These findings suggested that miR-34a regulates SirT1 gene expression is cellular context dependent.
Figure 22 SirT1 3’UTR reporter activity in naive stem cell or terminally differentiate SMCs.

(A) Undifferentiated ES cells were transfected with pmiR-Luc-SirT1-WT as well as miR-34a precursor, miR-34a inhibitor or respective negative control. Luciferase activity was measured 48 hours after transfection. SirT1 3’UTR reporter activity was suppressed by miR-34a overexpression but increased by inhibition of miR-34a in naive stem cell. (B) Day 8 differentiated SMCs were transfected with pmiR-Luc-SirT1-WT as well as miR-34a precursor, miR-34a inhibitor or respective negative control. Luciferase activity was measured 48 hours after transfection. SirT1 3’UTR reporter activity was up-regulated by miR-34a overexpression while knockdown of miR-34a decrease the reporter activity. The data presented here are mean ± S.E.M. of four independent experiments. *P<0.05 (versus respective controls).
4.3.2 miR-34a binding site alone is not sufficient for miR-34a mediated SirT1 gene expression.

As the result showed that miR-34a binding sites on 3’UTR of SirT1 are required for miR-34a mediated SirT1 gene expression (Figure 21), the next step is to determine whether miR-34a binding site alone is sufficient for this regulation. A luciferase reporter was generated with an artificial binding site for miR-34a, but without surrounding RNA sequence and structure of SirT1 3’UTR, designated as pmiR-Luc-miR-34a binding site. The reporter was transfected into differentiating ES cells with miR-34a precursor or negative control. Data from Figure 23 showed that miR-34a can only slightly up-regulated the reporter activity but not reached significance. This result suggests that the surrounding RNA sequence and/or structure of SirT1 3’UTR are also required for miR-34a mediated Sirt1 up-regulation.
pmiR-Luc-miR-34a binding site was generated as described in chapter 2 and transfected into day 2 differentiating ES cells in 24-well plate with miR-34a precursor or negative control. Luciferase assay was performed 48 hours after transfection. No significant difference on reporter activity was observed between control and miR-34a overexpression group. The data presented here are S.E.M. of three independent experiments.
4.3.3 miR-34a specifically up-regulates SirT1 during SMC differentiation

MECP2 has been suggested to play an important role in SMC differentiation from ES cells (personal communications), and it has been reported that ZEB1 is involved in endothelial cell differentiation from human ES cells (Luo et al., 2013). To investigate whether regulation of SirT1 by miR-34a is a specific but not globe effect during SMC differentiation, MECP2 (target gene for miR-22) and ZEB1 (target gene for miR-200C/150 (Luo et al., 2013)) luciferase reporters were transfected into differentiating ES cells combined with miR-34a precursor. Luciferase assay showed that there was no effects of miR-34a overexpression on neither reporter (Figure 24), further confirming that miR-34a specifically up-regulates SirT1 expression during SMC differentiation.
MECP2 reporter and ZEB1 reporter were transfected into day 2 differentiating ES cells with miR-34a precursor or negative control. Luciferase assay was performed 48 hours after transfection. No significant difference on luciferase activity between treatment and control. The data presented here are mean ± S.E.M. of three independent experiments.
4.3.4 miR-34a promotes cell cycle arrest at G0/1 in differentiating ES cells

It has been reported that miRNA-target gene regulatory machinery will switch from translation repression to activation when cells are arrested at G0/1 phase, and miRNAs can regulates target gene translation activation in quiescent cells (Vasudevan et al., 2007, Vasudevan et al., 2008). Also, miR-34a has been reported to play an important role in regulating cell cycle in certain cell line (Sun et al., Cole et al., 2008, Chang et al., 2007). In this study less cell numbers were observed in miR-34a overexpression treatment during SMC differentiation (Figure 25). To investigate whether miR-34a is involved in cell cycle regulation during SMC differentiation, undifferentiated ES cells and differentiating SMCs were subjected to cell cycle analyses. The result showed that differentiating cells were gradually arrested at G0/1 phase during SMC differentiation (Figure 26). More importantly, this cell cycle arrest can be enhanced by miR-34a overexpression (Figure 27A), indicating that miR-34a may be involved in regulation of cell cycle during SMC differentiation. These findings were further confirmed by apoptosis analysis (Figure 27B) and BrdU incorporation assays (Figure 27C), which showed that miR-34a has no significant impact on cell apoptosis or death, and much less cells were entering S-phase upon miR-34a overexpression.
To further confirm whether up-regulation of SirT1 gene expression by miR-34a is specific to G0/1 cell cycle stage, differentiating ES cells were arrested at G0/1 phase by cell cycle arrest inducer aphidicolin and luciferase activity assays were performed. The result suggested that incubation of differentiating ES cells with 2µg/ml aphidicolin significantly increased cell cycle arrest at G0/G1 phase, and such arrest was further enhanced by miR-34a overexpression (Figure 28A). As a result, SirT1 3’ UTR reporter activity was significantly increased by aphidicolin induced cycle cell arrest at G0/G1 phase and miR-34a overexpression in a similar manner (Figure 28B). Taken together, these data suggested that the miR-34a induced cell cycle arrest at G0/1 is, at least partially, responsible for the up-regulation of SirT1 during SMC differentiation.
Figure 25 Less cell numbers were observed in the miR-34a over-expressing cells

Day 2–3 differentiating ES cells were transfected with miR-34a precursor or negative control and cultured in differentiation medium for 48 to 72 hours. (A) Representative microscopy images of differentiating ES cells with or without miR-34a overexpression. (B) Cells were dissociated into single cell suspension by trypsin-EDTA and counted by using a hemocytometer. The cells numbers were counted by two trained independent investigators blinded to the treatment, from 3 flasks for each treatment at indicated time point. *P<0.05 (versus control)
Undifferentiated (Day 0) ES cells were seeded on collagen coated flasks and cultured in differentiation medium for 2, 4, 6 and 8 days. Cells were harvested and subjected to cell cycle analysis. Representative of flow cytometry histogram and percentages of each cell cycle phase (G0/1, S and G2/M) were presented here. The data presented here are representative or mean ± S.E.M. of three independent experiments *$P<0.05$ (versus day 0)
Figure 27 miR-34a promotes cell cycle arrest at G0/1 and inhibits cell proliferation

Day 2~3 differentiating ES cells were transfected with miR-34a precursor or negative control and cultured in differentiation medium for 48 hours. Cells were harvested and subjected to cell cycle (A), apoptosis (B) and BrdU incorporation (C) analyses, respectively. (A) miR-34a overexpression significantly promoted cell cycle arrest at G0/G1 phase. (B) miR-34a overexpression had no significant impact on cell apoptosis and death during SMC differentiation. (C) miR-34a overexpression inhibited differentiating ES cells into S-phase. The data presented here are
Figure 28 miR-34a mediated SirT1 gene activation was further enhanced by G0/G1 cell cycle arrest inducer

Sirt1 3’UTR wild type reporter was transfected into day 2 ~3 differentiating ES cells with miR-34a precursor or negative control and cultured for further 24 hours. 2µg/ml of aphidicolin or same amount of carrier vehicle (ethanol) was added into culture medium and incubated for 24 to 28 hours. Cells were harvested and subjected to cell cycle and luciferase assay. (A) Aphidicolin induced cell cycle arrest at G0/1 phase can be further enhanced by miR-34a overexpression. (B) miR-34a overexpression
further up-regulated SirT1 gene expression in the presence of G0/G1 inducer aphidicolin. The data presented here are mean ± S.E.M. of three independent experiments. *P<0.05 (aphidicolin versus vehicle), #P<0.05 (miR-34a versus control).
4.3.5 Less miR-34a and SirT1 mRNA were incorporated into Ago 2-RISC complex upon differentiation

Ago 2 belongs to Argonaute proteins family. Ago 2 is one of the key components of RISC and have a critical role in miRNA induced gene silencing (Meister, 2013). To further investigate the molecular mechanism by which miR-34a up-regulates SirT1 gene expression during SMC differentiation, undifferentiated and differentiated SMCs were harvested and subjected to RNA-IP assays with antibody against Ago 2. The result showed that the enrichments of miR-34a and SirT1 3'UTR RNA (spanning around miR-34a binding sites 1 and 2) in undifferentiated ES cells were much higher than that of differentiated SMCs (Figure 29), indicating that less miR-34a and SirT1 were loaded into Ago 2-RISC complex during SMC differentiation.
Figure 29 Less miR-34a and SirT1 were loaded onto Ago 2-RISC complex during SMC differentiation

Undifferentiated ES cells and differentiated SMCs were harvested and then subjected to RNA-IP assay with antibody against Ago 2 or normal rabbit IgG, respectively. Real-Time PCR amplification of SirT1 coding region was included as additional control for specific SirT1 3’UTR enrichment. The data presented here are mean ± S.E.M. of three independent experiments. *P<0.05
4.4 Role of SirT1 in miR-34a induced SMC differentiation

As described above, SirT1 has been proved to be the mRNA target for miR-34a and up-regulated by miR-34a upon SMC differentiation. However, the role of SirT1 during SMC differentiation is still unclear, which requires further investigation in this section.

4.4.1 SirT1 activation is required for miR-34a mediated SMC differentiation

To investigate the potential role of SirT1 during SMC differentiation, SirT1 overexpression experiments were conducted in differentiating ES cells by using SirT1 overexpressing plasmid {pcDNA-3.1 SirT1, a kind gift from Dr. Hang Shi, Wake Forest University School of Medicine, North Carolina, USA (Yang et al., 2010)}. Data showed that SMC specific marker expressions were significantly increased upon overexpression of SirT1 during SMC differentiation (Figure 30A and B), suggesting that SirT1 over-expression can recapitulate the effects of miR-34a during SMC differentiation from ES cells. This finding was further confirmed by SirT1 agonist treatments. Resveratrol, a well-characterized SirT1 agonist (Borra et al., 2005), has been reported to promote osteogenic differentiation of mesenchymal stem cell (Shakibaei et al., 2012, Tseng et al., 2011) or phenotypic switching of VSMC (Thompson et al., 2014). The result from resveratrol experiments suggested that
resveratrol significantly increased SMC specific gene expression with the best concentration of 5µM (Figure 30C), further supporting SirT1 plays an important role during SMC differentiation.

