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Abstract

Two fundamental principles dominate the signal processing of
the auditory system: selectivity and adaptation. The response of
the auditory system is selective for various acoustic features and
the representation of these acoustic features adapts over time.
This thesis is concerned with the characterisation of selectivity
and adaptation in the human auditory system. Initially, selectivity
for modulation rate and adaptation to intensity are characterised
in a central auditory model. Next, selectivity for temporal modula-
tion rate and selective adaptation to both intensity and temporal

modulation rate are characterised in psychophysical data.
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Chapter 1. General Introduction

Recent developments in auditory neuroscience have challenged the idea
that the auditory brain is a static processor of sound and have shifted the
spotlight away from the ear to the brain. In particular, two signal processing
strategies have captured the imagination of auditory neuroscientists:
selectivity and adaptation. Selectivity may be defined as enhanced neural
response to a given acoustic feature (e.g., frequency). Adaptation may be
defined as a change in neural representation for a given acoustic feature
that occurs over time. This chapter gives an introduction to the literature on
auditory selectivity and adaptation and relates the two through an overview
of the role they play in the general signal processing of the auditory system.
In this context, we develop the motivation and rationale for the work
presented in this thesis and we outline the main research questions and

objectives.
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1.1. Background

1.1.1. Feature based representation

In the periphery, sound pressure variations agdnelrum are mechanically transmitted as vibrations
through the middle ear to the cochlea (PicklesgR0@owever, between the cochlea and the central
nervous system the representation of sound istitéed by auditory neurons in the form of electrica

discharges known as spikes (Dayan and Abbot, 2881he neural representation of sound ascends the
auditory pathway it is first decomposed by freqyenahe cochlea and then further decomposed by
periodicity between the midbrain and cortex. Tleisamposition yields a feature-based representation
andrepresents asystematic transformation of thesa@ustic features of the sound into atopographic
neural map, where the location of a given neurondascthe feature(s) for which the cell selects.i$his

known as a ‘place code’.

1.1.2. Selectivity

Selectivityof auditory neurons for sound frequency gjated inthe cochlea (Pickles, 2008). The basilar
membrane is lined with inner hair cells which shearesponse to local resonance on the basilar
membrane and so act as place-selective transdiibersnner hair cells are innervated by afferent
(ascending) auditory nerve fibers, whose neureesrfiproportion to the degree of shearing. Mass-
stiffness variation along the length of the basilambrane cause it to act as an array of resaitenst
which decompose the frequency components of th gignal into a tonotopic (arranged in order of
frequency) place-codethat is maintained bythe systeanaingement of afferent auditory nerve fibers.
This tonotopic representation is retained througtiwiascending auditory pathway until at least the
primary auditory cortex (Humphriesal, 2010).

Selectivity for modulation rate (i.e., periodicigrmerges at the level of midbrain (Jetial, 2004,

Baumanret al, 2011) and is further refined in auditory cort8adagopan and Wang, 2008; Barbour,
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2011, Paslegt al, 2012; Ding and Simon, 2012; 2013; Xiaa@l, 2013; Garcia-Lazaret al.,2011,;
Wanget al.,2012; Lakatost al, 2013). Selectivityfor modulation rate is alsdaystically arranged in
the form of a periodotopic (arranged in order ofgol map in midbrain (Baumaret al, 2011) and
cortex (Bartoret al, 2012) and there is evidence that the tonotomicpaniodotopic dimensions are
orthogonal (Baumanet al, 2011; Bartoret al, 2012). This central selectivity for modulatioteras
been suggested to play a key role in speech percéptullmannet al, 1994; Shannoet al, 1995;
Ding and Simon, 2013; Zion Golumlatal, 2013; Lakatost al, 2013) and music perception (Zarate

and Zatorre, 2012).

1.1.3. Adaptation

The coding of auditory neurons is not static but ewwer time to reflect the recent history of neuronal
activity. Adaptation by auditory neurons to sound skedidtas been reported in several neurophysiologi-
cal studies involving small mammals (Desral, 2005, 2008; Watkins and Barbour, 2008; \&&al,
2009; Rabinowitzt al, 2011; Sadagopan and Wang, 2008; Barbour, 20&inilla and Zador, 2011;
Walker and King, 2011; Ulanovsky al, 2003, 2004; Nelken, 2004; Perez-Gonzzllak 2005; Malm-
iercaet al, 2009; Yaroret al, 2012). Adaptation is typically characterised asgas in the spiking rate-
level function (e.g., Deagt al, 2005; Rabinowitet al, 2011) and has been argued to enhance coding
accuracy (Deaet al, 2008). Furthermore, auditory neurons have been sbh@aapt over various time-
scales, from millisecondsto minutes (Dedal, 2005; 2008; Ulanovslst al, 2004; Yaroret al, 2012;
Jaramillo and Zador, 2011), suggesting adaptatiboth long- and short-term sound statistics.

This statistical selectivitys further refined by tuning for the timescale owich the statistics are
computed (Deast al, 2008; Ulanovsket al, 2004; Yaroretal, 2012; Jaramilloand Zador, 2011); some
neurons are tuned to adapt to short term stagstatthers to long term statistics. Furthermomds

occurring in the natural world are known to exHitit-order statistical regularities (Moss and Glark
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1975; 1978) and auditoryselectivityfor ‘natural’ asimstatistics has been demonstrated (Garcia-Lazaro
et al, 2006, 2011; Lesicaand Grothe, 2008). Thereftatstal selectivity might playakeyrole inhow

the brain represents sound in the natural world.

1.2. Motivation and rationale

The main motivation for studying selectivity and adaptetio human auditory perceptionisto generalise
the above findings and principles from in-vivo #&fgghysiology in small mammals. Equivalent
adaptation has not yet been demonstrated to exist imraudéory perception, nor has it been shownto
conferany enhancement of perception. The applicatigsyohophysics tothis problem has two specific
advantages. The first advantage is that it is amasive method, and hence is convenient for ose o
human subjects. The second advantage is thatbltgnaman auditory perception remains more
sensitive than the currently available neuroimaginthous. Hence, psychophysics provides a nuanced
window into the human auditory system that canectttained in any other way.

While the feature-based representation has obsbentages for signal processing, perception is
typically more object oriented. Forexample, speechusigsignals contain multiple components butare
typically perceived as awhole (Bregman, 1990). Thiseful in communication because the perceptual
object is used to attribute sound to its likelyrseult would appear that a primary function ofdea
decompositioninthe auditory systemis to provide tkeslfiar arbitrary recombination into object-based
representations. Object-based representations eimeagditory cortex (Mesgarani and Chang, 2012;
Pasleyet al, 2012; Ding and Simon, 2012, 2013; Sharetal, 2011; Teket al, 2013), where sound
features sharing a common temporal envelope agd {@hammat al, 2011; Tekiet al, 2013; see
Bregman, 1990). These auditory objects are thejecsub top-down influences such as voluntary

attention (Mesgarani and Chang, 2012; Pastiey, 2012; Ding and Simon, 2012, 2013). Therefore,
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understanding the nature of cortical and subcbrfeature-based representation is critical to

understanding how auditory objects are ultimatelintained.

1.3. Thesis overview

This thesis is structured as self-contained crgjitetuding their local motivations and contekighe
nextchapter, amodelispresented which provides e\adéacaptation and selectivityin human audito-
ry perception. At this stage, we remain agnostio aghether adaptation actually provides any enhance-
ment of perception. In chapter 3, datais presentéchwharacterises the human auditory brain as selec-
tive for modulations which are similar tothose of speddtis chapter setsthe stage for the fourth chapter,
in which this selectivity is important. In chapfethe findings of the two previous chapters areige-

ised and combined to provide an argument that hamditory perception is enhanced by adaptation.
Data is presented which demonstrates an interditireen selectivity and adaptation, suggestige of
sophisticated and general processing strategyfaneed representation of novel and unusual sound

events.

1.4. Aims and contributions

The main aim of this thesis is to advance the sfétaowledge of selectivity and adaptation in the
human auditory system. In particular, this thessfacused on providing evidence and
characterisation of selectivity and adaptation uditary perception. This thesis contributes new
perceptual data on auditory selectivity fanodulation rate (Chapters 2, 3, 4), new percegititalon

adaptation (Chapter 4), new psychophysicalmetho@hapters 3 and 4) and a new

computational modélChapter 2) of central auditory processing of isitgn
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Chapter 2: A Central Auditory Model

In this chapter we use empirical loudness modelling to explore a perceptual
sub-category of the dynamic range problem of auditory neuroscience.
Humans are able to reliably report perceived intensity (loudness), and
discriminate fine intensity differences, over a very large dynamic range. It is
usually assumed that loudness and intensity change detection operate upon
the same neural signal, and that intensity change detection may be
predicted from loudness data and vice versa. However, while loudness
grows as intensity is increased, improvement in intensity discrimination
performance does not follow the same trend, and thus dynamic range
estimations of the underlying neural signal from loudness data contradict
estimations based onintensity just-noticeable difference (JND) data. Inorder
to account for this apparent paradox we draw on recent advances in
auditory neuroscience. We test the hypothesis that a central model,
featuring central adaptation to the mean loudness level and operating onthe
detection of maximum central-loudness rate of change, can account for the
paradoxical data. We use numerical optimization to find adaptation
parameters that fit data for continuous-pedestal intensity change detection

over a wide dynamic range.
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2.1. Loudness and the Intensity Just-Noticeable Differen ce

Human hearingis known to function over an extremely wjgkohic range. Incontrast, ataneural level

the auditory system is known to have a very limitgoamic range. In auditory neuroscience, this is
known aghe dynamic range proble(e.g., see Deagt al, 2005). In this chapter we address a somewhat
paradoxical sub-category of the dynamic range @nol¥hich has arisen in psychoacoustics.
LoudnessL) is the perceived intensitl) ©f a sound and the just-noticeable change insitieis
called the intensity just-noticeable differencel¥JNBoth loudness and intensity change detectien ar
typically assumed to operate upon the same neural siggradrated in the cochlea and transmitted onthe
auditorynerve.  Thisassumption gives rise to the inesticipation of a relationship between loudness
and the intensity JND, such that one may be predicie the other and vice versa. However, previous
researchers (Hellmanand Hellman, 1990; 2001; AlldriNeely, 1997) were notable to provide a unified
model due to the apparently paradoxical observtiaiioudness growth, beyond a certain level,tis no
reflected in improvement in intensity discriminatjgerformance (Allen and Neely, 1997; Miler, 1947).
From a neural coding point of view, the problem lsarstated as follows; Spike rate is known to be
intensity dependent, and loudness is assumedémsttaspike rate, and since information scalels wi

spike ratefisher information scales with spike rate undesm@ble assumptior®ayan and Abbot,

2001), then why do more spikes not provide aatending of intensity change?

The work of Hellman and Hellman (1990, 2001) anmiand Neely (1997) resulted in the
theoretical construct of the loudness JND, whighesents the just-noticeable change in loudnesss tha
corresponds to theintensity JND, and the assumpé&ba taciprocal relationship between loudness and
loudness change detection should exist. Focusing amdimsiydiscriminationparadigm, Hellmanand
Hellman (1990) predicted loudness functions foepones from intensity JND data, following the

suggestion of McGill and Goldberg (1968a, 1968i)tte loudness JND is the square root of loudness
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(ALjna= L%9). Allen and Neely (1997) tested this for tones moide using equivalent loudness and

intensity JND Aljnq) data as follows:

AL jng = L(l +Al jng) —L(1) (2.1)

Using the loudness function of Fletcher and Mur§$883) and the equivalent intensity discrimination
data of Riesz (1928), Allen and Neely showed (via EQ.tBdt the square root exponent of Hellman and
Hellman (1990) required modification above 20 dsaéion level (SL) and introduced a ‘saturation of
internal noise’'to accountforthe modification. Thiewled that loudness and loudness change detection

may not be modelled reciprocally and thus, theaqiax was defined.

o P
- 0_____’0
23 1 o/
[alle)] o
Z2 2-
£
OJ& 1_
25
W_ﬁ\&
. ' ' - e
0 20 40 60 8 100

Level [dB SL]

Figure 2.1. Loudness versus intensity JND.  Miller's averaged data for loudness (diamonds) and
the intensity JND (circles/triangles) for broadbawike for two individual listeners, as a functadn
sound level (SL). Loudness data (diamonds), preseritgfloudness units (LU), are taken from Neely
and Allen (1998) who converted them from loudnegslldata of Miller using the loudness function of

Fletcher and Munson. Above about 20 dB SL, the JNppissimately constant (i.e., Weber’s Law) but
loudness increases.
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To illustrate the paradox, Fig. 2.1 shows a compaasiller’s (1947) wide-band noise data forthe
intensity JND and for loudness levels as a funaifantensity. Miller’s (1947) loudness level dat&
converted into loudness units (LU), takenfrom Nestifdlen (1998) according to the loudness function
of FHetcher and Munson (1933), and plotteldgfLU) for comparison to the intensity JND. At medium
levels and above, loudness rises while the inyeisID remains almost constant.

Recent auditory neuroscience literature appegm®tade a promising solution; Deahal. (2005,
2008), Weret al.(2009) and Rabinowitet al (2011) have addressed the dynamic range probleminterms
of adaptive neural coding. It has been demonstfistethimals) that central neural adaptation tormea
sound level acts to improve coding of sound atbest likely (mean) sound level, mitigating neural
dynamic range limitations. Deaat al. (2005) showed that input/output functions of neuroolations
in the inferior colliculus of the guinea pig are ablstdt their operating points to suit the prevailing (most
likely) stimulus sound pressure level. Destial. also showed that the result of such neural adaptation may
be characterized as an imperfect dynamic rangeatipation of the neural signal. The general
parameters that define the adaptation procest@rtarte constant (how fast the adaptation occurs),
threshold (central neural dynamic range) and anfbomt much adaptation occurs).

In order to resolve the paradox, in this chapter wenasthat central adaptation to mean sound level
occurs in humans during psychoacoustic experinfBigskowski and Hagerman, 2009). We also
assume that the small change that constitutegcaltypiensity JND falls at the lower limit of tiized
central neural dynamic range, and that adaptatibigh mean levels necessarily raises the lowdr lim
accordingly. This adaptive raising of the lower ifireffectively degrades intensity discrimination
performance relative to the performance limitatiom®osed by the peripheral processor.

There are no physiological data available to ckenae central adaptation in human listeners.
Therefore, inanumerical optimization sense, the tonstant, threshold and amount are effectivelyfree

parameters within an empirical model of centraptd®n. The main objective of this chapter is to
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establish, by a process of optimization, workingre¢adaptation parameter values from the emipirica
data available in the psychoacoustic literature.

Althoughthere are data available over awide enough dyrrange to establish the free parameters
of adaptation threshold and amount, the majoritypsychoacoustic experiments on intensity
discrimination do not control or report the meamsblevel over the entire course of the experiment.
Hence, there are no data available to establigimtbeonstant.

To overcome this problem, we look to the continuous-pgiadésarrier) paradigm, where the reported
pedestal level provides a good approximation to thetiemng average level. Two such studies existwith
data over a very wide dynamic range; one for tones (Vieenasstd Bacon, 1988) and the other for noise
(Miller, 1947). Both studies remain definitive tetims of data and in terms of phenomena charaderiz
by the data, and are ideal for our optimizatiotvlero.

The theoretical foundation for our modelling is éxeitation pattern model (Florentine and Buus,
1981). The excitation pattern model is an empincaldel of the cochlea and auditory nerve
representation ofasound— hence we may classify ipaespheral model The output ofthis model may
then be integrated in order to calculate loudrdseieet al, 1997). This is known as the integrated
auditory nerve formulation of loudness (Fletchet Ktunson, 1933; Allen and Neely, 1997).

The excitation pattern loudness model (Mcetral, 1997; see Appendix) incorporates functionality,
based on peripheral auditory physiology, which @pprates the major phenomena of psychoacoustic
theory (i.e., cochlear compression, spread ofaxit the auditory filter, etc). A full account ibis
model is given in the Appendix. The parameters of thesira® set to fit abroad range of empirical data.
We take this model as inputto our central modetinas the auditory nerve is peripheral to the (dgntra
auditory cortex. We extend the peripheral excitafiattern model to include a central adaptive
representation which we caltantral excitation pattern moddrhis approach is similar to that of Parra

and Pearlmutter (2007), who proposed a centratieglapodel of tinnitus and the ‘Zwicker tone’.
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Since the excitation pattern model of loudness is wellbksiteed, we optimize the central adaptation
parameters of our central excitation model to relageixtbd parameters of the loudness model to intensity
change detection. In keeping with the paradoxita, dve make the implicit assumption that loudness,
and loudness change, are coded independently at &4 centia level, based on common input from the
auditory nerve.

In the first stage of this chapter we briefly revida related literature and describe an analysiseof
empirical data based on simulation of the expetsriiat produced the data. This analysis is used to
assess the scope of the problem. Next we propu=aral excitation pattern model with a maximum
rate-of-change detector. The free parameters of thelrageloptimized to fit the tone and noise intensity
JND data over a wide dynamic range. The resulfotignzed model is shown to perform well at
predicting independent pseudo-continuous intensity Jtifam the literature. We  report an experiment
based on the detection of linearlyramped  up-down incr&rmguseudo-continuous noise pedestals. This
experiment shows that slowly-ramped incrementbane to detect and validates our use of a rate-of-
change model. In this chapterwe provide empirical agielto supportan argumentthat loudness reflects

peripheral coding, and the intensity JND refleetstral coding.

