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Abstract 

A user (or human) mobility context is defined as a type of user context that 

describes a type of whole body posture (e.g., standing versus sitting) and/or a type 

of travel or transportation mode (e.g., walking, cycling, travel by bus, etc). Such a 

context can be derived from low-level sensor data and spatial contexts, including 

location coordinates, 3D-orientation, direction (with respect to magnetic north), 

velocity and acceleration. Different value-added services can be adapted to users’ 

mobility contexts such as assessing how eco-friendly our travel is, and adapting 

travel information services such as maps to different transportation modes. Current 

sensor-based methods for user mobility detection have several key limitations: 

narrow range of recognition, coarse user mobility recognition capability, and low 

recognition accuracy. In this thesis, a new Foot-Force and GPS (FF+GPS) sensor 

method is proposed to overcome these challenges that leverages a set of wearable 

FF sensors in combination with mobile phone GPS. The novelty of this approach is 

that it provides a more comprehensive recognition capability in terms of reliably 

recognising various fine-grained human postures and transportation modes. In 

addition, by comparing the new FF+GPS method with both an accelerometer (ACC) 

method (62% accuracy) and an ACC+GPS based method (70% accuracy) as 

baseline methods, it obtains a higher accuracy (90%) with less computational 

complexity, when tested on a dataset obtained from ten individuals.  

In addition, the new FF+GPS method has been further extended and evaluated. 

More specifically, the trade-off between the computation and resources needed to 

support lower versus higher number of features and sensors has been investigated. 

The improved FF+GPS method reduced the number of classification features from 

31 to 12, reduced the number of FF sensors from 8 to 4, and reduced the use of GPS 

in mobility activity recognition. 
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1 Introduction 

1.1 Motivation 

The Internet of Things (IoT) is a vision for the Internet where more diverse smart 

devices can operate and interact with more of the physical environment, and interact 

with each other both locally, and with remote services. Here, the concept smart 

means that the entity is active, digital, networked, can operate to some extent 

autonomously, is reconfigurable and has local control of the resources it needs such 

as energy and data storage [1]. The early IoT application focus was on tracking and 

sensing more things in the physical world to ascertain if things would arrive at the 

planned time [2]. There are two different designs for smart devices to track moving 

things: smart (mobile) device versus smart environment (devices) [1, 3]. Smart 

(mobile) devices can be embedded or accompany a mobile host such as a person or 

vehicle and sense its changing mobile context such as location or velocity. Here, the 

mobile context data can be acquired in a mobile device and uploaded in offline mode 

or in real-time for use in remote services. The set of mobile context form a mobility 

profile. A smart environment is one in which smart devices are embedded in it, e.g., 

embedded readers can detect the proximity of Near Field Communication (NFC) 

electronic tags embedded in other devices, or fixed position video cameras can 

monitor a physical space. Here the mobile context is acquired by the smart 

environment device and is again uploaded at some time.  

The focus in this research is on the use of smart mobile devices that accompany 

humans (such as smart phones and wearable devices) that can be used to create 

mobility profiles of human (mobility) rather than on the use of smart environments. 

One can distinguish a low-level mobility context profile versus a high-level one. A 

low-level context represents the raw unclassified sensor data, such as a location or 

velocity. A high-level context is the processed, classified, mobility context, e.g., this 

movement represents somebody walking or cycling. The focus here is on the use, 

classification, of high-level mobility contexts rather on low-level ones. 
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High-level user mobility contexts can enable a whole raft of services: Physical 

activity monitoring, e.g., mobile phone sensors may detect how many hours a person 

walks every day and provide personalised healthy travel advice [4, 5];  

Environmental impact monitoring, e.g., Personal Environment Impact Report (PEIR) 

and UbiGreen [6, 7] along with commercial offerings such as Carbon Diem and 

Ecorio [8, 9]; Crowd mobility awareness where mobility context based profiles 

(time, location, transportation mode traces) of multiple users can be fused to 

determine spatial-temporal (distributed) mobility contexts and patterns [10-12]; 

Mobility-aware service adaptation: Mobility profiling systems can enable specific 

services to better adapt to the type of mobility [13, 14]. Although, mobility profiling 

can enable a range of applications that can adapt to the profile, the focus of this 

research is on achieving better profiles rather on the adaptation. Better mobility 

profiles entail a more accurate and fine-grained classification of types of user 

mobility because without this, the adaptation will be faulty [15].  

1.2 Challenges in Profiling Fine-Grained User Mobility 

It is useful to classify user mobility, also referred to as user mobility activity, across a 

broad range of activities and to be able to differentiate certain types (and sub-types) 

of activity, to enable the above applications that can adapt to changes in mobility. 

Different types of mobility contexts can be defined. The location of key way-points, 

such as start, end and on-route points may vary with respect to the mobility activity, 

e.g., taxi versus bus. Hence, the location could be used to differentiate the mobility 

activity. But note in some cases, taxis may travel on bus routes because they are less 

congested, hence the use of simple fixed locations to classify mobility activity may 

be error-prone. The rate of change of location with time and direction, hence velocity 

or acceleration could also be used to differentiate different types of mobility. The 

average movement velocity for free-flowing people and vehicles varies, e.g. 

increases from walking, cycling to taking a vehicle. However, for a bus that is stuck 

in congestion, cycling or even walking may be quicker. The speed of movement 

between motorised and non-motorised individuals may vary based upon ability, 

propensity for speed and due to environmental conditions. For example, road vehicle 

speed has specific limits by law but these specific limits vary along different routes. 

Hence, use of a simple threshold for speed, to differentiate between motorised and 

non-motorised mobility, or differentiate different sub-types of motorised modes (use 
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of a car or taxi, bus, or differentiate sub-types of non-motorised modes such as 

standing, walking, or cycling), is quite complex. Whole body posture, i.e., standing 

versus sitting, varies between different transportation modes, e.g., people sit on a 

bike, car or taxi but stand while walking but people may remain standing, or walk to 

get to seat, on a bus but not in a car, taxi or bike. Thus, a simple classification of 

whole body posture alone cannot consistently differentiate the use of different sub-

classes of motorised transport. In addition, it may be useful to differentiate both 

posture and transportation mode to provide adapted services. For example, when 

detecting the user is standing (rather than sitting) on a moving bus, the menu icon of 

the smarting phone might automatically grow bigger to facilitate tapping on them. 

For some types of on-route transport information service, it may be useful to 

differentiate the driver versus passenger. For example, bus drivers may require route 

navigation information but bus passengers are more concerned with knowing which 

stop is the closest stop to a destination and where to get off the bus, rather than 

seeing the whole bus route. It may also be less safe to distract a road vehicle driver 

with an incoming or outgoing phone call than a passenger. Hence, it may be useful to 

divert an incoming call automatically by a mobile phone when detecting the user is 

driving a road vehicle. 

People use a mixed sequence of different types of mobility and posture during 

different journeys. People tend to walk to the nearest public transport stop to take 

public transport, walk during interchanges if changing between public transport 

vehicles on-route, and walk from the end stop to a destination. However, people may 

also cycle to a tube1 station and fold up their bike whilst continuing part of their 

journey by tube and cycle from the destination tube stop to the end destination. They 

may instead cycle to their nearest bus or tube stop from where they live, leave their 

bike and not take it on the public transport and walk from the destination tube stop to 

the end destination. People who travel by taxi, private car or bike may tend to walk 

only at the start and end of the journey without interchanges. There are different 

                                                 

1 The tube is the local name given to the London urban underground metro train 
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patterns with different journeys or trips in terms of a mixed sequence of each 

mobility type, e.g., walk to nearest public transport stop, travel on public transport 

instance A, walk at interchange, travel on public transport instance B, walk from 

final public transport stop to a destination. A multi-transport mode journey can be 

characterised in terms of a sequence of the transport modes used or summarised as 

the longest distance travelled by the main type of public transport or non-motorised 

journey used, e.g., someone travelled by bus or train even although a longer time 

may be spent walking to and from the departure or destination stop.  

1.3 Existing Ways of Sensing User Mobility  

The user (or human) mobility context can be determined using either on-body 

sensors, or fixed environment sensors. On-body sensors may be wearable, so that 

their position is often fixed, and accompanied, i.e., a motion-band device with 

integrated sensors is normally attached to a user’s wrist or ankle [16]. The earliest 

human mobility monitoring systems used sensors fixed into the environment, such as 

foot-force plates [17, 18], and video cameras that were often combined with on-body 

tags rather than sensors, whose movement could then be analysed to detect the 

corresponding activities [19, 20]. Fixed environment tags or sensors can provide 

accurate measurements of human motion, however their chief disadvantage is that 

these cannot be used for pervasive monitoring of people during daily life, as it is not 

scalable to instrument the whole daily physical environment in this way.  

Key technology enablers for pervasive user mobility context awareness are firstly, 

inertial sensors, such as accelerometer, gyroscope and compass, manufactured as a 

Micro Electro-Mechanical System (MEMS). These can also be embedded in more 

complex computation and communication devices such as mobile phones. Research 

has shown that there is a good agreement between on-body motion sensor 

measurements and body motion movements [13, 21]. The deployment of these on-

body motion sensors varies in terms of the different types of sensors used and 

different (sensor) configurations. Based on the survey (Chapter 3), the majority of 

work uses accelerometer (ACC) or GPS type of sensor for user mobility analysis. 

Whereas, one main focus of this thesis is to investigate the pros and cons of using a 

FF type sensor (instead of an ACC sensor). Other types of sensors (e.g., gyroscope) 

can be used for mobility classification but they tend to be less accurate, cannot be 
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used in a pervasive setting or are usually only combined with GPS or ACC sensors 

for assistive purposes (Chapter 3). 

An additional challenge with using mobile phones as sensors is that these tend to 

accompany the body rather than be worn on the body. The position of accompanied 

mobile phone sensors, unlike wearable sensors, is not fixed. The position can vary, 

e.g., can be handheld, carried in a front top or bottom back or hip pocket, or carried 

in different types of bags (rather than being worn in a fixed position), or even 

decoupled from the human body and left on another stationary or moving object. 

When a phone temporarily does not accompany the mobile human host but is left on 

another stationary or moving object, the movement with the phone gives us no 

information about the movement of the (accompanying) phone’s owner.  

The different positions for accompanied, i.e., mobile phone, sensors can produce 

different sensor measurements. Hence one needs to be able to differentiate different 

sensor measurement values due to different positions or configurations and those due 

to different movements. The accelerometer is the most popular inertial sensor used 

for activity detection, while other inertial sensors, such as gyroscope and compass, 

are mainly used as assistive sensors due to their limitations in detecting user 

activities alone [13]. However, accelerometer-based methods are not capable of 

providing fine-grained mobility detection, e.g. there is no single accelerometer-based 

method that can sub-differentiate stationary posture into standing and sitting (see the 

survey in Chapter 3). In addition, the accuracy of the accelerometer-based method in 

mobility detection sometimes is also affected by other different habitual body 

motions such as bending, swaying and twitching [15]. The accelerometer may not 

sometimes recognise user posture during travel as the acceleration patterns from a 

user’s motion and a vehicle’s vibration as these can overlap [15]. 

Second, wearable sensors that for example measure a (body’s) force can also be 

utilised in activity monitoring [22, 23]. There are well-defined foot movements and 

foot force (FF) patterns generated when walking or pedalling a cycle that can make 

these types of motion relatively easy to sense [24]. More recently, commercial 

wearable sensors have become available to profile user activities by analysing data 

from wearable sensors, at fixed body positions, on mobile devices. An example 
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commercially available wearable sensor system is the Nike+iPod system [25]. This 

mounts a single sensor that can be used as a pedometer inside one shoe in a pair of 

Nike running shoes connected to an iPod device that acts as a data hub. This can be 

used to profile one specific type of user mobility, i.e., walking, jogging or running, 

via the foot pressure surges, as someone repeatedly steps on the ground. As only one 

sensor is used for the whole of one foot, the system does not monitor the overall 

ground reaction force generated from one foot. This limits the system from detecting 

fine-grained user postures e.g. differentiating between standing and sitting. In 

addition, by only sensing the movement in one foot rather than in both feet, it cannot 

differentiate other mobility activities that involve both feet, e.g. cycling and driving a 

car. These limitations may also introduce more errors in differentiating between a 

body rocking and swaying versus stepping.  

Single sensor, multi homogeneous sensor and heterogeneous/hybrid sensor based 

configurations are the main types of sensor configurations. Single sensor based 

methods (whilst to some extent achieving some useful mobility recognition results) 

tend to suffer some common limitations such as low accuracy, narrow range and a 

coarse mobility recognition capability [26-28]. In contrast, multi-sensor based 

methods that combine two or more sensors normally outperform the single-sensor 

based methods in terms of higher accuracy but they also require more resources, e.g., 

higher computation, higher cost, and can be harder to maintain [21, 29]. Despite the 

added deployment challenges, multi-sensor based methods and hybrid sensor 

methods that combine wearable sensors and mobile or accompanied device sensors, 

have increasingly received attention [25, 30, 31]. 

In contrast to a single wearable sensor used as a pedometer to classify user mobility, 

multi-homogeneous sensors , e.g., a multiple wearable foot force sensor system can 

be used to capture richer and more fine-grained user foot force variations caused by 

different user postures, e.g. standing and sitting and activities, e.g., cycling and 

driving in real time [22]. However, use of foot force sensors to support richer 

mobility activities recognition also faces significant challenges. Different mobility 

activities may exhibit similar foot force patterns, which can be hard to differentiate, 

e.g., car passengers and seated bus passengers sometimes generate quite similar foot 

force patterns. This can be addressed through using a hybrid multi-sensor approach 
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e.g. combining FF sensors with GPS to provide additional distinct patterns. The 

variability in where sensors are placed can produce different sensor measurements. 

This can be addressed, when feasible, by fixing the sensor position, e.g., using a 

standard shoe inset. For the same type of user activity, user movement may vary. 

This makes it more difficult to compare sensor readings across different subjects, 

e.g., foot force signal noises from small body movements such as swaying may 

influence the classification results. However, many mobility activities involve a 

regular shift of pressure between the left and right foot such as walking and cycling; 

the accuracy of detecting and classifying these activities can be improved if a method 

can monitor this pressure shift and use this to classify these activities.  

In addition to sensing, a portable data storing and computing capability is also 

required to support pervasive mobility detection. The rising memory and processing 

power of the smart phone enables it to act as a local data processing and information 

storage hub or as a relay for data from body area networks of wearable sensors [30, 

31]. In addition, smart phones also have integrated transceiver type positions sensors 

such as GPS, WiFi and GSM that use in-network measurements of signal time arrival 

and signal strength to determine user spatial contexts such as location and speed [32-

34]. These are able to support a range of user context aware services during everyday 

activities [35-37]. These spatial contexts are also potentially useful to enable other 

wearable sensors for better mobility detection [38]. 

1.4 Research Objectives and Contributions 

This thesis concerns the problem of improving the classification of types of user 

mobility using body area network (BAN) sensors (as opposed to fixed environment 

sensors such as video cameras). Currently, the main BAN methods use either an 

accelerometer sensor or GPS, or a combination of the two, but these have limitations 

in terms of low accuracy and a coarse-grained classification capability (see Chapter 

3). The primary research objective is thus, to investigate whether or not an 

alternative, FF sensor based, method can improve user mobility classification 

compared to state-of-the-art (mobile phone based) accelerometer sensor and GPS 

based methods. A sub-objective of this is to investigate the effect of different FF 

sensor configurations and derived feature sets that affect the system computation 
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load, cost and maintenance versus the accuracy trade-off, when used for user 

mobility detection. 

The main, novel, contributions of this thesis are summarised as follows: 

1. A sensor based method that leverages a set of FF sensors, assisted by mobile 

phone GPS (FF+GPS), has been proposed, designed, implemented, tested, 

and evaluated. To the best of my knowledge, the FF+GPS method for 

mobility detection has never been examined before. The FF+GPS method is 

evaluated by comparing it with state of art inertial sensor use, e.g., 

accelerometer (ACC) [27], and a ACC+GPS combination, which are used as 

baseline methods. The FF+GPS sensor method provides a more fine-grained 

user mobility detection capability in terms of both reliably sub-differentiating 

stationary postures into standing and sitting, and reliably sub-differentiating 

motorised transportation mode into bus passenger, car passenger, and car 

driver. The experimental results show that by comparing this with the ACC-

based baseline method, the FF+GPS method achieves a substantial 

improvement in accuracy (increased from a level of 70% to a level of 90%) 

when tested on a dataset obtained from ten individuals (see Chapter 4). 

2. An additional contribution was to investigate how the accuracy of the 

FF+GPS method at detecting user mobility is affected by different FF sensor 

configurations. The minimal most effective insole positions (two per foot) for 

sensing. 12 (out of 31) maximally informative features were derived and 

identified. A new hybrid GPS use-plan was identified to improve the energy 

efficiency of the FF+GPS method, when used for mobility detection. The 

improved FF+GPS method was tested and the results showed that the 

improved FF+GPS method, even although it reduced the number of FF 

sensors, the number of features, and the use of GPS, this hardly reduced the 

overall user mobility detection accuracy (only a 2% accuracy loss is 

identified) (see Chapter 5). 

Other contributions of the work in this thesis are as follows. 
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1. A thorough survey of methods in mobility activity recognition has been 

conducted (see Chapter 3). 