To further confirm the hypothesis that SirT1 activation is required for miR-34a mediated SMC differentiation, control (pLL3.7-GFP) or miR-34a overexpressing (pLL3.7-GFP-miR-34a) ES cells were induced to differentiate into SMCs for 4 days then subjected to SirT1 specific inhibitor treatment. Data shown in Figure 31A revealed that inhibition of SirT1 alone significantly decreased SMC gene expression, while miR-34a overexpression up-regulated SMC marker. More importantly, inhibition of SirT1 almost completely abolished SMC specific gene up-regulation induced by miR-34a overexpression. Such finding was further confirmed by SirT1 knockdown experiments using SirT1 specific siRNA, suggesting that miR-34a up-regulates SMC gene expression through activation of SirT1 (Figure 31B). Taken together, SirT1 is involved in SMC differentiation and the activation of SirT1 is critical for miR-34a induced SMC gene up-regulation.
Figure 30. SirT1 overexpression or activation promotes SMC differentiation

(A and B) Day 2~3 differentiating ES cells were transfected with SirT1 overexpressing (pcDNA 3.1-SirT1) or control (pcDNA 3.1) plasmids and cultured in differentiation medium for 48 to 72 hours. Cells were harvested and subjected to Real-Time PCR (A) or Western blot (B) analysis, respectively. (C) Resveratrol promotes SMC gene expressions. Undifferentiated ES cells were induced to SMC
differentiation for 3 days, then resveratrol or same amount of carrier vehicle (ethanol) was added into culture medium and incubated for further 24 hours. Cells were harvested and subjected to Real-Time PCR analysis. The data presented here are representative or mean ± S.E.M. of three independent experiments. *P<0.05
Figure 31 Inhibition/knockdown of SirT1 abolished SMC specific gene up-regulation induced by miR-34a overexpression

(A) Inhibition of SirT1 abolished SMC gene up-regulation induced by miR-34a
overexpression. Control (pLL3.7-GFP) or miR-34a overexpressing (pLL3.7-GFP-miR-34a) ES cells were induced to differentiate into SMCs for 4 days, then incubated with SirT1 specific inhibitor (500nM, EMD Millipore, 566322) or carrier vehicle (DMSO) for 6 or 12 hours. Total RNAs were harvested and subjected to Real-Time PCR analysis. (B) Knockdown of SirT1 eliminated the effect of miR-34a overexpression on SMC gene expression. Day 2 ~3 differentiating ES cells were co-transfected with miR-34a precursor, SirT1 siRNA or related control (including miRNA negative control and siRNA control), and cultured in differentiation medium for 48 hours. Cells were harvested and subjected to Real-Time PCR analysis. Data presented here are mean ± S.E.M. of three to four independent experiments. *P<0.05 (versus related control); #P<0.05 (4th columns versus 3rd columns).
4.4.2 SirT1 regulates SMC transcription factors

SRF, MEF2C and Myocardin are well-known transcription factors for regulating SMC gene expression and cardiovascular system development. Results from this study have already suggested that miR-34a can regulate these transcription factors, and SirT1 activation is required for miR-34a mediated SMC gene up-regulation. To investigate whether SirT1 mediates SMC differentiation through regulation of these transcription factors and their underlying pathways, gene expression levels of SRF, MEF2c and Myocardin were examined in SirT1 overexpression experiment. Figure 32A revealed that by overexpressing SirT1, expression levels of SRF, MEF2c and Myocardin gene were significantly increased, suggesting SirT1 may have a direct role in regulation of these transcription factors during SMC differentiation. Such notion was further supported by SRF, MEF2c or Myocardin gene reporter luciferase activity assays. Differentiating ES cells were transfected with SRF, MEF2c or Myocardin gene reporter plasmids {pGL3-Luc-SRF, pGL3-Luc-MEF2c and pGL3-Luc-Myocd; Generated from previous study (Huang et al., 2013)} combined with SirT1 overexpression, and luciferase activity assays were conducted. The result showed that SirT1 overexpression significantly increased SRF, MEF2c and Myocardin gene promoter activities (Figure 32B), suggesting that SirT1 may activate transcriptional activity of these three genes.
Furthermore, ChIP assays with SirT1 antibody were carried out to investigate whether SirT1 can directly bind to the promoters of SRF, MEF2c and Myocd, and the potential binding region(s) for SirT1 within these three gene promoters. A set of specific primers (4 pairs) spanning through the respective promoter regions of SRF, MEF2c and Myocad as described in previous study (Huang et al., 2013) were used in preliminary study and the best primer pairs were chosen in the following experiments. Figure 33 showed that SirT1 directly binds to the promoter regions between -1393 and -1274 of SRF gene, -1335 and -1263 of MEF2c gene and -708 and -620 of Myocd gene, respectively. It is also demonstrated that the binding activity was significantly enhanced by overexpression of SirT1. Taken together, these data strongly suggested that SirT1 transcriptionally regulates SMC transcriptional factor gene expressions through direct binding to the promoter regions of these genes during SMC differentiation from ES cells.
Figure 32 SirT1 up-regulates SMC transcriptional factors

Day 2 ~ 3 differentiating ES cells were transfected with control or SirT1 overexpressing plasmid (A), or combined with indicated luciferase reporter (B). Cells were harvested 48 hours after transfection and then subjected to Real-Time PCR (A) or Luciferase assay (B). (A) SirT1 overexpression up-regulates SRF, Myocd and MEF2c expression. (B) SirT1 overexpression regulates the promoter activities of SMC transcription factor genes. The data presented here are mean ± S.E.M. of three to six independent experiments. *P<0.05 (versus control)
Figure 33 SirT1 directly binds to the promoter regions of SRF, MEF2c and Myocd genes.

Day 2 ~3 differentiating ES cells were transfected with control (pcDNA 3.1) or SirT1 overexpressing (pcDNA-3.1 SirT1) plasmids and cultured in differentiation medium for 48 hours. Cells were harvested then subjected to ChIP assays. ChIP assays were performed using antibody against SirT1 or normal rabbit IgG, respectively. Real-Time PCR amplifications of the adjacent regions were included as additional control for specific promoter enrichment. The data presented here are mean± S.E.M. of four independent experiments. *P<0.05 (versus control)
4.4.3 SRF binding site is required for SirT1 mediated SMC gene expression

SirT1 has been showed to up-regulate SMC specific gene expression and SMC specific transcriptional factors during SMC differentiation from ES cells. To investigate if SirT1 overexpression will activate specific SMC gene transcription, luciferase activity assay was performed with reporter plasmid of SMαA (pGL3-Luc-SMαA) and SM22α (pGL3-Luc-SM22a) in differentiating ES cells, combined with SirT1 overexpression. Data from Figure 34 suggested that overexpression of SirT1 during SMC differentiation dramatically increased gene promoter activities of SMαA and SM22α, indicating that SirT1 can activate specific SMC gene promoter. SRF is a well-known SMC transcriptional factors and SRF binding element (CArG) within promoter region of SMC genes is required for transcriptional activation of SMC gene expressions(Miano, 2003). As SirT1 has been showed to up-regulate SRF and SMC gene promoter gene expression during SMC differentiation, the functional involvements of SRF binding element within SMC gene promoter in SirT1 mediated SMC gene expression needed to be investigated.

To address this issue, luciferase assays using SRF binding site mutants (pGL3-Luc-SMaA-SRF^mu and pGL3-Luc- SM22a -SRF^mu) were carried out in differentiating ES cells combined with SirT1 overexpression. Data from Figure 34
showed that mutation of SRF binding element in pGL3-Luc-SMαA and pGL3-Luc-SM22a caused complete loss of their transcriptional activity in response to SirT1 overexpression as compared with results from wild type reporter, suggesting SRF binding elements within SMC gene promoter region is responsible for SirT1 induced SMC gene up-regulation.

Moreover, ChIP assays were conducted using antibodies against SirT1 or SRF in differentiating ES cells to further verify if SirT1 activates specific SMC gene transcription through direct binding to their promoters. The result revealed that SirT1 directly bound to the region spanning around SRF binding element (CArG) of SMαA and SM22α gene promoters, and such binding was dramatically reinforced by SirT1 overexpression (Figure 35A). Data from Figure 35B showed that SirT1 overexpression significantly enhanced the binding capacity of SRF to gene promoters of SMαA and SM22α. Taken together, these finding demonstrated that SirT1 regulates specific SMC gene expression during SMC differentiation from ES cells through direct binding to the promoter region of SMαA and SM22α, and such binding ability can also be further enhanced by SirT1 overexpression.
Figure 34 SRF binding site is required for SirT1 mediating SMC gene expression

Day 3~4 differentiating ES cells were co-transfected with wild type reporter (pGL3-Luc-SMaA and SM22α pGL3-Luc-SM22a), or mutants (pGL3-Luc-SMaA- SRFmu and pGL3-Luc- SM22a - SRFmu), and SirT1 overexpressing or control plasmids as indicated. Luciferase assays were performed 48 hours after transfection. SirT1 overexpression significantly increases wild type reporter activities of SMαA and SM22α gene, but not in the respective mutants. The data presented here are mean ± ± S.E.M. of four independent experiments. *P<0.05 (versus control)
Figure 35 SirT1 directly binds to specific SMC gene promoter regions and increases the binding ability of SRF to SMαA and SM22α

Day 2 ~3 differentiating ES cells were transfected with SirT1 overexpressing (pcDNA 3.1-SirT1) or control (pcDNA 3.1) plasmids and cultured in differentiation medium for 48 hours. Cells were harvested then subjected to ChIP assays using antibodies against SirT1(A) or SRF(B), as well as related IgG antibodies. (A) SirT1
directly binds to the regions spanning around SRF binding element (CArG) of SMαA and SM22α gene promoters. (B) SirT-1 overexpression increases SRF binding to the promoter regions of SMαA and SM22α genes. Real-Time PCR amplifications of the non-CArG regions were included as additional control for specific promoter DNA enrichment. The data presented here are mean ± S.E.M. of four independent experiments. *P<0.05 (versus control)
4.4.4 SirT1 inhibits H3K9 methylation around SMC gene promoters

DNA and/or histone methylation is an important epigenetic gene regulation pathway. It is well-known that methylation of lysine H3K9 and H3K27 is closely associated with transcriptional repression (Rosenfeld et al., 2009), and SirT1 can regulate histone methylations in cancer (Liu et al., 2009, Liu and McCall, 2013). To investigate if SirT1 affects H3K9me3 expression levels during SMC differentiation, SirT1 overexpression experiments were conducted in differentiating ES cells and subjected to Western blot and Chip assays. Data showed that SirT1 overexpression had little effect on H3K9me3 protein expression (Figure 36A), however the enrichments of HK39me3 on SMαA and SM22α gene promoters with CArG regions were significantly inhibited by overexpression of SirT1 (Figure 36B), suggesting that SirT1 regulates SMC-specific gene expression at least partially through inhibiting H3K9 tri-methylation around SMC specific gene promoters.
Figure 36 SirT1 promotes SMC gene expression through inhibiting H3K9me3 binding to SMC gene promoters.

