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Abstract  
 

Two fundamental principles dominate the signal processing of 

the auditory system: selectivity and adaptation. The response of 

the auditory system is selective for various acoustic features and 

the representation of these acoustic features adapts over time. 

This thesis is concerned with the characterisation of selectivity 

and adaptation in the human auditory system. Initially, selectivity 

for modulation rate and adaptation to intensity are characterised 

in a central auditory model. Next, selectivity for temporalmodula- 

tion rate and selective adaptation to both intensity and temporal 

modulation rate are characterised in psychophysical data. 
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Chapter 1: General Introduction  
 

Recent developments in auditory neuroscience have challenged the idea 

that the auditory brain is a static processor of sound and have shifted the 

spotlight away from the ear to the brain. In particular, two signal processing 

strategies have captured the imagination of auditory neuroscientists: 

selectivity and adaptation. Selectivity may be defined as enhanced neural 

response to a given acoustic feature (e.g., frequency). Adaptation may be 

defined as a change in neural representation for a given acoustic feature 

that occurs over time. This chapter gives an introduction to the literature on 

auditory selectivity and adaptation and relates the two through an overview 

of the role they play in the general signal processing of the auditorysystem. 

In this context, we develop the motivation and rationale for the work 

presented in this thesis and we outline the main research questions and 

objectives. 
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1.1. Background  
 

1.1.1. Feature based representation 
 

In the periphery, sound pressure variations at the ear drum are mechanically transmitted as vibrations 

through the middle ear to the cochlea (Pickles, 2008). However, between the cochlea and the central 

nervous system the representation of sound is transmitted by auditory neurons in the form of electrical 

discharges knownas spikes (Dayan and Abbot, 2001). As theneural representation ofsound ascends the 

auditory pathway it is first decomposed by frequency in the cochlea and then further decomposed by 

periodicity between the midbrain and cortex. This decomposition yields a feature-based representation 

andrepresents asystematic transformationof thevariousacoustic featuresofthesoundintoatopographic 

neural map, where the location of agiven neuron encodes the feature(s) for which thecell selects. Thisis 

known as a ‘place code’. 

 
 

1.1.2. Selectivity 
 

Selectivityof auditoryneuronsforsoundfrequencyis instigatedinthecochlea(Pickles, 2008). Thebasilar 

membrane is lined with inner hair cells which shear in response to local resonance on the basilar 

membrane and so act as place-selective transducers. The inner hair cells are innervated by afferent 

(ascending) auditory nerve fibers, whose neurons fire in proportion to the degree of shearing. Mass- 

stiffness variation along the length of the basilar membrane cause it to act as an array of resonant filters 

which decompose the frequency components of the input signal into a tonotopic (arranged in order of 

frequency) place-codethat ismaintainedbythesystematicarrangement ofafferent auditorynervefibers. 

This tonotopic representation is retained throughout the ascending auditory pathway until at least the 

primary auditory cortex (Humphries et al., 2010). 

Selectivity for modulation rate (i.e., periodicity) emerges at the level of midbrain (Joris et al., 2004; 

Baumann et al., 2011) and is further refined in auditory cortex (Sadagopan and Wang, 2008; Barbour, 
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2011; Pasley et al., 2012; Ding and Simon, 2012; 2013; Xiang et al., 2013; Garcia-Lazaro et al., 2011; 

Wang et al., 2012; Lakatos et al., 2013). Selectivityfor modulation rate is also systematicallyarrangedin 

the form of a periodotopic (arranged in order of period) map in midbrain (Baumann et al., 2011) and 

cortex (Barton et al., 2012) and there is evidence that the tonotopic and periodotopic dimensions are 

orthogonal (Baumann et al., 2011; Barton et al., 2012). This central selectivity for modulation rate has 

been suggested to play a key role in speech perception (Drullmann et al., 1994; Shannon et al., 1995; 

Ding and Simon, 2013; Zion Golumbic et al., 2013; Lakatos et al., 2013) and music perception (Zarate 

and Zatorre, 2012). 

 
 

1.1.3. Adaptation 
 

Thecodingofauditoryneurons is not static but evolvesover timeto reflect the recent historyofneuronal 

activity. Adaptationbyauditoryneuronstosoundstatistics has been reported inseveral neurophysiologi- 

cal studies involving small mammals (Dean et al., 2005, 2008; Watkins and Barbour, 2008; Wen et al., 

2009; Rabinowitz et al., 2011; Sadagopan and Wang, 2008; Barbour, 2011; Jaramillo and Zador, 2011; 

Walker and King, 2011; Ulanovsky et al., 2003, 2004; Nelken, 2004; Perez-Gonzalez etal., 2005; Malm- 

ierca et al., 2009; Yaron et al., 2012). Adaptation is typicallycharacterised as changes in the spikingrate- 

level function (e.g., Dean et al., 2005; Rabinowitz et al., 2011) and has been argued to enhance coding 

accuracy(Dean et al., 2008). Furthermore, auditoryneurons havebeenshowntoadaptovervarioustime- 

scales, from millisecondstominutes (Dean et al., 2005; 2008; Ulanovsky et al., 2004; Yaron et al., 2012; 

Jaramillo and Zador, 2011), suggesting adaptation to both long- and short-term sound statistics. 

This statistical selectivity is further refined by tuning for the timescale over which the statistics are 

computed (Dean et al., 2008; Ulanovsky et al., 2004;Yaron etal., 2012; Jaramilloand Zador, 2011); some 

neurons are tuned to adapt to short term statistics and others to long term statistics. Furthermore, sounds 

occurring in the natural world are known to exhibit low-order statistical regularities (Voss and Clarke, 
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1975; 1978) andauditoryselectivityfor ‘natural’acousticstatisticshasbeendemonstrated(Garcia-Lazaro 

et al., 2006, 2011; Lesicaand Grothe, 2008). Therefore, statistical selectivitymight playakeyroleinhow 

the brain represents sound in the natural world. 

 
 

1.2. Motivation and rationale  
 

Themainmotivationforstudyingselectivityandadaptation in human auditoryperceptionistogeneralise 

the above findings and principles from in-vivo electrophysiology in small mammals. Equivalent 

adaptationhasnot yet beendemonstratedtoexist inhumanauditoryperception, norhas it beenshownto 

conferanyenhancement ofperception. Theapplicationofpsychophysics tothisproblemhastwospecific 

advantages. The first advantage is that it is a non-invasive method, and hence is convenient for use on 

human subjects. The second advantage is that, arguably, human auditory perception remains more 

sensitive than thecurrentlyavailable neuroimagingmethods. Hence, psychophysics provides anuanced 

window into the human auditory system that cannot be attained in any other way. 

While the feature-based representation has obvious advantages for signal processing, perception is 

typicallymoreobject oriented. Forexample, speechormusicsignalscontainmultiplecomponentsbutare 

typicallyperceivedas awhole(Bregman, 1990). This isuseful incommunicationbecausetheperceptual 

object is used to attribute sound to its likely source. It would appear that a primary function of feature 

decompositionintheauditorysystemis to provide thebasisforarbitraryrecombinationintoobject-based 

representations. Object-based representations emerge in auditory cortex (Mesgarani and Chang, 2012; 

Pasley et al., 2012; Ding and Simon, 2012, 2013; Shamma et al., 2011; Teki et al., 2013), where sound 

features sharing a common temporal envelope are fused (Shamma et al., 2011; Teki et al., 2013; see 

Bregman, 1990). These auditory objects are then subject to top-down influences such as voluntary 

attention (Mesgarani and Chang, 2012; Pasley et al., 2012; Ding and Simon, 2012, 2013). Therefore, 
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understanding the nature of cortical and subcortical feature-based representation is critical to 

understanding how auditory objects are ultimately maintained. 

 
 
 

1.3. Thesis overview  
 

This thesis is structured as self-contained chapters, including their local motivations and contexts. In the 

nextchapter, amodelispresented whichprovidesevidenceofadaptationandselectivityinhumanaudito- 

ryperception. At this stage, we remain agnostic as to whether adaptation actuallyprovides anyenhance- 

ment ofperception. In chapter 3, dataispresented whichcharacterises thehumanauditorybrain as selec- 

tive formodulationswhicharesimilar tothoseofspeech. This chapter setsthestageforthefourthchapter, 

in which this selectivity is important. In chapter 4, the findings of the two previous chapters are general- 

ised and combined to provide an argument that human auditory perception is enhanced by adaptation. 

Data is presented which demonstrates an interaction between selectivity and adaptation, suggestive of a 

sophisticated and general processing strategy for enhanced representation of novel and unusual sound 

events. 

 

1.4. Aims and contributions  
 

The main aim of this thesis is to advance the state of knowledge of selectivity and adaptation in the 

human auditory system. In particular, this thesis is focused on providing evidence and 

characterisation of selectivity and adaptation in auditory perception. This thesis contributes new 

perceptual data on auditory selectivity for modulation rate (Chapters 2, 3, 4), new perceptual data on 

adaptation (Chapter 4), new psychophysicalmethods (Chapters 3 and 4) and a new 

computationalmodel (Chapter 2) of central auditory processing of intensity. 
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Chapter 2: A Central Auditory Model  
 

In this chapter we use empirical loudness modelling to explore a perceptual 

sub-category of the dynamic range problem of auditory neuroscience. 

Humans are able to reliably report perceived intensity (loudness), and 

discriminate fine intensity differences, over a very large dynamic range. It is 

usuallyassumed that loudness andintensitychangedetectionoperateupon 

the same neural signal, and that intensity change detection may be 

predicted from loudness data and vice versa. However, while loudness 

grows as intensity is increased, improvement in intensity discrimination 

performance does not follow the same trend, and thus dynamic range 

estimations of the underlying neural signal from loudness data contradict 

estimations based onintensityjust-noticeabledifference(JND) data. Inorder 

to account for this apparent paradox we draw on recent advances in 

auditory neuroscience. We test the hypothesis that a central model, 

featuring central adaptation to themeanloudness level andoperatingonthe 

detection of maximum central-loudness rate of change, can account for the 

paradoxical data. We use numerical optimization to find adaptation 

parameters that fit data for continuous-pedestal intensity change detection 

over a wide dynamic range. 
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2.1. Loudness and the Intensity Just-Noticeable Differen ce 

Human hearingis knowntofunctionoveran extremelywidedynamicrange. Incontrast, ataneurallevel 

the auditory system is known to have a very limited dynamic range. In auditory neuroscience, this is 

known as thedynamicrangeproblem (e.g., see Dean et al., 2005). In this chapterweaddressasomewhat 

paradoxical sub-category of the dynamic range problem which has arisen in psychoacoustics. 

Loudness (L) is the perceived intensity (I) of a sound and the just-noticeable change in intensity is 

called the intensity just-noticeable difference (JND). Both loudness and intensity change detection are 

typicallyassumedtooperateuponthesameneural signal, generated in thecochleaandtransmittedonthe 

auditorynerve. Thisassumptiongivesrisetotheintuitiveanticipationofarelationshipbetweenloudness 

and the intensity JND, such that one maybe predicted from the other and vice versa. However, previous 

researchers (Hellmanand Hellman, 1990; 2001;Allenand Neely, 1997) werenotabletoprovideaunified 

model due to the apparentlyparadoxical observation that loudness growth, beyond a certain level, is not 

reflected in improvement in intensitydiscrimination performance(Allen and Neely, 1997; Miler, 1947). 

From a neural coding point of view, the problem can be stated as follows; Spike rate is known to be 
 

intensity dependent, and loudness is assumed to scale with spike rate, and since information scales with 
 

spike rate (Fisher information scales with spike rate under reasonable assumptions, Dayan and Abbot, 

 

 2001), then why do more spikes not provide a better encoding of intensity change? 
 

The work of Hellman and Hellman (1990, 2001) and Allen and Neely (1997) resulted in the 

theoretical construct of the loudness JND, which represents the just-noticeable change in loudness that 

corresponds to theintensity JND, andtheassumptionthatareciprocal relationship betweenloudnessand 

loudnesschangedetectionshould exist. Focusingontheintensity discrimination paradigm, Hellmanand 

Hellman (1990) predicted loudness functions for pure tones from intensity JND data, following the 

suggestion of McGill and Goldberg (1968a, 1968b) that the loudness JND is the square root of loudness 
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(ΔLjnd = L0.5). Allen and Neely (1997) tested this for tones and noise using equivalent loudness and 

intensity JND (ΔIjnd) data as follows: 

 

 

∆L jnd = L(I + ∆I jnd ) − L(I ) (2.1) 
 
 

 
Using the loudness function of Fletcher and Munson (1933) and the equivalent intensity discrimination 

dataof Riesz(1928),Allenand Neelyshowed(via Eq. 2.1) that the square root exponent of Hellmanand 

Hellman (1990) required modification above 20 dB sensation level (SL) and introduced a ‘saturation of 

internal noise’to account for themodification. Thisshowedthat loudness and loudnesschangedetection 

may not be modelled reciprocally and thus, their paradox was defined. 

 
 

 

 
 
 

Figure 2.1. Loudness versus intensity JND. Miller’s averageddatafor loudness (diamonds) and 

the intensity JND (circles/triangles) for broadband noise for two individual listeners, as a function of 

sound level (SL). Loudnessdata(diamonds), presentedin logloudness units (LU), are taken from Neely 

and Allen (1998) who converted them from loudness level data of Miller using the loudness function of 

Fletcher and Munson.Aboveabout 20 dB SL, the JNDisapproximatelyconstant (i.e., Weber’s Law) but 

loudness increases. 
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To illustrate theparadox, Fig. 2.1 showsacomparisonof Miller’s (1947) wide-bandnoisedataforthe 

intensity JND and for loudness levels as a function of intensity. Miller’s (1947) loudness level data are 

converted into loudnessunits (LU), takenfrom NeelyandAllen(1998) accordingtotheloudnessfunction 

of Fletcher and Munson (1933), and plotted in log(LU) for comparisonto the intensity JND. At medium 

levels and above, loudness rises while the intensity JND remains almost constant. 

Recent auditory neuroscience literature appears to provide a promising solution; Dean et al. (2005, 

2008), Wen et al. (2009) and Rabinowitz etal. (2011) haveaddressedthedynamicrangeprobleminterms 

of adaptive neural coding. It has been demonstrated (in animals) that central neural adaptation to mean 

sound level acts to improve coding of sound at the most likely (mean) sound level, mitigating neural 

dynamicrangelimitations. Dean et al. (2005) showedthat input/output functionsofneuronalpopulations 

in the inferior colliculus of theguineapigareabletoshift theiroperatingpointstosuit theprevailing(most 

likely) stimulus soundpressure level. Dean etal. also showedthattheresultofsuchneuraladaptationmay 

be characterized as an imperfect dynamic range normalization of the neural signal. The general 

parameters that define the adaptation process are the time constant (how fast the adaptation occurs), 

threshold (central neural dynamic range) and amount (how much adaptation occurs). 

In order to resolvetheparadox, in this chapterweassumethat central adaptation tomeansoundlevel 

occurs in humans during psychoacoustic experiments (Pienkowski and Hagerman, 2009). We also 

assume that the small change that constitutes a typical intensity JND falls at the lower limit of the fixed 

central neural dynamic range, and that adaptation to high mean levels necessarily raises the lower limit 

accordingly. This adaptive raising of the lower limit effectively degrades intensity discrimination 

performance relative to the performance limitations imposed by the peripheral processor. 

There are no physiological data available to characterize central adaptation in human listeners. 

Therefore, inanumericaloptimizationsense, the timeconstant, thresholdandamount areeffectivelyfree 

parameters within an empirical model of central adaptation. The main objective of this chapter is to 
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establish, by a process of optimization, working central adaptation parameter values from the empirical 

data available in the psychoacoustic literature. 

Althoughthereare dataavailableoverawideenoughdynamicrangetoestablish the freeparameters 

of adaptation threshold and amount, the majority of psychoacoustic experiments on intensity 

discrimination do not control or report the mean sound level over the entire course of the experiment. 

Hence, there are no data available to establish the time constant. 

To overcomethisproblem, we looktothecontinuous-pedestal (carrier) paradigm, wherethereported 

pedestal level provides agoodapproximationtothelong-termaveragelevel. Two such studies existwith 

dataoveraverywidedynamicrange; onefor tones(Viemeister and Bacon, 1988) andtheother for noise 

(Miller, 1947). Both studies remain definitive, in terms of data and in terms of phenomena characterized 

by the data, and are ideal for our optimization problem. 

The theoretical foundation for our modelling is the excitation pattern model (Florentine and Buus, 

1981). The excitation pattern model is an empirical model of the cochlea and auditory nerve 

representation ofasound– hencewemayclassifyit asa peripheralmodel. Theoutput ofthismodelmay 

then be integrated in order to calculate loudness (Moore et al., 1997). This is known as the integrated 

auditory nerve formulation of loudness (Fletcher and Munson, 1933; Allen and Neely, 1997). 

Theexcitationpattern loudness model (Moore et al., 1997; seeAppendix) incorporates functionality, 

based on peripheral auditory physiology, which approximates the major phenomena of psychoacoustic 

theory (i.e., cochlear compression, spread of excitation, the auditory filter, etc). A full account of this 

model isgiven in theAppendix. Theparametersof themodel are set to fit abroadrange ofempiricaldata. 

We take this model as input to our central model, much as the auditorynerve isperipheral to the (central) 

auditory cortex. We extend the peripheral excitation pattern model to include a central adaptive 

representation which we call a central excitation patternmodel. This approach is similar to that of Parra 

and Pearlmutter (2007), who proposed a central adaptive model of tinnitus and the ‘Zwicker tone’. 
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Sincetheexcitationpatternmodelof loudnessiswell established, weoptimize thecentral adaptation 

parameters ofourcentralexcitationmodel to relate thefixedparametersoftheloudnessmodelto intensity 

change detection. In keeping with the paradoxical data, we make the implicit assumption that loudness, 

and loudnesschange, arecoded independentlyat acentral neural level, basedoncommoninput fromthe 

auditory nerve. 

In the first stage of this chapter webrieflyreview the related literature and describe an analysis of the 

empirical data based on simulation of the experiments that produced the data. This analysis is used to 

assess the scope of the problem. Next we propose a central excitation pattern model with a maximum 

rate-of-changedetector. Thefreeparameters of themodel areoptimizedto fit the toneandnoiseintensity 

JND data over a wide dynamic range. The resulting optimized model is shown to perform well at 

predictingindependentpseudo-continuousintensityJNDdatafromtheliterature. We reportanexperiment 

basedonthedetectionof linearlyramped up-downincrementsinpseudo-continuousnoisepedestals.This 

experiment shows that slowly-ramped increments are hard to detect and validates our use of a rate-of- 

changemodel. In this chapterweprovideempiricalevidencetosupportanargumentthat loudnessreflects 

peripheral coding, and the intensity JND reflects central coding. 