2.2. Modelling Background and Methods

We base ouranalysis, and subsequentmodelling, am#edirying excitation pattern loudness model of
Mooreet al. (1997; Glasberg and Moore, 2002) — which we tpempheral The model has been
adequately described by the authors and we depedirthe description here except to summarize the
temporal integration of the model. Glasbergand Metirae-varying loudness model produces a time-
varying excitation pattern which is integrated oskort time intervals to produce ‘instantaneous
loudness’. Two successive exponential temporalowsdre then used to estimate short-term loudness

(STL) with respect to instantaneous loudness, aigekeym loudness (LTL) with respectto STL. STLis
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used to account for loudness of brief duration dswa fixed intensity, and LTL is used to accoant f
overall loudness impression of continuous amplitaddulated sounds.

Each temporal window is defined by a pair of exptakfunctions and time constants for ‘attack’
and ‘release’respectively. The STLintegration timenat symmetrical, the attacktimeis 25 msandthe
release timeis 50 ms, inorder to account for greaterafd masking than backward masking. The attack
and release timesfor LTLare similarlyasymmetriche &ttack timeis 100 msandthereleasetimeis 2 s,
allowing for the persistence of loudness impressi@n the stimuli has ceased.

Because the present chapter is concerned withtadepinodulation for continuous pedestals, we
applythe loudness model usingthe LTLintegration wmddhile the LTLattack time was deliberately
set (see Glasberg and Moore, 2002) to fit datadioiness of amplitude modulated sounds, the 2 s LTL
release time is merelyintended to produce a lastipigession of loudness after the stimulus has ceased.
Since this release time is not justified in terfresy specific asymmetry in the temporal integratid
loudness, in our modelling the LTL release time se&ito 100 ms (the same as the attack time), which
produced a symmetrical temporal window for LTL wiéspect to STL. The combination of the two

temporal windows remains asymmetrical due to ty@eeetry in the short-term temporal window.

2.2.1. Magnitude or Envelope?

When the intensity of a signal changes over same fiame, the temporal shape (or profile) of the
intensity function is known as the envelope. Anartgnt question is whether it is the size or empestaf
the intensity increment that determinesdieéection threshold. Hellman and Hellman (19901286d
Allen and Neely (1997) have defined thiwudness JNDin terms ofmagnitude ofloudness
change caused bythe intensityincrement (Eq. 2.1).fMaians that for envelope ramps which are long
(slow) compared to temporal integration of loudiessintensity JND is assumed to be constant.

A single study exists which does not support tsssiiaption. Riesz’s (1928) study of the intensity

JND israrely considered, bytoday's standards, toiothgintensity discrimination. However, this study

was thefirst to introduce evidence to suggest a rathavfge detector process. It involved the detection of

amplitude (or envelope) modulation produced whemdine waves, closely spaced in frequency, are
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summedto produce amodulating envelope and is knovireasethod of beats. Riesz used continuous 1
kHz signals to test the amplitude modulation (beaBction thresholds, as a function of beat aaie,
found the smallest thresholds at a rate of arouod 3Hz. He also found that at lower and higher @ites
modulation, the threshold of detection increased aliyost®trically (on a logarithmic scale) aboutthe 3
to 4 Hzpoint. This result is not predicted by Eq. 2risection 2.4 we describe an experiment designed to
confirm the generality of Riesz's results as ationof beat rate.

Eg. 2.1 provides aloudness domain subtraction betwagndes values attwo intensity levels, which
relates the difference in intensity to the diffeeen loudness that is just noticeabledisgrimination
However, for the rate-of-change detector necessariaiethe data of Riesz (1928), this equation must
be transformed into the time domain (Wojczak arhdister, 1999). This transformation between the
JND domains, for change over a given time frantk (elates change in intensity/ At to change in

loudnesa\L/At. Eq. 2.1 becomes:

(%}jnd - L[| +(%jjnd}—m) (2.2)

2.2.2.Choice of Continuous Data

Candidate continuous-pedestal data for incremeetta® in noise (Miller, 1947) and in pure tones
(Viemeister and Bacon, 1988) were selected bechtize large dynamic range covered in both studies
(>90 dB), and because both studies remain definitiv Miller's (1947) experiment, the increment

envelope for the noise signals was instantanegusréy and duration was 1.5 seconds. For the
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experiment of Viemeister and Bacon (1988), tonesired 10 ms cosine-ramped increments of 200 ms
duration. Afull description of the stimuli of thespective studies is given in section 2.5.3.

Weber's Law states that the ratio of the interdp to intensity should be constant (Weber, 1846).
Miller's data showed that this was approximately truafmse signals. However, Weber’s Law does not
generally hold for pure tones, as is demonstrated lokathef Viemeister and Bacon. The appearance of
an ‘almost’ constant ratio for pure tones has besened the ‘near-miss’ to Weber’s Law (McGill and
Goldberg, 1968a, 1968b). Therefore, the two stutliesen provide a contrast, both in terms of stimul
properties (tones/noise, envelope shape, increnratibdll and in terms of qualitative characterization of

the data (Weber’s Law/'near-miss’). This provides ajpelfimg challenge to the intended unified model.

2.2.3. Transformation of Continuous Data

Here we investigate the question of whether terhjpbegration of the loudness model is able toyunif
the two paradigms sufficiently such that we caegrd to optimization of the central adaptatiorestag
Using the loudness model of Glasberg and Moore2[20@ transfornh into L, Aljng into ALjn, and
finally (Al/At)ng into (AL/Ab)ng for the simulated pedestals-with-increments ofévigind of Viemeister
and Bacon. This analysis tells us how much need tHeredentral adaptation and the range inwhichitis
necessary.

Fig. 2.2(a) shows the re-plotted intensity JND éatMliller and Viemeister and Bacon, illustrating
the disparity in function shape that must be oveecwithin our model. Fig. 2.2(b) shows the loudness
functions of intensity for the pedestals ofthe respedtudies, as estimated using the loudness model. In
Fig. 2.2(b), for comparison with the loudness moeslits, we also show the loudness level data of
Miller (1947), as converted by Neely and Allen @p8sing the loudness function of Fletcher and

Munson (1933)I[= SL+ 10 dB (Miller, 1947); sone= 975LU]. The shape of the loudness function
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estimated by the loudness model is in good agrdenitbrthe loudness level data of Miller, but the
loudness model predicts lower absolute threshudafsthe data of Miller suggests (see section 2.5.3)

Fig. 2.2(c) shows the respective estimated transibidata foALj.(L), using Eq. 2.1. Fig. 2.2(d)
shows AL/Abjnd(L), estimated using Eq. 2.2 fat = 1 ms. In Fig. 2.2(d) the two functions are much
closer than the two functions of Fig. 2.2(c). T8hews that, within the loudness model, the temporal
parameters of the stimuli (envelope and duratittmy ais to better unify thaljq data between the tone
and noise studies in terms afL{At)nd(L). In other words, Eqg. 2.1 does not take into auctwe
envelopes ofthe stimulibut, using Eq. 2.2, the 1@osse-ramped increments intones (Viemeister and
Bacon) and the instantaneous changes in noisei(\iifioduce similar maximum loudness slopes for a
given overall pedestal loudness.

In Fig. 2.2(c), we see a disagreement betweersth&fdrmed data sets with regards to the smallest
AlLjg that is detectable, bya factor of around two. Thisaglispvould make it difficult to model usinga
magnitude of change model. Moaeal. (1997) suggest an absolute threshold of 0.003 sorsesikgy
that absolute threshold and masked threshold areatt, this is not compatible with the minimum
loudness JND of approximately 0.01 sones shown intiotidun of Fig. 2.2(c). Therefore, it is clear thata
magnitude-of-change model, with a threshold of ®<ghes, would not explain the data.

After transforming the data further intal{At)nq, in Fig. 2.2(d) we see that the smalledt/;\t);q is

much morein agreement between the two stimuli 8ga@nes/ms). Thus, we confirm that our choice

of decision variable L/At)ng is useful. Below about 0.25 sones, the slopakese functions are
relatively flat. Between 0.005-0.25 sones theeesipe of around 0.00005 sones/ms but between 0.05
and 2.5 sonesthereisafargreater slope. These twoatimses conform to the two necessary conditions
of constructing a central, adaptive rate-of-changdel; i) that theAL/At)q functions must be close
together (equivalent) and ii) that both functiongstrbe approximately constant in the range below an
equivalentloudness threshold (i.e., the two functimesent the same central dynamicrange). The point

where the two functions take on amarked increase in slo@ES-sones) is the starting pointin our search
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for acommon threshold parameter value. During the subseptimization, we take the value 5.5%10

sones/ms ofAL/At)ng @s a constant for our modelling. This might bentakerepresent internal noise

level.
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Figure 2.2. Transformation results  for the noise data of Miller [dashed grey line] andaiiwe tone
data of Viemeister and Bacon [solid red lin&]Average intensity JND dat& Estimated loudness
functions [(I)] for the stimuli (pedestals). Triangles repredditiers loudness datd € SL + 10 dB),
converted to sones (1 sone = 975 LU) from the calculatedsof Neelyand AllerC Eg. 2.1: Estimated
transformation ofAljg [paneA] to ALj. D Eq. 2.2: Estimated transformation Aif,q [paneA] to
(AL/At)na. The two magnitude-of-loudness-change functiorS iare not consistentat low levels— there
is an offset, but the rate-of-loudness-change iumgtin D are closer, indicating that the temporal
parameters (duration, envelope) of the stimuli sgored irD allow the stimuli to be unified. ID, below

~0.25 sones the functions are approximately zepedi.e., AL/At)q IS constant].
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2.3. Central Excitation Pattern Model

Ageneral block diagram of the proposed centratagiai pattern model and rate-of-change detector is
given in Fig. 2.3. Glasberg and Moore (2002) predrid loudness model that operates on the temporal
waveform of a given sound to produce a time-depenodedness function. We extend this model to
produce atime-dependent central loudness contratgbfuvbich can be used to predict those changesin
the intensity of a sound that may be detectalsboltild be noted that our definition of centratiioess

(change) is purelyfunctional/notational, in ordemgntain some consistencywith the previous literature

regarding the loudness JND.

Stimulus |
—v

Outer and middle
ear — FIR filter

v

‘ Spectrum 1o excitation ‘

pattern — FFT
v

Excilation paﬁarn lo
specific loudness (ERB)

v

‘ Time and frequency ‘

integration

v

Central
adaptation

Central
loudness

Rate-of-change
detector

Figure 2.3. Block diagram of the central excitation pattern model and rate-of-change
detector process. The area indicated as peripheral contains the émasdmodel of Glasberg and

Moore (2002) and the area indicated as centradiogrihe proposed additions of the present chapter.
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2.3.1. Central Loudness Adaptation

Due to our confinement to the continuous pedeataldmm, we are able to assume that mean level is
approximately the same as the reported level gb¢ldestal. Therefore, only two free parameters are
needed to define central adaptation (CA) in our mdiakeishold{ca) and normalization amourat)( The
value ofa determines central threshold shift that results froean peripheral loudness exceeding the
central adaptation threshold (i.e., exceeds theatelgnamic range). Consistent with long-term ient
adaptation to the prevailing sound level (Detal, 2005, 2008; Weat al, 2009; Rabinowitet al,
2011), central adaptation is implemented in thenfof a partial normalization of any time-varying
loudness functionL)) which has a mean loudness () above the central adaptation threshdigl, Since

we are concerned with continuous pedestals, meandssigiers to a single value for tonal pedestals and
an average over an arbitrarily long time framenfuise pedestals. The use of the mean loudness for
adaptation threshold in continuous pedestals atsadps for smoothing of instantaneous loudness
changes in noise pedestals. The conditional noatiatizused to produce the central loudness function,

Lcen is

L for L<T
Leen = T - & 2.3
cen {(1‘0)|—+ﬂ%|— for L>T,, 23)

2.3.2. Central Loudness Just-Noticeable Difference

Unlike tonal pedestals, noise pedestals includeramth loudness changes which must be taken into
account (Dawet al, 1997a, 1997b; Glasbegg al, 2001). In our model we treat each noise signal as
deterministic (and repeatable), or frozen (BuugQ;18guset al, 2010) and we base detection on the

difference between the maximum valuésbtenfor the pedestal and the maximum valuabofe,during

an increment/decrement applied to that pedestal. nsi€lent with Eq. 2.2, the threshold constant is

defined in sones per ms and the proposed thresskmiession is
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[&j _ max(mLCen |j _ max(ml—Cen |J (2.4)
At jnd At inc At ped

where the pedestal signal is denotAtcé/At),es and the pedestal-plus-change signal is denoted
(ALcedAt)inc. Thus, given a fixed (constant) value fat{At)nq, EQ. 2.4 may be solved by adjusting the
increment size so as to affetst Ced At)inc.

Using a fixed value ofAL/At)ng extracted from Fig. 2.2d (5.5x18ones/ms) a manual, iterative
optimization process was conducted by usingthe tembdel to predict the value afj.q for each data
point of the two studies using given parameteregahf thresholdca ando. Within each iteration the
entire range of stimuli for both studieswas simulaken each simulationwithinagiven iteration, Eq. 2.4
was evaluated numerically using the model to figh. The predicted value dflj,q was comparedtothe
respective data pointand anerrorterm calculated. Ehitegation the average error termwas calculated
over the two datasets. This process was repeatie@dustments made to the free parametersafd
) in orderto minimize the error terms until both glepf the respective minima for each free parameter
were located — i.e., until the valuesTei anda were optimal. The JND for the change in intengity)

is expressed as

Al'jnd

JND=10log o(1+ ) (2.5)
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2.4. Experiment 2.1: Generalising Riesz's Beat Detection

Paradigm

The following experiment was designed to replithéerate-of-change-detection paradigm of Riesz

(1928), within the more controlled conditions oelarly ramped increments in noise pedestals, and to
confirm the generality of his rate findings. In atweemal, forced-choice procedure, listeners were asked
to detect linear up-down ramps in wideband noise.uEe of linear ramps in broadband noise removes
possible confounds, relating to unwanted detecii@s of the beat-detection paradigm employed by

Riesz.

2.4.1. Experiment 2.1: Stimuli and task

All stimuli were generated digitally at 24 bit regon. A pair of Beyerdynamic DT100 isolating
headphones were used to present the stimulus soiltfexts, which was played back directly from a
computer at a samplingrate of 44,100 Hz. Presentatisdiotic (same in both ears). The pedestalwasa
broadband (0-20 kHz) Gaussian noise, presentedaesall level of 33 dB SPL (rms). In the target
interval, symmetrical, linearly-ramped envelope$walf-ramp durations of between 5 and 50,000 ms
were added to the noise pedestals. Half-ramp duratiofistd[ 100, 1000, 10000, 50000] ms were used.
Theincrement consisted ofalinearincrement ramp inetegiollowed by a linear decrement ramp of
equal duration. The increments were located itetigoral centre of the target pedestal. For haifra
durations of 1 second or below, pedestals werese€dnds. For half-ramp durations of 10 seconels, th
pedestal was of 24 seconds. For half-ramp duratids seéconds the pedestal was of 104 seconds. Both
target and reference intervals were gated with 10 resd-aiosine ramps. After hearing each pair of noise

signals the listener was asked which containegthp.
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2.4.2.Experiment 2.1: Procedure

An adaptive three-down one-up, two-interval forchdice (2IFC) procedure was employed which
estimates the 79.4% correct identification (Letii/1). See Figure 2.4. Each trial consisted of two
observation intervals, one of which was selectedratom to contain the target increment. The inter-
stimulus interval was 3 seconds. The level ofribeement was defined as the maximum difference (in
dB) between the pedestal and the target. Thengtagtiue was 20 dB. The initial step size was $o1B
the first 4 reversals and was subsequently halvextetsal was defined as anincrease in increment size
following a decrease, or vice-versa. Three consectrrect identifications of a ramp resulted in a
reduction in size of the increment and one incbarswer resulted in an increase. After 12 rewgrsal
threshold was taken as the arithmetic mean c&#td 0 reversals.

After each trial, subjects were provided with cormattrect feedback on their responses. Trials were
undertaken in blocks lasting no longer than 20 tegilDue to the large number of relatively long
durationtrials necessary, blockswere often interrupiiech break period of 15 minutes, after whichthe
block continued until either the next rest periodanpletion. For the longest half-ramp duratidhgp
such breaks were occasionallytakenin the course of a #imgkhold determination. On two occasions,
withina block, the breakwas extended overnight anddloiivas continued on the following day. Prior
to the test, each subject was given a brief dematinstto familiarize themselves with the interfacel

procedure and was allowed a single practice run.
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Level

Time

Figure 2.4. lllustration of the adaptive method. Pairs of noise signals are presented, one ofwhich
contains aramped increment. The listening level anddamagion are fixed throughout, whilstramp size

is adaptively changed until the procedure convesges80% correct performance. When the listener
correctly identifies the location of the rampeemgity increment the size of the increment is rediuc
otherwise the size is increased, depending oregshplified here to a 1-up, 1-down rule). Correct
responses (blue) result in decreased ramp size ancketiaesponses (red) result in increased ramp size
The ~80% correct threshold level is estimated leyaming the ramp size measured at several points
where the adaptive procedure changes directiorefsals’). The step size of the ramp size change is

reduced after a reversal and the procedure evgrdoaterges on the ~80% correct point.