Day 2~3 differentiating ES cells were transfected with control (pcDNA 3.1) or SirT1 overexpressing (pcDNA 3.1-SirT1) plasmids and cultured in differentiation medium for 48 hours. Cells were harvested and subjected to Western blot analyses (A) or ChIP assays (B), respectively. (A) H3K9me3 protein levels were not affected by SirT1 overexpression. (B) SirT1 overexpression reduces H3K9me3 binding to the promoter regions of SMαA and SM22α. ChIP assays using antibody against H3K9me3 or normal mouse IgG, respectively. Real-Time PCR amplifications of non-CArG regions were included as additional control. The data presented here are representatives or mean ± S.E.M. of four independent experiments. *P<0.05 (versus control)
CHAPTER 5 Discussion

The results obtained from this project advance our knowledge of the molecular mechanism mediating SMC differentiation by uncovering an important role of miR-34a in regulating SMC specific gene expression and SMC differentiation from mouse ES cells \textit{in vitro} and \textit{in vivo}. Such importance of miR-34a has also been confirmed in human SMC differentiation from stem cells. Surprisingly, SirT1 has been identified as the mRNA target of miR-34a, and the results demonstrated that miR-34a positively regulates its target gene, SirT1, during SMC differentiation from ES cells. Mechanistically, miR-34a is found to promote cell cycle arrest at G0/1 phase, and a significant decreased incorporation of miR-34a and SirT1 RNA into Ago 2-RISC complex was observed upon SMC differentiation. Also, SirT1 is defined as a potential transcription activator of SMC specific gene regulation. Furthermore, the SRF binding site(s) within SMC specific gene promoters is required for SirT1 mediated SMC gene transcriptional activation, and SirT1 regulates SMC transcription factors (SRF, MEF2c and Myocd) at transcriptional level. Finally, SirT1 has been observed to regulate SMC gene expression through modulating the histone methylation status around SMC specific gene promoters. Taken together, data provided in the current study strongly suggests that miR-34a is a powerful SMC differentiation modulator by positive regulating its target gene, \textit{SirT1}, a molecule functioning as a potential SMC-specific gene transcriptional activator.
5.1 SMC differentiation from ES cells

ES cells are derived from the inner cell mass of a blastocyst stage embryo and hold the ability to differentiate various types of cells, including SMCs. SMCs play an important role in the embryonic development of cardiovascular system, as well as other organs and tissues. They also play critical roles in cardiovascular diseases, such as stroke, hypertension and atherosclerosis. Better understanding of the mechanism by which ES cells differentiate into SMCs not only contributes to extending our knowledge of cardiovascular system development and diseases, but also provides theoretical/technical information to the development of regenerative medicine and tissue engineering. SMC differentiation from stem cell is a complicated and poorly defined process regulated by various molecular signal pathways, which includes stimulation of ECM, growth factors, mechanical stress and other micro environmental milieu. Despite the process of SMCs differentiation from stem cells has been intensively studied, the understanding of mechanisms underlying SMC differentiation is still far from complete, especially in the fields of functional role of small non-coding RNAs, as revealed by recent studies.

In a previous study by Xiao et al. (2007) revealed that collagen type IV can stimulate ES cells to differentiate into sca-1 positive cells then further differentiate into SMCs, which is mediated by collagen IV-integrin $\alpha_4/\beta_1/\alpha_v$. In that study it was also
pointed out that collagen type I can potentially induce SMC differentiation from ES cells through similar pathway of collagen type IV. In the present study, one of the goals is to further confirming the hypothesis that similar to collagen type IV, collagen type I can also facility SMC differentiation from stem cells. Multiple SMC-specific markers including SMαA, SM22α, calponin and SM-MHC were applied in this project to examine if SMC differentiation has been realized. Determination of SMC differentiation from ES cells was carried out by detecting chosen SMC specific markers during differentiation. Data from Figure 6 showed that the gene expressions of SMC specific markers, including SMαA, SM22α, calponin and SM-MHC were significantly increased after 4 days into differentiation and reached maximum level at day 6, as compared to that of undifferentiated ES cells. mRNA levels of early SMC differentiation markers, such as SMαA and SM22α (Owens et al., 2004) were increased over 800 and 200 folds respectively, as compared with undifferentiated ES cells. Importantly, the expression levels of late/mature SMC differentiation markers including calponin and SM-MHC (Owens et al., 2004) over the differentiation period were over 40 times higher than that of undifferentiated ES cells. Nanog, OCT3/4 and KLF4 are key factors in maintaining self-renew, pluripotency and undifferentiated state of ES cells. As expected, the mRNA levels of these ES cell specific markers significantly decreased from day 2 of differentiation, and maintained over 50% reduction at day 8 of differentiation (Figure 7).
SRF, MEF2c and myocardin are well known SMC transcriptional factors and play critical roles in SMCs differentiation and/or mature SMCs phenotype switching. SRF can directly bind to CArG elements within the promoter regions of SMC specific gene, and recruits its cofactor: myocardin, to form SRF-myocardin complex and work together with other transcription factors to regulate SMC differentiation (Cao et al., 2005, Dressel et al., 2001, Pagiatakis et al., 2012, Wang et al., 2003, Margariti et al., 2009, Owens et al., 2004, Wang et al., 2004, Xiao et al., 2010). It has been reported that SRF, MEF2c and myocardin were activated during collagen IV induced SMC differentiation (Margariti et al., 2009, Huang et al., 2013). Real-Time PCR analysis (Figure 8) showed that these transcriptional factors can also be triggered by collagen type I during SMC differentiation from ES cell. mRNA level of SRF and MEF2c started to increase from day 4 and reached maximum at day 6, while that of myocardin increased at a slightly later time but also significantly up-regulated at day 6 and expressed maximally at day 8.

Protein levels of SMαA and calponin during SMC differentiation were detected by using Western blot analyzes, as presented in Figure 8. Both SMαA and calponin protein expressions were not detected at day 0 (undifferentiated ES cells), but strong signals were detected from day 6 samples. The protein expression of SMαA and
calponin appeared at slightly later time, as compared with mRNA level. These time differences in gene and protein expression are possible due to late translation from SMαA and calponin mRNA.

Taken together, these data suggested collagen type I may act as similar function of collagen type IV in SMC differentiation from ES cell, further supporting the findings from Xiao et al. (2007). Furthermore, Real-Time PCR result showed that undifferentiated stem cell markers were significantly down-regulated from day 2, which indicated that the early SMC differentiation from ES cell may start after 2 days into the SMC differentiation model. It is further confirmed by the results from gene expression level of SMC specific markers, which started to up-regulate from day 2, increased significantly at day 4 and reached maximum level at day 6. These findings suggested that day 2 to day 4 is the critical period in the SMC differentiation model. Based on this finding, most of the treatments in this project were carried out during this time period to investigate the mechanism by which miR-34a/SirT1 regulate SMC differentiation.

Furthermore, human ES cells were seeded on collagen coated flasks to examine whether collagen can stimulate SMC differentiation in vitro in a similar manner of that in mouse ES cells. Data from Figure 18A and B suggested that SMC specific
markers, including PDGFRB, were significantly up-regulated during upon collagen stimulation over 9 days. SMαA is one of the actins isoforms and major constituent of the contractile apparatus within SMCs. Immunofluorescence analysis from Figure 18C established the presence of SMαA in differentiated SMCs from human ES cells, which has been further confirmed by flow cytometry analyses (Figure 18D). These data clearly suggests that Collagen can initiate SMC differentiation from both mouse and human ES cells.

5.2 miR-34a and SMC differentiation

Accumulating evidences suggest that microRNAs play an important role in biological regulation. As described before, Dicer and Drosha are essential for biogenesis of mature miRNAs. Recent studies using Dicer or Drosha deficient ES cells which were unable to generate mature miRNAs demonstrated that microRNAs can regulate self-renewal and differentiation of ES cells (Murchison et al., 2005, Wang et al., 2007). Some miRNAs, i.e. miR-21, has been identified to directly target Nanog and Sox2 which are key factors for maintaining stem cell functions (Murchison et al., 2005, Houbaviy et al., 2003).

It has been reported that some miRNAs are involved in SMCs migration,
proliferation, phenotype switching and differentiation. Albinsson et al. (2010) reported that deletion of Dicer in vascular smooth muscle caused decreased SMC proliferation and differentiation, which suggested the important roles of miRNAs in VSMCs. Recently, miR-143 and miR-145 have been reported to play critical roles in SMC proliferation, phenotype switching and differentiation (Elia et al., 2009, Cordes et al., 2009, Cheng et al., 2009). Li et al. (2013a) reported that miR-638 inhibited SMC proliferation and migration through targeting Neuron-derived orphan receptor 1. However, the understanding of miRNAs in ES cells differentiation, especially in SMC differentiation is far from complete.

