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Abstract 

In the last decade unprecedented improvement in cure rates and overall survival was 

achieved in diffuse large B-cell Lymphoma (DLBCL) through the introduction of 

rituximab and anthracyclin-based chemotherapy (R-CHOP) as first line treatment. 

However, 40% of patients are refractory or relapse after R-CHOP and are hardly 

salvaged. To date, only age, International Prognostic Index (IPI) stratification and 

genetic aberrations defining gray-zone lymphomas have been used in clinical trials to 

select high-risk patients for more aggressive regimens. However, these prognostic 

features do not take into account the full biological heterogeneity of DLBCL. This 

reflects our limited knowledge on comprehensive prognostication in this group of 

disorders and supports our choice to investigate old and new prognostic factors for 

DLBCL in this thesis.  

Molecular characterization is generating opportunities for personalized therapy in 

poor-risk DLBCL. In order for targeted therapies to succeed in this disease, reliable 

and reproducible strategies that adequately segregate patients into distinct 

molecular groups are needed. While gene expression profiling (GEP) is the gold 

standard method, there is presently a lack of standardized methodology for array 

analysis, which can lead to variable results. The lack of a routine methodology for GEP 

has led investigators to develop immunohistochemistry (IHC) based approaches for 

the molecular classification in DLBCL. In fact, the Hans algorithm is being used to 

identify non-GCB DLBCLs in clinical trials offering NF-kB targeting agents to patients 

with this subtype. By performing a systematic comparison of nine IHC algorithms for 

molecular classification in a new large dataset of diagnostic DLBCL, we document an 

extremely low concordance across all classifiers (<21%) when classifying each 

individual patient,  and a lack of outcome impact of all strategies, demonstrating that 

IHC is not a reliable alternative to molecular-based methods to be used for clinical 

decisions in DLBCL.  

GEP studies also suggested that the microenvironment could provide prognostic 

biomarkers in DLBCL in the R-CHOP era. Most authors have focused on the use of IHC 

to enumerate and functionally characterize the microenvironment in DLBCL. In our 

second study, by comparing two methods of semi-automated analysis for IHC staining 
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of the microenvironment, we demonstrate that the computerized results are highly 

reproducible, add the required robustness to IHC studies and should be used in the 

future instead of manual analysis. By applying comprehensive statistical analysis we 

propose that CD3 and FoxP3 should be validated as predictors of response to R-CHOP 

in clinical trials. 

 

Whereas a number of mechanisms by which cancer cells influence macrophage 

function have been described, currently there is very limited understanding of the 

macrophage polarisation status and effector function in human DLBCL. In our third 

study we analysed the GEP of macrophages sorted from human DLBCL samples. 

Unsupervised hierarchical clustering does not resolve DLBCL macrophage samples 

from reactive macrophage samples, indicating that macrophage heterogeneity in 

DLBCL should be considered. 202 genes are differentially expressed in DLBCL relative 

to controls. Functional annotation supports that these genes are macrophage-

specific. We demonstrate that DLBCL macrophages have a bidirectional M1 and M2 

functional activation, challenging the concept, widespread in the literature, that 

macrophages in tumours have a predominant M2 transcriptome.  

In our fifth study we used a two-cell co-culture model in an attempt to demonstrate 

that DLBCL cells influence macrophage transcriptome and proteome. The 

heterogeneity of the results, which precludes the confirmation of our hypothesis, is 

fully discussed.  

In our last study we tease out the DLBCL macrophage GEP heterogeneity and  

propose IFN- as a culprit B-cell derived molecule influencing macrophage activation 

status. Finally, using immunofluorescence we demonstrate that both M1 and M2 

proteins are expressed in DLBCL macrophages.
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cDNA   Complementary DNA 

CDH1  E-cadherin 

C/EBP CCAAT-enhancer-binding protein beta 

CGH  Chromosomal genomic hybridisation 

cHL  Classical Hodgkin’s lymphoma 

CI  Confidence intervals 

CR   Complete response 
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COO  Cell-of-Origin 

CREBBP  cAMP response element-binding protein 

CSF-1  Colony stimulating factor-1 

CSF-1R  Csf-1 receptor 

CSR  Class switch recombination 
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DLBCL  Diffuse Large B-cell Lymphoma 
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ECM   Extracellular matrix 
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EP300  E1A binding protein p300 
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FC  Fold change 
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FFPE   Formalin-fixed paraffin embedded 

FMO  Fluorescence-minus-one 
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GC  Germinal centre  

GCB  Germinal centre B-cell–like  

GCET1  Centerin 

GEP  Gene expression profiling 

GFP   Green fluorescent protein 

GM-CSF  Granulocyte macrophage colony-stimulating factor 

H  Heavy 

H&E   Haematoxylin and Eosin 

HIF-1α   Hypoxia-inducible factor-1α 

HLA   Human leukocyte antigen 

HR   Hazard ratios 

HRP   Horseradish peroxidase 
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IL  Interleukin 
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IPI   International Prognostic Index 
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IRAK  Interleukin-1 receptor-associated kinase 

IRF  Interferon regulatory factor 

JAK  Janus tyrosine kinase  

JMJD3  Jumonji domain containing-3 

LDH  Lactate dehydrogenase 

LN  Lymph node 
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LPS  Lipopolysaccharide 

LYN  Tyrosine-protein kinase 

MALT1  Mucosa-associated lymphoid tissue lymphoma translocation protein 1 

MAP   Mitogen-activated protein 

MHC   Major histocompatibility complex  

mAb   Monoclonal antibody  

MFI  Median fluorescence intensity 

miRNA  microRNAs 

MLL2  mixed-lineage leukemia protein 2 
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MSF   Migration-stimulating factor 
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PD-L1  Programmed death-ligand 1 

PGE2  Prostaglandin E2    
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PKCβ   Protein Kinase Cβ 
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PPAR-γ  Peroxisome proliferator-activated receptor-γ 

PRC2  Polycomb repression complex-2 

PRDM1  PR domain zinc finger protein 1 

PTEN  Phosphatase and tensin homolog 
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RCT   Randomised clinical trials 
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ROS  Reactive oxygen species 
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SHM  Somatic hypermutation 
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TAM   Tumour-associated macrophages 
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Chapter 1 Introduction and Objectives 

PART ONE 

 

 

1.1 Diffuse Large B-cell Lymphoma: background 

Diffuse Large B-cell Lymphoma (DLBCL) is the most common aggressive lymphoma in 

the western world, accounting for 30-40% of all cases.1 The incidence of DLBCL has 

risen slowly over the last 20 years. An estimated age-adjusted incidence of 

9.8/100.000 cases in Europe in 2012 has been recently reported, with predominance 

for males.2 However disease-related mortality has significantly decreased, 

recognisably due to the introduction of rituximab chemo-immunotherapy into first-

line treatment, together with better supportive care and intention to treat in the 

elderly population. DLBCL is in fact a disease of the elderly, with a median age at 

diagnosis in population-based studies of 71 years. 

The aetiology of DLBCL remains largely unknown. Although most commonly arising de 

novo, DLBCL can be the result of transformation from indolent non-Hodgkin 

lymphomas (NHL).3 Potential etiological factors include: a family history of 

lymphoproliferative diseases, prior history of malignancy, primary or treatment-

related immunodeficiency, auto-immune diseases or viral infections including human 

immunodeficiency virus4, human herpes virus 8 and Epstein Barr virus (EBV).5 

 

Patients generally present with a rapidly growing lymph node (LN), accompanied in a 

third of the cases by B-symptoms (fever, night sweats, and weight loss). Extranodal 

involvement at presentation occurs in 40% of the cases.6 Half of the patients are 

diagnosed in advanced stage disease as defined by the Ann Arbor system,7 with bone 

marrow involvement reported in 11-27% of the cases.8 A revised staging system has 

been recently proposed incorporating results from the diagnostic positron emission 

tomography-computed tomography (PET-CT) that will likely change the distribution of 

patients according to stage.9 
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A tissue-based histopathology examination remains the standard tool to establish a 

diagnosis of DLBCL. This disease is described microscopically as a neoplasm of large B 

lymphoid cells with a diffuse pattern often effacing the normal LN architecture. The 

malignant B-cells exhibit a nuclear size at least twice that of normal lymphocytes.1 

The malignant cells express pan–B-cell markers including CD19, CD79a, CD20, PAX5, 

and CD22, although some of these markers can be lost in individual cases.10 The 

proliferation fraction, as detected by Ki-67 staining, is generally high. 

 

However, the diagnosis of DLBCL encompasses a large number of sub-diagnoses, 

reflecting the heterogeneity of this disease.1 What has accelerated the sub-

classification of DLBCL has undoubtedly been the use of gene expression profiling 

(GEP). This technology generated evidence that certain conditions amalgamated 

within the DLBCL diagnosis and previously recognized by their particular clinical 

behaviour, morphology or immunophenotype had a distinct molecular background 

and hence likely a distinct cell of origin. For example, T-cell/histiocyte-rich B-cell 

lymphomas (THRBCL) constitute a rare aggressive subtype of DLBCL with abundant T-

cell and macrophage infiltration in the microenvironment.11 Only a minority of the 

cells are large CD20+ B-cells. Although not pathognomonic, most of these cases carry 

a GEP characterized by a host immune response that differs from the majority of 

DLBCL cases.12 Another example is the provisional entities of unclassified large cell 

lymphomas with intermediate features between DLBCL and Burkitt’s Lymphoma (BL) 

or classical Hodgkin’s lymphoma (cHL). For many years, pathologists encountered 

cases with intermediate morphologic features between DLBCL and BL or cHL that 

posed diagnostic dilemma. Microarray technology again helped recognizing that 

these cases constitute a real biological gray zone of lymphomas.13-16 

 

Taking into consideration the prolific number of publications characterizing new 

DLBCL “entities” it is envisaged that the next World Health Organization (WHO) 

lymphoma classification will incorporate changes in how we define what is now 

termed DLBCL. The issue of misdiagnosis in DLBCL is still debated, highlighting the 
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importance of expert central review. A large-scale assessment in the United Kingdom 

highlighted that there is still up to a 25% rate of discordance between  primary and 

revised diagnosis of DLBCL.17 

 

DLBCL has an aggressive natural history, with a median survival of less than one year 

if left untreated, but is readily treatable. The anthracycline-based combination CHOP 

(cyclophosphamide, doxorubicin, vincristine, and prednisone) was introduced in 1976 

and has been the standard of care for 30 years.18 However survival rates were 

suboptimal, with 10-year progression-free survival (PFS) of 30% and overall survival 

(OS) rates of 35%. Attempts to add treatment efficacy with more intensified 

chemotherapy regimens failed.19  

In the last decade unprecedented advances were made in the standard of care of 

patients with DLBCL that translated in an improvement in cure rates and OS. With 

modern therapeutic combinations, approximately 60% of patients with this disease 

are now being cured. This progress is largely due to the addition of the anti-CD20 

antibody rituximab to CHOP chemotherapy (R-CHOP).20-26 Long-term follow-up of the 

first randomised clinical trial (RCT) comparing R-CHOP to CHOP demonstrated a 16% 

absolute improvement in the 10-year OS rate in favour of R-CHOP.21 The higher costs 

associated with the use of rituximab are offset by the significant advantage in survival 

and by the decrease in the number of patients requiring expensive salvage therapies. 

 

Currently there are a number of research priorities in the treatment of patients with 

DLBCL.  

A substantial 40% of patients will be primary refractory or relapse after R-CHOP, and 

this constitutes a real management challenge. The estimate of PFS at 3 years for this 

group is only 23%, even with subsequent high-dose chemotherapy and autologous 

stem-cell transplantation (ASCT), proving that salvage regimens remain largely 

ineffective for this sub-group of patients.27 In fact, in keeping with the findings of 

other groups, we have confirmed in our patient cohort that R-CHOP refractoriness is a 

strong predictor of a worse OS. Identification of these high-risk patients at diagnosis, 

incorporation of novel therapies into RCTs where they are enrolled and recognition of 
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the mechanisms for rituximab-refractoriness are of paramount priority. On the other 

hand it is hypothesized that some patients with better prognosis disease might do as 

well with four rather than six or eight cycles of R-CHOP, an issue that is being 

addressed by the German high-grade non-Hodgkin’s Lymphoma study group. 

 

To date, only age, the International Prognostic Index (IPI) stratification and genetic 

aberrations defining gray-zone lymphomas have been used in clinical trials to select 

high-risk DLBCL patients for more aggressive regimens, most of them incorporating 

front-line consolidation with ASCT. However, these prognostic features do not take 

into account the full biological heterogeneity partially responsible for disease 

aggressiveness. Moreover, despite different approaches taken in RCTs, there is no 

current evidence for offering treatments other than R-CHOP according to risk factors 

in DLBCL.  

 

This reflects our limited knowledge on comprehensive prognostication in this 

heterogeneous group of disorders and supports our choice to investigate old and new 

prognostic factors for DLBCL in this thesis. The treatment scenario is, however, 

changing rapidly owing to a deeper knowledge of the molecular biology and the 

drivers of oncogenic transformation of DLBCL, leading to the development of rational 

targeted therapeutic approaches (see section 1.4). 

 

 

1.2 Prognostication in DLBCL 

Despite the number of scientific publications describing potential prognostic markers 

in medicine, the field of outcome prediction is complex. This is even more so in 

heterogeneous disorders such as DLBCL. It is argued that only modest outcome 

predictive accuracy can be achieved with clinical data or single biochemical or 

molecular markers.28 
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The statistical validation of prognostic variables is dependent on the number of 

patients enrolled in a study. If the objective of a particular study is to validate a new 

prognostic marker, then other formerly validated markers need to be taken into 

account. With a growing amount of markers to be incorporated in multivariate 

analyses, a large number of patients are required to accomplish statistical validity. In 

practice, however, the results in highly cited biomarker studies often significantly 

overestimated their findings. 

 

To ascertain the impact of a clinical or biologic feature on patient’s survival or 

treatment response, robust clinical validation under prospective RCTs or large multi-

institutional cohorts is needed. However, this is rarely performed. It has been 

reported that only around 3% of studies describing potential clinical applications in 

genomic medicine moved to assessment of clinical utility under RCT.29 Moreover, 

studies using patients enrolled in RCT are essential for predictive marker validation as 

it guarantees uniformity in clinical characteristics from both the experimental and the 

control arm.  

 

Only after scrutiny in this manner can a clinical or biologic marker predictive of 

response to R-CHOP help us to individualize treatment in DLBCL. The final and 

essential step in this validation process is developing robust, simple and reproducible 

methodologies for assessment of these biomarkers so as to guarantee their 

implementation in the clinical practice. 

 

GEP and genomic studies in DLBCL were of paramount importance in deepening our 

understanding of the biology of DLBCL. These studies were the starting point for 

many others detailing the classification of the heterogeneous group of DLBCL, not 

otherwise specified (NOS), and searching for the functional roles of specific 

aberrations. More importantly they provided new prognostic biomarkers and 

treatment approaches. Details on the molecular biology of DLBCL will be covered in 

section 1.4. 
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1.2.1 Clinical prognostic factors 

The IPI is a prognostic score incorporating five factors reflecting patients’ clinical and 

biological characteristics. Based on the number of negative factors detected at the 

time of diagnosis (age >60 years, stage III/IV disease, elevated serum lactate 

dehydrogenase [LDH] level, Eastern Cooperative Oncology Group [ECOG] 

performance status ≥2, >1 extranodal site of disease), four groups were identified, 

with 5-year OS ranging from 26%-73%.30 The IPI was devised in the pre-rituximab era 

and its power to discriminate outcome has declined after introduction of R-CHOP, 

particularly for higher risk patients.31-33  

 

The prognostic value of the individual factors incorporated in the IPI, however, 

remains unchanged. The National Comprehensive Cancer Network (NCCN)-IPI33 was 

recently developed based on DLBCL patients treated in academic centres and in the 

community with R-CHOP (Table 1.1). It incorporates the same markers as the IPI and 

is able to better discriminate patients with low and high risk disease that might merit 

different treatment approaches.  
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Table 1.1 The NCCN enhanced IPI 

Variables Score 

Age, years                    >40 to ≤60 1 

                                       >60 to ≤75 2 

                                       >75 3 

LDH, normalised         >1 to ≤3 1 

                                       >3 2 

Ann Arbor stage III-IV 1 

Extranodal disease  
Bone marrow, central nervous system, liver, gastrointestinal tract or lung 

1 

Performance status ≥2 1 

 

    Low risk: 0 – 1    High-intermediate risk: 4 - 5 

    Low-intermediate risk: 2 – 3  High risk:  6 

 

 

However, many authors acknowledge that patients belonging to the same IPI group 

have significant survival differences, likely reflecting different biological backgrounds. 

Moreover a number of papers suggest that some biomarkers, such as the GEP-based 

stromal signatures34 or chromosomal translocations involving MYC,35 B-cell 

lymphoma/leukaemia-2 (BCL2),36 or B-cell lymphoma/leukaemia-6 (BCL6),37 have an 

IPI-independent prognostic impact. These data demonstrate that there is opportunity 

to improve upon the IPI with new biomarkers. Although not yet available due to the 

reasons discussed above, it is likely that a clinico-biological index will be more 

comprehensive for prognostic stratification than the NCCN-IPI. 

 

Zhou et al. recognize advanced age as being associated with incremental risk even 

with R-CHOP treatment. In fact, aging seems to be a determinant of the molecular 

biology of DLBCL and a surrogate of aggressive disease.38 
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Other clinical variables not incorporated in the IPI have been suggested as prognostic 

markers in DLBCL:  

 

1. Male gender has been associated with worse outcome in independent studies in 

DLBCL.39 In fact, pharmacokinetic (PK) studies of rituximab demonstrated that elderly 

males have a faster clearance of rituximab and hence might be sub-optimally treated 

with the standard dose of the monoclonal antibody. This hypothesis formed the basis 

of two German clinical trials: the SMART-E-R-CHOP-14 trial demonstrated that a PK-

guided rituximab schedule benefited older patients with high tumour burden, 

regardless of the patient’s gender;40 the SEXIE-R-CHOP-14 trial showed that 

increasing rituximab dose eliminates the increased risk of elderly males as well as 

young male and female patients with low rituximab serum levels. 

 

2. A high body mass index has provocatively been stated as a favourable outcome 

predictor after R-CHOP treatment in DLBCL.41 However others have disputed this 

association.42,43 

 

3. The maximum tumour diameter has an adverse impact on OS in R-CHOP-treated 

patients,44,45 and is helpful for stratifying patients with low-risk IPIs. 

 

4. Bone marrow (BM) involvement is associated with a poor outcome, particularly 

with concordant rather than discordant low-grade histology. Those patients who have 

diffuse large cell infiltrates in the BM have a particularly bad outcome, with reported 

10% OS at 5 years.8,46 

 

5. Primary involvement of the Waldeyer ring appears to confer a better outcome.6,47 

In fact, the role of rituximab in the treatment of primary extranodal DLBCL is a matter 

of debate.48 
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1.2.2. Prognostic impact of Fluorodeoxyglucose (FDG)-PET-CT  

FDG-PET-CT has currently replaced standard CT scan for staging and response 

assessment of FDG-avid lymphomas.9 A negative FDG-PET-CT at the end of treatment 

is an excellent predictor of good outcome in DLBCL. The role of interim FDG-PET scan 

is, however, controversial. Recent reports show an increase in PFS (and OS in some 

studies) in patients with a negative PET after 2 or 4 cycles of R-CHOP. Yet others have 

reported contrary results. In an attempt to validate the biological significance of mid-

treatment PET results, Moskowitz et al.49 re-biopsied all lesions deemed positive and 

found that 87% of PET positive were indeed false positive. The absence of strict 

scoring criteria, best standard scoring method50 and a high inter-observer variability 

are given as potential explanations for this controversy. Using PET-CT to guide 

optimal treatment is not established in DLBCL. 

 

1.2.3. Morphology and Immunophenotype prognostic factors 

Although morphology has been disregarded as a method to gather prognostic insight 

in DLBCL, a thorough pathological report at diagnosis is required to appropriately 

allocate patients according to the WHO classification and might in fact provide some 

information on patient’s outcome.  

 

A recent analysis from a large cohort of patients enrolled in the Ricover-60 trial 

showed that immunoblastic morphology51 is an adverse prognostic factor at 

diagnosis. Similarly, a plasmablastic phenotype52 in cases of DLBCL-NOS was 

associated with shorter survival after R-CHOP. 

 

CD5 expressing DLBCLs constitute 10% of cases and seem to represent an 

independent entity with a distinct genomic and transcriptomic profile and to be 

associated with a poorer outcome.53-55 The intensity of CD20 expression is 

heterogeneous in patients with DLBCL. Cases showing decreased CD20 expression 

appear to have a worse survival, independently of clinical prognostic factors.56  
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1.3 B-cell Ontogeny in DLBCL  

B-cell malignancies arise from a subversion of the differentiation and proliferation 

patterns of a normal B-cell. B-cells are specialized in the recognition and elimination 

of foreign antigens, with these functions mediated through the B-cell receptor (BCR). 

In order for the BCR to recognize non-self antigens it has to go through molecular 

modifications, which lead to increased epitope specificity and affinity. This 

dependency on physiological genetic changes in the BCR coding region potentiate the 

acquisition of oncogenic aberrations and help to explain why B-cells are particularly 

prone to malignant transformation.57 

 

The process of B-cell differentiation initiates in the BM where a precursor cell 

undergoes sequential rearrangements of the heavy and light chain locus of the Ig 

gene. This molecular process involves a modulated series of genetic events which 

ultimately leads to the expression of a functional BCR at the surface of the B-cell.58 

Assembly of the Ig gene segments, required to produce a functional BCR, occurs 

through three recombination events catalysed by the enzymatic complex 

recombinase.59 If in any event a non-productive rearrangement occurs, cells undergo 

apoptosis. 

 

The recombinase enzymatic complex starts this process by introducing double strand 

DNA (deoxyribonucleic acid) breaks.60 Repair mechanisms introduce a high potential 

for oncogenic chromosomal translocations to occur. The element responsible for 

regulating the expression of a specific gene is replaced by a regulatory element that is 

constitutively active and hence leads to aberrant gene expression. An illustrative 

example is the t(14;18)/IgH-BCL2, which brings the BCL2 gene under the control of 

the active regulatory element of the Ig heavy (H) locus, ultimately leading to  BCL2 

protein overexpression.61,62 The occurrence of a potential initial oncogenic event does 

not undermine the differential potential of the malignant cell, allowing for further 

genetic events to occur later on the living pathway of the lymphoma cell. 
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Precursor B-cells expressing a functional BCR are positively selected into the antigen 

inexperienced, B-cell compartment in the peripheral blood. Once they encounter 

foreign antigens, naïve B-cells follow one of three pathways:59 (1) travel to the 

peripheral lymphoid tissues and initiate the germinal centre (GC) reaction; (2) 

differentiate into short lived plasmablasts outside the germinal centre; or (3) enter 

into an anergic state. 

 

1.3.1 The GC reaction 

The GC reaction occurs in the follicles of lymphoid tissues and is a physiological 

process required for final B-cell maturation.60 Through molecular mechanisms known 

as somatic hypermutation (SHM) and class switch recombination (CSR), an efficient 

humoral response against the antigen is carried out with the production of high-

affinity antibodies.  

 

After contacting with the antigen presenting cells (APC), naïve B-cells uptake, 

internalize and expose the antigen through the major histocompatibility complex 

(MHC)-class II molecule. B-cells are then driven to the T-cell rich areas of the 

lymphoid organs, where they become activated through interaction with CD4+ helper 

T-cells. This activation requires not only the interaction between the MHC class-II and 

the T-cell receptor (TCR) but also ligation of the co-stimulatory molecules CD28 and 

CD40L with their ligands on APCs. This is essential for the initial formation of the GC 

reaction, as has been demonstrated in murine models of genetic or pharmacological 

disturbance of CD40 or CD40L function.58 

 

Within the dark zone of the GC, B-cells exhibit an impressively high proliferation rate 

and can be histologically recognized as centroblasts. It has been demonstrated that 

the major gene expression changes between a resting naïve B-cell and a centroblast 

are regulated by the BCR signalling and nuclear factor-kB (NF-kB) and result on the 

over-expression of the proliferation machinery and down-regulation of the DNA 

damage sensing machinery.63 Centroblasts producing antibodies with improved 
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antigen binding capacity progress through the GC reaction, stop proliferating (now 

denominated centrocytes) and undergo further selection. Centrocytes engage with 

antigen-exposing follicular dendritic cells (FDCs) and CD40L-expressing T follicular 

helper cells (TFH) and are selected based on their antigen affinity. Finally, centrocytes 

exit the GC either as plasma cells or memory B-cells. 

 

The SHM64 molecular event involves the introduction of single nucleotides, small 

deletions and duplications into the Ig variable locus or genes other than the Ig genes, 

such as the BCL-6 proto-oncogene.65 CSR is the molecular mechanism by which Ig 

isotype switching occurs, leading to a modification of the effector functions of an 

antibody while retaining specificity. Both the SHM and CSR events require the activity 

of the enzyme activation-induced cytidine deaminase (AID). AID deaminates cytosines 

leading to the initiation of DNA repair mechanisms that ultimately allow the 

introduction of somatic mutations and the generation of IgV clonal diversity.66 

 

The transcriptome of the B-cells encompassing the GC is tightly regulated and 

involves many molecules. However, BCL6 is regarded as the master regulator of the 

GC reaction. BCL6 knock-in mice are unable to mount a GC reaction upon antigen 

triggering. These mice develop lymphoma that recapitulates the biology of human 

DLBCL.67  

 

BCL6 is a transcriptional repressor that targets genes involved in cellular processes 

fundamental for the GC reaction. BCL6 is known to repress apoptosis68 and cell-cycle 

arrest responses as well as DNA damage sensor related genes,69 enabling persistent 

proliferation and tolerance to genetic transformation required for B-cell antigen 

affinity maturation. Furthermore, BCL6 down-regulates the expression of genes 

involved in B-cell activation,70 enabling centroblasts to complete clonal expansion and 

undergo SHM. Finally, BCL6 has been shown to repress GC B-cell differentiation into 

plasma cells by direct or indirect (via targeting Interferon regulatory factor 4, IRF4�) 

repression of a master regulator of B-cell terminal differentiation, Blimp-1 (B-

lymphocyte-induced maturation protein 1).71  
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Overall BCL6 functions to sustain the GC B-cell phenotype and hence needs to be 

repressed for conclusion of B-cell maturation. Its repression in centrocytes is 

mediated by IRF4. Once BCL6 is “turned-off”, Blimp-1 establishes the characteristic 

plasma cell phenotype by inactivating PAX5 (paired box protein 5). Continued 

signalling through CD40 is crucial for driving centrocytes towards memory B-cell 

differentiation, and continued PAX5 expression maintains B-cell identity in memory B 

cells.  

 

1.3.2 The GC reaction and B-cell Lymphomas 

Nearly all B-cell NHLs harbour SHM in the IgV genes, indicating that the malignant B-

cell is blocked within or has passed through the GC. Moreover the commonest 

oncogenic events in B-cell neoplasms are chromosomal translocations and aberrant 

SHM, which represent errors in the physiological process of B cell differentiation and 

maturation. With the exception of the t(14;18), and a subset of t(8;14) involving the 

Ig and MYC loci in endemic-type BL, most breakpoints in chromosomal translocations 

involving the Ig genes arise in the switch region or in the target regions for SHM.16 

AID is absolutely required for the SHM to occur and has been detected in exceedingly 

high levels in some DLBCLs. This again indicates the occurrence of malignant 

transformation during the GC reaction.  

 

The consequence of these genetic abnormalities is the transcriptional deregulation of 

genes involved in GC B-cell development or the aberrant expression of genes 

restricted to other B-cell developmental stages. As an example, chromosomal 

translocations involving BCL6 prevent silencing of its expression at the end of the GC 

reaction, leading to a block in post-GC differentiation.72 Cells harbouring BCL6 

translocations maintain a centroblast-specific functional program, with typical pro-

proliferative, DNA-damage-tolerant phenotypes, with a high potential to acquire 

further genetic alterations, eventually leading to lymphomagenesis. 
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The understanding of B-cell development, the physiological process of the GC 

reaction and the mechanisms of B-cell transformation were instrumental for the 

seminal discovery of the molecular subtypes of DLBCL described in the following 

section. 

 

1.3.4 The Cell-of-Origin (COO) Classification in DLBCL 

Up to the year 2000 molecular heterogeneity in DLBCL was recognized only by the 

detection of chromosomal translocations, numerical chromosomal abnormalities, 

mutations and deletions in tumour suppressor genes. It was by then also accepted 

that these molecular changes arose in B-cells in different developmental stages. 

However the normal cellular counterpart of DLBCL was still unknown. GEP, a high 

throughput technique for interrogation of the whole transcriptome of cells or tissues 

was by then starting to be used to study human cancer.73  

 

In this scenario, Alizadeh et al. performed GEP in normal human B-cells in different 

stages of development or stimulated in vitro, in parallel with a variety of snap-frozen 

single-cell suspensions derived from B-cell malignancies.74 They wanted to test the 

hypothesis that the concerted gene transcription in lymphomas is similar to the one 

from the normal counterpart from which they derive; and to deepen the current 

understanding of the lymphoma biological phenotypes. The Lymphochip array was 

purposely designed to detect transcripts related to the GC biology.75 By visually 

comparing, in a completely unsupervised fashion, how all samples clustered 

according to similarities between them (hierarchical clustering), the authors indeed 

recognized that around half of the DLBCL cases studied expressed genes that are 

hallmarks of normal centroblasts (e.g. BCL6). By contrast, another DLBCL subgroup 

lacked the expression of GC B-cell–restricted genes and instead had a transcriptome 

similar to the one of a B-cell triggered to divide (e.g. NF-kB, IRF4). To consolidate 

these findings, patient division according to resemblances with normal B-cell 

transcriptomes was later confirmed in larger datasets of more than 200 patients, 

either before76 or after the introduction of R-CHOP.34  
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Importantly all GEP studies recognized that the two subgroups had disparate survival 

rates independently of the treatment given. The prognostic significance of this 

classification of DLBCL was also corroborated by GEP studies done on formalin-fixed 

paraffin embedded (FFPE) tissue using different systems of nucleic acid amplification 

and done using low input, partially degraded RNA (ribonucleic acid).77-79 

 

GEP studies in DLBCL12,74,76,80 could also recognize groups of genes involved in 

different biological processes, which had synchronous expression. These gene 

signatures were differentially expressed by the lymphomas profiled, and helped to 

elucidate the biological processes that are being exploited by the malignant cells and 

to predict outcome independently of the IPI. 

 

These analyses led to the COO classification, recognizing two molecularly distinct 

entities in DLBCL: the germinal centre B-cell–like (GCB) DLBCL and the activated B-

cell–like (ABC) DLBCL. Mutational analysis showed that the GCB-DLBCLs have ongoing 

SHM of the IgV genes,81 suggesting that the malignant B-cells result from a block 

within the centroblast stage in the GC reaction; whereas ABC-DLBCLs have a high 

mutational burden in the IgV genes, supporting that the malignant B-cells have 

passed through the GC but fail to fully mature. 

 

Additional work helped to allocate previously known genetic aberrations (such as the 

t(14;18) translocation) into each molecular subgroup, and to describe novel genetic 

lesions that are mutually exclusive to each subgroup.82 Importantly, the COO 

classification accelerated functional studies exploring the role of cytokines, signalling 

pathways and transcription factors differentially involved in the pathogenesis of 

these lymphomas.  

 

The COO classification led to the design of RCTs incorporating targeted therapies, 

with the perspective of improving survival of the high-risk ABC-DLBCLs. These trials 
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might demonstrate that the COO is predictive of response to R-CHOP, but as yet 

there is no controlled data supporting it. 