2.4.3. Experiment 2.1: Listeners

Ten unpaid volunteer subjects served as listeners ingbaents. Seven male subjects and three female
subjects took part. The mean age of the subjest29vémin: 20, max: 36, standard deviation: 5.8). A
reported normal hearingand some reported limitedgusvexperience of participatingin listeningtests.

All participants were naive about the purpose@feist.

2.5. Results and Discussion

In this section we describe the results of theropdition process and of the proposed central éanita
pattern model applied to a further set of pseudtiremus intensity JND data from the literatures (se
section 2.5.3). For each separate simulation,witi@ optimization and within the simulation of the
pseudo-continuous data, stimulus waveforms werdupeal to exactly replicate the documented

conditions of the respective study. This expligriittuded level and envelope.
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For comparison, empirical datafor intensity JND valaee also presented in terms of intensityinthe
form of Eq. 2.5. Data are plotted on a logarithedigle to allow easier determination of Weber’s Law
characteristics, whilst retaining the familiar nuca@ scale of classical literature for the intgndND.
Goodness-of-fit measures are given, for each datasthe form of two-tailed Pearson correlation
coefficients (, P) and root-mean-square errey dB). A description of the experimental conditiéms

each studyis given in the 2.5.3.

2.5.1. Central Adaptation Parameters; Optimization Results

From the optimization, the following values were foulgk = 0.215 sones, ad= 0.95 (i.e., resultingin
95% normalization using Eq. 2.3). Thevalue of 0.215 sones (approximately 25 dB SPLir tkidz
pure tone case) corresponds relatively well tokti@vn dynamic range (approximately 35 dB) of
primary auditory nerve fibers (Evans and Palmer, 19806hs and Abbas, 1974). The 95% normalization
of the central loudness function is approximatelyststent with the known sub-optimal adaptation
behaviour of auditory neurons (Degtral, 2005, 2008; Weat al, 2009; Rabinowitet al, 2011). In
summary, the parameter values found appear redsonab

Fig. 2.5(a) shows the resulting central loudnessline) as a function of peripheral loudness (grey
dashed line), illustrating the result of the optation and the effects of central adaptation. dfeioo
show the effect of central adaptation on the etatensity JND functions, Figs. 2.5(b, ¢) shbev t
rate-of-change predictions of the unaltered pemgbhmodel (grey, dashed line) compared to the
optimized central excitation pattern model (red lioe}he data of Viemeister and Bacon (Fig. 2.5b) and
Miller (Fig. 2.5c). The fit of the optimized cerltexcitation pattern model to the data of Viemesstel
Bacon is goodr£0.99,P=1.8x10", e=0.04 dB), as is the fit to the data of Miller.94,P=1.4x1C",
e=0.19 dB). The growth of loudness for both case®ed/noise) gives a good prediction below central

adaptationthreshold. However, in both cases, thexe@teripheral model results diverge strongly from
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those of the optimized central model above approxim&@ysones and the peripheral model fails to hold
to the data at higher levels. As can be expectadléoking at Fig. 2.5(b/c), the valueTifais relatively
tightly controlled since a larger value would incestig error for the data of Viemeister and Bacan (Fi
2.5b) and a smaller value would increase the ferrtine data of Miller (Fig. 2.5¢). The value oflads
also relatively tightly constrained because smeadlkeres would cause the functions to tend towéeels t
under-estimation of the peripheral model output, aechiise larger values the model would tend towards
Weber’s Law for the tonal data.

This modelling result is interesting because tlearimiss’ is often attributed to a combination of
cochlear compression and spread of excitationgtioe and Buus, 1981; Viemiester, 1983), where
high-pass noise or high-frequencytones are used toadetive near-miss, and henceitis anticipated that
the spread of excitation featured in the excitaticepamodel should lead to anear-miss. The modelling
result for the unaltered peripheral model doepramtuce a compelling near-miss and so it appegtrs th
the addition of central adaptation is necessdiiyttte data. To repeat the statement made by Alheh
Neely (1997), this account of the near-miss sedffesedt to the spread-of-excitation hypothesis.
Furthermore, it should be noted that in this moddhptation is equivalent to an instantaneous

nonlinearity.
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Figure 2.5. Optimization results;  peripheral versus central model . A Central loudness (solid
red line) for continuous pedestals, as a functigedpheral loudness (dashed greyline), illustgetihe
saturating effect of central adaptation (Eq. B3)C Comparison of estimated intensity JNDs from the
peripheral and central excitation pattern rate tsoEspectively.B circles: the averaged 1-kHz
continuous pure tone increment-detection dataeheister and Bacon afds the individual (circles

and triangles) continuous-noise increment-detedtdea of Miller.

2.5.2. Results of Experiment 2.1

Fig. 2.6a shows the results of the ramped-noise experi2renGroup mean thresholds for the 10 listeners
are given, including error bars representing 95pfidence intervals. The trends shown in the data ar
significant P=9.55x1C, Friedman Rank Sum Tessee Hollander and Wolfe, 1973). The resullts, plotted
on alogarithmic (time) scale, show symmetryabout tliedrap of 100 ms ‘best detection point'which

appears equivalent to that shown around 3-4 HzdszRFig. 2.6b). Furthermore, the results confirm

Riesz's general finding that slow ramps are harktect. It should be noted that short-term memory
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(Durlach and Braida, 1969) may play arole in the testilvery long ramps (i.e., >4 seconds), in that the

listener is forced to assess the intensity chaitgenhe short-term memory window.

2.5.3. Simulation of Pseudo-Continuous Experiments

A selection of contemporary intensity JND studieseachosen to test the generality of the model in
conditions where the continuity constraint heldydobsely but where other parameters important to
temporal integration theory were varied. We cabéhstudies pseudo-continuous because the pedestals
used would be considered continuous iftheywere not gataaddboff. \We  also include our ramped-noise
experiment (see section 2.5.Rjone ofthese studies varied (roved) the listening lewiiméxperimental
runs, so the long-term average level should bemably close to the reported pedestal levels.

For direct comparison with the results of Viemeistet Bacon (1988), the model was used to obtain
detection thresholds for increments of 200 ms milmaous 1 kHz tones over the intensity range from
threshold to 85 dB SPL. The increments were gaitbdl@ ms raised-cosine ramps.

Miller (1947) measured increment detection thresHoldtwo subjects using continuous, wide-band
noise signals. The noise signals were specified agjjaower spectrum of +5 dB from 150 to 7,000 Hz
and were incremented for 1.5 sec. duration atvaiteof 4.5 sec. Since Miller did not specify the
spectrum outside of thisrange, in our modelling a band fiflaswas used to reduce the energy outside of
this range by 12 dB per octave. We assume that tiemeat envelope is square (instantaneous). Best fit
to the datawas found where SLwas converted to SRidorisistent with the threshold predicted bythe
(peripheral) loudness model (SPL= SL+ 4 dB).

For comparison to the results of Oxenham (1997)usesl the model to obtain intensity JND
thresholds as a function of increment and decredugation at 55 dB SPL at durations between 4 and

200 ms. Thresholds were obtained both in quietramitie-band noise of 0 and 20 dB spectrum level.
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Increments and decrementsin 4 kHz pure tone ped#<58l8 ms were gated using raised-cosine ramps
of 2 ms.

For comparison to the results of Platkal. (2006), the model was used to obtain thresholds for
detection of brief symmetrically-ramped incremémts 20 dB spectrum-level (i.e., dB per 1 Hz band)
broadband (0 - 20 kHz) noise pedestal. The rampslinear and of durations between 2.5 and 20 ms.
Increments were centrally located within the pedlest

To test the model against the results of GallunHatdfter (2006), we employed 477 Hz pure tone
pedestals and obtained thresholds for detectionedfdymmetrical increments of durations between 10
and 85 ms, gated with 10 ms cosine ramps. PedesiH)0 ms were used and the increments were
centrally located within the pedestal.

Fig. 2.6ashowsthe predictions ofthe model (dashedigedy¢ompared to the results of the ramped-
noise experiment. The model predictions are reBodase (=0.94,P=4.8 x1C°, e=0.9) to the data.
The model predicts an approximately symmetricalecuabout the ‘best-detection’ rate. The large
intensity JNDs at high and low rates of changelmsttdetection half-ramp duration of 100 ms are in
good quantitative agreement. Within the model, Z&eparadigm and that of the ramped-noise
experiment are shown to be equivalent.

Fig. 2.6b shows a comparison of the predictiorth@imodel (dashed grey line) with the data of
Riesz’s first experiment which determined beat-maiawi intensity JND as a function of beat frequency
for continuous ~1 kHz pedestals. The shape of tiaseare similar to the experimental data of the
ramped-noise experiment, in that it shows a log-igmmetrical non-monotonic JND as a function of
beat rate, where low beat rates are as hard to dsteigh beat rates. The shape and form of thednnct
produced bythe model is similar(.93,P=1.4 x10°, e=0.19 dB) to that of Riesz’s data, particularly in
terms of aminimum JND point and symmetrical shape d@beuatinimum. We note that Riesz'sdata asa

function of level, which almost hold to Weber’s Lawababout 60 dB SL, do notappear consistent with
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other more recent data (Wbjtczak and Viemeister, ¥g@tand Neely, 1997) and so we do not attempt
to model them here.

Fig. 2.6¢ shows the predictions of the model (dashedigeg)ydompared to the mean data of Pktck
al. (2006). These data showthe effect of duration on biefarlyramped increments in noise pedestals.
The model shows good agreement with the daa92,P=7.5 x1¢, e=0.84 dB) interms of shape, buta
small over estimation is evident.

Fig. 2.6d shows the predictions of the model (dashedige? compared tothe mean data of Gallun
and Hafter (2006). These datadescribe the effeceffingarly-ramped increments on 477 Hz pure tone
pedestals and so represents the pure tone equofdles data of Plackt al.(2006). The model shows
good agreement with the data@.99,P=7.7 x1(%, e=0.1 dB).

Fig. 2.6(e, f) shows selected data points from Gm@rs (1997) data for brief increments and
decrements (respectively) in pure tones comparéetpredictions of the model (dashed grey line).
These data characterize the effect of duration ashgitmaind (masking) noise on the pure tone intensity
JND. The data show a monotonic decrease of JIND vattbase in duration and a parallel shift upwards
in the JND for the addition of masking noise. In our cérgraitation pattern modelling of these data, we
treat the sum of masking noise and tonal pedestal ag@signal and we look for athreshold increasein
the maximum loudness slope caused by the incraméwe tonal pedestal component. Generally, the
model provides reasonable, if not ideal, qualéedind quantitative account of the det®89,P=2.6
x10® e=0.19). For the signals presented in noise, cemtagitation provides for an increase of the JND

consistent with the data.
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Table 2.1. Goodness of fit measures for the central model. Pearson
correlation coefficientsr{ P) andrms error €) for central excitation pattern rate
modelling results compared with the data
r P €
Viemeistei& Bacon 198¢ 0.9¢ 1.8x1C™ 0.0«
Miller, 1947 0.9¢ 1.4x10° 0.1¢
Oxenhan 1997  0.8¢  2.6x1(° 0.
Riesz 192¢ 0.9: 4.8x1(" 0.1t
Preser study 0.9 4.8x1C° 0.¢
Placketal., 200¢ 0.9¢ 1.1x1(¢2 0.8¢
Gallun & Hafter, 2006 0.99 7.7x10° 0.1
Overal 091  <IXIC*° 0.09

Table 2.1 provides a summary of the goodnessrogfitsures described above and for the overall fit
to the whole data set{0.91,P<1 x10', e=0.09 dB). Outside ofthe error margins discussed ifEthue
Margins section, some errorin the modelling of the pseudo-asottis data may be explainedinterms of
assumption of the continuous-levels approximalionay be that the central adaptation contribuson

excessive in these cases.
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model (dashed grey linedy group mean thresholds of the ramped-noise expdritieries); noise
pedestals with up-down ramps, at half-ramp duratithisk®), 100, 1000, 10000 and 50000 msandatan

overall listening level of 33 dB SPL (rms). Err@rérepresent 95% confidence intervals. The trends

shownin the data are significa®=9.55x10, Friedman Rank Sum Ted Just-noticeable difference for

envelope modulation ofa 1 kHz tone, as a functionaiffoequency, produced with the method of beats
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by Riesz for a listening level of 50 dB SL.Just-noticeable difference for detection of symicadir
linearly-ramped increments in 20-dB spectrum-lewaepedestals, as afunction of half-ramp duration
(one-sided) - averaged data of Platlal (circles).D Just-noticeable difference forincrement detectionin
477 Hz pedestals, as a function of increment durati a peak level of 60 dB SPL - averaged data of
Gallun and Hafter (circles, F JND for increment and decrement detection in 4 keldestals
respectively, as a function of duration at a lisigtevel of 55 dB SPL - averaged data of Oxenham fo

500 ms pedestals presented in quiet (circles),@idBgles) and 20 dB (squares) spectrum leveénoi

2.5.4. Error Margins

There are several potential sources of error ofusim in the recreation and modelling of the
experimental conditions of the studies reviewethia chapter. First, since much of the data were
originally presented in terms of SL, the question @tholds isimportant. Riesz (1928), for example, did
not obtain absolute thresholds for his subjectsooltthem from an earlier work by Fetcher and Wegel
(1922). Fetcher and Wegel did not describe thaodebr statistical calculation by which they obtained
their thresholds. In any case, the thresholdsidfieiently different to those obtained with modern
experimental methods and equipment that some margstbenallowed to account for this. Furthermore,
Miller (1947) obtained absolute thresholds forruse stimulus but did not specify the procedure by
which he obtained the absolute thresholds.

Second, there is significant variationin statitezel used to define intensity JND threshold. Miller,
for example, defined the threshold according t@% Sorrect location on the psychometric function,
whereas Viemeister and Bacon defined the threstiditek 70.7% correct point. For our ramped-noise
experiment we define threshold at the 79.4% cqo@nt. The model, which is based on loudness data
from modern studies (Mooet al, 1997) is likely to provide error in the estimatiof intensity JND
values for earlier studies.

Third, the data of Miller (1947) were taken withseostimulus that is only defined as having a

spectrum of +-5dB in the range of 150 Hz to 7,0@0Aithough the +-5 dB appears reasonable for
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Gaussian noise, this description does not allow aspreble assumption to be made about the spectrum
of noise outside ofthe bandwidth specified. Furtheliehiid not specify the spectrum of the noise after
it had been passed through the filter of the headphongeed@enerally, the data of the studies reviewed
here were obtained with various headphone receiverstaghpiparatus whose influence isnot known.

Fourth, the experimental population size involveti@studies reviewed is highlylimited; 2 subjects
for Miller, 3 subjects for Viemeister and Bacomsubjects for Oxenham and 3 subjects for Riesz.

Since the intensity JND as a function of listefévgl is known to be a steep function at low levels
the question of absolute thresholds for a givéenks or for a population is critical. Where madgll
error is shownin offset but notin slope (i.e., theraisiset in the SPLaxis) it is possible that variancei
individual thresholds is the source of the errbrsTs particularly likely in light of the small palation

sizes described above.

2.5.5. Limitations

The loudness model used here features relatively carfupletionality; the transfer function ofthe outer
and middle ear filter is relatively discontinudhe, auditory filters change shape (asymmetricaily)

level and many aspects of the nonlinear input/ofwpation are frequency dependent. Our results are
therefore somewhat dependent on this model. Howéteenade peripheral models should, in principle,

produce similar results as far as they show anvalgut (or better) fit to loudness data.

2.6. Chapter Summary

The main objective of this chapter was to establish parameters of a central adaptive model able
to relate loudness to the intensity JND. The fit of the model is good, even inthe case of pseudo-
continuous data, and the adaptation parameters obtained are plausible with regards to the

neuroscience literature. The ramped-noise experiment has shown that large intensity JNDs are
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obtained at very low rates of intensity change, confirming the generality of Riesz’s findings. In
the context of the modelling, we have shown that the spread of excitation explanation alone is
not sufficient to produce a near-miss. Central adaptation has been used to simultaneously
explain data featuring approximate examples of Weber's Law and the near-miss, and to
explain the effects of masking noise on increment and decrement detection.

In 1997 Allen and Neely anticipated a role of central adaptation in human auditory
perception. We have made explicit the argument that loudness reflects peripheral neural
coding, that intensity JND reflects central neural coding and that adaptation has a pronounced
effect on human auditory perception. In the next chapter, the selectivity for modulation rate
outlined in this chapter is further characterised and related more directly to what is known of the

central auditory pathway.
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Chapter 3: Modulation Filters

Recent studies employing speech stimuli to investigate ‘cocktail-
party’ listening have focused on entrainment of cortical activity to
modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data
suggest that cortical modulation filtters (CMFs) are dependent onthe
sound-frequency channel in which modulations are conveyed. In this
chapter, we characterize modulationfiltersin human listeners using a
novel behavioural method. Within an ‘inverted’ adaptive forced-
choice increment detection task, listening level was varied whilst
increment size was held constant for ramped increments with
effective modulation rates between 0.5 and 33 Hz. The data show
frequency dependent trends which suggest that modulation filters
are tonotopically organized (i.e., vary systematically along the
primary, frequency-organized, dimension). This suggests that the
human auditory system is optimized to track rapid (phonemic)
modulations at high sound-frequencies and slow (prosodic/syllabic)

modulations at low frequencies.
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3.1. Central Auditory Contrast Processing

The primary feature represented by the periphedioay system is sound frequency. The basilar

membrane ofthe cochleais arrayed, from base to apexidegro a tonotopic representation, with high
frequencies resolved at the basal end and lowdrems at the apical (Pickles, 2008). Tonotopic
organization is apparent up to at least primant@yaortex (Humphriest al, 2010), which has been
characterized as showing an intensity-independergéseqiation of sound (Sadagopanand Wang, 2008;
Barbour, 2011) responding primarily to stimulustrast. Numerous studies have revealed a preference
for “natural” 1f modulation statistics (Voss and Clarke, 1975, 187&he auditory system (Garcia-
Lazaroet al.,2006, 2011; Wangt al.,2012) and this selectivity has been localized i@y cortex
(Garcia-Lazaret al.,2011; Wanggt al.,2012). Models comprising central modulation filternk&have
been proposed (Daat al, 1997a, 1997b; Jepsehal.,2008), including the existence of independent
modulation filters in the human auditory cortex g et al, 2013). Presumably, these cortical
modulation filters (CMF) represent separate nelirpppulations, each with different tuning to
modulation rate (Dingand Simon, 2013). Xiagl. (2013) have suggested that, much like the ‘beating’
that occurs within the auditory filters of the deehitself, CMFs are nonlinear and produce sum and
difference products when two modulations (at cffierates) exist within the same filter.