 
 

2.2. Modelling Background and Methods  
 

We baseouranalysis, andsubsequentmodelling, onthetime-varyingexcitationpatternloudnessmodelof 

Moore et al. (1997; Glasberg and Moore, 2002) – which we term peripheral. The model has been 

adequately described by the authors and we do not repeat the description here except to summarize the 

temporal integration of themodel. Glasbergand Moore’s time-varyingloudness model produces a time- 

varying excitation pattern which is integrated over short time intervals to produce ‘instantaneous 

loudness’. Two successive exponential temporal windowsare then used to estimate short-term loudness 

(STL) with respect to instantaneous loudness, and long-termloudness (LTL) with respectto STL. STLis 
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used to account for loudness of brief duration sounds of fixed intensity, and LTL is used to account for 

overall loudness impression of continuous amplitude modulated sounds. 

Each temporal window is defined by a pair of exponential functions and time constants for ‘attack’ 

and ‘release’respectively. The STLintegrationtimes arenot symmetrical, theattacktimeis 25 msandthe 

release timeis 50 ms, inorder toaccount forgreater forwardmaskingthanbackwardmasking.Theattack 

andrelease timesfor LTLare similarlyasymmetrical. The attack timeis 100 msandthereleasetimeis 2 s, 

allowing for the persistence of loudness impression after the stimuli has ceased. 

Because the present chapter is concerned with amplitude modulation for continuous pedestals, we 

applythe loudness modelusingthe LTLintegration window. While the LTLattack timewasdeliberately 

set (see Glasberg and Moore, 2002) to fit data for loudness of amplitude modulated sounds, the 2 s LTL 

release time is merelyintended to producea lastingimpressionof loudness after the stimulus has ceased. 

Since this release time is not justified in terms of any specific asymmetry in the temporal integration of 
 

loudness, in our modelling the LTL release time was set to 100 ms (the same as the attack time), which 

produced a symmetrical temporal window for LTL with respect to STL. The combination of the two 

temporal windows remains asymmetrical due to the asymmetry in the short-term temporal window. 

 
 

2.2.1. Magnitude or Envelope? 
 

When the intensity of a signal changes over some time frame, the temporal shape (or profile) of the 

intensity function is known as the envelope. An important question is whether it is the size or envelope of 

the intensityincrement that determines the detection threshold. Hellman and Hellman (1990, 2001) and 

Allen and Neely (1997) have defined the loudness JNDin terms ofmagnitudeofloudness 

changecausedbytheintensityincrement(Eq. 2.1).This means that for envelope ramps which are long 

(slow) compared to temporal integration of loudness the intensity JND is assumed to be constant. 

A single study exists which does not support this assumption. Riesz’s (1928) study of the intensity 

JNDisrarelyconsidered, bytoday’s standards, tobestrictlyintensitydiscrimination. However, thisstudy 

 

was thefirst to introduceevidencetosuggestarate-of-changedetectorprocess. It involvedthedetectionof 

amplitude (or envelope) modulation produced when two sine waves, closely spaced in frequency, are 
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summedto produceamodulatingenvelopeand is knownas themethodofbeats. Rieszusedcontinuous 1 

kHz signals to test the amplitude modulation (beat) detection thresholds, as a function of beat rate, and 

found thesmallest thresholds at a rate ofaround 3 to 4 Hz. He also foundthat at lowerand higher rates of 

modulation, thethresholdofdetectionincreasedalmostsymmetrically(onalogarithmicscale) aboutthe 3 

to 4 Hzpoint. This result isnot predictedby Eq. 2.1. Insection 2.4 wedescribeanexperimentdesignedto 

confirm the generality of Riesz’s results as a function of beat rate. 

Eq. 2.1 providesa loudnessdomainsubtractionbetweenloudnessvaluesattwointensitylevels, which 

relates the difference in intensity to the difference in loudness that is just noticeable by discrimination. 

However, for therate-of-changedetectornecessaryto explainthedataof Riesz(1928), thisequationmust 

be transformed into the time domain (Wojczak and Viemeister, 1999). This transformation between the 

JND domains, for change over a given time frame (Δt), relates change in intensity ΔI/Δt to change in 

loudness ΔL/Δt. Eq. 2.1 becomes: 
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2.2.2. Choice of Continuous Data 

 
Candidate continuous-pedestal data for increment detection in noise (Miller, 1947) and in pure tones 

(Viemeister and Bacon, 1988) were selected because of the large dynamic range covered in both studies 

(>90 dB), and because both studies remain definitive. In Miller’s (1947) experiment, the increment 

envelope for the noise signals was instantaneous (square) and duration was 1.5 seconds. For the 
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experiment of Viemeister and Bacon (1988), tonescontained 10 mscosine-rampedincrementsof 200 ms 

duration. Afull description of the stimuli of the respective studies is given in section 2.5.3. 

Weber’s Law states that the ratio of the intensity JND to intensityshould be constant (Weber, 1846). 

Miller’s datashowedthat this wasapproximatelytrue fornoisesignals. However, Weber’s Lawdoes not 

generallyhold forpure tones, as isdemonstratedbythedataof Viemeister and Bacon. Theappearanceof 

an ‘almost’ constant ratio for pure tones has been termed the ‘near-miss’ to Weber’s Law (McGill and 

Goldberg, 1968a, 1968b). Therefore, the two studies chosen provide a contrast, both in terms of stimuli 

properties (tones/noise, envelopeshape, incrementduration) andintermsofqualitativecharacterizationof 

thedata(Weber’s Law/‘near-miss’). Thisprovides acompellingchallengetotheintendedunifiedmodel. 

 
 

2.2.3. Transformation of Continuous Data 
 

Here we investigate the question of whether temporal integration of the loudness model is able to unify 

the two paradigms sufficiently such that we can proceed to optimization of the central adaptation stage. 

Using the loudness model of Glasberg and Moore (2002), we transform I into L, ΔIjnd into ΔLjnd, and 

finally (ΔI/Δt)jnd into (ΔL/Δt)jnd for the simulated pedestals-with-increments of Miller and of Viemeister 

and Bacon. This analysis tells ushowmuchneedthereisfor central adaptationandtherangeinwhichitis 

necessary. 

Fig. 2.2(a) shows the re-plotted intensity JND data for Miller and Viemeister and Bacon, illustrating 

the disparity in function shape that must be overcome within our model. Fig. 2.2(b) shows the loudness 

functionsof intensityfor thepedestals oftherespective studies, asestimatedusingtheloudnessmodel. In 

Fig. 2.2(b), for comparison with the loudness model results, we also show the loudness level data of 

Miller (1947), as converted by Neely and Allen (1998) using the loudness function of Fletcher and 

Munson (1933) [I = SL + 10 dB (Miller, 1947); 1 sone = 975 LU]. The shape of the loudness function 
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estimated by the loudness model is in good agreement with the loudness level data of Miller, but the 

loudness model predicts lower absolute thresholds than the data of Miller suggests (see section 2.5.3). 

Fig. 2.2(c) shows the respective estimated transformed data for ΔLjnd(L), using Eq. 2.1. Fig. 2.2(d) 

shows (ΔL/Δt)jnd(L), estimated using Eq. 2.2 for Δt = 1 ms. In Fig. 2.2(d) the two functions are much 

closer than the two functions of Fig. 2.2(c). This shows that, within the loudness model, the temporal 

parameters of the stimuli (envelope and duration) allow us to better unifythe ΔIjnd data between the tone 

and noise studies in terms of (ΔL/Δt)jnd(L). In other words, Eq. 2.1 does not take into account the 

envelopes ofthestimulibut, using Eq. 2.2, the 10 ms cosine-rampedincrementsintones (Viemeister and 

Bacon) and the instantaneous changes in noise (Miller) produce similar maximum loudness slopes for a 

given overall pedestal loudness. 

In Fig. 2.2(c), we see a disagreement between the transformed data sets with regards to the smallest 

ΔLjnd that isdetectable, bya factorof aroundtwo. This disparitywouldmake it difficult to model usinga 

magnitudeofchangemodel. Moore et al. (1997) suggest anabsolutethresholdof 0.003 sones.Assuming 

that absolute threshold and masked threshold are equivalent, this is not compatible with the minimum 

loudness JNDofapproximately 0.01 sones shownin thefunctionof Fig. 2.2(c).Therefore, it isclearthata 

magnitude-of-change model, with a threshold of 0.003 sones, would not explain the data. 

After transformingthedata further into (ΔL/Δt)jnd, in Fig. 2.2(d) wesee that the smallest (ΔL/Δt)jnd is 

much morein agreement between the two stimuli (~5x10-5 sones/ms). Thus, we confirm that our choice 

of decision variable [(ΔL/Δt)jnd] is useful. Below about 0.25 sones, the slopes of these functions are 

relatively flat. Between 0.005-0.25 sones there is a slope of around 0.00005 sones/ms but between 0.05 

and 2.5 sonesthere isafargreaterslope. Thesetwoobservationsconformtothetwonecessaryconditions 

of constructing a central, adaptive rate-of-change model; i) that the (ΔL/Δt)jnd functions must be close 

together (equivalent) and ii) that both functions must be approximately constant in the range below an 

equivalent loudness threshold (i.e., thetwofunctionsrepresentthesamecentraldynamicrange). Thepoint 

wherethetwofunctionstakeonamarkedincreasein slope(~0.25 sones) is thestartingpoint inoursearch 
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for acommonthresholdparametervalue. Duringthesubsequent optimization, wetakethevalue 5.5x10-5 

sones/ms of (ΔL/Δt)jnd as a constant for our modelling. This might be taken to represent internal noise 

level. 

 
 
 

 
 

Figure 2.2. Transformation results for thenoisedataof Miller [dashed greyline] and thepure tone 

data of Viemeister and Bacon [solid red line]. A Average intensity JND data. B Estimated loudness 

functions [L(I)] for the stimuli (pedestals). Triangles represent Millers loudness data (I = SL + 10 dB), 

convertedtosones(1 sone= 975 LU) fromthecalculatedvaluesof NeelyandAllen. C Eq. 2.1: Estimated 

transformation of ΔIjnd [pane A] to ΔLjnd. D Eq. 2.2: Estimated transformation of ΔIjnd [pane A] to 

(ΔL/Δt)jnd. Thetwomagnitude-of-loudness-change functionsin C arenot consistentat lowlevels– there 

is an offset, but the rate-of-loudness-change functions in D are closer, indicating that the temporal 

parameters (duration, envelope) of thestimuli representedin D allowthestimulitobeunified. In D, below 

~0.25 sones the functions are approximately zero slope [i.e., (ΔL/Δt)jnd is constant]. 
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2.3. Central Excitation Pattern Model  
 

Ageneral block diagram of the proposed central excitation pattern model and rate-of-change detector is 

given in Fig. 2.3. Glasberg and Moore (2002) provided a loudness model that operates on the temporal 

waveform of a given sound to produce a time-dependent loudness function. We extend this model to 

produceatime-dependent central loudnesscontrastfunctionwhichcanbeusedtopredict thosechangesin 

the intensity of a sound that may be detectable. It should be noted that our definition of central loudness 

(change) is purelyfunctional/notational, inorder tomaintainsomeconsistencywiththepreviousliterature 

regarding the loudness JND. 

 

 

 
 

Figure 2.3. Block diagram of the central excitation  pattern model and rate-of-change  

detector process. The area indicated as peripheral contains the loudness model of Glasberg and 

Moore (2002) and the area indicated as central contains the proposed additions of the present chapter. 
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2.3.1. Central Loudness Adaptation 
 

Due to our confinement to the continuous pedestal paradigm, we are able to assume that mean level is 

approximately the same as the reported level of the pedestal. Therefore, only two free parameters are 

needed todefinecentral adaptation (CA) in ourmodel; threshold(TCA) andnormalizationamount(α).The 

value of α determines central threshold shift that results from mean peripheral loudness exceeding the 

central adaptation threshold (i.e., exceeds the central dynamic range). Consistent with long-term central 

adaptation to the prevailing sound level (Dean et al., 2005, 2008; Wen et al., 2009; Rabinowitz et al., 

2011), central adaptation is implemented in the form of a partial normalization of any time-varying 

loudnessfunction (L) whichhasameanloudness( L ) abovethecentral adaptationthreshold, TCA. Since 

weareconcerned withcontinuous pedestals, mean loudnessreferstoasinglevaluefortonalpedestalsand 

an average over an arbitrarily long time frame for noise pedestals. The use of the mean loudness for 

adaptation threshold in continuous pedestals also provides for smoothing of instantaneous loudness 

changes innoise pedestals. The conditional normalization usedto producethe central loudnessfunction, 

LCen, is 
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2.3.2. Central Loudness Just-Noticeable Difference 
 

Unlike tonal pedestals, noise pedestals include inherent loudness changes which must be taken into 

account (Dau et al., 1997a, 1997b; Glasberg et al., 2001). In our model we treat each noise signal as 

deterministic (and repeatable), or frozen (Buus, 1990; Agus et al., 2010) and we base detection on the 

difference betweenthemaximumvalueof ΔLCen for thepedestal andthemaximumvalueof ΔLCen during 

 

an increment/decrement applied to that pedestal. Consistent with Eq. 2.2, the threshold constant is 

defined in sones per ms and the proposed threshold expression is 
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where the pedestal signal is denoted (∆LCen/∆t)ped, and the pedestal-plus-change signal is denoted 

(∆LCen/∆t)inc. Thus, given a fixed (constant) value for (ΔL/Δt)jnd, Eq. 2.4 may be solved by adjusting the 

increment size so as to affect (ΔLCen/Δt)inc. 

Using a fixed value of (ΔL/Δt)jnd extracted from Fig. 2.2d (5.5x10-5 sones/ms) a manual, iterative 
 

optimizationprocess was conducted byusingthe central model to predict the value of ΔIjnd for each data 

point of the two studies using given parameter values of threshold TCA and α. Within each iteration the 

entire rangeofstimuli forbothstudieswas simulated. Foreach simulationwithinagiveniteration, Eq. 2.4 

was evaluatednumericallyusingthemodel to find ΔIjnd. Thepredictedvalueof ΔIjnd wascomparedtothe 

respective datapointandanerror termcalculated. Foreach iterationtheaverageerrortermwascalculated 

over the two datasets. This process was repeated, with adjustments made to the free parameters (TCA and 

α) in orderto minimize theerror terms until both slopesof the respectiveminima for each free parameter 

were located– i.e., until thevalues of TCA and α were optimal. The JNDfor the change in intensity(ΔIjnd) 

is expressed as 

 
 

JND = 10log10(1+ 
∆I jnd 

) 
I 

 
(2.5) 
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2.4. Experiment 2.1: Generalising Riesz’s Beat Detection 

Paradigm  

The following experiment was designed to replicate the rate-of-change-detection paradigm of Riesz 

(1928), within the more controlled conditions of linearly ramped increments in noise pedestals, and to 

confirmthegeneralityofhis rate findings. In atwo-interval, forced-choiceprocedure, listenerswereasked 

to detect linear up-down ramps in wideband noise. The use of linear ramps in broadband noise removes 

possible confounds, relating to unwanted detection cues of the beat-detection paradigm employed by 

Riesz. 

 
 

2.4.1. Experiment 2.1: Stimuli and task 
 

All stimuli were generated digitally at 24 bit resolution. A pair of Beyerdynamic DT100 isolating 

headphones were used to present the stimulus to the subjects, which was played back directly from a 

computerat asamplingrateof 44,100 Hz. Presentationwasdiotic (sameinbothears).Thepedestalwasa 

broadband (0-20 kHz) Gaussian noise, presented at an overall level of 33 dB SPL (rms). In the target 

interval, symmetrical, linearly-ramped envelopes with half-ramp durations of between 5 and 50,000 ms 

wereaddedto thenoisepedestals. Half-rampdurationsof[5, 10, 100, 1000, 10000, 50000] mswereused. 

The increment consistedofa linear increment rampimmediatelyfollowedbyalineardecrementrampof 

equal duration. The increments were located in the temporal centre of the target pedestal. For half-ramp 

durations of 1 second or below, pedestals were of 4 seconds. For half-ramp durations of 10 seconds, the 

pedestal wasof 24 seconds. Forhalf-ramp durationsof 50 secondsthepedestal wasof 104 seconds. Both 

target andreference intervalsweregatedwith 10 ms raised-cosineramps. Afterhearingeachpairofnoise 

signals the listener was asked which contained the ramp. 
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2.4.2. Experiment 2.1: Procedure 
 

An adaptive three-down one-up, two-interval forced-choice (2IFC) procedure was employed which 

estimates the 79.4% correct identification (Levitt, 1971). See Figure 2.4. Each trial consisted of two 

observation intervals, one of which was selected at random to contain the target increment. The inter- 

stimulus interval was 3 seconds. The level of the increment was defined as the maximum difference (in 

dB) between the pedestal and the target. The starting value was 20 dB. The initial step size was 5 dB for 

the first 4 reversals and was subsequentlyhalved. Areversal wasdefinedas an increase in increment size 

following a decrease, or vice-versa. Three consecutive correct identifications of a ramp resulted in a 

reduction in size of the increment and one incorrect answer resulted in an increase. After 12 reversals, 

threshold was taken as the arithmetic mean of the last 10 reversals. 

Aftereach trial, subjects wereprovided withcorrect/incorrectfeedbackontheirresponses.Trials were 

undertaken in blocks lasting no longer than 20 minutes. Due to the large number of relatively long 

durationtrialsnecessary, blockswereofteninterruptedwithabreakperiodof 15 minutes, afterwhichthe 

block continued until either the next rest period or completion. For the longest half-ramp duration (50 s) 

suchbreakswereoccasionallytaken in thecourseofasingle thresholddetermination. On twooccasions, 

withinablock, thebreakwas extendedovernight andtheblockwas continuedonthefollowingday. Prior 

to the test, each subject was given a brief demonstration to familiarize themselves with the interface and 

procedure and was allowed a single practice run. 
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Figure 2.4. Illustration of the adaptive method. Pairs ofnoisesignals arepresented, oneofwhich 

containsarampedincrement. Thelisteninglevel andrampdurationarefixedthroughout, whilstrampsize 

is adaptively changed until the procedure converges on ~80% correct performance. When the listener 

correctly identifies the location of the ramped intensity increment the size of the increment is reduced, 

otherwise the size is increased, depending on a rule (simplified here to a 1-up, 1-down rule). Correct 

responses (blue) result indecreasedramp sizeand incorrect responses (red) result in increased rampsize. 

The ~80% correct threshold level is estimated by averaging the ramp size measured at several points 

where the adaptive procedure changes direction (‘reversals’). The step size of the ramp size change is 

reduced after a reversal and the procedure eventually converges on the ~80% correct point. 

 

 
2.4.3. Experiment 2.1: Listeners 

 
Ten unpaidvolunteersubjectsservedaslistenersintheexperiments. Sevenmalesubjectsandthreefemale 

subjects took part. The mean age of the subjects was 29 (min: 20, max: 36, standard deviation: 5.9). All 

reportednormal hearingand somereported limitedprevious experienceofparticipatingin listeningtests. 