 

 

1.4 Main oncogenic mechanisms in DLBCL  

Despite having genetic and epigenetic alterations in common, GCB and ABC-DLBCLs 

utilize mutually exclusive oncogenic pathways, providing compelling evidence for 

their different origin. Pathway activation depends on gain-of-function mutations in 

signalling effectors, loss-of-function mutations in negative signalling regulators, or 

autocrine receptor activation.83 Here we will first describe the most relevant genetic 

alterations, followed by the commonest oncogenic pathways utilized by the DLBCL 

cells and the epigenetic changes in this disease, paying particular attention to the 

changes with potential for therapeutic targeting. For a comprehensive list of genetic 

aberrations see Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 Introduction 

 

39 

 

Genetic aberrations proportion of patients (%) GCB ABC 

t(14;18)/BCL2 50 x  

EZH2 mutations 20 x  

MEF2B mutations ~10 x  

TP53 mutations/deletions 20 x x 

MLL2 mutations 40 x x 

CREBBP/EP300 mutations 40 x x 

MYD88 L265P mutations 30  x 

CD79 A/B mutations 20  x 

t(3;x)/BCL6 10 - 25 x x 

SPIB translocations/gains/amplifications 20 - 50  x 

CDKN2A deletions 20 - 50  x 

INK4a/ARF deletion 20 - 50  x 

A20 deletions/mutations 20 - 50  x 

PRDM1 20 - 50   

BCL2 amplifications 20  x 

MYC translocations 5 - 20 x x 

MDM2 amplifications < 20 x  

IRF4 rearrangements < 20 x  

CARD11 mutations 10 x x 

MYD88 mutations (other) 10 x x 

B2M mutations < 20 x x 

CD58 mutations < 20 x x 

PTEN deletions < 20 x  

TNFRSF14 mutations 5 - 20 x  

FOXO1 mutations ~8 x x 

FAS mutations/deletions < 20 x  

GNA13 mutations ~25 x  

SGK1 mutations  x  

miR-17-92 amplifications 12 x  

 

Figure 1.1 Recurrent genetic aberrations and oncogenic pathways in DLBCL according to the 

cell-of-origin molecular profile.  

The most common changes of each molecular group are highlighted. 
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Next-generation sequencing (NGS) technologies have been used to deepen our 

understanding of the coding genome of DLBCL (reviewed by Jardin84). More than 200 

cases have been reported to date and the findings support that DLBCL has a high 

degree of genomic complexity, harbouring on average between 30-100 changes/case. 

However the modest overlap of lesions described among the four studies published85 

and the limited depth of detection of the technologies used, suggests that the full 

genomic landscape is yet to be unravelled. Apart from confirming previously 

acknowledged genetic aberrations, NGS uncovered novel targeted genes, some of 

which have prognostic impact in the R-CHOP era (e.g. Forkhead box protein O1 

(FOXO1) mutations). Some of these somatic mutations conduct to changes in 

signalling pathways that play crucial roles in B-cell function, immunity, cell death, or 

epigenetic regulation, as will be detailed. 

 

The TP53 (tumour protein 53) gene is targeted by mutations (20% of cases),86 and by 

deletions irrespective of the COO of DLBCL. This gene encodes for the tumour-

suppressor protein p53. Loss-of-function mutations in TP53 impair the regulation of 

many biological processes controlled by p53: cell cycle, apoptosis, cell differentiation, 

DNA repair, angiogenesis, and genomic stability. All aberrations were associated with 

worse survival in DLBCL.87-89 Importantly, it was suggested that TP53 mutations might 

help to stratify GCB patients into different prognostic subgroups.89,90 

 

Chromosomal abnormalities can be detected by karyotype, targeted in-situ 

hybridisation (fluorescence or colorimetric) or, in a more detailed and comprehensive 

fashion, by chromosomal genomic hybridisation (CGH) arrays. CGH-arrays 

demonstrated that GCB and ABC-DLBCLs harbour distinct chromosomal aberrations.91 

As an example, copy number alterations on chromosome 3 are exclusively diagnosed 

in ABC-DLBCL, whereas amplifications of C-REL are exclusively detected in GCB cases.  

 

Around half of GCB-DLBCLs exhibit the t(14;18) translocation, leading to BCL2 

overexpression and subsequent escape from apoptosis. BCL2 overexpression is also 

detected in the majority of ABC-DLBCLs, driven by transcriptional deregulation and 
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gene amplifications rather than translocations.76,92 BCL2 protein is highly expressed in 

both molecular groups (70% in our series93), and is accepted as a predictor of poor 

outcome.94-97 Hence BCL2 represents an excellent candidate for therapeutic 

targeting. Several molecules targeting it at the DNA and protein level, including ABT-

199 are under study and represent an opportunity to improve the outcome of GCB-

cases. 

 

 

A number of gene transcriptional regulators exhibit chromosomal changes in DLBCL. 

Translocations involving the transcription factor MYC are detected in 5-10% of 

DLBCLs irrespective of the COO and are usually associated with complex 

karyotypes.13,16 Amplifications and somatic mutations have also been described. 

These genetic aberrations lead to MYC protein overexpression and activation of a 

proliferative phenotype. In RCTs, the presence of MYC aberrations was associated 

with poorer OS and EFS, independently of the IPI and the COO classification.98 Other 

studies correlated MYC aberrations with worse survival.35,99-101 The presence of MYC 

staining as detected by IHC was correlated with MYC rearrangements in two 

independent studies.99,102 MYC+ and BCL2 or BCL6+ double-hit lymphomas103 have a 

very poor outcome, which cannot be solely explained by the presence of a MYC 

breakpoint, hence suggesting a synergism between these genetic events. Applying an 

IHC BCL2 and MYC double-hit score102 might help to recognize patients with worse 

OS, and PFS, independently of the IPI and COO. Targeting DNA secondary structures 

within the MYC promoter region is emerging as a potential intervention in DLBCL.104 

 

As already stated, BCL6 is a transcriptional repressor essential for the formation of 

the GC reaction, and, hence, a key molecule involved in the lymphomagenesis of GCB-

DLBCLs. Most genetic aberrations involving BCL6 lead to its overexpression. Although 

these are more common in ABC-DLBCLs, translocations involving BCL6 can occur in 

both molecular subtypes.83 BCL6 mutations have also been described.105 It has been 

shown that BCL6 inhibitors are toxic for GCB-DLBCL cell lines even in the absence of 

chromosomal translocations.106 
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A common event in ABC-DLBCLs is the acquisition of genetic or epigenetic events in 

PRDM1 (PR domain zinc finger protein 1) leading to repression of Blimp-1, the key 

transcription factor involved in the terminal differentiation of B-cells.  

 

Similarly, IRF4 is a transcription factor that has an important role in plasma cell 

differentiation and in the survival of post-GC neoplasms such as the ABC-DLBCLs. In 

GCB-DLBCLs, IRF4 was found to be involved in rearrangements with the Ig genes. 

These cases exhibited a specific GEP and presented a favourable outcome.107 

 

Addiction to IRF4 in ABC-DLBCLs is independent of genetic aberrations. Its 

overexpression is attributed to NF-kB constitutional activation. On the other hand, 

SPIB, its essential partner for DNA binding is targeted by chromosomal translocations, 

gains and amplifications in ABC-DLBCLs.82 

 

The most commonly exploited signalling pathway by malignant B-cells is the NF-kB 

pathway.83 Crosslinking of different B-cell membrane receptors, including the BCR, 

CD40 and Toll-like receptors (TLR), leads to phosphorylation of IKBα (nuclear factor of 

kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), unleashing the NF-

kB complex of transcription factors from the cytoplasm to the nucleus, where they 

alter gene expression. The NF-kB pathway activates the transcription of an anti-

apoptotic module highly convenient for lymphoma cell survival and chemotherapy 

resistance. NF-kB constitutive activation constitutes a hallmark for the poor risk ABC-

DLBCLs108 and is a promising candidate for targeted therapies (see below). The 

mechanisms by which NF-kB activation occurs in DLBCL are diverse.83 The CBM 

protein complex, constituted by CARD11 (Caspase recruitment domain-containing 

protein 11), BCL10 (B-cell lymphoma-10), MALT1 (Mucosa-associated lymphoid tissue 

lymphoma translocation protein 1) and casein kinase 1α, is activated downstream of 

Bruton’s tyrosine kinase (BTK) and Protein Kinase Cβ (PKCβ) after BCR ligation and is 

required for activation of NF-kB, either directly or indirectly by inactivation of 

negative regulators such as A20.109,110 Gain-of-function CARD11 somatic mutations, 
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which are detected in 10% of the ABC-DLBCLs,111 or loss of A20112 both lead to NF-kB 

constitutive signalling. 

 

Targeting the NF-kB and other pathways activated via BCR is under scrutiny in clinical 

trials for DLBCL. Bortezomib is known to block NF-kB by avoiding degradation of IκBα. 

It has been combined with chemotherapy and immunochemotherapy in phase 2 trials 

and, as expected, seems more effective in ABC-DLBCLs, improving CR rates and 

OS.113,114 Although phase 3 RCTs currently recruiting are trying to demonstrate 

whether this proteasome inhibitor is really selective against the ABC-DLBCLs, this is 

not entirely expected given that the drug has a broad activity against protein 

function. However more selective signalling inhibitors are available. 

 

Despite harbouring molecular aberrations in the Ig genes, B-cell malignancies retain 

the BCR in the cell surface to profit from its downstream survival and proliferation 

signals. Mouse models support the role for BCR signalling for normal B-cell survival 

and malignant transformation.115  

 

As already mentioned, the CD79A/B molecules sustain the BCR receptor assembly 

and transmit signals to a variety of downstream pathways. Activation of spleen 

tyrosine kinase (SYK) and its downstream targets leads to engagement of NF-κB, 

Phosphoinositide 3-kinase (PI3K), Mitogen-activated protein (MAP) kinase, and RAS 

signalling pathways, leading to cell survival and proliferation. Around 20% of ABC-

DLBCL tumours harbour gain-of-function mutations in CD79A/B, which are rarely, if 

ever, found in GCB-DLBCLs.116 Theoretically, the mutant isoforms are selected as this 

may allow premalignant B-cells to escape anergy and expand in the GC 

microenvironment, where they can engage in Ig affinity maturation and further 

expand. CD79A/B mutations increase the expression of the BCR in the surface 

membrane and reduce activation of tyrosine-protein kinase (LYN), a negative 

regulator of the BCR signalling.  

 



Chapter 1 Introduction 

 

44 

ABC-DLBCLs with wild type CARD11 exhibit a chronic “antigen-like” BCR engagement 

able to sustain their survival.116 In concordance, knockdown of any of the 

components of the BCR or of its downstream effector molecules, including BTK, or 

CARD11 itself, leads to cell death.  Most of the GCB cell lines are unresponsive to the 

knockdown of BCR or related molecules.  

 

Ibrutinib, a BTK inhibitor, showed exclusive in vitro cytotoxicity against ABC-DLBCL 

cell lines, and it has recently been suggested that it has synergistic activity with 

lenalidomide in blocking the NF-κB pathway in this subset of DLBCLs.117 In a phase 2 

RCT enrolling relapsed/refractory patients, ibrutinib induced a high overall response 

rate, showing preferential activity against the ABC-DLBCLs.118 Activity against the GCB 

subtype is, however, not depreciated and the mechanisms behind this are not 

entirely clear.  

 

Preclinical studies with Fostamatinib, a SYK inhibitor, revealed its ability to inhibit BCR 

signalling and induce cell-cycle arrest in cases relying on tonic BCR signalling for 

survival.119,120 Fostamatinib showed activity against relapsed DLBCL in early phase 

trials.121 

 

PKCβ inhibitors have been effective in preclinical studies against ABC-DLBCL cell lines 

with CD79A/B mutations122 and are being used in monotherapy or in combination 

with Everolimus in patients with the CD79-mutant or the ABC subtype of DLBCL.  

 

PI3K inhibitors also have prominent activity against ABC-DLBCLs with CD79B 

mutations,123 as well as in cases with FOXO1 mutations85 or PTEN (Phosphatase and 

tensin homolog) deletions.124  

 

RNA interference screening in ABC cell lines hinted that innate immune signalling is 

involved in the biology of this DLBCL subgroup.117 Nearly 30% of ABC-DLBCLs have 

L265P mutations and an additional 10% have other gain-of-function mutations in the 

MYD88 (Myeloid differentiation primary response gene 88) gene.125 These occur with 
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CD79A/B mutations, suggesting oncogenic cooperation, as these pathways are non-

redundant.  MYD88 is an adaptor molecule that in coordination with IRAK 

(Interleukin-1 receptor-associated kinase) kinases, is able to couple receptors like 

TLRs with downstream signalling pathways such as NF-kB and type-I interferon (IFN) 

circuit. The oncogenic MYD88 forms express IL-6 and IL-10, which in turn activate JAK-

STAT3 (Janus tyrosine kinase-Signal Transducers and Activators of Transcription 3) 

and NF-kB pathways.126 Type-I IFN might be beneficial for tumour cells, since IFN-β 

secretion might dampen the immune microenvironment. Inhibitors of IRAK kinases 

selectively kill ABC cell lines harbouring MYD88 mutations.125 IRAK kinases inhibitors 

targeting the TLR signalling, probably in combination with other agents with efficacy 

against the BCR signalling, are promising strategies for these patients with MYD88 

mutations.127 

 

Recent cancer genomics studies in lymphoma unveiled recurrent events in molecules 

that induce epigenetic changes in the DNA. Histone modifications can have a 

permissive or repressive effect in gene transcription by altering chromatin structure.  

 

Mutations in histone modifying enzymes are common in DLBCL. Genes coding for the 

histone acetyltransferases cAMP response element-binding protein (CREBBP), E1A 

binding protein p300 (EP300) and the hystone H3K4 methyl transferase mixed-lineage 

leukemia protein 2 (MLL2) are mutated in up to 40% of DLBCLs, irrespective of the 

molecular subtypes,128 suggesting an important role for epigenetic changes in 

lymphomagenesis. The precise oncogenic mechanism behind these mutations is, 

however, unclear. 

 

EZH2 is a member of the epigenetic regulator polycomb repression complex-2 (PRC2), 

responsible for restraining transcription through the methylation of the histones 

H3K27. Experiments inhibiting EZH2 proved its role in Ig affinity maturation in the GC 

by transiently suppressing B-cell differentiation.129 In concordance, heterozygous 

gain-of-function mutations in EZH2 are found exclusively in 21% of GCB-DLBCLs.130 

Hence, targeting EZH2 represents an opportunity to personalize treatment based on 
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the COO classification. In fact EZH2 inhibitors were found to be effective in halting 

proliferation of GCB-DLBCL cell lines and EZH2 mutant DLBCL xenografts in mouse 

models.131 A clinical trial in the United Kingdom will explore the clinical activity of 

EZH2 inhibitors (GSK2816126) in relapsed/refractory GCB-DLBCLs and will study the 

EZH2 mutational status irrespective of the molecular subtype (clinicaltrial.gov 

number NCT02082977). 

 

microRNAs are also altered in DLBCL. It has been shown that the locus that encodes 

for the miR-17-92 cluster is amplified in 12,5% of GCB-DLBCL tumours, while it is 

never targeted in ABC cases.82 miR-17-92 works in collaboration with MYC and 

induces a proliferative and anti-apoptotic phenotype in cancer cells, as well as 

promoting escape from senescence and cell cycle checkpoints.83  

The expression of certain miRNAs was associated with prognosis together with the IPI 

and the COO in RCTs.132,133 

 

 

1.5 GEP-based prognostic models suggests that a host inflammatory/immune 

response plays a role in the biology of DLBCL 

GEP studies performed in whole LNs infiltrated with DLBCL captured not only the 

transcriptome of the malignant B-cells and its resemblance with the putative COO but 

also other relevant aspects of the biology of the disease that could be implicated in 

the outcome of patients. One such biological feature is the host immune response to 

the tumour.  

 

Using unsupervised hierarchical clustering, Alizadeh et al.74 firstly recognized that 

DLBCL samples had a coherent overexpression of genes known to be expressed by 

natural killer (NK)-cells and macrophages (including CD14, CD105, CSF-1R) and of 

transcripts involved in matrix remodelling (e.g. MMP9 and TIMP-3). This LN-signature 

was also highly expressed in normal LNs, but not in other B-cell malignancies. The 
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intensity of this signature varied, possibly reflecting the relative proportion of tumour 

and host cells in the biopsy. 

 

A larger study exploring the use of GEP to define prognostic algorithms demonstrated 

that the molecular COO classification explained only part of the survival variability in 

DLBCL.76 Indeed, prognostically significant genes selected by supervised analysis 

could be grouped into signatures according to their involvement in physiological 

processes:  GC B-cell, LN, MHC class II, and proliferation.  

 

Expectedly, a proliferative signature was associated with a worse outcome, whereas 

the expression of the MHC class II signature genes by the malignant B-cells improved 

survival independently of the COO. It was speculated that malignant cells devoid of 

surface MHC class II molecules could escape T-cell immune checkpoints that would 

help them to survive, emphasizing the role of the immune system in controlling 

malignancy.  

 

Genes from the LN-signature incorporated in this model, however, were expressed by 

the non-malignant cells in the tumours.134 Importantly, a higher transcriptional 

activity of these genes was associated with improved outcome even in the poor risk 

ABC-DLBCLs. Whether this was due to a mere heavier infiltration of immune cells in 

the samples that would increase the signal intensity of those transcripts in the arrays, 

or a qualitative difference was unclear.  

 

Another GEP study applied different unsupervised clustering algorithms to model 

outcome in DLBCL.12 Comparison of these methods allowed devising robust subsets 

of patients again highlighting tumour biological features. The “host response” cluster 

had high expression of T-cell molecules, IFN-induced genes, cytokine receptors, TNF 

ligands/receptors and extracellular matrix (ECM) component transcripts. Additionally, 

some of the transcripts of this signature codify for proteins with established roles in 

macrophage development and function, including CSF-1R, CD14 and CD163. This 

cluster was enriched for genes from the LN-signature previously described. Finally, 
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samples allocated to this group had a significantly higher numbers of T-cells and DCs 

by IHC.  

 

The relevance of the stromal compartment in DLBCL was later substantiated by a 

large study using samples of R-CHOP treated cases.34 Their research used GEP of 

sorted malignant and non-malignant cells from a few DLBCL samples to help clarify 

the relative input of these two compartments on the prognostic algorithm designed. 

Transcripts that had a differential signal value in either the malignant or non-

malignant cells were used to build multivariate survival models that were validated in 

whole GEP data from almost 400 patients. A malignant-derived GCB signature, 

together with two others derived from the non-malignant cells were able to predict 

OS and PFS in the R-CHOP treated patients. Additionally, the IPI and the GEP-based 

model added to the predictive power of each other, suggesting a shared role for 

clinical and biological features contributing to patient outcome. The stromal-1-

signature was enriched for genes derived from macrophages and ECM components 

and was predictive of a good outcome. The stromal-2-signature was enriched for 

genes involved in angiogenesis and conferred an adverse outcome. Importantly, the 

two stromal signatures were strongly synergic. The relative expression of each of the 

stromal signatures in each sample was what most predicted length of survival, 

highlighting the power of GEP to unveil quantitative differences in immune responses 

that are prognostically significant. These data partially supports the model derived 

from solid tumours, in which mononuclear phagocytic cells are involved in stromal 

remodelling, drive the angiogenic switch and contribute to disease aggressiveness. 

The authors also demonstrated that the LN- signature, which shares a large amount 

of transcripts with the stromal-1-signature remained a good survival predictor in the 

R-CHOP era.  

 

In an attempt to satisfy critical standpoints regarding the complexity of the models 

discovered and its impossible applicability to the clinical practice, other studies tried 

to define simplified predictive models. Similarly, those models incorporated genes 

encoding for microenvironment components. A model comprising four genes of the 
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GCB/ABC signature and two genes related to immune response (APOBEC3G and 

RAB33A), showed to be predictive of outcome in patients receiving R-CHOP.135 Two of 

the genes included in the six-gene model of Lossos et al.136  (SCYA3 and FN1), reflect 

the tumour microenvironment. FN1 was expressed at very low levels by B-cells, 

supporting that the transcript is being expressed by the accessory cells. Its expression 

has been associated with a better outcome, highlighting again the positive prognostic 

impact of a stromal response in DLBCL. 

 

Alizadeh’s group explored bioinformatics methods to analyse the extensive paired 

clinical and GEP data available online. By univariate analysis, LMO2 was one of the 

best genes at predicting OS in DLBCL. Bivariate survival predictor models 

incorporating LMO2 and a second gene more highly expressed in non-malignant cells 

were explored. TNFRSF9/CD137 was also a strong predictor of good outcome on 

univariate analysis and the best in bivariate combination with LMO2. This bivariate 

model synergizes with the IPI for predicting outcome in DLBCL.137 TNFRSF9 expression 

was restricted to a minority of infiltrating T-cells of DLBCL.  

 

The above studies consistently highlight that biological features of DLBCL are derived 

from the stromal microenvironment. Interestingly, in contrast to what is generally 

accepted in solid tumours and other lymphoid malignancies, in DLBCL the expression 

of genes derived from macrophages and from the ECM components of the malignant 

LNs confers an improved outcome.  

 

Functional studies approaching this phenomenon are lacking, but potential 

hypotheses can be made. The most compelling is that the stromal cells are 

contributing to an immune response against the tumour that, although not fully 

efficient, might control some features associated with tumour aggressiveness. Within 

this hypothesis it can be speculated that the malignant cells of high-risk cases have 

found ways to dampen and escape this microenvironmental control. Chromosomal 

copy number changes are associated with differential expression of the LN-
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signature,134 suggesting that oncogenic changes might lead to dependence from 

tumour microenvironmental signals. 

 

 

1.6 Limitations of GEP-based predictive algorithms 

High throughput strategies such as GEP, NGS or proteome analysis are extremely 

useful to generate hypotheses for subsequent studies where simpler, affordable and 

highly reproducible methodologies are applied in real world patient’s samples. The 

COO and other GEP-based strategies have the potential to improve prognostication in 

DLBCL and offer an unforeseen opportunity for tailored treatment in this disease. 

However a large body of criticism is out there regarding the implementation of these 

strategies in the context of RCTs and in the clinical practice.  

 

The studies here described, although proving the importance of the molecular 

subgroups or the tumour microenvironment in the biology of DLBCL, have used 

different gene lists for their survival algorithms. After more than 10 years after the 

first study proposing a strategy for classifying patients according to the COO, other 

GEP-based algorithms are still being proposed.79 This failure to implement and 

validate previously proposed methodologies suggests difficulties in standardization 

and arbitrary analysis approaches. In fact there is a lack of standard operating 

procedures for the analysis of GEP.  

 

Another limitation is the number of samples explored in the original studies. 

Statisticians highlighted that inadequate sample sizes compromise any correlation of 

high throughput data with survival information, most times generating results that 

overestimate the prognostic value of a certain gene or algorithm. Additionally, there 

is some criticism of the use of cohort splitting into training and validation sets, which 

further reduces the size of the already small training group that is used for the 

development of the risk prediction model thus increasing problems of overfitting. In 

consequence results might not be replicated in subsequent validation studies. 
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Alternative strategies to sample splitting are proposed, such as the bootstrap cross-

validation approach.138 Since there are GEP results of over 700 patients with DLBCL 

available for the scientific community, techniques that can integrate this information, 

such probabilistic Bayesian modelling,139 would almost certainly generate more 

coherent strategies.  

 

The contribution of the microenvironment in algorithms developed using whole 

tumour cells is going to be variable. It will probably depend not only on the extent of 

non-malignant cells infiltrating the primary samples, but also on the differential 

sensitivity of particular cell types to the harvesting, RNA extraction and other 

techniques used prior to sample arraying. 

 

Finally the lack of controlled prospective data is one of the main hindrances of gene-

based prognostic models that might be overcome in the near future once results from 

RCTs applying GEP are reported.  

 

The aspects exposed above hamper the implementation of the findings of GEP into 

the clinical arena. This contributed to the search for other methods that could be 

predictive of the COO, such as IHC classifiers. We will challenge the current use of 

COO IHC classifiers in Chapter 3. 
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PART TWO 

1.7 Cancer and Immunity 

Cancer cells are equipped with the ability to subvert the physiological processes that 

control the progression from a normal to a neoplastic state (reviewed by Hanahan 

and Weinberg140). One component of such physiological mechanisms is their close 

interaction with the immune microenvironment.  

 

Whereas the original theory of a vigorous immune cell infiltration being an indicator 

of the host antitumoural response against the tumour still holds true for certain 

immune cell subsets in specific cancer types,141 a more recent theory recognizes a 

double-faced immune system with both host-protecting and tumour-promoting 

features.142 

 

As early as 1863, Virchow recognized the infiltration of cancer tissues with cells of the 

innate immune system, including macrophages, and hypothesised that mechanisms 

of immune activation such as chronic inflammation enhanced cell proliferation, 

creating the soil for cancer development.143 Following Virchow’s original hypothesis, a 

large body of work published over the last 20 years supports that tumour-associated 

inflammation could indeed be permissive to cancer formation.144-146 

 

An inflammatory response can give rise to a number of molecules that are 

fundamental in cancer development. For example, reactive oxygen species (ROS) 

released in the context of an inflammatory response enhance the acquisition of 

oncogenic events in mammalian cells.147 Additionally, inflammatory cells produce an 

array of molecules that have tumour-promoting functions: growth factors that 

sustain cancer proliferation; survival factors that limit cancer cell death; 

proangiogenic and matrix remodelling molecules that facilitate angiogenesis, 

invasion, and metastasis; cytokines and chemokines that amplify the inflammatory 

response; and immune suppressive molecules that are crucial for tumour cell escape. 

Cancer associated-inflammation closely resembles wound healing and subsequent 
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tissue remodelling responses.148 Importantly, B-cells have been implicated in the 

recruitment, activation, 

and persistence of such wound-healing and tumour-promoting innate immune 

cells.149,150  

 

However the scenario is more complex and highly dependent on the type of tumour, 

on where the inflammatory cells lie within the tumour, and on the temporal evolution 

of the tumour, which endangers a general view and therapeutic approach of 

inflammation in cancer.  

 

 

1.8 Evolving models of macrophage ontogeny 

Macrophages are an obligatory component of all tissues in humans, constituting 5-

20% of their cell content.151 Macrophages were recognized as phagocytic cells 

involved in tissue function and homeostasis in the late 19th century, by Elie 

Metchnikoff. Only 100 years later van Furth et al.152 described the mononuclear-

phagocyte system (MPS) as a linear model where macrophages were terminally 

differentiated cells derived from monocytes arising from a common progenitor in the 

BM. The discovery of a common progenitor to macrophages and DCs led to the 

inclusion of the latter in this system.153  

 

Colony stimulating factor-1 (CSF-1 or M-CSF) is the main cytokine involved in the 

development and function of cells of the MPS. This has been demonstrated in mice 

lacking functional Csf-1 or Csf-1 receptor (CSF-1R) genes.154 The intriguingly worse 

phenotype of CSF-1R null mice led to implication of an alternative CSF-1R ligand, IL-

34, in maintaining normal phagocytes, especially epidermal macrophages and 

microglia.155 The E-twenty six (ETS) family transcription factor PU.1 controls the 

expression of CSF-1R. It has been demonstrated that by introducing PU.1 in PU.1-/- 

cells it is possible to rescue differentiation of CSF-1R deficient cells.156 
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Over the last decade studies on the dynamic evolution of monocytes and 

macrophages conducted to major breakthroughs in the field of macrophage ontogeny 

and previewed opportunities to selectively target recruited macrophages in the 

context of chronic diseases such as cancer without disturbance of local homeostatic 

macrophages. We will now highlight some of those findings. 

Monocyte heterogeneity has been acknowledged. Two monocyte subsets exist in 

mice that show different phenotype, namely the expression of Ly6C, and 

function.157,158 The Ly6C+ “inflammatory” monocytes have a short life span and are 

bound to traffic to sites of infection and inflammation, whereas another population 

crawls along the luminal surface of the vessels and patrols for integrity of the 

endothelial cells. These two populations might have a differential contribution to the 

resident macrophage pool.159 What remains to be clarified is whether theses subsets 

derive from a common progenitor or whether the minor population of “patrolling” 

monocytes originates from the “inflammatory” subset.153  

 

Importantly, there is evidence for functional homologues of mouse monocyte subsets 

in humans.160 A small population of monocytes with dimmer expression of CD14 

compared to the classical monocytes was described in humans which has a similar 

cytokine profile and antigen presentation capacity that the mouse “patrolling” 

monocytes. The impact of human monocyte subsets in pathological conditions is yet 

to be defined.  

 

Another seminal finding was that embryonic phagocytes derived from non-

haematopoietic cells in the yolk-sac and the foetal liver can persist after birth in most 

tissues and can repopulate them in the absence of a functional haematopoietic 

system.161,162 These are self-maintained by slow but steady proliferation in 

homeostatic conditions163,164 under the regulation of the transcription factor 

MAFB/cMAF.165 The suggested contribution of this proliferation is to populate tissues 

with macrophages during organogenesis and at a lower rate thereafter to maintain 

tissue integrity. Such phenomenon would explain why haematopoietic stem-cell 

transplantation leads to inefficient replacement of tissue macrophages. Nonetheless 
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adult organs are infiltrated, with the exception of the gut,166 by a mixed population of 

embryonic and bone marrow-derived macrophages. Macrophages from distinct 

progeny both rely on CSF-1.167  

 

The balance of pre-natal and bone marrow-derived macrophages has been shown to 

change in pathological conditions. 

In acute inflammation,168 including IL-4-driven parasitic infections169 the dynamics of 

resident macrophages changes: the proliferation capacity of resident macrophages is 

boosted, whereas monocytes recruited from circulation only transiently repopulate 

tissues and differentiate in situ to macrophages.170  

 

The discovery of proliferation enhancement by IL-4171 raises the possibility that 

accumulation of macrophages in tumours might also be partly due to local 

macrophage proliferation. Recent evidence, however partially disproves this 

hypothesis. Using a model of mammary cancer genetically driven by the expression of 

an oncogene, Franklin et al.172 demonstrated that two populations of macrophages 

co-inhabited the tumour, which were phenotypically and transcriptionally diverse. 

One subset accumulated upon tumour growth and was required for tumour support 

by impeding infiltration of cytotoxic T-cells and by promoting tumour growth. These 

tumour-associated macrophages (TAM) had origin mostly on attracted peripheral 

blood inflammatory monocytes and exhibited high proliferative capacity. Targeted 

genetic knockout experiments implicated Notch signalling in the differentiation of 

TAM. On the other hand, another subset of macrophages relied solely on the input 

from circulating monocytes and seemed oblivious to the presence of the tumour 

cells, showing less proliferation and a transcriptome that equipped them to maintain 

tissue homeostasis. Importantly, this population persisted despite inhibition of Notch 

signalling. This study teasing out the origins of TAM in mice was able to describe a 

new pathway dependency for these cells. Moreover, the formal demonstration of the 

existence of “non-malignant” macrophages independent of the same signalling 

pathway suggests that TAM targeting strategies that do not compromise innate 

immunity and tissue homeostasis might be possible.   
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Although studies such as the one described change current paradigms in the 

understanding of macrophage biology, their translational potential has, however, to 

be questioned. The lack of any data in humans paralleling elegant findings in the 

murine model hinders the relevance of such findings. Additionally, the expansion of 

innate cells necessary for pathogen control or wound repair independently of 

monocyte recruitment puts into question standard methodology used to obtain 

human macrophages in the laboratory. The reasons for limited validation of 

macrophage studies in humans will be discussed later to highlight the relevance and 

novelty of the studies we undertook in the context of DLBCL. 