Speech intelligibility has been shown to be depatnole sensitivity to slow temporal amplitude
modulations (Drullmanet al, 1994; Shannoet al, 1995). Assuming CMFs play a key role in coding
speech, particularly in background noise, i.e K@departy’ listening (see Ding and Simon, 2013)rZi
Golumbicet al, 2013; Lakatost al, 2013), a potential strategy for separating speenhbackground
noise, and one recently suggested by Ding and S{@@i8), is that CMFs are carrier-frequency
dependent. That is, the modulation rate to whictFE€&te tuned increases systematically along the
tonotopic gradient. This strategy also makes sknse the perspective of the limits imposed by

peripheral auditory filters, the bandwidths of Whiacrease (in Hertz terms) with increasing centre
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frequency, making it theoretically possible to cgnmereasingly higher modulation rates. In support of
this, Lakatoset al. (2013) demonstrated tonotopically-arranged entraitmfisaural activity in the cortex

of non-human primates, suggestive of a tonotopic arraegenf CMFs. Furtherevidence in supportofa
tonotopic arrangement of CMFs comes from neuroingegiudies (as reviewed by Zarate and Zatorre,
2012), where a ‘dual stream model'of the cortextdeas proposed to account for hemispheric spectro-
temporal processing differences (for musical stinaguivalent to those observed by Lakatosl.
(2013). It follows from this that if CMF tuning isrcer-frequency dependent, it might be the product of
tonotopic variation in underlying neuronal physiglo

Since human cortex (like that of the monkey) istopically mapped (Humphries al, 2010), if
CMFs are carrier-frequency dependent, then subcopiegldof excitation across the tonotopic gradient
(likely initiated at the level of the basilar merte) may have an equivalent ‘cortical spread of
modulation’ effect, where the peripheral spreadexfitation along the tonotopic gradient spreads
modulation across nearby CMFs. This spread of modlatight then result in similar level-dependent,
nonlinear interactions to those observed by Xetrad (2013), suchthat CMFtuning would broaden with
increasing sound level to cause ‘simultaneous ratidlilmasking’, much as the peripheral auditory
filters cause simultaneous energetic masking (Brtiagal, 2006).

Previous psychoacoustic studies have suggestethtiragity discrimination is carrier frequency
dependent; intensity discrimination varies as atiibmof stimulus duration (Watson and Gengel, 1969)
and as a function of sound level (e.g., Jesteladt, 1977; Long and Cullen, 1985; Ozimek and
Zwislocki, 1996). However, these findings have legn systematically verified or related to cortical
processing of stimulus contrast. In keeping withdpproach in Chapter 2, more recent studies have
suggested a key role of contrast in detecting @saimgsound intensity (Oxenham, 1997; Platc,
2006; Gallunand Hafter, 2006; Simpson and Reis§)2Blere, we investigated modulation filtters using
anovel behavioural method derived from psychoacoudtisteners were asked to detect linearly-ramped

increments (i.e., the just noticeable differenti®Y]), in pure tone carriers, at effective modulatates
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between 0.5 and 33 Hz. These rates span the rangsadlior<5 Hz), syllabic (5 Hz) and phonemic (20
Hz) rates commonly found in speech (Xiabgl, 2013; Drullmaret al, 1994; Shannoetal, 1995). By
varyingthe level and frequency of the carrier signalchaacterized the tuning of the modulation filters
as a function of carrier frequency and level (imssofmodulation rate sensitivitgndmodulation depth
sensitivity. Our data supportthe view, as suggested by Ding andrnig2013) andimplied by Lakates

al. (2013), that modulation filters are systematically celeat on carrier frequency. Given thatthe cortex
is known to be tonotopically organized (Humpheaesl, 2010), this suggests that CMFs are similarly
organized, in agreement with the well-establisbedtopic map, and in support of the ‘dual stream’
model (Zatorre and Zarate, 2012). We also obskateriodulation sensitivity changes as a function of
sound levelina manner that may be attributable to spreaditdtion across  modulation filters as sound
level increases. In summary, our data suggeshindtuman auditory system is optimized to tracldrapi
modulations at high sound-frequencies and slow mimohigaat low frequencies, and supportsamodel of

cortical function based on tonotopically-organigeatiulation filters.

3.2. Experiment 3.1

As in Chapter 2, the prevailing experimental pgrador assessing the intensity JND specifies al fixe
listening level and an adaptively-varied incrensere (Oxenham, 1997; Plaekal, 2006; Gallun and
Hatfter, 2006; Simpson and Reiss, 2013). Howeveraimdividual differences in auditory physiology;,
small changes in listening level produce large @bsim the size of the intensity JND (e.g., Vietaeis
and Bacon, 1988) and, near threshold, the mappiatiisxiremely nonlinear and highly individualized.
When this method is applied to a medium sample size,ieadividual listeners are extremelyreliable,
the mean results for such a sample constitutesa gv@raging (blurring) of subtle trends in the thata
potentially characterize modulation filter tuningprevious studies (e.g., Jestesdil, 1977; Longand

Cullen, 1985; Ozimekand Zwislocki, 1996), listeriengels were fixed relative to the absolute threshold
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(i.e., sensation level — SL) for each listenerrafeoto provide comparison between intensity JNDs a
different carrier frequencies. This resultedin thesovation of carrier-frequency dependenceinthe JND
as a function of SLbut the findings were not relébemporal integration (see below), a major topic o
more recent investigations (Oxenham, 1997; Riaek, 2006; Gallun and Hafter, 2006; Simpson and
Reiss, 2013). Here, we invert the traditional expental paradigm such thatlistening level is adaptively
varied and the size of the increment is held conétee Fig. 3.1). This normalizes between-subject
variance caused by individual differences in altsdhresholds.

As in Chapter 2, byassessing JNDs at different ramgtidns, a modulation rate sensitivity function
is produced (Oxenham, 1997; Platkal, 2006; Gallun and Hafter, 2006; Simpson and R2(ss3),
characterizing the relative sensitivity of the mation filter to different ramp (i.e., modulatiorgtes.
From this function, tuning for the modulation filtet each carrier frequency can be estimated. For
modulation filters tuned to low modulation rateg.(gorosodic or syllabic; 5 Hz or less), the mdihia
rate sensitivity function will show greatest sewigjtto the slowest ramps (1000 ms). For modutatio
filters tuned to higher modulation rates (e.g.,r n@@nemic; 20 Hz or more), the modulation rate
sensitivity function will show greatest sensitivdtythe higher modulation rates. By testing ae#fft
heights of ramp (with a fixed ramp duration of 5 éffective modulation rate), modulation depth
sensitivity functions can be produced and level depeede the modulation filters can be probed. If the
tuning of modulation filters varies as a functionarfrier frequency, level-dependent trends with@arri
frequency should be observed. This is becausefif@dmodulationrate, as carrier frequencyis varied
some CMFs will be operatinginthe tuned peak and otheF<OMIl be operating inthe skirts. Therefore,

this also allows us a window into possible sprdadamiulation effects.

3.2.1. Inverted method
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Detection threshold levels were obtained for up-downpeimincrement envelopes added to the centre of
4 s long pure tone carrier-signals, for nine lestenListeners were presented with pairs of matéted
long tones, one of which (at random) containedeali up-down increment. The listening level was
started high, so that the increment was clearlpijdind then varied adaptively until threshold level was
determined. If the subject correctly selecteddhe with the increment the listening level was cedy
and, if incorrectly, the listeninglevel was increasEhresholds were estimated by averaging the listening
level at several such decision rule points.

By separately varying the frequency of the caaied the size and duration of the increment
envelopes, corresponding equal-JND-level contours mduced and, from these contours, threshold-
level functions of ramp duration and of ramp sieemodulation rate sensitivigndmodulation depth
sensitivityfunctions obtained. Parametric analysis of the Wa@employed to reveal systematic trends
with carrier frequency.

Two experiments were conducted. Thefirst experimastesigned toillustrate the modulation rate
sensitivity tuning of modulation filters as a fuantof carrier frequency. The second experiment was
designed to illustrate the associated modulatioth dgmsitivity tuning within the modulation filteiw
modulations at approximately 5 Hz (i.e., syllabiey. In experiment 3.1 (ttemporalexperiment), the
size of the intensity increment was fixed at 3 idBlf-ramp duration of the increment was set tceeith
[15, 50, 100 or 1000] ms for each block (equivalersa modulation rates of [33, 10, 5 or 0.5] Hz
respectively). This produced a set of four contdtes which modulation rate sensitivity functiasfs
increment ramp duration could be extracted. Inexpeti@@rthemagnitudesxperiment), the increment
size was set to either [1,2 or 3] dB for each hlankl half-ramp durations of 100 ms (correspondiagt
modulation rate of approximately 5 Hz) were used foheaspective block. This produced a set ofthree
contours, fromwhich modulation depth sensitivity fimes could be extracted. From here onwards, we
refer to the ramp durations of [15, 50, 100 or 1000jrtesms of the equivalent modulation rates of [33,

10, 5 or 0.5] Hz respectively.
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Apost-hocanalysis was performed quantifying systematic trendbhe shapes ofthe modulation rate
sensitivity and modulation depth sensitivity functioasg a correlation analysis was employed to assess

correlations in the two measures that may be wtitile to the properties of the modulation filters.

3.2.2. Near Miss

Aprerequisite of this method s that, fora given inaeamdetectionimproves withincreases in listening
level. Weber’s Law states that the ratio of intensitygkensity JND should be constant (Weber, 1846)
and has been shown to be approximately true for widebarals(ifiller, 1947). However, inthe case of
pure tones, Weber's Law has been shown not to (eald Viemeister and Bacon, 1988) and the
characteristic steady (monotonic) decrease inNEewlith increasing sound level is referred to &s th
‘near-miss to Weber’s Law’ (McGill and Goldberg, 896The near miss necessary for the method has
been shownto hold for continuous 1-kHz carriers utdBSPL, correspondingtoaround 80 dB above
threshold (Viemeister and Bacon, 1988). In thigystioy using relatively large increments, we liout
investigation to the range between threshold amehdr40 dB above threshold. However, it should be
noted that non-monotonicity was observed for gatkHz signals above 90 dB SPL in the above-
mentioned study (Viemeister and Bacon, 1988), laaickthe near-miss is less well defined in (or even

absent from) studies employing noise maskers Regert al, 1995).

3.2.3. Experiment 3.1: Stimuli

Stimuli were generated digitallyat 24 bit resolutiopaik of Beyerdynamic DT100 isolating headphones
was used to present the stimulus to listenerdiglifemm a computer, at a sampling rate of 44,1@0 H

Presentation was diotic (identical in both earsg Garriers were gated on and off using 10 msiraise
cosine ramps. In both experiments, detectionthredtxads were obtained at carrier frequencies of [62,

125, 250, 500, 1000, 2000, 4000, 5650, 8000, 118BWO] Hz. Pure tone (sinusoidal) carriers were
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presented in blocks of IND = 1, 2 and 3 dB, where JNEfised as 10g.o(1+Al/1), I=intensity. Carrier
frequency was varied inside blocks. Symmetricajpehenvelopes were added to the tone carriers. A
ramped envelope for agiven duration consistedinéar increment ramp of that duration, immediately
followed by a linear decrement ramp of the samatidur: The ramp envelopes were located in the
temporal centre of the 4 s long carrier. The inergrwas set to a fixed value within any given hldck
thetemporalexperiment, linear up-down ramped increments witletfe modulation rates of[0.5, 5, 10
or 33] Hz were imposed upon 4-s pure tone carfiireshold levels were obtained for JND = 3 dB. In
the magnitudeexperiment, 5 Hz modulations were used and thieénatls were obtained for IND =
[1,2,3]dB.

The range of JNDs was chosen to lie within the known maoimtange. The range was also limited
to relatively large values of JND (>=1 dB) for tkason that very small values of JND at low and hig
carrier frequencies would have required listenagels beyond those possible with the available

apparatus.

3.2.4. Experiment 3.1: Procedure

For each carrier frequency within a block, an adapiree-down one-up, two-interval forced-choice
(2IFC) procedure was employed which estimates /4 correct identification (Levitt, 1971). Each
pair of signals that constituted a trial, preseimedndom order, consisted of one carrier thatneed a
ramp envelope and a second carrier that contagesthmp. The signal pairs were presented with silent
inter-signal intervals of 0.5 s. At the start & #daptive sequence, the initial listening leved set to be
below the threshold of audibility. This was incezhm steps of 10 dB until the subject indicatedttie
carriers (and increment) were clearly audible, bickv point the adaptive procedure began. Three
consecutive correct identifications of aramp redulte reductioninthe listening level and one incorrect

answer resulted in anincrease. After each trial, sabjeete provided correct/incorrect feedback on their
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responses. Followingareversal, the step size (stealingof 10 dB) was divided by two. Areversal was
defined as an increase in listening level follovardecrease, oice versaAfter 12 reversals, threshold
level wastaken as the arithmetic mean ofthe last 1@sadge Trials were undertaken in blocks lastingno
longer than 20 minutes. Blocks were occasionayrimpted with a break period of 15 minutes, after
which the block continued until either the next pesiod or completion. Blocks and carrier-freqyenc
orders within blocks were chosen at random. Roithé test, each subject was provided with a brief
demonstration to familiarize themselves with thierface and procedure. A training period was then
undertaken whichwas terminated when the performatieesiibjectwas judged to have stabilized. The

data from the training period were not includeslibsequent analyses.

Level
I
>

Time

Figure 3.1. lllustration of the inverted method. Pairs of pure tones are presented, one of which
contains a ramped increment. The ramp size antdaiuisifixed throughout, whilst listening level is
adaptively changed until the procedure converges8@%o correct performance. When the listener
correctlyidentifies the location of the ramped intisiiscrement the listeninglevel isreduced, otherwise
the listening level is increased, depending onlea(simplified here to a 1-up, 1-down rule). Carrec
responses (blue) result in decreased listening éek incorrect responses (red) result in increased
listening level. The ~80% correct threshold levedssmated by averaging the listening level measured at
several points where the adaptive procedure chalimgesion (‘reversals’). The step size of the leve

change reduced after a reversal and the procedgunteially converges on the ~80% correct point.
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3.2.5. Experiment 3.1: Listeners

Nine unpaid volunteer subjects served as listenetgeiexperiments. Six male subjects and three female
subjects took part. The mean age of the subjest@Wwémin: 21, max: 33). All reported normal hegrin
and previous experience of participating in listgriests. All participants were naive concernirg th

purpose of the test.

3.3. Results of Experiment 3.1

3.3.1. Modulation filter tuning is carrier-frequency dependent

In order to characterize the tuning of the moduldfiiter, sensitivity measures must be obtainedor
main properties; modulation rate (i.e., rate ohgeg and modulation depth (i.e., contrast). Infitee
experiment, we assessed the ability of listenedgtiect a change in sound intensity (from a referen
intensity), where the change constituted anincrewfentefined duration, quantified by the ‘half-ramp’
duration, i.e. the duration from the start of thenp to its peak. As all ramps were symmetric iretim
around their peaks, changing the duration of the avides for a proxy of different modulation rates,
i.e. faster ramps represent faster modulation eatdsslower ramps represent slower rates. Effective
modulation depth was held constantat 3dB, so thaththice$evels were obtained by assessing the ability
of listeners to detect a 3 dB increment for effeathodulation rates of [0.5, 5, 10 or 33] Hz forgou
tones spanning the range 62 Hz to 16 kHz, i.eorepassing much of the frequency range of normal-
hearing listeners. Absolute sound level was adgyptixaried according to the criteria describechim t
section 3.2 until ~80% performance was reached.

Figure 3.2aplots group mean threshold levels as #idarad carrier frequency for the nine subjects,
for increments of 3 dB at effective modulation rafefdb, 5, 10 or 33] Hz. Each data point corresponds
to the mean absolute sound-level at which 80% penfaewas reached for 3 dB ramps ofthe respective

modulation rate. The overall shape of these cigeggsvalent to equal loudness-level contoursseg.,
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Mooreet al, 1997) is not greatly affected by ramp duratianweler, the overall distance between the
functions is smallest at the extremes of the cdreguency range.