All participants were naïve about the purpose of the test. 

 
 
 

2.5. Results and Discussion  
 

In this section we describe the results of the optimization process and of the proposed central excitation 

pattern model applied to a further set of pseudo-continuous intensity JND data from the literature (see 

section 2.5.3). For each separate simulation, within the optimization and within the simulation of the 

pseudo-continuous data, stimulus waveforms were produced to exactly replicate the documented 

conditions of the respective study. This explicitly included level and envelope. 
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Forcomparison, empirical datafor intensity JNDvalues arealsopresentedintermsofintensityinthe 

form of Eq. 2.5. Data are plotted on a logarithmic scale to allow easier determination of Weber’s Law 

characteristics, whilst retaining the familiar numerical scale of classical literature for the intensity JND. 

Goodness-of-fit measures are given, for each dataset, in the form of two-tailed Pearson correlation 

coefficients (r, P) and root-mean-square error (e, dB). A description of the experimental conditions for 

each study is given in the 2.5.3. 

 
 

2.5.1. Central Adaptation Parameters; Optimization Results 
 

Fromtheoptimization, thefollowingvalues were found: TCA = 0.215 sones, and α = 0.95 (i.e., resultingin 

95% normalization using Eq. 2.3). The TCA valueof 0.215 sones (approximately 25 dB SPLin the 1 kHz 

pure tone case) corresponds relatively well to the known dynamic range (approximately 35 dB) of 

primaryauditorynerve fibers (Evans and Palmer, 1980; Sachs andAbbas, 1974). The 95% normalization 

of the central loudness function is approximately consistent with the known sub-optimal adaptation 

behaviour of auditory neurons (Dean et al., 2005, 2008; Wen et al., 2009; Rabinowitz et al., 2011). In 

summary, the parameter values found appear reasonable. 

Fig. 2.5(a) shows the resulting central loudness (red line) as a function of peripheral loudness (grey, 

dashed line), illustrating the result of the optimization and the effects of central adaptation. In order to 

show the effect of central adaptation on the estimated intensity JND functions, Figs. 2.5(b, c) show the 

rate-of-change predictions of the unaltered peripheral model (grey, dashed line) compared to the 

optimized central excitationpatternmodel (red line) for thedataof Viemeister and Bacon (Fig. 2.5b) and 

Miller (Fig. 2.5c). The fit of the optimized central excitation pattern model to the data of Viemeister and 

Bacon is good (r=0.99, P=1.8x10-13, e=0.04 dB), as is the fit to the data of Miller (r=0.94, P=1.4x10-5, 
 

e=0.19 dB). The growth of loudness for both cases (tones/noise) gives a good prediction below central 

adaptationthreshold. However, inbothcases, theunalteredperipheralmodelresultsdivergestronglyfrom 



1-109: 30 

 

 

thoseoftheoptimizedcentral model aboveapproximately 0.2 sonesandtheperipheralmodelfailstohold 

to thedata at higher levels. As can be expected from lookingat Fig. 2.5(b/c), thevalueof TCA is relatively 

tightlycontrolled since a larger value would increase theerror for the data of Viemeister and Bacon (Fig. 

2.5b) and a smaller value would increase the error for the dataof Miller (Fig. 2.5c). The value of alpha is 

also relatively tightly constrained because smaller values would cause the functions to tend towards the 

under-estimationof theperipheral model output, and becauselargervaluesthemodelwouldtendtowards 

Weber’s Law for the tonal data. 

This modelling result is interesting because the ‘near-miss’ is often attributed to a combination of 

cochlear compression and spread of excitation (Florentine and Buus, 1981; Viemiester, 1983), where 

high-passnoiseorhigh-frequencytones areusedtoeliminatethenear-miss, andhenceit isanticipatedthat 

thespread ofexcitation featured in theexcitationpatternmodel should leadtoanear-miss.Themodelling 

result for the unaltered peripheral model does not produce a compelling near-miss and so it appears that 

the addition of central adaptation is necessary to fit the data. To repeat the statement made by Allen and 

Neely (1997), this account of the near-miss seems different to the spread-of-excitation hypothesis. 

Furthermore, it should be noted that in this model, adaptation is equivalent to an instantaneous 

nonlinearity. 
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Figure 2.5. Optimization results; peripheral versuscentral model . A Central loudness(solid 

red line) for continuous pedestals, as a function of peripheral loudness (dashed greyline), illustrating the 

saturating effect of central adaptation (Eq. 2.3). B, C Comparison of estimated intensity JNDs from the 

peripheral and central excitation pattern rate models respectively. B circles: the averaged 1-kHz 

continuous pure tone increment-detection data of Viemeister and Bacon and C is the individual (circles 

and triangles) continuous-noise increment-detection data of Miller. 

 
 

2.5.2. Results of Experiment 2.1 
 

Fig. 2.6ashowstheresultsoftheramped-noiseexperiment 2.1. Groupmeanthresholdsforthe 10 listeners 

are given, including error bars representing 95% confidence intervals. The trends shown in the data are 

significant (P=9.55x10-8, Friedman Rank Sum Test – see Hollanderand Wolfe, 1973).Theresults, plotted 

onalogarithmic(time) scale, showsymmetryabout thehalf-rampof 100 ms‘bestdetectionpoint’which 

appears equivalent to that shown around 3-4 Hz by Riesz (Fig. 2.6b). Furthermore, the results confirm 

Riesz’s general finding that slow ramps are hard to detect. It should be noted that short-term memory 
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(Durlach and Braida, 1969) mayplayarole in the results at verylongramps (i.e., >4 seconds), in that the 

listener is forced to assess the intensity change within the short-term memory window. 

 
 

2.5.3. Simulation of Pseudo-Continuous Experiments 
 

A selection of contemporary intensity JND studies were chosen to test the generality of the model in 

conditions where the continuity constraint held only loosely but where other parameters important to 

temporal integration theory were varied. We call these studies pseudo-continuous because the pedestals 

usedwouldbeconsideredcontinuousif theywerenot gatedonandoff.We alsoincludeourramped-noise 

experiment (seesection 2.5.2). Noneofthesestudiesvaried(roved) thelisteninglevelwithinexperimental 

runs, so the long-term average level should be reasonably close to the reported pedestal levels. 

Fordirect comparison withtheresultsof Viemeister and Bacon(1988), themodelwasusedtoobtain 

detection thresholds for increments of 200 ms in continuous 1 kHz tones over the intensity range from 

threshold to 85 dB SPL. The increments were gated with 10 ms raised-cosine ramps. 

Miller (1947) measured increment detection thresholdsfor twosubjectsusingcontinuous, wide-band 

noisesignals. Thenoisesignals werespecified ashavingpowerspectrumof±5 dBfrom 150 to 7,000 Hz 

and were incremented for 1.5 sec. duration at intervals of 4.5 sec. Since Miller did not specify the 

spectrumoutsideofthisrange, inourmodellingaband passfilterwasusedtoreducetheenergyoutsideof 

this rangeby 12 dB peroctave. We assumethat the increment envelope issquare(instantaneous). Best fit 

to thedatawas foundwhere SLwas converted to SPLto beconsistent withthethreshold predictedbythe 

(peripheral) loudness model (SPL= SL+ 4 dB). 

For comparison to the results of Oxenham (1997), we used the model to obtain intensity JND 

thresholds as a function of increment and decrement duration at 55 dB SPLat durations between 4 and 

200 ms. Thresholds were obtained both in quiet and in wide-band noise of 0 and 20 dB spectrum level. 
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Increments and decrementsin 4 kHz puretonepedestalsof 500 ms weregated usingraised-cosineramps 

of 2 ms. 

For comparison to the results of Plack et al. (2006), the model was used to obtain thresholds for 

detection of brief symmetrically-ramped increments in a 20 dB spectrum-level (i.e., dB per 1 Hz band) 

broadband (0 - 20 kHz) noise pedestal. The ramps were linear and of durations between 2.5 and 20 ms. 

Increments were centrally located within the pedestal. 

To test the model against the results of Gallun and Hafter (2006), we employed 477 Hz pure tone 

pedestals and obtainedthresholds fordetectionof brief symmetrical increments of durations between 10 

and 85 ms, gated with 10 ms cosine ramps. Pedestals of 1000 ms were used and the increments were 

centrally located within the pedestal. 

Fig. 2.6ashowsthepredictionsofthemodel (dashedgreyline) comparedtotheresultsoftheramped- 

noise experiment. The model predictions are reasonably close (r=0.94, P=4.8 x10-3, e=0.9) to the data. 

The model predicts an approximately symmetrical curve about the ‘best-detection’ rate. The large 

intensity JNDs at high and low rates of change and best-detection half-ramp duration of 100 ms are in 

good quantitative agreement. Within the model, Riesz’s paradigm and that of the ramped-noise 

experiment are shown to be equivalent. 

Fig. 2.6b shows a comparison of the predictions of the model (dashed grey line) with the data of 

Riesz’s first experiment which determinedbeat-modulation intensity JNDasafunctionofbeatfrequency 

for continuous ~1 kHz pedestals. The shape of these data are similar to the experimental data of the 

ramped-noise experiment, in that it shows a log-time symmetrical non-monotonic JND as a function of 

beat rate, where lowbeat rates are as hard to detect as high beat rates. The shape and formof the function 

produced bythe model is similar (r=0.93, P=1.4 x10-5, e=0.19 dB) to that of Riesz’s data, particularly in 

terms ofaminimum JNDpoint andsymmetrical shapeabouttheminimum. We notethatRiesz’sdata asa 

functionof level, whichalmost holdto Weber’s Lawaboveabout60 dBSL, donotappearconsistentwith 
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othermorerecent data(Wojtczak and Viemeister, 1999;Allenand Neely, 1997) and sowedonotattempt 
 

to model them here. 
 

Fig. 2.6cshowsthepredictionsofthemodel (dashedgreyline) compared to themeandataof Plack et 

al. (2006). Thesedatashowtheeffect ofdurationonbrief, linearlyramped incrementsinnoisepedestals. 

Themodel showsgoodagreement withthedata(r=0.92, P=7.5 x10-2, e=0.84 dB) intermsofshape, buta 

small over estimation is evident. 

Fig. 2.6dshows thepredictionsofthemodel (dashed greyline) comparedtothe mean dataof Gallun 

and Hafter(2006). These datadescribe theeffectofbrief linearly-rampedincrementson 477 Hzpuretone 

pedestals and so represents the pure tone equivalent of the data of Plack et al. (2006). The model shows 

good agreement with the data (r=0.99, P=7.7 x10-2, e=0.1 dB). 

Fig. 2.6(e, f) shows selected data points from Oxenham’s (1997) data for brief increments and 
 

decrements (respectively) in pure tones compared to the predictions of the model (dashed grey line). 

These datacharacterize the effect of duration andbackground (masking) noiseon thepuretone intensity 

JND. Thedata show amonotonic decrease of JNDwith increase in duration and aparallel shift upwards 

in the JNDfortheadditionofmaskingnoise. Inourcentral excitation patternmodellingof thesedata, we 

treat thesumofmaskingnoiseand tonal pedestal asasinglesignal andwelookforathresholdincreasein 

the maximum loudness slope caused by the increment in the tonal pedestal component. Generally, the 

model provides reasonable, if not ideal, qualitative and quantitative account of the data (r=0.89, P=2.6 

x10-8, e=0.19). For the signals presented in noise, central adaptation provides for an increase of the JND 
 

consistent with the data. 
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Table 2.1. Goodness  of fit  measures  for  the central  model.  Pearson 
correlation coefficients (r, P) and rms error (e) for central excitation pattern rate 
modelling results compared with the data. 

r P e 
Viemeister & Bacon, 1988 0.99 1.8x10-13

 0.04 
Miller, 1947 0.94 1.4x10-5 0.19 

Oxenham, 1997 0.89 2.6x10-8 0.5 
Riesz, 1928 0.93 4.8x10-4 0.15 

Present study 0.94 4.8x10-3 0.9 
Plack et al., 2006 0.99 1.1x10-2 0.84 

Gallun & Hafter, 2006 0.99 7.7x10-2 0.1 
Overall 0.91 <1x10-16

 0.09 
 
 

Table 2.1 provides a summaryof the goodness of fit measures described aboveand for the overall fit 

to thewholedataset(r=0.91, P<1 x10-16, e=0.09 dB). Outsideoftheerrormarginsdiscussed in the Error 

Margins section, someerror in themodellingof thepseudo-continuous datamaybeexplainedintermsof 

assumption of the continuous-levels approximation. It may be that the central adaptation contribution is 

excessive in these cases. 
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Figure 2.6. Simulation of pseudo-continuous data. Predictions ofthecentral excitation pattern 

model (dashed grey line); A group mean thresholds of the ramped-noise experiment (circles); noise 

pedestals withup-down ramps, athalf-ramp durationsof 5, 10, 100, 1000, 10000 and 50000 msandatan 

overall listening level of 33 dB SPL (rms). Error bars represent 95% confidence intervals. The trends 

shownin thedataaresignificant (P=9.55x10-8, Friedman Rank Sum Test). BJust-noticeabledifferencefor 

envelopemodulationofa 1 kHztone, as a function ofbeat frequency, produced withthemethodofbeats 
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by Riesz for a listening level of 50 dB SL. C Just-noticeable difference for detection of symmetrical, 

linearly-rampedincrements in 20-dB spectrum-level noisepedestals, as afunctionofhalf-ramp duration 

(one-sided)- averageddataof Plack et al. (circles). D Just-noticeabledifferencefor incrementdetectionin 

477 Hz pedestals, as a function of increment duration at a peak level of 60 dB SPL - averaged data of 

Gallun and Hafter (circles). E, F JND for increment and decrement detection in 4 kHz pedestals 

respectively, as a function of duration at a listening level of 55 dB SPL- averaged data of Oxenham for 

500 ms pedestals presented in quiet (circles), 0 dB (triangles) and 20 dB (squares) spectrum level noise. 

 
 
 

2.5.4. Error Margins 
 

There are several potential sources of error or confusion in the recreation and modelling of the 

experimental conditions of the studies reviewed in this chapter. First, since much of the data were 

originallypresented in termsof SL, thequestionof thresholdsis important. Riesz(1928), forexample, did 

not obtain absolute thresholds for his subjects but tookthem from an earlier workby Fletcher and Wegel 

(1922). Fletcher and Wegel did not describe the method or statistical calculation bywhich theyobtained 

their thresholds. In any case, the thresholds are sufficiently different to those obtained with modern 

experimental methods andequipment that somemargin mustbeallowedtoaccountforthis. Furthermore, 

Miller (1947) obtained absolute thresholds for his noise stimulus but did not specify the procedure by 

which he obtained the absolute thresholds. 

Second, there is significant variationin statistical levelusedto defineintensity JNDthreshold. Miller, 

for example, defined the threshold according to a 50% correct location on the psychometric function, 

whereas Viemeister and Bacon defined the threshold at the 70.7% correct point. For our ramped-noise 

experiment we define threshold at the 79.4% correct point. The model, which is based on loudness data 

from modern studies (Moore et al., 1997) is likely to provide error in the estimation of intensity JND 

values for earlier studies. 

Third, the data of Miller (1947) were taken with noise stimulus that is only defined as having a 

spectrum of +-5dB in the range of 150 Hz to 7,000 Hz. Although the +-5 dB appears reasonable for 
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Gaussian noise, this description doesnot allowanyreasonableassumptiontobemadeaboutthespectrum 

ofnoiseoutsideofthe bandwidthspecified. Further, Millerdidnotspecifythespectrumofthenoise after 

it hadbeenpassedthroughthefilteroftheheadphonereceiver. Generally, thedataof thestudiesreviewed 

herewereobtainedwith variousheadphonereceiversandotherapparatuswhoseinfluenceisnot known. 

Fourth, theexperimental population size involved inthestudiesreviewed ishighlylimited; 2 subjects 

for Miller, 3 subjects for Viemeister and Bacon, 4 subjects for Oxenham and 3 subjects for Riesz. 

Since the intensity JND as a function of listening level is known to be a steep function at low levels, 

the question of absolute thresholds for a given listener or for a population is critical. Where modelling 

error is shownin offsetbutnot inslope(i.e., thereisanoffset in the SPLaxis) it ispossible thatvariancein 

individual thresholds is the source of the error. This is particularly likely in light of the small population 

sizes described above. 

 
 

2.5.5. Limitations                                                                           

The loudness model usedhere features relativelycomplex functionality; the transfer functionoftheouter 

and middle ear filter is relatively discontinuous, the auditory filters change shape (asymmetrically) with 

level and many aspects of the nonlinear input/output function are frequency dependent. Our results are 

therefore somewhatdependent onthismodel. However, alternate peripheral modelsshould, inprinciple, 

produce similar results as far as they show an equivalent (or better) fit to loudness data. 

 
 
 

2.6. Chapter Summary  
 

The main objective of this chapter was to establishparametersof acentral adaptivemodel able 

to relate loudness to the intensity JND. Thefit of the model is good, even inthecaseof pseudo- 

continuous data, and the adaptation parameters obtained are plausible with regards to the 

neuroscience literature. The ramped-noiseexperimenthasshownthat largeintensity JNDsare 
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obtained at very low rates of intensity change, confirming the generality of Riesz’s findings. In 

the context of the modelling, we have shown that the spread of excitation explanation alone is 

not sufficient to produce a near-miss. Central adaptation has been used to simultaneously 

explain data featuring approximate examples of Weber’s Law and the near-miss, and to 

explain the effects of masking noise on increment and decrement detection. 