 

 

1.9 Macrophage functions in normal physiology 

Understanding the functions in which macrophages take part in normal physiology is 

important, as in the context of cancer those attributes are subverted via permanent 

contact with the tumour cells or products produced by the tumour cells, generally to 

favour tumour progression. We will next expose some of the fundamental functions 

of macrophages in healthy conditions. TAM functional diversity will be discussed in 

the next section. 

Macrophages are cells from the innate immune system that play important roles in 

the immediate response to pathogens and in the regulation of humoral and cell-

mediated immune responses.149  

The recognition of moieties such as lipopolysaccharide (LPS) induces functional 

activation of macrophages towards a pro-inflammatory and pro-apoptotic 

phenotype. While pro-inflammatory molecules induce oxidative processes that 

contribute to the killing of invading organisms,173 macrophages release soluble 

pattern-recognition molecules that activate the complement system and amplify the 

killing process. Additionally macrophages skew the differentiation of T-cells towards 

Th1 and Th17 phenotypes, boosting the whole inflammatory process.174 During the 

resolution phase and on subsequent encounters with bacterial products macrophages 
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should skew towards wound healing and immune-regulatory properties that 

minimize tissue damage and re-establish equilibrium. A failure of this control 

mechanism leads to chronic inflammation and auto-immunity.  

 

Besides host defence, macrophages are involved in many other aspects of tissue 

homeostasis (reviewed by Wynn, Chaula and Pollard175). Specialized tissue 

macrophages including Kuppfer cells, osteoclasts, microglia, and alveolar 

macrophages, all display functions that help keeping the integrity of the organs 

where they reside.  

 

Macrophages contribute to tissue remodelling and repair under homeostatic and 

damage conditions. This role is observed in the prenatal stage and in adult animals. 

During embryogenesis macrophages are localized in areas of active tissue 

reconstruction, such as the inter-digit areas during limb formation.155 This has been 

demonstrated by using the MacGreen mouse model176 in which macrophages express 

a green fluorescent protein (GFP) from the Csf-1r promoter. In this site, macrophages 

scavenge cell debris and produce a myriad of molecules responsible for ECM 

degradation, reconstruction and angiogenesis. Additionally, macrophages reduce 

immune responses against auto-antigens that naturally occur during this process.177 

Studies of Csf-1 null mutant mice, which lack many macrophage populations, 

highlighted the role of macrophages in morphogenesis. These mice had tissue-

remodelling defects involving the bone, mammary gland and pancreas. The same 

macrophage homeostatic and reparative attributes are recapitulated in the process of 

wound healing. 

 

Macrophages ensure homeostasis in haematopoiesis in a number of ways, from 

controlling the egress of haematopoietic cells from the bone marrow to engulfing 

apoptotic neutrophils and red blood cells in the spleen. Bone marrow macrophages 

ingest the extruded erythrocyte nuclei from erythroblasts, a process fundamental to 

ensure normal erythropoiesis.175  

The main iron supply for erythropoiesis derives from recycling after phagocytosis of 
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senescent red blood cells by macrophages.178 These sequester the iron intra-cellularly 

in the context of infection in an attempt to withhold it from the invading pathogens. 

Recent evidence suggests, however, that iron storage homeostasis is influenced by 

the activation pattern of macrophages.179 Macrophages also contribute to 

maintaining metabolic homeostasis,180 such as promoting peripheral insulin 

resistance to increase nutrient supply to innate immune cells during bacterial 

infection. 

 

 

1.10 Shifting the paradigm of macrophage polarisation 

Macrophages are highly plastic cells, assuming unique phenotypes and functions 

consequent to their diverse ontogeny and contextualized in their ever-changing 

microenvironment. The complexity of macrophage polarisation is only recently being 

recognized. For ease of understanding immunologists attempted to categorize the 

spectrum of macrophage functional activation.  

 

1.10.1 Classical and alternative macrophage activation 

Using murine models of infection, Mackaness and collaborators observed 

reproducible changes in the morphology and antibacterial activation of macrophages 

that were induced by cellular factors upon second exposure to the pathogens.181 

Those cells were later identified as T-cells and the key soluble factor IFN-γ.182 Under 

the influence of this cytokine and the bacterial product LPS, macrophages were 

potently activated to respond to foreign antigens by increasing antigen presentation 

and phagocytosis and by producing chemokines and proinflammatory cytokines, such 

as IFN-γ, IL-12, tumour necrosis factor (TNF), IL-6, and IL-1β. This reproducible 

phenomenon induced by intracellular pathogens and tumour cells183 was coined 

macrophage classical activation. Granulocyte macrophage colony-stimulating factor 

(GM-CSF) was later found to induce a secretory pattern and function similar to IFN-γ 

and LPS. 
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In 1984 Mossman and Coffman184 made an important discovery in the field of T-cell 

immunology that would help to understand macrophage polarisation even further. 

The authors found that IFN-γ and its then recently discovered opposing cytokine, IL-4, 

were produced by mutually exclusive CD4+ helper T-cell populations after TCR 

stimulation and hence were able to inhibit each other’s functions. These were named 

Th1 and Th2 helper cells. Meanwhile other Th2 cytokines were beginning to be 

discovered, including IL-10 and IL-13.185 Th2-mediated immune responses were found 

to be required to control infections by extracellular parasites, including helminths and 

protozoa.  

Similar to the findings with IFN-γ, it was then hypothesized that Th2 cytokines such as 

IL-4 could also influence macrophage behaviour. Investigations recognized that IL-4 

inhibited the production of pro-inflammatory cytokines and induced the expression 

of MHC class II and mannose receptor (MR) in macrophages. IL-4 induced 

macrophage fusion and decreased phagocytosis. This consistent response led to the 

recognition of the macrophage alternative activation response.186 The alternative 

macrophage phenotype was entirely different from the IFN-γ-induced classical 

phenotype and served different purposes in an immune response. 

 

It was later recognized that this dichotomic classification represented the extremes of 

a variety of macrophage activation patterns that could be elicited by different 

triggers. To acknowledge that, Mantovani et al.187 proposed that the alternative pole 

should be ramified according to the stimuli used to trigger macrophage activation 

other than IL-4, including IL-10, glucocorticoids and immune complexes. 

 

1.10.2 M1 and M2 activation 

Hsieh and collaborators188 recognized that Th1 and Th2 T-cell responses in mice were 

influenced by their genetic background. T-cells from C57BL/6 mice preferentially 

produced IFN-γ, whereas those from BALB/c mice favoured Th2 responses by 

producing high levels of IL-4. These polarised T-cell responses were independent of 

the function of antigen-presenting cells in the different strains and were linked to the 
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differences in susceptibility to Leishmaniasis that were observed in the mice.  

While studying arginine metabolism, Mills et al.189 recognized that macrophages from 

C57BL/6 and BALB/c mice metabolized arginine in different ways, but also had 

qualitative differences in the macrophage responses to the classical stimuli IFN-γ and 

LPS. The researchers hence proposed a new macrophage polarisation classification: 

M1 and M2 macrophage responses. M1 paralleled the classical whereas M2 

paralleled the alternative macrophage responses. This simplified classification 

suffered ramifications to appreciate the combined effect of IFN-γ and LPS or the 

effect of the multiple M2 stimuli just described.  

 

The polarised macrophage subsets were and still are defined according to responses 

induced by in vitro cytokine stimulation. The read-out of such experiments is usually 

limited to morphology, intracellular or surface protein detection and molecule 

release to the culture media. 

 

Classical/M1 macrophages produce high levels of pro-inflammatory cytokines, 

including IL-12 and IL-23 and TNF-α; have an IL-12high, IL-23high, IL-10low phenotype; 

express high levels of MHC molecules and co-stimulatory molecules, and Th1 cell–

attracting chemokines such as CXCL9 and CXCL10. M1 cells metabolize arginine to 

nitric oxide and are proficient at engulfing pathogens, presenting antigen, and killing 

tumour cells.190 On the other hand alternative/M2 macrophages have high expression 

of IL-10, IL-1 decoy receptor and IL-1RA and low expression of IL-12; express the 

chemokines CCL17, CCL22 and CCL24, have high levels of scavenger, mannose and 

galactose receptors, and the arginine metabolism is shifted towards ornithine and 

polyamines. Functionally, M2 macrophages induce Th2 responses, clear intracellular 

parasites and remodel the extracellular-matrix. 

 

1.10.3 Problems of macrophage activation nomenclature 

We should at this point acknowledge the chief problems of the classification systems 

just described, which galvanized seminal advances on the understanding of 
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macrophage polarisation. 

 

The number of molecules known to activate macrophages has grown beyond LPS, 

IFN-γ, IL-4 and other alternative stimuli contemplated in the current classifications 

and include tissue oxygen tension191 or pH.  

 

Macrophage activation is influenced by factors other than the activator itself that are 

disregarded in the current classifications, including: the macrophage origin, the 

source of the stimulus and the multitude of concentrations and longevities of 

exposure to the stimulus, among others. 

 

The lack of robust markers for macrophage polarisation hinders the evaluation of 

studies exploring this subject. 

 

 

Macrophages do not form clear-cut activation subsets. Indeed they can develop 

mixed M1/M2 phenotypes in vitro and certain pathological conditions, including the 

resolution phase of bacterial infections.192 By stimulating macrophages with a panel 

of six triggers, Stout et al. documented that macrophages can reversibly shift their 

functional phenotype through a multitude of patterns very different from the 

categorized classifications.193 Sequential treatment of macrophages with multiple 

cytokines led to a progression through multiple functional phenotypes, suggesting 

that macrophage functional adaptivity is retained and can be therapeutically 

manipulated. 

 

In the same line, a polarised macrophage phenotype can be reversed by applying 

triggers of the opposite pole. As Stout et al.193 have shown treatment of macrophages 

with the Th2 cytokine IL-4, before LPS stimulation strongly enhanced production of 

inflammatory cytokines (TNF-α and IL-12 production), whereas inhibited anti-

inflammatory IL-10 production. The impact of intermediate stages of activation 

during this process is unclear. 
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Complex in vivo systems where numerous cytokines and growth factors interact to 

determine the function of macrophages is difficult to mimic in vitro. It is 

unreasonable to accept that such simplified classifications replicate different tissue-

specific and pathological scenarios. 

 

1.10.4 Transcriptional analysis of macrophages 

Until recently, macrophage classifications were hampered by the lack of 

methodologies for analysis of the influence of a certain stimulus administered to 

macrophages. Since the advent of GEP, a body of work has acknowledged that 

macrophages harbour specific gene expression signatures according to the animal 

species, the location where they reside within the organism and the different 

environmental signals they received. Moreover this technology helped predicting 

novel transcriptional regulators implicated in discrete activation conditions. 

 

Due to their seminal role in maintaining tissue homeostasis, it is accepted that 

macrophages are kept in a restrained functional mode, which is unleashed once the 

cell receives “danger” signals from the microenvironment. Since macrophages play a 

large number of functions in tissues and are instructed by a multitude of molecules 

and other immune cells, plasticity in gene expression makes sense and leads to rapid 

functional adaptation according to their ever changing surroundings. Ultimately there 

is no macrophage identical to another as minute changes in the microenvironment 

have a great potential to influence the cell transcriptome and ultimately the function. 

 

Martinez et al.194 pioneered the field by describing the cardinal changes in the 

transcriptome during monocyte-to-macrophage differentiation and by comparing the 

GEP of resting and polarised macrophages in humans. Besides providing an extensive 

list of novel genes associated with maturation and activation, this study 

demonstrated that CSF-1, the standard cytokine used for maturation of macrophages 

in vitro and known to circulate at high levels in normal blood, inclined macrophages 
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towards an M2 transcriptome. Thus it could be suggested that an M2 GEP is a 

standard pathway in macrophage differentiation. This in our opinion also highlights 

the need for well-standardized cell maturation protocols. 

 

Other GEP studies of IL-4 stimulated macrophages had been undertaken to illuminate 

the biology of alternative activation in humans.195,196 Some prototypic mouse M2 

genes have no homologues in humans or do not undergo transcriptional regulation 

by the standard cytokines and hence are irrelevant in pre-clinical models. By 

analyzing the 1000 most highly expressed genes, Martinez et al.195 could recognize 87 

with concordant protein expression that constituted conserved markers in mice and 

humans, and as such could be useful for translational research. One example is the 

enzyme transglutaminase-2 (TGM2). This gene signature helped predicting the extent 

of macrophage infiltration in human lungs. Finally, this study recognized that the G-

protein coupled receptor signalling had the greatest number of genes affected by IL-4 

activation in humans. Pello et al.197 also reported novel human markers of alternative 

activation, including Scavenger receptor class B member 1 (SCARB1) and 

Arachidonate 15-Lipoxygenase (ALOX15), which the authors validated at the protein 

level in physiological and pathological conditions. 

 

A study recently published198 undertook the extraordinary task of analysing GEP data 

from human macrophages obtained in a standardized manner and activated by 28 

different signals (single or in combination), including pattern recognition receptor 

ligands, cytokines, and metabolic factors. This comprehensive approach addressed 

the criticism directed against oversimplified in vitro procedures to mirror in vivo 

complex systems, and demonstrated what has long been suggested but not formally 

proven: that macrophage activation in humans works in a spectrum much broader 

than the current M1 versus M2-polarisation model. Nine distinct macrophage 

activation programs were identified and correlated to transcriptional regulators. IFN-

γ selectively induced FEM1C gene expression, which could constitute a potential 

specific marker of classical activation.  
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In a similar comprehensive way, the “Immunological Genome Project” has assessed 

the transcriptional profiling of resident mouse macrophages.199 Supporting the 

relevance of the anatomical context on functional diversity, macrophages sorted from 

different organs exhibited remarkable transcriptional diversity with minimal overlap. 

The authors also suggested which transcriptional regulators could be implicated in 

universal and specific macrophage programs and recognized well-characterized and 

novel protein markers, including CD14, CD64, and MerTK that help identifying all 

tissue macrophages. Importantly, proteins previously predicted to distinguish 

macrophages from other cell types, such as CD68 and CSF-1R, did not emerge as the 

most powerful markers of macrophages.  

 

Studies such as these require substantial financial investment, alongside complex 

analysis done by researchers fully dedicated to the field of bioinformatics. However, 

they form an unprecedented platform for future validations in the setting of human 

diseases where macrophages are implicated, such as cancer. Moreover, they open 

the perspective of selectively targeting macrophages in diseased organs without 

affecting others cell types.  

 

The molecular mechanisms that trigger and sustain macrophage transcriptional 

patterns of activation are being unravelled. By signalling through TLR4 and IFN 

receptors, the classical stimulants IFN-γ/LPS induce activation of the NF-kB 

pathway,200 together with activator protein 1 (AP-1), IRF3, STAT1, and EGR (early 

growth response) family members, ultimately leading to the M1 transcriptome. 

Studies demonstrated that inhibition of the NF-kB pathway by conditional gene 

knockout201 leads to a switch from M2 to M1 phenotypes, providing a proof-of-

concept for the plasticity of mature activated macrophage phenotype. 

 

By contrast, signalling downstream of IL-4 involves the activation of JAK kinases and 

STAT6, the master regulator of the M2 transcriptome.202 Other transcription factors 

have been implicated in the regulation of subsets of M2-induced genes, including 

IRF4, peroxisome proliferator-activated receptor-γ (PPAR-γ),203 MYC,196 or CCAAT-
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enhancer-binding protein beta (C/EBP).204 

 

Recently the role of epigenetic mechanisms in the control of the macrophage 

functional repertoire has been described (reviewed by Ivashkic205). Mice genetically 

engineered to have a non-functional NF-kB displayed impaired chromatin 

remodelling, emphasizing the role of NF-kB not only as a transcription factor, but also 

as a mediator of genetic transcription. The histone demethylase jumonji domain 

containing-3 (JMJD3) has a potential role in the modulation of macrophage 

activation, as has been shown to upregulate a restricted subset of M2 markers, 

whereas downregulate M1 genes.206  

Finally, PU.1 has been described as the master regulator of gene expression in 

macrophages. Genome-scale chromatin immunoprecipitation analysis to identify 

PU.1 binding sites has shown that this transcription factor determines the 

macrophage GEP repertoire by generating open chromatin around cell-specific 

enhancers.207 This mechanism currently explains functional heterogeneity. 

 

The confirmation of the functional influence of a gene or genetic program activated 

by a transcription factor would ultimately require animal models where the activity of 

the gene under study could be manipulated specifically in macrophages. This is 

enabled by enzymatic knock-in experiments on gene promoters or by macrophage 

ablation through the expression of the Diphtheria toxin receptor. However, there is 

no specific promoter of macrophage genes that can be exploited. These are also 

expressed in most macrophage types, making it difficult to discriminate the functions 

of sub-classes of macrophages. Investigators acknowledge the limited availability of 

these models that could specifically dissect functionality in mature tissue 

macrophages in steady state or under activation. 
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1.10.5 Obstacles to the understanding of human macrophage biology 

Much work published in high impact factor journals using mouse models of 

macrophage biology strikingly lacks human correlations. This hinders a good 

understanding of human macrophage biology, and is related to a number of barriers. 

 

The first obstacle is obtaining human tissue samples. Macrophage functional studies 

should be done using single cell suspensions, ideally fresh but acceptably stored in 

liquid nitrogen under well-standardized conditions. This implies the existence of 

tissue banks, dedicated staff and ethical approval in place. 

 

The use of cell sorting allows obtaining highly pure cell populations. However, 

difficulties in obtaining sufficient, highly purified cells from tissue specific 

populations, such as macrophages from LNs are well accepted. Although some work 

has been done using laser captured macrophages from FFPE tissue,208 issues related 

to purity and sample quality compromise results. Hence this methodology has not 

been generally pursued, although this may change with technical improvements that 

allow characterisation of smaller samples.   

 

A number of central differences exist between mouse and human macrophages209 

that put into question much of the translational relevance of murine data.  One 

difference relates to nitric oxide (NO),210 an indispensable product of macrophage 

defence responses against pathogens in mice. Although IHC studies suggest that 

iNOS, the source of NO, is expressed in human macrophages,211 in vitro experiments 

failed to demonstrate production of NO. Similarly, human macrophages also have 

restricted activation markers that consequently cannot be functionally validated in 

mouse models.195 The reasons underlying these discrepancies, either technical or 

truly biological, remain unclear. 

 

Comparative analyses of mouse and human macrophages have been performed using 

peripheral blood or BM-derived cells subjected to artificial stimulation in vitro; 

studies using other tissues are lacking. GEP comparative studies have highlighted 
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important differences.212 Similarly, there is limited comparison of results obtained 

from tissue macrophages in a disease context and the results obtained from in vitro 

matured monocytes, the latter being usually accepted as adequate to predict the 

macrophage activation status of in vivo. This is particularly true in the human setting.  

 

Finally, as genomic and proteomic data becomes available underlining macrophage 

heterogeneity between samples and within the same sample, novel techniques to 

label several proteins and RNA transcripts simultaneously in situ will be required to 

validate potential prognostic subsets in large datasets of patients. Only a combination 

of markers can ascribe activation outcomes.213 Moreover, single-cell studies would be 

the only way to tease out whether subsets of macrophages within the same tissue 

have different activation profiles or whether a macrophage can acquire a unique and 

hybrid activation pattern. Novel techniques for single-cell studies are becoming 

available and could be exploited.214,215  

 

In our studies we set out to compare the transcriptome of human DLBCL-associated 

macrophages with their “normal” counterparts. During this endeavour we faced the 

same obstacles highlighted in the literature to justify the scarcity of human 

macrophage data. However we feel we have provided data with enough quality to 

allow the recognition of a lymphoma-specific macrophage GEP and the generation of 

hypotheses for functional studies. 

 

 

1.11 Tumour-associated macrophages (TAM) 

Macrophages infiltrate all tumours in varying densities and constitute a hallmark of 

tumour-associated inflammation. A recent meta-analysis216 of studies evaluating the 

prognostic impact of macrophage infiltration in human cancer confirmed that, with a 

few exceptions217,218 TAM density inversely correlates with OS. Our own research has 

shown the same association in cHL.219 However these data are correlative and the 

functional role of TAM in human cancer is not well established. As a consequence the 
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data discussed here is extrapolated from murine models and needs to be interpreted 

with care. 

 

Macrophages in tumours mainly originate from recruited monocytes by CCL2 and 

CSF-1. In a model of breast cancer, stromal and tumour-derived CCL2 instructed 

inflammatory monocytes to migrate to metastatic niches.220 Blocking of the 

chemokine halted monocyte recruitment and metastasis formation. CCL2-mediated 

monocyte recruitment has also been observed in primary follicular lymphoma.221 In 

Csf-1 null mice susceptible to development of spontaneous mammary tumours, 

transgenic expression of the cytokine in the mammary epithelium led to an 

accelerated infiltration of macrophages into the primary tumour.222 Our own research 

has shown that CSF-1R inhibition reduces TAM infiltration and tumour growth in a 

transplantable model of MYC-driven mature aggressive B-lymphoma (Hallam et al., 

under submission). In human cancer, CSF-1 protein expression at the tumour invasion 

edge correlated with macrophage infiltration.222 

 

Although a few functional studies suggest that macrophages retain tumouricidal 

function,223,224 clinical and experimental data more compellingly supports the 

opposite: that a strong inflammatory response and macrophage infiltration enhances 

tumour formation and progression. Indeed, there are a number of well-recognized 

tumour-promoting features of macrophages that are reminiscent of their functional 

diversity in health. It is accepted that tumour cells find direct or indirect ways of 

exploiting the repertoire of functions with which macrophages are equipped in 

physiological conditions to help them thrive. 

 

In Figure 1.2 we provide a list of tumour-derived molecules that have been implicated 

in cancer facilitating features of TAM. Data on the crosstalk between B-cells and 

macrophages will be discussed in a separate section. 
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Figure 1.2 Origins of tumour-associated macrophages and crosstalk with tumour cells and 

other cells of the microenvironment.  

TAMs can originate from the tissue resident pool, but mainly derive from inflammatory 
(Ly6C+) monocytes recruited from peripheral blood by CSF-1, CCL2 or CCL5. Within the 
microenvironment TAM can be influenced by a number of tumour-derived molecules, 
including CSF-1, CCL2, VEGF, TGF-β and others. T and B-cells in the tumour stroma can also 
influence macrophage behaviour through a variety of molecules. TAM play an number of pro-
tumoural functions; examples and respective instrumental molecules are detailed in the 
bottom left box.  
MDP, macrophage and DC precursor; CDC, common DC precursors; FLT3L, FMS-like tyrosine 
kinase 3 ligand; Ly6C/G, lymphocyte antigen 6C/G; cMoP, common monocyte progenitor; 
uPA, urokinase; SPARC, secreted protein acid and rich in cysteine; EGF, epidermal growth 
factor; MSF, mitochondrial important stimulation factor; PDGF, platelet derived growth 
factor; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; WNT, 
wingless-type MMTV integration site family; PD-L1, programmed death-ligand 1; Arg, 
arginine; PGE2, Prostaglandin E2.
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The protumoural attributes of TAM stem from their inability to switch-off activated 

phenotypes as described below. 

 

1.11.1 Protumoural features in the context of a macrophage classical activation 

Although an M1 phenotype can be efficient at eliciting tumour killing, the release of 

classical pro-inflammatory cytokines such as IFN-γ, TNF-α or IL-6, contributes to 

sustained inflammation and creates a mutagenic environment. A paradigmatic 

example of this mechanism is colitis-induced carcinogenesis.225 

 

Macrophage-derived IL-6 can lead to STAT3/NF-kB activation and subsequent 

proliferation of tumour cells. Using a mouse model of B-cell lymphoma, Gilbert and 

Hemann propose that stromal derived IL-6 sustains malignant B-cells within a chemo-

resistant niche. In gastric MALT lymphoma, it has been suggested that persistent 

infection with Helicobacter pylori induces macrophages to produce a proliferation 

inducing ligand (APRIL) that in turn promotes the survival and proliferation of 

neoplastic B-lymphocytes.226 

 

Furthermore, it has been demonstrated that M1-derived cytokines affect the dynamic 

of T-cell infiltration and proliferation in tumours. Genetic deletion or antibody-

mediated elimination of IL-23 increased infiltration of cytotoxic T-cells into the 

transformed tissue, rendering a protective effect against chemically induced 

carcinogenesis.227 

Additionally, Kryczek et al.228 hypothesized that CD80+ TAM could suppress cancer-

associated T-cell immunity. After co-stimulatory blockade with an anti-CD80 

antibody, macrophages regained the capacity to stimulate T-cells, contributing to 

regression of ovarian cancer in mice.  

 

1.11.2 Protumoural features in the context of a macrophage alternative activation 

An M2-like activation pattern specialized in resolving inflammation through tissue 

remodelling and immunoregulation, is more common in the context of cancer mainly 
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in the later stages of the disease. This phenotype promotes immunossupression,229 

tumour invasion and metastasis.220  

 

Tumours invade the surrounding ECM by exploiting macrophages trophic ability, a 

functional attribute of alternatively/M2-activated macrophages. Destruction of the 

tumour edges facilitates metastasis formation by allowing tumour cells to escape into 

the circulatory or lymphatic system. A number of macrophage-derived molecules can 

reshape the ECM and promote cancer invasion, including metalloproteases,230 

cathepsin proteases231,232 and EGF.233,234 Macrophage-specific depletion of cathepsins 

resulted in reduced tumour cell invasion in mammary cancer models. The fibronectin 

isoform MSF (migration-stimulating factor) has also been shown to promote invasion 

at the tumour front by enhancing tumour cell motility.235 Importantly a crosstalk 

between adaptive and innate immunity has been implicated in this process, as CD4+ 

T-cells are the required secretors of IL-4 that polarises macrophages towards this 

invasion enabling phenotype.231,234 

 

Macrophage alternative activation has been shown to impair T-cell activation and 

effector functions by secreting a variety of immunosuppressive factors including IL-

10, Prostaglandin E2236 (PGE2), and arginase. M2 macrophages expressing 

programmed death-ligand 1 (PD-L1) have also been implicated in the suppression of 

cytotoxic T-cell responses against tumours.237,238 Furthermore, M2-like TAM enhance 

recruitment of suppressive regulatory T-cells through production of the chemokine 

CCL22.239 

 

Tumours also exploit M2 TAM-mediated angiogenesis. This function is triggered in 

avascular regions in tumours, where hypoxia240 induces the expression of 

macrophage attractant molecules, such as vascular endothelial growth factor 

(VEGF),241,242 CSF-1, TNF-α, IL-1β or IL-8.146 Macrophages are then shifted towards a 

pro-angiogenic phenotype, and hypoxia-inducible factor-1α (HIF-1α) has a key role in 

controlling this response.243 In addition, HIF-1α activation also potentiates 

macrophage-mediated T-cell suppression in vitro.244 In concordance, a unique 
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population of angiogenic TAM has been characterized that also displays an 

immunossupressive function.245 

 

By blocking distinct mechanisms of macrophage-induced angiogenesis, different 

groups substantiated the relevance for this process in tumourigenesis. Ablation of 

specialized angiogenic macrophages inhibited tumour angiogenesis, growth and 

metastasis246 in murine models. On the other hand, blocking CSF-1 in tumours has 

also been shown to inhibit angiogenesis and decrease tumour growth in mammary 

cancer model. Additionally, blockade of the Semaphorin 3A/neuropilin-1 signalling 

pathway in macrophages impeded their migration to hypoxic tumour regions and 

relented angiogenesis.247 Importantly, this mechanism is currently being tested in 

clinical trials. Finally, low-doses of anti-VEGFR2 have also been demonstrated to 

normalise angiogenesis and reprogram TAM towards a tumour surveillance 

phenotype.248 

 

1.11.3 “Gray areas” of TAM activation  

However this clear-cut scenario does not completely hold true, as TAM exhibit 

substantial heterogeneity depending on the type of tumour; and undergo dynamic 

changes in phenotype and function according to the temporal evolution of the 

tumours175 or to their location within the tumours.224,229,247,249-251 This might account 

for the detection of independent subsets of macrophages with M1 or M2-like 

features,252 or “hybrid” M1/M2 TAM populations with both tumour permissive and 

opponent functions in tumours.172,236,250,253 The role of macrophages in mediating 

efficacy of monoclonal antibody therapies is of particular relevance and will be 

discussed in a separate section.  

 

These results caution against the overestimation of studies on the basis of whole 

TAM populations and compel to independently studies of TAM in each cancer type. 

Unravelling the network of signalling molecules and transcription factors that 

underlie these different activation states in TAM will help to devise conservative 
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strategies targeting the “malignant” macrophage population. In fact, important 

studies have demonstrated that it is possible to revert TAM towards an anti-tumour 

phenotype.201,254-256 

 

 

1.12 Crosstalk between B-cells and macrophages and their relevance for antibody 

therapies 

By studying the secretory phenotype of macrophages after crosslinking of the Fcγ 

receptors (FcγR), researchers documented a shift towards an M2-like phenotype with 

production of IL-10257 and PGE2.258 

B1 cells, initially identified in mice and recently proved to exist in humans,259 are a 

subset of B-cells that constitutively produce IL-10. B-1-derived IL-10, in the presence 

of LPS, has been shown to also upregulate IL-10 production by macrophages.260 

 

These studies provide evidence for two mechanisms whereby B-cells influence 

macrophage effector functions towards immunossupression. It has been recently 

suggested that these mechanisms can regulate the recruitment and effector function 

of TAM to induce cancer-related inflammation and tumour progression.  

 

 

Using a mouse model of multistage skin carcinogenesis, Andreu et al.261 

demonstrated that macrophages were skewed towards a M2 pro-tumoural 

phenotype after crosslinking of the FcγR with autoantibodies against the ECM. The 

production of autoantibodies was T-cell dependent. 

Similarly, in a transplanted tumour model of melanoma, B1 cells induced M2 

polarisation of TAM, likely due to IL-10 production. On the other hand, in B cell–

deficient mice transplanted with melanoma, TAM polarisation occurred towards a 

classical phenotype, suggesting that the acquisition of pro-tumoural features by 

macrophages in this model is entirely dependent on B-cells.260 
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The efficacy of rituximab in T cell-mediated autoimmune diseases,262 together with 

studies on T-cell function upon antigen stimulation in mice transiently depleted of B-

cells demonstrated that B-cells are involved in both suppressing and enhancing T-cell 

mediated immunity independently of antibody production (reviewed by Lund and 

Randall263). The mechanisms by which effector B-cells can affect T-cell responses are 

multiple: by presenting antigen,264 by expressing co-stimulatory molecules,265 and by 

producing cytokines.266 Aside from IL-10 production, T-cell primed B-cells can in fact 

produce other Th1 and Th2 cytokines,267 including IFN-γ, IL-12, IL-4 and IL-13. Their 

impact on macrophage activation can be hypothesized, but has not been 

demonstrated. 

 

One of the mechanisms of action of rituximab and other monoclonal antibody (mAb) 

is by engaging activatory FcRs and by boosting antibody-dependent cytotoxicity 

(ADCC) of immune effector cells such as macrophages.268 The relevance of 

macrophage-mediated ADCC comes from two animal models whereby the activity of 

mAb’s was halted by genetically abolishing the common FcRγ269 chain or by ablating 

macrophages.270 Recognizing the importance of this mechanism of action, Roche has 

developed Obinutuzumab (GA101), an anti-CD20 mAb with improved binding affinity 

to FcγRIII on effector cells and hence improved ADCC. 