To identify the potential miRNAs involved in SMC differentiation from ES cells, microRNA microarrays analysis was carried out on undifferentiated ES cells, differentiating ES cells (4 days in differentiation conditions) and differentiated ES cells (8 days in differentiation conditions) in this project. Among the increased miRNAs, miR-34a was significantly up-regulated during SMC differentiation (Table 3), which was further confirmed by Real-Time PCR analysis (Figure 10), implying that miR-34a may also be involved in SMC differentiation.

In mammalians, the miR-34 family comprises three processed miRNAs that are encoded by two different genes: miR-34a is encoded by its own transcript, and
miR-34b and miR-34c share a common primary transcript (Hermeking, 2010). In 2007, several laboratories independently reported that members of the miR-34 family are direct p53 targets, and their up-regulation induces apoptosis and cell-cycle arrest (He et al., 2007, Raver-Shapira et al., 2007, Chang et al., 2007). Strikingly, the most highly enriched gene ontology category among the upregulated transcripts induced by miR-34a overexpression was “cell cycle” (Chang et al., 2007), which strongly indicates that miR-34a is a major player in the regulation of cell cycle progression. Considering cell cycle arrest or exiting from cell cycle progression is a critical process during cell differentiation, miR-34a could be a major regulator in cell differentiation from stem cells. In addition, similar to other p53-target genes, miR-34a may be an important regulator for other signaling pathways involved in normal embryos development, cell differentiation, apoptosis, senescence, proliferation and various diseases including cancer and cardiovascular diseases. Importantly, it has been recently reported that suppression of somatic cell reprogramming into pluripotent cells by miR-34a was at least in part due to repression of pluripotency genes, including Nanog, Sox2 and N-Myc (Choi et al., 2011), which strongly suggests that miR-34a could play an important role in stem cell differentiation. Evidently, recent studies have suggested an important role of miR-34a in neural differentiation from neural stem cells (Aranha et al., 2011) and megakaryocytic differentiation from bipotent K562 human leukemia cells (Navarro
miR-34a has also been identified as a critical cell-fate determinant in early-stage dividing colon cancer stem cells (Bu et al., 2013). However, the function role of miR-34a in SMC differentiation remains to be investigated.

To explore the functional role of miR-34a in SMC differentiation, miR-34a gain/lost-function analyses were carried out in differentiating ES cells in vitro by using Pre-miR™ mmu-miR-34a miRNA Precursor, Anti-miR™ miR-34a inhibitor and siPORT™NeofX™ transfection agent. Data from Figure 11A showed that miR-34a expression was significantly up-regulated by miR-34a precursor, and miR-34a inhibitor knockdown the expression of miR-34a during SMC differentiation (Figure 12A). More importantly, gene expression of SMαA, SM22α, calponin and SM-MHC were considerably increased upon miR-34a overexpression, while knockdown of miR-34a inhibited expression of these SMC specific markers Figure 11A and Figure 12A). Protein level of SMαA and SM-MHC was also up-regulated by miR-34a overexpression and down-regulated by miR-34a inhibition, respectively (Figure 11B and Figure 12B). It has been reported that miR-145 is a well-known SMC differentiation related miRNA (Cheng et al., 2009, Cordes et al., 2009, Elia et al., 2009). Effect of miR-145 precursor or inhibitor on SMC differentiation was also included in the respective experiments as positive control for the functional involvement of miRNAs in SMC differentiation. As described earlier, SRF,
myocardin and MEF2c are well-established SMC transcriptional factors. Data from Figure 13 and Figure 14 demonstrated that the expression levels of these SMC transcription factors were also positively regulated by miR-34a, suggesting these molecules work in concert during SMC differentiation.

Importantly, data shown in Figure 19 revealed that miR-34a over-expression significantly up-regulated, while miR-34a inhibition dramatically down-regulated SMC marker gene expressions in differentiating human ES cells, further demonstrating a critical role of miR-34a in mouse as well as human SMC differentiation from stem cells.

Furthermore, control (pLL3.7-GFP) or miR-34a overexpressing (pLL3.7-GFP -miR-34a) ES cell line were generated by using respective lentivirus in this study to investigate the potential roles of miR-34a in in vivo SMC differentiation. The in vitro experiments with these cell lines (Figure 15A and Figure 15B) showed that the miR-34a level in miR-34a overexpressing ES cell was slightly higher than that of control cells at undifferentiated stage, but significantly increased after 8 days into SMC differentiation. Meanwhile more SMαA positive cells were detected in miR-34a overexpression cells compared with that in control cells (Figure 15C). The function of miR-34a during SMC differentiation in vivo was examined by using
miR-34a overexpressing ES cell lines combined with *in vivo* Martigel implantation model as described earlier. Data from Figure 16 showed that SM-MHC and GFP positive cells were detected in the Martigel implants, and miR-34a overexpressing ES cells generate more SM-MHC positive cells compare with that from control ES cell line, which indicated that these exogenous ES cells, especially miR-34a overexpressing ES cell line, successfully differentiated towards SMCs *in vivo*. SMC differentiation of ES cells *in vivo* was further confirmed by Real-Time PCR and Western blot analyses, and results showed that miR-34a overexpression significantly up-regulated the expression of SMC specific markers (Figure 17).

Taken together, the results from this project provide clear evidence to support that miR-34a can regulate SMC markers expression in collagen induced SMC differentiation from both mouse and human ES cells *in vitro*. Also, by using miR-34a overexpressing cell lines and Martigel implantation, miR-34a was shown to play an important role *in vivo*. These observations clearly implied that miR-34a is a SMC differentiation regulator.
5.3 Up-regulation of SirT1 by miR-34a during SMC differentiation is a specific event

By using computational algorithmic databases, SirT1 was predicted to be one of the top potential mRNA targets for miR-34a. Figure 21A showed two highly conserved binding sites for 5’ end of miR-34a were detected on 3’UTR of SirT1. It has been suggested that miR-34a regulates cell cycle progress and apoptosis in cancer cells by repressing its target gene SirT1 and forming a double positive feedback loop to regulate p53 activity (Yamakuchi et al., 2008, Yamakuchi and Lowenstein, 2009).

Surprisingly, results from this project provided clear and solid evidence to suggest that rather than translational repression miR-34a regulates SirT1 in a translational activation manner, which likely represents a specific event between miR-34a and SirT1 during SMC differentiation from ES cell.

Such notion has been supported by several lines of evidence: First, SirT1 gene expression and miR-34a expression were significantly activated during SMC differentiation from ES cells (Figure 20A and Figure 10). Secondly, SirT1 gene and protein expression levels were positively regulated by miR-34a overexpression experiments, but down-regulated by inhibition of miR-34a during SMC differentiation (Figure 20B and C). Also, inhibition or knockdown of SirT1 in differentiating ES cells significantly abolished the up-regulation of SMC specific
makers induced by miR-34a overexpression (Figure 31). Thirdly, the luciferase activity of wild type SirT1 3’ UTR reporter was significantly up-regulated by miR-34a overexpression, but such up-regulation was completely abolished when miR-34a binding sites were mutated, which suggested that binding between miR-34a and SirT1 is required for miR-34a mediated SirT1 regulation (Figure 21). Fourthly, the luciferase activity of ZEB1 or MECP2 3’UTR reporters, which containing binding site(s) for non-miR-34a miRNAs (MECP2 is the mRNA target for miR-22, and ZEB1 is the mRNA target for miR-200C/150, respectively), cannot be regulated by miR-34a (Figure 24). Finally SirT1 gene expression levels in the Matrigel implants with miR-34a overexpressing ES cells were much higher than that of Matrigel plugs implanted with control ES cells, suggesting that SirT1 gene expression level is also positively associated with miR-34a expression level during SMC differentiation from ES cells in vivo (Figure 16 and Figure 17).

As described earlier, the classic thinking of miRNA regulation is that miRNAs bind to their target gene mRNAs and induce translational repression and/or degradation. The novel finding by which miR-34a positively regulates its target gene, SirT1, could be due to the following facts and/or observations:

1. It has been reported that cell cycle regulation is closely associated with
differentiation of stem cell (Pauklin and Vallier, 2013, White and Dalton, 2005). Figure 26 showed that differentiating ES cells undergo cell cycle arrest at G0/1 phase. As mentioned before, the miRNA-target gene regulatory machinery will switch from translation repression to activation when the cells have arrested at G0/1 phase and locked in quiescent cells (Vasudevan et al., 2007, Vasudevan et al., 2008). Therefore, the findings that miR-34a positively regulates target gene SirT1 during SMC differentiation is consistent with their data.

2. Another suggested criteria by Vasudevan et al. (2007) for miRNAs up-regulate their target genes is presence of AU-rich elements within 3’UTR of the target genes. By using free online search tool (http://rna.tbi.univie.ac.at/cgi-bin/AREsite.cgi), similar to TNF-α we have found that SirT1 3’UTR is an A/U rich sequence (67%), and identified nearly 11 AU rich elements (ARE) sites within 3’UTR of SirT1 (spanning through 1000bps). More importantly, miR-34a binding site 2 is found to located closely with 8 of 11 ARE sites within SirT1 3’UTR (Figure 37).
3. While ES cells remain in undifferentiated stage, they have a shorter G1 phase as compared to differentiating ES cells. Interestingly, miR-34a negatively regulates SirT1 gene expression in undifferentiated ES cells, while positively regulates SirT1 gene expression in the terminally differentiated SMCs, as shown in Figure 23.

4. Figure 28 showed that incubation of differentiating ES cells with 2µg/ml aphidicolin, a G0/G1 cell cycle arrest inducer, significant increased cell cycle arrest at G0/G1 phase, and such arrest was further enhanced by miR-34a overexpression. More importantly, aphidicolin could up-regulate SirT1 gene
reporter activity, and a synergetic effect between aphidicolin and miR-34a over-expression on SirT1 gene regulation was observed in this study.