In 1997 Allen and Neely anticipated a role of central adaptation in human auditory 

perception. We have made explicit the argument that loudness reflects peripheral neural 

coding, that intensity JND reflects central neural coding and that adaptation has a pronounced 

effect on human auditory perception. In the next chapter, the selectivity for modulation rate 

outlined in this chapter is further characterised and related more directlytowhat isknownof the 

central auditory pathway. 
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Chapter 3: Modulation Filters  
 

Recent studies employing speech stimuli to investigate ‘cocktail- 

party’ listening have focused on entrainment of cortical activity to 

modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data 

suggest that cortical modulation filters (CMFs) aredependent onthe 

sound-frequencychannel inwhichmodulationsareconveyed. In this 

chapter, we characterize modulationfilters inhumanlistenersusinga 

novel behavioural method. Within an ‘inverted’ adaptive forced- 

choice increment detection task, listening level was varied whilst 

increment size was held constant for ramped increments with 

effective modulation rates between 0.5 and 33 Hz. The data show 

frequency dependent trends which suggest that modulation filters 

are tonotopically organized (i.e., vary systematically along the 

primary, frequency-organized, dimension). This suggests that the 

human auditory system is optimized to track rapid (phonemic) 

modulations at high sound-frequencies and slow (prosodic/syllabic) 

modulations at low frequencies. 
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3.1. Central Auditory Contrast Processing  
 

The primary feature represented by the peripheral auditory system is sound frequency. The basilar 

membraneof thecochleaisarrayed, frombasetoapex, accordingtoatonotopicrepresentation, withhigh 

frequencies resolved at the basal end and low frequencies at the apical (Pickles, 2008). Tonotopic 

organization is apparent up to at least primary auditorycortex (Humphries et al., 2010), which has been 

characterized asshowinganintensity-independent representation ofsound(Sadagopanand Wang, 2008; 

Barbour, 2011) responding primarily to stimulus contrast. Numerous studies have revealed a preference 

for “natural” 1/f modulation statistics (Voss and Clarke, 1975, 1978) in the auditory system (Garcia- 

Lazaro et al., 2006, 2011; Wang et al., 2012) and this selectivity has been localized to auditory cortex 

(Garcia-Lazaro et al., 2011; Wang et al., 2012). Modelscomprisingcentral modulation filter-banks have 

been proposed (Dau et al., 1997a, 1997b; Jepsen et al., 2008), including the existence of independent 

modulation filters in the human auditory cortex (Xiang et al., 2013). Presumably, these cortical 

modulation filters (CMF) represent separate neuronal populations, each with different tuning to 

modulationrate(Dingand Simon, 2013). Xiang et al. (2013) havesuggestedthat, muchlikethe‘beating’ 

that occurs within the auditory filters of the cochlea itself, CMFs are nonlinear and produce sum and 

difference products when two modulations (at different rates) exist within the same filter. 

Speech intelligibility has been shown to be dependent on sensitivity to slow temporal amplitude 
 

modulations (Drullmann et al., 1994; Shannon et al., 1995). Assuming CMFs play a key role in coding 

speech, particularly in background noise, i.e. ‘cocktail-party’listening (see Ding and Simon, 2013; Zion 

Golumbic et al., 2013; Lakatos et al., 2013), a potential strategy for separating speech from background 

noise, and one recently suggested by Ding and Simon (2013), is that CMFs are carrier-frequency 

dependent. That is, the modulation rate to which CMFs are tuned increases systematically along the 

tonotopic gradient. This strategy also makes sense from the perspective of the limits imposed by 

peripheral auditory filters, the bandwidths of which increase (in Hertz terms) with increasing centre 
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frequency, makingit theoretically possible to conveyincreasinglyhigher modulation rates. In support of 

this, Lakatos et al. (2013) demonstratedtonotopically-arrangedentrainmentofneuralactivityinthecortex 

ofnon-humanprimates, suggestiveofatonotopicarrangement of CMFs. Furtherevidenceinsupportofa 

tonotopic arrangement of CMFs comes from neuroimaging studies (as reviewed by Zarate and Zatorre, 

2012), where a ‘dual stream model’of the cortex has been proposed to account for hemispheric spectro- 

temporal processing differences (for musical stimuli) equivalent to those observed by Lakatos et al. 

(2013). It follows from this that if CMFtuningis carrier-frequencydependent, it might be theproduct of 

tonotopic variation in underlying neuronal physiology. 

Since human cortex (like that of the monkey) is tonotopically mapped (Humphries et al., 2010), if 

CMFsarecarrier-frequencydependent, thensubcorticalspreadofexcitationacrossthetonotopicgradient 

(likely initiated at the level of the basilar membrane) may have an equivalent ‘cortical spread of 

modulation’ effect, where the peripheral spread of excitation along the tonotopic gradient spreads 

modulationacross nearby CMFs. This spreadofmodulation might then result insimilarlevel-dependent, 

nonlinearinteractions to thoseobservedby Xiang etal. (2013), suchthat CMFtuningwouldbroadenwith 

increasing sound level to cause ‘simultaneous modulation masking’, much as the peripheral auditory 

filters cause simultaneous energetic masking (Brungart et al., 2006). 

Previous psychoacoustic studies have suggested that intensity discrimination is carrier frequency 

dependent; intensitydiscrimination varies as a function of stimulusduration (Watson and Gengel, 1969) 

and as a function of sound level (e.g., Jesteadt et al., 1977; Long and Cullen, 1985; Ozimek and 

Zwislocki, 1996). However, these findings have not been systematically verified or related to cortical 

processing of stimulus contrast. In keeping with the approach in Chapter 2, more recent studies have 

suggested a key role of contrast in detecting changes in sound intensity (Oxenham, 1997; Plack et al., 

2006; Gallunand Hafter, 2006; Simpsonand Reiss, 2013). Here, weinvestigatedmodulationfiltersusing 

anovel behavioural methodderivedfrompsychoacoustics. Listenerswereaskedtodetect linearly-ramped 

increments (i.e., the just noticeable difference [JND]), in pure tone carriers, at effective modulation rates 
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between 0.5 and 33 Hz. Theserates spantherangeofprosodic(<5 Hz), syllabic (5 Hz) andphonemic(20 

Hz) rates commonlyfound in speech (Xiang et al., 2013; Drullman et al., 1994; Shannon etal., 1995). By 

varyingthe level and frequencyof thecarriersignal, wecharacterizedthetuningof themodulationfilters 

as a function of carrier frequency and level (in termsof modulation ratesensitivity and modulationdepth 

sensitivity). Ourdatasupport theview, assuggestedby Dingand Simon(2013) andimpliedbyLakatos et 

al. (2013), that modulationfiltersaresystematicallydependentoncarrier frequency. Giventhatthecortex 

is known to be tonotopically organized (Humphries et al., 2010), this suggests that CMFs are similarly 

organized, in agreement with the well-established tonotopic map, and in support of the ‘dual stream’ 

model (Zatorre and Zarate, 2012). We also observe that modulation sensitivity changes as a function of 

soundlevel inamannerthatmaybeattributabletospreadofexcitationacross modulationfiltersassound 

level increases. In summary, our data suggest that the human auditorysystem is optimized to track rapid 

modulationsat high sound-frequencies and slowmodulationsatlowfrequencies, andsupportsamodelof 

cortical function based on tonotopically-organized modulation filters. 

 
 

3.2. Experiment 3.1  
 

As in Chapter 2, the prevailing experimental paradigm for assessing the intensity JND specifies a fixed 

listening level and an adaptively-varied increment size (Oxenham, 1997; Plack et al., 2006; Gallun and 

Hafter, 2006; Simpson and Reiss, 2013). However, dueto individual differences in auditoryphysiology, 

small changes in listening level produce large changes in the size of the intensity JND (e.g., Viemeister 

and Bacon, 1988) and, near threshold, themappingisbothextremelynonlinearandhighlyindividualized. 

When this method is applied toamediumsamplesize, even if individual listeners areextremelyreliable, 

the mean results for such a sample constitute a gross averaging(blurring) of subtle trends in the data that 

potentiallycharacterize modulation filter tuning. In previous studies (e.g., Jesteadt et al., 1977; Longand 

Cullen, 1985; Ozimekand Zwislocki, 1996), listeninglevelswerefixedrelativeto theabsolutethreshold 
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(i.e., sensation level – SL) for each listener in order to provide comparison between intensity JNDs at 

different carrier frequencies. This resultedin theobservation ofcarrier-frequencydependenceinthe JND 

as a function of SLbut the findings werenot related to temporal integration (seebelow), amajor topic of 

more recent investigations (Oxenham, 1997; Plack et al., 2006; Gallun and Hafter, 2006; Simpson and 

Reiss, 2013). Here, we invert the traditional experimentalparadigmsuchthat listeninglevel isadaptively 

varied and the size of the increment is held constant (see Fig. 3.1). This normalizes between-subject 

variance caused by individual differences in absolute thresholds. 

As in Chapter 2, byassessing JNDsat different rampdurations, amodulationratesensitivityfunction 

is produced (Oxenham, 1997; Plack et al., 2006; Gallun and Hafter, 2006; Simpson and Reiss, 2013), 

characterizing the relative sensitivity of the modulation filter to different ramp (i.e., modulation) rates. 

From this function, tuning for the modulation filter at each carrier frequency can be estimated. For 

modulation filters tuned to low modulation rates (e.g., prosodic orsyllabic; 5 Hz or less), the modulation 

rate sensitivity function will show greatest sensitivity to the slowest ramps (1000 ms). For modulation 

filters tuned to higher modulation rates (e.g., near phonemic; 20 Hz or more), the modulation rate 

sensitivity function will show greatest sensitivity at the higher modulation rates. By testing at different 

heights of ramp (with a fixed ramp duration of 5 Hz effective modulation rate), modulation depth 

sensitivityfunctions can beproducedandlevel dependencein themodulationfilters can beprobed. If the 

tuningof modulation filters varies as afunctionof carrier frequency, level-dependent trends with carrier- 

frequencyshould beobserved. This is because, for a fixedmodulationrate, as carrier frequencyis varied 

some CMFs willbeoperatingin the tuned peakandother CMFs will beoperatingintheskirts.Therefore, 

this also allows us a window into possible spread-of-modulation effects. 

 
 

3.2.1. Inverted method 
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Detectionthreshold levels wereobtainedforup-down ramped incrementenvelopesaddedtothecentreof 

4 s long pure tone carrier-signals, for nine listeners. Listeners were presented with pairs of matched 4 s 

long tones, one of which (at random) contained a linear up-down increment. The listening level was 

started high, so that the increment was clearlyaudible, and thenvariedadaptivelyuntil thresholdlevelwas 

determined. If the subject correctly selected the tone with the increment the listening level was reduced, 

and, if incorrectly, the listeninglevel wasincreased. Thresholdswereestimatedbyaveragingthelistening 

level at several such decision rule points. 

By separately varying the frequency of the carrier and the size and duration of the increment 

envelopes, correspondingequal-JND-level contours were producedand, fromthesecontours, threshold- 

level functions of ramp duration and of ramp size, i.e., modulation rate sensitivity and modulation depth 

sensitivity functions obtained. Parametric analysis of the data was employed to reveal systematic trends 

with carrier frequency. 

Two experiments wereconducted. Thefirst experimentwasdesignedtoillustratethemodulationrate 

sensitivity tuning of modulation filters as a function of carrier frequency. The second experiment was 

designed to illustrate theassociated modulation depth sensitivity tuningwithin the modulation filters for 

modulations at approximately 5 Hz (i.e., syllabic rate). In experiment 3.1 (the temporal experiment), the 

size of the intensity increment was fixed at 3 dB. Half-ramp duration of the increment was set to either 

[15, 50, 100 or 1000] ms for each block (equivalent to a modulation rates of [33, 10, 5 or 0.5] Hz 

respectively). This produced a set of four contours, from which modulation rate sensitivity functions of 

increment rampdurationcouldbeextracted. Inexperiment 3.2 (the magnitude experiment), theincrement 

size was set to either [1,2 or 3] dB for each block, and half-ramp durations of 100 ms (correspondingto a 

modulationrateofapproximately 5 Hz) wereused for each respective block. This producedaset ofthree 

contours, fromwhichmodulation depthsensitivityfunctionscouldbeextracted. Fromhereonwards, we 

refer to therampdurationsof [15, 50, 100 or 1000] msin termsof theequivalent modulation rates of[33, 

10, 5 or 0.5] Hz respectively. 
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Apost-hoc analysis was performedquantifyingsystematic trends in theshapesofthemodulationrate 

sensitivityand modulationdepthsensitivityfunctions, andacorrelationanalysis was employed to assess 

correlations in the two measures that may be attributable to the properties of the modulation filters. 

 
 

3.2.2. Near Miss 
 

Aprerequisiteofthis methodis that, fora given increment, detectionimproves withincreasesin listening 

level. Weber’s Lawstatesthat theratioof intensityto theintensity JNDshouldbeconstant (Weber, 1846) 

andhasbeenshowntobeapproximatelytrue forwidebandsignals(Miller, 1947). However, inthecaseof 

pure tones, Weber’s Law has been shown not to hold (e.g., Viemeister and Bacon, 1988) and the 

characteristic steady (monotonic) decrease in the JND with increasing sound level is referred to as the 

‘near-miss to Weber’s Law’(McGill and Goldberg, 1968). The near miss necessary for the method has 

been shownto hold forcontinuous 1-kHzcarriers upto 85 dBSPL, correspondingtoaround 80 dBabove 

threshold (Viemeister and Bacon, 1988). In this study, by using relatively large increments, we limit our 

investigation to the range between threshold and around 40 dB above threshold. However, it should be 

noted that non-monotonicity was observed for gated 1-kHz signals above 90 dB SPL in the above- 

mentioned study (Viemeister and Bacon, 1988), and that the near-miss is less well defined in (or even 

absent from) studies employing noise maskers (e.g., Peters et al., 1995). 

 
 

3.2.3. Experiment 3.1: Stimuli 
 

Stimuliweregenerateddigitallyat 24 bit resolution.Apairof Beyerdynamic DT100 isolatingheadphones 

was used to present the stimulus to listeners directly from a computer, at a sampling rate of 44,100 Hz. 

Presentation was diotic (identical in both ears). The carriers were gated on and off using 10 ms raised- 

cosineramps. Inbothexperiments, detectionthreshold levels wereobtainedat carrier frequenciesof[62, 

125, 250, 500, 1000, 2000, 4000, 5650, 8000, 11300, 16000] Hz. Pure tone (sinusoidal) carriers were 
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presented inblocksof JND= 1, 2 and 3 dB, where JNDisdefined as 10log10(1+∆I/I), I=intensity. Carrier 

frequency was varied inside blocks. Symmetrical ramped envelopes were added to the tone carriers. A 

ramped envelope for agiven duration consisted of a linear increment ramp of that duration, immediately 

followed by a linear decrement ramp of the same duration. The ramp envelopes were located in the 

temporal centre of the 4 s long carrier. The increment was set to a fixed value within any given block. In 

the temporal experiment, linear up-down ramped incrementswitheffectivemodulationratesof[0.5, 5, 10 

or 33] Hz were imposed upon 4-s pure tone carriers. Threshold levels were obtained for JND = 3 dB. In 

the magnitude experiment, 5 Hz modulations were used and threshold levels were obtained for JND = 

[1,2,3] dB. 

Therangeof JNDs waschosentoliewithin theknownmonotonicrange. Therangewas also limited 

to relatively large values of JND (>=1 dB) for the reason that very small values of JND at low and high 

carrier frequencies would have required listening levels beyond those possible with the available 

apparatus. 

 
 

3.2.4. Experiment 3.1: Procedure 
 

For each carrier frequency within a block, an adaptive three-down one-up, two-interval forced-choice 

(2IFC) procedure was employed which estimates the 79.4% correct identification (Levitt, 1971). Each 

pair of signals that constituted a trial, presented in random order, consisted of onecarrier that contained a 

ramp envelope and a second carrier that contained no ramp. The signal pairs were presented with silent 

inter-signal intervals of 0.5 s. At the start of the adaptive sequence, the initial listening level was set to be 

below the threshold of audibility. This was increased in steps of 10 dB until the subject indicated that the 

carriers (and increment) were clearly audible, at which point the adaptive procedure began. Three 

consecutivecorrect identifications of aramp resulted inareductioninthelisteninglevelandoneincorrect 

answerresulted inanincrease.Aftereach trial, subjects wereprovided correct/incorrect feedbackontheir 
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responses. Followingareversal, thestepsize(startingvalueof 10 dB) wasdividedbytwo.Areversalwas 

defined as an increase in listening level following a decrease, or vice versa. After 12 reversals, threshold 

level wastakenas thearithmeticmeanof thelast 10 reversals. Trials wereundertakeninblockslastingno 

longer than 20 minutes. Blocks were occasionally interrupted with a break period of 15 minutes, after 

which the block continued until either the next rest period or completion. Blocks and carrier-frequency 

orders within blocks were chosen at random. Prior to the test, each subject was provided with a brief 

demonstration to familiarize themselves with the interface and procedure. A training period was then 

undertaken whichwas terminatedwhen theperformanceofthesubjectwasjudgedtohavestabilized.The 

data from the training period were not included in subsequent analyses. 

 
 
 
 
 

 
 

Figure 3.1. Illustration of the inverted method. Pairs of pure tones are presented, one of which 

contains a ramped increment. The ramp size and duration is fixed throughout, whilst listening level is 

adaptively changed until the procedure converges on ~80% correct performance. When the listener 

correctlyidentifies thelocationof theramped intensityincrement the listeninglevel isreduced, otherwise 

the listening level is increased, depending on a rule (simplified here to a 1-up, 1-down rule). Correct 

responses (blue) result in decreased listening level and incorrect responses (red) result in increased 

listeninglevel. The~80% correct threshold level is estimatedbyaveragingthelisteninglevelmeasuredat 

several points where the adaptive procedure changes direction (‘reversals’). The step size of the level 

change reduced after a reversal and the procedure eventually converges on the ~80% correct point. 
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3.2.5. Experiment 3.1: Listeners 
 

Nineunpaidvolunteersubjects servedas listeners in theexperiments. Six malesubjectsandthreefemale 

subjects took part. The mean age of the subjects was 27 (min: 21, max: 33). All reported normal hearing 

and previous experience of participating in listening tests. All participants were naïve concerning the 

purpose of the test. 

 
 
 

3.3. Results of Experiment 3.1  
 

3.3.1. Modulation filter tuning is carrier-frequency dependent 
 

In order to characterize the tuningof the modulation filter, sensitivity measures must beobtained for two 

main properties; modulation rate (i.e., rate of change) and modulation depth (i.e., contrast). In the first 

experiment, we assessed the ability of listeners to detect a change in sound intensity (from a reference 

intensity), where thechange constituted anincrement ofadefined duration, quantifiedbythe‘half-ramp’ 

duration, i.e. the duration from the start of the ramp to its peak. As all ramps were symmetric in time 

around their peaks, changingthe duration of the ramp provides for aproxyof different modulation rates, 

i.e. faster ramps represent faster modulation rates and slower ramps represent slower rates. Effective 

modulationdepthwasheldconstantat 3dB, so that threshold levelswereobtainedbyassessingtheability 

of listeners to detect a 3 dB increment for effective modulation rates of [0.5, 5, 10 or 33] Hz for pure 

tones spanning the range 62 Hz to 16 kHz, i.e., encompassing much of the frequency range of normal- 

hearing listeners. Absolute sound level was adaptively varied according to the criteria described in the 

section 3.2 until ~80% performance was reached. 

Figure 3.2aplots group meanthreshold levelsas a functionofcarrier frequencyfor theninesubjects, 

for increments of 3 dB at effectivemodulationratesof [0.5, 5, 10 or 33] Hz. Eachdatapoint corresponds 

to themeanabsolutesound-level at which 80% performancewasreachedfor 3 dBrampsoftherespective 

modulation rate. The overall shape of these curves (equivalent to equal loudness-level contours e.g., see 
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Moore et al., 1997) is not greatly affected by ramp duration. However, the overall distance between the 

functions is smallest at the extremes of the carrier frequency range. 