Fig. 3.2b plots the same data as in Fig. 3.2dydmatas modulation rate sensitivity functions, @her
the data are normalized to remove the effect of aesthiteshold. The main effect of half-ramp duration
was verified to be significant in all modulatioteraensitivity functiondR<0.05,Friedman Rank Sum
tes), with the exception ofthose for 62 Hzand 16 kHz. ®iikely explained bythe combined interand
intra-subject variability associated with extreroisarrier frequency and of half-ramp duration.

The modulation rate sensitivity function  is monotoniddar carrier frequencies, and non-monotonic
(U-shaped) forhigh carrier frequencies. The monotaature of the functions atlow carrier frequencies
is consistent with data from several contemporaryestifeig., Oxenham, 1997; Plathl, 2006; Gallun
and Hafter, 2006) suggestingthat increments (oedemts) in sound intensity are detectable interms of
a change in energy (with no reference to the fatkamge). And the non-monotonic modulation rate
sensitivity functions at high carrier-frequencies@nsistent with data reported in Chapter 2ifioifes
ramps conveyed in noise (Simpson and Reiss, 200}y suggest that increment detection might be
determined, at least in part, in terms of achandgamulsis contrast. Agradual transition from monotonic
functions atlow carrier-frequencies  to non-monotomcfions at higher carrier-frequencies is evidentin
the data, with a transition point around 4 kHzsTikiin agreement with the findings of Watson and
Gengel (1968), who demonstrated a faster integratiee constant with increasing carrier frequency.
However, in both cases, it seems likely that nonetamic functions would be observed given longer
durations on the order of minutes such as thostogeain Chapter 2.

A critical feature of this method is that the difiet durations of intensity ramp act as a proxy for
modulation rate; short ramps correspond to fast saigdong ramps to slow. By measuringthe listening
level at whichthe 80% performance was achieved fatheus effective modulation rates, we obtained
ameasure of the sensitivity of the modulation filtemindulation at each effective rate, i.e. a moduiati

rate sensitivity function. Amonotonic function ingsl increasing sensitivity to decreasing ratesrmAno
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monotonic function implies that peak sensitivityithin the range of rates tested. The centre &ecy
of the modulation filter corresponds to the modulationatatenich itis most sensitive. By measuringthe
regression slop&) of each modulation rate sensitivity function, we ivtatd a measure of howwell our
range of modulation rates captured the centredrexyduning of the modulation filter at a given ieaur
frequency. This provides a crude proxy to cenéguiency tuning. It should be noted Gaoes not
quantify a curve fit to the modulation rate sevigitfunction, but rather is a means of quantifylirogv
well the peak of the modulation filter is centrally captl by the function, i.6G is informative as to how
well the modulation rates represented by each difee arrayed around the tuned peak. T8Gus,0
indicates a modulation filter tuned to a carriegérency at the centre of the functi@rx O indicates a
filter tuned to the right of the function’s cerdaredG > 0 a filter tuned to the left of the function’site.
Fig. 3.2cshows aninterpretation ofthe dataintermfustrative modulation-filters, corresponding
to the modulation rate sensitivity functions, whittfsirate variation in modulation filter centre-frequency
for two example modulation rate sensitivity functioaisiow carrier-frequencies there is a large, p@sitiv
value of G, meaningthat modulation filters are most sensitisieta (i.e., near-prosodic) modulations. At
high carrier-frequencies there is asmaller (eventiegyaalue ofG, meaning that the modulation filters
are most sensitive to faster (i.e., near-phonemodulations. Fig. 3.2d plo@ as a function of carrier
frequency. Although it is not a clear trend, therelgse of5 with increase in carrier frequency confirms
the trend for increasingly high-rate tuned modutefitters along the tonotopic gradient. The naeow
dynamic range over which 80% performance was asthiat’the extremes of the tonotopic gradient
indicates these modulation filters to be relativlyadly tuned, whilst the wider dynamic rangehat t
mid-to-high carrier frequency end indicates thesdutation filters to be more selective for modufatio
rate.
The data plotted in Fig. 3.2 can be summarizedliasvk. At low carrier frequencies, modulation
filters appear to be most sensitive to modulatibesrthat are near-prosodic (i.e. ~1-5 Hz), buardsy

higher carrier frequencies the filters appear tmbee sensitive to near-phonemic (~20 Hz) modulatio
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rates. Within the range of modulation rates reptedein our data, at low carrier frequencies the
modulation filters appear tobe low pass andat higheecdrequencies the filters appear to be pass band.
However, ourdata do not preclude the possibility tfiapiver modulation rates were represented in the

function, pass band tuning might be observed foclarrier frequencies.
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Figure 3.2a. Modulationrate sensitivity contours. Group mean threshold-levels as a function of

carrier frequencyfor the nine subjects, for incremeh&dB at effective modulationrates of [0.5, 5, 10 or

33] Hz. Each data point corresponds to the meatusbsound-level at which 80% performance was
reached for 3-dB ramps of the respective durations.
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Figure 3.2b. Modulation rate sensitivity functions. b plots the same data as in Figa3r2the

form of modulation rate sensitivity functions, wiaéhe data are normalized to remove the effect of
absolute threshold. Colour scale from red to bhdeates low-to-high carrier frequency. Error bars
indicate 95% confidence intervals. Modulation rsg@sitivity functions become increasingly non-
monotonic with increase in carrier frequency, iatiig a smooth transition in modulation tuning from

near-prosodic to near-phonemic rates along thédicgradient.
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Figure 3.2c/d. G as a function of carrier frequency. ¢ illustrates our interpretation Gffor two
example modulation rate sensitivity functions; dangositive values db at low carrier-frequencies,
indicating modulation filters to be most sensitive to slogv,( near-prosodic) modulations. At high carrier
frequencies there is a smaller (even negativeg @i, meaning that the modulation filters are most

sensitive to faster (i.e., near-phonemic) modulatiplotsG as a function of carrier frequency.

3.3.2. Modulation filter tuning is listening-level dependent

In the second experiment, modulation rate (halpraluration) was held constant and the effective

modulation depth varied by varying the height efrdimp, to produce a measure of modulation depth
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sensitivity. These data were then assessed wibate® sensitivity to modulation rate from thetfir
experiment.

Figure 3.3aplots contours showing group mean threlgvald at each carrier frequencyfor the nine
subjects, for increments of [1,2,3] dB at effectivadulation rates of 5 Hz. Each data point corregpo
to the mean absolute sound-level at which 80% npesioce was reached for 1, 2 or 3 dB ramps,
respectively. In general, the contours of both ex@ats (Fig. 3.2a & 3.3a) resemble equal loudness
contours, and hence it is reasonable to assuneerigor factor in their shape is the outer- andlieid
ear transfer function. Thisis supported by a correldi@ween Glasbergand Moore’s (2002) combined
outer-and-middle ear filter and the average coritouan all the data of the temporal and magnitude
experimentsrE0.96,p=3.6x10°, Pearson two-tailed

The contours of the data in Fig. 3.3a are notlphfalit are most widely spaced in the middle of the
carrier-frequency range, and the overall dynamigeaf the functions is again smallest at the exsem
of the carrier-frequency range. This indicates thadlulation depth sensitivity varies with level nos
steeply in the middle of the carrier-frequency earkgg. 3.3b removes (by normalization) the effetts
the absolute threshold, allowing the form of the functiote compared directly. The curved functions at
low carrier-frequencies are comparable to the elgmitzéunctions previously reported (e.g., Viemeister
and Bacon, 1988). Thus the results of previousestudost likely reflect the tuning of the relevant
modulation filter at a particular carrier frequesanyd level. The error bars in Fig. 3.3b represé¥i 9
confidence intervals. Main effect of JND size wasfied to be significant in all function®<0.05,
Friedman Rank Sum tgswith the exception of the modulation depth seitgifunction at 62 Hz. As
previously, this is likely a result of the combineter and intra-subject variability associatechwit
extremes of carrier frequency and of increment Aizkigh carrier-frequencies, the functions are almost
perfectly linear (log-log axes) and so could belipted with a power law. There is a general trend
towards power-law type functions as carrier frequeincreases, with a transition after 4 kHz.

Furthermore, by comparing the data for 62 Hz and 16 kttwarlyidentical absolute threshold levels
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at 1 dB (Fig. 3.3a), differences in the shapes otinetibns between low and high carrier-frequencies are
most apparent. The same comparison is also efaldras Hz and 11.3 kHz.

At high carrier-frequencies, as the JND is incrédBey. 3.3b) the listening level (at threshold) is
reduced proportionally. This suggests that tursnglatively invariant to sound level. Howeverlpst
carrier-frequencies, as the JND isincreased theifigidevel (at threshold) is not reduced proportigna
suggesting that tuning changes with sound levadrder to assess the relative changes in tuning of
modulationfilters at different listening levels, geads for the level functions of Fig. 3.3bwere calculated
For each functiod)G was calculated as the change in slope betweehdatuédsvels for increments of
[1,2] dB and [2,3] dB (where a zero valué\@ indicates power-law type functions). Fig. 3.3c pliis
as a function of carrier frequency and shows algtése ofAG with increase in carrier frequency. Fig.

3.3d plot\G as a function of (a proxyto modulation filter centre frequency)juiing a quadratic fit

to the data (dashed line). It can be seen@hahdAG are highly correlatedr#-0.945, p<5x10’,
Spearman two-tailgd

One way of explaining the trends shownin Fig. 3.3cand r8ight be the spread-of-modulationthat
would result from tonotopically organized CMFs. B@e shows a cartoon illustration of this
interpretation oG for two example modulation depth sensitivity functioNear absolute threshold (i.e.,
for INDs of 3dB) peripheral spread of modulati@ysglittle role, meaning that coding of the syilabic
Hz) modulation at a given carrier frequency is depat only on the modulation filter located on the
tonotopic gradient according to carrier frequehtywever, for smaller JNDs level is increased and
peripheral spread ofthe carrier causes spread of modul&pread of modulation causes the recruitment
of modulation filters that are more or less samsiid syllabic (5 Hz) modulation. For high frequgenc
carriers (blue), the basal modulation filter is treesitive to the syllabic (5 Hz) modulation, aad
recruitment of less sensitive filters (by periphajread of modulation) has little influence on

performance. However, for low-frequency carrierd)(réne apical modulation filter is insensitivetie
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syllabic (5 Hz) modulation and so at high levels.(iL dB JND) performance is enhanced by more
sensitive modulation filters recruited towardstibsal end of the tonotopic gradient. This enhanseme
falls awayaslevel is reduced and hence produces theglcfunctions seen towards the apical end ofthe
tonotopic gradient. Therefore, small valueA®f{(i.e., at high carrier-frequencies) indicate litfleet of
spread-of-modulation and large values/@ (i.e., at low carrier-frequencies) indicate spredd
modulation effects. Followingthis interpretatiorg #teady rise &G with increase in carrier frequency
indicates  atrend describing steady decrease in spreadetfiation effects across the tonotopic gradient.
The correlation shown in Fig. 3.3d provides bothr@ss validation for both proxy measures of
modulation filter tuning, and support for our ipi@tation of an interaction between modulatiogtfilt
tuningand peripheral spread-of-modulation effectsvéder, it should be noted that spread of modulation
is not the only mechanism that may be invoked faexAG. Rather spread of modulation is a
mechanism we would expect to see evidence of, baste suggested cortical tonotopy, and hence is
the most plausible interpretation given the cdroglawvith G. Alternative explanations f&G might
include input/output nonlinearities which are earfrequency dependent or CMF bandwidths which

change with sound level in a carrier frequency oidget way.
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Figure 3.3a. Modulation depth sensitivity contours . a plots contours showing group mean

threshold levels at each carrier frequency fonthe subjects, for increments of 1 (red circleghl@e
triangles) or 3 (green squares) dB at an effestodulation rate of 5 Hz (i.e., syllabic). Each qaiant
corresponds to the group mean absolute sound-levéicit 80% performance was reachedfor 1, 2 or 3

dB ramps respectively.
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ions . b plots the same data as in Figa3.3

normalized to produce modulation depth sensitivitgtions. The error bars represent 95% confidence

intervals. Colour scale (right) from red to blue @aties low-to-high (apical to basal) carrier freqyen

plotsAG as a function of carrier frequendyplotsAG as a function o6 (a proxy to modulation filter

centre frequency), including a quadratic fit todla&a (dashed lined. shows an interpretation of the data

in terms of a cartoonillustration ofthe interpretataddG for two example modulation depth sensitivity

functions.
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3.4. Chapter Summary

In this chapter we have provided evidence that human modulation filter tuning is both carrier
frequency and level dependent. Our data suggest that CMFs are tonotopic and that the human
auditory system is optimized to track rapid (phonemic) modulations at high carrier frequencies
and slow (prosodic) modulations at low carrier frequencies. We have suggested, based on
evidence of modulation filter level dependence, that peripheral spread of excitation is likely to
result in ‘spread of modulation’ by spread-of-carrier between CMFs. Furthermore, our data
suggests systematic (tonotopic) variation in underlying cortical neuronal physiology. Our data
and conclusions provide support for the cortical speech processing strategy suggested by Ding
and Simon (2013) and confirmation in humans of the findings of Lakatos et al. (2013) in
monkey CMFs. Carrier frequency and level-dependent tuning of CMFs may have implications
for the cocktail party problem and appear consistent with the ‘dual stream’ hemispheric model
suggested in music neuroimaging studies (Zatorre and Zarate, 2012). In the next chapter, the

selectivity characterised in this and the previous chapter is put in the context of adaptation.
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Chapter 4: Selective Adaptation

Adaptation to the statistical distribution of sounds has been independently
reported in neurophysiological studies employing probabilistic stimulus para-
digms in small mammals. However, the apparent sensitivity of the mamma-
lian auditory system to the statistics of incoming sound has not yet been
generalized to task-related human auditory perception. Here, we show that
human listeners selectively adapt to novel sounds within scenes unfolding
over minutes. Listeners’ performance in an auditory discrimination task re-
mains steady for the most common elements within the scene but, after the
first minute, performance improves for rare (oddball) sound elements, at the
expense of rare sounds that are relatively less odd. Our data provide the first
evidence of enhanced coding of oddball sounds in a human auditory dis-
crimination task and suggest the existence of an adaptive mechanism that
tracks the long-term statistics of sounds and deploys coding resources ac-

cordingly.
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4.1. Central Auditory Adaptation

Formanyspecies, survival depends on the ability to enbedritrent sensory scene with a high degree

of accuracy, whilst remaining alert to novel evamtthe environment (Bregman, 1990; McDermott,
2009). These two demands appear in conflict in tefrtieem call on neural resources. Adaptation to ‘en-
hance’representation of both common (Detal, 2005, 2008; Watkins and Barbour, 2008; \&&al,
2009; Rabinowitet al, 2011; Sadagopan and Wang, 2008; Barbour, 20&inila and Zador, 2011;
Walker and King, 2011) and rare (Ulanovskyl, 2003, 2004; Nelken, 2004; Perez-Gonzeted,
2005; Malmiercaet al, 2009; Yaroretal, 2012) sounds has been reported in neurophysioldgdas
seeminglyin the same brain centres and employintasjpnobabilistic stimulus paradigms. How then
does sensitivityto the statistical distribution afisds manifestin sensitivityto both high and low proba-
bility events?

In order to assess neural sensitivity to the statisf sounds, Deagt al.(2005, 2008) introduced a
probabilistic paradigm in which stimulus intensitigere selected according to distributions feagurin
low- and high-probabilityregions (LPRs and HPRs). &hkployed a similar paradigm in which listeners
were presented with three variants of a stimulus, one afvdacurred with high probability (80%) and
the other two with low probability (10% each). Silhconsisted of two sounds (noise bursts). One
presentation of the stimulus, followed by a resppasnstituted a trial. After hearing the stimutbs,
subject was asked to report “which sound was loudiefitating their response by pressing 1 or 2 on a
keypad. In the first experiment, the three stimulsants differed in terms of their overall intensg§(

55 or 75 dB SPL). In the second experiment, tieethariants differed in terms of the inter-soutetin

val (ISI: 350, 700 or 1050 ms) and were fixed atiBSPL.
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4.2. Experiment 4.1: Methods

The overall method was broken down into a two-gtageedure. The first, or calibration, stage deter-
mined the just-noticeable difference (JND) for intgrfeit pairs of sounds at each possible intensityand
ISIgenerating, in each case and for each listenentiesity difference for a fixed-priori probability of
success in the discrimination task (~80%). Thergkqmobabilistic, stage presented the listendr wit
three different stimuli, each set to the soundH@M®s determined in the calibration stage, amaliti

occurring witha-priori probability within a given epoch (Fig. 4.1).
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Figure 4.1: Stimulus probability. a  Ineach of two experiments, listeners were presented¥i
calibrated trials. Eachtrialwas selected from thassiple stimuli accordingta-priori distributions that
changed before each 100-trial epoch. The threalstiomsisted of changes in different sound feature
(intensityin experiment 4.1, ISlin experiment 4\&)thin anepoch, one ofthe three stimuli was selected
with a-priori probability of 80% (high probability stimulus, reah)d the other two versions were each
selected with 10% probability (low probability stimsjuplue, greenp plots an example epoch consist-

ing of 100 stimuli selected at random accordirthégorobabilities described in pagel

4.2.1. Experiment 4.1: Stimuli and task
Listeners discriminated intensity of pairs of 50 mnsts of wideband noise (20 Hz— 20 kHz), gated with
5 ms raised-cosine ramped envelopes and separatsidehy ¢51. One of the noise bursts was randomly

selected to be louder than the other and theites¢h trial) was to indicate on a keypad whicimdo
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(of the pair) waslouder. Presentation of each nevidlialved a subject’s registration of the responseto
the previoustrial. Directly after the response wasred{ subjects were provided correct/incorrect feed-
back. Each noise burst was generated randomlytprimesentation. In the first experiment, the-root
mean-squareds sound pressure level (SPL) was 35, 55 or 75 dBrenlSI was fixed at 350 ms. In
the second experiment, tles SPL was fixed at 55 dB and the ISI was 350, 700060 ms. Noise
bursts were generated digitally at 24 bit resolutigeyerdynamic DT100 isolating headphones were

used to presentthe stimulus (diotic) to listeners tijrieom a computer, ata sampling rate of 48,000 Hz.