 

Some research has explored other mechanisms by which macrophages mediate the 

efficacy of rituximab against B-cell malignancies. Using a murine model of NHL, 

Cittera et al.271 showed that rituximab induced the expression of the CCL3 in 

lymphoma cells and blocking the chemokine’s activity abrogated rituximab activity in 

this model. The authors demonstrated that CCL3 activates cytotoxic cells towards 

tumour killing. 

The same group proposed that the macrophage phenotype has an impact on the 

cell’s cooperation with rituximab. Indeed the authors demonstrated that human M2 

polarised macrophages had greater capacity for killing lymphoma cells opsonised 

with rituximab compared with M1 macrophages, which was further up-regulated by 
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IL-10.272 The authors suggest that, although M2 macrophages enable tumourigenesis, 

their improved phagocytic might be beneficial if therapeutic mAbs are to be used. 

 

As already mentioned, rituximab-refractoriness constitutes one of the most 

challenging clinical situations in DLBCL. The mechanisms of resistance are not entirely 

clear, but one such mechanism is the acquisition of expression of surface CD47 by 

cancer cells. CD47+ cancer cells evade macrophage-induced phagocytosis, even when 

coated with targeting antibodies. Weiskopf et al.273 exploited this phenomenon to 

demonstrate that human NHL can be eradicated in mice by sole stimulation of the 

immune system, with macrophages playing a central role. Treatment with blocking 

anti-CD47 antibodies synergized with rituximab, allowing elimination of lymphoma in 

engrafted mice. Macrophage depletion abrogated the therapeutic effect. The authors 

demonstrated that this synergism involved FcR-independent enabling of phagocytosis 

by anti-CD47 antibody and FcR-dependent stimulation of phagocytosis by rituximab. 

 

 

 

1.13 Correlative IHC studies of the DLBCL-associated macrophages 

The demand for comprehensive studies approaching macrophage biology in DLBCL is 

supported by the GEP studies already discussed in section 1.5. In brief, prognostic 

models of transcriptomic analysis performed in whole DLBCL tumours incorporate 

genes recognized to be expressed by macrophages. Contrary to most cancers and 

cHL,274 the expression of those genes identifies patients with better outcome. 

However, these interesting findings are merely correlative and a coherent 

explanation for the association between mRNA levels and DLBCL biology should 

follow. Protein expression is generally the starting point. With very few exceptions, 

protein validation studies of the microenvironment genes discovered are surprisingly 

rare in the literature. We suspect this is due to the lack of specificity of the transcripts 

for macrophages and to difficulties that are posed to IHC analysis of macrophages. 
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Translational studies evaluating macrophage biology in human NHL are mostly limited 

to the interrogation of FFPE tissue for individual proteins. Immunostaining for the 

lysosomal glycoprotein CD68 is taken as a surrogate of the extent of infiltration of 

macrophages in tissues.275 However this protein can be detected in other cells, 

including dendritic cells,276 rendering the staining unspecific and an overestimate of 

macrophage content. Moreover, as a cytoplasmic marker, CD68 is intrinsically difficult 

to analyse.  

 

Contrary to most cancers and cHL,219 the published literature does not provide a 

reproducible association between macrophage numbers and survival in patients with 

DLBCL. Importantly, some studies were performed in the pre-rituximab era277-280 and 

are hence irrelevant for the current prognostic scenario of DLBCL.  

 

 

Two studies merit further discussion, as they were performed with samples from R-

CHOP treated patients and tried to explore the potential of using IHC to recognize 

macrophage subsets.  

Secreted protein, acidic and rich in cysteine (SPARC),281 a glycoprotein involved in 

matrix remodelling, adhesion, cytokine signalling and apoptosis, has emerged as a 

potential marker for individualizing macrophages subsets in DLBCL with potential 

prognostic impact. In order to validate some of the markers depicted in the “stromal-

1” as representative of macrophage subsets, Lenz34 and collaborators performed 

double immunofluorescence staining for CD68 and SPARC and connective-tissue 

growth factor (CTGF). While being expressed in other cells in the microenvironment, 

SPARC and CTGF were indeed confined to only a proportion of the CD68+ cells, 

substantiating macrophage phenotypic heterogeneity that certainly could not be 

unravelled by morphology or immunostaining with a prototypic marker. However, the 

additional prognostic examination for SPARC expression is misleading. Firstly, the 

analysis was performed in a CHOP treated cohort. Moreover SPARC density is based 

the protein’s single staining, scored in a fairly crude way: four cohorts of 0 to 4 

according to density and then dichotomized in high versus low expression. This 
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methodology does not take advantage of the elegant findings of the double staining 

and the simplified analysis is hardly replicable in validation studies.  

 

Following this report, Meyer et al.282 revisited the prognostic value of CD68 and 

SPARC in a 262 R-CHOP treated patient dataset. CD68 staining was not predictive of 

any survival measure. The presence of any SPARC positive cells in the 

microenvironment correlated with longer OS, whereas those in a “high” SPARC 

category had longer event free survival (EFS) compared to the remaining.  This 

positive impact of SPARC was restricted to ABC-DLBCLs as defined by GEP but 

retained its value on multivariate analysis together with the IPI and the COO 

classification.  

 

The shortcomings of these data arise again from the methodology: the number of 

positive stromal cells was estimated visually as a percentage of all cells present within 

the tumour area, and graded in 5 or 10% increments; cases were then divided in 

“negative”, “low” and “high” categories. Moreover SPARC staining on endothelial 

cells was recognized but ignored for any further analysis. We believe this strategy 

leads to data reduction, turns validation problematic and encapsulates the limitations 

of IHC analysis when automated systems are not applied.  

 

The Osaka Lymphoma Study Group283 has also studied a small cohort of 101 R-CHOP 

cases and reported a direct correlation of macrophage density and worse OS. 

Additionally the authors explored whether fairly accepted M1 (human leukocyte 

antigen (HLA)-DR) and M2 (CD163) markers could help establishing a relationship 

between outcome and macrophage subsets. The authors demonstrated that a large 

number of CD163+/CD68+ correlated with a worse OS, whereas the presence of M1 

macrophages portrayed no relevant impact. As already discussed, the validation of in 

vitro defined markers of macrophage polarisation has limited value when the disease 

idiosyncrasies are ignored; and single markers are rarely faithful of a whole 

population of polarised macrophages. All in all, the Japanese data adds little value to 

our understanding of macrophage biology in DLBCL. 
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1.14 Functional studies exploring the role of macrophages in lymphoma 

Due to the fundamental differences between murine and human macrophages 

(discussed in section 1.10.5), research hypotheses on the interactions between 

macrophages and B-cell lymphoma should be generated using human samples. The 

GEP studies on DLBCL are an excellent example of hypotheses generating subsequent 

macrophage research. In vitro studies using primary lymphoma cells are feasible221,284 

and should follow, but it should be acknowledged that a potential allogeneic reaction 

and the lack of other immune cells in the systems could deviate the results from the 

tumour context in situ. Murine models should finally be used to confirm the 

hypotheses, as they provide, with all the limitations, the closest approximation of an 

in vivo tumour microenvironment. The challenges posed to macrophage research 

have also been discussed previously. 

 

We shall here debate data suggesting a heterogeneous and less accepted role for 

macrophages in lymphomagenesis. Their role in the context of treatment with 

rituximab has already been discussed. Further studies involving co-culture systems of 

macrophages and primary lymphoma samples will be approached in experimental 

chapter 6. 

 

Murine macrophages have been shown to exert phagocytosis of lymphoma cells in 

the early 70’s. Comprehensive work by Evans285,286 and others appreciated that this 

was a highly regulated process, requiring for maximum efficacy preliminary priming of 

the effector cells and the presence of T-cells and soluble factors. Intuitively tumour 

cells could overcome immune surveillance by influencing any of these factors. Indeed, 

it was simultaneously reported that macrophages from lymphoma-bearing mice 

could produce the immunossupressive enzyme PGE2 to halt T-cell function and 

favour tumour growth.287 

 

A murine model recurrently used as a surrogate of human DLBCL is the Eμ-myc 

transgenic model, with constitutive expression of the MYC oncogene in lymphocytes 

and inexorable progression to a highly proliferative lymphoma. As a transplantable 
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lymphoma, it constitutes a useful model to study the microenvironment. In this 

model macrophages are highly engaged in the clearance of lymphoma apoptotic cells, 

which has both protumoural and antitumoural consequences.288,289 We believe that 

the mechanisms described below highlight the complexity of potential roles for 

macrophages in mediating lymphomagenesis and would apply to all DLBCL cases with 

high proliferative index. 

 

Cell-free supernatant of lymphoma dying cells induces macrophage chemotaxis. 

Lymphocyte-derived CX3CL1290 appears to be the culprit macrophage attractant. 

Once in the tumour microenvironment macrophages actively phagocyte apoptotic 

debris and amplify macrophage recruitment by producing CX3CR4. On the other 

hand, macrophages produce cytokines, including TGF-β and IL-10 that are implicated 

in shifting other macrophages towards an immunossupressive and pro-proliferative 

lymphoma permissive phenotype.291 On the other hand, Reimann and colleagues292 

have shown that macrophage-derived TGF-β arising in the context of active apoptosis 

can limit MYC-driven lymphomagenesis by feedback induction of terminal cell-cycle 

arrest. By genetic inactivation of senescence or neutralization of TGF-β the authors 

observed an acceleration lymphomagenesis. 

 

Perhaps the most intriguing data comes from Haabeth et al.,293 who proposed a 

mechanism by which inflammation, if developed in the context of an efficient T-cell 

response against the tumour cells, protects against B-cell lymphomas. To clarify the 

process of CD4+ T-cell-mediated immune surveillance against B-cell lymphoma, the 

authors used an idiotype (Id)-specific TCR transgenic mouse model, which was made 

homozygous for the severe combined immunodeficiency (SCID) mutation to prevent 

rearrangement of endogenous TCR chains. In these mice, CD4+ T cells exclusively 

recognize an Id peptide from the IgV chain of a plasmacytoma cell line, rendering 

them resistant against inoculation with syngeneic plasmacytoma cell lines or with Id-

transfected B-cell lymphoma cell lines.  
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The authors developed a strategy whereby tumour cells are embedded in a collagen 

gel prior to injection in mice. The collagen can then be studied ex vivo for immune cell 

infiltration and cytokine production. Using this method, the authors uncovered that, 

in the presence of Id-specific CD4+ T-cells, macrophages infiltrate the gel and capture 

the lymphoma-specific antigen. On recognition of tumour peptides presented by 

macrophages, T-cells were shown to secrete IFN-γ. This cytokine in turn activated 

macrophages to efficiently kill lymphoma cells. When the host was capable of 

initiating an antigen specific Th1 response, tumouricidal macrophages produced the 

proinflammatory cytokines IL-1β and IL-6.  

 

Macrophage-induced inflammation accepted by experts as tumour permissive and 

here dissonantly associated with tumour surveillance, highlights in our opinion one 

main aspect that encapsulates the complexity of designing immunology studies:  the 

functional spectrum of one immune cell cannot be fully understood in the absence of 

the other cells of the immune system. This paradigm renders in vitro studies quite 

simple and translationally meaningless and explains why a body of data developed in 

murine models does not move forward to the human setting. 
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1.15 Objectives 

DLBCL is an aggressive lymphoma curable with R-CHOP in a sizable proportion of 

patients. The remaining patients have a dismal outcome and ideally should be 

selected at diagnosis for experimental therapies. Devising robust prognostic markers 

is hence a priority for this disease. 

 

This study was set out to review prognostic biomarkers derived from the GEP studies 

performed in DLBCL. Using samples from patients with DLBCL, we aimed to: 

 

 Construct tissue microarray (TMAs) of patients with known clinical outcome 

and follow up; 

 

 Explore the applicability of IHC-based algorithm for molecular stratification of 

DLBCL; 

 

 Reconsider the role of IHC-based studies for the immune microenvironment 

by applying novel strategies of analysis; 

 

 Explore the macrophage heterogeneity in DLBCL based upon transcriptomic 

studies of highly pure cell populations; 

 

 Confirm the existence of macrophage subsets in DLBCL by using novel proteins 

derived from the transcriptomic analysis; 

 

 Develop in vitro co-culture systems to test whether the malignant B-cells are 

directly influencing macrophage polarisation in the microenvironment. 
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Chapter 2 Materials and Methods 

 

2.1 Patient Samples 

Patient samples were obtained after informed consent and stored under conditions 

compliant with the Human Tissue Act 2008. All sample collection was done under 

current regulatory permission from the local research ethics committee and 

according to the Declaration of Helsinki. 

 

2.1.1 Formalin-Fixed Paraffin-Embedded Tissue 

Immunohistochemistry studies were performed using FFPE. Samples were selected 

based on the availability of stored good quality paraffin blocks of the diagnostic 

biopsy and clinical and extended clinical and follow-up data. Only cases with de novo 

DLBCL were included. Patients with an immunodeficiency-associated lymphoma, 

central nervous system or primary mediastinal lymphomas were excluded from the 

study. December 2009 was selected as the cut-off date of diagnosis to include 

patients in the study to guarantee an acceptable follow-up. 

 

Two patient cohorts were used for this study. The first cohort was diagnosed and 

treated at St. Bartholomew’s Hospital (Bart’s), London. Patients were identified by 

consultation of the clinical database, created in the 60’s and used since then to 

document clinical details of all patients presenting initially to, or referred from local 

hospitals to Bart’s for treatment. Subsequently, clinical information was compared 

with the tissue database for final confirmation of FFPE material available for research. 

Between 1977 and end of 2009, 651 patients were diagnosed with de novo DLBCL at 

Bart’s. Finally, 225 patients with FFPE material stored amenable to be arrayed were 

identified. From these, 71 were treated in the rituximab era with R-CHOP. The 

remaining patients were treated with different approaches, from anthracycline-based 

therapy to palliative care. 
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The second cohort was diagnosed and treated at the Instituto Português de 

Oncologia Francisco Gentil (IPO), Lisbon. Patients were selected by Dr Maria Gomes 

da Silva, the lead haematologist responsible for clinical review, and Dr José Cabeçadas 

(JC), the lead haematopathologist responsible for research material review. All 

Portuguese patients were treated with R-CHOP. 

Tissue sections were made and Haematoxylin and Eosin (H&E) staining was used to 

carry out tumour area selection for TMA.  

 

2.1.2 Frozen Single Cell Suspensions 

Single cell suspensions (SCSs) from DLBCL, tonsil and reactive LNs were obtained from 

the centre for Haemato-Oncology tissue bank storage. Surplus material from samples 

for diagnostic or treatment purposes was collected under sterile conditions in media. 

Samples were dissected on a pre-cooled tray (Biocision) and homogenised by passage 

through a 70µm filter (BD biosciences) under gravity. Cell suspensions were washed 

twice in media by centrifugation at 1500rpm for 5min. After assessing cell count and 

viability in an automated cell counter by trypan blue exclusion (ViCell, Beckman 

Coulter), samples were cryopreserved in 10% Di-Methyl Sulphoxide (DMSO, Sigma-

Aldrich) in foetal calph serum (FCS, PAA Laboratories Ltd) for two hours at -80oC in 

adapted containers (CoolCell, BioCision) and transferred to liquid nitrogen tanks 

(Custom Biogenic Systems (CBS) Isothermal V-1500 series) for long-term storage.  

All studies described here were performed on previously cryopreserved SCSs with the 

purpose of normalising for storage effects. SCSs were thawed in a water bath at 37oC, 

treated with 0.5mg/ml of DNAse (DNAse I from bovine pancreas, Sigma-Aldrich) for 

5min at room temperature (RT), washed by centrifugation at 1400rpm for 5min in 

phosphate buffered saline (PBS, Sigma-Aldrich) with 100 U/ml penicillin and 

100µg/ml streptomycin (both from Invitrogen) and filtered through a 70µm mesh to 

exclude cell clumps. Viability and cell count was assessed using either an automated 

or a manual cell counter. 
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2.1.3 Healthy Donor Buffy Cones 

Peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated from 

buffy cones supplied by the National Blood Service. After a 5-fold dilution in sterile 

PBS, 10ml of this solution was gently layered with an automated pipette (Pipetboy, 

Integra) in a 30o angle over 5ml of Ficoll-Paque (Lymphoprep, Axis Shield) in a 15ml 

conical centrifugation tube (Corning). Samples were centrifuged at 1500rpm for 

25min at 22oC with slow acceleration and brake off. The PBMC layer was carefully 

removed using a pastette, diluted to a maximum of 40ml in PBS and centrifuged at 

1200rpm for 10min at 4oC for platelet removal. A second wash by centrifugation at 

1800rpm for 10 min was performed after which cell pellets were resuspended in 10ml 

of diluted red blood cell lysis buffer (Pharm Lyse, Beckton Dickson) for 7min at RT. 

Finally, cells were washed and resuspended in PBS prior to cell counting.  

 

2.1.4 Cell Lines 

The DLBCL cell lines used in this study were maintained at 37°C in a 5% CO2 

humidified incubator in sterile flasks in Roswell Park Memorial Institute (RPMI)-1640 

(Sigma-Aldrich) or Iscove’s Modified Dulbecco’s Medium (IMDM, Sigma-Aldrich) as 

recommended. The GCB cell line Su-DHL4 was gifted from Dr. A Letai and the ABC cell 

line Ri1 was gifted from Dr. M Capasso. All culture medium was supplemented with 

10% heat inactivated FCS, 100U/ml penicillin and 100µg/ml streptomycin. Cells were 

passaged every 2-3 days to maintain optimal cell concentration and viability. 

 

 

2.2 Immunohistochemistry 

2.2.1 Tissue Microarray Assembly 

TMAs consist of tissue cylinders, extracted from FFPE tissue by an arraying machine 

that are aligned and embedded in a new paraffin block.294 About 200 sections 2-5µm 

thick can be cut from each block and stained for large-scale protein expression 

profiles, allowing the study of large patient cohorts under controlled experimental 



Chapter 2 Materials and Methods 

85 

conditions. It has been previously shown that this technology can reproduce 

lymphoma tissue heterogeneity with the same accuracy as conventional sections 

when duplicate or triplicate cylinders are applied.295,296  

After patient selection, each original FFPE block was cut and stained with H&E. Well 

represented tumour areas free of necrosis and fibrosis were marked with a pen on 

the slide. Donor blocks were then aligned with the marked slides.  

A semi-automated arrayer (Beecher Scientific) was used as previously described.294 

Each patient block was cored in duplicate (1.5mm2 diameter) or triplicate (1mm2 

diameter) and these inserted in a new recipient paraffin block. Reactive tonsils were 

used as internal staining controls and myocardium or pancreas as orientation. The 

British patient set was separated into eight blocks and the Portuguese into two 

blocks. Before sectioning each block was placed over an ice block for 10-15min. A 

standard microtome technique was used for sectioning 3µm sections into slides. 

 

2.2.2 Principles of Immunohistochemistry  

IHC uses direct labelling of a target protein antigen with an antibody or, alternatively, 

with a more sensitive secondary antibody labelling system. The detection of the 

antigen-antibody interaction requires an amplification step that is achieved by the 

use of multimeric molecules that are able to link to multiple proteins. The avidin-

biotin complex (ABC) and the polymer-based systems (e.g. Biogenix Supersensitive 

Polymer horseradish peroxidase, HRP) are the most widely used amplification 

methods. The first relies on the use of biotinilated secondary antibodies to which 

multiple avidin-enzyme complexes bind strongly, providing antigen signal 

amplification. The second utilizes a unique technology based on a polymer sugar 

backbone to which multiple antibodies and enzyme molecules are conjugated. A 

Catalyzed Signal Amplification method is being incorporated in this polymer-based 

technique. Final visualisation of an antibody-antigen interaction is achieved by the 

use of enzyme modifiable chromogens.297 The chromogen most commonly used is 

Diaminobenzidine (DAB) due to its crisp brown staining. 
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2.2.3. Primary antibodies for Immunohistochemistry  

IHC staining was carried out using commercial available primary antibodies (clone, 

dilution and source detailed in each experimental chapter in Table 3.2, Table 4.1 and 

Table 7.1). Primary antibodies against GCET1 (clone Ram341, Novocastra), FOXP1 

(clone JC12, Abcam), and LMO2 (clone SP51, Abcam) were first used in our laboratory 

for this study and required optimisation. Appropriate controls for titration and 

antigen retrieval were provided by the manufacturer. Serial 1/50, 1/100 and 1/200 

antibody dilutions were used and three antigen retrieval techniques tried: no pre-

treatment, pronase enzyme digestion for 15min and pressure-cooking. The primary 

antibody was diluted with 1% bovine serum albumin (BSA, Sigma A-70906) and 

sodium azide (Sigma – S8032). After first assessment, further dilution titrations were 

performed.  

 

2.2.4 Staining Protocol using the Dako Autostainer System 

TMA slides were placed in plastic racks at 60oC overnight. For paraffin removal slides 

were incubated in xylene (VWR Chemicals – 28975.325) for 2 consecutive periods of 

5min. Subsequently, slides were incubated for 3 consecutive periods of 2min in 

Industrial Methylated Spirits (IMS, Fisher Chemical – 11482874) and further 2 periods 

of 2min in hydrogen peroxide (BDH – 101284N) in order to dehydrate tissue and 

reduce non-specific staining from the action of endogenous peroxidises on the 

chromogen. A final incubation of 2min in IMS is required prior to antigen retrieval. 

While performing first incubation steps, 3000ml of a working solution of antigen 

unmasking solution (Citrate buffer, pH 6, Vector Laboratories – CA94010) was 

warmed up in a pressure cooker. When boiling, the plastic racks with slides were 

immersed and left for 10min at high heat (120-130oC). When finished, the pressure 

cooker was left to cool down under cold tap water for 5min and the slides quickly 

transferred to washing buffer (DAKO – S3006).  

Slides were marked using hydrophobic pen around the edge of the array field and 

kept wet with wash buffer throughout remaining procedure. 

The DAKO Autostainer System is composed of a robot arm with nozzles and a pump 

system, which allows for timed dispensing of reagents into the slides.  Before using, 
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the software (Dako Autostainer Plus) is programmed for the number of slides, 

reagents and incubation times and rinse steps. The Super Sensitive™ Polymer-HRP 

IHC Detection System (Biogenix - QD430-XAKE) was used for signal detection. The 

Autostainer was run for 2-3 hours as specified. After finishing all slides were replaced 

in plastic racks and rinsed in tap water for 5min. As a counterstain, the slides were 

suspended in haematoxylin solution for 5min, rinsed for 2min in running water and 

plunged into acid alcohol solution (1% hydrochloric acid in 70% IMS), quickly, for 5 

times, after which were transferred into tap water wash.  Finally the tissue is re-

hydrated using IMS and clarified by incubation in xylene baths. Using DPX mounting 

media (VWR – 360294H), which provides a high quality durable mounting with 

refractive properties, cover slips were applied leaving no trapped air bubbles. Finally, 

slides were left to dry and labelled appropriately. 

 

2.2.5. Immunohistochemistry analysis 

2.2.5.1 Automated Image analysis using the Ariol SL-50 visual analysis software 

Slides were scanned using an Olympus BX61 microscope with an automated platform 

(Prior). A review of all cores was performed manually. Whole cores with less than 

50% of tumour representation were excluded from analysis. Fibrotic and necrotic 

areas were also excluded. Representative regions were selected for training. Positive 

stained cells acquire a brown/black colour characteristic of DAB. Colour hue, 

saturation and intensity were manipulated to allow contrast with the background. 

This was achieved by selection of individual pixels from positive events and avoiding 

the negative cells and the non-specific stained areas. Training is improved by limiting 

the size and the shape of the areas considered positively stained with DAB. In order 

to estimate areas of representative tumour tissue, a second colour training for non-

cellular areas was included (Figure 2.1). The area of viable tissue was calculated by 

subtracting the non-cellular areas from the total area analysed. Using this system we 

calculated the number of positive cells as well as the area of DAB stained per area of 

lymphoma tissue. The values obtained were corrected to a 1mm2 area and a mean for 

each patient was calculated. 
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Figure 2.1 Training Optimization using the Ariol System 

A&D: Representative example of training protocol, showing the DLBCL areas selected for training for CD3 (A) and CD68 (D). Magnification x20. B&C: 
Optimal results for % stained area of CD3 (B), where DAB staining is represented in red and non-cellular areas are represented in green; and for CD3+ 
cells (C), where individual cells are represented by white dots. E&F: Optimal results for % stained area of CD68 (E), where DAB staining is represented 
in pink and non-cellular areas are represented in blue; and for CD68+ cells (F), where individual cells are represented by white dots.
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2.2.5.2 Automated Image analysis using the Pannoramic Viewer System 

Slides were scanned using the Pannoramic 250 Flash II scanner (3DHISTECH). Each 

core was observed on a computer screen using the Pannoramic Viewer computer 

interface. Meticulous marking of representative tumour areas was done and areas 

quantified. After selection of representative tumour areas, the DensitoQuant module 

was used to quantify the number of DAB stained pixels. This module distributes pixels 

to 3 grades of positive classes using their RGB values. We used only the top red and 

orange levels for identification of stained areas. After adjusting the brown tolerance 

and the score levels an optimal script was saved for each antibody and applied for 

analysis in all areas. Finally, the number of brown pixels/selected area was calculated 

and a mean value was estimated for each patient. 

 

2.2.6 Cutpoint Determination and Survival Analysis 

Cut-point discrimination was assessed using a recursive partitioning algorithm in the 

rpart package (http://cran.r-project.org/web/packages/rpart/index.html) within the R 

statistical software version 3.0.2. 

Although data validation in independent datasets is a more robust method for 

confirming a certain IHC marker as a prognostic biomarker, this is still seldom done. 

 

The recursive splitting method with cross-validation is a statistical approach well 

accepted to develop outcome prediction models from novel variables. This algorithm 

involves finding a cutpoint in the variable under study that best divides the dataset in 

two groups with different outcome. The data is separated accordingly and novel splits 

are applied to each sub-group, in a recursive manner, until no improvement can be 

made in outcome prediction. This method requires that some limitations to the 

stepwise procedure are established in order to avoid developing too complex or 

suboptimal models for the problem under study. A “bucket size” approach that 

excludes data splitting where only a minority of patients are included in a given group 

is commonly used to increase robustness of results. The second stage of this method 

consists of using cross-validation to estimate the performance of cutpoints 
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considered predictive of survival.  

For every quantified measurement, survival has been estimated using Kaplan-Meier 

estimators, and differences between groups of the same measurement have been 

assessed with the Log-rank test. To accommodate for the optimization method within 

the splitting algorithm we considered as significant only Log-rank p-values <0.01.  

 

 

2.3 Immunofluorescence Staining and analysis 

Three colour Immunofluorescence (IF) was used in this study to detect co-expression 

of two proteins of interest in macrophages in FFPE tissue. Nuclei counterstaining is 

performed by incubation with a third colour, 4',6-Diamidino-2-Phenylindole, 

Dihydrochloride (DAPI, Sigma – D9564). 

This technique requires the use of primary antibodies against a target antigen 

epitope, ideally raised in different species; and secondary antibodies raised against 

Igs of the primary antibody species. The last are conjugated to a fluorochrome that 

allows visualisation of the proteins of interest. The secondary fluorescent antibodies 

must emit colour at different and non-overlapping wavelengths. The most commonly 

used wavelengths for this purpose are 488 (excitation: 495/emission: 519), which 

produces a green fluorescence and 546 (excitation: 556/emission: 573) which 

produces a red fluorescence. Optimization for these experiments involved changing 

the order of the primary antibodies incubation as well as the fluorochrome 

combinations. If both primary antibodies were raised in mouse species, an 

intermediate incubation step with mouse-on-mouse block reagent (Vector Labs) was 

required. Primary antibodies and conditions of use and secondary reagents are 

described in Chapter 6.  

Slide deparaffinisation and antigen retrieval steps were performed as described in 

section 2.2.4. After placing the slides in the DAKO Autostainer the software was 

programmed. A template of the staining procedure is provided below: 
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1. Primary antibody (mouse) (40’ incubation)  

2. Rinse with buffer 

3. Secondary reagent (anti-mouse Texas red secondary antibody) (10’ incubation) 

4. Rinse with buffer 

5. Mouse-on-mouse blocking step 

6. Primary antibody (mouse/rabbit) (40’ incubation)  

7. Rinse with buffer 

8. Secondary reagent (anti-rabbit FITC secondary antibody) (5’ incubation) 

9. Rinse with buffer 

 

Slides were then transferred to plastic racks and immersed in buffer solution. 

Immersion for 2min in 3 pots of graded ethanol (70/80/96%) was used for slide 

rehydration. Finally slides were mounted using 5 µL of Vectashield mounting medium 

(Vector Labs) with DAPI fluorochrome and kept at -20oC.  

Slides were scanned using an Olympus BX61 microscope and analysed using the Ariol 

SL-50 visual analysis software. The fluorescence wizard-training module was used to 

optimize capturing conditions. The DAPI channel capturing nuclei staining was used to 

focus at 5x amplification. All channels were subsequently observed at 40x 

amplification and adjustments on background capturing and exposure times were 

done. Selected cores were finally scanned and observed later on a computer screen. 

Single channel and overlapping images were used for final analysis quantifying single 

and double positive cell counts/core.  
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2.4 Multicolour flow cytometry 

Flow cytometry is a single cell analysis technique, which enables the recognition and 

quantification of expression of multiple molecules simultaneously. Cells are stained 

with fluorochrome-conjugated monoclonal antibodies against the molecules of 

interest; moved through a fluidics system and forced to pass one by one through an 

integrated laser bean which results in fluorochrome excitation and light emission. The 

light side and forward scattering properties provides information on the size and 

intracellular organelle complexity of each cell, whereas the fluorescence emission and 

intensity delivers qualitative and quantitative information on molecule previously 

labelled. Besides non-specific fluorescence and background noise, the emission 

spectral overlap of different fluorochromes is frequently involved in interference with 

the final read-out and can be overcome by careful combination of fluorochromes 

with minimal overlap, adjustment of voltages of the light detectors and compensation 

of the detected data. The information acquired is studied using specific software 

packages. Data can be displayed as one-dimensional histograms showing detected 

fluorescence distribution and intensity, or multidimensional histograms combining 

different parameter intensities, each cell being represented by a dot.  

This technology was used for single cell sorting (Chapters 5 and 6), carried out using a 

BD FACSAria II sorter, and macrophage surface marker staining (Chapter 6), carried 

out using a four laser LSR Fortessa (both from BD Biosciences). 

 

2.4.1 Single cell sorting 

Flow sorting is a technique that allows separating different cell populations from 

heterogeneous samples, based on the physical (such as the size) or chemical (such as 

expression of cell specific surface antigens) properties of the cells. The FACSAria 

sorter uses the electrostatic method in which the cells are ejected through a vibrating 

nozzle and broken up into a stream of regular droplets. A charge is applied to the 

droplets that contain particles of interest, deviating them from the main stream into 

plates at high voltage. Finally, cells are collected under sterile conditions as they 

move to the waste stream and can then be used for a variety of studies. The 
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efficiency of the sorting is tested by different parameters. Decisions regarding priority 

for recovery or purity of the population are important when programming the sorting 

experiment.  

This technique is particularly useful for isolation of rare cell populations with high 

purity, such as macrophages in previously stored LN SCSs from patients with 

lymphoma or reactive conditions. When sorting a rare population that needs to be 

highly pure, a second sorting procedure might be needed at the expense of loss of 

cell yield.  