Fig. 3.2b plots the same data as in Fig. 3.2a, but here as modulation rate sensitivity functions, where 

thedataare normalized to removethe effect of absolute threshold. Themain effect ofhalf-ramp duration 

was verified to be significant in all modulation rate sensitivity functions (P<0.05, Friedman Rank Sum 

test), withtheexceptionofthosefor 62 Hzand 16 kHz. Thisis likelyexplained bythecombinedinterand 

intra-subject variability associated with extremes of carrier frequency and of half-ramp duration. 

Themodulationratesensitivityfunction ismonotonicforlowcarrierfrequencies, andnon-monotonic 

(U-shaped) forhigh carrier frequencies. Themonotonicnature of thefunctionsat lowcarrier frequencies 

is consistent withdata fromseveral contemporarystudies(e.g., Oxenham, 1997; Placketal., 2006; Gallun 

and Hafter, 2006) suggestingthat increments (or decrements) in soundintensityaredetectableintermsof 

a change in energy (with no reference to the rate of change). And the non-monotonic modulation rate 

sensitivity functions at high carrier-frequencies are consistent with data reported in Chapter 2 for similar 

ramps conveyed in noise (Simpson and Reiss, 2013), which suggest that increment detection might be 

determined, at least inpart, in terms ofachange in stimulus contrast.Agradual transitionfrommonotonic 

functionsat lowcarrier-frequencies tonon-monotonic functionsathighercarrier-frequenciesisevidentin 

the data, with a transition point around 4 kHz. This is in agreement with the findings of Watson and 

Gengel (1968), who demonstrated a faster integration time constant with increasing carrier frequency. 

However, in both cases, it seems likely that non-monotonic functions would be observed given longer 

durations on the order of minutes such as those employed in Chapter 2. 

A critical feature of this method is that the different durations of intensity ramp act as a proxy for 

modulationrate; short ramps correspondto fast rates and longramps to slow. Bymeasuringthe listening 

level at whichthe 80% performancewas achieved for thevarious effectivemodulationrates, weobtained 

ameasureof the sensitivityof themodulation filter to modulation at each effective rate, i.e. a modulation 

rate sensitivity function. Amonotonic function implies increasing sensitivity to decreasing rates. Anon- 
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monotonic function implies that peak sensitivity is within the range of rates tested. The centre frequency 

ofthemodulationfiltercorrespondstothemodulationrateatwhichit ismost sensitive. Bymeasuringthe 

regression slope(G) ofeachmodulation rate sensitivityfunction, weobtainedameasureofhowwell our 

range of modulation rates captured the centre frequencytuning of the modulation filter at a given carrier 

frequency. This provides a crude proxy to centre frequency tuning. It should be noted that G does not 

quantify a curve fit to the modulation rate sensitivity function, but rather is a means of quantifying how 

well thepeakof themodulation filter is centrallycapturedbythefunction, i.e., G is informative as tohow 

well the modulation rates represented by each filter are arrayed around the tuned peak. Thus, G = 0 

indicates a modulation filter tuned to a carrier frequency at the centre of the function, G < 0 indicates a 

filter tuned to the right of the function’s centre and G > 0 a filter tuned to the left of the function’s centre. 

Fig. 3.2cshows an interpretation ofthedata interms of illustrative modulation-filters, corresponding 

to themodulation rate sensitivityfunctions, whichillustratevariationinmodulationfiltercentre-frequency 

for two examplemodulationratesensitivityfunctions; at lowcarrier-frequencies there is a large, positive 

valueof G, meaningthat modulation filters aremostsensitivetoslow(i.e., near-prosodic) modulations.At 

highcarrier-frequencies there is asmaller (even negative) valueof G, meaningthat themodulationfilters 

are most sensitive to faster (i.e., near-phonemic) modulations. Fig. 3.2d plots G as a function of carrier 
 

frequency. Although it is not a clear trend, the decrease of G with increase in carrier frequency confirms 

the trend for increasingly high-rate tuned modulation filters along the tonotopic gradient. The narrower 

dynamic range over which 80% performance was achieved at the extremes of the tonotopic gradient 

indicates these modulation filters to be relatively broadly tuned, whilst the wider dynamic range at the 

mid-to-high carrier frequency end indicates these modulation filters to bemore selective for modulation 

rate. 

The data plotted in Fig. 3.2 can be summarized as follows. At low carrier frequencies, modulation 

filters appear to be most sensitive to modulation rates that are near-prosodic (i.e. ~1-5 Hz), but towards 

higher carrier frequencies the filters appear to be more sensitive to near-phonemic (~20 Hz) modulation 
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rates. Within the range of modulation rates represented in our data, at low carrier frequencies the 

modulationfiltersappear tobelowpass andat highercarrier frequenciesthefiltersappeartobepassband. 

However, ourdata donotprecludethepossibilitythat, if slowermodulationrateswererepresented in the 

function, pass band tuning might be observed for low carrier frequencies. 

 
 
 
 
 

 

Figure 3.2a. Modulationrate sensitivitycontours. Groupmeanthreshold-levelsasafunctionof 

carrier frequencyfor theninesubjects, for increments of 3 dBateffectivemodulationratesof[0.5, 5, 10 or 

33] Hz. Each data point corresponds to the mean absolute sound-level at which 80% performance was 

reached for 3-dB ramps of the respective durations. 
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Figure 3.2b. Modulation rate sensitivity functions.  b plots the same data as in Fig. 3.2a in the 

form of modulation rate sensitivity functions, where the data are normalized to remove the effect of 

absolute threshold. Colour scale from red to blue indicates low-to-high carrier frequency. Error bars 

indicate 95% confidence intervals. Modulation rate sensitivity functions become increasingly non- 

monotonic with increase in carrier frequency, indicating a smooth transition in modulation tuning from 

near-prosodic to near-phonemic rates along the tonotopic gradient. 
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Figure 3.2c/d. G as a function of carrier frequency. c illustrates our interpretation of G for two 

example modulation rate sensitivity functions; large, positive values of G at low carrier-frequencies, 

indicatingmodulationfilterstobemostsensitive toslow(i.e., near-prosodic) modulations.Athighcarrier 

frequencies there is a smaller (even negative) value of G, meaning that the modulation filters are most 

sensitive to faster (i.e., near-phonemic) modulations. d plots G as a function of carrier frequency. 

 
 

3.3.2. Modulation filter tuning is listening-level dependent 
 

In the second experiment, modulation rate (half-ramp duration) was held constant and the effective 

modulation depth varied by varying the height of the ramp, to produce a measure of modulation depth 
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sensitivity. These data were then assessed with respect to sensitivity to modulation rate from the first 

experiment. 

Figure 3.3aplotscontours showinggroupmean thresholdlevelsat eachcarrierfrequencyforthenine 

subjects, for increments of [1,2,3] dB at effective modulation rates of 5 Hz. Each data point corresponds 

to the mean absolute sound-level at which 80% performance was reached for 1, 2 or 3 dB ramps, 

respectively. In general, the contours of both experiments (Fig. 3.2a & 3.3a) resemble equal loudness 

contours, and hence it is reasonable to assume that a major factor in their shape is theouter- and middle- 

ear transfer function. This issupportedbyacorrelationbetween Glasbergand Moore’s (2002) combined 

outer-and-middle ear filter and the average contour from all the data of the temporal and magnitude 

experiments (r=0.96, p=3.6x10-6, Pearson two-tailed). 
 

The contours of the data in Fig. 3.3a are not parallel, but are most widelyspaced in the middle of the 

carrier-frequency range, and theoverall dynamic range of the functions is again smallest at the extremes 

of the carrier-frequency range. This indicates that modulation depth sensitivity varies with level most 

steeply in the middle of the carrier-frequency range. Fig. 3.3b removes (by normalization) the effects of 

theabsolutethreshold, allowingtheformofthefunctionstobecompareddirectly.The curvedfunctionsat 

low carrier-frequencies are comparable to theequivalent functions previouslyreported (e.g., Viemeister 

and Bacon, 1988). Thus the results of previous studies most likely reflect the tuning of the relevant 

modulation filter at a particular carrier frequency and level. The error bars in Fig. 3.3b represent 95% 

confidence intervals. Main effect of JND size was verified to be significant in all functions (P<0.05, 

Friedman Rank Sum test), with the exception of the modulation depth sensitivity function at 62 Hz. As 

previously, this is likely a result of the combined inter and intra-subject variability associated with 

extremes ofcarrier frequencyand of increment size. At highcarrier-frequencies, the functionsare almost 

perfectly linear (log-log axes) and so could be predicted with a power law. There is a general trend 

towards power-law type functions as carrier frequency increases, with a transition after 4 kHz. 

Furthermore, bycomparingthedatafor 62 Hzand 16 kHzwithnearlyidentical absolutethresholdlevels 
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at 1 dB (Fig. 3.3a), differences in theshapesofthe functionsbetweenlowandhighcarrier-frequenciesare 

most apparent. The same comparison is also evident for 125 Hz and 11.3 kHz. 

At high carrier-frequencies, as the JND is increased (Fig. 3.3b) the listening level (at threshold) is 

reduced proportionally. This suggests that tuning is relatively invariant to sound level. However, at low 

carrier-frequencies, as the JNDisincreased thelistening level (at threshold) is not reducedproportionally, 

suggesting that tuning changes with sound level. In order to assess the relative changes in tuning of 

modulationfiltersat different listeninglevels, gradientsforthelevel functionsof Fig. 3.3bwerecalculated. 

For each function, ∆G was calculated as the change in slope between threshold levels for increments of 

[1,2] dB and [2,3] dB (where azero valueof ∆G indicates power-lawtype functions). Fig. 3.3cplots ∆G 

as a function of carrier frequency and shows a steady rise of ∆G with increase in carrier frequency. Fig. 

3.3d plots∆G as a function of G (a proxyto modulation filter centre frequency), including aquadratic fit 

to the data (dashed line). It can be seen that G and ∆G are highly correlated (r=-0.945, p<5x10-7, 

Spearman two-tailed). 

Onewayofexplainingthetrendsshownin Fig. 3.3cand 3.3dmight bethespread-of-modulationthat 

would result from tonotopically organized CMFs. Fig 3.3e shows a cartoon illustration of this 

interpretation of∆G for twoexamplemodulationdepthsensitivityfunctions. Nearabsolutethreshold(i.e., 

for JNDs of 3dB) peripheral spread of modulation plays little role, meaningthat codingof the syllabic (5 

Hz) modulation at a given carrier frequency is dependent only on the modulation filter located on the 

tonotopic gradient according to carrier frequency. However, for smaller JNDs level is increased and 

peripheral spreadofthecarriercauses spreadofmodulation. Spreadofmodulationcausestherecruitment 

of modulation filters that are more or less sensitive to syllabic (5 Hz) modulation. For high frequency 

carriers (blue), the basal modulation filter is most sensitive to the syllabic (5 Hz) modulation, and so 

recruitment of less sensitive filters (by peripheral spread of modulation) has little influence on 

performance. However, for low-frequencycarriers (red), the apical modulation filter is insensitive to the 
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syllabic (5 Hz) modulation and so at high levels (i.e., 1 dB JND) performance is enhanced by more 

sensitive modulation filters recruited towards the basal end of the tonotopic gradient. This enhancement 

falls awayaslevel is reducedandhenceproduces thecurved functionsseen towardstheapical endof the 

tonotopicgradient. Therefore, small values of∆G (i.e., athighcarrier-frequencies) indicate little effect of 

spread-of-modulation and large values of ∆G (i.e., at low carrier-frequencies) indicate spread of 

modulationeffects. Followingthis interpretation, the steadyriseof∆G with increaseincarrier frequency 

indicates atrenddescribingsteadydecreaseinspread-of-modulationeffectsacrossthetonotopicgradient. 

The correlation shown in Fig. 3.3d provides both a cross validation for both proxy measures of 

modulation filter tuning, and support for our interpretation of an interaction between modulation-filter 

tuningandperipheral spread-of-modulationeffects. However, itshouldbenotedthatspreadofmodulation 

is not the only mechanism that may be invoked to explain ∆G. Rather spread of modulation is a 

mechanism we would expect to see evidence of, based on the suggested cortical tonotopy, and hence is 

the most plausible interpretation given the correlation with G. Alternative explanations for ∆G might 

include input/output nonlinearities which are carrier frequency dependent or CMF bandwidths which 

change with sound level in a carrier frequency dependent way. 
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Figure 3.3a. Modulation depth sensitivity contours . a plots contours showing group mean 

threshold levels at each carrier frequency for the nine subjects, for increments of 1 (red circles), 2 (blue 

triangles) or 3 (green squares) dB at an effective modulation rate of 5 Hz (i.e., syllabic). Each data point 

corresponds to thegroupmeanabsolutesound-level at which 80% performancewas reachedfor 1, 2 or 3 

dB ramps respectively. 
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Figure 3.3b/c/d. Modulation depth sensitivity funct ions . b plots the same data as in Fig. 3.3a, 

normalized to produce modulation depth sensitivity functions. The error bars represent 95% confidence 

intervals. Colourscale(right) from red to blue indicates low-to-high (apical to basal) carrier frequency. c 

plots ∆G as a function of carrier frequency. d plots ∆G as a function of G (a proxy to modulation filter 

centre frequency), including aquadratic fit to the data(dashed line). e showsan interpretation of the data 

in terms ofacartoonillustration ofthe interpretation of∆G for twoexamplemodulationdepthsensitivity 

functions. 

 
 

 

Figure 3.3e. Interpretation of ∆G. e shows an interpretation of the data in terms of a cartoon 

illustration of the interpretation of ∆G for two example modulation depth sensitivity functions. 
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3.4. Chapter Summary  
 

In this chapter we have provided evidence that human modulation filter tuning is both carrier 

frequency and level dependent. Our data suggest that CMFs are tonotopic andthat thehuman 

auditory system is optimized to track rapid (phonemic) modulations at high carrier frequencies 

and slow (prosodic) modulations at low carrier frequencies. We have suggested, based on 

evidence of modulation filter level dependence, that peripheral spread of excitation is likely to 

result in ‘spread of modulation’ by spread-of-carrier between CMFs. Furthermore, our data 

suggests systematic (tonotopic) variation in underlying cortical neuronal physiology. Our data 

and conclusions provide support for the cortical speechprocessingstrategysuggestedby Ding 

and Simon (2013) and confirmation in humans of the findings of Lakatos et al. (2013) in 

monkey CMFs. Carrier frequency and level-dependent tuning of CMFs may haveimplications 

for the cocktail party problem and appear consistent with the ‘dual stream’ hemispheric model 

suggested in music neuroimaging studies (Zatorre and Zarate, 2012). In the next chapter, the 

selectivity characterised in this and the previous chapter is put in the context of adaptation. 
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Chapter 4: Selective Adaptation  
 

Adaptation to the statistical distribution of sounds has been independently 

reported in neurophysiologicalstudiesemployingprobabilisticstimuluspara- 

digms in small mammals. However, the apparent sensitivity of the mamma- 

lian auditory system to the statistics of incoming sound has not yet been 

generalized to task-related human auditory perception. Here, we show that 

human listeners selectively adapt to novel sounds within scenes unfolding 

over minutes. Listeners’ performance in an auditory discrimination task re- 

mains steady for the most common elements within the scene but, after the 

first minute, performance improves for rare (oddball) sound elements, at the 

expense of rare sounds that are relatively less odd. Ourdataprovidethefirst 

evidence of enhanced coding of oddball sounds in a human auditory dis- 

crimination task and suggest the existence of an adaptive mechanism that 

tracks the long-term statistics of sounds and deploys coding resources ac- 

cordingly. 
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4.1. Central Auditory Adaptation  
 

Formanyspecies, survivaldependsontheabilitytoencodethecurrentsensoryscenewithahighdegree 

of accuracy, whilst remaining alert to novel events in the environment (Bregman, 1990; McDermott, 

2009). Thesetwodemands appear in conflict in terms of theircall onneural resources.Adaptationto‘en- 

hance’representationofbothcommon (Dean et al., 2005, 2008; Watkins and Barbour, 2008; Wen et al., 

2009; Rabinowitz et al., 2011; Sadagopan and Wang, 2008; Barbour, 2011; Jaramillo and Zador, 2011; 

Walker and King, 2011) and rare (Ulanovsky et al., 2003, 2004; Nelken, 2004; Perez-Gonzalez et al., 

2005; Malmierca et al., 2009; Yaron etal., 2012) sounds hasbeenreportedinneurophysiologicalstudies, 

seeminglyin the samebrain centres and employing similar probabilistic stimulus paradigms. Howthen 

does sensitivityto thestatistical distribution ofsounds manifest insensitivityto bothhighandlowproba- 

bility events? 

In order to assess neural sensitivity to the statistics of sounds, Dean et al. (2005, 2008) introduced a 

probabilistic paradigm in which stimulus intensities were selected according to distributions featuring 

low- andhigh-probabilityregions (LPRs and HPRs). We employedasimilarparadigminwhichlisteners 

werepresentedwiththreevariantsofastimulus, oneofwhichoccurred withhighprobability(80%) and 

the other two with low probability (10% each). Stimuli consisted of two sounds (noise bursts). One 

presentation of the stimulus, followed by a response, constituted a trial. After hearing the stimulus, the 

subject wasaskedtoreport “which soundwas louder?”, indicatingtheir responsebypressing 1 or 2 on a 

keypad. In thefirst experiment, the threestimulus variants differed in terms oftheiroverall intensity(35, 

55 or 75 dB SPL). In the second experiment, the three variants differed in terms of the inter-sound inter- 

val (ISI: 350, 700 or 1050 ms) and were fixed at 55 dB SPL. 
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4.2. Experiment 4.1: Methods  
 

The overall method was broken down into a two-stage procedure. The first, or calibration, stage deter- 

minedthejust-noticeabledifference(JND) for intensityfor pairs ofsoundsateachpossibleintensityand 

ISIgenerating, ineachcaseand for each listener, the intensitydifferenceforafixed a-priori probabilityof 

success in the discrimination task (~80%). The second, probabilistic, stage presented the listener with 

three different stimuli, each set to the sound-level JNDs determined in the calibration stage, and stimuli 

occurring with a-priori probability within a given epoch (Fig. 4.1). 

 

 

 
 

Figure 4.1: Stimulus probability. a Ineachof twoexperiments, listenerswerepresented with 1000 

calibrated trials. Eachtrialwas selected fromthreepossiblestimuliaccordingto a-priori distributionsthat 

changed before each 100-trial epoch. The three stimuli consisted of changes in different sound features 

(intensityin experiment 4.1, ISIinexperiment 4.2). Within anepoch, oneofthethreestimuliwasselected 

with a-priori probability of 80% (high probability stimulus, red) and the other two versions were each 

selected with 10% probability(lowprobabilitystimulus, blue, green). b plots anexampleepochconsist- 

ing of 100 stimuli selected at random according to the probabilities described in panel a. 