2. A novel user mobility detection system (see Section 4.1.3) has been proposed. 

With this system, users only need to perform required activities once to 

collect data for three different methods (the core FF+GPS, ACC, and 

ACC+GPS). This eliminates the variability caused from different instances 

during data collection, which may affect the comparison results. 

3. Two hardware prototypes of the experimental equipment for user mobility 

activity sensing using external foot force sensors, accelerometer, and mobile 

phone GPS have been designed and implemented (see Sections 4.2.2 and 

5.2.2).  

4. An accelerometer-based method (identified as the best practice method in the 

survey) has been reproduced and an ACC+GPS based method has been 

produced to provide baseline methods for the evaluation of the new FF+GPS 

method (see Section 4.1.4). 
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1.6 Thesis Outline 

The remainder of this thesis is organised as follows: 

The key user mobility context awareness background concepts of the thesis are 

presented (Chapter 2). Related work on sensor-based user mobility detection is 

surveyed (Chapter 3). The common limitations in the existing system are analysed 

and discussed. In addition, a common accelerometer-based method is identified and 

is selected as a baseline to validate the new proposed method. In order to resolve the 

identified limitations in user mobility detection, a new FF+GPS based method is 

proposed, designed, implemented, and evaluated (Chapter 4). The FF+GPS method 

is evaluated by comparing it with a baseline accelerometer based method (identified 

from Chapter 3).  A further improvement of the FF+GPS based method for mobility 

activity detection is proffered in terms of reducing the number of features, the 

number of sensors, and the use of GPS (Chapter 5). Finally, the overall conclusions 

are presented (Chapter 6), and the thesis closes with some suggestions about how the 

work could be extended. 
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2 Background  

The user mobility context can be seen as one sub-type of user context. This thesis 

concerns the recognition of the mobility context for individual, adult, users focusing 

on daily urban travel. 

2.1 User Mobility Context  

A user’s mobility context is defined as a type of user context that describes the type 

of whole body posture, e.g., standing versus, sitting, and/or the type of transportation 

(or travel) mode, e.g., walking, cycling, travel by bus, etc. These are normally 

derived from the raw sensor data and spatial contexts, such as location coordinates, 

3D-orientation, direction (with respect to magnetic north), velocity and acceleration. 

The (high-level) user mobility context is derived from (low-level) user spatial 

contexts [39]. 

Currently, although there is much research and development focusing on user 

mobility context awareness, little of this is capable of capturing the (high level) user 

mobility activities in the daily living environment. Most of them focus on (low level) 

user spatial contexts, such as using a positioning system to capture users’ locations 

[40]. Spatial contexts have played a significant role in ubiquitous computing research 

[39, 41]. However, only the spatial context itself is not enough, since the system 

requires (high level) user mobility context to support advanced mobility context 

adaptation services [42, 43].  
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2.2 User Mobility Context Awareness 

 

Figure 2.1 A General Framework for Analysing Sensor Based User Mobility Awareness 

This thesis focuses on high-level user mobility activity recognition using BAN 

sensors. Figure 2.1 shows the general framework for BAN sensor based user 

mobility context awareness. As the focus is on the “User Mobility Activity 

Recognition” phase, all layers, except for mobility context-aware applications are 

described in the following sections. 

2.2.1 Mobility Sensing and Data Collection 

User mobility contexts are derived from lower level mobility contexts determined by 

various motion sensors such as accelerometer, GPS etc. [1, 39]. The raw sensor data 

collection phase is the first phase for user mobility context awareness (Figure 2.1). 

Hence, the sensor technology that focuses on capturing the user motion 

characteristics is the focus in this thesis. 
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A sensor can be defined as a device that detects (senses) changes in the ambient 

conditions of its environment and converts these changes into an analogue or digital 

signal whose changing values indicates changes in the state of the environment [44]. 

Various sensors such as GPS, accelerometer, ultrasonic sensor, orientation sensor, 

compass, and gyroscope etc., can be used to capture a user’s moving velocity, 

moving acceleration, and moving orientation, as they move. A mobile phone has 

three benefits for use as a user mobility sensing platform: it is in common use and 

accompanies users during daily life [37], it has many sensors embedded in it, it offers 

a significant data storage and computing capability [45]. Hence, this thesis focuses 

on using specific sensing modalities that are available or viable to be used in smart 

phones to detect a user’s mobility activities. 

2.2.1.1 Inertial Sensors 

Inertial sensors, notably accelerometers, gyroscopes, and compasses, have been 

widely used in activity detection systems [46]. The accelerometer is the most popular 

inertial sensor used for activity detection, while other inertial sensors, such as 

gyroscope and compass, are mainly used as assistive sensors due to their limitations 

in detecting user activities alone [13, 47]. 

An accelerometer is a device that measures magnitude and direction of proper 

acceleration. The proper acceleration measured by an accelerometer is not 

necessarily just the coordinate acceleration (rate of change of velocity) as the 

acceleration is also associated with the weight experienced by any test mass at rest in 

a frame of reference of the accelerometer device, e.g., an accelerometer at rest on the 

surface of the earth will measure an acceleration g= 9.81 m/s
2
 straight upwards, due 

to its weight. There are single-axis and multi-axis models of accelerometers. The 3D-

accelerometer can also be used to sense and determine the orientation, magnitude of 

acceleration, vibration, and falling of a bonding object [48].  In addition, 3-D 

accelerometers are now widely integrated into most smart phones such as Apple’s 

iPhone and Goolge’s Android. 
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Figure 2.2 Smart Phone Built-in 3D Accelerometer  

As the Figure 2.2 shows, X, Y and Z are three axes that a typical built-in 3D-

accelerometer supports to sense. The value of each axis corresponds to the 

acceleration sensed in each vector direction. This smart phone built-in accelerometer 

is very useful in detecting the acceleration variations generated in different user 

activities i.e., differences between stationary postures and dynamic postures [49].  

2.2.1.2 Physical Sensor 

Physical environment sensor is one sub-type of generalised sensor that detects and 

senses the changes of the physical aspects of the external environment such as sound, 

pressure/force, magnetic field and so on. In the field of activity recognition, foot 

force sensors are of particular interest because when a user performs different 

mobility activities, foot force sensors can be used to capture the variations of ground 

reaction force. Other physical sensors, such as Microphone, magnetic sensor, 

although have been used for activity detection but they are mainly used as assistive 

sensors and their accuracy is relative and varies [21, 50]. Hence, they are not 

considered further in this thesis 

A force sensor is a device that can detect and sense the force or pressure applied on 

its sensing area. It is normally composed something such as a ‘force-sensing resistor’ 

whose resistance changes when force or pressure applied. As the advancement of the 
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manufacturing technology, the size of some current force sensor is small enough to 

for embedded usage. Research has shown that there is a good agreement between 

wearable foot force sensors and fixed environment force sensor measurements [51] 

[22]. Hence, the wearable foot force sensor is of particular interest of this thesis, 

because in different mobility activities i.e., walking and cycling, the ground reaction 

force patterns are different, which can be further analysed and utilised to detect 

different user postures and transportation modes. 

2.2.1.3 Location Sensing System 

The location sensing system can be defined as a system that continuously and in real-

time can determine its position in space [40].  

The location sensing system is used to detect user spatial context, and the spatial 

context is an important low-level mobility context to infer high-level user mobility 

activity [52]. Several systems can be used for location-sensing: Global Positioning 

Systems, Radio Frequency (RF)-based Systems, and Cell-Identification Systems. 

RF-based system mainly uses inexpensive wireless local area networks (WLAN, also 

referred to as WiFi) as the fundamental infrastructure. Its coverage is limited 

typically to indoor environments as its transmitters are situated indoors but this 

depends on the transmission power [53]. As this thesis focuses on the mobility 

activities that are mainly performed in the outdoor environment, such RF-based 

systems are not considered in this thesis. 

Two types of widely adopted outdoor positioning systems are GPS and Cell-based 

system. Cell-based system relies on the fact that mobile networks can identify the 

approximate position of a mobile handset by knowing which cell site the device is 

using at a given time. However, the accuracy of the method is generally low, 

normally in the range of 200 meters, depending on the GSM cell size [54].  

The GPS is the most well-known global location sensing system today [55]. In this 

system the satellites transmits navigation messages, GPS receivers process the 

signals to compute position in 3D – latitude, longitude, and altitude with an accuracy 
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of 5 meters or less [56]. Some mobile phone GPS systems use Assisted-GPS (A-

GPS) technology. This utilises other types of network, e.g., WiFi, or a third party 

service provider, to assist the handset to improve the accuracy of location 

identification calculations [56]. 

Hence, comparing to Cell-based systems, GPS is still preferred in this thesis for its 

better accuracy and ubiquitous availability in the outdoor environment. 

2.2.2 Feature Extraction and Data Analysis 

2.2.2.1 Windowing Techniques 

Windowing techniques are required in activity detection to divide raw sensor signal 

in to smaller segments. Activity classification algorithms are then applied to each 

segment. There are mainly two different windowing techniques have been used in 

activity detection: sliding windows and event-defined windows.  

For sliding windowing methods, the sensor signal is divided into segments of fixed 

length with no inter-window gaps. Some studies included a degree of overlap 

between adjacent windows [57, 58]. The window size ranges from 0.25 s in [59] to 8 

seconds in [27].  

For event-defined windowing methods, predefined events are required to segment 

successive windows. A number of different approaches have been proposed for 

identifying events, such as sitting down, starting to walk, prior to explicitly 

identifying the specific activities. Given that such events may not be uniformly 

spaced in time, the size of these windows is not fixed [60]. 

As pre-processing is required by the event-defined windows to locate a specific 

event, the sliding window approach, which does not require pre-processing, is 

preferred as it is better suited for real-time applications on mobile devices. The 

sliding windowing method also has the advantage of implementation simplicity. 

Hence, the majority of activity detection studies (including those in this thesis) have 

employed this approach. 
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2.2.2.2 Feature Generation 

Features are needed to characterise windows of the raw sensor data. These features 

are then used as inputs to classification schemes to discriminate different activities. 

Two types of feature are mainly used in existing activity detection studies: time-

domain features and frequency-domain features. 

Time-domain features are normally derived directly from a window of sensor 

signals. These features are typically statistical measures (such as mean, median, max, 

standard deviation, and so on) of the sensor readings e.g., acceleration values from 

accelerometer, or the ground reaction force values from the foot force sensors.  

In the frequency-domain, the features are normally derived from the output of a Fast 

Fourier Transform (FFT) with a time domain signal as an input [58]. FFT gives a set 

of basis coefficients which represent the amplitudes of the frequency components of 

the signal. The features include amplitudes of the frequency components of the 

signal, the distribution of the signal energy, and so on.  

Time domain features are preferred for its simplicity and ideally for mobile devices 

to keep the computational costs low [13, 45]. 

2.2.3 Machine Learning and Classification 

Once features have been derived to characterise a window of sensor data, they are 

used as input to a classification algorithm. There are many different machine learning 

schemes. These vary from simple threshold-based schemes (e.g., decision tree, 

decision table) to more advanced models, such as artificial neural networks or hidden 

Markov models [61, 62]. These machine learning algorithms, once appropriately 

implemented, can learn to recognize and associate patterns in the input features with 

each activity. Machine learning techniques are generally considered to fall within 

one of the three main categories, supervised, unsupervised, or semi-supervised [63, 

64]. With supervised learning, all activity data is required to be fully labelled in the 

training phase. Once the training phase is complete (which means the machine 

learning model is trained), in the next testing phase, the classifier is able to classify 
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an unknown sample (window of sensor data) with respect to an activity type. With 

unsupervised/semi-supervised approaches, a significant amount of activity data is 

required to be unlabelled during the training dataset. Instead, all the sensor data are 

passed to the algorithm, which automatically identifies a number of states or clusters, 

each of which may correspond to a particular activity. However, unsupervised/semi-

supervised approaches are not normally applied to differentiate activities with similar 

feature characteristics, e.g., sub-classifying motorised mobility into bus-passenger 

and car-passenger. Hence, there has only been a very small amount of work applying 

unsupervised techniques to activity detection. Based on this, the supervised machine 

learning scheme is mainly considered in this thesis for its simplicity and non-

ambiguity in defining (from labelling) the fine-grained mobility activities.  

The classification algorithms used in this thesis are Decision Tree, Naive Bayes, and 

Decision Table, which have been chosen due to their simplicity and good 

performance in terms of computational delay and weight [45]. 

2.2.3.1 Decision Tree  

The decision tree approach is similar to a hierarchical scheme in terms of the derived 

data patterns that go through a tree-like set of nodes. In each node, a condition 

related to the value of an attribute is checked. In this way, depending on whether the 

condition is fulfilled, the condition of the following node is checked until a leaf that 

contains the classification result is found. However, the decision tree is different with 

the hierarchical scheme in terms of automation of the decision-structure construction 

process. In the decision tree classification, rather than constructing the decision 

structure manually, it is generated automatically. These algorithms examine the 

discriminatory ability of features or parameters one at a time. By iterating this 

process, a set of rules will be set up which ultimately leads to a complete 

classification system [65]. 

2.2.3.2 Naive Bayes 

A Naive Bayes classifier is a probabilistic classifier based on an independence 

assumption. In the Naive Bayesian model (also known as independent feature 



                                                                               32 

model), the input contexts (or features) are assumed to be independent of each other. 

Under this assumption, the likelihood function for each destination (which is one of 

the mobility activity types) can be expressed as the product of N simple probability 

density functions, where N is the number of contexts. In the case of classification, 

given an unclassified sample, the destination, whose likelihood function achieves the 

maximum value of probability (among all other destinations), will be classified as the 

type of the current sample. The Naive Bayes approach is of particular interest due to 

its simplicity and the ease of implementation [66]. 

2.2.3.3 Decision Table  

Decision tables, similar to decision trees, are models used for prediction or 

classification. A decision table is a tabular representation used to describe and 

analyse decision-making situations, where the state of a number of conditions of an 

entry (which is a mobility sample) determines the execution of an action (which is 

one of the mobility activity types) [67]. Decision tables associate conditions of an 

entry (which contains values or attributes) with an action (which is the classification 

result in this case) [68].  

Decision tables vary widely in the way the condition alternatives and action 

(classification) entries are represented [69]. Some decision tables use simple 

true/false values to represent the alternatives to a condition (like if-then-else), other 

tables may use numbered alternatives (like switch-case) [70]. Action entries normally 

represent as an action is to be performed. 

2.2.4 Cross Validation Scheme  

Cross-validation schemes are techniques for assessing how the results of a statistical 

analysis can be generalised as an independent data set or a new data set. It is also 

used to estimate how accurately a classifier performs in practice. For instance, one 

round of cross-validation involves partitioning a sample of data into complementary 

subsets, performing the analysis on one subset (called the training set), and validating 

the analysis on the other subset (called the testing set) [71].  
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In practice, in order to reduce the variability caused by different samples, multiple 

rounds of cross-validation are performed using different partitioning schemes. The 

validation results are averaged over different rounds. In this thesis, two types of cross 

validation that are commonly used for user activities recognition are employed: 10-

fold cross validation and leave-one-user-out cross validation. 

2.2.4.1 10-fold cross validation 

In a 10-fold cross validation, the original sample set is randomly partitioned into 10 

subsample sets. Of the 10 subsample sets, a single subsample set is retained as the 

testing data for validating the model, and the remaining 9 subsample sets are used as 

training data. The cross-validation process is then repeated 10 times, with each of the 

10 subsamples used exactly once as the testing data. The 10 times results from the 

folds then are averaged to produce a single validated result. The advantage of this 

method over repeated random sub-sampling is that all observations are used for both 

training and validation, and each observation is used for validation exactly once.  

2.2.4.2 Leave-one-user-out cross validation 

The leave one user out cross validation involves using data set from a single user as 

the testing data, and the dataset from the remaining users as the training data. This is 

process repeated so that each user in the samples is used once as the testing data set. 

This is similar to the 10-fold cross validation with number of folds being equal to the 

number of individuals in the original sample. Normally speaking, leave-one-user-out 

cross validation is more time-consuming and computational expensive because it 

requires many repetitions of training data from different individuals of the 

experiments. 

2.3 Summary 

In this chapter, the definition and classification of user mobility contexts have been 

described. An overview of a general framework for sensor-based user mobility 

context awareness is presented. In order to contribute to the mobility detection, the 

limitations of the current state-of-the-art methods in this field need to be identified. 
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Hence, various existing work and systems for mobility detection are reviewed, 

discussed, and analysed in the following chapter (Chapter 3). 
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3 Literature Survey  

3.1 Scope of the Survey 

Currently, the most popular types of sensors used for user mobility detection are 

inertial sensors (mainly accelerometer) and GPS. Typically, these sensors are 

embedded into widely used smart phones. Hence, smart phones are also commonly 

used by researchers as user mobility sensing devices. Hence, the use of 

accelerometer and GPS is a focus in this survey. The second main focus in this 

survey is on the use of FF sensors, including hybrid FF sensor techniques. The 

critical analysis of related work is partitioned according to different sensor 

configurations – homogeneous sensor configuration and hybrid sensor configuration. 

3.2 Homogeneous Sensor Configuration 

3.2.1 Accelerometer 

Accelerometer measurements are a typical way to recognise types of user activity. 

Mizzel et al. [72] showed that the accelerometer signal can produce a good estimate 

of the vertical and horizontal acceleration components. The vector holds an 

estimation of the magnitude of the dynamic acceleration of the human host that 

carries the sensor device. Different mobility activities, such as walking and cycling, 

may generate different acceleration patterns that can be differentiated. Ravi et al. 