 

Primary LN SCSs (2-3 vials/case) were processed according to section 2.1.2. Cell count 

and viability were confirmed using an automated cell counter by trypan blue 

exclusion (ViCell, Beckman Coulter). Cells were split into 1x107 aliquots, resuspended 

in PBS with penicillin, streptomycin and 2% FCS (wash buffer) and centrifuged at 1400 

rpm for 5min at RT. Smaller aliquots (0.25x106 cells/tube) were used for optimization 

controls. Excess supernatant was discarded and cell pellets incubated at 4oC for 

20min in 2% human anti-γ-globulins (Sigma) with the purpose of reducing non-

specific antibody binding to Ig FcR. Cells were then incubated with the appropriate 

antibodies (Table 2.1) for 30min in the dark, at 4oC, washed and resuspended in wash 

buffer with DAPI (1µL/2ml), the fluorochrome used for dead cell exclusion. 

Polypropylene tubes with 1ml of 50% filtered FCS in wash buffer were used for cell 

collection.  

 

An example of the sorting strategy is illustrated in Figure 2.2. Firstly, DAPI negative, 

live cells were selected, followed by doublet exclusion and positive selection of total 

leukocytes according to CD45 expression. Total T-cells were separated according to 

the expression of CD3. B-cells were sorted based on the expression of the pan-B-cell 

marker CD20. Back gating confirmed these were viable and negative for CD3. Finally 

macrophages were isolated based on the expression of CD36, a membrane scavenger 

receptor. As CD36 is also expressed on endothelial cells, CD45 positivity was 

confirmed by back gating of this population prior to sorting. Purity was assessed by 

centrifuging and re-suspending cells in wash buffer/DAPI prior to re-analysis. If cell 
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purity was <90%, re-sorting was performed. Finally, B-cells were stored in liquid 

nitrogen in FCS/20% DMSO after centrifugation at 3000 rpm for 7min. T-cells and 

macrophages were pellet by centrifugation at 8000 rpm for 10min and subjected to 

RNA extraction immediately. 

 

 

Table 2.1 Staining strategy for cell sorting 

 CD45 PE CD3 FITC CD36 APC CD20 APC-H7 

Unstained sample     

CD45 PE 5 µL    

CD3 APC  5 µL   

CD20 APC-H7    5 µL 

CD36 FITC   5 µL  

FMO APC 5 µL 5 µL  5 µL 

FMO PE  5 µL 5 µL 5 µL 

FMO FITC 5 µL  5 µL 5 µL 

FMO APC-H7 5 µL 5 µL 5 µL  

Sample (/107 cells) 15 µL 15 µL 30 µL 30 µL 

 SS: single staining; FMO: fluorescence-minus-one 
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Figure 2.2 Sorting strategy for isolation of macrophages, B-cells and T-cells from single cell suspensions of DLBCL and reactive LNs 

Viable cells were selected based on the lack of DAPI staining (A); doublets were excluded by two consecutive gatings (B,C); Leukocytes were selected 
based on the expression of CD45 (E); T-cells and macrophages were sorted based on the expression of CD3 and CD36, respectively (F); B-cells were 
isolated according to the expression of CD20 (G). 
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2.4.2 Immunophenotyping of macrophage cell surface markers  

These experiments were carried out in V-bottomed 96 well plates and staining was 

performed after antibody cocktail preparation. This increased efficiency of protocols 

and reduced preparation times and costs. 

Staining cocktails including all antibodies were prepared, with adequate volumes for 

control and experimental conditions (+10% for pipetting errors). The cocktails were 

pipetted into a 96 well plate prior to multichannel staining of the samples. 

 

Unstained cells were used to measure intrinsic autofluorescence in each wavelength 

prior to acquiring stained cells. Fluoresce-minus-one (FMO) tubes allowed 

discriminating non-specific fluorescence and apparent fluorescence resulting from 

spectral overlap and setting the gating for positivity for each marker/channel.  

 

Macrophages were harvested from culture plates (see section 2.8.6), re-platted into 

96 well plates and centrifuged at 3000 rpm for 5min. Supernatant was discarded by 

turning plates upside down and cells were resuspended in 50µl of wash buffer. 

Staining cocktails (antibodies described in Chapter 6) were applied in a volume of 

50µl/well, mixed by partial volume pipetting and left to incubate for 30min on ice in 

the dark. Wash buffer was then added (200µl/well) and the plate centrifuged at 

3000rpm for 5min. Samples were transferred to 1ml labelled polypropylene adaptor 

tubes in 100µl of wash buffer.  

 

Data was acquired using the four laser BD Fortessa flow cytometer. A minimum of 

5000-10000 target events gated on compensated viable-singlet cells were acquired. 

The main read-out was the median fluorescence intensity (MFI), which was measured 

in all experimental conditions and retrieved as the difference compared to the un-

manipulated sample in each individual experiment. FlowJo (Tree Star Inc) software 

was used for analysis. 
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2.5 RNA extraction  

QIAGEN provides well-standardized protocols that were followed in these 

experiments with minimal changes after optimization.  

RNA was extracted from sorted macrophages and B cells using the QIAGEN RNeasy® 

micro kit recommended for samples with a low cell number. The QIAGEN RNeasy® 

mini kit was used for RNA extraction in samples with higher cell yield. The protocol 

here described was used for low cell number samples. 

Cell pellets were mixed twice by pipetting with 75+75µl of denaturing buffer (RLT+β-

mercaptoethanol), transferred to a QIAshredder spin column and centrifuged at full 

speed (~14000rpm) for 2min. The homogenised lysate was mixed with 150µL of 70% 

ethanol, transferred to an RNeasyMinElute spin column and centrifuged for 15sec at 

10000 rpm. This facilitates binding of the RNA to the column. The Buffer RW1 (350µl) 

was added to the column after discarding the flowthrough and a centrifugation step 

of 15sec at 13000 rpm was done. RW1 was re-added and an on-column DNase 

digestion step was also performed with the purpose of eliminating genomic DNA. 

350µl of buffer RW1 was then added to the membrane and centrifuged for 15sec at 

13000rpm. The membrane was washed 2× by incubation with 500µl buffer RPE 

followed by 500µl of 80% ethanol with intermediate centrifugations at high speed. 

The column was dried by centrifugation at 13300 for 5min with the lid open. Finally, 

the RNA was eluted by incubation of the membrane with 14µl RNase-free water for 3-

5min at RT followed by centrifugation at 13300rpm for 1min; and stored at -80oC. 

 

 

2.6 RNA Quantity and Quality Assessment 

2.6.1 NanoDrop Spectrophotometer  

RNA quantity and purity was determined using the NanoDrop ND-1000 

spectrophotometer (Nanodrop technologies). Concentration was calculated by 

determining the optical density (OD) or ultraviolet light absorbed at 260nm of 1µl of 

RNA, knowing that 1 OD unit is equal to 50ng/µl of RNA. The ratio of absorbance at 

260/280nm indicates purity and should be ~2 for good quality. Lower ratios suggest 
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18S 

28S marker 

contamination with protein or other impurities, which absorb strongly at 280nm. The 

260/230nm ratio is often taken as a secondary measurement of purity and should be 

in the range of 1.8 - 2.2, although cut-offs are not well standardized. A lower ratio 

may suggest contamination by compounds such as guanidine thiocyanate,298 which 

are known to have limited effect on downstream analysis. 

 

2.6.2 Agilent Bioanalyzer 

The Agilent 2100 Bioanalyzer system enables researchers to determine the quality 

and integrity of an RNA sample.299 The Agilent RNA 6000 Pico Kit is particularly useful 

to assess low concentrated RNA samples (50pg/µL), for which NanoDrop readings 

are inaccurate. Results are based on the electrophoretic trace of the sample (Figure 

2.3). The RNA Integrity Number (RIN) generated is calculated based on the 

identification of degraded RNA products and the height of the 18S peak. 

 

 

 

Figure 2.3 Representative Electropherograms generated by the Agilent 2100 Bioanalyser 

 

 

The samples illustrated have excellent quality, the electropherogram traces showing a 

single marker peak and two peaks of ribosomal RNA (18S subunit, 28S subunit) 

migrating in the correct timing. RINs near 1 indicate poor quality, while values near 10 

suggest intact RNA. 
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The kit reagents were equilibrated to RT prior to use. RNA concentrations were 

estimated using the NanoDrop and samples with higher RNA concentrations were 

diluted with RNAse free water. The RNA gel matrix (550µl) was transferred to a spin 

filter and centrifuged at 4000 rpm for 10min. A gel-dye mix (65µl of gel + 1µl of dye) 

was prepared and centrifuged for 10min at 11800 rpm. The gel-dye mix was loaded to 

RNA Pico chips in 9µl aliquots pipetted onto the wells marked ‘G’, followed by the 

conditioning solution. Subsequently, 5µl of RNA marker was added to each well 

including the ladder well. Sample and control RNA aliquots and the RNA 6000 Pico 

ladder were heat denatured and added to each well (1µl). After vortexing the chip 

was run on the Agilent 2100 Bioanalyzer using the Eukaryote RNA Pico chip assay.  

 

 

2.7 Gene Expression Analysis  

2.7.1 Gene Expression Profiling by Microarray technology 

Microarray technology, developed in the mid-1990’s, allows examining the 

expression of thousands of genes simultaneously. It exploits the ability of 

complementary strands of nucleic acids to base pair with each other and bind. The 

DNA samples under study are fluorescently labelled and put in contact with DNA 

copies corresponding to different mRNAs known to codify for a particular gene. If 

hybridisation occurs, fluorescence can be identified, indicating that a particular gene 

is being transcribed in that sample. Differences in fluorescence, and hence gene 

expression can be measured between “disease” and “control” samples. 

This technology was used in our studies to compare the transcriptome of 

macrophages selected from DLBCL lymph nodes with macrophages extracted from 

reactive lymph nodes. The clinical features of the respective patients are described in 

the experimental chapter 5. 
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2.7.1.1 cDNA Synthesis and Amplification using the Nugen Ovation® Pico WTA 

System V2 

RNA is unstable and readily degraded by ubiquitous RNases, making it unsuitable for 

direct analysis. Complementary DNA (cDNA), a stable template for RNA-based assays 

can be generated from RNA. The Ovation® Pico WTA System V2 enables preparation 

of amplified complementary cDNA from low concentrated RNA samples for 

microarray or quantitative real-time PCR (qRT-PCR) applications. Amplification occurs 

through a highly reproducible method using DNA/RNA chimeric primers, DNA 

polymerase and RNase H in an isothermal assay (Figure 2.4). 

 

 

 

 

 

 

Figure 2.4 Ribo-SPIA® Technology used for cDNA synthesis and amplification 

A: Generation of First Strand cDNA. Total RNA is mixed with random and oligo dT DNA/RNA 
chimeric primers, allowing for priming to occur across the whole transcript. Reverse 
transcriptase (RT) promoted extension occurs from the 3’ DNA end of each primer generating 
first strand cDNA. B: Generation of a DNA/RNA Heteroduplex Double Strand cDNA. The cDNA 
is then fragmented to generate priming sites for DNA polymerase to synthesize a second 
cDNA strand containing DNA complementary to the RNA tag sequence localized at 5’ on the 
first strand cDNA. The final product is a double-stranded cDNA with a DNA/RNA 
heteroduplex. C: Single Primer Isothermal Amplification (SPIA®). The RNA portion of the 
heteroduplex is firstly removed by RNase H. DNA polymerase then synthesizes cDNA starting 
at the 3’ end of the SPIA primer, displacing the existing forward strand. The process of 
DNA/RNA primer binding, DNA replication, strand displacement and RNA cleavage is 
repeated, resulting in accumulation of amplified cDNA. 
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All samples were lyophilized in a 60Hz speed vac instrument and resuspended in 5µl 

nuclease-free water. This allowed decreasing sample volumes without compromising 

RNA concentration.  

In a 0.2mL PCR, 2μL of first strand primer mix and 5μL of each sample were mixed and 

subsequently placed in a pre-warmed thermal cycler programmed to run Program 1 

(Appendix, last section). Once primer annealing was complete, 2.5μL first strand 

buffer mix and 0.5μL first strand enzyme mix were added and samples were run on 

the thermal cycler, Program 2 (Appendix, last section). In order to perform Second 

Strand cDNA Synthesis, 10 μL of the second strand master mix (9.7μL buffer + 0.3μL 

enzyme mix) were mixed to each first strand reaction tube and Program 3 was run on 

the pre-cooled thermal cycler. 

 

cDNA was purified using Agencourt RNAClean XP beads. At RT, 32μL of resuspended 

beads were admixed with each reaction and left to incubate for 10min. Samples were 

transferred to a magnet (SPRIplate® 96-ring, Agencourt Biosciences Corporation) with 

a strong magnetic field for 5min to completely clear the solution of beads. The 

solution was carefully discarded by pipetting and the beads washed with 200μL of 

70% ethanol in triplicate. After completely removing the ethanol, the beads were left 

to air dry on the magnet for 15-20min. 100μL of the SPIA amplification mix (50μL 

buffer + 25μL primer + 25 μL enzyme) was mixed to each tube containing the double-

stranded cDNA bound to the dried beads. Samples were then place on a pre-cooled 

thermal cycler programmed to run Program 4 (Appendix, last section). Tubes were 

transferred back to the magnet for 5min. The eluted amplified cDNA was removed 

and subsequently purified using the QIAGEN QIAquick PCR Purification Kit according 

to the company’s instructions. The amplified cDNA was mixed with 500μL of Buffer 

PB, added to QIAquick spin columns and centrifuged for 1min at 13300 rpm. After 

discarding the flow-through, 700μL of 80% ethanol were added twice to the column, 

with intermediate 1min 13,300 rpm centrifugations. Columns were blotted onto 

absorbent paper to remove any residual wash buffer and placed into new 1.5mL 

eppendorfs. 30μL of nuclease-free water was added to the column, left to incubate 

for 5min at RT and forced through by spinning at maximum speed for 1min.  
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cDNA yield and purity were measured using the Nanodrop (single stranded DNA 

setting, where 1 OD unit at 260nm= 33μg/mL). cDNA quality was assessed using the 

Agilent Bioanalyzer RNA 6000 Nano Kit (protocol described in section 2.6.2, with 

minimal changes as required by manufacturer).  

 

2.7.1.2 cDNA fragmentation and biotin labelling using the Nugen Encore Biotin 

Module  

5μg of amplified cDNA in 25μL volume were fragmented by admixing with 7μL of 

fragmentation master mix (5μL buffer + 2μL enzyme mix) and placing in a pre-

warmed thermal cycler programmed to run Program 5 (Appendix, last section). 

Subsequently, 18μL of biotin labelling master mix (15μL buffer + 1.5μL labelling 

reagent + 1.5μL enzyme mix) was added to each fragmented cDNA sample and tubes 

were placed in a pre-warmed thermal cycler programmed to run Program 6 

(Appendix, last section). The fragmented and labelled cDNA was processed 

immediately for array hybridisation. Fragmentation efficiency was assessed using the 

Bioanalyzer. 

 

2.7.1.3 cDNA hybridisation to Affymetrix GeneChip® Human Gene 1.0 ST Arrays 

The GeneChip® Hybridisation, Wash and Stain kit was used. The hybridisation cocktail 

was prepared according to the specifications for Mini Arrays (labelled cDNA, 

5μg/25μl; control oligonucleotide B2 (3nM), 1.9μL; 20x hybridisation controls, 5.5μL; 

2x hybridisation buffer, 55μL; DMSO, 11.6μL) and heated at 99oC for 5min. The probe 

cartridges were meanwhile washed with 80μL of pre-hybridisation mix and incubated 

in rotation for 10min at 45oC. The hybridisation cocktail was transferred to a 45°C 

heat block for 5min and spun at maximum speed in a microcentrifuge for 5min. 

Finally the arrays were refilled with 90μL of the warmed hybridisation cocktail, left to 

hybridise for 16h at 45oC at 60rpm and analysed using the GeneChip Fluidics station 

450. Details on the approach taken to analyse the data will be detailed in the 

experimental Chapter 5. 
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2.7.2 Gene Expression Analysis by quantitative Real-Time PCR 

qRT-PCR was used in these studies for validation of the GEP results and for 

interrogation of expression changes of target genes in macrophages after co-culture 

with reactive or malignant B-cells.  

 

2.7.2.1 cDNA Synthesis 

cDNA prepared as in section 2.7.1.1 was used for the array validation studies. RNA 

extracted from macrophages after co-culture was converted to cDNA using the high 

capacity reverse transcription kit (Applied Biosystems). RNA (0.5-1.5μg) in a volume 

of 10μl was mixed with the reaction master mix (Table 2.2) in a 0.2ml PCR reaction 

tube (final volume: 20μl). Reverse transcription took place on an automated thermal 

cycler with initial annealing for 10min at 25°C, followed by extension for 120min at 

37°C, reverse transcriptase inactivation for 5min at 85°C and cooling at 4°C. 

 

 

 

Table 2.2 Components of the 2x reverse transcription (RT) master mix used for cDNA 

synthesis 

 

Components Volume per reaction (μL) 

10x RT buffer 2 

25x dNTP mix (100mM) 0.8 

10x RT random primers 2 

Multiscribe reverse transcriptase 1 

Nuclease free water 4.2 
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2.7.2.2 Quantitative Real Time quantitative PCR 

This technique is used to quantify specific RNA transcripts in real-time. The reaction 

happens in a fluid mixture containing the template cDNA, an enzyme (Taq DNA 

polymerase), fluorescently-tagged primers-probes and water. The enzymatic cleavage 

of cDNA-bound probes in each round of PCR reaction leads to the releasing the 

fluorescent dye (FAM). The quantity of the detectable fluorescence is proportional to 

the amount of PCR product and the abundance of the RNA species of interest. 

RNA transcripts were assayed in triplicate for each sample using TaqMan gene 

expression assays (Applied Biosystems). The housekeeping genes chosen were B2M 

for the microarray validation studies and GAPDH for the gene expression analysis 

performed in Chapter 6.  

 

The reactions were set up in 386 well optical plates. Taqman 2x universal PCR Master 

Mix (Applied Biosystems) and expression assays were mixed first and placed into a 

loading reservoir and from here 11µl transferred to the designated well. cDNA were 

added in a 15μl final volume per reaction. The plate was sealed, centrifuged for 1min 

at 3300rpm to collect the reaction at the bottom of the well and loaded on the ABI 

HT-7900 system (Applied Biosystems). An initial 95oC incubation for 10min enabled 

enzyme activation and cDNA denaturation. The reaction was then cycled for 40 cycles 

at 95oC for 15 seconds and 60oC for 1 minute.  

 

 

 

Table 2.3 Components of Reaction Mix for qRT-PCR 

 

Components Volume per 15μl reaction 

20x TaqMan gene expression assay 0.75 

2x TaqMan gene expression master mix 7.5 

RNase-free Water 2.75 

cDNA template 4 
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Data was converted to relative quantities (RQ) for comparison between samples. A 

cycle threshold (CT), representing the number of PCR cycles at which the fluorescence 

signal for each target and control gene crosses a user defined threshold, was 

calculated. CT values are inversely proportional to mRNA abundance. An average of 

CT values for each sample was calculated, where replicate reactions with CT standard 

deviation (SD) ≥0.5 were discarded. Wells with a CT value of >35 were excluded from 

further analysis.  

Target CT values were normalised to the housekeeping gene, generating a delta CT 

value (∆CT= CT Target Gene – CT Endogenous Control Gene). The delta ∆CT (∆∆CT) 

value, which represents the quantity of mRNA present in each condition, was 

determined by subtracting the ∆CT of a user-defined calibrator sample from the ∆CT 

of test samples. The Log2 scaled data was finally transformed to a linear scale using 

the formula: RQ=2-ΔΔCT. RQ values were compared by T-test and fold changes (FC) 

calculated from the mean of each group as described in each chapter.  

 

 

2.8 Co-culture systems involving primary human macrophages and malignant and 

reactive B-cells 

Functional studies are the only ones able to provide a definitive biological explanation 

towards the impact of cell-cell interactions happening in vivo. In vitro cell systems are 

used in an attempt to mimic the cell-cell interactions and their functional effects. A 

dual-cell system such as the one used here, although limited to understand the 

relevance of the whole microenvironment in the biology of DLBCL, would help to 

explore one of our hypothesis for this study: the malignant DLBCL cells are inducing 

functional changes in the lymphoma-associated macrophages. 
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2.8.1 Positive selection of monocytes from using magnetic microbeads and 

macrophage maturation in vitro  

Positive cell selection was performed using the magnetic cell sorting system 

developed by Miltenyi Biotec. PBMCs from healthy donors were isolated from buffy 

cones using the Ficoll method described in section 2.1.3. After cell counting, samples 

were divided in 1.5x108 aliquots, pelleted by centrifugation and resuspended in 

1000μl of cold buffer (PBS/0.5M EDTA/2% FCS) and 100μl CD14 antibody conjugated 

microbeads. After incubating for 15-20min in the dark at 4°C, cells were washed with 

10ml of buffer, centrifuged at 1200rpm for 10min at 4°C and resuspended in 500μl of 

buffer. The LS columns were adapted to the QuadroMACS® magnet, rinsed with 3ml 

of buffer and loaded with the cell suspensions. Each column was washed 3 x 3ml of 

cold buffer.  The positive cell fraction was forced through the column in 5ml of buffer 

by plunging, resuspended in Dulbecco's Modified Eagle's (DMEM) medium with high 

glucose and sodium pyruvate (Sigma-Aldrich), 10% filtered human AB serum (Sigma-

Aldrich) and penicillin/streptomycin and centrifuged for 5min at 1500rpm at RT. 

Aliquots were taken for analysis of cell purity by flow cytometry (described in 

experimental Chapter 6). After automated cell counting, monocytes were plated in 

90mm Petri dishes (Sterilin) in a 15ml volume at 4.5x106/ml concentration and place 

at 37°C in a 5% CO2 humidified incubator for 7 days. 

 

2.8.2 Positive selection of reactive B-cells from tonsils using magnetic microbeads 

Tonsil SCSs were prepared, stored and resuscitated according to section 2.1.2. 

Viability and cell count was assessed using an automated cell counter.  

Cell separation was performed according to the protocol described in section 2.8.1 

with minor adjustment. The concentration of CD19 antibody conjugated microbeads 

used was kept as per manufacturers recommendations (20μl/107 cells). 

After sorting, cell counting was assessed on a haemocytometer by mixing 5μl cell 

suspension with 5μl trypan blue dye 0.4% (Cell Viability Inc). The trypan blue is 

absorbed through the cell membrane of dead cells but not the intact membrane of 

live cells. For each sample 4x1mm2 squares were counted on the haemocytometer 
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noting the number of live and dead cells. The average number of live and dead cells 

was multiplied by the dilution factor (2), giving a cell number x104/ml.  

Finally, B-cells needed for co-culture were resuspended in DMEM medium with 10% 

filtered human AB serum and penicillin/streptomycin. Aliquots were kept for flow 

cytometry purity assessment. 

 

2.8.3 Macrophage harvesting and replatting for co-culture experiments 

After 1 week of incubation macrophages adhere to the bottom of the Petri dishes and 

need to be harvested by manual scrapping. The petri dishes were taken out of the 

incubator, transferred to the hood and sat on ice. Culture medium with unattached 

cells was gently harvested to 50ml centrifuge tubes using an automated pipette, 

leaving the bottom of the dish untouched. The adherent fraction was washed twice 

by stirring with 10ml of cold PBS and harvested together with the non-adherent cell 

fraction. 5ml cold PBS was added to each dish. A 1.8cm blade cell scraper (BD Falcon) 

was then used to detach the macrophages, with particular attention not to use 

circular movements and to keep the scrapper in a 45o angle with the dish. The 

harvesting was repeated once to increase cell yield and a final wash with cold PBS 

was done. After centrifuging at 1400rpm for 10min at 4oC, macrophages were 

resuspended in DMEM with 10% human serum and penicillin/streptomycin and 

counted on an automated counter. Finally, cells were adhered at a concentration of 

2-5 x104/ml at 37oC into 24-well plates for 24h prior to co-culture set-up. 

 

2.8.4 Co-culture set-up 

The following day, the DLBCL cell lines Su-DHL4 and Ri1 were washed and 

resuspended in DMEM with 10% human serum and penicillin/streptomycin in the 

concentration required for co-culture. Reactive B-cells were prepared according to 

section 2.8.2.  

The 24-well plates were taken from the incubator and adequate adherence 

confirmed using the microscope (10x amplification). All work was then performed 

under the hood.  
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Reactive and malignant B-cells were layered in triplicate over the adherent 

macrophages at a 1:1 concentration. Transwell inserts with 0.4µm pore size and 

1x104/cm2 pore density (Costar, Corning) were also used, allowing cell separation but 

passage of small molecules across the membrane. After transwell insertion, cells 

were added to the upper chamber at a 1:1 concentration in a 100µl volume. As a 

positive control, macrophages were treated with LPS at a concentration of 100ng/ml. 

Finally, as negative internal controls for each biological experiment, macrophages 

were cultured alone for an additional 24h. Figure 2.5 below illustrates the 

experimental set-up. 

 

 

 

 

 

Figure 2.5 Macrophage and B-cells co-culture system employed in this study 

Reactive tonsillar B-cells and DLBCL cell lines were plated in a 1:1 ratio in contact (B) or on the 
top layer of a transwell insert (C) in 24 microwell plates where macrophages were allowed to 
adhere for 24 hours. As negative internal controls for each biological experiment 
macrophages were cultured alone for additional 24h (A). Finally, macrophages were treated 
with 100ng/ml of LPS (D). 
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2.8.5 Macrophage harvesting after co-culture 

After 24h, plates were placed over an icebox. 1ml of co-culture supernatant from all 

experimental conditions was collected in 1.5ml eppendorfs and centrifuged at 

4000rpm for 5min at 4oC in a microcentrifuge. The top layer was aspirated carefully 

(~0.5ml) and stored at -20oC for cytokine quantification. The remaining supernatant 

was replaced by 200µl of cold fresh PBS with 2%FCS. Adherent cells were scrapped 

with a cell scraper with the blade cut on both sides, avoiding circular movements. 

Once the cell suspension was collected to 1.5ml eppendorfs, additional scrapping was 

done if significant residual adherent cells were seen under the microscope. Finally, all 

tubes were centrifuged at 4000rpm for 5min at 4oC. The cell pellets were 

resuspended immediately for flow cytometry (section 2.4.2). In order to guarantee a 

pure population after co-culture, macrophages were sorted using size and 

intracellular complexity differences compared to B-cells and stored at -80oC for future 

RNA extraction. 

 

2.9 Cytokine profiling of co-culture supernatants using cytometric bead arrays  

The human Th1/Th2/Th17 Cytometric Bead Arrays (CBA, Beckton Dickinson) were 

used to quantify IL-2, IL-4, IL-6, IL-10, IL-17, TNF, and IFN-γ in supernatants from the 

co-culture experiments just described. The CBAs are a flow cytometry based assay, 

which enables highly sensitive quantification of multiple proteins simultaneously in a 

50μl sample volume. As a result, this method significantly reduces sample 

requirements and time to results in comparison with ELISA and Western blotting. The 

system relies on the addition of multiple antibody-coated beads, which capture the 

specific proteins in solution. These beads have unique fluorescence intensity emitted 

on the PE-FL2 channel of the flow cytometer and hence can be analysed 

simultaneously in a single tube.  
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The protocol recommended by the manufacturer was strictly followed.  

The cytokine lyophilized standards were reconstituted in 2ml of Assay Diluent. After 

incubation at RT for 15min, 9 serial dilutions (1:1 - 1:256) were prepared. Diluent 

represented the negative control. An aliquot of 10μl/sample of each cytokine Capture 

Bead were mixed in a single tube and 50μl of mixed beads were distributed to the 

appropriate assay tubes. 50μl of the standard dilutions were added to the control 

assay tubes. Finally, 50μl of each test sample and 50μl of the PE Detection Reagent 

were added to the test assay tubes. All tubes were left to incubate for 3 hours at RT 

and protected from direct exposure to light. After incubation all samples were 

washed with 1ml of Wash Buffer and centrifuged at 1000rpm for 5min. Supernatant 

was discarded and pellets resuspended in 300μl of Wash Buffer. Data was acquired 

on a BD Fortessa II flow cytometer with FACS Diva Software. The beads were excited 

off the 488nm laser and detected in the PE (FL-2) detector (Figure 2.6). Approximately 

2000 events were acquired per sample. 

 

 

 

Figure 2.6 Outline of the cytokine profiling using the Cytokine Bead Array (CBA) System (BD 

Biosciences)  

Cytokine specific beads are incubated with the sample and detector antibodies conjugated to 
the PE fluorochrome. After incubation, cytokine/antibody/detector antibody complexes are 
detected by flow cytometry. The concentration of each cytokine in a given sample is directly 
proportional to its fluorescence intensity on the PE-FL2 channel and is calculated based on 
the standard curve fitted from the concentration on the control assay tubes. 
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2.9.1 FCAP Array analysis of cytokine secretion 

Data analysis was performed using FCAP Array software (Becton Dickinson). The 

software allows determination of the analyte concentrations in the samples based on 

know concentrations from the standards run in the same conditions.  

The CBA beads were gated based on the forward scatter versus side scatter features, 

after which individual bead sets representing each cytokine were gated individually. 

Finally the MFI of each gated population on the PE detector was measured. A 

standard curve based on a 4-parameter logistic mathematical model was used to 

calculate the concentration of measured proteins in each condition. The results were 

expressed as a pattern code representing the MFI of the sample population and 

finally in pg/ml (Figure 2.6). 

 

 

2.10 Statistical analysis 

Details on statistical analyses applied are given within the relevant experimental 

chapter. Statistical tests were performed using Prism software Version 5.03, SPSS 

Version 19.0 and Excel.
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Chapter 3 Reliability of immunohistochemistry classifiers of cell-of-

origin for diffuse large B-cell lymphoma 

 

 

3.1 Introduction 

As discussed in Chapter 1, DLBCL represents a heterogeneous group of lymphoid 

malignancies with distinct oncogenic events and clinical behaviour that cannot be 

distinguished only by morphology and immunophenotype.34,74,92 This biological 

diversity explains the heterogeneous responses to the current standard treatment, R-

CHOP, and provides a rational for investigation of novel targeted therapies.  

Through the use of microarray technology, Alizadeh et al.74 described the two 

molecularly distinct forms of DLBCL, which replicate GEPs typical of different stages of 

B-cell differentiation. GCB-DLBCLs assume a transcriptome superimposable to that of 

normal GC B-cells. In concordance with this, GCB cases exhibit immunoglobulin gene 

ongoing somatic hypermutation.81 ABC-DLBCLs express genes more characteristic of 

plasma cells,76 but are blocked in their differentiation capacity. The two entities are 

very distinct in their genetic changes, and signalling pathway deregulation. Numerous 

studies are trying to pinpoint the biological features that explain outcome differences 

and could be used as markers for targeted therapy. Importantly, it has been shown 

that patients with GCB-DLBCLs have an improved OS compared with ABC-DLBCLs 

after treatment with R-CHOP.34 In fact, the molecular classification is regarded the 

most robust biological prognostic tool available for DLBCL. 

 

Molecular characterization is opening up opportunities for personalized therapy in 

poor-risk DLBCL. Emerging in vitro and clinical data support that the two main DLBCL 

molecular subtypes, the ABC and GCB-DLBCLs may benefit from different treatment 

approaches, with agents including bortezomib,300 lenalidomide117,301 or ibrutinib118 

appearing particularly active against the worse prognosis ABC subtype.  

 

In order for targeted therapies to succeed in this disease, reliable and reproducible 
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strategies that adequately segregate patients into distinct molecular groups are 

needed. While GEP is the gold standard method for molecular stratification of DLBCL 

in the laboratory, this technique has only recently been incorporated into clinical 

trials for treatment stratification. The REMoDLB phase 3 clinical trial (NCT01324596) 

aims at determining whether the addition of bortezomib to standard R-CHOP 

improves EFS and if that benefit is related to the molecular features of the tumour 

cells, which is being characterized by GEP in the FFPE tissue. However, since the 

application of GEP is still restricted to research purposes, there is presently a lack of 

standardized methodology for array analysis, which can lead to variable results both 

at the inter- and intra-laboratory level. This issue, which may impact on its results and 

on patient care, is generally unreported. 