5. Removal of surrounding RNA sequence and structure of SirT1 3’UTR almost abolished the up-regulative effects of miR-34a on SirT1 3’UTR reporter activity (Figure 23).

6. Significantly decreased incorporation of miR-34a and SirT1 RNA into Ago-RISC complex was observed upon SMC differentiation from RNA-IP experiment using antibody against Ago 2 (Figure 29).

All these observations have provided a strong indication that miR-34a may positively regulate SirT1 gene expression through their binding sites within 3’UTR, which has been nicely proven by the finding that miR-34a binding site 2, rather than binding site 1, is required for miR-34a mediated SirT1 gene up-regulation (Figure 21). Results from this project also clearly suggests that up-regulation of SirT1 by miR-34a during SMC differentiation is a specific event (G0/G1 cell cycle arrest) between miR-34a and SirT1 gene during SMC differentiation, and both miR-34a binging sites and surrounding RNA sequence/structures within 3’UTR of SirT1 gene are required for such an event.

Evidently, data from other studies also suggest that miRNAs can up-regulate their
target genes in other cell systems under normal cell culture condition. It has been reported that miR-155 directly and indirectly enhances its target gene \(TNF-\alpha \) translation in macrophages (Tili et al., 2007), and miR-744 up-regulates CcnB1 through the binding sites within gene promoter region in NIH/3T3 fibroblasts as well as TRAMP C1 cells (Huang et al., 2011). Place et al. (2008) reported that miR-373 can target promoter sequences of E-cadherin and cold-shock domain-containing protein C2, and induces their gene expression. Additionally, miRNAs have also been suggested to up-regulate their target genes in immature oocytes (Mortensen et al., 2011).

5.4 SirT1 regulates SMC differentiation gene expression through a transcriptional mechanism

One of novel mechanistic findings in the project is that SirT1 regulates SMC differentiation gene expression through a transcriptional mechanism. SirT1 is a member of the a NAD+-dependent class III group of histone deacetylases, and has been reported to be involved in a variety of biological systems and cellular functions, including obesity-associated metabolic diseases, cancer, aging, cellular senescence, cardiac aging and stress, prion-mediated neurodegeneration, inflammation, and placental cell survival (Yang et al., 2013). Importantly, recent data also suggests that SirT1 is a critical mediator in regulation of various development genes during stem
cell differentiation (Calvanese et al., 2010), and plays an important role in various cellular differentiations including endothelial progenitor cells (Cheng et al., 2012), hematopoietic cells (Ou et al., 2011), and osteoblasts (Srivastava et al., 2012).

Results from this project provided clear evidence that SirT1 is an important SMC differentiation mediator by transcriptional regulation of SMC specific genes and transcriptional factors. Traditionally, SirT1 has mainly been linked to negative regulation of gene expression through deacetylation of histone and non-histone proteins (Tissenbaum and Guarente, 2001). However, accumulating evidence also strongly suggests that SirT1 can act both positively and negatively to control gene expression by recruiting a different set of coactivators and corepressors such as peroxisome proliferator–activated receptor γ coactivator-1α (Rodgers et al., 2005) or via a transcriptional mechanism (Chang and Guarente, 2013). In response to stress, activated SirT1 transcriptionally regulates its downstream target genes such as transcriptional factors (forkhead box Os and hypoxia-inducible factors-2α) and cardiac α-myosin heavy chain, through which SirT1 exerts a cardioprection response (Yang et al., 2013). In consistent with these findings, overexpression of SirT1 by using SirT1 overexpressing plasmids or SirT1 agonist in differentiating ES cells positively regulates expression of SMC specific makers (Figure 30). More importantly, data from Figure 34 and Figure 32B clearly indicated that SirT1
up-regulated promoter activities of SMC specific gene or transcriptional factors (SMαA, SM22α, SRF, MEF2c and myocd), which strongly demonstrated that SirT1 is a transcription activator for SMC differentiation genes. Direct evidence for such transcriptional regulation of SMC specific genes was obtained from ChIP assays (Figure 33 and Figure 35A), in which the data revealed that SirT1 can directly bind to the promoter DNA of SMC specific genes and transcription factors.

Another important finding of this project is that SirT1 acts as a potential transcriptional regulator for SMC gene regulation through modulating epigenetic modifications. It has been reported that SirT1 can induce the production of H3K9me3 in cultured U2OS cells (Vaquero et al., 2004) through directly interacting with deacetylating histone methyltransferase SUV39H1 (Vaquero et al., 2007). Data from Xiao et al. (2011) also suggested that H3K9 methylation was enriched within SMC specific gene promoters regions in the differentiating stem cells. H3K9me3 is well known for its repressive function in gene expression. Interestingly, data from Figure 36 revealed that instead of inducing H3K9me protein production, SirT1 represses H3K9 tri-methylation status within SMC-specific gene promoters, resulting in SMC gene activation. However, the functional involvements of SirT1 in the regulation of other epigenetic modifications remain to be fully elucidated.
CHAPTER 6 Conclusion, limitations and future plans

6.1 Conclusion

SMC differentiation from pluripotent stem cell plays critical roles in cardiovascular system development, diseases and tissue engineering. Despite the enormous efforts have been put into this field in the past decade, our understandings of the molecular mechanisms underlying SMC differentiation are still far from complete. miRNAs are small non-coding RNAs and their important functions in biological regulation had not been correctly recognized till recent years. The individual miRNAs and their functional roles in SMC differentiation from pluripotent stem cell remains to be further elucidated.

The present study have advanced our knowledge of the molecular mechanism mediating SMC differentiation by uncovering an important role of miR-34a in regulating SMC differentiation from mouse ES cells *in vitro* and *in vivo*, and provided compelling evidence to support the unexpected finding that miR-34a positively regulates its target gene SirT1 during SMC differentiation. This finding demonstrated that repression of SirT1 by miR-34a may switch to activation under specific conditions during the complex process of SMC differentiation, which
suggests that the “classical” miRNA-target genre repression regulatory machinery should be carefully considered under certain circumstance. Furthermore, the present study revealed that SirT1 regulates SMC gene expression through a transcriptional mechanism as well as an epigenetic signal pathway. Overall, the findings obtained from this study will significantly increase the understanding of the molecular mechanisms in SMC differentiation and benefit future application in regenerative medicine.

6.2 Limitation and further work

The limitation and further work are listed below:

1. Without any doubts, miR-34a plays an important role in SMC differentiation as supported by the compelling evidence presented in this study, however the functional importance of miR-34a in embryonic SMC differentiation and cardiovascular system development are still unclear. To fully address such points, global and/or VSMC-specific miR-34a knockout mice/embryos are required.

2. Results from this study revealed that miR-34a can also regulate SMC differentiation from human ES cells. However, the exact mechanism by which miR-34a regulates SMC differentiation from human ES cells needs to be further investigated. Also, data from the present study suggest that
miR-34a can up-regulate its target gene SirT1 during SMC differentiation from mouse ES cells, so experiments on human ES cells are required to investigate whether miR-34a can regulate SirT1 in a similar manner on human ES cells.

3. Although various mechanisms by which how miR-34a up-regulates its target gene SirT1 have been nicely proposed and demonstrated in this study, additional molecular mechanisms which are potential responsible for SirT1 up-regulation by miR-34a are possible existed and remain to be fully examined. For instance, whether RNA binding proteins are involved in up-regulation of SirT1 by miR-34a during SMC differentiation warranted for future investigation.

4. SirT1 has been nicely demonstrated for the first time to regulate SMC-specific genes and transcription factors through direct binding to the promoter regions within respective genes, however the minimal essential binding elements of SirT1 or exact SirT1 binding motifs within these gene promoter regions remains to be further identified.

5. H3K9 trimethylation has been identified as one of mechanisms by which SirT1 regulates SMC differentiation gene expression, however, its functional involvements in the regulation of other epigenetic modifications remain to be fully elucidated.
6. The down-stream signal pathways by which how miR-34a mediates SMC differentiation from stem cells have been nicely elucidated, however, the up-stream pathway(s) about how and why miR-34a is activated during SMC differentiation is still lacking.
Chapter 7 Appendix and reference