[26] have found that several user activities can be recognised with a reasonable 

accuracy by wearing a single tri-axial accelerometer near the pelvic region. Bao et al. 

[73] used five biaxial accelerometers worn around different parts of the body to 

recognise different user activities. Their results show that the thigh and wrist sensor 

placements can recognise everyday activities with an overall accuracy rate of 84%.  

In [74], Parkka et al. utilised a wireless motion band attached to a user’s ankle to 

sense the acceleration generated by the ankle during different activities. This work 

has successfully differentiated different user mobility activities such as walking, 

running and cycling through using a binary decision tree classification method. A 
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personalised classification method also increases the accuracy of detection. Similar 

work has also been done by Myong-Woo in [75] and by Brezmes in [76].  

Accelerometer-based methods can achieve an increased accuracy when people carry 

their smart phones in a fixed place. However, people normally tend to carry their 

mobile phones more freely, such as near the waist, in a front pocket, in a knee-high 

pocket, by hand and so on. The use of the accelerometer for classification is limited 

because different on-body placements of the device will greatly change the nature of 

the motion signal and cause noises, which finally leads to a low accuracy of specific 

placement trained classifiers for free use. Wang et al. [27] have also considered this 

issue and attempted to differentiate user mobility activities without any placement 

restrictions for the accompanying mobile device. They used a smart phone embedded 

accelerometer to recognise six kinds of mobility activities, but the accuracy is 

relatively low at 62% on average.  

3.2.2 GPS 

GPS, as a global-wide positioning system, has already been integrated into mobile 

phones. The potential usability of GPS in profiling (outdoor) user mobility activities 

has been widely presented, such as in [28] and [77]. Lin Liao et al. in [28] have 

developed a probabilistic temporal model that can extract high-level mobility 

activities from a sequence of GPS readings. Two main types of mobility activity 

(human powered and motorised) are inferred based on the conditional-random-fields 

model. Though they achieved over 80% percentage in accuracy, the range of the user 

mobility recognised is coarse - it can only detect two main types of mobility activity, 

human powered and motorised. In addition, this method cannot differentiate between 

different mobility activities with similar speed characteristics, e.g. a slow travelling 

bus during traffic congestion can be miss-classified as cycling. 

In contrast to [28], Zheng et al. used a supervised learning based approach to infer 

more kinds of mobility activity from the raw GPS data in [77]. They proposed a 

change-point (between different transportation modes) based upon a segmentation 

method. The results show that a change point based segmentation method achieved a 

better accuracy compared with uniform-duration based segmentation and uniform-
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length based segmentation. However, GPS information alone cannot detect the 

change point precisely, since on many occasions, a person could take a taxi 

immediately after he or she gets off a bus and this very short changing segment 

between these two transportation modes can be hard to detect using GPS alone. This 

issue jeopardised the usability of this change point based segmentation method. 

This existing single GPS-based method exposes its inherent limitation. GPS 

information alone is too coarse to enable fine-grained mobility activity recognition 

with a good accuracy. For example, GPS performs poorly for the recognition of 

different transportation modes with similar speeds such as with fast walking, cycling, 

and slow motorized travelling. GPS based methods can only be used to recognise 

different mobility activities with marked speed differences and cannot detect user 

postures, e.g., standing, sitting, which are not speed-related. 

3.2.3 Foot Force Sensors 

It is well known that different user activities may generate different ground reaction 

forces [22]. This FF characteristic makes the FF sensing approach potentially useful 

in differentiating different foot-related activities and in providing a fine-grained user 

mobility recognition capability. For example, gait analysis, based upon FF sensing, 

has had a long history in computer science terms, the origin of it dates back about 30 

years ago, when Dion and his colleagues first made use of a thin force transducer to 

monitor walking [17]. Similar foot plate based gait analysis was also performed later 

by Hoyt and his colleagues in 1994 [18] and by Zijlstra in 2010 [78].  

Though these early laboratory-based gait approaches were accurate, they are not so 

applicable for the use in daily life. These techniques are based upon the use of fixed 

environment sensors, the cost of which is too high for ubiquitous use as it is 

unrealistic to deploy such force transducers throughout outdoor environments. In 

addition, another key limitation of a gait laboratory approach is that people’s 

behaviour during a lab experiment does not necessarily mirror that in their daily 

activities. 
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Hence, suitable lightweight sensors are needed to instrument the body to provide user 

data pertaining to user activities in daily life environments. Nowadays, there is a 

range of research, such as [21, 22, 43, 51, 74, 79-81] that used more lightweight foot 

force sensor method for human posture and mobility activity detection. However, 

most of the work focuses on indoor usage of foot force sensing with a limited range 

of activities and does not examine its extended use to recognise a wider range of 

mobility activities in daily environment. The awareness of a wider range of mobility 

contexts is considered to be an important part of the vision of ubiquitous computing 

[82]. Hence, this thesis focuses on using suitable lightweight foot force sensor 

methods to provide user data pertaining to user mobility activities during daily life. 

Veltink et al. [83] measure the ground reaction forces and centres of pressure (CoP) 

using two six-degrees-of-freedom movement sensors under each shoe. By comparing 

their measurements with the ground reaction force measured by a fixed environment 

foot force plate, this work illustrates the potential usefulness and feasibility of using 

portable foot force sensors to measure foot force during daily activities. This work 

also shows that mobility activity detection is feasible through ambulatory 

measurement of the force generated from both the heel and forefoot under each foot. 

However, this work only measured the foot ground reaction force during walking. 

Other mobility activities were excluded from this research. There are also other 

limitations of this work. The pair of experimental shoes was instrumented with four 

(15.7 mm in thickness) 6-axis force and moment sensors, which are too cumbersome 

to be worn in daily life. Another limitation of this work is that only one test subject 

has been included. Similar work has also been done by Tao [84] and by Zhang [85]. 

Zhang et al. [22] assessed more mobility activities such as walking, jogging and 

running by using a small, portable insole pressure measurement device. This device 

can be used to estimate the speed of walking and can be used in daily environment. 

This work studied 40 subjects and achieved a fairly high accuracy of walking activity 

recognition (95%). One obvious drawback of this work is that only user activities 

involving walking and running are considered. Fine-grained user postures during 

travelling such as standing, sitting, and use of other common daily transportation 

modes such as cycling and taking a bus have not been studied. Another limitation of 

this work is that a total of 32 foot force sensors are used. A further examination 
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regarding a more efficient configuration of foot force sensors is desired in order to 

decrease the system complexity and system costs for ubiquitous use. Although there 

are obvious limitations of this work, nevertheless, the potential for using foot force 

sensors to recognise daily user mobility activities has been illustrated.  

The foot force sensing systems mentioned thus far have been wire-based. This means 

the foot force sensors are connected for power and the monitoring data are 

transmitted via wires to a receiver. In order to extend the foot force sensors based 

methods to a more ubiquitous use, a more non-intrusive wireless way is required. 

Tracie et al. [51] designed and implemented a Wireless In-shoe Force System 

(WIFS) to acquire, process and transmit foot force sensor information. This pilot 

study shows the feasibility of using a wireless foot force monitoring system in a 

variety of locations rather than just in a laboratory setting. In addition, this work also 

proved that when using a limited number of foot force sensors, 4 on each foot, as 

long as they are properly arranged under the supporting bones of each foot, this 

enables accurate foot force monitoring information to be obtained, when compared 

with using force plate monitoring as the ground truth. However, the key limitation of 

this work is that only mobility activities such as walking and standing are considered. 

An extension of using wireless foot force sensing system to detect other mobility 

activities is of particular interest. Similar wireless pressure-sensitive foot insoles 

have also been done by Macro in [86]. 

In summary, foot force sensors can be used to recognise foot related activities e.g., 

walking and running, at a fairly high accuracy using a limited number of sensors. 

Existing foot force sensor based methods’ usefulness in recognising a wide-range of 

mobility activities is limited. Many mobility activities cannot be recognised by using 

foot force sensors alone, e.g., driving a car, because different mobility activities may 

exhibit similar foot force patterns. Based upon this, a hybrid based method is 

desirable to combine foot force sensors with extra mobility context information from 

other types of sensors to improve user mobility detection.  

3.3 Hybrid Sensor Configuration 

Yang et al. in [80] make use of three body-worn sensor boards to detect abnormal 

human activities. Abnormal activities such as slipping on the ground, falling down 
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forward and falling down backward can be detected with an accuracy of over 90%. 

Some mobility activities such as walking and running are also included. The 

limitations of this work are as follows. First, for each sensor board, there are five 

different types of sensors included such as light, temperature, microphone, 2D-

accelerometer, and two-axis magnetometer. This means a user carries an intrusive 

system that may affect and restrict the behaviour of a user in different mobility 

activities. Second, no stationary posture, such as sitting and standing or outdoor 

transportation modes were studied. Thirdly, the system uses a total number of 15 (3 × 

5) different sensors, which is not energy and cost efficient for ubiquitous use. 

In [87], Chon and his colleagues presented a smart phone-based context location 

aware system that fuses accelerometer, WiFi and GPS, to track and to automatically 

identify Points Of Interest (POI) with room-level accuracy. The smart phone built-in 

accelerometer is used to capture and represent user activities. The combination of 

these sensors can detect some mobility activities and track this at different locations. 

The benefit of this system is that it does not require any specialised instrumented 

environment and require extra sensors to be worn on the human body. However, 

there are also limitations with this system. The use of GPS combined with 

accelerometer for mobility activity recognition is not capable of recognising more 

fine-grained mobility activities such as differentiating between being a car-passenger 

versus being a car-driver. In addition, this system is also not capable of recognising 

both user posture and transportation mode simultaneously, e.g., when a user is 

standing on a moving bus.  

Varkey et al. in [88] utilised a set of support vector machines (SVM) to recognise 

user activities in real time using a wearable wireless sensor-based system that 

contains an accelerometer and gyroscope. This can recognise six different activities-

walking, standing, writing, smoking, jacks and jogging. When tested on three 

different subjects, the accuracy of the proposed system in detecting the required 

activities is around 84%. A key limitation of this work is that two devices are 

required to be placed on two fixed positions, on the right arm wrist and on the right 

foot, in order to acquire the linear acceleration and angular rate. In daily living, 

people tend to carry their mobile devices more freely. A more flexible method with 

no placement restrictions of the mobile phone is required. Another limitation is that 
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although several daily activities are detected, other useful mobility activities, such as 

the use of different transportation modes, is not considered.  

Reddy et al. in [32] proposed the use of both accelerometer and GPS to recognise 

different mobility activities. Features are extracted from a series of acceleration 

magnitude readings, which represent the magnitude of a three axis acceleration 

vector. This work can effectively discriminate human powered mobility activities 

such as walking and cycling. However, it is unable to provide a more fine-grained 

recognition capability such as sub-differentiating motorised travel into taking a bus, 

taking a car or driving. And this method cannot detect both human posture and 

transportation mode simultaneously. Moreover, in order to guarantee the high 

accuracy, this work utilised a complex two stage classifier (Decision Tree + Discrete 

Hidden Markov Model), which is relative expensive computationally to be applied 

on mobile devices. 

Minnen et al. in [21] utilise three microphones, two accelerometers and a wearable 

computer to recognize different user activities. By mounting microphones on the 

chest, elbow and right hand respectively, and by comparing the sound intensity of 

these three microphones, this method can be used to automatically profile the 

captured journals of a person's life. Further, by attaching two 3D accelerometers on 

each wrist, the motion pattern of both hands can be captured. A comparison of the 

acceleration generated between the left hand and right hand is used to infer daily 

activities such as hammering and sawing. There are many limitations of this work. 

First, the activities that can be recognised by this system have to be sonant otherwise 

the use of the microphone is useless. Second, mobility activities related to the motion 

of legs and foot, such as walking, standing and cycling, are not considered. Similar 

work has also been done by Takuya in [50]. 

Weijun et al. in [23] used three accelerometers, three gyroscopes and five tri-axial 

force sensors to recognise user mobility activities. By mounting three pairs of 

accelerometers and gyroscopes on three fixed positions (foot, calf and thigh) in 

combination with a set of foot force sensors, the system achieved a very detailed 

ambulatory gait analysis capability. By dividing a normal gait cycle into four gait 

phases and four swing periods, it can provide useful information for multiple health-
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related applications. This work shows that by combining FF sensors with other types 

of sensor, they are extensible and can provide a more fine-grained mobility activity 

recognition capability. However, the scope of this work is narrow, i.e., only walking 

is considered. It excludes a wide range of mobility activity recognition such as 

transportation mode recognition. 

To summarise, current hybrid-sensor-based methods achieve a higher accuracy, 

compared with homogenous sensor based methods. However, they still tend to lack 

support for a wide range and for more fine-grained mobility recognition capability.  

3.4 Discussion 

Table 3.1 classifies mobility detection methods with respect to multiple dimensions: 

the number and types of sensors, sensor position, the types of mobility, the types of 

features extracted, the classifiers used, and the classification accuracy. The 6th 

dimension, the classification accuracy, is affected by the first five dimensions and 

these all vary across the related work.  

It is noted from Table 3.1 that the average accuracy for current user mobility 

recognition is comparatively low, at about 75%, i.e., only a little over two thirds of 

trips are recognised correctly. Moreover, this error maybe amplified for daily 

mobility profiling, i.e., with an overall accuracy of 75%, around 3 hours of data may 

be misclassified given that 10 hours of activities are logged typically per day. This 

offers a good opportunity to increase its accuracy. 
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Table 3.1: Classification of Related Work Concerning User Mobility Recognition 

Ref. 

Sensor No. 

& 

Type 

Sensor 

Placement 

Mobility 

Activity 
Features Extracted Classifiers 

Acc-

uracy 

[73] 
5, (2-axis) 

ACC 

Ankle, 

wrist, waist 

Still, walk, 

Cycle, Run 

Mean, energy, freq. domain 

entropy, correlation features, sum of 

the squared discrete FFT 

component, FFT DC component 

NB, Decision Table 

(DTa), Decision Tree 

(DTr), Instance-based 

Learning 

84% 

[76] ACC 

Chest, 

trousers, 

jacket 

Still, Walk, 

Run 

Raw 3-axis vector readings from the 

Accelerometer 

K-Nearest Neighbours 

(k-NN) 
60% 

[26] ACC Hip 
Still, Walk, 

Run, Stairs 
Mean, std. dev., Energy, Correlation 

DTa; DTr (C4.5), k-

NN, Support Vector 

Machines (SVM), 

naïve Bayes 

84% 

[89] 
ACC, GPS, 

Audio 

Trousers, 

hip, chest 

Still, Walk, 

Run 

Mean, std. dev., No. of 

accelerometer reading peaks; mean 

and std. dev. of DFT power of audio 

sensor readings 

DTr (J48) 78% 

[22] 32, FF  Under foot 
Walk, Run, 

Stairs 

6 force parameters, chronological 

incidence of occurrence, heel & toe 

vertical ground reaction. Sum of 

vertical ground reaction forces. 

Artificial Neural 

Network (ANN), 

Hidden Markov 

Model (HMM) 

93% 

[21] 

3, micro-

phones 

2, ACC 

Wrist, 

Waist, 

shoulder, 

chest 

Still, 

hammering, 

sanding 

No. of peaks, mean amplitude of 2 

ACCs, FFT coefficients 
HMM 67% 

[32] ACC & GPS 

Waist, 

chest, hand, 

 In-bag 

Still, Walk, 

Bike, 

Motorised 

filters, sum of FFT coefficients 

from magnitude of the 

accelerometer; average GPS speed 

Bayes Net, DTr (J48), 

SVM and HMM 
89% 

[29] ACC & GPS Right hip 

Walk, run, 

bike, skate, 

Motorised 

Mean, median & interquartile range 

for accelerometer, counts & steps 

and GPS mean speed 

Discriminant function 

analysis (SAS PROC 

DISCRIM) 

86% 

[27] ACC Free 

Still, Walk, 

Bike, Bus, 

Car 

Mean, std. dev., mean-crossing rate, 

third-quartile, sum & std. dev. of 

frequencies 0~4 HZ, ratio of 

frequency components (0~4 Hz) to 

all components, spectrum peak 

position. 

DTr (J48), k-NN, 

SVM 
62% 

[77] GPS Hand 

Still, walk, 

bike, car, 

bus 

Mean, Max., std. dev. of velocity, 

Length 

Bayes Net, DTr, 

Conditional Random 

Field, SVM 

76% 

[28] GPS Hand 
Still, Walk, 

Motorised 

Mean GPS speed, Temporal 

information (time of the day), 

Hierarchical 

Conditional Random 

Fields 

83% 

[90] 
GSM, 

Pedometer 
Waist 

Still, Walk, 

Motorised 

Mean, Max, Variance of Euclidean 

Distance; correlation coefficient, 

 No. of cell towers between 2 

measurements 

NB, SVM, AdaBoost 

and MultiBoost 
85% 
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From Table 3.1, it is discovered that there is no single method that can sub-classify 

stationary postures into sitting and standing. Although, the related work seems to 

perform well in differentiating between stationary and dynamic postures, the 

recognition of more fine-grained transportation modes, i.e., walking and cycling and 

fine-grained stationary postures, i.e., standing and sitting, still needs to be improved. 