 

 

4.2.1. Experiment 4.1: Stimuli and task 
 

Listeners discriminated intensityof pairs of 50 msburstsofwidebandnoise(20 Hz– 20 kHz), gatedwith 

5 ms raised-cosine rampedenvelopes andseparated byasilent ISI. Oneof thenoiseburstswasrandomly 

selected to be louder than the other and the task (in each trial) was to indicate on a keypad which sound 



1-109: 63 

 

 

(of thepair) waslouder. Presentationofeach newtrialfollowedasubject’s registration of theresponseto 

theprevioustrial. Directlyafter the responsewas entered, subjectswereprovidedcorrect/incorrect feed- 

back. Each noise burst was generated randomly prior to presentation. In the first experiment, the root- 

mean-squared (rms) sound pressure level (SPL) was 35, 55 or 75 dB and the ISIwas fixed at 350 ms. In 

the second experiment, the rms SPL was fixed at 55 dB and the ISI was 350, 700 or 1050 ms. Noise 

bursts were generated digitally at 24 bit resolution. Beyerdynamic DT100 isolating headphones were 

usedtopresentthestimulus(diotic) to listeners directlyfromacomputer, atasamplingrateof 48,000 Hz. 

 

 
4.2.2. Experiment 4.1: Calibration procedure. 

 
For each of the three possible stimuli forwhich intensity JNDs wereobtained (35 dB, 55 dB, 75 dB), an 

adaptivethree-down one-up, two-interval forced-choiceprocedurewasemployedtoestimatethepointof 

79.4% correct identification (Levitt, 1971).At the start of theadaptivesequence, thesizeof the intensity 

differencewas set to 8 decibels (dB). Threeconsecutivecorrect responses in trials resultedin areduction 

in the size of the intensity difference and one incorrect response resulted in an increase. Following a re- 

versal (an increase in intensitydifference followingadecrease, or vice versa), thestepsize(startingvalue 

of 4 dB) wasdivided bytwo. Minimumstep sizewaslimitedto 0.1 dB. After 20 reversals, theestimated 

JND was taken as thearithmeticmeanof the last 10 reversals. Thethreeruns, correspondingto thethree 

stimuli, were conducted in a block lasting no longer than 20 minutes. Within-block run order was ran- 

dom. Each listenercompletedoneblock. Theslowlyconvergingadaptiveprocedurewasdesignedtotake 

around 5 minutes per run, allowingsufficient timefor long-term adaptation to converge prior to theulti- 

mate estimate of JND being acquired. 
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4.2.3. Experiment 4.1: Probabilistic procedure. 
 

In the second, probabilistic, stage, listeners were presented with a block of 1000 individually calibrated 

stimuli (35, 55, 75 dB), wheretheintensitydifferenceforeachstimulus wastheestimated JNDobtained 

from theprevious calibration procedure. Unbeknownst to the listeners, the 1000 trials were divided into 

100-trial epochs. Within an epoch, eachtrial was selected fromthethreepossiblestimuli accordingto a- 

priori distributions (Fig. 4.1a), whereonestimulus (i.e. apairofnoisebursts) wasselectedat 80%proba- 

bilityand theother two at 10% probabilityeach (Fig. 4.1b). Overan epoch, this generated three possible 

distributions for the three possible stimuli: A: [10%:10%:80%], B: [10%:80%:10%] and C: 

[80%:10%:10%](asdepictedin Fig. 4.2a-c/4.3a-crespectively). 10 consecutiveepochswerepresentedin 

a block. For each epoch, one of the three distributions was chosen with equal likelihood. This was per- 

formed in the following manner: three of each kind (A,B,C) were included plus one (of A/B/C) at ran- 

dom, for a total of 10 epochs. Theepoch order was randomlyshuffledandanypermutationsinwhichtwo 

sequentialdistributions of the samekindoccurred (e.g., ACCBABACBC) wererejectedandreshuffled. 

Each listener completed one block (of 10 epochs), taking around 30 minutes. 

 
 
 

4.2.4. Experiment 4.2 
 

Thecalibrationandprobabilisticprocedures ofexperiment 4.1 werereplicatedforexperiment 4.2, where 

the three possible stimuli had ISIs of 350, 700 or 1050 and stimulus level was fixed at 55 dB SPL. 

 
 
 

4.2.5. Experiment 4.1, 4.2: Participants 
 

Ninenormal-hearinglisteners participated (first experiment meanandstandarddeviation: 29 ±4 years, 1 

female, secondexperimentmeanandstandard deviation: 30 ± 5 years, 2 female). Sevenofthelistenersin 

experiment 4.2 also participated in experiment 4.1. 
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4.3. Results  
 

Ineach experiment, the threepossible a-priori distributions provide three contextswithin whichtrialsof 

eachstimuluscan beassessed. Foreach listener, continuouspercent-correct functions, foreachstimulus 

in each context (3x3), were calculated using a 40-trial selective (rectangular) sliding-window collapsed 

across epochs (N=10). These functions are plotted as mean ± standard error in the mean (SEM). Each 

functionwastestedforsignificant overall fluctuationsinperformance(Friedman Rank Sumtest, where χ2 

is given as a measure of effect size), and for fluctuations in the difference in performance between each 

pair of stimuli within a given context (Friedman Rank Sum test on the derivative). The latter derivative 

test identifies fluctuations that indicate selectivity and/or prioritization between stimuli. The Durbin- 

Watson test statistic (Durbinand Watson, 1950, 1951, 1971) acrossalldataofbothexperimentswasclose 
 

to 2 (mean: 1.93, SD:± 0.39) indicatingthatcorrection forserial correlationwasnotrequired. In addition, 
 

 
 

 
 

man test. This process was repeated n = 1,000 times, in each case, and the number of permutations that 
 

 
 

(count = c) to provide an estimated P-value (Pest = c+1/n+1) which we report in place of the P-value 
 

computed in the Friedman test. Correlations, computedonthegrand-averageperformancefunctions, are 

given with 95% confidence intervals (CI). Statistical tests that did not reach significance are denoted as 

not significant (N.S.). 

 
 

4.3.1. Experiment 4.1: Results 
 

From the calibration procedure, themean JND (± SD) were: 2.4 ± 1.1 dB, 2.5 ± 1.1 dB and 2.6 ± 1.6 dB 

for the 35, 55 and 75 dB stimuli respectively. Figure 4.2 plots mean performance (±SEM) for the three 

calibrated stimuli (35, 55, 75 dB) within eachpossiblecontext. Figure 4.2aplotsperformanceinthethree 

resulted in χ2 values that wereequal or larger (than that of theun-permuted Friedman test) were counted 

derwas randomlyshuffledforeachlistenerand therespective χ2 statistic was computedusingthe Fried- 

weconductedpermutationtestson each χ2 statistic. For thedataof each function that was tested, trial or- 
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possible stimuli when the 35 dB stimulus is selected at 80% probability. Figures 4.2b and 4.2c plot the 

samefor thethreepossiblestimuli whenthe 55- and 75 dBstimuli respectivelyareselectedat 80%prob- 

ability. 

For all three high-probability stimuli, performance shows little evidence of significant fluctuation 

(N.S., Friedman Rank Sum test), suggesting that adaptation, if it occurs, is rapid for common sounds 

(Dean et al., 2005; 2008). Indeed, it shouldbenotedthatourparadigm(includingthe low-pass effects of 

the 40-trial slidingintegrationwindow) practicallyprecludescaptureofsuchadaptation. In Fig. 4.2a, per- 

formance for low-probability stimuli (55 and 75 dB) is relativelysteady (but lower) until about halfway 

through the epochs when performance for the two stimuli starts to diverge, with performancefor the 55 

dB stimulus declining (N.S., Friedman Rank Sum test), and for the 75 dB stimulus increasing (χ
2(59) 

 

119.2, P< 0.05, Permutation Test) until it surpasseseventhat for the 35 dB(HPR) stimulus. 

Overthewholeepoch, performanceforlow-probabilitystimuliat 55 and 75 dBis inverselycorrelated (r = 

-0.88, P< 0.01, 95% CI [-0.79, -0.92]) and diverges around the ‘breakpoint’at 

~30 trials: performance deteriorates for the 55 dB stimulus (r = -0.79, P< 0.01, 95% CI [-0.67, -0.87]) 
 

while performance for the 75 dB stimulus improves (r = 0.91, P < 0.01, 95% CI [0.85, 0.94]). Further 

evidence of selectivity/prioritization is seen by examining the derivatives. Performance for the 75 dB 

stimulus shows some weak evidence of changing relative to that for the 55 dB stimulus (χ2(59) 94.7, 

Friedman Rank Sumtest onthederivative betweenthe stimuli; P < 0.1, Permutation Test) and relative to 

the 35 dB (HPR) stimulus (χ2(59) 140.6, Friedman Rank 

Sumtestonthederivativeofperformancebetweenthestimuli; P < 0.05, Permutation Test). 

 
In Fig. 4.2b, when the HPR corresponds to the 55 dB stimulus, performanceshows little evidenceof 

significant fluctuation foranystimulus (N.S., Friedman Rank Sumtest). In Fig. 4.2c, when the HPR cor- 

respondsto the 75 dBstimulus, performancefor the low-probabilitystimuli is similar to that of Fig. 4.2a. 

Performance for the (low probability) 35- and 55 dB stimuli is inverselycorrelated (r = -0.47, P= 0.02, 

95% CI [-0.24, -0.65]) and splits after the breakpoint. Performance for the 55 dB stimulus deteriorates 
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(N.S., Friedman Rank Sum test), while performance for the 35 dB stimulus improves (N.S., Friedman 

Rank Sum test) gradually (r = 0.63, P < 0.01, 95% CI [0.45, 0.76]). 

Thesedata are consistent with theexistenceof an adaptivemechanism that tracks the statistics of the 

stimulus, refining predictions over timescales of around one minute. For the ‘most odd’stimulus, when 

the HPR correspondsto the 35- and 75 dBstimuli performanceimproves (at theexpenseofthealternate 

low-probability stimulus) after around a minute, suggesting the slow build-up of oddball selectivity. 

When the HPR corresponds to the 55 dBstimulus(Fig. 4.2b), however, neitheroftheothertwostimuliis 

‘more odd’thantheother (and the 55 dB stimulus lies at themean of thewholedistribution), and overall 

performanceissimilar forallstimuli. Thismeans that statistical evidenceforstimulusprioritizationisrel- 

atively weak. 
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Figure 4.2: Intensity discrimination accuracy chang ed over time for different intensity  

statistics . Plot of mean (±SEM) accuracyfor each stimulus (35, 55 or 75 dB) in different epochs. The 

colourcodedcorrelations(r-valuesshownbeloweachrespectivecartoondistribution) capturesignificant 

overall trends with time. For each epoch, correlations were also computed between the two respective 

low(10%) probabilityfunctions andare r-valuesarenoted(inblack) withbracket. Correlationvaluesare 

only given where significant (P < 0.01). a plots performance in epochs where 35 dB trials occur with 

80% probability. b plots performance in epochs where 55 dB trials occur with 80% probability. c plots 

performance inepochs where 75 dB trials occurwith 80% probability.Asterisks denotesignificant fluc- 

tuations in performance (P < 0.01, Friedman Rank Sumtest). Each trial corresponds to approximately 2 

seconds (mean trial time across both experiments: 2 seconds, SD: ± 0.3). 
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4.3.2. Experiment 4.2: Results 
 

From the calibration procedure, the mean JND (± SD) were 2.4 ± 0.9 dB, 2.3 ± 0.9 dB and 2.1 ± 0.4 dB, 

for the 350, 700 and 1050 ms stimuli respectively. Figure 4.3 plots mean performance (±SEM) for the 

three calibrated stimuli (350, 700, 1050 ms) within eachpossiblecontext. Fig. 4.3aplotsperformancefor 

the threepossible stimuli whenthe 350 msstimulusisselected at 80% probability. Figures 4.3band 4.3c 

plot thesamefor thethreepossiblestimuli whenthe 700- and 1050 msstimulirespectivelyareselectedat 

80% probability. 

Again, for all three high-probabilitystimuli, performance showslittle evidenceofsignificant fluctua- 

tion (N.S., Friedman Rank Sumtest), suggestingthat adaptation, if it occurs, israpidforcommonsounds. 

In Fig. 4.3a, performance for low-probability stimuli (700 and 1050 ms) is relatively steady until about 

halfway through the epoch when the two functions diverge abruptly, with performance for the 700 ms 

stimulus declining (χ2(59) 134.6, Friedman Rank Sum test; P < 0.01, Permutation Test), and 

weak evidence that the 1050 ms stimulus is increasing (χ2(59) 84.6, Friedman Rank Sumtest; P < 0.2, Per- 
 

mutation Test) until it surpasses that for the 350 ms (HPR) stimulus. Overthewholeepoch, meanperfor- 

mancefor low-probabilitystimuli at 700 and 1050 ms is inverselycorrelated (r = -0.8, P< 0.01, 95% CI 

[-0.7, -0.88]) and diverges around the ‘breakpoint’around 30 trials. The derivative provides further evi- 

denceofthisselectivity/prioritization. Performancefor the 1050 msstimuluschangeswithrespecttothat 

for the 350 ms stimulus (χ2(59) 176.5, Friedman Rank Sum test on the derivative of perfor- 

mance between the stimuli; P < 0.01, Permutation Test). 
 

In Fig. 4.3b, when the HPR corresponds to the 700 ms stimulus, performance for the low-probability 

stimuli (350 and 1050 ms) ispositivelycorrelated (r = 0.73, P< 0.01, 95% CI[0.58, 0.83]). Itdeteriorates 

earlyand thenrisesaroundasimilarbreakpoint to that observed in theotherdata. Thefluctuationsinper- 

formance onlyreach relatively weak significance for the 350 ms stimulus (χ2(59) 101.4, Friedman 

Rank Sum test; P < 0.1, Permutation Test), offeringsome weak evidence of oddball effects, but 

areapproximatelyparal- leled for the (correlated) 1050 ms stimulus indicating little evidence of 

prioritization/selectivity. 

In Fig. 4.3c, when the HPR correspondsto the 1050 ms stimulus, performanceforthelow-probability 
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stimuli is again inversely correlated (r = -0.94, P< 0.01, 95% CI[-0.9, -0.96]); For the 700 ms stimulus 

performancedeteriorates (χ2(59) 102.5, Friedman Rank Sumtest; P < 0.05, Permutation Test) gradually 

(r = -0.97, P< 0.01, 95% CI [-0.94, -0.98]), whilst there is weak evidence that performance for the 350 ms 

stimulus improves (χ2(59) 82.9, Friedman Rank Sumtest; P < 0.1, Permutation Test) with a similar 

gradient (r = 0.96, P< 0.01, 95% CI[0.94, 0.98]) andsurpasses performanceforthe HPR(1050 ms) stimulus. 

Again, thederivatives provide further evidenceofselectivity/prioritization; Performance for the 350 ms 

stimulus changes with respect to that for the 700 ms stimulus (χ2(59) 135.7, Friedman Rank 

Sumtestonthederivativeofperformancebetween thestimuli; P < 0.01, Permutation Test) and with re- 

spect to that for the 1050 msstimulus(χ
2(59) 124, Friedman Rank Sumtestonthederivativeof 

performancebetweenthestimuli; P < 0.05, Permutation Test).Also, there is weak evidence that 

performancefor the 700 msstimulus changes with respect to that for the 1050 ms stimulus (χ
2(59) 

105.8, Friedman Rank Sum test on the derivative of performance between the stimuli; P < 0.1, 

Permutation Test). 

 
Consistent with the experiment 4.1 assessing stimuli of different intensities, the inverse correlation of 

performance in low-probability stimuli is only evident when the high-probability stimulus is presented 

witheither low(350 ms) orhigh(1050 ms) ISI.Additionally, the low-probabilitystimulus furthest in ISI 

from the high-probability stimulus ISI is enhanced after the breakpoint at the expense of the competing 

low-probability stimulus. This further supports the notion that the auditory system prioritizes resource 

allocationin favourofthoselow-probabilitysounds mostdifferenttothehigh-probabilitysounds. Inboth 

experiments, the selective enhancement of low-probability “oddball” sounds emerges around trial 30, 

which equates to around 60 seconds into the epoch (mean trial time: 2 seconds, SD: ± 0.3). 
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Figure 4.3a/b/c: Accuracychanged over time for diff erent temporal statistics . Panels a -c 

plot mean(±SEM) accuracyforeachstimulus (ISI of 350, 700 or 1050 ms) indifferent epochs. Thecol- 

our coded correlations (r-values shown below each respective cartoon distribution) capture significant 

overall trends with time. For each epoch, correlations were also computed between the two respective 

low(10%) probabilityfunctions andare r-valuesarenoted(inblack) withbracket. Correlationvaluesare 

only given where significant (P < 0.01). a plots performance in epochs where 350 ms trials occur with 

80% probability. b plots performance in epochswhere 700 ms trials occur with 80% probability. c plots 

performance in epochs where 1050 ms trials occur with 80% probability. Asterisks denote significant 

fluctuations inperformance(P < 0.01, Friedman RankSumtest). Eachtrialcorrespondstoapproximately 

2 seconds (mean trial time across both experiments 4.1 and 4.2: 2 seconds, SD: ± 0.3). 
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Figure 4.3d: Power spectrum versus ISI . d plots example waveforms for pairs of 50-ms noise 

signals. Byvaryingthe interval (ISI) between two sounds, wevarytheeffectivemodulationpowerspec- 

trum. Theleft sideshows thewaveformswithdifferent ISIs and therightsideof thepanel showsthecor- 

responding envelope power-spectrum. 

 
 

4.4. Discussion  
 

We havedemonstrated inhumanlisteners acommonstrategyforprocessingthestatisticaldistributionsof 

soundsvaryingin intensityor timing. Sounds withthemostcommonlyoccurringintensities, orpresented 

withthemost commonlyoccurringintervals, arestronglyrepresentedthroughout. Selectiveenhancement 

ofnovel events thenappears toemerge after sometimewithin thehigh-probabilitycontext. Discrimina- 

tion performancefor low-probabilitysoundsthat aremostunlikethehigh-probabilitysoundsisenhanced 

at theexpense of discrimination in low-probabilitysounds that are most like the sounds heard with high 

probability. It is also striking that discriminationperformance in these “oddball” low-probabilitysounds 

cansurpassthat ofhigh-probabilitysounds (e.g., Fig. 4.3). Notetoo, thatwhilstprevious reportsofsensi- 
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tivity to “oddball” sounds indicate improved detection of these events (e.g., Slabu et al., 2012), here we 

demonstrate improved discrimination for low-probability events. 

At a phenomenological level, the adaptation evident in our data is consistent with the concept of per- 

ceptual learning (de Souza et al., 2013; Skoe et al., 2013). Perceptual learning is thought to reflect en- 

hancement of perception due to synaptic plasticity (which follows practice) and hence our data may re- 

flect rapid perceptual learning. More generally, the data are consistent with a process wherein listeners 

construct aninternal modeloftheacoustic input thatprocesses surprising, or“oddball” stimuli.Although 

there are several potential neural mechanisms that might underpin such adaptation, it is implied that the 

neural representation of the stimuli changes over time. 