7.1 Appendix

7.1.1 Primer sets used in the project

<table>
<thead>
<tr>
<th>Gene names</th>
<th>Forward (5′-3′)</th>
<th>Reverse (5′-3′)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>18s</td>
<td>CCCAGTAAGTGCGGGGTCATAA</td>
<td>CCGAGGGCCCTCATAAACC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>U6 snoRNA</td>
<td>gatgacacgcacattcgtg</td>
<td>miRNA universal reverse primer (Invitrogen, A11193-051)</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>miR-34a (mu/hu)</td>
<td>GCCAGTGTCTTATGCTGGTTGT</td>
<td>miRNA universal reverse primer (Invitrogen, A11193-051)</td>
<td>Real-time RT-PCR/RNA IP</td>
</tr>
<tr>
<td>SMαA</td>
<td>TCCTGACGCTGAAGTATCCGAT</td>
<td>GGCACACGAAGCTCGTTATAG</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SM22α</td>
<td>GAT ATG GCA GCA GTG CAG AG</td>
<td>AGT TGG CTG TCT GTG AAG TC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>h1-Calponin</td>
<td>GGT CCT GCC TAC GCC TGT TC</td>
<td>TCG CAA AGA ATG ATC CCG TC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SM-myh11</td>
<td>AAG CAG CCA GCA TCA AGG AG</td>
<td>AGC TCT GCC ATG TCC TCC AC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SMαA (hu)</td>
<td>TGAGCGTGCTATTCCTCCTGT</td>
<td>GCAGTGCCATCTCATTTCAG</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SM22α</td>
<td>GGCTGAAGAATGGCGTGATT</td>
<td>TCTGCTGAAGACCATGAGG</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>h1-calponin (hu)</td>
<td>ATTTTTGAGGCGAAGCCTCG</td>
<td>CCCACGTTCACCTTGTCCCT</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SM-myh11 (hu)</td>
<td>GCCTCCATGGCGATAACACGA</td>
<td>TACCACATCTGCGCCAACCTT</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>PDGFR-β (hu)</td>
<td>GCAATTTGACGAGATGTGAA</td>
<td>AGCAATTTGTAGTGCCACCC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SRF</td>
<td>CCTACCAGGTGTCGGAATCTGA</td>
<td>TCTGGATTGAGGGTGATCC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>Gene</td>
<td>Forward Sequence</td>
<td>Reverse Sequence</td>
<td>Method</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Myocd</td>
<td>TCAATGAGAAGATCGCTCTCCG</td>
<td>GTCATCCTCAAGGCGAATGC</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>MEF2C</td>
<td>AAGCCAAATCTCCTCCCCCTAT</td>
<td>TGATTC ACTTGATGGCATCGTGT</td>
<td>Real-time RT-PCR</td>
</tr>
<tr>
<td>SirT1</td>
<td>GCTCGCCTTGCGGTGGAAGTT</td>
<td>GACGGGCTGAACGTGCTCGCC</td>
<td>Real-time RT-PCR/RNA IP</td>
</tr>
<tr>
<td>SMaA-P1</td>
<td>CATAACGAGCTGAGCTGCCTC</td>
<td>CCAAACAGGAGCAGAGAC</td>
<td>CHIP assay (with CarG region)</td>
</tr>
<tr>
<td>SMaA-P2</td>
<td>GATCAGAGCAAGGGGTATATA</td>
<td>CTACTTACCCTACGAGAGAG</td>
<td>CHIP assay (without CarG region)</td>
</tr>
<tr>
<td>SM22α-P1</td>
<td>GCAGGGTGCTTTTGTGGGGGCA</td>
<td>CTGCTTGGATCTGACCACCTCCG</td>
<td>CHIP assay (with CarG region)</td>
</tr>
<tr>
<td>SM22α-P2</td>
<td>CTTAAACCCCTACCCAAGC</td>
<td>ATGACTTGACTTACAAGG</td>
<td>CHIP assay (without CarG region)</td>
</tr>
<tr>
<td>SRF-P_F2/R2</td>
<td>CCTGGCTGCTTGACACTCAC</td>
<td>ATCTGGCCGAGCGGTGATGATA</td>
<td>CHIP assay</td>
</tr>
<tr>
<td>SRF-P_F4/R4</td>
<td>CCCTCTTGCCTGGCTGCAGTCTT</td>
<td>CCACACTGGATCGGGAGGA</td>
<td>CHIP assay (Adjacent region)</td>
</tr>
<tr>
<td>MEF2c-P_F1/R1</td>
<td>AGTCAGAGACGTGCTTGAGCT</td>
<td>CGGGTATCTGAGACTGACC</td>
<td>CHIP assay</td>
</tr>
<tr>
<td>MEF2c-P_F4/R4</td>
<td>GCTCCAGTGCTGAGCTGGGCA</td>
<td>TCCGACAGAAGCCAGTTTCC</td>
<td>CHIP assay (Adjacent region)</td>
</tr>
<tr>
<td>Myocd-P_F1/R1</td>
<td>AGGCAGCTGTGCTTGGGCGCT</td>
<td>GAGAGGAGGTGGAGCCCTGCT</td>
<td>CHIP assay (Adjacent region)</td>
</tr>
<tr>
<td>Myocd-P_F3/R3</td>
<td>CGGGATCTGGGCAAGCCAACCCCA</td>
<td>TCCCCAGCTTTACTGGGAGCG</td>
<td>CHIP assay</td>
</tr>
<tr>
<td>pmiR-Luc-SirT1-W T</td>
<td>GGACTCAGCCGTTCTCACCAGCAT</td>
<td>CACCTGGGCTCCTGCATCTTTTAG</td>
<td>SirT1 3’UTR reporter clone</td>
</tr>
<tr>
<td>pmiR-Luc-SirT1-B S1<sup>+</sup></td>
<td>CACCAAAAT GACTTTTGAGA</td>
<td>G CATATTCACA TCTCAAAGTC</td>
<td>miR-34a binding site 1 mutation</td>
</tr>
<tr>
<td>pmiR-Luc-SirT1-B S2<sup>+</sup></td>
<td>CCCAGTTAGG</td>
<td>CTTT TCTCCTCAAGAGCAGAC</td>
<td>miR-34a binding site 2</td>
</tr>
<tr>
<td>pmIIR-Luc-SirT1-B S1/2</td>
<td>CACCACAAAT GACTTTGAGA</td>
<td>CCCAGTTAGG</td>
<td>miR-34a binding site 1 and 2 combinational mutation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>TGTGAATATG C</td>
<td>ACCATTGCAGTTGAGGAGA AAAG</td>
<td></td>
</tr>
<tr>
<td>SirT1 3’UTR</td>
<td>GAGCCTGCATAGATCTTCACCA</td>
<td>ACTCTCCCAGTAGAAGTACCATT</td>
<td>RNA-IP</td>
</tr>
<tr>
<td>miR-34a binding site 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGCATAAAATACCCAGTTAGGACCA</td>
<td>GCACAAACACATCATGCAAATGG</td>
<td>RNA-IP</td>
</tr>
<tr>
<td>SirT1 3’UTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-34a binding site 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCCTATGAGC ACCGTCGA</td>
<td>TGGGACTAG TGACGGT</td>
<td>Generation of miR-34a artificial binding site</td>
</tr>
<tr>
<td>pmIIR-Luc-miR-34a binding site</td>
<td>CTAGTGGCGCA</td>
<td>GTCATAGGC</td>
<td></td>
</tr>
</tbody>
</table>
7.1.2 Microarray data from miR-34a overexpression

<table>
<thead>
<tr>
<th>PROBE_ID</th>
<th>GENE SYMBOL</th>
<th>Fold changes</th>
<th>ACCESSION</th>
<th>PROTEIN_PRODUCT</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMN_1211148</td>
<td>CNN1</td>
<td>5.622138271</td>
<td>NM_009922.3</td>
<td>NP_034052.2</td>
<td>h1-calponin</td>
</tr>
<tr>
<td>ILMN_2595612</td>
<td>Idh2</td>
<td>4.273697206</td>
<td>NM_173011.1</td>
<td>NP_766599.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_1244099</td>
<td>LOC10004138B</td>
<td>4.014480491</td>
<td>XM_001476627.1</td>
<td>XP_001476677.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2636803</td>
<td>Atp2</td>
<td>4.003017615</td>
<td>NM_029344.3</td>
<td>NP_083620.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_1249378</td>
<td>Bhlhb2</td>
<td>3.90910789</td>
<td>NM_011498.4</td>
<td>NP_035628.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_1239370</td>
<td>Dmfn1</td>
<td>3.745368624</td>
<td>NM_091969.2</td>
<td>NP_033195.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2764781</td>
<td>Pls3</td>
<td>3.615617528</td>
<td>NM_145629.1</td>
<td>NP_663604.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2971043</td>
<td>Vird6</td>
<td>3.5419975</td>
<td>NM_030738.1</td>
<td>NP_109663.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2695964</td>
<td>Lep</td>
<td>3.440290865</td>
<td>NM_008493.3</td>
<td>NP_032519.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2641111</td>
<td>Dapgt1</td>
<td>3.275815373</td>
<td>NM_007875.2</td>
<td>NP_031901.2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2671366</td>
<td>6330577E15Rik</td>
<td>3.117077402</td>
<td>NM_026377.1</td>
<td>NP_031464.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2599130</td>
<td>Aldoa</td>
<td>3.10562032</td>
<td>NM_007438.3</td>
<td>NP_031464.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2642745</td>
<td>H2-D1</td>
<td>2.914454097</td>
<td>NM_024456.2</td>
<td>NP_07776.2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2732848</td>
<td>TAGLN2</td>
<td>2.721118525</td>
<td>NM_178598.2</td>
<td>NP_848713.1</td>
<td>SM2alpha</td>
</tr>
<tr>
<td>ILMN_1245987</td>
<td>Hnrnpk</td>
<td>2.667151752</td>
<td>NM_025279.2</td>
<td>NP_079555.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2654296</td>
<td>Rab10</td>
<td>2.617282273</td>
<td>NM_016676.4</td>
<td>NP_057885.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2716838</td>
<td>Hspa4</td>
<td>2.503300909</td>
<td>NM_008303.3</td>
<td>NP_032326.3</td>
<td></td>
</tr>
<tr>
<td>ILMN_2691613</td>
<td>Ugcp</td>
<td>2.334163401</td>
<td>NM_033662.3</td>
<td>NP_114074.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2511089</td>
<td>Ppp1ca</td>
<td>2.300596168</td>
<td>NM_011673</td>
<td>NP_031859.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2747959</td>
<td>Dcn</td>
<td>2.190035137</td>
<td>NM_007833.4</td>
<td>NP_031859.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2607408</td>
<td>Pcbp4</td>
<td>2.178358316</td>
<td>NM_021567.2</td>
<td>NP_067542.2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2873319</td>
<td>Lypla1</td>
<td>2.173443856</td>
<td>NM_008866.2</td>
<td>NP_032892.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2710354</td>
<td>ACTA2</td>
<td>2.1729868</td>
<td>NM_007392.2</td>
<td>NP_031418.1</td>
<td>SM α-actin</td>
</tr>
<tr>
<td>ILMN_2849521</td>
<td>Pycr1</td>
<td>2.169303834</td>
<td>NM_144795.2</td>
<td>NP_659044.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2128342</td>
<td>LOCB31105</td>
<td>2.160453784</td>
<td>XM_355021.1</td>
<td>NP_031464.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2418957</td>
<td>5930418K15Rik</td>
<td>2.146499883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILMN_1254883</td>
<td>Fip1l1</td>
<td>2.143354544</td>
<td>NM_024183.4</td>
<td>NP_077145.2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2873822</td>
<td>Aebp1</td>
<td>2.079588497</td>
<td>NM_009636.1</td>
<td>NP_033766.1</td>
<td>aortic carboxypeptidase-like protein</td>
</tr>
<tr>
<td>ILMN_2643159</td>
<td>Birt1</td>
<td>2.051813061</td>
<td>NM_019812.1</td>
<td>NP_062786.1</td>
<td>sirtuin 1</td>
</tr>
<tr>
<td>ILMN_2978040</td>
<td>H3k1</td>
<td>2.021954887</td>
<td>NM_177369.3</td>
<td>NP_076343.2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2876707</td>
<td>H1k1</td>
<td>2.020285385</td>
<td>NM_010239.1</td>
<td>NP_034369.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2621581</td>
<td>SMTN</td>
<td>1.980577874</td>
<td>NM_013870.2</td>
<td>NP_038898.1</td>
<td>smoothelin</td>
</tr>
<tr>
<td>ILMN_1231072</td>
<td>A630082K20Rik</td>
<td>1.958463745</td>
<td>XM_145254</td>
<td>NP_034369.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2128247</td>
<td>Fald</td>
<td>1.916824434</td>
<td>XM_974900.1</td>
<td>NP_979994.1</td>
<td></td>
</tr>
<tr>
<td>ILMN_2988299</td>
<td>Srf</td>
<td>1.91038159</td>
<td>NM_020493.1</td>
<td>NP_056399.1</td>
<td>Serum response factor</td>
</tr>
<tr>
<td>ILMN_1227803</td>
<td>LOC674707</td>
<td>1.860780338</td>
<td>XR_031381.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Down-regulation by miR-34a over-expression