The majority of the related work does not support sub-differentiating motorised 

transportation modes. However, for potential applications such as fine-grained user 

mobility profiling and individual environmental impact monitoring, the motorised 

transportation mode needs to be sub-classified into more specific types, i.e., car-

passenger, bus-passenger and car-driver. This is because these different sub types of 

motorised mode may have quite different characteristics in terms of user needs and 

hazard exposure level. i.e., generally speaking, travelling by bus is more eco-friendly 

than travelling by private car (assuming the car is not carrying more passengers than 

the bus and is not using a more eco-friendly type of fuel). 

Most of the surveyed systems have restrictions depending on how users should carry 

their (accompanied) mobile devices except [27]. [27] also recognises more activities 

and has more sub-classes of motorised transportation mode (bus passenger, car 

passenger) compared to other work, which better fits one of the aims in this thesis – a 

wider range of mobility activity recognition. In addition, [27] only used a single 

stage classifier which fits one of the aims in this thesis, a Lightweight Mobility Data 

Computation (see Section 4.1.1). Though [32] which uses both GPS and 

accelerometer achieved the best accuracy, it utilised a two stage classification 

method, i.e., DTr + DHMM. Clearly, the accuracy of mobility activity recognition 

maybe higher if one utilises multistage classifications or more complex classification 

models. However, for the purpose of assessing the value add of the new sensor 

combination of FF+GPS compared with the use of accelerometer-based methods for 

daily mobility activity recognition, the accelerometer-based, single-stage classifier, 

method used in [27] is chosen as a baseline to evaluate the method in terms of 

recognising user mobility activities. For the reason that the new proposed method 

(see Chapter 4) also uses GPS as a assistive sensor to measure speed, [27] is also 

extended to form a ACC+GPS based method by adding the GPS as a assistive 
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sensor. The recognition results from this reproduced ACC+GPS method will also be 

used to validate the FF+GPS method. The other existing ACC+GPS based methods, 

such as [29, 32], are not considered because they all employed advanced 

classification models, e.g., two stage classification model (DTr + DHMM) were used 

in [32]. In addition, in using the same GPS speed related features in both the 

ACC+GPS method and the FF+GPS method, a fairer comparison between using FF 

and ACC for mobility activity recognition, can be achieved.  

3.5 Summary 

Related work, which uses different sensor types and configurations, has been 

reviewed, analysed, and discussed in this chapter. Three main limitations of the 

current methods for user mobility detection have been identified: a narrow range of 

recognition, coarse user mobility recognition capability, and a low recognition 

accuracy. A typical ACC-based method has been selected as the baseline method for 

evaluation.   

The next chapter will focus on designing and implementing a new sensor-based 

method to address the above limitations in order to provide improved user mobility 

detection. 
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4 Core FF+GPS based Method for Mobility Activity 
Recognition 

The purpose of this chapter is to assess the value-add of the FF + GPS method for 

mobility activity recognition compared with the use of both ACC and ACC+GPS 

based methods. In this chapter, the range of the user mobility concerns both human 

postures and transportation modes, which includes standing, sitting, walking, 

cycling, bus-passenger, car-passenger, and car-driver. 

4.1 Method Design 

4.1.1 Design Considerations 

Before describing the design of the new mobility activity recognition method, the 

design requirements in order to develop a (smart phone enabled) daily activity 

recognition system are discussed. Based on the analysis of the surveyed work, the 

following requirements are proposed for the daily mobility activity recognition 

system. 

 Wider Range and Fine-Grained Mobility Detection Capability: In order to better 

understand user contexts for interacting with services in daily life, richer 

mobility activity recognition is needed in terms of both a fine-grained 

recognition capability and the ability to recognise both human postures and 

transportation modes, possibly simultaneously. A fine-grained recognition 

capability is required, because people in different mobility contexts may have 

different requirements. Consider the following scenario: when detecting that a 

user is driving a car, a mobile phone may automatically divert a call in order to 

ensure the user’s safety on the road, while this is not necessary if the user is a 

passenger in a car. Hence, the traditional “travel-by-car” mode needs to be sub-

differentiated into driver or passenger. It is also found that given the same 

transportation mode, different human postures may lead to different user 

requirements for service adaptation. For example, when detecting that a user is 

standing, or walking to a seat, rather than sitting in a fast moving bus, map views 

and controls may be adjusted to highlight travel information more than normal, 
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e.g., to display larger labels and controls. In order to better serve this purpose, 

the system should be able to recognise both human posture and transportation 

mode simultaneously and also be able to sub-classify motorised transportation 

mode into bus-passenger, car-passenger and car-driver.  

 Local Sensor Data Analysis: Sensor data analysis can be performed either 

remotely or locally. The mode of local sensor data analysis is preferred for the 

following reasons: First, the data is not shared with remote services and can be 

kept private. Second, it does not require an on demand data connection to a 

remote server that can be subject to intermittent interference and a subsequent 

lack of service access. Third, local data analysis can also lead to better near real-

time data classification and mobility service adaptation (providing the 

computation is light enough to be performed on mobile devices). Finally, it also 

avoids the need for an on-demand data connection that tends to drain the battery 

that may not be rechargeable when moving. 

 Lightweight Mobility Data Computation: Current mobile devices, whilst 

increasing in computing power and functionality, still have a limited processing 

capability compared to laptops, servers and embedded systems (with specialised 

hardware such as digital signal processors). In addition, mobile devices cannot 

dedicate the majority of their computing resources to auxiliary applications 

given its primary roles are for interaction and communication. Based upon 

opportunistic, changing, local mobility activities, continuous computation is 

needed, without exceeding the local computational resources [81]. Hence, 

lightweight mobility data computation is highly desirable. 

 Sensor Error Tolerance: A system should be able to tolerate sensor errors 

arising in a typical daily living environment, e.g., occasional GPS data 

inaccuracy and interruption. Moreover, it will be more computationally efficient 

if a system can tolerate these occasional sensor errors, rather than continuously 

requiring additional data pre-prossessing for sensor error filtering. 

 High Mobility Classification Accuracy: According to the survey (summarised in 

Table 3.1), the average accuracy of current mobility activity recognition methods 
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is approximately 75%. This accuracy statistically means one in every four 

samples will be misclassified on average. This offers a good opportunity to 

increase its accuracy. In order to satisfy the potential applications (mentioned in 

the introduction), the accuracy of the mobility activity recognition method needs 

to be improved at a higher level [91].  

 No On-Body Placement Restrictions for Accompanied Mobile Devices: People 

tend to carry their mobile phone in variable places and orientations. For some 

sensor signals, e.g., from accelerometers, the signal depends heavily on the 

sensor body position and orientation, whereas other (accompanied) sensor 

signals, e.g., mobile phone GPS, are not dependent on sensor body position. A 

pervasive system should support such flexibility in terms of the position and 

orientation of the mobile phone [91].  

 Reduced Training to Classify Individuals: a generalized method can be used 

with new users without requiring much individual user training [92]. Most 

existing systems for mobility activity recognition did not employ a generalised 

method. In these cases, they require a training phase for new users in order to 

conduct individual-specific training to personalise the system so as to use it with 

a high degree of accuracy [93]. A mobility activity recognition system should 

require minimal individual-specific training. 

4.1.2 Rationale for Choosing FF+GPS 

Table 4.1 summarises the different properties of the different main stream sensors 

and different sensor combinations in user mobility detection. 
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Table 4.1 The Sensing Modalities Used and Properties in Supporting Mobility 

Activity Recognition 

Sensors Type Recognisable 

User Postures 

(UP) 

Recognisable 

Transportation 

Modes (TM) 

Recognise both UP 

and TM 

Simultaneously? 

Existing Work 

GPS N/A Human-Powered 

TM, Motorised  

TM 

No [28, 94, 95] 

Accelerometer 

(ACC) 

Stationary, 

Dynamic 

Walking, Cycling, 

Motorised TM 

No [26, 27, 76] 

Foot-force (FF) 

Sensors   

Stationary, 

Walking, 

Climbing stairs 

Walking, Cycling No [22, 83] 

ACC+GPS Stationary, 

Walking, Running 

Walking, Cycling, 

Motorised TM 

No [29, 92] 

FF+GPS Standing, Sitting, 

Walking, 

Running, Cycling.  

Walking, Cycling,  

Bus-Passenger, 

Car-Passenger, Car-

Driver.  

Yes None  

From Table 4.1, it is discovered that accelerometers can accurately recognise 

different mobility activities with obvious acceleration variations, such as between 

walking and stationary, but are less accurately in sub-differentiating motorised 

transportation modes. GPS can perform well in detecting different activities with 

different speed characteristics, such as between human powered and motorised 

transportation modes, but GPS is also too coarse to recognize user postures such as 

standing and sitting. With respect to transportation mode, the GPS speed alone is not 

capable of sub-differentiating motorised transportation mode, since in many cases, 

such as between car-passenger and car-driver, the speed contexts are quite similar. 

Based on these reasons, both accelerometers and GPS cannot provide fine-grained 

mobility activity recognition. It is also noted both accelerometers and GPS cannot 

recognise both human posture and transportation mode simultaneously. Using a 

scenario when a user is standing on a moving bus as an example, current GPS 

methods appear too coarse-grained to recognise this. The acceleration signal from 

both user motion and vehicle vibration may overlap and confuse the system [15]. 

This limits the recognition of both human posture and transportation mode 

simultaneously using accelerometers and/or GPS. 
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In summary, typical sensor based methods using accelerometers or/and GPS face 

some key limitations in recognising mobility activities. For accelerometer-based 

methods, the key limitations are: 

 Varying on-body placements: People normally tend to carry smart phones more 

freely (waist, front pocket, knee-high pocket, hand and so on) in their daily 

living environment, which greatly changes the nature of the motion signal [15]. 

For instance, different mobility activities may exhibit similar acceleration 

characteristics in certain areas of the body. 

 User variability: As the accelerometer-based method requires the sensor to be 

carried along with users, the sensed acceleration signal changes according to the 

natural body motion, which may vary from user to user. For example, typical 

nature body motions (such as bending, swaying and twitching) sometimes may 

exhibit dominant acceleration patterns and affect the recognition accuracy of the 

accelerometer-based method. 

 Overlapping sensor signal: Typical accelerometer-based methods can recognise 

human posture or transportation mode. However, accelerometer-based methods 

may not be able to recognise both human posture and transportation mode at the 

same time. This is because the acceleration signals from both user motion and 

vehicle vibration (during travelling) may overlap with each other [15]. This 

overlap affects the recognition accuracy for both human posture and 

transportation mode. 

For the single GPS-based method, the common limitations are: 

 Loss of signal: there is no GPS signal indoors, underground, under bridges or 

tunnels, between narrow buildings, or sometimes inside some moving vehicles 

when seated as a passenger. These signal-loss scenarios may affect the reliability 

of single GPS-based methods. 

 Coarse grained recognition: A single GPS-based method is not capable of 

providing fine-grained human posture recognition, i.e., GPS-based methods 
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cannot sub-differentiate stationary posture into standing and sitting. Moreover, 

GPS is also too coarse grained to differentiate user mobility activities with 

similar speeds, such as walking quickly, cycling or slow motorised travel [28].  

As a FF sensor measures the ground reaction force patterns during different 

activities, they can be used to detect both stationary postures (such as standing and 

sitting) and other foot-related mobility activities (such as walking and cycling).  

The foot force patterns with different human postures are showed below. 

 

Figure 4.1 Experimental Ground Reaction Force Patterns for the Standing Posture 

When a user is standing, the sum of the ground reaction force from a user’s both feet 

is directly related to the user’s weight. The user may sometimes lean either on his left 

foot or on his right foot. This generates different force patterns between each foot, 

i.e., sometimes the left foot force is higher than right foot force, and vice versa. 

Another feature that can be observed from Figure 4.1 is that as one foot force 

increases the other foot force decreases, this is because (when standing) the sum of 

ground reaction force from both feet should remain the same.  

Figure 4.2 shows an example of foot force patterns during a sitting posture. 



                                                                               52 

 

Figure 4.2 Experimental Ground Reaction Force Patterns for the Sitting Posture 

In the sitting posture, the majority of a user’s weight is supported by the chair, so 

both feet will generate less ground reaction force compared with it from the standing 

posture e.g. the sum of ground reaction force from both feet is about 600 N in Figure 

4.1, while it is about 140 N in Figure 4.2. Besides, in the sitting posture, one foot 

force may increase but this does not necessarily lead to the other foot force 

decreasing. This is another difference between a standing and sitting posture. 

Both the standing posture and the sitting posture are types of stationary postures, 

which have no obvious period waveforms in the ground reaction force patterns. 

Figure 4.3 shows an example of foot force patterns during walking. 
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Figure 4.3 Experimental Ground Reaction Force Patterns for Walking  

Compared to the standing posture, each user foot will support the whole user weight 

in turn when walking. The walking posture generates period waveforms with the 

peak values close to the user weight, and trough values close to zero. Compared with 

the standing posture, the walking posture generates waveforms with a higher 

standard deviation value. This is because though both standing and walking postures 

have a similar mean force value, the walking posture has far greater peaks and 

troughs.  

For the cycling posture, Figure 4.4 shows an example of foot force patterns during 

cycling. 

 

Figure 4.4 Experimental Ground Reaction Force Patterns for Cycling  
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To some extent, cycling is similar to the walking, e.g. each foot generates a similar 

force in turn. But there are clear differences between walking and cycling. First, 

cycling generates a smoother waveform compared with walking. Secondly, the 

amplitude force from both feet is much less than that from the walking. This is 

because the majority of the user weight is supported by the bike’s seat, only the foot 

force generated from pedalling is sensed.  

With regards of different transportation modes, the use of foot force sensors alone is 

not capable of sub-differentiating motorised modes into more fine-grained types (i.e., 

into car-passenger, car-driver, and bus-passenger). Hence, a hybrid method is 

proposed that combines a set of foot force sensors with mobile phone GPS. The 

rationale for combining these two types of sensors is because of the different (and in 

some cases complementary) variations in sensor data with different mobility 

activities. Different transportation modes with a similar GPS speed pattern tend to 

have different foot force patterns and vice versa (see Table 4.2).  

Table 4.2: Variations in Average Speed and Foot Force Patterns in Different 

Transportation Modes. 

  Walking Cycling Bus-

Passenger 

Car-

Passenger 

Driving 

GPS Speed (m/s) 1.3±0.2 2.5±1.2 7.2±3.9 11.3±5.3 10.8±4.8 

Left Foot Force 

(Percentage of one 

unit user weight) 

67%±51% 18%±11% 53%±5% 21%±3% 35%±12% 

Correlation 

Coefficient between 

left & right foot force 

-0.47±0.06 -0.33±0.2 0.34±0.42 0.01±0.31 0.15±0.27 

Left Foot Force 

Pattern (5 min 

duration) 

 

In summary, the combination of FF and GPS has shown a great potential of 

providing more fine-grained mobility activity recognition. For example, FF can be 

extended to sub-differentiate stationary postures into standing and sitting, which have 
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many applications for health monitoring. Foot force patterns are also different for 

different human powered mobility activities such as between cycling and walking. 

The FF+GPS combination can also be extended to differentiate different fine-grained 

motorised transportation modes. 

One of the novelties of the FF+GPS method is that it can also be extended to support 

the recognition of both human posture and transportation mode. For example, the 

aim is not only to recognise whether a person is taking a bus, but also to provide 

more information about whether that person is standing or sitting on a moving bus. 

This is because for the same kind of transportation mode, different human postures 

(during travelling) may require different kinds of service/information adaptation. 

Hence, the main aim of this chapter is to assess how well a combination of wearable 

foot force (FF) sensors and mobile phone GPS (FF+GPS) recognises different user 

daily mobility activities. 

4.1.3 System Overview 

To the best of my knowledge, the use of (mobile phone) GPS in combination with 

foot force sensors to improve mobility activity recognition in a pervasive setting has 

not been proposed or examined in detail to date. In order to provide richer mobility 

contexts in terms of recognising both user postures (during travelling) and 

transportation mode, in the FF+GPS method, the user posture will be inferred from 

the foot force sensor data, while the transportation mode will be inferred from data of 

both foot force sensors and GPS. This is because based on the analysis in section 

4.1.2, foot force sensors alone are hypothesised to be capable of recognising various 

human postures and human-powered activities at a fairly high accuracy, while the 

additional spatial context of GPS speed changes is only required for recognising fine-

grained transportation modes with similar foot force patterns. The scope includes two 

different human postures (sitting, standing) that are normally performed during daily 

travel and other daily transportation modes (walking, cycling, bus-passenger, car-

passenger and car-driver) that are most often used for commuting. Standing and 

sitting postures include both the scenario of standing or sitting stationary and the 

scenario of standing or sitting in a moving vehicle, e.g. in a bus. The walking posture 
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also includes both fast walking and jogging in some travelling scenarios, e.g., people 

may run to a bus-stop to catch a leaving bus.  

Therefore, the following system architecture is proposed to examine how well foot 

force sensors in combination with mobile phone GPS can recognise both user 

postures (including during travelling) and transportation modes compared with the 

baseline, ACC-based and ACC+GPS methods.  