 
 
 

4.4.1. Neural mechanisms 
 

Ourdataareconsistent withexperimental recordings fromsmall mammals inwhichfiringrates ofaudi- 

toryneuronsadapt to theunfoldingdistributions ofsoundintensity(Dean et al., 2005,2008; Watkins and 

Barbour, 2008; Wen et al., 2009; Rabinowitz et al., 2011; Sadagopan and Wang, 2008; Barbour, 2011; 

Jaramillo and Zador, 2011; Walker and King, 2011; Ulanovsky et al., 2003, 2004; Nelken, 2004; Perez- 

Gonzalez et al., 2005; Malmierca et al., 2009; Yaron et al., 2012). This feature of neural coding, which 

emerges at the level of the primary auditory nerve, improves coding (discrimination) of the most-likely 

occurring intensities in a distribution of sounds (Dean et al., 2008). As a population, midbrain neurons 

also showthecapacitytoaccommodatebimodal (withequal probability) distributionsofsoundintensity 

(Dean et al., 2005), suggestingthepossibilityof simultaneous adaptivecodingfor multiple sounds with 

different features.At boththemidbrain (Dean et al., 2008) and cortical (Ulanovsky et al., 2004; Yaron et 

al., 2012) levels, neurons demonstrateadaptationtimescalesontheorderofhundreds ofmillisecondsto 

tens ofseconds. Thebreakpoint inperformancearound 60 secondsisrelativelyclose to the time-scaleof 

long-termadaptationreported inthesestudies. Thistimescaleisalsoconsistent withtheresultsof Chap- 
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ters 2 and 3 using slowly ramped intensity increments and with brainstem-mediated ‘rapid learning’ 

(Skoe et al., 2013), suggesting a common role of long-term adaptation in humans. Ulanovsky et al.’s 

(2004) study in cats also demonstrated that cortical neurons adapt more quickly to high-probability 

sounds than to low-probabilitysounds, and that multipletimescales of ‘stimulus specific’adaptation oc- 

curredconcurrently. Thesemultipletimescales appearconsistentwiththefeaturesofourbehaviouralda- 

ta. 

Theadaptationtotemporal statistics implicit inourdata islessstraightforwardtoexplain, butneverthe- 

less is consistent with recent reports implicatingauditory cortex neurons in adaptivecodingof temporal 

intervals (Jaramillo and Zador, 2011). In both cases, the timing intervals may be considered in terms of 

(low) modulation rates. Emerging evidence suggests auditory cortex maintains a bank of independent 

cortical modulation filters (CMFs), each tuned to different (low) modulation rates (Xiang et al., 2013). 

CMFshavebeenimplicated in speechprocessing(Dingand Simon, 2013) andthedetection of intensity 

changes in Chapters 2 and 3. Contrastgainadaptationhasbeendemonstratedincorticalneurons, where- 

byfunctions describingneuronal firing rate versus sound level show gain adjustments to best match the 

intensityvariance of the stimulus(Rabinowitz etal., 2011). Combiningthesetwocorticalprocessingfea- 

tures, byassumingthat contrast and modulationprocessingoccurs bycommonmeans, aplausibleexpla- 

nation for adaptation to time intervals lies in the specificity of adaptation to particular CMFs. Our tem- 

poral stimuli can be considered in terms of the statistical manipulation of modulation energy (see Fig. 

4.3d) with respect to the rate at which energy is modulated. As shown in Fig. 4.3d, the ISIs of 350, 700 

and 1050 ms produce energyin theenvelopemodulations with fundamental frequencies ofaround 3, 2, 

and 1 Hz respectively, and would, therefore, maximally excite different modulation filters. The power- 

spectra in Fig. 4.3d alsodemonstratethat thealmostinstantaneousenvelopesgeneratesteadilydecreasing 

modulation energyin harmonics of the fundamental. Hence, it maybe that rate-selectivity of CMFs, as 

proxy selectors of ISI, combined with independent CMF (contrast) adaptation, underlies the adaptive 

coding of temporal intervals. 
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Selective adaptation tooddball soundsprobablyinvolves someform of interaction between adaptive 

effects (Ulanovsky et al., 2004; Dean etal., 2008; Yaron et al., 2012) andneuraltuningwidthsonsensory 

continua (see O'Connell et al., 2011). However, building adetailed biophysical model of this phenome- 

non is challenginggiventhepaucityofrelevant physiological data, andthevastrangeofpossiblecircuits. 

Simpson et al., (2014) described aphenomenological modelwhichtendedtosupport the ideaofadapta- 

tion mediated through a sideband inhibitory influence. 

 
 

4.4.2. Attention 
 

Our listenerswereinstructedtoattend eachandeverytrial, and confirmed(post-test) that theymadeeve- 

ryeffort to do so. Thenecessaryattention span(around 30 minutesonaverage) shouldnottaxanaverage 

adult. It might be argued that listeners’ attention was captured by, or directed to the “oddball” stimulus, 

and that top-down processing(e.g., of salience) could mediate such “oddball” selectivity. However, it is 

also plausible that the well-established low-level adaptive substrates can explain the data, and provide, 

even, an explanationofthenatureand substrates ofattention itself. Thiswouldrenderattentiondetermin- 

istic, makingit an involuntary statistical consequence of adaptive processing. In this scenario, ‘auditory 

boredom’wouldalsobeapredictableandinvoluntaryconsequenceoftheadaptiveprocessing. Attention 

has featuredprominentlyin investigationsof‘cocktailpartylistening’. Corticalentrainment(synchroniza- 

tion of neuronal duty-cycle with the envelope of the stimulus) has been suggested as one low-level sub- 

strate (Lakatos et al., 2013; Dingand Simon, 2013; Zion Golumbic etal., 2013). Andevenifentrainment 

is not a substrate, it is associated with and mediated by attention. Auditory neurons appear to exist in a 

state ofperpetual oscillation, between excitatoryand refractorystates, known as thedutycycle (Lakatos 

et al., 2013). Entrainment ofthe neuronal dutycycletoacommon stimulus modulation occurs whenthe 

refractoryperiod is brought forward in time byexcitation of the neuron (also referred to as phase-reset). 

Therefore, low-level adaptive processes described earlier are inherently implicated in theprocess of en- 
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trainment. Extrapolating further, the suggested adaptive-statistical filtering would directly mediate en- 

trainment and hence would mediate the putative substrate of attention. 

The sensitivity to “oddball” events demonstrated here might prove useful in exploiting the structural 

statistics ofspeechandperhaps evenmusic. Suchprocessingcould facilitatetheextractionofstatistically 

salient signals from within predictable noise (such as multi-talker babble, for example), and may even 

underpin higher-level statistical percepts (e.g., McDermott and Simoncelli, 2011; McDermott et al., 

2013). Furthermore, if suchadaptivecodingis afundamental, low-level feature oftheauditorysystem, it 

maybethat prosody, melodyand even the verystructure of language and musichaveevolvedto exploit 

such adaptive coding. 

 
 
 

4.5. Chapter Summary  
 

In this chapter we have provided direct evidence of adaptation in human auditory perception 

which combines the argumentation of Chapter 2 andtheselectivitydescribed in Chapter 3. We 

have also made the case that adaptation serves to enhance auditory representation of “odd- 

ball” sounds and have discussed some of the immediate implications for auditory perception. 

We have introduced a novel paradigm for studying adaptation in perception that may be ap- 

plied in manyconceivable permutations to furtherprobetheinteractionbetweenselectivityand 

adaptation. In particular, it remainstobeseenwhether thesameselectiveadaptationapplies in 

the tonotopic (frequency) axis. 
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Chapter 5: General Summary  
 

The main objectives of this thesis were to characterise selectivity and adap- 

tation in the human auditory system, and through this characterisation to 

provide some evidence of adaptation in human auditory perception. Novel 

methods were developed and data acquired that meets these objectives. In 

this final chapter we document the contributions of this thesis, includingnov- 

el methods and findings, and discuss these contributions in the context of 

the wider literature. This leads to discussion of possible directions of future 

research. 
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1.5. Contributions to Knowledge  
 

The main contributions to the body of knowledge made in this thesis include data on selectivity for 

modulation rate (Chapters 2, 3, 4) and on adaptation in human auditory perception (Chapters 4). These 

data have resulted in the development of several testable hypotheses about auditory form and function. 

Thisthesishas also yieldednovel psychophysicalmethods(Chapters 3 and 4) andacomputationalmodel 

(Chapter 2) that embody implicit hypotheses about the mechanistic nature of the auditory system. 

 
 

1.5.1. Main Findings 
 

Thecaseforadaptationinhumanauditoryperceptionhasbeenset out alongtwolines. Inchapter 2, psy- 

chophysical datafromas far backas 1928 was accountedforbyacentral excitationpatternmodelfeatur- 

ingadaptationto intensity. Theadaptationparameters estimatedbynumericaloptimisationof themodel 

are consistent with the observations of in-vivo adaptation. It was argued that this suggests that auditory 

intensitydiscriminationis limitedbycentralauditoryprocessingandmaintainedbyadaptiveprocesses. In 

chapter 4, psychophysicaldatawas presentedwhichdemonstratedthatlisteners’auditoryacuitychanged 

over time in response to the statistics of the stimuli. This data provided evidence of a general adaptation 

strategy for both intensityand temporal statistics that is broadly consistent with the adaptation observed 

in-vivoand provides thefirst evidenceofenhancementofhumanauditoryperceptionthroughadaptation. 

Therefore we have generalised, to human auditory perception, the adaptation by auditory neurons to 

sound statistics reported in neurophysiological studies involving small mammals (Dean et al., 2005, 

2008; Watkins and Barbour, 2008; Wen et al., 2009; Rabinowitz et al., 2011; Sadagopan and Wang, 

2008; Barbour, 2011; Jaramillo and Zador, 2011; Walker and King, 2011; Ulanovsky et al., 2003, 2004; 

Nelken, 2004; Perez-Gonzalez et al., 2005; Malmierca et al., 2009; Yaron et al., 2012). We have also 

provided some insight into the adaptive representation of common and rare sounds (Dean et al., 2005, 
 

2008; Watkins and Barbour, 2008; Wen et al., 2009; Rabinowitz et al., 2011; Sadagopan and Wang, 
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2008; Barbour, 2011; Jaramillo and Zador, 2011; Walker and King, 2011; Ulanovsky et al., 2003, 2004; 

Nelken, 2004; Perez-Gonzalez et al., 2005; Malmierca et al., 2009; Yaron et al., 2012). 

Knowledgeof theselectivityof thehuman auditorybrainhasalsobeenextended. Inchapter 2, selec- 

tivityfor modulation rate was used togeneralise thecentral auditorymodel and the human auditorysys- 

tem was shown to be insensitive to very fast and very slow modulations. In chapter 3, selectivity for 

modulation rate was shown to be carrier frequency dependent and it was hypothesised that the human 

auditorycortex features atonotopicallyarranged modulationfilterbank. Inchapter 4, selectivityforboth 

intensity and modulation rate was demonstrated. 

 
 

5.1.2. Hypotheses 
 

We have developed several explicit hypotheses about the auditorysystem. In chapter 2, it was hypothe- 

sised that central adaptation might play a critical role in human auditory discrimination. The case was 

madebymodellingdata for long-termsignalswhichwerearguedtoprovideconditionswhereadaptation 

shouldhaveconverged sufficientlythat the timeconstantsofadaptationcouldbeneglected.Theresultsof 

Chapter 2 tend to support the hypothesis that central adaptation affected intensity discrimination. 

In chapter 3 it was hypothesisedthatperipheral (cochlear) spread ofexcitationcouldaffect evidence 

of orthogonality of tonotopic and periodotopic axes in cortex. The data of Chapter 3 do not support the 

neuroimagingfindings (Baumann et al., 2011; Barton etal., 2012) oforthogonalityoftonotopicandperi- 

odotopic axes. Indeed, the spread-of-modulation hypothesis might predict that the high sound pressure 

levels employed in thosestudies couldhaveproduced sufficient peripheralspread ofexcitationsuchthat 

anytonotopicselectivitymight havebeenobliterated, leavingonlytheappearanceof orthogonality. The 

argument for ‘spread of modulation’given in Chapter 3 also has implications for thenonlinear CMFin- 

teractions described in Xiang et al. (2013). In particular, it remains to beseen whether these interactions 
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are level independent, or whether they are enhanced by increase in level (as would be predicted by the 

‘spread of modulation’idea of Chapter 3). 

In Chapter 4 thehypothesisof Chapter 2 wasextended. It washypothesized that intensitydiscrimina- 

tion could be affected by the statistics of the stimuli. This hypothesis was supported by the data. It was 

further hypothesisedthatsidebandinhibitorynetworks couldcauseselectiveadaptationto rare and unu- 

sual sounds. This led to speculationonthepossible rolesofsuchstatistical processinginspeechandmu- 

sic audition. 

In general, wehypothesisedthat psychophysical methodscouldprovideacutedatathatcouldpoten- 

tiallyreveal featuresof auditoryperceptionunavailabletocurrentneuroimagingmethods.Thefindings of 

Chapter 3 appear to bear this out in relation to the neuroimaging studies mentioned above. The findings 

of Chapter 4 also suggest that themethod might besensitiveenoughto yield further insights that maybe 

beyond the reach of current neuroimaging methods. 

 
 

1.6. General Discussion  
 

1.6.1. Object-based representation 
 

Theselectivityand adaptationcharacterised inthisthesishasimplicationsfortheprocessesresponsiblefor 

auditory object formation and for the top-down processes involved. By extending knowledge of the 

selectivityresponsible for feature-based representationintheauditorysystem, weprovideimplicationsfor 

object-based representations that appear an essential part of perception. The emergence of object-based 

representations in auditory cortex (Mesgarani and Chang, 2012; Pasley et al., 2012; Ding and Simon, 

2012, 2013; Shamma et al., 2011; Teki et al., 2013) suggests that theadaptationandselectivitydescribed 

in Chapters 3 and 4 might have direct impact on cortical object representation. In particular, it has been 

suggested that sound features sharing a common temporal envelope are fused in the auditory cortex 
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(Shamma et al., 2011; Teki et al., 2013; see Bregman, 1990). Therefore, whereselectivityand adaptation 
 

affect the feature-based representation they must also indirectly affect the recombination. 
 

Forexample, the results of Chapter 3 might implythat, if theperiodotopicmapisnotorthogonaltothe 

tonotopic map, some degree of difficulty with respect to object formation (i.e., for competing objects) 

might be expected in situations where tonotopic/periodotopic channels interact. Also, the results of 

Chapter 4 might suggest that the representation of rare and unusual auditoryobjects might be enhanced, 

potentially improving the ability of temporally-coherent rare or unusual objects to be extracted from 

competing sounds or background noise, or potentially providing a statistical filter to remove auditory 

objects and features that are not salient (see Ding and Simon, 2012; 2013). 

 
 

1.6.2. Speech processing 
 

Chapter 3 made the case for the human auditorysystem beingoptimised for speech processing, demon- 

stratinghumanauditoryselectivityfor temporal modulationswithratessimilartothoseofhumanspeech. 

This chapter provided evidencethat carrier frequencyand modulationrateare not independent parame- 

ters and it was suggested that this might providea good speech processingstrategy. In chapter 4, this se- 

lectivity was combined with adaptation, suggesting general mechanisms which may underpin speech 

processingandselectivity. Chapters 3 and 4 werediscussed in thecontextsofcorticalspeech processing 

andsomeinterestingimplicationswithrespect to theneural correlates ofattentionwerehighlighted.This 

work may have implications for hearing-aids and/or cochlear implants. 

 
 

1.6.3. Generalisation and future work 
 

Thecomputationalmodel of Chapter 2 remains crudeandmight beextendedbytheuseofacentralaudi- 

tory modulation filter bank such as that employed by Dau et al. (1997a/b). However, more data is re- 

quired for this purpose as little is yet known of the tuning of human CMFs. This model would also be 
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further enhanced bythe inclusion ofsuitable nonlinearities that would produceintermodulationinterac- 

tions ascharacterisedby Xiang et al. (2013), whichcould furtheraidinthefittingofthemodel.Themod- 

el ofchapter 2 alsoaccounted forelevatedincrementdetection JNDsinbackgroundnoiseasanemergent 

product of central adaptation, rather than as a product of peripheral (energetic) masking. Thus, a model 

featuring nonlinear CMFs would make predictions about JND data in background noise that could be 

usedtovalidate themodel. Furthermore, thismodelmight makepredictions regardingthecentralcontri- 

bution to estimations of auditory filter characteristics using the notched noise method. 

The invertedmethod of Chapter 3 might beuseful inquantifyingfurtheraspects of thelevel- andfre- 

quency-dependent coding of the auditory system. In particular, the method might be applied to more 

complex signals such as narrowband noise and might be extended to examine the possible masking ef- 

fects ofbackground noise. Furthermore, this method andthefindingsofthis thesisappear tohaveimpli- 

cations for auditoryfilter characterisation usingnotched noisemethods (Glasbergand Moore, 1990). In 

particular, filter bandwidthsestimated usingafixedmodulation, as afunction ofprobefrequency, might 

be confounded by the potential tonotopic gradient (Chapter 3) in modulation filter tuning. Further con- 

founds might includethepossibilityof central adaptationcausedbythenotched-noisemasker leadingto 

the appearance of elevated thresholds (typically interpreted as broadening peripheral auditory filters). 

Theprobabilisticmethodof Chapter 4 might beextendedinvariousways, includingpermutationson 

the discrimination task and stimuli. Furthermore, the probabilistic design might be adjusted to provide 

arbitrarystimulus distributions so as to furtherprobethestatistical processingof theauditorysystem. For 

example, we applied a 10% probability of occurrence for ‘rare’ sounds, but it would be useful to know 

how this arbitrary low-probability affects the selectivity demonstrated in the data of Chapter 4. 

More generally, the listening contexts and stimuli of the present paradigms are artificial. We have 

usedtonesand noisestimuli, withartificial presentationstatistics, andpresentedoverheadphonesinisola- 

tion. We have asked listeners to judge subtle, arbitrary intensity changes over blocks of repeated trials. 

Therefore, our paradigms have little in common with listeningscenarios in the real world. Furthermore, 
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attention is knowntomediate/moderateauditoryperception(Mesgaraniand Chang, 2012; Lakatos etal., 

2013; Dingand Simon, 2013; Zion Golumbic etal., 2013). Whilewemayassumethatourlistenerswere 

attendingto the stimuli, attentionwasnot explicitlycontrolled inourparadigms. Therefore, it remains to 

beseenwhat generalisationof theprinciplesdemonstratedheremight beseeninrealworldlisteningsce- 

narios. 