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMN_2836982</td>
<td>DES</td>
<td>desmin</td>
</tr>
<tr>
<td>ILMN_2435360</td>
<td>MYOCD</td>
<td>myocardium</td>
</tr>
<tr>
<td>ILMN_2804261</td>
<td>CALD1</td>
<td>h-caldesmon</td>
</tr>
<tr>
<td>ILMN_2769063</td>
<td>Octn2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2682217</td>
<td>MYH11</td>
<td>smooth muscle myosin heavy chain 11</td>
</tr>
<tr>
<td>ILMN_2804261</td>
<td>CALD1</td>
<td>h-caldesmon</td>
</tr>
<tr>
<td>ILMN_2210020M01Rik</td>
<td>LOC669053</td>
<td></td>
</tr>
<tr>
<td>ILMN_1227357</td>
<td>Flot2</td>
<td></td>
</tr>
<tr>
<td>ILMN_1230140</td>
<td>LOC385923</td>
<td></td>
</tr>
<tr>
<td>ILMN_1253344</td>
<td>Mfge8</td>
<td></td>
</tr>
<tr>
<td>ILMN_3005211</td>
<td>Akap6</td>
<td></td>
</tr>
<tr>
<td>ILMN_1240938</td>
<td>AW212394</td>
<td></td>
</tr>
<tr>
<td>ILMN_1221235</td>
<td>4933425L21Rik</td>
<td></td>
</tr>
<tr>
<td>ILMN_1253322</td>
<td>Cd63</td>
<td></td>
</tr>
<tr>
<td>ILMN_1244081</td>
<td>Rgs4</td>
<td></td>
</tr>
<tr>
<td>ILMN_2744326</td>
<td>LOC665250</td>
<td></td>
</tr>
<tr>
<td>ILMN_1235366</td>
<td>LOC100045628</td>
<td></td>
</tr>
<tr>
<td>ILMN_2714252</td>
<td>Kcnj3</td>
<td></td>
</tr>
<tr>
<td>ILMN_2607529</td>
<td>LOC10004604</td>
<td></td>
</tr>
<tr>
<td>ILMN_123283</td>
<td>P2rx5</td>
<td></td>
</tr>
<tr>
<td>ILMN_1243319</td>
<td>Trb2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2626773</td>
<td>Gaa</td>
<td></td>
</tr>
<tr>
<td>ILMN_1254199</td>
<td>LOC100045628</td>
<td></td>
</tr>
<tr>
<td>ILMN_2510612</td>
<td>Ywhaz</td>
<td></td>
</tr>
<tr>
<td>ILMN_2628876</td>
<td>Jph2</td>
<td></td>
</tr>
<tr>
<td>ILMN_1251067</td>
<td>Ctbp1</td>
<td></td>
</tr>
<tr>
<td>ILMN_1235633</td>
<td>Sdc</td>
<td></td>
</tr>
<tr>
<td>ILMN_2705268</td>
<td>Atp5l</td>
<td></td>
</tr>
</tbody>
</table>

Down-regulation by miR-34a over-expression (Continued)

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMN_2836982</td>
<td>DES</td>
<td>desmin</td>
</tr>
<tr>
<td>ILMN_2435360</td>
<td>MYOCD</td>
<td>myocardium</td>
</tr>
<tr>
<td>ILMN_2804261</td>
<td>CALD1</td>
<td>h-caldesmon</td>
</tr>
<tr>
<td>ILMN_2769063</td>
<td>Octn2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2682217</td>
<td>MYH11</td>
<td>smooth muscle myosin heavy chain 11</td>
</tr>
<tr>
<td>ILMN_2804261</td>
<td>CALD1</td>
<td>h-caldesmon</td>
</tr>
<tr>
<td>ILMN_2210020M01Rik</td>
<td>LOC669053</td>
<td></td>
</tr>
<tr>
<td>ILMN_1227357</td>
<td>Flot2</td>
<td></td>
</tr>
<tr>
<td>ILMN_1230140</td>
<td>LOC385923</td>
<td></td>
</tr>
<tr>
<td>ILMN_1253344</td>
<td>Mfge8</td>
<td></td>
</tr>
<tr>
<td>ILMN_3005211</td>
<td>Akap6</td>
<td></td>
</tr>
<tr>
<td>ILMN_1240938</td>
<td>AW212394</td>
<td></td>
</tr>
<tr>
<td>ILMN_1221235</td>
<td>4933425L21Rik</td>
<td></td>
</tr>
<tr>
<td>ILMN_1253322</td>
<td>Cd63</td>
<td></td>
</tr>
<tr>
<td>ILMN_1244081</td>
<td>Rgs4</td>
<td></td>
</tr>
<tr>
<td>ILMN_2744326</td>
<td>LOC665250</td>
<td></td>
</tr>
<tr>
<td>ILMN_1235366</td>
<td>LOC100045628</td>
<td></td>
</tr>
<tr>
<td>ILMN_2714252</td>
<td>Kcnj3</td>
<td></td>
</tr>
<tr>
<td>ILMN_2607529</td>
<td>LOC10004604</td>
<td></td>
</tr>
<tr>
<td>ILMN_123283</td>
<td>P2rx5</td>
<td></td>
</tr>
<tr>
<td>ILMN_1243319</td>
<td>Trb2</td>
<td></td>
</tr>
<tr>
<td>ILMN_2626773</td>
<td>Gaa</td>
<td></td>
</tr>
<tr>
<td>ILMN_1254199</td>
<td>LOC100045628</td>
<td></td>
</tr>
<tr>
<td>ILMN_2510612</td>
<td>Ywhaz</td>
<td></td>
</tr>
<tr>
<td>ILMN_2628876</td>
<td>Jph2</td>
<td></td>
</tr>
<tr>
<td>ILMN_1251067</td>
<td>Ctbp1</td>
<td></td>
</tr>
<tr>
<td>ILMN_1235633</td>
<td>Sdc</td>
<td></td>
</tr>
<tr>
<td>ILMN_2705268</td>
<td>Atp5l</td>
<td></td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Gene ID</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ILMN_2529932</td>
<td>LOC385905</td>
<td>0.427319747</td>
</tr>
<tr>
<td>ILMN_2710784</td>
<td>Gpsn2</td>
<td>0.426685111</td>
</tr>
<tr>
<td>ILMN_2618364</td>
<td>Flnc</td>
<td>0.426361591</td>
</tr>
<tr>
<td>ILMN_2715289</td>
<td>Exosc7</td>
<td>0.425933252</td>
</tr>
<tr>
<td>ILMN_2693976</td>
<td>Ncl</td>
<td>0.425820996</td>
</tr>
<tr>
<td>ILMN_1236828</td>
<td>Usp20</td>
<td>0.425820996</td>
</tr>
<tr>
<td>ILMN_1256369</td>
<td>Lynx1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1249514</td>
<td>Large</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1226970</td>
<td>Wwp2</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2697918</td>
<td>LOC381302</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1255927</td>
<td>Ubtf</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1221168</td>
<td>2310061F22Rik</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2681030</td>
<td>EG629595</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1237183</td>
<td>Ociad1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2713060</td>
<td>Fam131a</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2733356</td>
<td>Endod1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1252204</td>
<td>Sepw1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1250816</td>
<td>Apeh</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1244098</td>
<td>Dst</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2445548</td>
<td>C330006A16Rik</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1231542</td>
<td>Ttn</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1377923</td>
<td>Actb</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1254358</td>
<td>Igfbp5</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2527650</td>
<td>LOC268700</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_3073318</td>
<td>Tom112</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2654074</td>
<td>Sesn1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2994779</td>
<td>Gpsn2</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2480021</td>
<td>O610007P22Rik</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1232298</td>
<td>BC003940</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1377918</td>
<td>LOC10048105</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2611699</td>
<td>Jmdj1b</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2661005</td>
<td>1110018G07Rik</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2723881</td>
<td>Hcfc1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2737658</td>
<td>Pdk2</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1219978</td>
<td>Appl2</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_3128792</td>
<td>Ttn</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2704562</td>
<td>LOC1004762B</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1244316</td>
<td>Hbb-b1</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_2621471</td>
<td>1110007L15Rik</td>
<td>0.425711987</td>
</tr>
<tr>
<td>ILMN_1214024</td>
<td>2310003M01Rik</td>
<td>0.425711987</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene Symbol</td>
<td>Expression Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ILMN_1232295</td>
<td>Sort1</td>
<td>0.509807516</td>
</tr>
<tr>
<td>ILMN_1227459</td>
<td>Gga2</td>
<td>0.508942236</td>
</tr>
<tr>
<td>ILMN_2425415</td>
<td>Ube3b</td>
<td>0.505632053</td>
</tr>
<tr>
<td>ILMN_1239729</td>
<td>Kif1b</td>
<td>0.504351203</td>
</tr>
<tr>
<td>ILMN_2620078</td>
<td>Dap3</td>
<td>0.501323496</td>
</tr>
<tr>
<td>ILMN_2589073</td>
<td>Lrc10</td>
<td>0.499482347</td>
</tr>
<tr>
<td>ILMN_2599110</td>
<td>Uspl1</td>
<td>0.498577121</td>
</tr>
<tr>
<td>ILMN_1238117</td>
<td>LOC386054</td>
<td>0.493252261</td>
</tr>
<tr>
<td>ILMN_2986315</td>
<td>Mir16</td>
<td>0.487658501</td>
</tr>
<tr>
<td>ILMN_1254987</td>
<td>Mbn12</td>
<td>0.487128377</td>
</tr>
<tr>
<td>ILMN_2750428</td>
<td>Timm44</td>
<td>0.476772184</td>
</tr>
<tr>
<td>ILMN_1234324</td>
<td>Pdzd8</td>
<td>0.474972905</td>
</tr>
<tr>
<td>ILMN_2667447</td>
<td>Hdlbp</td>
<td>0.473999228</td>
</tr>
<tr>
<td>ILMN_1259528</td>
<td>LOC382092</td>
<td>0.469147057</td>
</tr>
<tr>
<td>ILMN_2739843</td>
<td>Metrn</td>
<td>0.467418561</td>
</tr>
<tr>
<td>ILMN_2993267</td>
<td>Keap1</td>
<td>0.465161445</td>
</tr>
<tr>
<td>ILMN_2971559</td>
<td>Eef1a2</td>
<td>0.465024364</td>
</tr>
<tr>
<td>ILMN_1257759</td>
<td>Tnrc6b</td>
<td>0.464889956</td>
</tr>
<tr>
<td>ILMN_2733046</td>
<td>Cdc25c</td>
<td>0.455919501</td>
</tr>
<tr>
<td>ILMN_1241915</td>
<td>Notch1</td>
<td>0.454971716</td>
</tr>
<tr>
<td>ILMN_2609948</td>
<td>Suds3</td>
<td>0.453359029</td>
</tr>
<tr>
<td>ILMN_1238313</td>
<td>Cnot2</td>
<td>0.452552762</td>
</tr>
<tr>
<td>ILMN_1247990</td>
<td>Purb</td>
<td>0.451824808</td>
</tr>
<tr>
<td>ILMN_1258682</td>
<td>Map2k2</td>
<td>0.451660818</td>
</tr>
<tr>
<td>ILMN_1220309</td>
<td>Cep63</td>
<td>0.451484232</td>
</tr>
<tr>
<td>ILMN_1247312</td>
<td>Kpna3</td>
<td>0.449438204</td>
</tr>
<tr>
<td>ILMN_2628875</td>
<td>Jph2</td>
<td>0.447043915</td>
</tr>
<tr>
<td>ILMN_1227926</td>
<td>Flt1</td>
<td>0.445619416</td>
</tr>
<tr>
<td>ILMN_1220498</td>
<td>Pygm</td>
<td>0.444149866</td>
</tr>
<tr>
<td>ILMN_2655260</td>
<td>Ptp4a3</td>
<td>0.442203662</td>
</tr>
<tr>
<td>ILMN_2930819</td>
<td>Acd</td>
<td>0.437936397</td>
</tr>
<tr>
<td>ILMN_2675785</td>
<td>Myo18b</td>
<td>0.433358207</td>
</tr>
<tr>
<td>ILMN_1221702</td>
<td>Plaa</td>
<td>0.432391343</td>
</tr>
<tr>
<td>ILMN_1246601</td>
<td>Glg1</td>
<td>0.431889168</td>
</tr>
<tr>
<td>ILMN_2724545</td>
<td>Sbk</td>
<td>0.431232234</td>
</tr>
<tr>
<td>ILMN_2813594</td>
<td>Zfp691</td>
<td>0.431018251</td>
</tr>
<tr>
<td>ILMN_2632665</td>
<td>Cav1</td>
<td>0.430594443</td>
</tr>
<tr>
<td>ILMN_2546596</td>
<td>2310076E21Rik</td>
<td>0.429992929</td>
</tr>
<tr>
<td>ILMN_2656677</td>
<td>Fkbp8</td>
<td>0.429677397</td>
</tr>
<tr>
<td>ILMN_2739760</td>
<td>Prelp</td>
<td>0.428983401</td>
</tr>
<tr>
<td>ILMN_2499264</td>
<td>4933428A15Rik</td>
<td>0.42785664</td>
</tr>
</tbody>
</table>
7.2 Reference