 

Figure 4.5: Architecture of the Mobility Activity Recognition System  

In order to examine the usefulness of the FF+GPS sensor-based method, the mobility 

activity recognition system shown in Figure 4.5 is proposed. The FF+GPS mobility 

activity recognition system also collects the data from different sensors 

simultaneously. Sensors include FF sensors, mobile phone GPS and mobile phone 

accelerometer. For comparison purpose, in addition to the mobility activity 

recognition results from FF+GPS, the mobility activity recognition results from both 

an accelerometer-based method [27] and an ACC+GPS based method are also 

generated. With this system, a user only needs to perform any activities once to 

collect the data for three different methods. This eliminates the variability caused by 

different data samples, which may affect the comparison results. Hence the 

evaluation results are better able to evaluate the FF+GPS method through comparing 

it with both an accelerometer-based method, e.g., [27], and a ACC+GPS based 

method as baselines. 

There are three main data processing phases in the system: Raw Data Collection, 

Feature Extraction, and Machine Learning & Mobility Classification. In the raw data 

collection phase: The data from foot force sensors, GPS and accelerometer are 

collected simultaneously during different performed activities by the smart phone. 
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The data is saved in CSV (Comma Separated Value) format. A Google Android 

application has been designed and implemented to enable volunteers to acquire and 

clearly label the data for the performed mobility activity; the latter values are used as 

the ground truth.  

In the feature extraction phase, the raw data collected from the previous phase is 

extracted without any prepossessing. This means that all the sensor errors arising via 

daily living environment are presented to the feature extraction phase, which meets 

the “Sensor Error Tolerance” requirement defined in section 4.1.1. Three sets of 

sensor data features are computed: ACC, ACC+GPS and FF+GPS. The former two 

methods are used as a baseline for comparison. 

In the machine learning and mobility classification phase: the output from the feature 

extraction phase is converted as the input for the machine learning tool. The outputs 

from this phase form the results for both user posture recognition (Section 4.2.4.1) 

and transportation mode recognition (Section 4.2.4.2).  

4.1.4 Feature Extraction 

A uniform-duration (8 seconds window) sample (without overlap) as used in [27] is 

used by all three methods. For the collected sensor data, no noise filtering is carried 

out.  

For the ACC method, the following 11 features (as described in [27]) are extracted 

from magnitude series (acceleration magnitude of three axes) of the accelerometer 

data: mean, standard deviation, mean crossing rate, third quartile, sum and standard 

deviation of frequency components between 0~2 HZ, ratio of frequency components 

between 0~2 HZ to all frequency components, sum and standard deviation of 

frequency components between 2~4 HZ, ratio of frequency components between 2~4 

HZ for all frequency components and spectrum peak position.  

For the comparison with the use of the ACC+GPS method, the following 14 features 

are extracted from each window segmentation of data collected from both GPS speed 

and magnitude series of the accelerometer data: the mean, maximum and standard 
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deviation of the GPS speed; mean, standard deviation, mean crossing rate, third 

quartile, sum and standard deviation of frequency components between 0~2 HZ, ratio 

of frequency components between 0~2 HZ to all frequency components, sum and 

standard deviation of frequency components between 2~4 HZ, ratio of frequency 

components between 2~4 HZ to all frequency components and spectrum peak 

position. 

Then for the FF+GPS method, the following time-domain features are extracted from 

each window segmentation of data collected from both GPS and FF sensors: the 

mean value, max value and standard deviation of the GPS speed; overall mean value 

(equation 1), overall averaged standard deviation (equation 2) and max value of foot 

force readings from both the left insole and the right insole; cross-correlation 

coefficient between the left foot force and the right foot force (equation 3). 

For each window for the foot force data, “Lx” is used to denote the force values from 

the left foot and “Rx” to denote the force values from the right foot. The mark “X” 

represents the number of the sampled sensor value. For a data window with N 

samples (N is the window size), the following set of value pairs is generated (L1, R1), 

(L2, R2), … , (LN, RN). 

The overall mean value of force readings from both feet can determine whether or 

not the whole body weight is supported by the user (e.g., when sitting, a part of the 

user’s weight is supported by a chair or seat). The overall mean value “MA” of the 

ground reaction force from both insoles is generated is as follows: 

𝑀𝐴 = 𝐿 + 𝑅 =
 𝐿𝑖

𝑁
𝑖=1

𝑁
+

 𝑅𝑖
𝑁
𝑖=1

𝑁
        (1) 

 

In the equation above,  and  are the mean force values from both the left foot 

and right foot.  

The overall averaged standard deviation “SA” of the foot force (generated from both 

feet) is calculated using the following equation: 

𝑆𝐴 =
𝑆𝐿+𝑆𝑅

2
=

   𝐿𝑖−𝐿  2𝑁
𝑖=1 +   𝑅𝑖−𝑅  2𝑁

𝑖=1

2
  (2) 
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In this equation, and  are the standard deviations of the force readings from 

both left foot and right foot.  

Besides the two features mentioned above, another key feature is the cross-

correlation coefficient between left foot force and right foot force. This is used to 

monitor the regular pressure shift between both feet. The cross-correlation coefficient 

between the left foot force and the right foot force is useful in detecting periodical 

foot related activities that need both feet to generate a force in turn, such as cycling 

and walking. The cross-correlation coefficient between the left foot force and the 

right foot force is computed from the following equation: 

𝛾𝐿𝑅 =
 (𝐿𝑖−𝐿 )(𝑅𝑖−𝑅 )𝑁

𝑖=1

𝑆𝐿𝑆𝑅
=

 (𝐿𝑖−𝐿 )(𝑅𝑖−𝑅 )𝑁
𝑖=1

  (𝐿𝑖−𝐿 )2  (𝑅𝑖−𝑅 )2𝑁
𝑖=1

𝑁
𝑖=1

  (3) 

 

In the equation above,  is the correlation coefficient between the left foot and the 

right foot force patterns. The range of  is between −1 and 1. In a positive 

relationship as the left foot force increases, the right foot force tends to increase too. 

In this case, the value tends to be 1. In a negative relationship as the left foot force 

increases, the right foot force tends to decrease. In this case, the value tends to be −1. 

If the left foot force and right foot force are independent, then the coefficient will 

tend to be zero, e.g., this value tends to be zero, when a user is sitting. 

4.1.5 Machine Learning and Mobility Classification 

Three light-weight classifiers, Naive Bayes (NB), Decision Tree (DTr) J48 and 

Decision Table (DTa) as provided by the WEKA 2  (Waikato Environment for 

Knowledge Analysis) toolkit are used to compare the performance of these three 

different (ACC, ACC+GPS, FF+GPS) methods (see Figure 4.5) [45].  

                                                 

2 See http://www.cs.waikato.ac.nz/ml/weka/. 
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For the ACC method, all features computed from accelerometer readings (see 

Section 4.1.4) are fed into the above three classifiers to generate the results for both 

human posture and transportation mode recognition.   

For the ACC+GPS method, all features computed from both accelerometer and GPS 

readings (see Section 4.1.4) are fed into the above three classifiers to generate the 

results for transportation mode recognition.  

For the FF+GPS method, all features computed from foot force sensors readings (see 

Section 4.1.4) are fed into the above three classifiers to generate the results for 

human posture recognition, while all features computed from both foot force sensors 

and GPS readings (see Section 4.1.4) are fed into the above three classifiers to 

generate the results for transportation mode recognition.  

All experiment data collected from 10 volunteers are equally divided into 10 folds 

(see Section 2.2.4.1). A 10-fold cross validation mechanism is used for evaluation, 

which includes data from each subject in both the training and testing sets [71].  

4.2 Experiments and Results 

4.2.1 Experiment Objectives 

The following experimental hypotheses are introduced in order to illustrate the 

benefits of the use of FF+GPS sensors to profile user mobility activities, versus 

typical methods based upon either ACC only or on an ACC+GPS combination, 

1. FF sensor data clusters differently with respect to different human postures and 

human-powered mobility (standing, sitting, walking and cycling) compared to 

typical accelerometer sensor data (see Section 4.2.3). 

2. FF and GPS sensor data clusters differently with respect to different (human-

powered and motorised, e.g., walking, cycling, bus passenger, car passenger and 

car driver) transportation or mobility modes compared to typical accelerometer 

data (see Section 4.2.3). 
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3. The FF method for human posture and human-powered mobility recognition can 

outperform a typical ACC-based (ACC only) method for detecting these (see 

Section 4.2.4.1). 

4. The FF+GPS method for transportation mode recognition can outperform both 

an ACC-based method and an ACC+GPS based method for detecting these (see 

Section 4.2.4.2). 

5. The FF+GPS method requires less computational resources than the ACC-based 

and ACC+GPS based methods, in both the feature extraction and activity 

recognition phases (see Section 4.2.5). 

4.2.2 Raw Data Collection 

All study procedures were approved by the Research Ethics Committee at Queen 

Mary University of London (see Appendix A. QMUL Ethical Approval) and 

participants signed a written informed consent form (see Appendix B. Privacy Policy 

Agreement for Mobility Data Collection). Data collection took place over a 12-

months period from December 2011 to December 2012. Each of the human postures 

and transportation modes (sitting, standing, walking, cycling, bus passenger, car 

passenger and car driver) were performed by 10 volunteers (six male; four female) 

with an age range from 24 to 56. 

During the experiments there are two main phases: calibration phase, and operational 

phase. In the calibration phase, testers who wear the foot force sensing system need 

to adjust the sensor positions to be under the weight-bearing points of the foot. This 

is calibrated by ensuring that the combined sensors readings are around 75% of the a 

priori known user weight. If the combined sensor readings are below 75% and the 

sensors are still intact, one of more of them are repositioned based upon experience 

until the 75% threshold is exceeded. In the operational phase, a specialised android 

application has been developed to enable the testers to clearly label the data with the 

performing mobility activity. There are 3 sub-phases to the operational phase. First, 

the tester or the accompanied researcher enters the current time (from the phone 

clock) and the type of the mobility activity (that is about to be performed), e.g., 
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2012-06-12 14:15 Walk. Second, testers start collecting the data using an associated 

Mobile Phone app by clicking on the start button. Third, when the current activity 

ends, testers stop collecting the data by click on the stop button. Fourth, in the 

operational phase, sub-phases one to three can be repeated as often as required to 

form a more complete sequence of transport mode and posture shifts. 

All the mobility data collected from different participants are clearly labelled in this 

manner, which forms our raw datasets for further analysis and evaluation. All the 

mobility data collected from different participants are clearly labelled in this manner, 

which forms the raw sensor datasets for further analysis and evaluation. 

 

Figure 4.6: Experimental Equipment (1
st
 Prototype): insoles with 8 Flexiforce 

sensors instrumented (left), a Flexiforce hub and a Samsung galaxy II smart phone 

(right) 

During data collection, volunteers had the liberty of carrying the mobile phone 

device in any orientation and position that they desired, such as near the waist, in a 

knee-high pocket, in a back-pack, in the top jacket and by hand. The data collected 

totalled 12,104 samples, of which 2,198 samples are from standing, 2,032 samples 

are from sitting, 1,584 samples are from walking, 1,603 samples are from cycling, 

1,892 samples are from riding buses, 1,437 samples are from taking car/taxi and 

1,358 samples are from driving. 

During the data collection procedures, each participant carried a Samsung Galaxy II 

smart phone and wore a pair of special insoles. Each of the special insoles was 

instrumented with four Flexiforce sensors (eight sensors in total) as shown in Figure 
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4.6. Both insoles are instrumented with force sensors in order to monitor the ground 

reaction force shifting between left foot and right foot. The sum values of the four 

sensors readings form the force readings of one foot. It has been shown that four 

force sensors arranged under the supporting bones of the foot and mounted inside the 

shoe can obtain an accurate ground reaction force value [51]. Hence, four Flexiforce 

sensors have been mounted directly under the major weight-bearing points of each 

foot in order to cover the force reaction area of heel, forefoot, and toe for both feet as 

shown in Figure 4.6. The reason for choosing both heel and forefoot as the focused 

area is based on a previous work, which has proved the usefulness of measuring 

force reaction in these (two) underfoot placements [23, 51, 83]. The distribution of 

sensors is based on the distribution of ground reaction force of each foot during 

walking. The distribution of ground reaction force on in-shoe plantar pressure during 

walking is illustrated in Figure 4.7. For each foot, the force peaks are mainly 

generated from one point at the heel and three points at the forefoot.  

 

Figure 4.7: Distribution of Ground Reaction Force on In-shoe Plantar Pressure 

During Walking [96] 
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Figure 4.8: Participants with the First Prototype (that used a Phidget device, laptop 

and Smart Phone) During Mobility Data Collection 

In version 1 of the FF data acquisition system, all Flexiforce FF sensors are 

interfaced to a Phidget3 sensor hub which performs three functions Analogue to 

Digital Conversion of the FF sensor data, powering the FF sensors and interfacing to 

a data collection device (Figure 4.6). As the Phidget had only a USB interface and 

can’t connect directly to a mobile phone, it is connected to a laptop via long cables to 

a backpack containing the Phidget and laptop (Figure 4.8). The laptop uses WiFi to 

connect to a smart phone which collects the FF data. The FF data is collected on the 

smart phone because this also collects the data from the inbuilt GPS and ACC 

sensors for the baseline method comparison. Flexiforce sensor readings are set to 35 

Hz, and mobile phone embedded GPS is set to 1 Hz over the Android 2.3.3 OS 

platform. The smart phone embedded accelerometer (for comparison purpose) is set 

to 35 Hz according to the settings used in [27]. All raw sensor data from Flexiforce 

force sensors, mobile phone embedded accelerometer and mobile phone GPS were 

collected simultaneously during each experiment. 

                                                 

3 Phidget Website, http://www.phidgets.com/products.php?product_id=1018, 

http://www.phidgets.com/products.php?product_id=1018
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4.2.3 GPS, FF and ACC Sensor Data Clustering for Different Mobility 

Activities 

One of the main design considerations (see Sections 4.1.1) is to minimise the 

computational load used for mobility activity classification. Hence, time-domain 

features, which require less computational resources than frequency-domain features 

[45], are selected. Figure 4.9 to Figure 4.12 show the clusters of FF-based method 

and ACC-based method using only two basic time-domain features. Each different 

user mobility activity contains 30 different samples that were collected from 10 

different subjects in daily living environment. Figure 4.9 to Figure 4.12 illustrate that 

if time-domain features are chosen the FF+GPS method achieves better clustering 

than the typical ACC, and ACC+GPS methods. Figure 4.9 to Figure 4.12 are actually 

the preliminary results that lead to the main experiment results (see section 4.2.4).  

 

Figure 4.9: Clustering Results of 120 Samples from Four Human Postures using 

Accelerometer 
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Figure 4.10: Clustering Results of 120 Samples from four Human Postures using 

Foot Force Sensors 

Figure 4.9 and Figure 4.10 illustrate the clustering results of different human 

postures using different methods. Samples from different postures are marked in 

different colours. Samples from cycling are in black, sitting are in red, standing are in 

green and walking are in pink. Figure 4.9 shows the clustering result of using an 

accelerometer. For each sample, the mean (X-axis) and the standard deviation (Y-

axis) of the accelerometer readings are calculated according to 4.1.4. Figure 4.10 

shows the clustering of measurements of different human postures in a similar 

manner to Figure 4.9, but using foot force sensors instead of accelerometer 

measurements. 

In Figure 4.9, it is noted that samples corresponding to sitting and standing are quite 

close to each other, with the lowest standard deviation values. This is because both 

postures exhibit quite similar acceleration patterns, which makes them hard to be 

differentiated using an accelerometer. Samples from both cycling and walking have a 

larger standard deviation compared to stationary postures. Figure 4.9 also shows a 

large overlap between walking samples and cycling samples. This is because the 

mean and standard deviation values of the acceleration patterns from both walking 

and cycling activities sometimes are quite similar. 
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In contrast to accelerometer results, it is noted that mean values of FF measurements 

for sitting and standing are quite distinct (Figure 4.10). This is because the full user 

weight is sensed when standing, while only part of user weight is sensed when a user 

is sitting. Samples from both cycling and walking also differ. This is because both 

standard deviation and mean values of foot force readings from the walking samples 

are higher than those from the cycling samples (see section 4.1.2). 

Figure 4.11 and Figure 4.12 show the clustering results of different transportation 

modes using different methods. Samples from cycling are in black, bus-passengers 

are in red, car-passengers are in blue, car-drivers are in green and walking are in 

pink. Figure 4.11 shows the clustering results using accelerometer in terms of the 

mean value (X-axis) and standard deviation (Y-axis). It is noted that except for 

walking, the measurement of the other transportation modes are similar. The reasons 

for this similarity are as follows. First, for some transportation modes such as car-

passenger and car-driver, the human movements, in some cases, are quite similar. 

Second, in many cases, the standard deviation values of acceleration from different 

transportation modes are dependent on multiple variables e.g., vehicle types, how the 

phone is being carried, and the road conditions. 
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Figure 4.11: Clustering Results of 120 Samples from Five Transportation Modes 

using Accelerometer 

 

Figure 4.12: Clustering results of 120 Samples from Five Transportation Modes 

using the Combination of Foot Force Sensors and GPS 
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Figure 4.12 illustrates the clustering results of different transportation modes using 

foot force sensors and mobile phone GPS. For each sample, the average GPS speed 

(X-axis) and overall standard deviation of ground reaction force (Y-axis) of both feet 

(sensed during performing different transportation modes) have been calculated. This 

means for each sample corresponds to one point in the two dimensional diagrams as 

presented in Figure 4.11 and Figure 4.12. From the Figure 4.12, samples from 

walking, exhibit the highest foot force variance and the lowest average GPS speed, 

which are distinct from samples from other transportation modes. This is because 

walking generates the most vigorous ground reaction force compared with other 

transportation modes. It is also found that samples from cycling, another human 

powered transportation mode, have the second lowest average speed. With regard to 

different motorised transportation modes, bus-passengers have the lowest average 

GPS speed. This is because buses need to travel slower for safety consideration and 

stop regularly at bus stops. Although, samples from car-passengers and car-drivers 

have a very similar GPS speed, they are distinct in terms of variance of ground 

reaction force. This is because drivers need to step on both brake pedal and 

acceleration pedal frequently to control the car. 