 

The lack of a routine methodology for GEP based COO assessment has led 

investigators to develop IHC based approaches for the molecular classification in 

DLBCL, using proteins that either were already known to be expressed in GC and post-

GC cells or that were unravelled by the GEP studies. In 2005 Hans and co-workers302 

established the first IHC algorithm, allegedly with high sensitivity for GEP 

classification. Subsequently, eight further strategies303-308 have been published, most 

of which reported a better concordance with molecular-based classification than the 

Hans algorithm and the ability to segregate two groups with significantly different 

outcome. However, many investigators continue to question the clinical applicability 

of these algorithms.26,51,94,309-313 Results are typically inconsistent and are generally 

poorly reproducible by independent groups. Nevertheless, IHC is attractive as a 

surrogate for molecular stratification in DLBCL and the Hans algorithm is being used 

to define DLBCL of the ABC-type in clinical trials offering NF-kB targeting agents to 

patients with this subtype. 
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3.2 Objectives 

This study set out to provide an up-to-date systematic comparison of nine IHC scores 

(Figure 3.1) for molecular classification in a new large dataset of diagnostic DLBCL. 

Our primary objective was to test the reliability of these methodologies in classifying 

individual cases of this cohort. IHC profiles for single proteins and each algorithm 

were assessed and agreed among three expert observers. A consensus matrix based 

on all scoring combinations and the number of subjects for each combination was 

constructed in order to assess reliability. As a secondary aim, the survival impact of 

individual markers and the nine classifiers was evaluated. 

We hypothesized that the IHC algorithms are not reliable predictors of the molecular 

classification of DLBCL. The approach used in this study addresses the important 

question of whether IHC is or not a reliable alternative to molecular-based methods 

to be used for clinical decisions in DLBCL. 
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Figure 3.1 Algorithms applied in the current study.  

(A) Hans; (B) Hans modified; (C) Nyman; (D) Muris; (E) Choi; (F) Choi modified; (G) Tally; (H) Natkunam; (I) Visco-Young.
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3.3 Materials and Methods 

3.3.1 Patients 

Patients with de novo DLBCL included in the studies detailed here were treated in 

two institutions, as already described in Chapter 2. Patient selection was dependent 

on the availability of good quality FFPE tissue of the diagnostic biopsy and extended 

clinical and follow-up data. December 2009 was selected as the cut-off date of 

diagnosis to include patients in the study to guarantee an acceptable follow-up.  

Overall, 161 R-CHOP chemo-immunotherapy treated patients and 148 patients 

treated with other regimens were included in these studies. Survival according to 

treatment era and institution is detailed in Figure 3.2. Whenever no prognostic 

studies were planned, data from all patients were included. Clinical data for the R-

CHOP cohort, including response to chemotherapy is detailed in Table 3.1. The 

median follow-up of the R-CHOP cohort is of 55 months. 

Due to TMA tissue loss and technical obstacles a variable number of cases were 

included in the final analysis. A comparison of clinical features and outcome between 

cases included and the ones lost was done in parallel and will be presented in the 

results. 
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Figure 3.2 Kaplan Meier curves according to treatment regimens and treating institution.  

A&B: OS and PFS of patients according to treatment regimen. 114 of 148 patients received anthracycline based regimens (CHOP, MACOP-B, VAPEC-
B) and are highlighted in the curve. The remaining were managed palliativelly or did not receive treatment and were excluded from analysis;  
C&D: OS and PFS of patients stratified by treatment institution. Differences between groups were determined using the chi-square method with 
significance defined as p<0.05

A B 

C D 
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Table 3.1 Clinical features of the R-CHOP series 

 Barts (77 patients) IPO (84 patients)  

Clinical characteristics number % number % p-value 

Male 53 68,8 39 46,4 0,004 

Age, years (Median, range) 57 (19 - 86)  64,5 (16 - 85)  NS 

Age > 60 years 34 44,2 50 59,5  

Stage III-IV 44 57,1 44 52,4 NS 

"B-symptoms" 18 26,5 21 25,3 NS 

≥ 2 Extranodal sites  13 16,9 16 18,8 NS 

High LDH 38 51,4 67 79,8 < 0.001 

ECOG PS ≥2 8 10,5 15 17,9 NS 

IPI     0,01 

Low 39 50,6 26 31,0  

Low-intermediate 11 14,3 22 26,2  

High-intermediate 22 28,6 21 25,0  

High 5 6,5 15 17,9  

IPI ≥3 27 35,1 36 42,9 NS 

Response     < 0.001 

CR/CRu 47 61,0 68 81,0  

PR 16 20,8 11 13,1  

SD 2 2,6 0 0,0  

PD/failure 11 14,3 4 4,8  

Relapse rate (from CR/CRu)  11 23,4 16 23,5 NS 

Death rate 26 33,8 21 25,0 NS 

Causes of death     NS 

Lymphoma 19 73,1 12 57,1  

Toxicity 2 7,7 6 28,6  

Follow-up (median, range) 65.5 (16.3 - 110.4)  47.3 (0.6-94)   

ECOG: Eastern Cooperative Oncology Group; LDH: lactate dehydrogenase; IPI: International 
Prognostic Index; Low-int: low-intermediate; High-int: high-intermediate; CR: complete 
response; PR: partial response; SD: stable disease; PD: progressive disease; NS: not significant 



Chapter 3 Results 

119 

3.3.2 TMA and IHC 

Sample collection followed informed consent in accordance to the declaration of 

Helsinki. Ethical approval for this study was obtained from local ethics regional 

committees.  

For the Bart’s TMAs triplicate 1 mm2 cores were taken from regions of biopsy material 

rich in malignant cells identified on H&E stained sections. Representative tumour 

regions had been previously marked by me and an expert Haematopathologist [Dr 

Maria Calaminici (MC)]. Tonsils were cored in all TMAs as internal controls. For the 

IPO TMA, duplicate 1.5 mm2 cores were taken after selection of representative 

tumour areas by JC. Staining for the pan B-cell marker CD20 was performed on TMA 

sections to confirm adequate tumour representation. TMAs were sectioned and 

transferred onto glass slides. After dewaxing, blocking in hydrogen 

peroxide/methanol solution, rehydration, and pressure-cooker antigen retrieval, the 

slides were subjected to immunostaining. Primary antibody reaction for CD10, BCL6, 

BCL2, MUM1, FOXP1, GCET1 and LMO2 was detected using a peroxidase-labelled 

system (Super-Sensitive Polymer-HRP IHC Detection System, BioGenex). An 

immunological amplification method (CSA II, Catalyzed Amplification System, Dako) 

was used exclusively for BCL6. Heat induced antigen retrieval using a pressure cooker 

was used for all antibodies. In each batch of staining, tonsil sections were analyzed 

simultaneously for all markers. All IHC was performed in the same laboratory. Primary 

antibodies, conditions of use and source are provided in Table 3.2. Representative 

negative, positive and control cases are shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 



Chapter 3 Results 

120 

Table 3.2 Primary antibodies and conditions of use 

Antibody Clone Species Dilution Source 

CD10 56c6 Mouse 1/250 Novocastra 

BCL2 124 Mouse 1/200 Dako 

BCL6 LN22 Mouse 1/500 Novocastra 

MUM1 MUM1p Mouse 1/400 Dako 

FOXP1 JC12 Mouse 1/500 Abcam 

LMO2 SP51 Rabbit 1/500 Abcam 

GCET1 Ram341 Mouse 1/100 Abcam 

CD20 L26 Mouse 1/2000 Dako 

 

 

3.3.3. Slide scanning, scoring and analysis 

Slides were scanned using the Hammamatsu Virtual Slide Scanner NanoZoomer 2.0 

(Hammamatsu), and viewed using the NDP.scan software.  

All cores were jointly visualized on a computer screen at low and high magnification 

by MC and Dr Abigail Lee and myself to standardize the scoring criteria for each 

antibody applied. Each case was scored as positive or negative according to the cut-

points defined in the original publications, as detailed in Figure 3.1. Thus, some 

antibodies were scored using more than one cut-point, as detailed in Table 3.3. As 

most publications report only scant methodological details, negative cases with 

absent internal controls were deemed unclassifiable, as recommended by the 

Lunenburg Lymphoma Biomarker Consortium (LLBC) guidelines.314 This and the 

absence of whole cores in the TMA were the primary causes for the inability to score 

(unclassifiable cases are detailed for each antibody in Table 3.3). Whenever individual 

cores of a given case showed non-concordant results, the core with highest large cell 

infiltration was used. After all observers had assessed each staining, a meeting was 

organized to reach consensus on discordant cases. In almost all cases a 3:0 decision 

was reached, but in less than 5% of the cases a 2:1 score was accepted. 
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As expected, consensus was higher for the antibodies in use in the diagnostic setting, 

such as CD10, BCL2 and MUM1. LMO2 shows a nuclear distribution and is also 

expressed by T-cells so analysis also included nuclear size. FOXP1 scoring was difficult 

in some cases due to the background staining and inter-patient differences in staining 

intensity. 

 

3.3.4 Statistical analysis 

Correlations between the expression of specific proteins or allocation to a particular 

algorithm and clinical parameters were tested using the Pearson’s test. 

 

3.3.4.1 Outcome analysis 

Results regarding single marker expression and algorithm distribution refer only to 

the more recently diagnosed and R-CHOP treated cohort, given that biomarker 

distribution was under prognostic scrutiny. Differences in clinical characteristics 

between the two R-CHOP series were tested using chi-square or Fisher’s exact test, 

when appropriate.  

In the univariate analysis, log-rank tests were performed. All parameters of the IPI 

were assessed for prognostic impact. Relevant interactions of the markers studied 

with the IPI factors were assessed. Cox proportional hazards models were used to 

obtain estimates of the hazard ratios (HR) with 95% confidence intervals (CI). Models 

included all variables with a p-value ≥ 0.2 on univariate analysis. Both backward and 

forward selection methods were used to test independent significance of each 

variable included in the models.  

 

The outcomes, measured from date of diagnosis to occurrence of event or date of 

last follow-up, were: OS, the event being death from any cause; and PFS, the event 

being failure of treatment (including not achieving complete response (CR) or 

progressing after achieving CR) or death of any cause. Median follow-up was 

calculated for patients alive at last follow-up. Statistical analysis was performed using 

SPSS version 19.0 (SPSS, Chicago, IL) and Prism version 5.03 (GraphPad Software, La 
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Jolla, CA). 

3.3.4.2 Comparison of IHC COO algorithms 

All cases included in the arrays at the time of the current study were used in the 

comparison of algorithm performance, independently of the treatment received. 

Firstly data compiling the classification of all cases according to each of the IHC 

classifiers was gathered. Subsequently, a consensus matrix based on the nine 

classifiers and number of subjects for each combination was built. Concordance 

across all methods was measured using the kappa statistics.  
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Figure 3.3 Immunohistochemistry results for each antibody.  

Original magnification: x20. Cases were considered CD10 negative if CD10 staining fibroblasts 
were encountered in the tumour. In LMO2 negative cases was common to observe positive T-
cells in the microenvironment, constituting an ideal internal control. GC, germinal centre.
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3.4 Results 

3.4.1. Analysis of individual markers  

With the exception of the Natkunam algorithm, all classifiers tested use a 

combination of antigens for final allocation. In fact, it is generally accepted that no 

single protein expression appears able to mirror the GEP classification.  

Although our main aim was to compare the results from the different algorithms, we 

hypothesized that the comparison of single antigen expression patterns from our 

series with those from others reported in the literature would give us an indication of 

the reliability of IHC for protein studies in this setting. Results from single protein 

expression of the R-CHOP treated cases (positive, negative and unclassifiable cases) 

are illustrated in Table 3.3. We could not document a survival impact of the 

expression of any the proteins studied, including BCL2 or BCL6. 

 

CD10 is a glycoprotein detected in normal lymphoid ontogeny on pro-B cells and 

mature GC B-cells. In normal and malignant LNs, CD10 expression is also seen in cells 

from the stromal compartment. In the context of lymphoma it helps identifying cases 

of GC derivation, such as follicular lymphoma or a subset of GCB-DLBCLs. In our series 

its expression was detected in 28%, in keeping with previous results.51,302,303,306,311 As 

has been previously suggested, CD10 positive cases might have a better OS, although 

the data available is not entirely concordant. For the purposes of ascertaining true 

outcome impact of each marker, we tested potential interactions with clinical 

parameters. In our series, the CD10 expressing cohort was enriched for younger 

patients (p=0.03), whereas negative cases had higher LDH (p=0.02). However, no 

differences in the IPI distribution were detected. We observed a positive correlation 

between CD10 expression and other GCB-“specific” proteins, including BCL6 

(Pearson´s 0.311, p<0.001) and GCET1 (Pearson´s 0.45, p<0.001), and a negative 

correlation with the post-GC marker MUM1 (Pearson´s -0.164, p=0.05). 
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Table 3.3 Single marker analysis of the R-CHOP cohort 

Antigens (cut-off) positive [n (%)] negative [n (%)] unclassifiable (n) 

CD10 (30%) 41 (28) 106 (72) 4 

BCL6 (30%) 86 (61) 54 (39) 11 

MUM1 (30%) 109 (76) 35 (24) 7 

MUM1 (80%) 60 (42) 84 (58) 7 

GCET1 (30%)a 29 (20) 118 (80) 4 

GCET1 (80%) 12 (8) 135 (92) 4 

FOXP1 (30%) 116 (82) 25 (18) 10 

FOXP1 (60%) 102 (72) 39 (28) 10 

FOXP1 (80%)b 77 (55) 64 (45) 10 

LMO2 (30%) 79 (56) 62  (44) 10 

BCL2 (50%) 96 (69) 43 (31) 12 

Absolute number and percentage of classifiable cases is highlighted for each antigen. Staining 
and analysis were performed centrally. a a significantly higher proportion of GCET1+ cases 
(30% cut-off) was detected in patients diagnosed at Bart’s Hospital (p=0.006); b a significantly 
higher number of patients diagnosed in IPO were considered positive for FOXP1 at the cutoff 
of 80% (p=0.001). n: number; NS: not significant 

 

 

Both GCB and ABC-DLBCLs can haorbour genetic aberrations involving BCL6, a 

transcription repressor molecule essential for the formation of the GC reaction. Most 

genetic aberrations involving BCL6 lead to protein overexpression. In consequence, B-

cells cannot differentiate into plasma cells but continue to divide and proliferate. 

GCB-DLBCLs harbour mutations within the BCL6 auto-regulatory domain, whereas 

ABC-DLBCLs exhibit translocations deregulating BCL6. Nevertheless, BCL6 protein is 

considered a GC marker.  

BCL6 expression in our series was comparable to previous reports.302,311,313,315 A weak 

positive correlation was observed with other GCB-related proteins (CD10; GCET1, 

Pearson´s 0.39, p<0,001; and LMO2, Pearson’s 0.51, p<0.001). BCL6+ patients were 

more likely to have low-risk IPI (p=0.05), and in this IPI subgroup BCL6 expression 

alone conferred a better 3-year OS (79 vs 93%, p=0.04). When the whole dataset was 
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analysed, BCL6 was unable to differentiate patients with distinct outcome. This 

contrasts with recent data suggesting that BCL6 protein overexpression alone is 

associated with an adverse prognosis, independently of the IPI score.316 

 

The MUM1 gene codifies for a lymphoid-specific transcription factor. MUM1 was 

introduced in the first IHC algorithm for prediction of the molecular stratification as a 

post-GC marker. Its expression at a cut-off of 30% was detected in 109 (76%) of our 

subjects, higher than previously reported.302,305  However, using an 80% cut-off, 42% 

of the patients were deemed positive for MUM1, which is in keeping with Choi’s 

data.306 Moreover, this higher cut-off improved correlation with other post-GC 

markers, such as FOXP1 (Pearson´s 0.19 to 0.37, p<0.01). A significant correlation 

between BCL2 and MUM1 expression was also documented (Pearson´s 0.36 to 0.37, 

p<0.01). 

 

Centerin (GCET1) protein expression is restricted to a subset of GCB cells317 and 

should specifically identify GCB DLBCLs. However, expression of this marker was 

detected in only 8% of cases when assessed at a cut-point of 80%, and this only 

increased to 20% at the lower cut-off of 30%. At both cut-points, although positive 

patients were more likely to be younger (p=0.003), there was no association with IPI. 

At the 30% cut-off for expression, weak positive correlations with other GC markers, 

including CD10 and LMO2 (Pearson’s 0.34, p<0.001), and negative correlation with 

MUM1 (Pearson’s -0.19, p=0.03) were detected, with weaker correlations at the 

higher cut-point. 

 

FOXP1 is a transcription factor, which has been detected at high levels in cases lacking 

GCB markers and expressing BCL6 and MUM1.318 In our cohort, 82% of the patients 

had >30% and 72% had >60% of FOXP1+ cells. If a higher cut-off of 80% was used, a 

higher proportion of patients treated in the Portuguese institution were allocated to 

the FOXP1+ group (67% vs 40%, p=0,001).  
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LMO2 emerged from GEP studies as a strong prognostic marker in DLBCL. The LMO2 

protein is expressed in LN solely by the nucleus of normal GC B-cells and by a subset 

of GCB-DLBCLs.319 Natkunam et al.304 proposed that LMO2 alone has a high predictive 

power for GCB allocation and consequently a positive impact on patient survival, 

even after the introduction of rituximab. We detected LMO2 staining in 79 (56%) 

cases, which is in keeping with the original data. However we were not able to detect 

any prognostic value in our cohort. 

 

BCL2 is an oncogene commonly targeted in DLBCL, activating an anti-apoptotic 

program in the malignant cells. Forty-five per cent of GCB-DLBCLs are associated with 

t(14;18) translocations and consequently have BCL2 overexpression. This oncogenic 

event was divergently correlated with outcome. The majority of ABC-DLBCLs have 

BCL2 overexpression due to transcriptional deregulation. Studies have reported a 

negative outcome impact in these cases. The expression of BCL2 by the malignant B-

cells has been associated with poor outcome in most studies.94,96,320,321 However, its 

survival impact appears to be dependent on the COO allocation, rituximab 

treatment322,323 and by the coexistence of MYC genetic aberrations. In our series, 

BCL2 was expressed in 96 (69%) patients, with no association with survival being 

detected.  

 

3.4.2 Algorithm classification: distribution and consistency 

According to the original and most widely utilized Hans method302 we classified 53 of 

our subjects as GCB (Table 3.4). CD10 expression was determinant for this allocation, 

as 41 of these patients were positive for this antigen. This is in keeping with the 

original publication. The remaining 12 cases were all BCL6+ and MUM1-. Within the 

non-GCB cohort, BCL6 expression was detected in half of the cases. Hans’s allocation 

was similar between the two R-CHOP cohorts and no association with clinical 

characteristics was found. 
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The modified Hans was proposed to decrease inconsistency introduced by the anti-

BCL6 antibody.307 According to modified Hans criteria, 61 (42%) patients were 

classified as GCB, including all GCB patients from the Hans method and a further eight 

patients scored CD10-/MUM1-.  

 

The Choi classifier306 relies on the expression of three antigens (GCET1, MUM1 and 

CD10) for initial allocation and on a further two (BCL6 and FOXP1) for final decision. 

Cut-off points were adopted according to appropriate detection of a single series of 

molecularly profiled patients. Using the cut-offs defined in the original paper, 

allocation into GCB and non-GCB groups in our cohort was 65 (45%) and 79 (55%) 

patients, respectively.  

 

Acknowledging the complexity of the Choi algorithm, Meyer et al.307 proposed the 

modified Choi. In our hands, only 35 (25%) of patients were classified as GCB. 

Compared to the Choi algorithm, the modified version re-classified both GCB (64 

cases) and non-GCB cases (8 cases). Due to the different proportion of FOXP1+ 

patients between the two R-CHOP series, the Portuguese series was enriched for ABC 

cases using the Choi (p=0.05) and the modified Choi (p=0.01) criteria. The Choi ABC 

cohort was enriched for older patients (p=0.01). 

 

From the clinical point of view it would be more relevant to use a method that is 

highly sensitive at identifying ABC patients, the subgroup that may be more amenable 

to targeting with new agents. Nyman et al.305 proposed a method for this purpose, 

using only post-GC antibodies (MUM1 and FOXP1). Due to a high proportion of 

positive cases for both markers, in our series only 18 patients (13%) were considered 

non-ABC using this approach.
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Table 3.4 Distribution of R-CHOP treated patients according to the nine IHC classifiers 

 

Classifiers      Bart’s [n (%)]                      IPO [n (%)]  original data (%)  

 
GCB non-GCB GCB non-GCB GCB non-GCB p-value 

Hans 29   (44) 37   (56) 24   (32) 50   (68) 42 58 NS 

Hans* 35   (51) 34   (49) 26   (34) 50   (66) 54 56 NS 

Choi 37   (54) 32   (46) 28   (37) 47   (63) 58 42 0.05 

Choi* 22   (34) 43   (66) 13   (17) 62   (83) 49 51 0.01 

Natkunam 37   (57) 28   (43) 42   (55) 34   (45) 55 45 NS 

Nyman 13   (19) 55   (81) 5   (7) 71   (93) 45 55 0.03 

Muris 36   (56) 28   (44) 35   (45) 42   (55) 55 45 0.03 

Tally 17   (26) 48   (74) 13   (17) 62   (83) 45 55 NS 

Visco-Young 29   (43) 38   (57) 24   (32) 52   (68) 53 47 NS 

* modified; p-values refer to differences between patients treated in the different 
institutions. 

 

 

The Muris classifier303 is the only method using BCL2. In our series 71 (50%) patients 

were classified as GCB, 43 of which were BCL2-, suggesting that this marker plays a 

predominant role at defining this COO subgroup. 

 

The Tally algorithm307 has the unique feature of attributing similar weight to GCB and 

post-GCB specific markers for allocation. There was a predominance of ABC cases 

(110, 78%) in our cohort. In 34 cases LMO2 expression had to be used for decision, 

being positive in half of the cases.  

 

Finally Visco et al.308 recently launched another method with an increased overlap 

with GEP data. Similarly to Hans, CD10 plays the central role for GCB allocation (41 of 

the 53 GCB patients were CD10+). Regarding non-GCB allocation, BCL6 plays less of a 

role than in the Hans classifier as in only 15 CD10-/FOXP1- patients was BCL6 

expression taken into account for allocation. As with the Choi classifier, there was 

enrichment for older patients in the Visco ABC subset (p=0.02).  
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To address the question of how an individual case is classified across all methods, we 

then performed a parallel classification of all tumours using the nine COO algorithms.  

 

Results for all classifiers were available for 242/298 cases (81%). Surprisingly, only 

4.1% of the tumours were classified as GCB by all methods. The degree of agreement 

in allocation of patients to the non-GCB group was significantly higher, with 21% of 

patients being allocated to this group by all methods and 20.6% being classified as 

non-GCB by all methods except one - either the Choi (2 cases), the modified Choi (2 

cases), the Natkunam (33 cases), or the Muris (13 cases) algorithms. Of note, the last 

two are the only methods in which allocation to the GCB subset was higher.  

 

We then sought to assess pair wise agreement using the general kappa statistics, a 

method that tests for inter-scoring reliability. The kappa is considered a robust 

statistical method since it takes into account the agreement occurring by chance. Fig. 

3.2 illustrates the strength of agreement among all scoring systems. Poor and fair 

kappa values were detected in 44.4% on pair wise concordance assessment; and in 

only 20% was kappa excellent or good. The Natkunam algorithm is the least 

concordant with the remaining, showing a poor agreement with four algorithms and 

only fair agreement with the other four. The highest level of agreement was found 

between the Choi and the Visco algorithms (Kappa=0.85). From all the methods 

investigated, the Hans and the Hans modified exhibited the highest degree of 

consistency with other algorithms.
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Kappa Hans Hans* Nyman Choi Choi* Natkunam Tally Muris Visco 

Hans          

Hans*          

Nyman          

Choi          

Choi*          

Natkunam          

Tally          

Muris          

Visco          
 

 Poor Fair Moderate Excellent Very good 

K < 0.20 0.21 - 0.40 0.41 - 0.60 0.61 - 0.80 0.81 - 1.00 

 

Figure 3.4 Pair wise agreement according to kappa statistics.  

*modified 

 

 

3.4.3 Survival Analysis 

As the IPI remains the most robust prognostic discriminator in DLBCL, we assessed 

whether its individual variables or subgroups had value in predicting outcome in the 

R-CHOP cohort. On univariate analysis, age, stage, performance status and IPI groups 

were significant in predicting OS, whereas number of extranodal sites, staging, 

performance status and IPI groups were significant in predicting EFS.  

No immunohistochemical marker alone achieved significance for outcome prediction 

in R-CHOP treated patients. Although patients expressing FOXP1 (60% cut-point) had 

a lower OS (72% vs 82%, p=0.09), and patients expressing BCL2 had a lower EFS (57% 

vs 77%, p=0.06), none reached significance on forward stepwise multivariate analysis 

together with either the IPI factors or the IPI subgroups.  

 

As shown in Table 3.5, none of the algorithms rival the IPI for OS or PFS prediction in 

R-CHOP treated patients. We also looked at survival differences between patients 

classified as either GCB or non-GCB by all methods versus the remaining patients with 

heterogeneous classification. Although OS was similar among groups, 3-year EFS was 

significantly better for the GCB set (100%) compared to the ABC set (78%) or the 
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remaining patients (60%)(p=0.004). 

 

As survival was similar across all classifiers, we sought to determine whether outcome 

stratification could be improved by analysing the expression of additional proteins 

not included in the original algorithms. If this was demonstrated, it would suggest 

that IHC classifiers are over-simplified methods for the purpose of outcome 

stratification. As an example, BCL2 expression was associated with worse PFS in GCB 

cases only, when incorporated into the Hans (54% vs 88% p=0.006), Hans modified 

(52% vs 83%, p=0.009), Visco (54 vs 86%, p=0.01), Natkunam (45% vs 78% p=0.02) 

and Choi modified (53% vs 86% p=0.02) methods. Similarly, expression of the post-GC 

markers FOXP1 and MUM1 was associated with worse survival in those cases defined 

as GCB using the Hans and Natkunam algorithms (data not shown). 

 

 

Table 3.5 Survival analysis according to clinical characteristics, IPI and COO classifiers 

Variables 3-year OS  3-year PFS  

         %  p-value           %     p-value 

Sex (male vs female) 74 vs 77 NS 58 vs 72 NS 

Age (<60 vs >60 y) 83 vs 68 0.03 66 vs 64 NS 

Number extranodal sites (<2 vs ≥2) 79 vs 53 0.09 71 vs 33 0.003 

Ann Arbor stage (I-II vs III-IV) 87 vs 63 0.001 83 vs 49 <0.001 

ECOG performance status (<2 vs ≥2) 81 vs 48 <0.001 73 vs 23 <0.001 

LDH (low vs high) 79 vs 72 NS 73 vs 60 NS 

International Prognostic Index  

(Low/ Low-int/ High-int/High) 

90 vs 72 vs 

73 vs 45 

<0.001 79 vs 80 vs 

53 vs 21 

<0.001 

Algorithms (GCB vs non-GCB/ABC)     

Hans 77 vs 74 NS 66 vs 66 NS 

modified Hans 75 vs 75 NS 63 vs 66 NS 

Choi 75 vs 75 NS 63 vs 62 NS 

modified Choi 74 vs 75 NS 63 vs 62 NS 

Muris 79 vs 71 NS 67 vs 64 NS 

Nyman 76 vs 75 NS 75 vs 64 NS 

Tally 78 vs 73 NS 72 vs 64 NS 

Natkunam 71 vs 78 NS 59 vs 74 NS 

Visco-Young 75 vs 75 NS 62 vs 68 NS 

OS: overall survival; PFS: progression-free survival; ECOG: Eastern Cooperative Oncology 
Group; LDH: lactate dehydrogenase; IPI: International Prognostic Index; Low-int: low-
intermediate; High-int: high-intermediate; NS: not significant
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3.5 Discussion 

The tumour molecular profiling is for the first time opening prospects for 

personalized therapy in DLBCL. Clinical trials utilizing GEP for COO allocation are 

underway and will clarify the utility of targeted therapies in the poor risk ABC 

subtype. However, the applicability of molecular classification into clinical practice 

will require a robust, affordable and reproducible methodology for designation of 

molecular sub-types with clinical and prognostic relevance.  

 

It was hypothesized that IHC approaches would be useful surrogates for classification 

of DLBCL subsets, would be readily applicable in clinical practice and would be 

incorporated into diagnostic work-up within haematopathology clinical laboratories. 

However, based upon previous work and the data presented here, we suggest that 

much work needs to be done to standardize IHC methods, which currently should be 

considered unreliable surrogates for molecular classification in DLBCL.  

 

We provide for the first time a systematic analysis of the nine IHC COO classification 

algorithms in a representative dataset of diagnostic DLBCLs. This study compares 

single marker and algorithm distribution with previous reports and analyses the 

survival impact of these data in conjunction with the well-established clinical 

prognostic score IPI. However, the main objective was to describe how each 

individual sample scored by all classifiers. This analysis does not imply any 

comparison across samples from different tumours (with inherent differences in the 

quality of the material and consequently in the results obtained), but only how each 

method performs within the same tumour sample to assign the sample to a specific 

sub-type. Whereas this study would have been enhanced by the availability of GEP as 

the “gold-standard”, the methodology employed here does not require such a 

comparison, since we sought to examine the robustness of the more commonly used 

IHC algorithms and their ability to classify DLBCL compared with each other. 

Using the kappa test, a statistical method that takes into account the agreement 

occurring by chance, we document an extremely low concordance across all 

classifiers, especially for cases more likely to represent the GCB subtype (only 6%). 
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Scoring allocation appeared more consistent across all methods for the non-GCB 

group (but still as low as 25%), confirming the data from previous groups using paired 

GEP and IHC.79,307,311 

 

Classifier distribution was heterogeneous. Allocation to the GCB subtype was less 

frequent compared to the non-GCB, in line with the findings of others.310,311 Using the 

most common Hans classifier, a proportion of molecularly defined GCB cases are 

likely being allocated to the non-GCB group due to higher expression of MUM1. The 

Nyman method appears to have too low specificity for detection ABC cases as only 18 

patients were considered non-ABC using this method. Similarly, a predominant 

number of cases were classified as ABC using the Tally method, driven by the high 

expression of FOXP1 and MUM1 in our series. The Choi classifier is too complex, as 

both GCET1 and MUM1 had almost no impact on patient allocation. This method is in 

our experience very similar to that of Visco.  

We report low but significant correlations of expression of GCB markers, including 

CD10, BCL6 and LMO2. BCL6 expression was associated with both GCB and ABC 

markers, supporting the evidence that BCL6 expression is not entirely restricted to 

GCB or ABC B-cells as both can harbour genetic aberrations that drive protein 

overexpression. However BCL6 detection required an amplification step, making it 

difficult to standardize across laboratories. 

We identified a smaller proportion of cases expressing GCET1 than previously 

reported. In the original study306 an amplification method was used to enhance 

GCET1 staining, while others used a different antigen retrieval strategy.307 This, 

together with the staining pattern of GCET1, might explain our results. However, as 

this antigen has been studied by relatively few groups, we propose that more 

experience has to be gathered on patterns of expression and optimal staining 

procedures for GCET1 before this is widely incorporated into DLBCL classification. The 

expression of the post-GC marker MUM1 is incorporated in most of the algorithms, in 

spite of the fact that IHC assessment for MUM1 is highly sensitive to laboratory 

variations and inter-interpreter scoring. We noted >30% expression of MUM1 in a 

higher proportion of patients than previously reported and this cannot be explained 
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by common reasons such as non-specific cytoplasmic background staining and target 

cell artefacts.314 Choi et al. claimed that a higher cut-off level of expression of 80% 

was required to achieve high specificity for ABC cases. Using this cut-point, 42% of 

our patients were deemed positive for MUM1 expression, in keeping with Choi’s 

data. This, however, highlights the difficulties of standardizing results based upon 

arbitrary cut-offs.  