BARRILLEAUX, B., PHINNEY, D. G., PROCKOP, D. J. & O'CONNOR, K. C.

CALVANESE, V., LARA, E., SUAREZ-ALVAREZ, B., ABU DAWUD, R.,
VAZQUEZ-CHANTADA, M., MARTINEZ-CHANTAR, M. L., EMBADE, N.,
LOPEZ-NIEVA, P., HORIZZLO, A., HAMADCHA, A., SORIA, B., PIAZZOLLA, D.,
HERRANZ, D., SERRANO, M., MATO, J. M., ANDREWS, P. W.,
LOPEZ-LARREA, C., ESTELLER, M. & FRAGA, M. F. 2010. Sirtuin 1 regulation
of developmental genes during differentiation of stem cells. Proc Natl Acad Sci U S
A, 107, 13736-41.
CAO, D., WANG, Z., ZHANG, C.-L., OH, J., XING, W., LI, S., RICHARDSON, J.
Expression by Association of Histone Acetyltransferases and Deacetylases with
CHAMBERS, I., COLBY, D., ROBERTSON, M., NICHOLS, J., LEE, S.,
CHANG, H. C. & GUARENTE, L. 2013. SIRT1 mediates central circadian control
in the SCN by a mechanism that decays with aging. Cell, 153, 1448-60.
CHANG, T.-C., WENTZEL, E. A., KENT, O. A., RAMACHANDRAN, K.,
MULLENDORE, M., LEE, KWANG H., FELDMANN, G., YAMAKUCHI, M.,
FERLITO, M., LOWENSTEIN, C. J., ARKING, DAN E., BEER, M. A., MAITRA,
A. & MENDELL, J. T. 2007. Transactivation of miR-34a by p53 Broadly Influences
Gene Expression and Promotes Apoptosis. Molecular Cell, 26, 745-752.
CHEN, W. Q., VILLA-DIAZ, L. G., SUN, Y. B., WENG, S. N., KIM, J. K., LAM, R.
Influences Adhesion, Spreading, and Self-Renewal of Human Embryonic Stem Cells.
Acs Nano, 6, 4094-4103.
CHENDRIMADA, T. P., GREGORY, R. I., KUMARASWAMY, E., NORMAN, J.,
COOCH, N., NISHIKURA, K. & SHIEKHATTAR, R. 2005. TRBP recruits the

and Vascular Biology, 27, 12-4.

endothelial and smooth muscle like cells and form vascular networks in vivo.
Circulation research, 101, 286-94.

LANDGRAF, P., RUSU, M., SHERIDAN, R., SEWER, A., IOVINO, N., ARAVIN,
A., PFEFFER, S., RICE, A., KAMPHORST, A. O., LANDTHALER, M., LIN, C.,
SOCCI, N. D., HERMIDA, L., FULCI, V., CHIARETTI, S., FOA, R., SCHLIWKA,
J., FUCHS, U., NOVOSEL, A., MULLER, R. U., SCHERMER, B., BISSELS, U.,
INMAN, J., PHAN, Q., CHIEN, M., WEIR, D. B., CHOKSI, R., DE VITA, G.,
FREZZETTI, D., TROMPETER, H. I., HORNUNG, V., TENG, G., HARTMANN,
G., PALKOVITS, M., DI LAURO, R., WERNET, P., MACINO, G., ROGLER, C. E.,
NAGLE, J. W., JU, J., PAPAVASILIOU, F. N., BENZING, T., LICHTER, P., TAM,
W., BROWNSTEIN, M. J., BOSIO, A., BORKHARDT, A., RUSSO, J. J., SANDER,
LEE, R. C. & AMBROS, V. 2001. An extensive class of small RNAs in
LEE, R. C., FEINBAUM, R. L. & AMBROS, V. 1993. The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75,
843-54.
LEE, Y., AHN, C., HAN, J., CHOI, H., KIM, J., YIM, J., LEE, J., PROVOST, P.,
LEE, Y., KIM, M., HAN, J., YEOM, K. H., LEE, S., BAEK, S. H. & KIM, V. N.
2004. MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal,
23, 4051-60.
flanked by adenosines, indicates that thousands of human genes are microRNA

LUO, Z., WEN, G., WANG, G., PU, X., YE, S., XU, Q., WANG, W. & XIAO, Q. 2013. MicroRNA-200C and -150 play an important role in endothelial cell

LYTLE, J. R., YARIO, T. A. & STEITZ, J. A. 2007. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. *Proceedings of the National Academy of Sciences of the United States of America*, 104, 9667-72.

MARTIN, G. R. & EVANS, M. J. 1975. Differentiation of clonal lines of

Differentiation; research in biological diversity, 56, 119-29.

VASUDEVAN, S., TONG, Y. & STEITZ, J. A. 2007. Switching from Repression to

cell biology, 11, 228-34.
XIAO, Q., ZENG, L., ZHANG, Z., HU, Y. & XU, Q. 2007. Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin α1/β1/αv and PDGF receptor pathways.