4.2.4 User Mobility Activity Recognition 

For each kind of mobility activity, the true positive, true negative, false positive, and 

false negative are defined as follows (The walking activity is selected as an example 

to illustrate the point): A true positive occurs when a sample from a particular kind of 

mobility activity is classified as the same kind of mobility activity. For example, a 

sample from walking is classified as walking. This is a true positive for the walking 

activity. A true negative occurs when a sample from one other kind of mobility 

activity is classified as of not of this particular kind of mobility activity. For 

example, a sample from cycling is classified as not walking and is a true negative for 

the walking activity. A false positive occurs when a sample from other kinds of 

mobility activity is classified as this particular kind of mobility activity. For example, 

a sample from cycling is classified as walking is a false positive for the walking 

activity. A false negative occurs when a sample from a particular kind of mobility 
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activity is classified as other kinds of mobility activity. For example, a sample from 

walking is classified as cycling and is a false negative for the walking activity.  

Hence, the overall accuracy from three selected classifiers is presented. The detailed 

precision and recall results of each classifier are also given. Accuracy tells us how 

well a method is able to identify positives and negatives correctly. Accuracy is 

defined as the sum of true positives and true negatives over the total number of 

classifications. Precision tells us how well a method is able to discriminate between 

true and false positives. Precision is calculated as the number of true positives over 

the total number of true positives and false positives. Recall tells us how well a 

method is able to recognize one particular mobility activity given all samples from 

this kind of mobility activity. Recall is calculated as the number of true positives 

over the sum of true positives and false negatives. 

4.2.4.1 User Posture and Human Powered Mobility Recognition using FF 

Sensors 

The experimental results for user posture recognition using accelerometer versus 

using foot force sensors (only) are presented in Figure 4.13. From Figure 4.13, it is 

noted that the proposed FF method obtains a higher recognition accuracy than the 

ACC-based method, which was reproduced according to [27]. Among all three 

selected classifiers, the FF method achieves an accuracy of around 95% on average, 

which is 28% higher than the accelerometer method (around 67% on average). In 

addition, the use of a decision tree (J48) classifier obtains the highest recognition 

accuracy for all three methods. The precision and recall for each human posture of 

each classifier are presented from Figure 4.14 to Figure 4.16. 
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.  

Figure 4.13: Human Posture and Mobility Recognition Results using Different 

Classifiers 

 

Figure 4.14: Human Posture and Mobility Recognition Results using Decision Tree: 

(a) precision; (b) recall 
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Figure 4.15: Human Posture and Mobility Recognition Results using Naive Bayes: 

(a) precision; (b) recall. 

 

Figure 4.16: Human Posture and Mobility Recognition Results using Decision Table: 

(a) precision; (b) recall 

Regarding the precision and recall results, it is noted that the FF method outperforms 

the accelerometer based method in all aspects, especially in recognising cycling and 

in sub-differentiating the stationary postures into standing and sitting.   

It is also noted that both methods perform equally well in detecting walking. This is a 

reasonable result, since there are three obvious stances in a normal human walking 

motion: heel strike, mid-stance and toe-off [20, 97]. The accelerometer can detect the 

quite different acceleration patterns generated from these three stances, which are 

quite different compared with other human postures. Hence, the accelerometer-based 

method can detect walking posture at a high accuracy. The FF method can also detect 

foot force pattern variations generated from normal walking motion, the patterns of 

which are also unique in terms of both mean and variance.  

From Figure 4.14 to Figure 4.16, it is discovered that the FF method can detect 

cycling at a higher accuracy (around 95%) compared with the accelerometer-based 

method (around 67%). This is because cycling also apparently differs from other 

types of human-powered mobility in terms of its foot force pattern. As people tend to 

power a bike by pedalling regularly when cycling, the foot force patterns generated 

are also distinct from other human postures (as shown in Figure 4.4). While the 
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accelerometer-based method, in some cases the acceleration patterns are mainly 

affected by the road conditions, rather than the posture itself. Based on this reason, in 

case of cycling over smooth roads, samples are quite similar with those from the 

stationary postures. On the other hand, for the case of cycling over rough roads, some 

samples are even similar to those from the walking posture. This variability 

introduces more false negatives.  

For the case of recognising fine-grained human postures, it is remarked that the  

accelerometer-based method is unable to sub-differentiate stationary postures into 

sitting and standing. Both precision and recall for both sitting and standing postures 

are quite low, at a level of 55% (Figure 4.15). This is because the acceleration 

patterns from both postures are quite similar, even visually identical. Though the 

accelerometer-based method can differentiate between stationary and dynamic 

human postures, it is not capable of sub-differentiating stationary posture (into 

standing and sitting) at a high accuracy.  

However, the FF method in this case achieved an overall 95% accuracy on average in 

differentiating between sitting and standing postures. This is mainly because the 

amplitude of foot force patterns from both sitting and standing tend to be very 

different. In a standing posture, the whole user weight is fully supported by both feet, 

thus is sensed by the foot force sensors; while in a sitting postures, only part of user 

weight is supported by both feet. So for the case of standing, the amplitude of force 

sensed by the sensors from both feet is obviously higher than that of the sitting 

posture and unlike the accelerometer, FF sensors can be used to recognise them. 

4.2.4.2 (Human-powered and Motorised) Transportation Mode Recognition 

using FF+GPS 

The experimental results for transportation mode recognition using different methods 

(ACC, ACC+GPS and FF+GPS) are presented in Figure 4.17. From Figure 4.17, it is 

noted that the FF+GPS method obtains the highest recognition accuracy (95% on 

average). The second highest accuracy (68% on average) is achieved by the 

ACC+GPS method, which is higher than the accelerometer-based method [27] (61% 
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on average). In addition, the use of a decision tree (J48) classifier obtains the highest 

recognition accuracy for all three methods. 

 

Figure 4.17: (Human-Powered and Motorised) Transportation Mode Recognition 

using Different Classifiers 

The precision and recall for each transportation mode of each classifier is presented 

from Figure 4.18 to Figure 4.20. With respects to the precision and recall results, it 

must be remarked that the FF+GPS method outperforms the other two typical 

methods (accelerometer-based method and ACC+GPS based method) in all aspects, 

especially in recognising cycling and in sub-differentiating the motorised 

transportation mode into car-passenger, bus-passenger and car-driver.  

It is also noticed that all three methods perform equally well in detecting walking. 

There are three stances in a normal human walking motion: heel strike, mid-stance 

and toe-off [97]. The accelerometer can detect the acceleration generated from these 

three stances, which are quite different compared with other transportation modes in 

terms of variance. GPS can detect the travel speed in real time (as shown in Table 

4.2). The FF+GPS method can also detect foot force patterns generated from normal 

walking motion, the variations of which are quite unique in terms of mean and 

variance.  

From Figure 4.18 to Figure 4.20, it is discovered that the accelerometer based 

method achieved the lowest accuracy in detecting cycling. This is because in some 
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cases, the acceleration patterns that are mainly affected by the road conditions are 

similar with those instances from motorised transportation mode. This introduces a 

lot of errors from false negatives. With respect to the ACC+GPS based method, it is 

noticed that the accuracy for detecting cycling, increased but the improvement is 

little compared with the FF+GPS method. This is because there are still many 

motorised samples that exhibit similar characteristics in both acceleration and GPS 

speed with cycling. These are unable to be differentiated using the ACC+GPS 

method. It is also noted that the FF method can detect cycling at a very high accuracy 

(around 95%) compared with the two other methods (around 65%). This is because 

cycling differs from other transportation modes in terms of both foot force patterns 

and mean GPS speed. As shown in Figure 4.4, as people need to power the bike by 

pedalling regularly when cycling, the foot force patterns generated are also distinct 

from other transportation modes. As Table 4.2 shows, the average speed from 

cycling samples is also different with other motorised modes.  

For the case of sub-classification of motorised transportation mode, it is noted that 

the instances from one motorised mode are easily misclassified as those of another 

motorised mode (or even cycling) using either a typical accelerometer-based method 

or a ACC+GPS based method. Motorised modes were sometimes mistaken as 

cycling since sometimes a bike exhibits a similar speed and acceleration to a slower 

moving vehicle. Moreover, samples from car-driver and car-passenger are identical 

in terms of the GPS speed patterns. In addition, the acceleration patterns from these 

samples are also not distinct enough to be differentiated at a high accuracy. In some 

cases, the acceleration is also affected by the vibration of the vehicle propulsion and 

that caused by road conditions. This makes motorised modes sensed by 

accelerometers hard to be differentiated using the typical classifiers. 

The FF+GPS method in this case achieved a higher accuracy on average. This is 

mainly because foot force patterns in different sub-motorised modes tend to be 

different. As in the driving cases, people need to step on both the acceleration and 

breaking pedal regularly in order to control the car. In the bus cases, people may 

stand and walk around inside the bus, which would almost never happen for a car 

passenger. Moreover, sometimes the GPS speed patterns from bus is also different 

with GPS speed patterns from private-car. For example, in some cases buses tend to 
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stop more regularly at bus stops and to move slower than private cars, including 

taxis, for safety consideration.  

With respect to results obtained from the FF+GPS method, it is noted that some 

instances of driving have been mistaken as being a bus-passenger. This is because in 

some cases, users have spontaneous foot movements when seated in a bus. The foot 

force patterns generated from these spontaneous foot movement sometimes are 

similar to the foot force patterns from when drivers step on pedals to control 

vehicles. Some instances of driving have also been mistaken as being a car-

passenger. These errors normally occur during slow speeds or after stopping for a 

period of time. In these cases, foot force patterns tend to be similar, since drivers 

tend to be stationary and were not operating the pedals.  

 

Figure 4.18: (Human-Powered and Motorised) Transportation Mode Recognition 

Results using Decision Tree: (a) precision; (b) recall 
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Figure 4.19: (Human-Powered and Motorised) Transportation Mode Recognition 

Results using Naive Bayes: (a) precision; (b) recall 

 

Figure 4.20: (Human-Powered and Motorised) Transportation Mode Recognition 

Results using Decision Table: (a) precision; (b) recall 

To conclude, the results above show that the FF+GPS method is capable of 

recognising both human posture and transportation mode at the same time. The 

FF+GPS method achieved the overall recognition accuracy at a level of 90%, and is 

able to detect cycling and sub-classify motorised transportation mode at a fairly high 

accuracy. The FF+GPS method also achieved a more fine-grained mobility activity 

recognition capability, in terms of sub-differentiating stationary postures into 

standing and sitting and sub-differentiating motorised transportation mode into bus-

passenger, car-passenger and car-driver. Hence, these results also show that the 

FF+GPS system meet both “Wider and Fine-Grained Range Mobility Recognition 
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Capability” and “High Mobility Classification Accuracy” requirements as depicted in 

Section 4.1.1.  

Moreover, during the data collection, as all participants had the liberty of carrying 

the mobile phone device in any orientation and position desired, hence the “No On-

Body Placement Restrictions for Accompanied Mobile Devices” requirement (as 

depicted in Section 4.1.1) has been met. Besides, as there is no data prepossessing, 

which means all sensor data errors were present in the training data for the chosen 

classifiers, the “Sensor Error Tolerance” requirement (as depicted in Section 4.1.1) 

has been met.  

4.2.5 Computational Complexity 

As depicted in Section 4.1.1, the computational-load is an important concern for 

mobile phone sensing applications, because the smart phone has limited resources 

and supports a range of tasks including higher priority communication. Most of the 

surveyed work is based upon an analysis of frequency domain features, which are 

more computationally expensive to perform on the mobile device, compared with 

time-domain features [81].  

The computational complexity of mobility activity recognition systems mainly 

resides in two main aspects: feature computation phase and mobility activity 

classification phase. In the feature computation aspects, the FF+GPS method tends to 

consume less computational resources as only several basic time-domain features 

(included mean, standard deviation and max) are required. In contrast, the typical 

accelerometer-based methods normally derive many frequency-domain features 

(frequency components between 0~2 HZ, spectrum peak position, etc.). Since all raw 

data collection is in the time-domain and because the frequency domain features 

require Fourier Transforms, these impose higher computational loads on mobile 

devices (than basic time-domain features) [45]. 
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Table 4.3: Number of Tree Leaves, Tree Size (number of nodes) and Number of 

Rules for Classifiers. 

Sensors Decision Table 

No. of Rules 

Decision Tree 

Size No. of Leaves 

ACC 774 1,377 689 

ACC+GPS 1,669 1,901 951 

FF+GPS 123 47 24 

With respect to the mobility activity classification, the computational load for a 

classifier depends on the complexity of the trained model [45]. As Table 4.3 shows, 

given the same set of training samples, the classifiers trained by FF+GPS method 

have a reduced complexity compared with the same classifiers trained by both the 

accelerometer-based method and the ACC+GPS based method. With regard to the 

decision table classifier, The FF+GPS method requires fewer rules than those 

required by the ACC and ACC+GPS methods (see Table 4.3). 

In addition to the fewer number of (decision table) rules, the size of decision tree 

classifier trained by the FF+GPS method is also much smaller than that trained by 

the other two methods. For example, the size and No. of leaves trained by the 

FF+GPS method are 47 and 24, while size of No. of leaves trained by the 

accelerometer are 1,377 and 689, by ACC+GPS are 1,901 and 951. To conclude, 

compared with both an ACC only method and an ACC+GPS based method, the 

FF+GPS method saves computation in both feature computation phase and the 

mobility activity classification phase. Hence, the “Lightweight Mobility Data 

Computation” requirement as depicted in section 4.1.1 have also been met. 

4.2.6 Use of Normalisation to Compensate for Mobility Variations 

between Users 

4.2.6.1 User Mobility Variability Analysis 

Variability is an important issue in user activity recognition, since different people 

tend to have different personal profiles i.e., different user weight. These differences 



                                                                               80 

between people make foot force patterns different even when performing the same 

kind of activity. 

Accelerometer methods can depend on personal training. For example people tend to 

have different habits of how to carry a mobile phone. Moreover, the acceleration 

signal is easily affected by the normal body motions, which varies differently from 

person to person. 

The proposed method which uses a set of FF sensors and mobile phone GPS has the 

same problem of variability, especially for human posture recognition. This is 

because the value of foot force sensed during different activities highly depends on 

the user weight. For example: men normally generate higher ground reaction force 

than women when standing because on average. This is because, within the dataset 

used in this thesis, men normally are heavier than women. 

4.2.6.2 Normalisation 

In this thesis, foot force normalisation is used to eliminate the discrepancy in terms 

of user weight. All user foot force values are normalised by taking the overall user 

weight sensed when standing as one unit (e.g., a 250N foot force reading is 

normalised as value of 0.5 given the overall user weight sensed when standing is 500 

N). After normalisation, it is also found that users with different weights tend to have 

similar foot force patterns for the same type of activity. 

With respect to the “Reduced Training to Classify Individuals” requirement (Section 

4.1.1) another factor that affects the usability and feasibility of the mobility activity 

recognition system is whether or not the system would work for new users without 

much individual user-specific training. To assess this, two distinct experiments are 

performed: firstly, a 10-fold cross validation, where the classifier is trained with all 

users; secondly, a leave-one-user-out validation (see Section 2.2.4.2), where 

classifiers are trained with all but one user (nine out of ten) and tested with the one 

not in the training set. The results for the 10-fold cross validation have already been 

presented and analysed in Section 4.2.4. 
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Table 4.4: Decision Tree leave-one-user-out overall accuracy results 

User 1 94.6% User 6 94.1% 

User 2 87.9% User 7 98.4% 

User 3 93.1% User 8 93.7% 

User 4 96.1% User 9 90.3% 

User 5 95.3% User 10 94.5% 

  Average  93.8% 

Table 4.4 shows the results from the leave-one-user-out validation test on the 

FF+GPS method. When training and testing are done on an individual user basis, the 

overall accuracy decreases by 1.4% compared to a generalised classifier that is 

trained and tested on all users. Thus, creating user specific classifiers decreases the 

accuracy, although the loss in accuracy is minimal when compared with generalised 

classifiers.  

With the leave-one-user-out validation, the FF+GPS method achieved an average 

accuracy of 93.8% and a minimum accuracy of 87.9% is obtained as Table 4.4 

shows. Based on the results, one can conclude that certain users might be unique and 

hence a training set is necessary that has a broad range of how activities could be 

performed. Different users may perform mobility activities differently, i.e., different 

people have different walking, cycling, and driving styles. Some people may tend to 

use the forefoot more compared with others who use their heal more. This does not 

affect the user mobility accuracy because the overall ground reaction force from each 

foot is sensed, i.e., the user variation differences are marginal compared with the 

difference in features used for detecting walking. However, some differences from 

other (non-walking) activities may affect a specific user. For the users that had the 

worst performance in terms of accuracy (user 2 and user 9), the decrease in 

performance mainly came in the cycling, bus-passenger and car-driver for which 

individuals often have different styles both in terms of foot force patterns and GPS 
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speed variations. For example, a user may cycle intensively, which generates quite 

different patterns (for both GPS speed and FF) compared with others who cycle more 

moderately. People also have different habits when taking a bus, e.g., some people 

like to be seated, some people prefer standing, or leaning against inside a bus. These 

differences mean FF patterns may vary when detecting the bus-passenger mode. 