4.2.2. Experiment 4.1: Calibration procedure.

For each of the three possible stimuli for whichrnstty JNDs were obtained (35 dB, 55 dB, 75 dB), an
adaptive three-down one-up, two-interval forcedeshpiocedure was employed to estimate the point of
79.4% correct identification (Levitt, 1971). At thart of the adaptive sequence, the size of the itytensi
difference was set to 8 decibels (dB). Three congeadirrect responses in trials resulted in areductio
in the size of the intensity difference and onerirect response resulted in an increase. Folloavileg
versal (an increase in intensity difference follayardecrease, oice versg the step size (starting value
of 4 dB) was divided bytwo. Minimum step size was lgdito 0.1 dB. After 20 reversals, the estimated
JND was taken as the arithmetic mean of the lastvidsas. The three runs, corresponding to the three
stimuli, were conducted in a block lasting no lartgan 20 minutes. Within-block run order was ran-
dom. Each listener completed one block. The slowly camgeadaptive procedure was designed to take
around 5 minutes per run, allowing sufficient tinrddémg-term adaptation to converge prior to the ulti

mate estimate of JIND being acquired.



1-109 64

4.2.3. Experiment 4.1: Probabilistic procedure.

In the second, probabilistic, stage, listeners yweasented with a block of 1000 individually cadiied
stimuli (35, 55, 75 dB), where the intensity differefa each stimulus was the estimated JND obtained
from the previous calibration procedure. Unbeknowmgie listeners, the 1000 trials were dividedl int
100-trial epochs. Within an epoch, each trial wiectl from the three possible stimuli accordingto
priori distributions (Fig. 4.1a), where one stimulus (igaieof noise bursts) was selected at 80% proba-
bility and the other two at 10% probability each (Bid.b). Over an epoch, this generated three possible
distributions for the three possible stimuli: A:09:10%:80%], B: [10%:80%:10%] and C:
[80%:10%:10%] (as depictedin Fig. 4.2a-c/4.3a-crdsphd. 10 consecutive epochswere presentedin
a block. For each epoch, one of the three distitmitvas chosen with equal likelihood. This was per
formed in the following manner: three of each KizdB,C) were included plus one (of A/B/C) at ran-
dom, for a total of 10 epochs. The epoch order aradomly shufiled and any permutations in which two
sequential distributions of the same kind occurregl, (ARCCBABACBC) were rejected and reshuffled.

Each listener completed one block (of 10 epodishd around 30 minutes.

4.2 4. Experiment 4.2

The calibration and probabilistic procedures of experirdel were replicated for experiment 4.2, where

the three possible stimuli had ISIs of 350, 7000&0 and stimulus level was fixed at 55 dB SPL.

4.2.5. Experiment 4.1, 4.2: Participants
Nine normal-hearing listeners participated (firstezipent mean and standard deviation: 29 +4 years, 1
female, second experiment mean and standard devid@ianS years, 2 female). Seven ofthe listenersin

experiment 4.2 also participated in experiment 4.1.
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4.3. Results

In each experiment, the three possiblariori distributions provide three contexts within whichlgiof
each stimulus can be assessed. For each listenerucoistpercent-correct functions, for each stimulus
in each context (3x3), were calculated using aidlstlective (rectangular) sliding-window collegs
across epoch&l€10). These functions are plotted as mean * stuedar in the mean (SEM). Each
function was tested for significant overall fluctuatiomgerformanceRriedman Rank Sum testhere,?

is given as a measure of effect size), and fauédions in the difference in performance betwesh e
pair of stimuli within a given contexiedman Rank Sum test on the derivatiVae latter derivative
test identifies fluctuations that indicate seldgtiand/or prioritization between stimuli. TR&irbin-
Watson tesdtatistic (Durbin and Watson, 1950, 1951, 1971 )saatbdata of both experiments was close

to 2 (mean: 1.93, SD: £ 0.39) indicating that coroector serial correlation was not required. In addjtion
wecondtcted beimutatiantestson each 2 statistic. For thedatacf eah function that was tested. tria or-

der was randcmlv shuffled for eahlistener and therespedtive ¥ statislic was comouted usinathe Fried-

man test. This process was repeated,000 times, in each case, and the number ofseraoms that

resulted in * values that weteeaual ar laroer (than that of theun-nermuted Friedman tesi) wete counted
(count =c) to provide an estimat€tvalue Pest= c+1/n+1) which we report in place of tRevalue
computed in the Friedman test. Correlations, coagjmut the grand-average performance functions, are
given with 95% confidence intervals (Cl). Stataitiests that did not reach significance are ddraste

not significant K.S).

4.3.1. Experiment 4.1: Results

From the calibration procedure, the mean JND (1&#¢: 2.4+1.1dB,2.5+1.1dBand2.6+1.6dB
for the 35, 55 and 75 dB stimuli respectively. Fegdi2 plots mean performance (£SEM) for the three

calibrated stimuli (35, 55, 75 dB) within each paisstontext. Figure 4.2a plots performance inthe three
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possible stimuli when the 35 dB stimulus is setkate30% probability. Figures 4.2b and 4.2c plet th
same for the three possible stimuli whenthe 55- andB&imhuli respectively are selected at 80% prob-
ability.

For all three high-probability stimuli, performargigows little evidence of significant fluctuation
(N.S, Friedman Rank Sum tgssuggesting that adaptation, if it occurs, isdrégr common sounds
(Deanet al, 2005; 2008). Indeed, it should be noted that our are@hcluding the low-pass effects of
the 40-trial sliding integration window) practicaliggludes capture of such adaptation. In Fig. 4.2a, per-
formance for low-probability stimuli (55 and 75 dB)elatively steady (but lower) until about halfwa
through the epochs when performance for the twabtstarts to diverge, with performance for the 55
dB stimulus decliningY.S, Friedman Rank Sum tesand for the 75 dB stimulus increasip%9)
119.2, P< 0.05, Permutation Tgstuntil it surpasseseventhatforttgs dB(HPR) stimulus.
Over the whole epoch, performance for low-probabilitgstiat 55 and 75 dB igwversely correlated €
-0.88,P < 0.01, 95% CI[-0.79, -0.92]) and diverges arourdhteakpoint’ at
~30 trials: performance deteriorates for the 55taBulus ¢ = -0.79,P< 0.01, 95% CI [-0.67, -0.87])
while performance for the 75 dB stimulus improves (.91,P < 0.01, 95% CI [0.85, 0.94]). Further
evidence of selectivity/prioritization is seen xamining the derivatives. Performance for the 75 dB
stimulus shows some weak evidence of changingveekat that for the 55 dB stimulug(9) 94.7,
Friedman Rank Sum test on the derivative betweenringisP < 0.1, Permutation Tésand relative to
the 35 dB (HPR) stimulus ~ A(59) 1406,  Friedman Rank

Sum test on the derivative of performance between theisihsuD.05, Permutation Test

In Fig. 4.2b, when the HPR corresponds to the 5&tidiilus, performance shows little evidence of
significant fluctuation for any stimulus!(S, Friedman Rank Sumtgdn Fig. 4.2c, when the HPR cor-
respondsto the 75 dB stimulus, performance for theglmlvability stimuli is similar to that of Fg. 4.2a.
Performance for the (low probability) 35- and 55stiBhuli is inversely correlated € -0.47,P = 0.02,

95% CI [-0.24, -0.65]) and splits after the breakp@erformance for the 55 dB stimulus deterigrate
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(N.S, Friedman Rank Sum tgavhile performance for the 35 dB stimulus impso@¢S, Friedman
Rank Sum tesgradually ¢ = 0.63,P < 0.01, 95% CI [0.45, 0.76]).

These data are consistent with the existence of gtiadaechanism that tracks the statistics of the
stimulus, refining predictions over timescalesrotiad one minute. For the ‘most odd’stimulus, when
the HPR correspondsto the 35- and 75 dB stimuli ppegioce improves (at the expense ofthe alternate
low-probability stimulus) after around a minuteggesting the slow build-up of oddball selectivity.
When the HPR corresponds to the 55 dB stimulus4f2l), however, neither ofthe other two stimuliis
‘more odd’'thanthe other (and the 55 dB stimulusditghe mean of the whole distribution), and overall
performance is similar for all stimuli. Thismeans thiattistical evidence for stimulus prioritizationis rel-

atively weak.
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Figure 4.2: Intensity discrimination accuracy chang ed over time for different intensity

statistics . Plot of mean (+SEM) accuracy for each stimulus%8%r 75 dB) in different epochs. The
colour coded correlationsyalues shown below each respective cartoon distributi@apture significant
overall trends with time. For each epoch, coraelativere also computed between the two respective
low (10%) probability functions and arevalues are noted (in black) with bracket. Correlatidvasare

only given where significanP(< 0.01).a plots performance in epochs where 35 dB trialsrosith

80% probabilityb plots performance in epochs where 55 dB trialsrasith 80% probabilityc plots
performance in epochs where 75 dB trials occur wi# gfobability. Asterisks denote significant fluc-
tuations in performanc® & 0.01,Friedman Rank Sum tgdEach trial corresponds to approximately 2

seconds (mean trial time across both experimesezdhds, SD: + 0.3).
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4.3.2. Experiment 4.2: Results

From the calibration procedure, the mean JND (1v&¢ 2.4 +0.9dB, 2.3+0.9dB and 2.1 + 0.4 dB,
for the 350, 700 and 1050 ms stimuli respectivatyure 4.3 plots mean performance (SEM) for the
three calibrated stimuli (350, 700, 1050 ms) witkach possible context. Fig. 4.3a plots performance for
the three possible stimuli when the 350 ms stimuletasted at 80% probability. Figures 4.3band 4.3c
plot the same for the three possible stimuli whenthe @A8-1050 ms stimulirespectivelyare selected at
80% probability.

Again, for all three high-probability stimuli, perfoance showslittle evidence of significant fluctua-
tion (N.S, Friedman Rank Sum tgssuggesting that adaptation, if it occurs, is rfapicommon sounds.
In Fig. 4.3a, performance for low-probability stinfid00 and 1050 ms) is relatively steady until@bo
halfway through the epoch when the two functiowsrde abruptly, with performance for the 700 ms
stimulus decliningf(59) 134.6Friedman Rank Sum test; P < 0.01, Permutatior); esd
weak evidence that the 1050 ms stimulus is incrg44(59) 84.6Friedman Rank Sumtest; P < 0.2, Per-
mutation Te$tuntil it surpasses that for the 350 ms (HPR)tis1 Over the whole epoch, mean perfor-
mance for low-probability stimuli at 700 and 1050 sversely correlated € -0.8,P < 0.01, 95% Cl
[-0.7, -0.88]) and diverges around the ‘breakpanatind 30 trials. The derivative provides further e
dence of this selectivity/prioritization. Performanmetie 1050 ms stimulus changes with respecttothat
for the 350 ms stimulugi(59) 176.5Friedman Rank Sum test on the derivative of perfor-
mance between the stimuli; P < 0.01, Permutatics).Te

In Fig. 4.3b, when the HPR corresponds to the 78timulus, performance for the low-probability
stimuli (350 and 1050 ms) is positively correlated 0.73,P < 0.01, 95% CI[0.58, 0.83)]). It deteriorates
earlyand thenrises around a similar breakpointto thetreed in the other data. The fluctuationsin per-
formance onlyreach relatively weak significancetfie 350 ms stimulug(59) 101.4Friedman
Rank Suntest; P < 0.1, Permutation Tgsbfferingsome weak evidence of oddball effects, b
are approximately paralleled for the (correlated) 1050 ms stimulus indicglittle evidence of
prioritization/selectivity.

In Fig. 4.3c, when the HPR correspondsto the 1@58timulus, performance for the low-probability
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stimuli is again inversely correlated=-0.94,P < 0.01, 95% CI[-0.9, -0.96]); For the 700 ms stimulus
performance deteriorated(69) 102.5Friedman Rank Sumtest; P < 0.05, Permutatior) Geatiually
(r=-0.97P< 0.01, 95% CI [-0.94, -0.98]), whilst there is weeklence that performance for the 350 ms
stimulus improves,{(59) 82.9,Friedman Rank Sumtest; P < 0.1, Permutation) Teish a similar
gradient(r = 0.96,P < 0.01, 95% CI[0.94, 0.98]) and surpasses performantefHPR (1050 ms) stimulus.

Again, the derivatives provide further evidence afa®lity/prioritization; Performance for the 350 ms

stimulus changes with respect to that for the 79@ﬁmulus;(2(59) 135.7Friedman Rank

Sum test on the derivative of performance between theistihsuD.01, Permutation Tesand with re-
spect to that for the 1050 ms stimujgé0) 124 Friedman Rank Sumtest on the derivative of
performance between the stimuli; P < 0.05, Permutalies}). Also, there is weak evidence that

performance for the 700 ms stimulus changes with cegpehat for the 1050 ms stimulyu&59)
105.8Friedman Rank Sum test on the derivative of pedioombetween the stimuli; P < 0.1,

Permutation Tejt

Consistent with the experiment 4.1 assessing stoihdifferent intensities, the inverse correlatidn
performance in low-probability stimuli is only egiat when the high-probability stimulus is presented
with either low (350 ms) or high (1050 ms) ISI. Additadlg the low-probability stimulus furthest in ISI
from the high-probability stimulus 1Sl is enhaneder the breakpoint at the expense of the congpetin
low-probability stimulus. This further supports thation that the auditory system prioritizes reseur
allocationin favour ofthose low-probability sounds  baterent to the high-probability sounds. Inboth
experiments, the selective enhancement of low-pildpdoddball” sounds emerges around trial 30,

which equates to around 60 seconds into the epwEm(trial time: 2 seconds, SD: + 0.3).
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Figure 4.3a/bl/c: Accuracy changed over time for diff ~ erent temporal statistics . Panels -c

plot mean (SEM) accuracy for each stimulus (ISI of, 38D or 1050 ms) in different epochs. The col-
our coded correlations-¢alues shown below each respective cartoon diitiit) capture significant
overall trends with time. For each epoch, coraeiativere also computed between the two respective
low (10%) probability functions and arevalues are noted (in black) with bracket. Correlatiduesare

only given where significanP(< 0.01).a plots performance in epochs where 350 ms trialsrauth

80% probabilityb plots performance in epochswhere 700 ms trials @atu80% probabilityc plots
performance in epochs where 1050 ms trials ocdtr80% probability. Asterisks denote significant
fluctuations in performanc®(< 0.01,Friedman Rank Sum tgdEach trial corresponds to approximately

2 seconds (mean trial time across both experimengnd 4.2: 2 seconds, SD: + 0.3).
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Figure 4.3d: Power spectrum versus ISI . d plots example waveforms for pairs of 50-ms noise
signals. Byvaryingtheinterval (ISI) between tworsts) we varythe effective modulation power spec-
trum. Theleft side shows the waveforms with differ&is land the right side of the panel showsthe cor-

responding envelope power-spectrum.

4.4. Discussion

We have demonstrated in human listeners a commongtatpmpcessing the statistical distributions of
sounds varyingin intensityor timing. Sounds with tlestaommonly occurring intensities, or presented
withthe most commonly occurringintervals, are strorggyesented throughout. Selective enhancement
of novel events thenappears to emerge after some tilhnetve high-probability context. Discrimina-
tion performance for low-probability soundsthat aretrualéke the high-probability sounds is enhanced
at the expense of discrimination in low-probabilityisds that are most like the sounds heard with high
probability. It is also striking that discriminatiperformance in these “oddball” low-probability sdsin

can surpass that of high-probability sounds (e.g. 4E8)- Note too, that whilst previous reports of sensi-
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tivity to “oddball” sounds indicate improvelgtectiorof these events (e.g., Slagial, 2012), here we
demonstrate improvegtiscriminationfor low-probability events.