 

We also documented significant differences in the proportion of cases expressing 

FOXP1 in 80% of malignant B-cells between the Portuguese and the English datasets. 

Although the biopsies were obtained in the two countries, staining and analysis were 

performed in the same laboratory. Whether this is a reflection of different fixation 

and storing methods, the use of arbitrary cut-offs or a true ethnic difference still has 

to be demonstrated and further population studies will be required to address this 

question. 

 

As has already been demonstrated in other cohorts324, we detected associations 

between clinical factors and protein expression. In both Choi and Visco classifiers, the 

ABC subset was enriched for older patients. This suggests that clinical prognostic 

factors might interact with biological predictors such as the COO classification for 

DLBCL.  

Many authors have questioned the prognostic impact of IHC classifiers. Thus, our 

secondary aim was to analyse survival according to these algorithms. It is recognized 

that samples collected over a long period of time have differences in quality that 

might impact adequate interpretation of immunostaining results. This is particularly 

important when survival analysis is undertaken. As only recently diagnosed R-CHOP 

treated cases were included, this problem is overcome in our studies. None of the IHC 

classifiers was able to predict outcome in this series. Others, particularly using the 

Hans method, previously demonstrated this. We acknowledge that the R-CHOP series 

analysed (151 cases) is limited and the number of events registered during the study 

period render it underpowered to detect differences in survival between the two 

groups. However, we believe this fact supports our hypothesis that IHC classifiers are 
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inadequate to recognize the molecularly defined DLBCLs. Analysing individual 

markers not included in the algorithms can improve outcome prediction, as has been 

demonstrated by us and others97 using BCL2.  

Our study challenges the use of any IHC COO classifier in DLBCL, and it is important to 

resolve this, as this biological feature provides not only prognostic information but 

also offers the window for targeted therapies to improve outcome in this disease. 

 

Further studies approaching the COO molecular classification of DLBCL should only be 

made in the context of prospective clinical trials.  A large number of retrospective 

studies, including ours, have been published that had so far no impact on changing 

patient’s management apart from questioning the utility of IHC for this purpose. 

There is, together with our data, enough evidence to suggest that at the present time 

IHC is not a reliable surrogate of the molecular classification of DLBCL. Taking our 

data into consideration, it isn’t rational to recommend any specific classifier for 

further use in the clinical practice. Despite the advances in reagents and automation, 

the use of IHC is hampered by variable consistency, reduced reproducibility, and 

quality assurance disparities, resulting in poor concordance, validation and 

verification. Once a concerted multi-institutional effort towards a precise 

standardization of every single procedural step known to impact on IHC results is 

made, this technology might reunite potential for use in surrogate studies such as the 

COO. This would be ideal, as IHC is an inexpensive technology that can be entirely 

manually performed and that requires no batching of samples. The turnaround of the 

results is also extremely acceptable.  

Meanwhile simpler and more affordable molecular technologies are being explored 

for the molecular classification in DLBCL. FFPE samples from patients enrolled in the 

REMoDLB trial are being studied using the Illumina whole-genome DASL technology, 

which enables performing GEP in low yield, partially degraded RNA samples. 

Validation of GEP in FFPE tumour biopsies is in fact crucial for the clinical setting and 

has been previously done. More recently the Nanostring nCounter technology has 

been applied in FFPE samples from the LLMPP.79 The authors report a 20-gene GEP-

based assay (Lymph2Cx) developed with the objective of accurately assigning samples 
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to the same COO group as with Affymetrix-based original method. The new assay is 

robust, accurate and results can be retrieved in less than 36 hours. Importantly, both 

the DASL and the nCounter assays require low nucleic acid input and guarantee highly 

reproducible results for a much affordable cost than the original array technologies. 

However it needs to be taken into account that such assays demand sample batching, 

which might not be feasible in the clinical setting. Profiling individual patients might 

hence be more costly than suggested.  

Having in mind that the protocols recommended by the companies selling molecular 

biology solutions are very detailed and precise, it is not surprising that independent 

groups obtain similar end products. The problem lies on the analysis. Scott et al. 

describe in the supplementary data one phenomenon that illustrates this issue.  As is 

well known, a number of samples, generally described as “unclassified”, fail to be 

allocated to either the GCB or the ABC groups. The authors report that around 15% of 

samples “migrated” in and out of the “unclassified” group between the Lymph2Cx 

and “gold standard” GEP method. This significantly decreases the concordance 

between the 2 methods to around 80%, similar to the concordance reported with IHC 

algorithms. This phenomenon highlights for misclassification even with GEP and has 

fundamental consequences in the context of clinical trials testing agents with 

selective activity to a given molecular subtype.  

In conclusion, there is a lack of standardized methodology for array analysis, which 

can lead to variable results both at the inter- and intra-laboratory level. This issue, 

which may impact on results, but most importantly, patient care, is generally 

unreported and should be a matter of future debate. 
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Chapter 4 Revisiting the immune microenvironment of DLBCL using a 

tissue microarray and immunohistochemistry: robust semi-automated 

analysis reveals CD3 and FoxP3 as predictors of response to R-CHOP 

 

 

4.1 Introduction 

As highlighted in previous chapters, rituximab primary refractory DLBCL has emerged 

as a particularly difficult group to cure. Furthermore, approximately half of the 

patients will eventually relapse after R-CHOP. As such, there is an urgent need for 

novel therapeutic approaches in these patients.  

 

The role of the microenvironment in DLBCL biology and outcome gained relevance 

when independent GEP studies defined distinct biological traits that were driven by 

the non-malignant cells in the tumours.12,34,74,76 Data supervised analyses delineated 

prognostic signatures that are enriched in genes encoding for ECM components, T-

cell and macrophage markers, and angiogenic mediators. Importantly, all studies 

suggest that a high expression of genes characteristic from the non-malignant cells in 

the microenvironment confers a better outcome in DLBCL. Functional validation of 

recurrent mutations compellingly relates DLBCL biology with inflammation and 

immune surveillance.325 These studies identify the lymphoma microenvironment and 

host inflammatory response as defining features in DLBCL. 

 

However, GEP data requires further validation and needs to be made simpler in order 

to be useful for clinical trial design and for clinical practice. Many methods can be 

used to validate GEP information. Most authors have focused on the use of IHC to 

enumerate and functionally characterize the microenvironment in DLBCL and other 

lymphomas. IHC can be extended to clinical practice, which makes it highly attractive 

as a diagnostic and prognostic tool. Nevertheless the results published regarding IHC 

analysis of the immune microenvironment in DLBCL are often 

contradictory.278,279,282,283,326,327 The use of inconsistent methodology likely explains 
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these results. Moreover, it is known that it is difficult to count reproducibly cells 

across large tumour areas manually. Categorization of the density of cell infiltration is 

used to overcome this problem, but results might be misleading and there is a lack of 

validation of cutpoints. 

 

 

4.2 Objectives 

The main scope of our study was to revisit the immune microenvironment of 

diagnostic samples of 309 patients with DLBCL by two different methods of semi-

automated image analysis. The semi-automated analyses have the advantage of 

being capable of analysing large tumour areas, making them ideal for prognostic 

exploration of IHC studies. We expected to detect a high degree of inconsistency 

between the results of the two systems, similar to what is reported when manual and 

automated analysis is compared. Finally, we aimed at describing the prognostic role 

of different immune biomarkers in 161 R-CHOP treated cases. Total T-lymphocytes 

and their functional subsets and macrophages were studied.  

 

 

4.3 Methods 

4.3.1 Patient characteristics 

Patient selection,  clinical characteristics and outcome of the patients included in this 

study were already described. As in the previous chapter, cutpoint and outcome 

analysis was based on the R-CHOP dataset.  

 

4.3.2 Tissue Microarray and Immunohistochemistry 

Ethical approval for this study was obtained from Local Regional Ethics Boards. 

Sample collection followed informed consent in accordance to the declaration of 

Helsinki. Triplicate or duplicate 1-1.5 mm2 cores were taken from representative 

tumour regions identified on H&E stained sections and confirmed by CD20 staining. 
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Dewaxed paraffin sections were rehydrated, blocked and subjected to heat antigen 

retrieval. CD3, CD4, CD8, CD68, TIA1 and FOXP3 were stained using a peroxidase-

labelled system (Super-Sensitive Polymer-HRP IHC Detection System, BioGenex) on 

the Dako-autostainer. Tonsil sections were simultaneously stained for all antibodies. 

Finally, sections were counterstained with haematoxylin. Detailed information on the 

staining protocol is provided in the Materials and Methods section. Primary 

antibodies and conditions of use are provided in Table 4.1. Heat induced antigen 

retrieval was used for all antibodies.  

 

 

 

Table 4.1 Primary antibodies and conditions of use 

Antibody Clone Species Source Dilution 

CD20 L26 mouse Dako 1/2000 

CD3 SP7 rabbit 
Lab Vision, 

Thermo Scientific 
1/500 

CD4 4B12 mouse 
Novocastra, 

Leica Biosystems 
1/500 

CD8 C8/144B mouse Dako 2,5/1000 

CD68 KP1 mouse Dako 1/8000 

FOXP3 263A/E7 mouse Abcam 1/100 

TIA1 2G9A10F5 mouse 
Immunotech, 

Beckman Coulter 
1/400 
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4.3.3. Semi-automated Image analysis  

4.3.3.1 Ariol SL-50 visual analysis software 

Slides were scanned using an Olympus BX61 microscope. Representative regions 

were selected manually using the tools available on the Ariol Software. Fibrotic and 

necrotic areas were excluded so that only representative tumour areas were brought 

forward for analysis (Figure 4.1).  Whole cores with less than 50% of tumour 

representation were also completely excluded from analysis.  

Using the methodology detailed in Chapter 2 and illustrated in Figure 2.1, the number 

of positive cells as well as the area of DAB stained per area of lymphoma tissue was 

estimated. The values obtained were corrected to a 1mm2 area and a mean for each 

patient was calculated.  

 

4.3.3.2 Pannoramic Viewer System 

Slides were scanned using the Pannoramic 250 Flash II scanner (3DHISTECH, 

Hungary). Meticulous marking of representative tumour areas was done on the 

Pannoramic Viewer computer interface and individual areas quantified. Using the 

DensitoQuant module the number of DAB stained pixels per area selected was 

quantified. This module distributes pixels to 3 grades of positive classes by their RGB 

values. We used only the top red and orange levels for identification of stained areas. 

After adjusting the brown tolerance and the score levels an optimal script was saved 

for each antibody. A preliminary analysis was undertaken to confirm the capacity of 

the script to identify DAB stained cells in independent cores. This optimal script was 

then applied for analysis in all areas. 

 

4.3.4. Cutpoint Determination 

Cutpoint discrimination was assessed using the recursive splitting algorithm in the 

rpart package (http://cran.r-project.org/web/packages/rpart/index.html) within the R 

statistical software.328  

To achieve a simple subdivision into two classes, the algorithm has been forced to 

http://cran.r-project.org/web/packages/rpart/index.html
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obtain a single split for each considered measurement, with a splitting criterion based 

on the Gini index. For robustness, only splits yielding ≥30 individuals in the smallest 

group by the recursive algorithm were considered. Two to ten cross validations have 

been performed for each measurement to check for consistency of each cutpoint, 

showing no modifications in the outcomes.  

A more comprehensive explanation of this method is provided in Chapter 2. Dr 

Emanuele Mazolla and Dr Donna Neuberg performed this analysis. 

 

 

4.3.5 Statistical Analysis 

Differences between patient’s groups were tested using χ2 or Fisher’s exact test, 

when appropriate. Association between pairs of biomarkers has been tested using 

the Fisher’s exact test. Pearson’s correlation was calculated for all IHC variables and 

clinical parameters.  

 

The outcomes measured were: OS, defined as the time from diagnosis to death from 

any cause, with surviving patients censored at last follow-up; and PFS, defined as time 

from diagnosis to failure of treatment (including not achieving CR or relapse after CR) 

or death from any cause. Median follow-up was calculated for patients alive at last 

follow-up. For every quantified measurement survival has been estimated using 

Kaplan-Meier estimators, and differences between groups of the same measurement 

have been assessed with the Log-rank test. To accommodate for the optimization 

method within the splitting algorithm we considered as significant only Log-rank p-

values <0.01.  

Multivariate analysis was performed using a Cox proportional hazards model 

(stepwise backward and forward methods) including IHC parameters together with 

the clinical factors included in the IPI with prognostic significance on univariate 

analysis. Statistical significance was set as p<0.05. Statistical analysis was performed 

using SPSS version 19.0 (SPSS) and Prism version 5.03 (GraphPad Software) and R 

version 3.0.2. 
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Figure 4.1 Selection of tumour representative regions.  

Fibrotic and necrotic areas were excluded using the tools available on the Ariol system.
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4.4 Results 

4.4.1 Heterogeneous density of immune cells in the microenvironment of DLBCL 

With minor exceptions, cells staining for the biomarkers investigated were 

homogeneously distributed across tumour sections. This was anticipated given the 

diffuse histological pattern of DLBCL and validates interpretation in partially 

represented cores where viable tissue is properly represented.  

 

As expected, patients with DLBCL had heterogeneous infiltration of total T-cells, their 

subsets and macrophages at diagnosis (Table 4.2 and Figure 4.2).  

 

CD3+ total T-cells were the most abundant cell type studied. We identified a balanced 

proportion of CD4 and CD8 towards a predominance of CD8+ T-cells when all cases 

were analysed simultaneously (Figure 4.2). The median ratio of CD4/CD8 for all 

measures taken was between 0.36 - 0.68. Using the antibody stated in Table 4.1, CD4 

expression was typically dim and more heterogeneous. Moreover the expression of 

CD3 and CD8 correlated better than the expression of CD3 and CD4 (Pearson’s-r for 

+cells/area 0.73 vs. 0.50, respectively). Although CD4 heterogeneity might represent 

biological inter-patient differences, a failure of IHC methods to properly identify CD4+ 

cells has to be considered as a possibility, specially when using a single antibody. 

 

FoxP3 is a nuclear CD4+ T-cell transcription factor expressed by regulatory and 

activated T-cells. Its expression is clear and discrete and therefore training and 

analysis was facilitated. As can be appreciated in Figure 4.2, FoxP3 expression shows 

a skewed distribution. The number of cells expressing FoxP3 varied between samples 

(median 228.6, range 0 - 3197), but less so than other markers (e.g. TIA1, median 

1648, range 31.7 - 5859).  

 

TIA1 is a cytoplasmic marker expressed by NK-cells and by cytotoxic T-cells 

independently of their activation status. CD56 staining was done to explore the 

extent of infiltration by NK-cells and was almost absent in our series (data not 
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shown). The absence of NK-cells suggests that TIA1 expression is specific to T-cells. 

However, the mean and standard deviation distribution suggests it is more abundant 

than CD8. This might be related to the punctate cytoplasmic expression of TIA1.  

 

CD68 is a cytoplasmic lysosomal protein expressed in all tissue macrophages.329 Large 

and interdigitant cells such as macrophages are difficult to quantify. Image analysis 

training was challenging and focused on capturing the areas of dark brown staining 

present in the cell bodies. CD68 expression was particularly heterogeneous in this 

cohort. 

 

 

 

 Table 4.2 Descriptive statistics showing heterogeneity of expression of biomarkers 

 Ariol Pannoramic Viewer 

 
Patients 

assessable, 
Number (%) 

Cells/mm2, 
Median 
(Range) 

% Stained 
area, Median 

(Range) 

Patients 
assessable, 
Number (%) 

Nr pixels/mm2, 
Median (Range) 

CD3 258 (84) 
2603 

(50-7480) 
11.8 (0-56.1) 243 (79) 

1.2x106 
(1.5x104-2.4x1012) 

CD4 206 (67) 
438.4 

(0-6730) 
5.23 (0-61.8) 231 (75) 

2.3x105 (147.4-
4.5x106) 

CD8 251 (81) 
857.5 

(25-3732) 
6.44 (0-37.6) 252 (82) 

5x105 (6566-6.6 
x107) 

FOXP3 253 (82) 
228.6 

(0-3197) 
0.68 (0-13.6) 246 (80) 

3.7 x104 (25.2-1.3 
x106) 

TIA1 249 (81) 
1648 

(32-5859) 
9.6 (0-80.5) 250 (81) 

1.6x105 (1079-2.5 
x106) 

CD68 252 (82) 
1380 

(85-6320) 
7.1 (0-44.4) 249 (81) 

6.5x105 (1.5x104-
6.1x106) 
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Figure 4.2 Biomarker distribution.  

A: Distribution of cases according to number of positive cells per area of viable tumour (mm2) as measured by the Ariol system. B: Distribution of 
cases according to % stained area as measured by the Ariol system. C: Distribution of cases according to number of stained pixels per area (µm2) as 
measured by the Pannoramic Viewer system. D: Distribution of cases for FoxP3 according to all parameters analysed. Bars represent the median 
values. 
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4.4.2 Excellent concordance between two systems of semi-automated image 

analysis for the characterization of the microenvironment 

Multiple studies have shown that manual quantification of abundantly expressed IHC 

markers is inconsistent. To this end a number of semi-automated systems for IHC 

analysis have been launched that allow analysing large stained areas and increase 

results consistency. However each one has its own features and scripts for analysis 

and it is unknown how robust results are when obtained from different computerized 

systems.  

 

We therefore expected to detect considerable inconsistency between two semi-

automated systems that use different methods of counting. This would have 

implications to the future of IHC studies utilising automated analysis. To test this 

hypothesis we examined the immune microenvironment in DLBCL by the Ariol and 

the Pannoramic Viewer systems. 

 

Firstly we compared two different measures obtained from the Ariol system: a) 

number of positive stained cells/ area of viable tumour and b) % stained area for each 

marker. Against our own expectations, we detected an excellent correlation between 

the two Ariol measures for each of the markers studied (Pearson’s r-values between 

0.92 and 0.98, p <0.0001) (Figures 4.3). Importantly the correlation was high even for 

the cytoplasmic markers TIA1 and CD68, for which training was more challenging and 

low interobserver agreements have been reported. These results suggest that, by 

applying our methodology, any of the two measures retrieved by the Ariol system can 

be used for future IHC studies.  
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Figure 4.3 Expression correlation for CD3, FoxP3 and TIA1.  

A-C: Correlation plots between the number of positive cells/area of viable tumour and % stained area for each case according to the Ariol System. D-
F: Correlation plots between the % stained area as quantified by the Ariol System and the number of positive pixels/area according to the 
Pannoramic Viewer.
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Figure 4.4 Expression correlation for CD4, CD8 and CD68.  

A-C: Correlation plots between the number of positive cells/area of viable tumour and % stained area for each case according to the Ariol System. D-
F: Correlation plots between the % stained area as quantified by the Ariol System and the number of positive pixels/area according to the 
Pannoramic Viewer. 
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We then compared the Ariol results with those obtained from the Pannoramic Viewer 

System, where quantification of the DAB stained pixels/area was performed. 

However, with the Pannoramic Viewer the tumour density is not taken into account 

and a precise selection of representative tumour areas is more demanding. Even so, 

we surprisingly detected significant correlations between the data retrieved from the 

two systems (Figure 4.3 and 4.4, D-F). Correlations were excellent for T-cells markers 

(Pearson’s r-values between 0.89 and 0.92) and more modest for cytoplasmic 

proteins (CD68, r - 0.77; TIA1, r - 0.67). This indicates that, contrary to manual 

analysis of IHC, semi-automated systems are robust and preferable for future IHC 

studies.  

 

4.4.3 CD3 and FoxP3 are potential predictors of response to R-CHOP 

Our secondary aim was to investigate the prognostic impact of the immune 

biomarkers in DLBCL. For this purpose we specifically selected the 161 R-CHOP 

treated dataset. Table 4.3 details survival, hazard ratios, confidence intervals and p-

values for all significant variables on univariate and multivariate analysis. 

 

We did not detect any interactions between the clinical variables detailed in Table 3.1 

and the biomarkers studied (data not shown). We applied strict quality criteria to 

image analysis to ensure robustness and reproducibility of the techniques. This meant 

that images were rejected for a number of markers that did not meet these criteria. 

The most common reason for exclusion was insufficient core size or degradation. 

 

The following clinical variables were predictive of worse OS by univariate analysis 

(Table 4.3): age >60 years (P=0.02), stage III-IV (P=0.001) and ECOG performance 

status ≥2 (P=0.0001). Patients with high IPI had a lower probability of survival 

(P=0.001). Achieving a complete response to R-CHOP was the strongest prognostic 

variable on univariate analysis of this cohort (P<0.0001). Using the rpart package 

within the R software and a recursive splitting algorithm according to the criteria 
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described previously, no cutpoint discrimination could be established for the studied 

biomarkers that helped discriminating patients with different OS. 

 

Regarding PFS, patients with stage III-IV (P=0.001), ECOG performance status ≥2 

(P<0.0001), ≥2 extranodal areas (P=0.001) and IPI ≥3 (P= 0.001) had a lower 

probability of survival (Table 4.3). Patients treated at Bart’s also had a lower PFS 

(three-year PFS of 52.4% vs 68.3%, P=0.03) compared to the ones treated at IPO. 

Using the rpart package we defined single cutpoints for CD3 and FoxP3 that 

segregated patients with different cell density and PFS. Although the number of 

pixels/area for CD3 presents with a Log-rank p-value slightly above the established 

0.01 limit for significance, the robustness of the split is confirmed by the 

corresponding 2x2 table in Figure 4.4. For both biomarkers, patients with a higher cell 

density had a higher PFS after R-CHOP (Figures 4.5 and 4.6). 

 

Using CD3+ cells/area, the median PFS was 78.7 months for patients with high CD3+ 

cell density  (>1897 cells/mm2, 86 patients) compared to 28 months for the remaining 

(p=0.005) (Figure 4.5C). When % stained area of CD3 was considered, 81 and 54 

patients had high and low density. For these, median PFS was 82.1 vs 29.1 months, 

p=0.001 (Figure 4.5D). Finally, 64 and 68 patients were included in the high and low 

cohorts according to the Pannoramic Viewer analysis. Again, patients with a high CD3 

infiltration exhibited a better median PFS (78.7 vs 30.3, p= 0.01) (Figure 4.5E).  
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Figure 4.5 CD3 Expression and Outcome.  

A&B: Examples of low (A) and high (B) expression of CD3. Magnification x20 and x40. CD3 expression is shown by HRP-DAB immunostaining. C-E: 

Kaplan Meier PFS analysis of patients based on low or high CD3 expressing cells/m2 (C), % stained area of CD3 (D) and number of stained pixels of 
CD3/area (E). F-H: Contingency tables representing the distribution of patients into low and high subgroups for each of the analyses.  
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We were also able to establish a cutpoint for each of the FoxP3 analyses performed 

using rpart (Figure 4.6). Patients allocated to the high FoxP3+ cohorts had significantly 

higher CD3 expression compared to the remainder (p=0.0001). 78/137 patients were 

allocated to the high FoxP3+ cell/area of viable tumour. High FoxP3 nuclei density was 

associated with a better median PFS (89.1 vs 26.2 months, p=0.0002) (Figure 4.6C). 

Similarly, patients in both the high FoxP3 % stained area (77/137 patients) and the 

high pixel number/area (72/132 patients) cohorts had a prolonged median PFS 

compared to patients in the low expression cohorts (undefined vs 27.9, and 82.1 vs 

27.1 months, respectively) (Figures 4.6D and 4.6E).  

 

Finally a Cox regression analysis was used to model PFS using the R-CHOP dataset 

(Table 4.3). All clinical variables significantly associated with PFS on univariate 

analysis together with the categorical data for CD3 and FoxP3 were included in the 

model. Using both backward and forward stepwise methods, the variables retaining 

independence for PFS prediction were stage III-IV and CD3 density quantified as % 

stained area of viable tumour according to Ariol. FoxP3 did not remain as 

prognostically significant on multivariate analysis. 

 

Since we have used different parameters (+ cells/area of viable tumour, % stained 

area and number of brown pixels/area) to quantify each of the biomarkers, rpart 

retrieved different discriminatory cutpoints for each. Presuming that cohort 

discrimination is truly based on a biological impact of the immune cell infiltration and 

not a reflection of a methodology induced bias, we hypothesized that the agreement 

in allocation of each individual patient to high and low subgroups for each CD3, FoxP3 

or TIA1 analyses would be high. To test this hypothesis, we plotted consensus 

matrices and explored the degree of allocation agreement for each subgroup. 
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Figure 4.6 FoxP3 Expression and Outcome.  

A&B: Examples of low (A) and high (B) expression of FoxP3. Magnification x20 and x40. C-E: Kaplan Meier PFS analysis of patients based on low or 

high FoxP3 expressing cells/m2 (C), % stained area of FoxP3 (D) and number of stained pixels of FoxP3/area (E). F-H: Contingency tables 
representing the distribution of patients into low and high subgroups for each of the analyses. 
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As can be appreciated in Figures 4.4 F-H and 4.5 F-H, allocation consistency is 

extremely good for CD3 and FoxP3 (Fisher’s exact test p-value <0.0001 for each 

presented table), even when the Ariol and Pannoramic Viewer results were 

compared. This suggests these biomarkers as predictors of outcome after R-CHOP 

and validates recursive partitioning as an adequate method for cutpoint selection in 

continuous data with unknown demographic distribution. 

 

 

 

Table 4.3 Univariate and multivariate survival analysis 

For IHC data, all hazard ratios with corresponding 95% confidence interval were calculated 
considering the HIGH versus LOW density for each variable. Results from backward stepwise 
(likelihood ratio) based on 120 cases. m: months; CI: confidence interval; Nr: number 

 

UNIVARIATE ANALYSIS 

Overall Survival 

Variable Median survival (m) Hazard ratio (95% CI) P 

Age >60 years 92.1 vs undefined 1.96 (1.13, 3.34) 0.02 

Stage III-IV 82.9 vs undefined 3.33 (1.51, 4.54) 0.0005 

ECOG PS ≥2 30 vs undefined 3.84 (1.96, 9.09) 0.001 

IPI ≥3 81 vs undefined 2.63 (1.44, 4.76) 0.001 

Not achieving CR 17.2 vs undefined 6.66 (3.44, 14.3) <0.0001 

Progression-free survival 

Stage III-IV 34.2 vs 89.1 2.27 (1.42, 3.57) 0.0005 

ECOG PS ≥2 11.1 vs 78.7 4.16 (1.85, 9.09) 0.0005 

≥2 extranodal areas 10.5 vs 78.7 2.78 (1.43, 5.55) 0.003 

Centre ( Bart’s vs IPO) 81 vs 52.9 1.6 (1.03, 2.59) 0.03 

IPI ≥3 24.9 vs 82.1 2.43 (1.47, 4.0) 0.0004 

CD3 +cells/area 78.7 vs 27.9 0.50 (0.31, 0.83) 0.005 

CD3 %stained area 82.1 vs 29.1 0.46 (0.28, 0.75) 0.001 

CD3 Nr pixels/area 78.7 vs 30.3 0.52 (0.31, 0.88) 0.01 

FoxP3 +cells/area 89.1 vs 26.2 0.40 (0.24, 0.67) 0.0003 

FoxP3 %stained area undefined vs 27.9 0.43 (0.26, 0.71) 0.0008 

FoxP3  Nr pixels/area 82.1 vs 27.9 0.45 (0.27, 0.76) 0.002 

MULTIVARIATE ANALYSIS FOR PFS 

Variable  Hazard ratio (95% CI) P 

Stage III-IV  3.4 (1.72, 6.66) < 0.0001 

High % stained area CD3  0.42 (0.24, 0.73) 0.003 
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4.5 Discussion 

Developing robust prognostic biomarkers that are able to discriminate R-CHOP 

refractory patients is a research priority in DLBCL. As can be appreciated in our data 

and as expected, response to R-CHOP appears as a robust prognostic indicator of OS 

or PFS.  

 

GEP studies suggested that the microenvironment has the potential for providing 

some of such prognostic biomarkers. However, a number of obstacles need to be 

acknowledged: 1) biomarkers need to be easily studied in any laboratory; 2) 

validation processes need to be robust and done under multi-institutional projects 

and clinical trials; 3) microarray technology is still reserved to the research setting and 

lacks well standardized procedural protocols and analysis; 4) only a few markers 

selected for the GEP studies mentioned have been evaluated by independent groups 

using different methodologies; 5) functional studies, the only ones able to provide 

definitive biological explanations towards the prognostic impact of specific molecules, 

are difficult to perform in the context of the lymphoma microenvironment. 

 

IHC can be extended to the clinical practice, which makes it highly attractive as a 

diagnostic and prognostic tool. Nevertheless the results published regarding IHC 

analysis of the immune microenvironment in DLBCL and other lymphomas are 

contradictory. This can be explained by several reasons, the most important being the 

study of patient cohorts which are not representative of the disease the way is 

currently managed and, most importantly, by the use of inconsistent methodology. It 

is well recognized by expert pathologists that manual scoring of IHC staining is 

difficult to standardize, particularly when large tissue areas are analysed. Semi-

automated image analysis is available, is ideal for scoring vast areas more 

representative of the microenvironment, and could help in improving scoring 

reproducibility. However each one has its own features and scripts for analysis and it 

is unknown how robust results are when obtained from different systems. 
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This study compares two different methods of semi-automated analysis for IHC 

staining using as a model the microenvironment of DLBCL and examining a large 

number of patients and area of diagnostic FFPE tissue per patient than any published 

work to date. Although our hypothesis was that using different systems, and hence 

different methodologies of analysis would decrease reproducibility and demonstrate 

that such approach is unreliable, if we could prove the opposite it would support 

semi-automated IHC as the way forward for assessing cell infiltration in large tissue 

areas using TMAs.  

 

We competed two image analysis systems developed by independent companies 

(Ariol and Pannoramic Viewer), three image analysis methods (absolute numbers, 

percentage area and numbers of stained pixels), and as a secondary aim examined 

the prognostic impact of individual elements of the immune microenvironment in a 

cohort representative of the current clinical scenario in DLBCL. To our knowledge this 

approach has not been previously undertaken for IHC studies in lymphoma.  

 

We demonstrate that the computerized results are highly reproducible, even when 

comparing different variables examined for each biomarker, such as cell density and 

% of area stained. Correlation data for the two Ariol measurements was extremely 

consistent, even for cytoplasmic proteins such as TIA1 or CD68. This was a surprising 

result given the difficulties in training the Ariol system to enumerate single cytotoxic 

T-cells or macrophages. Moreover, inter-observer variability of manual counting for 

macrophages is known to be very high. Even more surprising was the finding of highly 

acceptable reproducibility between the data retrieved from the Ariol and the 

Pannoramic Viewer. Correlations were excellent for T-cell surface markers, but more 

modest for cytoplasmic proteins. 

 

Our data is in agreement with a recent validation study promoted by the LLBC.329 This 

study, conducted by highly experienced haematopathologists, reports only low to 

moderate agreement in manual scoring of T-cell and macrophage markers when 4-5 

scoring categories are used. However, comparison of semi-automated analyses set up 
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by two different operators in two different instruments using the same methodology 

(Ariol) was highly reproducible for T-cells markers. This is an important finding 

suggesting that operator-induced bias is not as relevant as has been thought 

previously and should not prevent researchers from using this methodology. The 

current study adds upon this by examining a large population of 309 patients and by 

comparing the computerized quantifications for a larger panel of markers, 

particularly including cytoplasmic proteins such as CD68. Moreover, we performed 

comparisons across the results retrieved from two semi-automated systems 

developed by different companies and three different assays for each staining.  