The selectivity and adaptation observed in the data presented in this thesis has been discussed in the 

literature contextsofbothin-vivoelectrophysiologyand neuroimaging. Theliteraturetendstosupportan 

interpretation ofthedataas characterisingcentral neuralprocessing. Theadaptationto intensitymightbe 

localised to anystage of the auditorypathwaybut the temporal processingis likely localised to auditory 

cortex. Future work might involve neuroimaging and electrophysiologyto establish the location and/or 

function of such processing. 
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Appendix A: Time-Varying Loudness Model  
 

This appendix provides a condensed overview of the excitation pattern loud- 

ness model of Moore, Glasberg and Baer (1997; Glasbergand Moore, 2002). 

The various components of this model have been separatelydescribed inthe 

well-known publications of Patterson et al. (1982), Moore (1995), Moore et al. 

(1997) and Glasberg and Moore (2002). 
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A.1. Introduction to Loudness Modelling 

The loudness model of Moore, Glasberg and Baer (1997), later extended to include time-varying sounds 

by Glasberg and Moore (2002), has seen a long and fragmented development over a period of more than 

twenty years (Patterson et al., 1982; Moore, 1995; Moore et al., 1997; Glasberg and Moore, 2002), from 

the rounded exponential ‘roex’ filter defined by Patterson et al. in 1982 to the time-varying model of 

Glasberg and Moore in 2002. 

 

A.2. The Excitation Pattern Model 

Sound pressure waves pass through the outer and middle ear and enter the inner ear (cochlea), causing the 

basilar membrane to resonate at a given location along its length that depends on the frequency of the 

exciting sound. Resonance of the basilar membrane causes the displacement (shearing) of inner hair cells 

arranged along the basilar membrane. The extent of the shearing of each hair cell is then converted into a 

pulsed electrical signal by neurons attached to the hair cell. This neural representation of the pattern of 

resonance on the basilar membrane, caused by a given sound, is known as its excitation pattern. The 

electrical signal, produced by the population of neurons, is sent up the auditory nerve to the brain. This 

gives rise to the concept of the auditory filter, which specifies the shape of the excitation pattern for a sound 

of given frequency and level. To make things more complicated, there are also outer hair cells which 

contribute little in the way of signals sent to the brain, but which are motile and act in synchrony with the 

corresponding inner hair cell to amplify the basilar membrane excitation at low levels. This produces the 

effect of changing the shape of the auditory filter with level. 

The excitation pattern model of loudness is based on the assumption that the total area of excitation 

along the length of the basilar membrane is integrated (on the auditory nerve) in the calculation of loudness. 

However, consistent with what is known of the cochlear amplifier and of neural transduction, the excitation 

is locally compressed before being integrated. The role of the auditory filter is to provide a summation of 

energy at local frequencies, where ‘local’ means frequencies within the auditory filter, and subsequent 

compression of the sum energy at the output of the auditory filter. The output of the auditory filter is known 



1-109: 101 

 

as specific loudness. Specific loudness can also be thought of as ‘loudness per filter’. This mechanism 

results in energetic (simultaneous) masking because the specific loudness resulting from the compressed 

sum of excitation at two nearby locations within a single auditory filter contributes less to overall loudness 

than a linear sum of the specific loudness resulting from the same excitation at two distant locations within 

two separate auditory filters. 

 

A.2.1. Definitions 

Loudness is the perceived intensity (I) of a sound. Intensity is defined in terms of sound pressure (x) 

squared; 

 

      2kxI =       

      (A.1) 

 

where k is a constant that represents the specific acoustic impedance of air. To calculate I for a sound 

described by x(t), from time t=0 to T, Eq. A.1 is then integrated over time; 
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Intensity may then be defined in terms of a ratio, with respect to a reference (e.g., Iref = 20 μW/cm2), in 

decibels. This is known as the intensity level (LI); 
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The use of intensity levels allows us to drop the absolute reference, and with it the k parameter, which 

simplifies the following notation. 

 

A.3. Equivalent Rectangular Bandwidth 

The equivalent rectangular bandwidth (ERB) gives a measure of auditory filter width, such that the sum 

excitation that falls within any given ERB will be equivalently compressed and result in an equivalent 

contribution to total loudness. Thus, the ERB provides a mechanism by which compression, masking and 

loudness are related. The mapping between frequency f (Hz) and ERB (Hz) shown in Fig. A.1a is achieved 

using the following formula (see Moore, 1995): 

 

)100437.0(7.24 += fERB      (A.4) 

 

In order to relate ERB to frequency, the ERB number (n) for a given centre frequency (fc) - as shown in Fig. 

A.1b - can be calculated as (see Moore, 1995): 

 

)100437.0(log4.21 10 += cfn          

   (A.5) 

 

Given frequency bounds defined in terms of centre frequencies between 50 – 15,000 Hz (see Moore et al., 

1997), the ERB numbers of the respective upper and lower bounding auditory filters may be calculated and 

intervening filters specified at arbitrary ERB-scaled intervals. To this end, Eq. A.5 may be rewritten, as 

follows; 

 

00437.0

110 )4.21/( −=
n

cf      (A.6) 

 

Using Eq. A.5, auditory filters at ERB intervals within the known range of the basilar membrane (50 - 
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15,000 Hz) may be specified for the later excitation pattern calculation and using Eq. A.6 the centre 

frequencies may be calculated at ERB-spaced intervals between. 

 

 

 

 

Figure A.1. ERB.  A Illustration of Eq. A.4 which relates ERB to centre frequency. B Illustration of Eq.s 

A.5 & A.6 which relates centre frequency to ERB number. 

 

 

 

A.4. Model for Steady Sounds 

The first stage of the model represents the transformation of sound pressure through the outer and middle 

ear to the inner ear (cochlea). This transformation is represented by a fixed linear filter with a frequency 

dependent gain, y, as follows; 

 

     yLL II ⋅=
01

      



1-109: 104 

 

     (A.7) 

 

where 0IL  is the input sound intensity, 1IL  is the intensity reaching the inner ear and y is the gain of the 

filter at that frequency. Fig. A.2 provides an illustration of the combined transfer function. Because the 

loudness model of Moore et al. is generally intended for diffuse-field sound, phase information is discarded 

[see Glasberg and Moore (2002) for discussion]. 

From this point onwards it is important to note that the input sound signal is defined as an intensity level 

(Eq. A.3) at a specific frequency, wherever a dB measure is used. Furthermore, excitation is defined in 

terms of excitation level (LE) as an intensity ratio with respect to the excitation reference of a 1 kHz 

sinusoidal signal at 0 dB SPL (presented in the free field and at frontal incidence); 

  

    )0( 11 kHzIE ELL −=      

    (A.8) 

 

where E(01kHz) is the reference excitation level. 

 

 

 

 

A.4.1. The Rounded Exponential (roex) Filter 

The excitation pattern, which represents the basilar membrane response, is calculated using a set of ERB-

spaced auditory filters. The auditory filter is based on the rounded-exponential (‘roex’) form proposed by 

Patterson et al. (1982). The roex filter is defined as; 

 

    pgepggw −+= )1()(        (A.9) 
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where for a given centre frequency, fc, the normalized frequency relationship between the fc and a given 

frequency, f,  (i.e., of the input signal) is given by; 

 

    cc fffg /−=      (A.10) 

 

where fc is evaluated for a given ERB number (n) using Eq. A.6. p determines bandwidth and slope of the 

filter and is defined in relation to the ERB as follows (1995): 

 

   
ERB

f
p c4

=         (A.11) 

 

Larger values of p lead to more narrowly tuned filters. Thus, given an input at frequency f, w(g) can be used 

to calculate the attenuation of the input at frequency f within the roex filter at centre frequency fc. 

 

 

Figure A.2. Illustration of combined outer and midd le ear transfer function . Note, zero dB 

gain at 1 kHz. 

 

Eq. A.9 gives a symmetrical auditory filter [w(g)]. However, the auditory filter is known to be asymmetrical 

and so Eq. A.9 is broken down into two such expressions, the choice of which depends on whether the 

input frequency (f) is above or below the centre frequency (fc) for the auditory filter of interest; 
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pl and pu replace p to represent the parameters for input frequencies (f) below or above the centre frequency 

(fc) respectively. This conditional aspect is necessary because although the auditory filter is roughly 

symmetrical when the excitation level per ERB is around 51 dB (Glasberg and Moore, 1990), the low-

frequency ‘skirt’ of the auditory filter becomes less sharp with increase in level. This excitation level 

dependent relationship is accommodated in terms of the pl value as follows; 

 

( ) )51()51(/)51(35.0)51()( 1 −−= EkHzlllEl LpppLp       (A.13) 

 

where pl(LE) is the value of pl for the input excitation level of LE, in dB, at f, and pl(51) is the value of p (Eq. 

A.11) at the centre frequency (fc) for an input level of 51 dB (i.e., where the filter is symmetrical), and where 

pl(511kHz) is the value of pl for a 51 dB input excitation level at 1 kHz. Figure A.3 provides an illustration of 

the level dependent roex filter shape for excitation at 1 kHz at levels between 10 and 100 dB in 10 dB 

intervals. 

 

 

 

Figure A.3. Illustration of roex filter shapes  (Eq. A.12) for excitation levels between 10 and 100 dB 
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in 10 dB intervals. 

 

A.4.2. The Excitation Pattern 

For each ERB number (n), the excitation pattern, E, is defined as the pattern of outputs from the ERB-

spaced auditory filters. For a given frequency, f, and for an input excitation level (Eq. A.8), the excitation 

pattern, E, is then defined as: 

 

    ( ) ELngwnE ⋅= )()(       

  (A.14) 

 

where ERB number (n) is related to fc by Eq. A.6. 

 

A.4.3. Specific Loudness 

To reflect the production of neural signals in response to inner hair cell displacement caused by excitation of 

the basilar membrane, the excitation pattern is transformed from excitation level into specific loudness 

(loudness per ERB) for the nth auditory filter by calculating the specific loudness in each filter according to 

three possible conditional expressions, which relate to the excitation level as follows in Eq. A.15 (above). 

Since loudness is later notated as N, specific loudness is notated as N’, to reflect the later integration (over 

frequency) of specific loudness to form loudness. 
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(A.15) 

Frequency dependence (denoted with parameter n) refers to the nth auditory filter. TQ represents the 
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threshold excitation in quiet and is frequency dependent as shown in Fig. 4c. The parameter G represents 

low-level gain in the cochlear amplifier, relative to the gain at 500 Hz and above, and is also frequency 

dependent. Note that this ‘G’ is not related to the ‘G’ of chapter 3. For a given centre frequency, fc, G (in dB) 

is related to TQ (in dB) with a simple subtraction; 

   

    )()500( cQQ fTTG −=      

    (A.16) 

 

The parameter A in Eq. A.15 is used to bring the input-output function close to linear around the absolute 

threshold, and is dependent on the value of G as shown in Fig. 4a. The compressive exponent α is 

dependent on the value of G as shown in Fig. 4b. At frequencies below 500 Hz TQ rises as frequency 

decreases and the value ranges between 28 dB at 50 Hz and 3.7 dB at 500 Hz. Above 500 Hz TQ is constant 

and equal to TQ at 500 Hz. α is also frequency-dependent and a similar lookup table is employed such that 

α varies between 0.27 and 0.2, depending on the value of G. C is a constant which scales the loudness to 

conform to the sone scale, where the loudness of a 1 kHz tone at 40 dB SPL is 1 sone. C is equal to 0.047. 

Figure A.4d shows the result of Eq. A.16 used to transform excitation at levels between 0 and 120 dB to 

specific loudness for a 1 kHz signal. Finally, specific loudness is integrated, over the arbitrarily (dn) spaced 

auditory filters, between ERB numbers nmin and nmax, to produce loudness, N; 

 

           ∫=
max

min

)('
n

n

dnnNN        

   (A.17) 

 

where nmin and nmax may be calculated, from centre frequencies of 50 and 15,000 Hz respectively using Eq. 

A.5. For a complex sound, loudness is calculated from a linear sum of excitation patterns calculated from 

each input sound component. 
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A.4.4. Energetic Masking 

A formal definition of loudness allows us to derive a formal definition of energetic (simultaneous) masking 

with respect to two arbitrary excitation patterns for the target, Et, and the masker, Em. The two excitation 

patterns may then be used to evaluate the degree of masking by comparing the sum of loudness for each 

excitation pattern alone [N(Em) + N(Et)] and the loudness of the linear sum of the two excitation patterns 

[N(Em+Et)]. This provides a loudness ratio (Nmasking, in sones); 

 

       
)()(

)(

mt

mt
masking ENEN

EEN
N

+
+=     (A.18) 

 

A.5. Model for Time-Varying Sounds 

The time-varying model (Glasberg and Moore, 2002) is an extension of the 1997 model for steady (state) 

sounds. In the earlier model, the sounds are defined in terms of steady sound components, which are then 

combined within the excitation pattern to produce an overall loudness. In the time-varying model, the 

excitation pattern is typically calculated, from a time-domain input signal, on an instantaneous sliding-

window basis, giving a time-varying excitation pattern. 

The time-varying excitation pattern is then resolved into a corresponding time-varying specific loudness 

function and hence is integrated to form a time-varying intermediate stage known as ‘instantaneous 

loudness’. Instantaneous loudness is essentially an intensity-like temporal integration of specific loudness 

over an arbitrarily small time interval. The ‘small’ time interval is typically on the order of 1 ms, which may 

be considered small with respect to the integration time constants of the auditory system (usually much 

longer). Thus, instantaneous loudness is calculated as ‘steady loudness’ over a very small time scale. 
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Figure A.4. Illustration of miscellaneous parameter s. A Illustrating the relation between 

parameters A and G. B Illustrating the relationship between the parameters α and G. C illustrating the 

internal excitation level at threshold as a function of frequency (showing increased thresholds at low 

frequencies). D Specific loudness as a function of excitation level between 0 and 120 dB at 1 kHz, 

illustrating the conditional effects of Eq. A.15. 

 

Intensity, for sound of a given integration time (∆t), is then defined in terms of an integral with respect to 

time (t); 

     ∫
∆+

∆
=

tt

t

dttxk
t

tI )(
1

)( 2       

    (A.19) 

 

which may again be resolved into intensity level as in Eq. A.4, and hence excitation level as in Eq. A.8, for 

substitution into Eq. A.15 to give Eq. A.20. 

 



1-109: 111 

 

          

 

( )

( )





























⋅

−+⋅⋅

−+⋅⋅














+
⋅

=

5.0

6

5.1

1004.1

),(

)),((

)),((
),(),(

),(2

),('

x

tnE
C

AAtnEGC

AAtnEG
tnTtnE

tnE
C

tnN

Q

αα

αα

 

                                                          

for )(),( nTtnE Q≤  

 

for )(),(1010 nTtnE Q>≥   

for 1010),( >tnE   

(A.20) 

 

 
 

  

  

 

Eq. A.17 is then extended to integrate the result of Eq. A.20 with respect to ERB  number (n), to produce a 

time-varying instantaneous loudness [N(t)]; 

 ̀

      ∫=
max

min

),(')(
n

n

dntnNtN       (A.21) 

 

A.5.1. Temporal Integration 

Loudness of brief sounds increases with duration up to a limit of around 200 ms (Munson, 1947). This is 

known as the temporal integration of loudness. A further phenomenon captured in the time-varying 

loudness model is forward masking, which has a similar time scale. In order to account for these 

phenomena, the instantaneous loudness function is smoothed with an exponential sliding window. 

To predict the decay of loudness after a sound has ceased, given an initial loudness value (N0), the 

decaying value of loudness at time t may be calculated as; 

 

τ/
0)( teNtN −=      (A.22) 
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where τ is the time constant. This represents the decay of loudness, i.e., forward masking. To predict the 

accumulation of loudness with duration of a steady (fixed intensity) sound, loudness at time t is calculated 

as; 

 

  )1()( /τteNtN −
∞ −=            (A.23) 

 

where N∞ represents the asymptotic loudness. The values of N0 and N∞ may be calculated in terms of 

instantaneous loudness for a given signal and used to predict the effects of temporal integration. 

In order to provide a time-varying output function, Eq. A.22 is re-arranged in order to relate it to the time 

step of the model (∆t) and used to calculate a smoothing coefficient (β); 

      

     τβ /te ∆−=       

     (A.24) 

 

To smooth the time-varying instantaneous loudness function β is applied to calculate STL (NST) with respect 

to instantaneous loudness [N(t)]; 

 

 )()()1()( ttNtNtN STSTSTST ∆−⋅+⋅−= ββ    (A.25) 

 

And to calculate LTL (NLT) with respect to STL; 

 

    )()()1()( ttNtNtN LTLTSTLTLT ∆−⋅+⋅−= ββ         (A.26) 

 

where 
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The value of τ (and hence β) is conditional such that separate values of τ are assigned depending on whether 

the function is in the attack or release phase [see Glasberg and Moore (2002)]. As can be seen from the 

values of τ shown above, convergence is much faster for attack than for release in both cases of STL and 

LTL. This is intended to reflect disparity in forward and backwards masking. 

Finally, Glasberg and Moore (2002) specify that the loudness of brief duration sounds (i.e., gated tones) 

should be calculated as the peak (maximum) value in the STL time series and that the loudness of 

continuous sounds (e.g., amplitude modulated tones) should be calculated as the mean (average) of the LTL 

time series. 

  

A.5.2. Temporal Masking 

Eq. A.18 may be extended to provide a time-varying definition of energetic masking, in terms of 

instantaneous loudness, as follows; 
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 (A.28) 

 

However, the stated purpose of Eq.s A.25 & A.26 is to provide temporal integration (or summation) of 

loudness at the two respective time scales. This means that forward and backwards masking may not be 

quantified in terms of Eq. A.28, and are therefore outside the scope of this chapter. 
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A.6. Appendix A Summary  

In this Appendix we have provided a condensed, practical step-by-step description of the 

excitation pattern loudness model which consolidates descriptions found in the multiple original 

articles. We have included a brief description of the function of, and rationalisation for, each 

modelling component.  
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Appendix B: Ethics statement  
 

Forall listeningtests described inthisthesis, participantswerevoluntary, unpaidandgaveinformedver- 

bal consent before the experiment. Participants were free to withdraw at anypoint. Tests wererun on an 

ad-hocbasis. Written consent wasnotdeemednecessaryduetothelow(safe) soundpressure levels em- 

ployed in thetest but theconsentingvolunteersweredocumented.All experimentalprotocols(including 

consent) were approved by the ethics committee of Queen Mary University of London. 
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Appendix C: Statistical methods and assumptions  
 

Where we present data in terms of mean and confidence intervals in this thesis, the data were checked  to 

ensure that the data were approximately normally distributed and hence it was ensured that the measures 

given in this thesis are interpretable and representative. Where we employ the Friedman Test in this thesis 

we reasonably assume that the data are uncorrelated. In Chapter 4, where the data may not be assumed to 

be entirely uncorrelated, we employ a permutation test that takes into account any inherent 

correlations. 
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