Driving styles also differ from user to user, e.g., some users tend to use the pedals 

more intensively to drive than other users. Although, different driving styles do 

affect the accuracy in detecting a specific user, the accuracy is still relatively high, at 

a level of 85%. It is also observed that the accuracy for a new user can be increased 

with a broader range of training data that includes samples of these variations. 

The results from both experiments indicate that it is possible to achieve good 

performance without requiring users to provide specific training data as long as the 

training set contains enough variation in terms of different mobility activities. As 

Table 4.4 shows, even with 10 individuals, the minimum accuracy level was still 

above 85%.  

4.3 Discussion 

In this new FF+GPS method for mobility activity recognition, the GPS sensor is only 

used to measure the velocity. It can be replaced or combined with other transceiver 

type position determination sensors, e.g., GSM, WiFi, for speed detection. The 

reasons why transceiver type positions sensors are chosen for speed detection rather 

than inertial sensors, e.g. tri-axial accelerometer, are as follows. First, speed 

detection involves temporal aggregation of acceleration readings in a mobile phone 

and this is not accurate, especially under daily use circumstances. This is mainly 

because there is no fixed placement of how users carry their mobile phones. These 

frequent changes of the phone’s position and orientation may introduce large errors. 

In addition, the error in using temporal acceleration aggregation for speed detection 

propagates dramatically as the distance increases. Secondly, tri-axial accelerometer 

based speed detection is not able to provide other valuable information, e.g., user 

spatial contexts, during daily activities. Some combination of the user spatial 

contexts and other GIS information can be used to further improve the mobility 

detection in future work. For example, through knowing that a user is travelling by 
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bus, and by matching user location sequences with a specific bus routes, one can 

infer that a user is travelling on a specific bus. 

In order to be used in potential applications (Chapter 1) in daily life, in practice, the 

FF+GPS method has to be built as a commercial product. Here are some initial 

thoughts. Existing single shoe pedometer type footwear designs, e.g., Nike+iPod, 

could be advanced or modified to use FF sensors on both feet. Existing research 

prototypes have already used multiple FF sensors integrated into an insole, e.g., 16 

sensors have been integrated in an insole [22]. In contrast, the proposed FF+GPS 

method, which uses only four sensors per insole, is much cheaper in order to be 

commercialised. The source of power for the integrated FF sensors is a major issue. 

However, new material technologies, piezoelectric material may be used as a power 

generator to generate electricity during foot movement, such that in the near future, 

FF sensors can be powered by the insole during the impact of the foot while walking.  

4.4 Summary  

In this chapter, the potential benefits of using a set of foot force sensors in 

combination with mobile phone GPS to improve mobility activity recognition have 

been examined here. Two normal stationary human postures (sitting and standing) 

and the use of five daily transportation modes, including walking, cycling, bus 

passenger, car passenger and car driver, have been performed by ten different users. 

Postures and transportation modes have been profiled and evaluated, by comparing 

the FF+GPS method with both an ACC method [27] and an extended ACC+GPS 

method of this.  

Given the sample size of this pilot and based on the classification algorithms 

employed, the new FF+GPS method has improved the user mobility activity 

recognition accuracy from 65% to 90%, on average. The FF+GPS method achieves a 

wider range recognition capability which is capable of recognising both human 

posture and transportation mode simultaneously. This can contribute towards better 

mobility context profiling for smarter adapted services, e.g., to highlight information 

more for a decreased locus of focus when users are not seated in a moving bus. 
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Another key contribution of this work is to provide more fine-grained mobility 

activity recognition capability in terms of both sub-differentiating stationary postures 

(into sitting and standing) and sub-differentiating motorised modes, i.e., into bus 

passenger, car passenger and car driver with an accuracy of 92.8% on average. In 

addition, the FF+GPS method also has other advantages in terms of requiring less 

computational resources and requiring less individual training. 

However, in a practical system, one must consider the efficiency of the system e.g., 

energy efficiency and production cost. GPS could be switched from active mode to 

inactive mode depending on the values of the FF sensors. It is discovered that all 

human-powered activities can be determined by using FF (only) with a relatively 

high accuracy (98% for walking and 95% for cycling, see Section 4.2.4.1). It is 

hypothesised that, when detecting these human powered activities, the GPS could be 

switched off to save energy, without significantly affecting the accuracy and then be 

switched on again when activity transitions are detected. In addition, a total number 

of 8 foot force sensors are used in the current FF+GPS method. However, the 

effectiveness of different FF sensor configurations (e.g., different number of sensors, 

different sensor positions) is not yet evaluated. Hence, it is also desirable to further 

examine and optimise different FF sensors configurations in user mobility detection. 

At last, the foot force sensors are powered by portable notebooks in the current 

FF+GPS prototype equipment. Foot force sensors can be powered by a portable 

battery (e.g., portable battery box). In which case, the sensor data will be transmitted 

to, and be stored at, the smart phone via a BAN (e.g., Bluetooth). Improved 

prototype equipment for the FF+GPS method is also desirable to make it more 

usable.  

These issues are addressed in the next chapter. 
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5 An Improved FF+GPS-based Method for User Mobility 
Recognition 

The purpose of this chapter is to consider the energy, computation, and cost 

efficiency of the proposed FF+GPS method. The efficiency of the system is 

improved by reducing the number of features (used for classification), the number of 

foot force sensors, and the use of GPS. The motivation for the reduced sensor, energy 

and computation cost is in the future to perform the data analysis on the mobile 

phone data hub device rather than remotely via exchanging the sensor over a WAN 

link to remote data analysis services. The main benefit of the local device processing 

it is avoids the time delay (and energy cost) required for the remote data exchange 

and processing, enabling more near real-time service adaptation to occur, e.g., to 

notify a user that his or her target for walking or cycling for that journey has been 

reached. 

5.1 Method Design 

The FF+GPS method introduced in Chapter 4 uses four foot force sensors per foot (8 

sensors in total). However, even within the same sensor type, there are different 

detailed sensor configurations in how to use foot force sensors, e.g. different foot 

force monitoring plan (both-feet-monitoring [51, 83] or single-foot-monitoring [22, 

23]), different numbers of sensors for each foot (ranging from one [25] to sixteen 

[22]), and different sensor placements on the foot (heel, middle, forefoot, or toe). 

Methods that use fewer sensors have potential benefits, such as system simplicity and 

a lower capital cost. However, methods that use more sensors are expected to be 

superior in terms of a better accuracy. How to find the trade-off between the numbers 

of FF sensors used in the FF+GPS method and its performance, and how to balance 

between the complexity and the accuracy of this FF+GPS method are the main 

research challenges investigated in this chapter.  

To the best of my knowledge, no other work has examined the above research 

challenges for FF sensors. Thus, this chapter aims to solve these research challenges 

and to find an improved way of using FF sensors and mobile phone GPS for mobility 

activity recognition. The experiment is that by identifying the maximally informative 
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features, the use of FF sensors and GPS can be optimised which can still produce the 

same level of recognition effectiveness, hence optimising the deployment of FF 

sensors with respect to simplicity of sensor configuration and with respect to 

computational and energy efficiency is desirable. 

5.1.1 System Overview 

In order to examine the above hypothesis, the following system is proposed to 

answer the following research questions: Is monitoring both feet better than 

monitoring just one? Where are the most effective insole positions to monitor foot 

force patterns? Which features are the maximal informative ones in differentiating 

mobility activities? How can one reduce the use of GPS to improve the energy-

efficiency of the whole system?  

 

Figure 5.1: Architecture of the FF+GPS System with Different Sensor 

Configurations for Mobility Activity Recognition 

In the data collection phase of Figure 5.1, data is acquired from both a set of foot 

force sensors and mobile phone GPS. In total, 8 foot force sensors from both feet are 

used (as the sensor pool) for foot force monitoring, and the corresponding insole 

positions of these sensors are clearly labelled as Figure 5.2 shows. The data from 

foot force sensors and mobile phone GPS are collected simultaneously to form the 

raw data set, which means all the results generated at the classification phase all 
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originate from the same raw data set. This scheme can minimize the effect of 

variability from different instances of samples during data collection. 

5.1.2 Feature Extraction 

Table 5.1: Feature Numbers and Corresponding Features 

Number Feature Number Feature 

1 GPS Mean Speed 17 P4 Max Force 

2 GPS Max Speed 18 P4 STD Force 

3 GPS STD Speed 19 P5 Mean Force 

4 P0 Mean Force 20 P5 Max Force 

5 P0 Max Force 21 P5 STD Force 

6 P0 STD Force 22 P6 Mean Force 

7 P1 Mean Force 23 P6 Max Force 

8 P1 Max Force 24 P6 STD Force 

9 P1 STD Force 25 P7 Mean Force 

10 P2 Mean Force 26 P7 Max Force 

11 P2 Max Force 27 P7 STD Force 

12 P2 STD Force 28 Cor-Coe of P0 & P4 

13 P3 Mean Force 29 Cor-Coe of P1 & P5 

14 P3 Max Force 30 Cor-Coe of P2 & P6 

15 P3 STD Force 31 Cor-Coe of P3 & P7 

16 P4 Mean Force   

In the feature extraction phase of Figure 5.1, a uniform-duration (8 seconds window) 

segmentation (without overlap) as used in Chapter 4 is applied to all methods. It has 

been shown that the time domain features are more computational light than 

frequency domain features [38, 45]. This chapter still focuses on using the following 

time domain features: mean, max, and standard deviation. Hence, the following 31 

features (as shown in Table 5.1) form the features pool of this chapter: mean, max, 

and standard deviation of GPS speed, mean, max, and standard deviation of force 

readings from positions P0, P1, P2, P3, P4, P5, P6, P7 (see Figure 5.2). The 

correlation coefficient between counterpart sensors from both feet are represented as: 

γ(P0, P4); γ(P1, P5); γ(P2, P6); γ(P3, P7) (see equation 3 in section 4.1.4). In the 
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same order, numbers from 1 to 31 are used in the following paragraph to denote 

these features as shown in Table 5.1. 

The usefulness of these features for mobility activity recognition has been proven in 

Chapter 4. The mean and max value of foot force readings can be used to determine 

whether whole body weight is supported by the feet during different activities, e.g., 

between walking and car-passenger. The standard deviation value of foot force 

readings can be used to specify whether or not an activity involved dynamic foot 

force variations e.g. cycling. The mean and max value of GPS speed can be used to 

differentiate between human powered activities and motorised activities. The 

standard deviation of GPS speed can be used to determine whether the motorized 

activity involved frequent speed variations e.g., to differentiate between car and bus. 

The correlation coefficient between left foot force and right foot force can be used to 

determine whether or not the activity involved regular force shifting between left 

foot and right foot e.g., to differentiate between cycle-pedalling and motorised 

vehicle drive-pedalling. 

As Figure 5.1 shows, different sensor configurations have been employed which 

included FF (left), FF (right), FF (both), and FF (both) +GPS.  

The comparisons between FF(left), FF(right), and FF(both) configurations are used 

to prove the usefulness of the correlation coefficient between left foot and right foot 

force in detecting human powered activities (more details in section 5.2.3).  

The combined FF (from both feet) sensors plus GPS configuration is used to identify 

the maximally informative features and the corresponding best insole positions in 

detecting the required mobility activities (more details in section 5.2.4 and 5.2.5). 
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Table 5.2: Different Sensor Configurations and Corresponding Feature Set 

Sensor Configurations Features used (in number according to Table 5.1) 

FF(both) + GPS 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,

25,26,27,28,29,30,31 

FF(both) 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29,30,31 

FF(Right) 16,17,18,19,20,21,22,23,24,25,26,27 

FF(Left) 4,5,6,7,8,9,10,11,12,13,14,15 

Table 5.2 shows the different features extracted for different sensor configurations, 

which generate the corresponding classification results that are used for the following 

comparison and evaluation purpose. 

5.1.3 Machine Learning and Mobility Classification 

In the classification phase of Figure 5.1, the decision tree classifier which proved to 

be an effective classifier in mobility activity recognition (in Chapter 4) was used to 

generate the final classification results. All experiments data collected (from 10 

volunteers) were equally divided into 10 folds so that a 10-fold cross validation 

mechanism is used for validation [71].  

5.2 Experiments and Results 

5.2.1 Experiment Objectives 

The following experiment hypotheses are proposed in order to examine the 

feasibility of improving the efficiency of the proposed FF+GPS method: 
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1. Without using GPS, the FF (both feet) configuration will be able to detect 

human powered mobility activities (e.g., walking, cycling) at a relative good 

accuracy. 

2. The GPS speed context is still required to detect motorised mobility e.g., bus-

passenger, car-passenger, and car-driver.  

3. The less-informative features of foot force patterns can be pruned without 

much significant reduction in accuracy. 

4. The less-effective insole positions can be pruned without much significant 

reduction in accuracy.  

5.2.2 Raw Data Collection 

This is the same as described in section 4.2.2 including how the raw data was 

manually labelled with the transport mode or posture. All study procedures were 

approved by the Research Ethics Committee at Queen Mary, University of London 

(see Appendix A. QMUL Ethical Approval), and all participants signed a written 

informed consent form (see Appendix B. Privacy Policy Agreement for Mobility 

Data Collection). Data collection took place over an 8-month period from Oct, 2012 

to June, 2013. Five transportation modes (walking, cycling, bus passenger, car 

passenger, and car driver) were performed by 10 volunteers (6 male; 4 female) with 

ages ranging from 24 to 56.   

During data collection, volunteers had the liberty of carrying the mobile phone 

device in any orientation and position that was desired. The data collected totalled 

7536 samples in total, of which 1643 samples are from walking, 1521 samples are 

from cycling, 1597 samples are from riding buses, 1403 samples are from taking 

car/taxi, 1372 samples are from driving. 
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Figure 5.2: Experiment Equipment (2
nd

 Prototype): (a) Two insoles with 8 Flexiforce 

sensors instrumented; (b) the 2
nd

 version wearable FF+GPS prototype; (c) The foot 

force sensing system and a Samsung galaxy II smart phone. 

During the data collection procedures, each participant carried a Samsung Galaxy II 

smart phone, and wore a pair of special insoles. The special insoles were 

instrumented by eight Flexiforce sensors. It is proved that four force sensors arranged 

under the supporting bones of the foot and mounted inside the shoe can obtain 

accurate ground reaction force value [51]. Hence, four Flexiforce sensors have been 

mounted directly under the major weight-bearing points of each foot in order to 

cover the force reaction area of heel, forefoot, and toe for both feet as shown in 

(Figure 5.2a). All Flexiforce sensors are interfaced to the smart phone via Bluetooth 

connection from two designed foot force sensing systems (as shown in Figure 5.2 b).  

The foot force sensing system (Figure 5.2c) is implemented with four adaptors (as 

marked in 1), one Arduino Nano Board (as marked in 2), one Bluetooth module (as 
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marked in 3), and one 9v battery box (as marked in 4). The sensor data hub in 

version 2 is improved over that of version 1 (Section 4.2.2). Rather than use the 

Phidget device interface via USB to a laptop to interface to the FF sensors, an 

Arduino Nano Board performs the ADC for the FF sensors, powers them and uses a 

Bluetooth module rather than USB to upload the data to the mobile phone. Instead of 

participants having to wear a backpack, participants wear instead a far lighter band of 

electronics around the lower leg. The sensor data is sampled in the same way as in 

Chapter 4. Flexiforce sensor readings are set to 35 Hz, and mobile phone embedded 

GPS is set to 1 Hz over the Android 2.3.3 OS platform according to settings used in 

Chapter 4. 

5.2.3 Mobility Activity Recognition Using Different FF Sensors 

Configurations (without GPS)  

 

Figure 5.3: Precision and Recall Results from using Foot Force Sensors Alone 

From Figure 5.3, it is noticed that all three settings (FF-Left, FF-Right, and FF-Both) 

perform equally well in detecting walking. This is because there are three stances in a 

normal human walking motion: which are heel strike, mid-stance, and toe-off [97]. 

The foot force patterns from either left or right are quite unique in terms of both 

mean and standard deviation [24]. It is also illustrated in Figure 5.3 that sensing both 

feet can achieve a better accuracy in detecting cycling rather than sensing either one 

of them. This is because by knowing the correlation coefficient between left and 
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right feet, noise arising from body motion, e.g., leg rocking, can be ruled out. It is 

also found that by using the correlation coefficient between left foot and right foot, 

cycle-pedalling can be differentiated from other foot movement e.g., motorised 

vehicle drive-stepping.  

However, the use of FF sensors alone cannot detect fine-grained motorised mobility 

activities at a high accuracy. This is because on many occasions, the foot force 

patterns from motorised modes are quite similar, e.g., seated bus passengers have 

quite similar foot force patterns with car passengers. It is also noticed that sensing the 

FF in only one foot may mislead the system into inferring false user postures during 

travel, which in turn affect the accuracy in differentiating mobility activities. For 

example, a standing bus passenger may lean the majority of weight on his (or her) 

left leg, which makes his right FF patterns similar to that of a car passenger. Also a 

car passenger sitting with one leg over another leg may also be misclassified as a 

standing bus passenger or even a car driver if only the weight-bearing foot force is 

sensed. The majority of these misclassifications can be resolved by sensing both feet 

plus the GPS-speed-sensing. Hence, it is proposed that the following hybrid GPS 

use-plan, presented in Figure 5.4, is used to improve the use of GPS for the FF+GPS 

method. 