At a phenomenological level, the adaptation evioleotr data is consistent with the concept of per-
ceptual learning (de Souetal, 2013; Skoet al, 2013). Perceptual learning is thought to reéeet
hancement of perception due to synaptic plas(isitych follows practice) and hence our data may re-
flect rapid perceptual learning. More generallg, data are consistent with a process whereindisten
construct aninternal model of the acousticinput thaigeses surprising, or “oddball” stimuli. Although
there are several potential neural mechanismeiight underpin such adaptation, it is implied thet

neural representation of the stimuli changes avex. t

4.4.1. Neural mechanisms

Our data are consistent with experimental recordiraya $mall mammals in whichfiring rates of audi-
tory neurons adapt to the unfolding distributions ofsbntensity (Dearet al, 2005, 2008; Watkins and
Barbour, 2008; Weat al, 2009; Rabinowitet al, 2011; Sadagopan and Wang, 2008; Barbour, 2011;
Jaramillo and Zador, 2011; Walker and King, 201&anblvskyet al, 2003, 2004; Nelken, 2004; Perez-
Gonzalezt al, 2005; Malmiercat al, 2009; Yaroret al, 2012). This feature of neural coding, which
emerges at the level of the primary auditory nemproves coding (discrimination) of the most-ikel
occurring intensities in a distribution of sounDednet al, 2008). As a population, midbrain neurons
also show the capacityto accommodate bimodal (with qoiodiability) distributions of sound intensity
(Deanet al, 2005), suggesting the possibility of simultaneowgptage coding for multiple sounds with
different features. At both the midbrain (Desral, 2008) and cortical (Ulanovsky al, 2004; Yaroret

al., 2012) levels, neurons demonstrate adaptation tetessm the order of hundreds of millisecondsto
tens of seconds. The breakpointin performance arousg@hds is relatively close to the time-scale of

long-term adaptation reported in these studies. Thistiale is also consistent with the results of Chap-
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ters 2 and 3 using slowly ramped intensity incrésnand with brainstem-mediated ‘rapid learmning’
(Skoeet al, 2013), suggesting a common role of long-termtatiap in humans. Ulanovslet al's
(2004) study in cats also demonstrated that dort@arons adapt more quickly to high-probability
sounds than to low-probability sounds, and thatipfetimescales of ‘stimulus specific’adaptation oc-
curred concurrently. These multiple timescales appeaistent with the features of our behavioural da-
ta.

The adaptationtotemporal statistics implicit in ouadgsless straightforward to explain, but neverthe-
less is consistent with recent reports implicatirditary cortex neurons in adaptive coding of temporal
intervals (Jaramillo and Zador, 2011). In both sabe timing intervals may be considered in tesfns
(low) modulation rates. Emerging evidence suggesigory cortex maintains a bank of independent
cortical modulation filters (CMFs), each tuned iteecent (low) modulation rates (Xiareg al, 2013).
CMFs have beenimplicated in speech processing (Dinendn, 2013) and the detection of intensity
changes in Chapters 2 and 3. Contrast gain adaptastseen demonstrated in cortical neurons, where-
by functions describing neuronal firing rate versums level show gain adjustments to best match the
intensity variance of the stimulus (Rabinovetal, 2011). Combining these two cortical processing fea-
tures, byassumingthat contrast and modulation @iogesccurs by common means, a plausible expla-
nation for adaptation to time intervals lies in $pecificity of adaptation to particular CMFs. @em-
poral stimuli can be considered in terms of thisstal manipulation of modulation energy (see Fig
4.3d) with respect to the rate at which energyddutated. As shown in Fig. 4.3d, the ISIs of 380, 7
and 1050 ms produce energyin the envelope modulatitmfundamental frequencies of around 3, 2,
and 1 Hz respectively, and would, therefore, makmaacite different modulation filters. The power-
spectra in Fig. 4.3d also demonstrate that the alnstesttaneous envelopes generate steadily decreasing
modulation energyin harmonics of the fundamentahdd, it may be that rate-selectivity of CMFs, as
proxy selectors of ISI, combined with independeWFJcontrast) adaptation, underlies the adaptive

coding of temporal intervals.
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Selective adaptation to oddball sounds probably iegobome form of interaction between adaptive
effects (Ulanovsket al, 2004; Deart al, 2008; Yaroret al, 2012) and neural tuning widths on sensory
continua (see O'Connell al, 2011). However, building a detailed biophysicatisl@f this phenome-
non is challenging given the paucity of relevant phggjichl data, and the vastrange of possible circuits.
Simpsoret al, (2014) described a phenomenological model whicletitadsupport the idea of adapta-

tion mediated through a sideband inhibitory influeen

A.4.2. Attention

Our listeners were instructed to attend each and evénaind confirmed (post-test) that theymade eve-
ryeffort to do so. The necessary attention span (dr80rminutes on average) should nottax anaverage
adult. It might be argued that listeners’ attenii@s captured by, or directed to the “oddball” stirs,

and that top-down processing (e.g., of saliencdyl coadiate such “oddball” selectivity. Howeversit
also plausible that the well-established low-lekptive substrates can explain the data, andiprovi
even, an explanation ofthe nature and substrategmtf@rt itself. This would render attention determin-
istic, making it an involuntary statistical conseugeeof adaptive processing. In this scenario, taydi
boredom’would also be a predictable and involuntary careseg of the adaptive processing.  Attention
has featured prominentlyin investigations of ‘cockiaitylistening’. Cortical entrainment (Synchroniza-
tion of neuronal duty-cycle with the envelope @f $timulus) has been suggested as one low-level sub
strate (Lakatost al, 2013; Dingand Simon, 2013; Zion Golumgtiel, 2013). And even ifentrainment

is not a substrate, it is associated with and rieetlizy attention. Auditory neurons appear to @xiat
state of perpetual oscillation, between excitatatyrafractory states, known as the duty cycle (Lakatos
et al, 2013). Entrainment ofthe neuronal duty cycle to anomstimulus modulation occurs whenthe
refractory period is brought forward in time by eatitin of the neuron (also referred to as phasg-rese

Therefore, low-level adaptive processes descrimdidreare inherently implicated in the processef e
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trainment. Extrapolating further, the suggestegtadastatistical filtering would directly mediata-
trainment and hence would mediate the putativersidsf attention.

The sensitivity to “oddball” events demonstrate maight prove useful in exploiting the structural
statistics of speech and perhaps even music. Suchgnopesuld facilitate the extraction of statistically
salient signals from within predictable noise (sasimulti-talker babble, for example), and may even
underpin higher-level statistical percepts (e.gPstmott and Simoncelli, 2011; McDermettal,
2013). Furthermore, if such adaptive codingis a furatdah low-level feature ofthe auditory system, it
may be that prosody, melody and even the very strustlaaguage and music have evolved to exploit

such adaptive coding.

4.5. Chapter Summary

In this chapter we have provided direct evidence of adaptation in human auditory perception
which combines the argumentation of Chapter 2 and the selectivity described in Chapter 3. We
have also made the case that adaptation serves to enhance auditory representation of “odd-
ball” sounds and have discussed some of the immediate implications for auditory perception.
We have introduced a novel paradigm for studying adaptation in perception that may be ap-
plied in many conceivable permutations to further probe the interaction between selectivity and
adaptation. In particular, it remains to be seen whether the same selective adaptation appliesin

the tonotopic (frequency) axis.
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Chapter 5: General Summary

The main objectives of this thesis were to characterise selectivity and adap-
tation in the human auditory system, and through this characterisation to
provide some evidence of adaptation in human auditory perception. Novel
methods were developed and data acquired that meets these objectives. In
this final chapter we document the contributions of this thesis, including nov-
el methods and findings, and discuss these contributions in the context of
the wider literature. This leads to discussion of possible directions of future

research.
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1.5. Contributions to Knowledge

The main contributions to the body of knowledge eniadthis thesis include data on selectivity for

modulation rate (Chapters 2, 3, 4) and on adaptatibuman auditory perception (Chapters 4). These
data have resulted in the development of sevstabte hypotheses about auditory form and function.
Thisthesis has also yielded novel psychophysical me{@hapters 3 and 4) and a computational model

(Chapter 2) that embody implicit hypotheses alt@itiechanistic nature of the auditory system.

1.5.1. Main Findings

The case for adaptation in human auditory perception hasbeeut alongtwolines. Inchapter 2, psy-
chophysical datafromas far backas 1928 was accldont®y a central excitation pattern model featur-
ing adaptationtointensity. The adaptation parametstisnaged by numerical optimisation of the model
are consistent with the observations of in-vivaptateon. It was argued that this suggests thataaydi
intensity discriminationis - limited by central auditorgpessing and maintained by adaptive processes. In
chapter 4, psychophysicaldatawas presented whichnderated that listeners’auditory acuity changed
over time in response to the statistics of theuitiithis data provided evidence of a general atiapt
strategy for both intensity and temporal statishesis broadly consistent with the adaptation viese
in-vivoand provides thefirst evidence of enhanceniéntoan auditory perception through adaptation.
Therefore we have generalised, to human auditocgjpon, the adaptation by auditory neurons to
sound statistics reported in neurophysiologicalistuinvolving small mammals (Deat al, 2005,
2008; Watkins and Barbour, 2008; Wetnal, 2009; Rabinowitzt al, 2011; Sadagopan and Wang,
2008; Barbour, 2011; Jaramillo and Zador, 2011k¥vaind King, 2011; Ulanovslef al, 2003, 2004;
Nelken, 2004; Perez-Gonzaletzal, 2005; Malmiercat al, 2009; Yaroret al, 2012). We have also
provided some insight into the adaptive representat common and rare sounds (Degal, 2005,

2008; Watkins and Barbour, 2008; Wétral, 2009; Rabinowitzet al, 2011; Sadagopan and Wang,
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2008; Barbour, 2011; Jaramillo and Zador, 2011k&vaind King, 2011; Ulanovsley al, 2003, 2004;
Nelken, 2004; Perez-Gonzaletzal, 2005; Malmiercat al, 2009; Yaroret al, 2012).

Knowledge of the selectivity of the human auditory bragdiso been extended. Inchapter 2, selec-
tivity for modulation rate was used to generaliseséimtral auditory model and the human auditory sys-
tem was shown to be insensitive to very fast anglslew modulations. In chapter 3, selectivity for
modulation rate was shown to be carrier frequeapgiadent and it was hypothesised that the human
auditory cortex features atonotopicallyarranged radida filter bank. In chapter 4, selectivityfor both

intensity and modulation rate was demonstrated.

5.1.2. Hypotheses

We have developed several explicit hypotheses #tmatiditory system. In chapter 2, it was hypothe-
sised that central adaptation might play a critisied in human auditory discrimination. The cass wa
made by modelling data for long-term signals which wereaattiprovide conditions where adaptation
should have converged sufficientlythat the time coistdiadaptation could be neglected. The results of
Chapter 2 tend to support the hypothesis thatateadaptation affected intensity discrimination.

In chapter 3 it was hypothesised that peripheral [eaghspread of excitation could affect evidence
of orthogonality of tonotopic and periodotopic axesortex. The data of Chapter 3 do not suppert th
neuroimaging findings (Baumara al, 2011; Bartoretal, 2012) of orthogonality of tonotopic and peri-
odotopic axes. Indeed, the spread-of-modulationthgsis might predict that the high sound pressure
levels employed in those studies could have produdédesit peripheral spread of excitation such that
any tonotopic selectivity might have been obliteratedyihg onlythe appearance of orthogonality. The
argument for ‘spread of modulation’ given in Chafteiso has implications for the nonlinear CMFin-

teractions described in Xiaegal.(2013). In particular, it remains to be seen whetiese interactions
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are level independent, or whether they are enhdmyciedrease in level (as would be predicted by the
‘spread of modulation’idea of Chapter 3).

In Chapter 4 the hypothesis of Chapter 2 was extetidedas hypothesized that intensity discrimina-
tion could be affected by the statistics of theglii This hypothesis was supported by the dateast
further hypothesised that sideband inhibitory netwaisid cause selective adaptationto rare and unu-
sual sounds. Thisled to speculation onthe possietesbsuch statistical processingin speech and mu-
sic audition.

In general, we hypothesisedthat psychophysical mettould provide acute data that could poten-
tiallyreveal featuresof auditory perception unavéledcurrent neuroimaging methods. Thefindings of
Chapter 3 appear to bear this out in relationgam#éuroimaging studies mentioned above. The fiading
of Chapter 4 also suggest that the method mightiséige enough to yield further insights that maybe

beyond the reach of current neuroimaging methods.

1.6. General Discussion

1.6.1. Object-based representation

The selectivityand adaptation characterised inttssthas implications for the processes responsible for
auditory object formation and for the top-down psses involved. By extending knowledge of the
selectivity responsible for feature-based represamiathe auditory system, we provide implications for
object-based representations that appear an ebparttiof perception. The emergence of objectebase
representations in auditory cortex (Mesgarani amah@, 2012; Paslest al, 2012; Ding and Simon,
2012, 2013; Shamns al, 2011; Teket al, 2013) suggests that the adaptation and selectigityided

in Chapters 3 and 4 might have direct impact oticabobject representation. In particular, it haen

suggested that sound features sharing a commonrerepvelope are fused in the auditory cortex
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(Shammaet al, 2011; Teket al, 2013; see Bregman, 1990). Therefore, where satieahd adaptation
affect the feature-based representation they risosngirectly affect the recombination.

Forexample, the results of Chapter 3 might imply thine periodotopic map is not orthogonal tothe
tonotopic map, some degree of difficulty with resge object formation (i.e., for competing objgcts
might be expected in situations where tonotopioidetopic channels interact. Also, the results of
Chapter 4 might suggest that the representatiamerfind unusual auditory objects might be enhanced,
potentially improving the ability of temporally-cafent rare or unusual objects to be extracted from
competing sounds or background noise, or potgngiedlviding a statistical filter to remove auditory

objects and features that are not salient (seeddthéimon, 2012; 2013).

1.6.2. Speech processing

Chapter 3 made the case for the human auditoryrsysimg optimised for speech processing, demon-
strating human auditory selectivity for temporal  modofatwith rates similar to those of human speech.
This chapter provided evidence that carrier frequeand modulation rate are not independent parame-
ters and it was suggested that this might provig®e speech processing strategy. In chapter 4gthis
lectivity was combined with adaptation, suggestiageral mechanisms which may underpin speech
processing and selectivity. Chapters 3 and 4 wenesdied in the contexts of cortical speech processing
and some interesting implications with respect to theshaorrelates of attention were highlighted. This

work may have implications for hearing-aids anddmhlear implants.

1.6.3. Generalisation and future work
The computationalmodel of Chapter 2 remains crudenagid be extended bythe use of a central audi-
tory modulation filter bank such as that employgdhuet al.(1997a/b). However, more data is re-

quired for this purpose as little is yet knownhaf tuning of human CMFs. This model would also be
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further enhanced bythe inclusion of suitable noatities that would produce intermodulation interac-
tions as characterised by Xiaagal. (2013), which could further aid in the fitting of the modéie mod-

el of chapter 2 alsoaccounted for elevated incremesdtaen JNDs in background noise as an emergent
product of central adaptation, rather than asduptf peripheral (energetic) masking. Thus, aghod
featuring nonlinear CMFs would make predictionau&3dID data in background noise that could be
used to validate the model. Furthermore, this modeltnmigike predictions regarding the central contri-
bution to estimations of auditory filter charadiirs using the notched noise method.

The inverted method of Chapter 3 might be useful intifyizug further aspects of the level- and fre-
guency-dependent coding of the auditory systerpaiticular, the method might be applied to more
complex signals such as narrowband noise and begittended to examine the possible masking ef-
fects of background noise. Furthermore, this metimatthe findings ofthis thesis appear to have impli-
cations for auditoryfilter characterisation usingched noise methods (Glasbergand Moore, 1990). In
particular, filter bandwidths estimated using a fixestiration, as afunction of probe frequency, might
be confounded by the potential tonotopic gradiéhtpter 3) in modulation filter tuning. Further €on
founds might include the possibility of central adaptecaused bythe notched-noise masker leadingto
the appearance of elevated thresholds (typicéispreted as broadening peripheral auditory filters

The probabilistic method of Chapter 4 might be exteimletious ways, including permutations on
the discrimination task and stimuli. Furthermdne, probabilistic design might be adjusted to pevid
arbitrary stimulus distributions so as to furthelyertie statistical processing of the auditory system. For
example, we applied a 10% probability of occurrdac&are’ sounds, but it would be useful to know
how this arbitrary low-probability affects the stildty demonstrated in the data of Chapter 4.

More generally, the listening contexts and stiratithe present paradigms are artificial. We have
usedtonesand noise stimuli, with artificial pres@matatistics, and presented over headphonesinisola-
tion. We have asked listeners to judge subtlerampintensity changes over blocks of repeatat$iri

Therefore, our paradigms have little in common wgtating scenarios in the real world. Furthermore,
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attention is known to mediate/moderate auditory pemefilesgaraniand Chang, 2012; Lakadtsl,

2013; Dingand Simon, 2013; Zion Golumbtal, 2013). While we may assume that our listeners were
attending to the stimuli, attention was not expliciptrolled in our paradigms. Therefore, it remains to
be seenwhat generalisation of the principles demagtstrate might be seen in real world listening sce-
narios.

The selectivity and adaptation observed in thegratgented in this thesis has been discussed in the
literature contexts of both in-vivo electrophysiologganeuroimaging. The literature tends to supportan
interpretation ofthe dataas characterising centratahjgrocessing. The adaptation to intensity might be
localised to any stage of the auditory pathway butdimporal processingis likely localised to auditory
cortex. Future work might involve neuroimaging afettrophysiologyto establish the location and/or

function of such processing.
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Appendix A: Time-Varying Loudness Model

This appendix provides a condensed overview of the excitation pattern loud-
ness model of Moore, Glasberg and Baer (1997; Glasberg and Moore, 2002).
The various components of this model have been separately described inthe
well-known publications of Patterson et al. (1982), Moore (1995), Moore et al.

(1997) and Glasberg and Moore (2002).
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A.1. Introduction to Loudness Modelling

The loudness model of Moore, Glasberg and Baer 1B extended to include time-varying sounds

by Glasberg and Moore (2002), has seen a longamehénted development over a period of more than
twenty years (Pattersat al, 1982; Moore, 1995; Moot al, 1997; Glasberg and Moore, 2002), from
the rounded exponential ‘roex’ filter defined bytt®gonet al. in 1982 to the time-varying model of

Glasberg and Moore in 2002.