Detecting 
Activity

Walking?

Cycling?

Deactivate 
GPS, and 

only use FF 
for activity 
detection

Activate 
GPS, and 

use FF+GPS 
for activity 
detection N

Y

N

Y
 

Figure 5.4: Hybrid Use-plan of GPS for the FF+GPS Mobility Activity Recognition 

Method 

As Figure 5.4 shows, the GPS is only activated when detecting motorised mobility 

activities. For the majority foot related activities such as walking and cycling, only 
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FF sensors are used. The merit of using this hybrid GPS use-plan is to reduce the use 

of GPS, but without affecting the overall accuracy much. The final results of 

employing this new GPS use-plan are presented in section 5.2.6. 

5.2.4 Best Feature Selection 

Table 5.3: Classification Feature Ranking and Selection 

Selection 

Algorithms 

Features Rank in Number (from left to right is the order from 1
st
 to 

31
st
) 

InfoGain 
02,12,10,24,21,30,20,01,03,09,22,29,31,11,23,08,05,15,18,19,17,06,04,28,

16,26,25,27,14,13,07 

ChiSquare 
12,02,30,21,10,24,22,03,01,29,20,31,09,16,06,19,17,26,13,27,14,18,25,11,

23,08,04,05,15,07,28 

It has been shown that sensing both-feet is better than single-foot sensing for 

detecting walking and cycling (Section 5.2.3). GPS speed is also needed to help 

better differentiate different motorised mobility activities. However, it is 

hypothesised that, given the range of the feature set and insole positions, maybe there 

are less informative features and less useful insole positions when detecting mobility 

activities, which can then be pruned to improve (simplify) the FF+GPS method. 

Hence, the following two commonly used feature selection algorithms: ChiSquare 

[98] and information gain [98], have been employed to identify the best feature set. 
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Figure 5.5: Overall Mobility Activity Recognition Accuracy as a Function of the 

Number of Top Rank Features 

From the results as shown in Figure 5.5, it can be seen that the increment of accuracy 

tapers off at around top 13 features (in Figure 5.5) for both feature selection 

algorithms. If more features beyond the top 13 are picked, the performance only 

improves slightly with the accuracy only improving, less than1% for all 31 features. 

From  

Table 5.3, It is also noticed that though the order of 13 top rank features is not the 

same, the set of 13 top rank features (as marked in grey) is the same for both Chi 

Square [98] and Information Gain [98]. This gives an indication that the pool of these 

13 top rank features contains the maximally informative features. 
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5.2.5 Best insole positions selection 

Table 5.4: The Percentage of Features from the Top 13 that Originated from the 

Different Sensors 

Sensor Related Top 13 Features No. of Features 

GPS 1, 2, 3 3 

FF Sensor P0 None 0 

FF Sensor P1 9,29 2 

FF Sensor P2 10, 12, 30 3 

FF Sensor P3 31 1 

FF Sensor P4 None 0 

FF Sensor P5 20, 21, 29 3 

FF Sensor P6 22, 24, 30 3 

FF Sensor P7 31 1 

The practical advantage of best insole positions selection is that the equipment cost 

can be reduced significantly, without drastically affecting the performance. The best 

insole positions selection is based upon the best features selection, as the insole 

positions that provide the maximally informative features need to be retained. 

Table 5.4 shows that within the range of 13 top rank features identified in section 

5.2.4, no feature is selected from insole positions P0 and P4. This is because little 

force is generated on both toes during the required mobility activities, so P0 and P4 

are pruned. In addition, the insole positions P3 and P7 only contribute to one feature 

(No. 31), which is the correlation coefficient between P3 and P7. Moreover, it is also 

discovered that the overall accuracy only decreased 1% by removing this feature 
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(31). This is because the information provided by this feature is also covered by other 

similar features such as feature 30, which is the correlation coefficient between P2 

and P6. Hence, feature 31 is also removed from the selective feature set. The 

corresponding insole positions (P3 and P7) are also pruned.  

Finally, the following 12 top ranking features are selected as the optimum feature set: 

1 (GPS mean speed), 2 (GPS max speed), 3 (std. dev. of GPS speed), 9 (std. dev. of 

P1 force), 10 (P2 mean force), 12 (std. dev. of P2 force), 20 (P5 max force), 21 (std. 

dev. of P5 force), 22 (P6 mean force), 24 (std. dev. of P6 force), 29 (correlation 

coefficient between P1 and P5), and 30 (correlation coefficient between P2 and P6). 

Correspondingly, the following insole positions are selected as the optimum insole 

positions: P1, P2, P5, and P6 

5.2.6 The improved FF+GPS method 

 

Figure 5.6: Precision (left) and Recall (right) Accuracy of using the Improved 

FF+GPS Method 

According to the results from sections 5.2.3, 5.2.4, and 5.2.5, the following improved 

FF+GPS method is proposed that only employed the 12 best features (out of 31), 4 

best insole positions (out of 8), and the new hybrid GPS use-plan. Figure 5.6 shows 

the results of using the improved FF+GPS method (white bars) for detecting the 5 

predefined mobility activities. Compared with the original FF+GPS method (black 

bars), the precision and recall accuracy of using the new improved FF+GPS method 
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dropped slightly. For the decision tree classifier, only a 2% reduction in overall 

accuracy is noticed when using the improved FF+GPS method. This indicates that 

the improved FF+GPS method, although has slight lower accuracy, can still detect 

the required mobility activities at a decent level of accuracy. 

5.3 Discussion 

It is shown that the number of features used in the FF+GPS method can be reduced 

to 12 to still achieve a decent level of accuracy. Following this, the best insole 

positions with respect to the selected features are also identified. In addition, the total 

number of foot force sensors used in the FF+GPS method is also reduced from 8 to 

4.  

Table 5.5: Best Insole Positions and Overall Accuracy for Different Number of FF 

Sensors Used 

Number of FF 

Sensors per foot 

Best insole Positions Overall Accuracy 

1 (2 in total) P2 and P6 75% 

2 (4 in total) P1, P2, P5, and P6 91% 

3 (6 in total) P1, P2,P3, P5, P6, and P7 93% 

As Table 5.5 shows, given the configuration of using only one sensor per foot, the 

overall accuracy of FF+GPS method is relatively low at level of 75%. This is mainly 

because of the lack of sensing in the fore part of the foot. Though the best positions 

(in this particular configuration), P2 and P6 in heal can detect walking at a high 

accuracy and can give a hint of whether a user is sitting in a car or standing on a bus, 

heal sensing still cannot sense the force variations of pedalling e.g., during cycling or 

driving. Given the configuration of using only two sensors per foot, the overall 

accuracy has been increased to 91%. This is because by adding two forefoot sensors 

P1 and P5, most of the foot force variations during different mobility activities can 

be sensed and contribute to classification. However, the configuration of using three 
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sensors per foot only leads to a 2% gain in accuracy. This is because the information 

gained by adding the insole sensor positions P3 and P7 do not appear to contribute 

much in differentiating various mobility activities. 

It is also discovered that the correlation coefficient (between the left foot and right 

foot) feature and the both-feet-sensing shown to be effective in detecting walking 

and cycling. The potential correlation between other features is also of interest. The 

foot force variation of the driver relates to speed variations when driving the car, e.g., 

step on the accelerate pedal to speed up, while step on the brake pedal to slow down. 

It is hypothesised that by finding a proper correlation function between foot force 

and car speed, the accuracy of detecting the most challenging mobility activity – car 

driver can be highly improved. However, there are many challenges from different 

circumstances that need to be considered and resolved. More specific experiments 

and data analysis of car-driving will be included in a future study.  

With regard to energy efficiency, the improved FF+GPS method reduces the use of 

GPS and reduces the number of required foot force sensors to 4 - 50% more efficient 

than the original FF+GPS method (which uses 8 foot force sensors). However, a 

detailed energy consumption analysis of the current hybrid GPS use-plan and 4 

sensors based foot force monitoring sensors is not included in this work. Exploring 

the energy efficiency of the improved FF+GPS method is left for future work. 

5.4 Summary 

An improved (more energy-efficient and computation-cost efficient) FF+GPS 

method for mobility detection has been designed and evaluated. This improved 

FF+GPS method reduced the number of sensors, the number of features extracted 

from the sensor data and classified and reduced the use of GPS. A 2% accuracy loss 

has been identified as the impact of these energy and cost reduction, compared to the 

original FF+GPS. 
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6 Conclusion and Further Work  

6.1 Conclusion and Contribution 

This thesis investigated user mobility activity recognition, which is an important 

research topic in ubiquitous computing, iHCI, and artificial intelligence. In this 

thesis, the following problems are studied: how to support a more comprehensive 

mobility detection range, how to support a more fine-grained mobility activity 

recognition capability, and how to improve the efficiency of the proposed FF+GPS 

method. For each problem, related work was investigated, challenges were discussed 

and solutions to solve these specific problems were also given and evaluated. 

First, after the investigation of various existing sensor-based mobility activity 

recognition methods, a new FF+GPS based method has been proposed, and 

implemented. The potential benefits of using a set foot force sensors in combination 

with mobile phone GPS to improve mobility activity recognition have been 

examined for the first time. Two normal stationary human postures (sitting and 

standing) and five daily transportation modes, including walking, cycling, bus 

passenger, car passenger and car driver, have been included. The FF+GPS method is 

evaluated by comparing this with both an accelerometer-based method as in [27] and 

a ACC+GPS based method as an extension of this. Given the sample size of this pilot 

and based on the classification algorithms employed, the new FF+GPS method has 

improved the user mobility activity recognition accuracy from a level of 70% to a 

level of 90%, on average. The FF+GPS method achieves a wider range recognition 

capability, which is capable of recognising both human posture and transportation 

mode. Another key contribution of this work is to provide a more fine-grained 

mobility activity recognition capability in terms of both sub-differentiating stationary 

postures (into sitting and standing) and sub-differentiating motorised modes, i.e., into 

bus passenger, car passenger and car driver with an accuracy of 92.8% on average. In 

addition, the FF+GPS method also has other advantages in terms of requiring less 

computational resources and requiring less individual training. 

Following this, an improved FF+GPS method to detect mobility activities was 

further researched and developed. The coefficient correlation between the left foot 
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force and right foot force has been shown to be able to detect walking and cycling 

reliably using only FF sensors. Hence, a new hybrid GPS use-plan has been proposed 

to improve the FF+GPS method, which can reduce the use of GPS for mobility 

activity detection. In addition, 12 (out of 31) max informative features and 

corresponding to the 4 (out of 8) most effective insole positions (two per foot), have 

also been identified. When a decision tree classifier employed, only a 2% reduction 

in overall accuracy is noticed when using the improved FF+GPS method, compared 

with the original FF+GPS method. The improved FF+GPS method that uses the 12 

best features, 4 best insole positions, and the new energy-efficient GPS use-plan, can 

still achieve a fairly high accuracy in detecting the following mobility activities: 

walking, cycling, bus-passenger, car-passenger, and car driver.  

6.2 Further Work 

The future work directions are outlined as follows. 

1. More participants for experiments: According to the survey, the average 

number of participants for experiments in other mobility detection work is 

around 10. Although a total number of 20 participants have been included in the 

data set of this thesis, more people from various background are still desirable 

in the experiments to form a more representative sample of a more general 

population. 

2. Optimum sampling frequency and window segmentation: It is shown in this 

work that different user mobility activities, such as between walking and 

driving, normally produce different low level mobility characteristics, such as 

speed, acceleration, ground reaction force. These low level mobility 

characteristics can be captured from different sensors using specified sampling 

and windowing schemes. However, such sampling and windowing schemes are 

hard to be configured in practice. The sampling frequency and window 

segmentation determine how granular the raw sensor data is captured. A higher 

frequency and larger window size can lead to better detection accuracy, but this 

may also consume more energy and more computational resources. Hence, a 

trade-off needs to be considered. The optimum sampling frequency and window 
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segmentation for mobility activity detection are of particular interest for further 

work.  

3. Additional feature characteristics: Both time-domain and frequency-domain 

features are considered in this work. However, other feature analysis techniques 

e.g., Wavelet analysis, could also be potential useful in detecting more fine-

grained mobility activities. Further research regarding additional feature 

analysis schemes and other types of features could be of interest. 

4. Integrated use of a GIS: The recognition accuracy for car-passenger, bus-

passenger, and tube-passenger can be further improved by combining the use of 

FF+GPS sensors with the use of a local GIS e.g., the TFL (Transport for 

London) GIS in London. As the FF+GPS method can determine the transition 

points during daily travelling, the accuracy for mobility activity recognition 

could be further improved in combination with publicly available transportation 

information such as bus or tube stops coordinates. For example, the transition 

point between walking and taking a bus should be near a bus stop, so the 

distance between this transition point and the nearest bus stop could be very 

useful in differentiating bus-passenger and (private) car-passenger. Further 

research considering the local GIS information may improve the accuracy in 

classifying user mobility. 

5. Combining FF+GPS with ACC: It is noted that FF+GPS is not capable of 

detecting the mobility activity of being a passenger in an underground train 

journey, where the GPS signal is not available. However, this limitation could 

be resolved by combining the FF+GPS with ACC-based method. The 

accelerometer could be used to detect the type of tube-passenger by sensing the 

vibration of the moving tube. The implementation and evaluation of a combined 

FF+GPS with ACC method is further work.  

6. Combining FF+GPS with a 2
nd

 stage classification scheme: It is shown that by 

applying a 2
nd

 stage classification algorithm after the typical classifier (e.g., 

Decision Tree), the mobility detection accuracy could be further improved [99]. 

This is achieved by smoothing out the random miss-classified samples by 
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applying an additional post-processing scheme (which is known as a 2
nd

 stage 

classification). A further examination and evaluation of the improvements after 

applying different 2
nd

 stage classifications schemes (e.g., DTr + PoCoA in [99], 

DTr + DHMM in [32]) are also of particular interest in future work. 

7. Walking rehabilitation usage: One important application of the FF+GPS 

mobility activity detection method proposed in this work is for health-related 

applications. By using additional, situated, foot force sensors, this work can be 

extended to enable more fine-grained gait analysis research for use in the field 

of rehabilitation e.g., to help a patient’s rehab when recovering from foot or leg 

injuries.  
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Appendix B. Privacy Policy Agreement for Mobility Data 
Collection 

1. Information Collection 
    Collection of this mobility data will include the following data: 

1.1 Unidentifiable information (such as gender, age range, etc.) of testing individuals. 

1.2 Foot force data during user mobility activities (standing, sitting, walking, cycling, etc.). 

1.3 Phone built-in sensors (accelerometer, GPS, etc.) data during user normal activities. 

1.4 Positioning data (include coordinates and speed) during user daily travel. 

2. Your Data and how it is used 
Primarily, we collect and store data about you to research into how machines can learn to 

recognize different user postures and travel modes automatically.  The following are how 

we may use your data: 

2.1 Data patterns (in the time or frequency domain) will be plotted for analysis. 

2.2 Basic signal processing techniques will be applied to find the useful signal indices for 

recognition. 

2.3 Some pattern recognition algorithms will be applied to evaluate the accuracy. 

2.4 The anonymized data (e.g. statistical of all testing subjects) will be presented in 

research documents for comparison and illustration usage. 

3. Storage of Your Data 
Data collected from you will be stored on secure devices of the School of Electronic 

Engineering and Computer Science, which is located inside the Queen Mary College 

University of London.  

4. Information Sharing 
4.1 Your data will only be shared among our research group members, who will be only 

granted the right to access the anonymized database once they agreed to abide to protect 

the anonymity and privacy of the participants under all conditions. (Note: Information is 

shared only when applicable) 

4.2 No compromises will be made in terms of risking the data flowing to the hands of non-

authorized instances, e.g. Non-QMUL researchers 

5. Accessing Information 
We provide you with the right to access the information that we collect about you. Please 

note any demand for access may be subject to take 2 days, which covers our time in 

providing you with the data requested. The contact information below needs to be used to 

request access the data we collect and store on you.  

6. Opt-Out Right 
We also provide you with the right to withdraw the data we collect about you. Please note 

any demand for withdraw data will be conducted under your supervision. The contact 

information below needs to be used to request withdraw the data we collect and store on 

you. 

7. Contacting Us 
We welcome any queries, requests, or comments you may have regarding this Privacy 

Policy for Mobility Data Collection. Please do not hesitate and feel free to contact us at:  

stefan@eecs.qmul.ac.uk; zelun.zhang@eecs.qmul.ac.uk; thomas.oshin@eecs.qmul.ac.uk; 

zhenchen.wang@eecs.qmul.ac.uk; siamakt@eecs.qmul.ac.uk; ran.tao@eecs.qmul.ac.uk 

(Note: All the policies stated above are made pursuant to the ‘Regulation Concerning Information 

Technology’ from Queen Mary College, University of London) 

 

Volunteer Information:   

Gender:   Male ⎕;   Female⎕; 
Age Range: 16 – 25 ⎕; 26 – 35 ⎕; 36 – 45 ⎕; 46 – 55 ⎕; 
Occupation:     Students⎕;    Employee⎕;    Others⎕; 
 

Please sign your name below to indicate your agreement of the policy stated 

above. 

 

Signature:    Date:  
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