A.2. The Excitation Pattern Model

Sound pressure waves pass through the outer adtk re@t and enter the inner ear (cochlea), catisng
basilar membrane to resonate at a given locatemyats length that depends on the frequency of the
exciting sound. Resonance of the basilar membiuses the displacement (shearing) of inner hésr cel
arranged along the basilar membrane. The extdiné ghearing of each hair cell is then convertiedan
pulsed electrical signal by neurons attached tdélirecell. This neural representation of the patté
resonance on the basilar membrane, caused by ra spuad, is known as its excitation pattern. The
electrical signal, produced by the population afraes, is sent up the auditory nerve to the biidiis
gives rise to the concept of the auditory filtemjali specifies the shape of the excitation paftera sound

of given frequency and level. To make things mamicated, there are also outer hair cells which
contribute little in the way of signals sent to kinain, but which are motile and act in synchrotiti ¥ine
corresponding inner hair cell to amplify the basteembrane excitation at low levels. This produbes
effect of changing the shape of the auditory fltith level.

The excitation pattern model of loudness is baseth® assumption that the total area of excitation
along the length of the basilar membrane is intedi@n the auditory nerve) in the calculatioroatiness.
However, consistent with what is known of the ceahbimplifier and of neural transduction, the afoit
is locally compressed before being integrated.rdleeof the auditory filter is to provide a sumraatof
energy at local frequencies, where ‘local’ meaaguencies within the auditory filter, and subsetjuen

compression of the sum energy at the output afublgory filter. The output of the auditory filisrknown
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as specific loudness. Specific loudness can alsbhdoght of as ‘loudness per filter’. This mechamis
results in energetic (simultaneous) masking bedlesspecific loudness resulting from the compdesse
sum of excitation at two nearby locations withsirale auditory filter contributes less to ovel@lidness
than a linear sum of the specific loudness reguitom the same excitation at two distant locatiwitisin

two separate auditory filters.

A.2.1. Definitions

Loudness is the perceived intensity ¢f a sound. Intensity is defined in terms of sbpressurexj

squared,;

| =k

(A1)

wherek is a constant that represents the specific acdogtiedance of air. To calculatdor a sound

described by(t), from timet=0 toT, Eq. A.1 is then integrated over time;

_1 (T 2
| ==k x* (0t

(A2)

Intensity may then be defined in terms of a ratith respect to a reference (elgs,= 20Wicnf), in

decibels. This is known as the intenkgiyel(L,);

L) = 10'0910(%}
re

(A3)
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The use of intensity levels allows us to drop theohkte reference, and with it tkgoarameter, which

simplifies the following notation.

A.3. Equivalent Rectangular Bandwidth

The equivalent rectangular bandwidth (ERB) giveseasure of auditory filter width, such that the sum
excitation that falls within any given ERB will legjuivalently compressed and result in an equivalent
contribution to total loudness. Thus, the ERB plesia mechanism by which compression, masking and
loudness are related. The mapping between freqliédzyand ERB (Hz) shown in Fig. A.1a is achieved

using the following formula (see Moore, 1995):
ERB = 24.7(0.00437 f +1) (A4)

In order to relate ERB to frequency, the ERB nunitjdor a given centre frequendy) ¢ as shown in Fig.

A.1b - can be calculated as (see Moore, 1995):

n=214log,(00043f +J)

(A5)

Given frequency bounds defined in terms of cenguencies between 50 — 15,000 Hz (see Moorg et al.
1997), the ERB numbers of the respective uppelosvet bounding auditory filters may be calculatad a
intervening filters specified at arbitrary ERB-schintervals. To this end, Eq. A.5 may be rewrits

follows;

100/214) _4

- (A.6)
0.00437

c

Using Eg. A.5, auditory filters at ERB intervalsthin the known range of the basilar membrane (50 -
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15,000 Hz) may be specified for the later excrapattern calculation and using Eqg. A.6 the centre

frequencies may be calculated at ERB-spaced ifgdetveen.
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Figure A.1. ERB. A lllustration of Eq. A.4 which relates ERB to cerftexjuencyB lllustration of Eq.s
A.5 & A.6 which relates centre frequency to ERB bem

A.4. Model for Steady Sounds

The first stage of the model represents the tramafmn of sound pressure through the outer andlenid
ear to the inner ear (cochlea). This transformasiorpresented by a fixed linear filter with agfrency

dependent gainy, as follows;
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(A7)

where 1, is the input sound intensity,! 1 is the intensity reaching the inner ear gigithe gain of the
filter at that frequency. Fig. A.2 provides ansthation of the combined transfer function. Becdbise
loudness model of Moogt al.is generally intended for diffuse-field sound, gghaformation is discarded
[see Glasberg and Moore (2002) for discussion].

From this point onwards it is important to notd tha input sound signal is defined as an intetesitsl
(Eqg. A.3) at a specific frequency, wherever a disuee is used. Furthermore, excitation is defined i
terms of excitation levelLf) as an intensity ratio with respect to the exoitateference of a 1 kHz

sinusoidal signal at 0 dB SPL (presented in tiesfiedd and at frontal incidence);

Le =L, ~EOkH2

(A8)

whereE(Owy) is the reference excitation level.

A.4.1.The Rounded Exponential (roex) Filter

The excitation pattern, which represents the bastanbrane response, is calculated using a s&Bf E
spaced auditory filters. The auditory filter is dmh®n the rounded-exponential (‘roex’) form proposg

Pattersoret al.(1982). The roex filter is defined as;

w(g) = 1+ pg)e” P9 (A9)
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where for a given centre frequentzythe normalized frequency relationship betweeri.thad a given

frequencyf, (i.e., of the input signal) is given by;

g=|f - fc|/ fc (A.10)

wheref. is evaluated for a given ERB numbey fsing Eq. A.6p determines bandwidth and slope of the

filter and is defined in relation to the ERB aiek (1995):

4fc
ERE

(A.11)

Larger values gb lead to more narrowly tuned filters. Thus, giverinput at frequendyw(g) can be used

to calculate the attenuation of the input at fraquéwithin the roex filter at centre frequerfgy

101

-101

Gain [dB]

T T

0.1 1 10
Frequency [kHz]

Figure A.2. lllustration of combined outer and midd le ear transfer function . Note, zero dB
gain at 1 kHz.

Eq. A.9 gives a symmetrical auditory filter(j)]. However, the auditory filter is known to be esyetrical
and so Eg. A.9 is broken down into two such exjmessthe choice of which depends on whether the

input frequencyf] is above or below the centre frequerigyfdr the auditory filter of interest;
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w(g) = 1+ pgle P9 for f<=f, (A.12)
1+ pyge Pu9 for f>Te

p andpy, replacep to represent the parameters for input freque(ftibslow or above the centre frequency
(fo) respectively. This conditional aspect is necgsbacause although the auditory filter is roughly
symmetrical when the excitation level per ERB @uad 51 dB (Glasberg and Moore, 1990), the low-
frequency ‘skirt’ of the auditory filter becomesdesharp with increase in level. This excitatiorelle

dependent relationship is accommodated in terthepfvalue as follows;

p(Le)=p 63-033p 63/ p GlkHI)(Le 53 (A13)

wherep(Lg) is the value ofy for the input excitation level &k, in dB, aff, andp(51) is the value g (Eq.
A.11) at the centre frequendy) for an input level of 51 dB (i.e., where theefilis symmetrical), and where
p(51ik7) is the value o for a 51 dB input excitation level at 1 kHz. Figéx.3 provides an illustration of
the level dependent roex filter shape for excitatibl kHz at levels between 10 and 100 dB in 10 dB

intervals.

100+
80

60

[dB]

40

o N

0.1

Excitation level

1 10
Center frequency [kHZz]

Figure A.3. lllustration of roex filter shapes (Eq. A.12) for excitation levels between 10 and dB
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in 10 dB intervals.

A.4.2. The Excitation Pattern

For each ERB numben)( the excitation patteri, is defined as the pattern of outputs from the £ERB
spaced auditory filters. For a given frequeficgnd for an input excitation lewgtq. A.8), the excitation

patternE, is then defined as:

E(n)=w(g(n))lLg

(A.14)

where ERB numbeny is related td. by Eq. A.6.

A.4.3. Specific Loudness

To reflect the production of neural signals in cese to inner hair cell displacement caused byedirci of
the basilar membrane, the excitation pattern isfibemed from excitation level into specific loudse
(loudness per ERB) for timth auditory filter by calculating the specific loes in each filter according to
three possible conditional expressions, whichedtathe excitation level as follows in Eq. A.1bdee).
Since loudness is later notated\aspecific loudness is notatedNis to reflect the later integration (over

frequency) of specific loudness to form loudness.

ZZONRN -~
CEEW} G EM+ A -A)  for g(ny < 1q (n)

N*(n) = crGEm+ A -a) for 1010 > E(n) > Tq (n)

I:E E(n) jos
1.04x10° for E(n) >100

(A.15)

Frequency dependence (denoted with paramgtesfers to thenth auditory filter. T represents the
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threshold excitation in quiet and is frequency ddpat as shown in Fig. 4c. The param@eepresents
low-level gain in the cochlear amplifier, relatitgethe gain at 500 Hz and above, and is also fregue
dependent. Note that this ‘G’is not related td@ief chapter 3. For a given centre frequefgy (in dB)

is related tdq (in dB) with a simple subtraction;

G :TQ(SOQ —TQ( fc)

(A.16)

The parameteh in Eq. A.15 is used to bring the input-output fismcclose to linear around the absolute
threshold, and is dependent on the valu&als shown in Fig. 4a. The compressive exponeist
dependent on the value Gfas shown in Fig. 4b. At frequencies below 500Tdzises as frequency
decreases and the value ranges between 28 dBiatb@l 3.7 dB at 500 Hz. Above 500 Hzs constant
and equal tdq at 500 Hza is also frequency-dependent and a similar lookolp ta employed such that

a varies between 0.27 and 0.2, depending on the 9&BeC is a constant which scales the loudness to
conform to the sone scale, where the loudnesd &Hz tone at 40 dB SPL is 1 sofias equal to 0.047.
Figure A.4d shows the result of Eg. A.16 usedansform excitation at levels between 0 and 1200dB t
specific loudness for a 1 kHz signal. Finally, dmeloudness is integrated, over the arbitrauily) (Spaced

auditory filters, between ERB numbegg, andnya, to produce loudnedy,

Nmax

N = IN%mdn

Nmin

(A.17)

wherenmir andnyaxmay be calculated, from centre frequencies ohtl0l&,000 Hz respectively using Eqg.
A.5. For a complex sound, loudness is calculated & linear sum of excitation patterns calculatech f

each input sound component.



1-109109

A.4.4 Energetic Masking

A formal definition of loudness allows us to deravé@rmal definition of energetic (simultaneousshireg

with respect to two arbitrary excitation pattermsthe targetls; and the maskeE,,, The two excitation
patterns may then be used to evaluate the degreasiing by comparing the sum of loudness for each
excitation pattern alon®(E.) + N(E)] and the loudness of the linear sum of the twaitaion patterns

[N(Ex+Ey)]. This provides a loudness rathdsiing in SONES);

N .= N(E; +Em)
MASKNGN(E) + N(Em)

(A.18)

A.5. Model for Time-Varying Sounds

The time-varying model (Glasberg and Moore, 2002ni extension of the 1997 model for steady (state)
sounds. In the earlier model, the sounds are dafinierms of steady sound components, which are th
combined within the excitation pattern to produceogerall loudness. In the time-varying model, the
excitation pattern is typically calculated, fromirae-domain input signal, on an instantaneousngiidi
window basis, giving a time-varying excitation pait

The time-varying excitation pattern is then resbivgo a corresponding time-varying specific lowgine
function and hence is integrated to form a timgtgrintermediate stage known as ‘instantaneous
loudness'. Instantaneous loudness is essentiallytemsity-like temporal integration of specificitiness
over an arbitrarily small time interval. The ‘srii@he interval is typically on the order of 1 maghich may
be considered small with respect to the integrdiioa constants of the auditory system (usuallyhmuc

longer). Thus, instantaneous loudness is calcudatestieady loudness’ over a very small time scale.
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Figure A4. lllustration of miscellaneous parameter s. A lllustrating the relation between
parameters A and @ lllustrating the relationship between the pararseteand G.C illustrating the
internal excitation level at threshold as a fumctd frequency (showing increased thresholds at low
frequencies)D Specific loudness as a function of excitation lldetween 0 and 120 dB at 1 kHz,

illustrating the conditional effects of Eq. A.15.

Intensity, for sound of a given integration tind¢)(is then defined in terms of an integral withpess to
time ¢);

t+At
1

JOEE L [x2 (0t
t

(A.19)

which may again be resolved into intensity levehdsg. A.4, and hence excitation level as in E§, for

substitution into Eq. A.15 to give Eq. A.20.



1-109111

15
czﬁ 20 J {oEny+n7-a7)  Tor END<TQM
E(n,t) +To(nt)
N'(n,t) = CEﬁ(G [E(n,t) + A —A”) for 1010 > E(n,t) > Tg (n)
05
E(n,t)
cOi——_ 0
EE1.04>406J for E(n,t) >10-
(A.20)

Eq. A.17 is then extended to integrate the reSEtjoA.20 with respect to ERBumber ), to produce a

time-varying instantaneous loudnesg);

nmax
N(t) = jN'(n, f)dn (A.21)

Nmin

A.5.1. Temporal Integration

Loudness of brief sounds increases with duratioto @plimit of around 200 ms (Munson, 1947). This i
known as the temporal integration of loudness. #héu phenomenon captured in the time-varying
loudness model is forward masking, which has alainime scale. In order to account for these
phenomena, the instantaneous loudness functiomised with an exponential sliding window.

To predict the decay of loudness after a sounccéased, given an initial loudness valig),(the

decaying value of loudness at timeay be calculated as;

N(t) = Nge /7 (A22)
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whererz is the time constant. This represents the dectyudhess, i.e., forward masking. To predict the
accumulation of loudness with duration of a stefryd intensity) sound, loudness at tims calculated

as;

N(t) = Ng (1-e /7 (A23)
whereN,, represents the asymptotic loudness. The valudg afidN,, may be calculated in terms of
instantaneous loudness for a given signal andtoigeddict the effects of temporal integration.

In order to provide a time-varying output functiig, A.22 is re-arranged in order to relate ih@otime

step of the modelX) and used to calculate a smoothing coefficignt (

ﬁ:e_At/T

(A.24)

To smooth the time-varying instantaneous loudnegsiong is applied to calculate STN§;) with respect

to instantaneous loudnesgt)];

Nor(t) = A= L) IN(E) + sy [No{t —41) (A.25)

And to calculate LTLN], 1) with respect to STL;

NLT (t) = (1_ ﬂLT) [NST(t) +ﬂLT [NLT (t _At) (A.26)

where
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TST

50 for N(t) < Ng(t—At)
_ | 100 for Ng(t) >N (t-At)
2000 for Ng(t) <N (t-At)

_ {22 for N(t) > N (t —At)

TLT

(A.27)

The value ot (and hencg) is conditional such that separate valuesaoé assigned depending on whether
the function is in the attack or release phase@@asberg and Moore (2002)]. As can be seen fream th
values ofr shown above, convergence is much faster for attackfor release in both cases of STL and
LTL. This is intended to reflect disparity in fomslaand backwards masking.

Finally, Glasberg and Moore (2002) specify thatldeiness of brief duration sounds (i.e., gateddpn
should be calculated as the peak (maximum) valubanSTL time series and that the loudness of
continuous sounds (e.g., amplitude modulated tehesijd be calculated as the mean (average) bfthe

time series.

A.5.2. Temporal Masking

Eq. A.18 may be extended to provide a time-vargefnition of energetic masking, in terms of

instantaneous loudness, as follows;

N(E¢ (t) + Em(®))
(B )+ N(Em(®)

Lmaskinét) = N
(A.28)
However, the stated purpose of Eq.s A.25 & A.26 iprovide temporal integration (or summation) of

loudness at the two respective time scales. Thimsnat forward and backwards masking may not be

guantified in terms of Eq. A.28, and are thereforside the scope of this chapter.
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A.6. Appendix A Summary

In this Appendix we have provided a condensed, practical step-by-step description of the
excitation pattern loudness model which consolidates descriptions found in the multiple original
articles. We have included a brief description of the function of, and rationalisation for, each

modelling component.
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Appendix B: Ethics statement

Forall listeningtests described inthisthesis, pp&its were voluntary, unpaid and gave informed ver-
bal consent before the experiment. Participants fiee to withdraw at any point. Tests were run on an
ad-hoc basis. Written consent was not deemed necessanyide low (safe) sound pressure levels em-
ployedin thetest but the consenting volunteers weradeated. All experimental protocols (including

consent) were approved by the ethics committeeie&@®Mary University of London.
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Appendix C: Statistical methods and assumptions

Where we present data in terms of mean and cocéidietervals in this thesis, the data were ched&ed
ensure that the data were approximately normaitgtiited and hence it was ensured that the measure
given in this thesis are interpretable and repiasen Where we employ the Friedman Test in tiasis

we reasonably assume that the data are uncorréte@tapter 4, where the data may not be asswmed t
be entirely uncorrelated, we employ a permutatest that takes into account any inherent

correlations.
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