 

Our own and the LLBC data indicates that automated systems of IHC analysis add the 

required robustness to IHC prognostic studies in an operator-independent manner 

and should be used in the future instead of manual analysis. Comparing manual and 

automated results was not the scope of this project and studies such as those of the 

LLBC support that manual scoring is highly variable and hence inadequate for 

outcome prediction studies. This is being explored further in Follicular Lymphoma by 

the LLBC. 

 

Finally we explored the outcome potential of microenvironment biomarkers as 

assessed using the semi-automated systems in a representative dataset of 161 

uniformly R-CHOP treated DLBCL patients. Whereas the clinical variables included in 

the IPI and achieving a complete remission after R-CHOP were predictive of OS, none 

of the biomarkers studied were, potentially reflecting the impact of salvage therapy. 

However we were able to validate CD3 and FoxP3 as predictors of PFS. For both 

biomarkers, patients with higher biomarker density had a lower risk of relapse after 

R-CHOP. Although studies highlighting CD3 as a potential marker in lymphoma are 

limited,330 previous IHC analyses predominantly showed that a high infiltration of 

FoxP3 improves patient survival.331 While functional studies point towards a negative 

prognostic impact for regulatory T-cells in lymphoma,332-334 it is possible that 

regulatory T-cells are directly suppressing the malignant B-cells or are counteracting 

tumour supporting T-cells. Notably, we saw no evidence that CD68 expression by any 
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method is prognostic in our R-CHOP treated DLBCL patients. While the role of 

macrophages in tumour promotion has been robustly demonstrated in biological 

models of solid cancers, evidence in lymphoma is limited.  GEP studies done in whole 

LN infiltrated with DLBCL suggested that the expression of macrophage and ECM 

related genes confer an improved outcome in the R-CHOP era. However, IHC studies 

are inconsistent, reflecting the difficulties in scoring CD68 but also likely relate to 

macrophage functional diversity in tissues that hardly can be mirrored by a single 

marker. While our results suggest that the problem of scoring inconsistency can be 

overcome by semi-automated analysis, macrophage functional complexity in 

lymphoma hasn’t yet been address and is the aim of our next chapters. 

 

While this study suggests that a high infiltration of T-cells is contributing, together 

with clinical parameters, for achieving and retaining a CR after R-CHOP in DLBCL, 

some limitations need to be acknowledged.  

One important limitation is the retrospective nature of the study and the relatively 

small size of the R-CHOP treated cohort. Given the myriad of prognostic biomarkers 

suggested for this disease, any study of this kind should explore the most well 

established factors, from the IPI to genetic biomarkers. This should be done under a 

clinical trial gathering enough patients so as to reach sufficient statistical power for 

outcome prediction. Only then a proper multivariate analysis incorporating the 

strongest biomarkers can clarify which of them should be included in the diagnostic 

workup for DLBCL or change the clinical practice. 

 

What this study clearly provides is evidence for considering semi-automated analysis 

of IHC for future studies exploring biomarkers in DLBCL or other diseases. This 

technology eliminates the underlying variability of manual analysis of IHC studies. 

However, we now face a challenge of what to suggest as methodology for future 

studies. It could be argued that discriminating prognostic cohorts based on analysis of 

immunohistochemical markers reflects only bias arising from this same methodology. 

Nevertheless, our use of multiple methodologies, technologies and markers, all 

suggesting a positive impact of increased immune cell infiltrate, supports the 
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hypothesis that this is representative of a real biological effect: that increased 

immune infiltrate leads to improved outcome. Moreover, is another finding 

supporting that the computerized analysis is a robust method for IHC analysis. Similar 

studies should now be done approaching other protein markers such as the COO or 

MYC.  

 

Clearly, the results reported here are exploratory. Now that we have established that 

semi-automated systems are the tool of choice for analysis of IHC biomarkers, larger 

validation studies are required. First, it is essential to conduct an intergroup analysis 

of all semi-automated systems available, devise a consensus methodological 

approach and select laboratories that would be responsible for similar analyses under 

clinical trials where other established molecular and cytogenetic prognostic factors 

are investigated. This, in our opinion, would definitely answer whether the lymphoma 

microenvironment plays a role in outcome prediction in DLBCL and other lymphomas 

and bring forward methods to incorporate such biomarkers into clinical practice. 
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Chapter 5 Defining the diffuse large B-cell lymphoma associated-

macrophage transcriptome 

 

 

5.1 Introduction 

As discussed in Chapter 1, GEP of DLBCL suggested that the stromal 

microenvironment might have an impact in outcome prediction in this disease. In 

contrast to what is generally found in solid tumours and other lymphoid 

malignancies, in DLBCL the expression of macrophage-related genes and ECM 

components was associated with an improved outcome. This data opens several 

hypotheses. The first is that in poor-risk DLBCL the malignant B-cells use strategies to 

change macrophages towards a tumour-permissive behaviour and that those changes 

are pictured in their transcriptome. The second is that a stromal response is 

associated with an improved response to R-CHOP or to an ability to control minimal 

residual disease after chemoimmunotherapy. Whereas the second possibility has 

been partially demonstrated by studies on the impact of macrophages in mediating 

efficacy of monoclonal antibody therapies, the first hypothesis has not yet been 

addressed. 

 

Macrophage functions can be subverted by tumour cells to facilitate disease 

progression and immune evasion. Whereas a number of mechanisms by which cancer 

cells influence TAM function have been described, currently there is very limited 

understanding of the TAM polarisation status and effector function in human 

lymphoma, including DLBCL.  

 

Mechanisms used by B-cells to influence macrophage activation have only recently 

been defined.  

Crosslinking of the macrophage FcγR with Igs leads to a shift towards an M2-like 

immunossupressive phenotype. While this process might be adaptive to establish 

tolerance to autoantigens, it can be used by cancer cells to potentiate progression.261  
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In mice transplanted with melanoma, B-cell depletion shifted TAM polarisation from 

a tumour-facilitating M2 phenotype towards a classical M1 phenotype. In this model 

B-cell-derived IL-10 has been implicated in TAM activation.260 However, using a 

mouse model of B-cell lymphoma, Leidi et al.272 proposed that human M2-polarised 

macrophages have improved cytotoxicity against lymphoma cells after treatment 

with rituximab, which was further up-regulated by IL-10. 

It is likely that B-cell-derived cytokines other than IL-10 can also influence 

macrophage activation. As has been discussed in Chapter 1, T-cell primed B-cells have 

been shown to produce Th1 and Th2 cytokines,267 including IFN-γ, IL-12, IL-4 and IL-

13, that were able to modify T-cell responses. It is likely that these impact on 

macrophage activation. However no data is available addressing this hypothesis, 

including in the context of B-cell malignancies. 

 

In this study we addressed the hypothesis that the malignant DLBCL-associated 

macrophages are functionally distinct from macrophages encountered in non-

malignant lymph nodes and that those differences are induced by the lymphoma cells 

to promote disease aggressiveness. Using methods other than IHC would overcome 

the well accepted phenomenon that the macrophage functional repertoire cannot be 

dissected using a limited number of markers.  

 

 

5.2 Aims 

We aimed to scrutinise the functional interactions between macrophages and 

malignant cells by exploring the transcriptome profile of highly pure populations of 

macrophages selected from human DLBCL samples compared to that from 

macrophages from reactive LN. Recognizing which genes are differentially expressed 

in DLBCL TAM might lead to a better understanding of their functions within the 

tumour microenvironment. 
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5.3 Materials and Methods 

5.3.1 Samples 

LN SCSs from patients with DLBCL were chosen based upon the availability of 

sufficient vials to perform these experiments. Table 5.1 provides clinical details and 

partial results from individual samples. Details on the methods used for cell 

suspension preparation, staining, flow-assisted cell sorting, RNA extraction, cDNA 

amplification, and final sample preparation for microarrays are provided in Chapter 2.  

 

5.3.2 Microarray quality control assessment 

Samples were run in two batches on separate days. In order to detect technical 

variability that could be reflected in the results, two samples were run in both 

experimental batches and the Pearson's correlation assessed. A series of quality 

control metrics provided by Affymetrix were utilized with the purpose of identifying 

failing samples and recognizing where along the processing chain potential problems 

occurred. 

Hybridisation efficiency was evaluated using results from purposely added transcripts 

derived from Bacillus subtiliis. Due to the lack of other transcripts competing for their 

probe sets, the binding intensity is directly related to the quality of the hybridisation. 

Chip intensity can be further assessed by the mean of perfect match (PM) probes raw 

intensities. Also by assessing how different the ratio of positive exon-level versus 

negative intron-level probes is from the expected value, one can predict whether any 

sample has potential hybridisation problems. Analysis of polyA control RNAs spiked to 

each sample prior to amplification helps monitoring the quality of the labelling 

reaction. 

Regarding sample quality controls, a number of parameters were assessed: the mean 

of the signal of all probe sets per sample; the mean relative log expression (RLE) and 

the expression signal. 
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Table 5.1 Samples used for transcriptomic analysis: patients characteristics and partial results 

ID Age Gender Date AA stage IPI Response Viability (%) Cell # (x10
7
) CD36 yield Purity (%) RNA (ng/uL) RIN cDNA (ng/uL) 260/280 

T2628 58 M 2009 I 0 CR 76 5.4 42357 90.5
 c
 0.62 7.5 385.7 1.94 

T3531 60 M 2009 III 1 CR 40 3.0 65721 96.4 2.1 9.8 308.4 1.95 

R3468 61 F 2004 IV 4 PR 45 3.0 47500 92.0 0.13 9.2 256.3 1.97 

R8639 34 M 2007 I 0 CR 74 4.2 3780 93.9
 c
 0.03 7.4 288.4 1.92 

T2114 42 F 2009 I 0 CR 50 0.7 20000 - 0.10 9.1 272.9 1.95 

T4570 50 M 2010 III 2 PD 74 3.0 159268 98.6 4 9.7 389.9 1.92 

R0433 86 M 2002
 b

 III 2 CR 35 2.1 22500 - 0.37 9.5 235.6 2.02 

F7615 51 M 2000
 b

 III 1 CR 69 3.0 244432 95 8.3 9.7 366.2 1.94 

T6932 48 M 2012 III 2 CR 62 2.0 46071 94.0 0.42 10 368.6 1.92 

R9516 79 M 2008 IV 4 SD 78 1.3 60000 90 0.38 8.2 372.62 1.97 

R6137 81 M 2005 IV 3 PR 77 2.0 22209 90 2.3 9.0 375.32 1.96 

F8146 61 F 2000
 b

 II 2 CR 61 3.0 152324 96.4 8 10 368.36 1.95 

R8756 59 M 2007 IV 2 CR 67 1.1 12310 92.1
c
 0.3 7.6 295.2 1.95 

T5900
a
 21 M 2011    85 5.0 200000 92.0 5.7 7.0 359.2 1.96 

T5353
a
 19 M 2011    89 4.3 190000 97.0 20 8.0 357.95 1.96 

T5996
a
 18 F 2011    95 5.1 78388 92 1.6 8.5 372.8 1.95 

T5848
a
 68 F 2011    70 2.7 90380 97.1 0.45 9.3 354.8 1.96 

T5424
a
 73 M 2011    75 7.0 510852 96 10 9.7 305.8 1.96 

T5175
a
 37 F 2011    90 2.9 117416 96.4 6 10 431.38 1.98 

a
 reactive LNs; 

b
 CHOP treated; 

c
 Double sorting; AA: Ann Arbor; IPI: International Prognostic Index; RIN: RNA integrity number; M: male; F: female; CR: complete response; PR: partial 

response; SD: stable disease; PD: progressive disease 
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5.3.3 Data normalisation  

This analysis was performed using Bioconductor packages (www.bioconductor.org) 

within the R statistical environment. A robust multi-array average (RMA)335 algorithm 

was applied for background signal adjustment and data normalisation.  

 

Background signal is an inherent problem to microarray technology imputed to 

optical noise and non-specific binding (NSB) that can lead to falsely overestimated 

gene expressions. The RMA algorithm estimates and adjusts background intensity 

using a set of approximately 17000 generic background probes.  

 

The background adjusted data is then normalised at the probe-level using a quantile 

method.336 Quantile normalisation orders the data from each array from highest to 

lowest expression and identifies the average value at each quantile. The observed 

expression is then transformed to the quantile average in order to give each data set 

an equivalent distribution. This data manipulation is required to extract experimental 

variability associated with sample batching, inconsistent use of reagents between 

arrays or as a systemic experimental bias present in the study design. 

 

Finally, to minimize statistical testing while retaining the highest probability of 

detecting differences in expression between samples, the data was filtered to obtain 

the 20% probes with higher binding variability across all samples using standard 

deviation. 

 

5.3.4 Data analysis 

To determine differentially expressed genes between the investigated groups, an 

empirical Bayes approach (limma package) was used. This method takes into account 

some characteristics of the whole data, including the variance of expression of all 

genes, the distribution of all variances and the number of samples under analysis to 

estimate a pooled pattern of expression for the study. Using this pattern it is possible 

to recognize data with unusual distribution that should be considered fortuitous but 
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would otherwise be taken as significant. This method is particularly important for 

studies with a low number of samples per group, where findings are not replicated 

enough and can merely be attributed to chance. 

 

The Benjamini and Hochberg (BH) method of multiple hypothesis testing correction 

was applied in order to rectify the p-values for error induced by multiple 

measurements, where the null hypothesis is incorrectly rejected (Type 1 error). A 

double cut-off of adjusted p-value <0.05 and Log2 FC >1 were set to specify a list of 

differential expressed genes. 

 

Genes that passed these criteria were selected for hierarchical clustering. This 

method allows estimating correlations between two samples by evaluating the 

distance between measurements inputted for the samples. The closer the 

measurements (in this case gene expression), the shorter the distance and greater 

the correlation estimated. Samples that are highly correlated can be clustered in a 

group. The distance metric used for this study was Euclidean distance. The clustered 

data was represented in a dendogram using the Ward linkage criterion. The height 

measured from the bottom of the dendogram to the point where samples diverge 

represents the distance/degree of similarity between samples. Jacek Marzec 

performed all data normalisation and analysis.  

 

5.3.5 Targeted gene expression validation by qRT-PCR 

Amplified cDNA generated for the microarray experiments was further used for 

validation by qRT-PCR. The transcripts were chosen amongst the most differentially 

expressed between DLBCL and reactive samples. The TaqMan® Gene Expression 

Assays tested were: ALOX15, Hs00609608_m1; AQP9, Hs01035888_m1; CDH1, 

Hs01023894_m1; IDO1, Hs00984148_m1; C3AR1, Hs00377780_m1, CD1E, 

Hs00954575_m1; CTSL1, Hs00964650_m1 and ANKRD22, Hs00944018_m1. All assays 

were bought from Life Technologies.  

The average of triplicate CT values was normalisedd to the house-keeping gene B2M 

due to it being the only one passing Levene’s F-test of equality of variance among the 
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three explored (B2M, GAPDH, RPL34) across all samples. Results are expressed in RQ 

values with errors bars representing the standard error of the mean (SEM). 

 

5.3.6 Hierarchical clustering of RQ values  

RQ values were clustered in Cluster V3.0,337 using Euclidian distance. The clustered 

data was represented in a dendogram built in Tree View337 using the Average linkage 

criterion. 

 

5.3.7 Gene enrichment analysis 

The differentially expressed gene symbols were computed in Toppfun 

(http://toppgene.cchmc.org), an online bioinformatics tool that performs gene list 

functional enrichment. This data-mining tool compares the data inputted with 

annotated data from different categories: GO (gene ontology) terms, pathways, 

protein–protein interactions, transcription factor binding sites, gene tissue 

expressions and literature co-citation. Toppfun retrieves annotated information 

where the gene(s) of interest is/are over-represented, the significance of which is 

corrected with the BH test. 

 

5.3.8 Generation of resting and polarised macrophage gene signatures 

In order to perform a comparative analysis, we used bioinformatics approaches to 

develop macrophage gene signatures (Figure 5.1). Firstly, representative GEP datasets 

of human macrophages were chosen. The GEP dataset GSE22886338 was used to 

construct a resting macrophage signature. This study comprehensively profiled six 

immune cell types (B, T, NK-cells, plasma cells, monocytes and neutrophils) and their 

activated and differentiated states. A “resting” macrophage-specific gene signature 

was depicted by comparing the GEP of monocyte-derived macrophages to all other 

experimental conditions. Secondly, the GEP dataset GSE5099194 was chosen to 

delineate activated macrophage signatures. M1 and M2 signatures were defined by 

comparing IFN-γ/LPS and IL-4-treated macrophages, respectively, with the remaining 

http://toppgene.cchmc.org/
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conditions. With the intention to exclude any gene that has been previously 

demonstrated to be expressed by DLBCL B-cells, Lenz et al.34 and Basso et al.339 

datasets were used to inquire for the expression levels of genes included in the 

signatures and filter out the ones that passed the expression criteria. The design of 

this approach was performed by me. The bioinformatics analysis was performed by 

Aaron Newman and Ash Alizadeh, from Stanford School of Medicine, Palo Alto, CA.

 

 

Figure 5.1 Development of macrophage gene signatures.  

DE: differential expression; FC: fold change
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5.4 Results 

5.4.1 CD36 is expressed by the majority of tonsil CD68+ cells, representing a good 

single marker for macrophage cell sorting 

Due to the limited number of LNs SCSs of DLBCL available in our tissue bank with 

enough vials to conduct this study, preliminary data was gathered using samples of 

other lymphoproliferative diseases and tonsils. Firstly we demonstrated, and 

posteriorly confirmed in our original data, that macrophages constitute a very rare 

population in SCSs as assessed by flow cytometry using CD68 intracellular staining 

(data not shown). Under this premise, we aimed at defining the simplest strategy to 

cell sort macrophages using only surface markers. This would enable us to minimize 

the staining steps to a minimum and avoid cell membrane permeabilisation that 

would likely affect RNA quality. We showed that the membrane scavenger receptor 

CD36 was co-expressed by the majority of CD68+ cells in tonsil SCSs (Figure 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 CD68+ cells co-express the membrane scavenger receptor CD36.  

5.0x105 cells were fixed and permeabilised for intracellular staining with CD68. Cells are gated 
on singlets and live cells. Flow plot representative of a single biological replicate. 
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5.4.2 LN single cell suspensions of DLBCL are not representative of the tumour 

content when assessed by flow cytometry 

For this study aiming at comparing the GEP of DLBCL-associated macrophages with 

that of reactive LN macrophages we were able to select 13 DLBCL and six control LN 

samples (Table 5.1). The cell sorting methodology and representative example of the 

sorting strategy were described in Chapter 2. Cell number and viability were assessed 

using an automated haematocytometer prior to antibody staining. From each sample, 

total CD20+ B-cells, CD3+ T-cells and CD36+ macrophages were isolated after gating 

on singlet, live leukocytes (CD45+). Cell yields were retrieved by the cell sorter.  

 

Sample viability on thawing was variable but generally poorer for disease cases (35-

78% for DLBCL compared to 75-90% for controls). Figure 5.3 represents an estimate 

of the percentage of macrophages, B and T-cells in the stored samples taking as 

denominator the total number of viable cells. As can be appreciated, B-cells were not 

the most abundant cell population in DLBCL SCSs, T-cells being more numerous in all 

samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Proportion of macrophages, T-cells and B-cells in SCSs of DLBCL and reactive 

conditions.  

Sample cell count and viability were taken using an automated haematocytometer before 
starting the staining protocol. Individual population cell counts were taken at the end of the 
cell sorting. Control samples are identified in red.



Chapter 5 Results 

171 

Cell purity after sorting was excellent for B and T-cells (>98% in all except one sample, 

data not shown). As can be appreciated in Table 5.1, macrophage purity after sorting 

was acceptable (median 94%, range 90-99%). However, three samples required 

double sorting in order to guarantee purity >90%. This strategy highly compromised 

cell yield but enabled the use of those samples for transcriptomic analysis.  

 

CD36+ macrophages were a rare population both in malignant and in control 

samples.  Macrophage cell yield was significantly higher for control samples (median 

1.5x105, range 8x104 to 5x105) compared to DLBCL samples (median 5x104, range 

4x103 to 2.4x105, p= 0.01). 

 

5.4.3 Quality assessment of the experimental workflow employed in this study  

As detailed in Chapter 2, macrophages were immediately pelleted after sorting by 

centrifugation at 8000rpm for 10min without any washing step, follow by RNA 

extraction. RNA concentrations and quality were assessed using the Agilent 

bioanalyser pico kit, designed for low RNA amounts. Although macrophage numbers 

were significantly higher in control samples, RIN numbers were excellent and 

comparable across disease and control samples, varying between 7.4 and 10. Figure 

5.4 shows the electropherograms of a number of the samples used in this study and 

an internal control.  

However, and as predicted, the RNA concentrations obtained from sorted DLBCL-

associated macrophages we significantly lower (median 0.42, range 0.03 - 8 ng/uL) 

compared to reactive LN macrophages (median 5.9, range 0.4 - 20 ng/uL, p= 0.03). 
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Figure 5.4 Excellent RNA quality obtained from macrophage populations.  

Representative electropherograms for assessment of RNA quality of samples used in this 
study. With the exception of R8639, all samples had a RIN >9, suggestive of high quality RNA. 

 

 

 

Given these results, nucleic acid amplification was required. RNA quantities taken 

forward for cDNA synthesis and amplification were equivalent across samples. A 

negative control was included with the study samples in two experimental batches. 

As can be appreciated in Table 5.1, cDNA yields and quality were similar across 

samples. Electrophoretic traces for amplified and fragmented cDNA were inspected 

for some samples to confirm integrity (Figure 5.5). 
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Figure 5.5 cDNA fragment size distribution analysis using the Agilent RNA 6000 Nano kit.  

The left side trace represents amplified cDNA; the right side trace represents fragmented 
cDNA. 

 

 

 

After fragmentation, cDNA was biotin-labelled and hybridised to Affymetrix 

GeneChip® Human Gene 1.0 ST Arrays. These microarrays evaluate the expression of 

28869 well-annotated genes with 764885 distinct probes that are distributed across 

the full length of the gene, guaranteeing whole transcript coverage. This is 

particularly useful for studies using potentially degraded samples.  

 

None of the samples was flagged as an outlier using the quality control checks. 

Hybridisation was assured by evaluating the distribution of control probes (Figure 1, 

Appendix).  Also, the ratio of positive versus negative probes was >0.7 (0.82-0.89, 

Figure 2, Appendix), suggesting that hybridisation occurred as expected. Mean 

intensities for all arrays were very consistent, with a variation of 0.05 (Figure 3, 

Appendix), as were mean intensities for PM and background probes (Figure 4, 

Appendix). Regarding the RLE signal (Figure 5, Appendix), sample R8639 stood out has 

having a higher mean compared to the remaining. 

 

Finally, Pearson correlation of intensity signals for the duplicate samples shows a high 

correlation between technical replicates with individual R values 0.99 (Shown in 

Figure 5.6). 
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Figure 5.6 Correlation of intensity signals for the samples hybridised in the two 

experimental batches 

cc, correlation coefficient. 

 

 

 

5.4.4 Unsupervised hierarchical clustering  

As already mentioned, hierarchical clustering is useful to detect similarities between 

samples. Undertaken in an unsupervised fashion means the whole filtered data 

(~12000 probes with highest expression variability) is used.  

As can be appreciated in Figure 5.7, this analysis failed to fully resolve DLBCL TAM 

and control macrophages.  

Whereas reactive LN-associated macrophages cluster together, showing a high 

degree of similarity, DLBCL TAM have higher GEP variability. Within the DLBCL 

samples R8756, R6137, F8146, R9516 and T6932 diverged earlier from the remaining 

samples. Samples R8639, R0433 and R3468 also segregated into a separate cluster. 

The remaining DLBCL TAM samples clustered closer to the control macrophages. We 

excluded this variability was due to a batch effect by observing close clustering of 

samples that were hybridised in different days. 
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Figure 5.7 Unsupervised hierarchical clustering of DLBCL and reactive LN-associated 

macrophages.  

Clustering based on RMA normalised expression of the top 12000 probes with the highest 
variability. Data is correlated by Euclidean distance using Ward linkage to define the 
dendogram. 

 

 

 

5.4.5 Statistical analysis of differentially expressed genes between DLBCL TAM and 

reactive LN macrophages 

A supervised hierarchical clustering analysis was performed to recognize the 

differentially expressed genes between DLBCL TAM and control macrophages. This 

was calculated by dividing the average logarithmic expression data for each group, 

generating a FC ratio. The FC cut-off selected for this experiment was ≥2 (Log2 ≥1). P-

values were corrected with BH False Discovery Rate (FDR) and a value of ≤0.05 

accepted. Using these criteria, 208 probe sets for 202 well annotated genes were 

differentially expressed between the two groups. Of those, 63 were downregulated 

and the remaining were upregulated in DLBCL-associated macrophages versus 

reactive LN macrophages (Figure 5.8). The full data set for all significant differentially 

expressed genes is shown in detail in Table 1, Appendix. 

DLBCL 
Reactive 
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Figure 5.8 DLBCL TAM and reactive LN macrophages differ in expression of 202 genes. 

Supervised hierarchical clustering analysis using a Euclidean distance measure and Ward 
linkage. Each column represents one sample, each row a transcript. Gene expression levels 
are represented on a scale of green to red colour indicative of low to high expression.

Reactive 
DLBCL 
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As can be visually appreciated in the heatmap, control samples have a more 

coordinated expression of the differentially expressed genes. To substantiate this, the 

six most highly differentially expressed transcripts are represented in Figure 5.9 

plotted by sample. Representing the data in this manner suggests a higher level of 

heterogeneity in the GEP of TAM compared to controls.

 

 

 

 

Figure 5.9 Expression heterogeneity of most differentially expressed genes in DLBCL and 

control macrophages.  

Graphs represent each transcript and columns each sample. Log expression is represented for 
each gene and sample. Control samples are represented in purple and DLBCL samples in 
green. p-values were adjusted according to BH test.
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5.4.6 Confirmation of differentially expressed genes by qRT-PCR 

To validate expression of selected genes from our list, qRT-PCR was used. The 

transcripts chosen were among the highest differentially expressed.  

In addition to the seven genes represented (Figure 5.10), ALOX15 was also tested. 

However, ALOX15 genes levels could be measured in control samples but were 

undetected in DLBCL TAM samples by qRT-PCR, which renders statistical analysis 

impossible. This corroborates the microarray data (Figure 5.9, right bottom graph) 

showing a significantly lower expression of ALOX15 in DLBCL TAM compared to 

controls.  

 

As shown in Figure 5.10, GEP results could be validated by qRT-PCR, suggesting that 

the transcriptomic data indeed represents biological differences between the two 

groups. Although RQ values were not significantly different for CD1E, the FC direction 

was confirmed (Figure 5.10, B). FC results were higher for upregulated genes and 

lower for downregulated genes when tested by qRT-PCR compared to microarrays
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Figure 5.10 Validation of targeted differentially expressed genes by qRT-PCR.  

50 ng of amplified cDNA was used in triplicate for each sample and analysed by qRT-PCR. CT 
values were normalised to B2M. A. Average RQ values were compared using T-test and p-
values <0.05 deemed significant. Results plotted using mean +- SEM. B. Average fold change 
of gene expression in DLBCL TAM compared to controls using microarray and qRT-PCR 
methodologies. 
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5.4.7 Hierarchical clustering of targeted gene expression by qRT-PCR 

An unsupervised hierarchical cluster analysis was performed on the RQ values for the 

eight genes tested by qRT-PCR. This simplified methodology divided DLBCL TAM in a 

separate cluster from control samples (Figure 5.11). Regarding control samples, C5 

(T5424) clustered closer to lymphoma samples, whereas C1 (T5175) clustered 

separately from all other samples. The remaining control samples collected in a 

separate group. 

 

 

 

 

Figure 5.11 Hierarchical cluster analysis of RQ values of seven transcripts resolves DLBCL 

TAM from controls.  

Data is correlated using Euclidean distance and an average agglomeration to define the 
linkage tree. Each column represents one sample, each row a gene. Expression is represented 
in a continuum from red (for high expression) to green (for low expression). Absent data is 
coloured in gray. DLBCL samples are labelled from D1 – D12 and reactive samples are labelled 
from C1 to C6.
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5.4.8 Gene enrichment analysis establishes links between our gene set, the “LN 

signature” of DLBCL and M1 and M2 polarised macrophage functions 

The most relevant results retrieved by Toppfun are presented here according to 

category. More comprehensive information for each of the sub-sections will be 

provided in Appendix, Table 2. All p-values stated are corrected for the FDR with the 

BH test. 

 

5.4.8.1 Gene ontology (GO) 

The GO consortium gathers several genome databases that use a standardized 

nomenclature for gene products according to biological processes and molecular 

functions where they have been implicated.  

An important finding that highly supports our methodological approach and results 

was that our differentially expressed genes are significantly implicated in cellular 

functions where macrophages are known to play a role: immune response (p=1.5x10-

35), defence response (p=1.1x10-27), innate immune response (p=2.5x10-18) or 

inflammatory response (p=5.6x10-21). This subanalysis suggests that both M1 and M2-

related genes are present in our dataset as both “Response to IFN-γ” and “Response 

to LPS”, prototypic M1 stimuli; or “Response to wounding”, a prototypic M2 

functional activation, were on our top 20 GO cellular functions (Figure 5.12, A). 

Receptor activation and signalling were molecular functions implicated in our dataset 

(Figure 5.11, B). Of note, Ig binding, known to play a role in M2 activation, and LPS 

receptor signalling, involved in M1 activation, were both enriched. 

 

5.4.8.2 Pathways 

Toppfun inquires for overlaps of the data inputed with data sourced in pathway 

databases, such as the Kyoto Encyclopedia of Genes and Genomes or Panther 

database. Again, significant terms point towards conditions in which macrophages 

have a central role. Prototypical M2 diseases were listed: tuberculosis (p=2.034x10-4), 

leishmaniasis (p=9.3x10-4). However, M1-related IFN-γ signalling pathway appeared 
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B 

A 

more significantly enriched (p=8.9x10-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 GO enrichment analysis.  

A. Most highly represented cellular functions, p-values between 1.5x10-35 and 3.1x10-11. B. 
Most highly enriched molecular functions, p-values between 3.9x10-8 and 5.0x10-4. Bars 
correspond to the number of genes from our list implicated in each function, decreasing in 
significance from the bottom of the graph.
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5.4.8.3 Co-expression 

Toppfun also overlaps gene lists provided with annotated gene signatures indexed in 

Pubmed and gathered in the Gene Signature DataBase.  

 

The most significant hit in the co-expression category (p=4.6 x10-60), and in fact the 

top hit from this bioinformatics analysis, was a GEP study by Van Loo et al.340 on full 

tissue sections of THRLBCL, a pathological DLBCL sub-entity where the bulk of the 

tumour is composed of T-cells and macrophages. Sixty-three of our upregulated 

genes in DLBCL were amongst a list of 373 the authors described as being 

upregulated in THRLBCL compared to nodular lymphocyte predominant Hodgkin 

Lymphoma (NLPHL) and reactive LNs. Whereas NLPHL and reactive LNs 

overexpressed established B-cell genes, THRLBCL genes were related to the 

microenvironment. Importantly, 11/20 of our top differentially expressed genes were 

overlapping with Van Loo’s data, including: C3AR1 (#2), ANKRD22 (#3), FCGR1A (#4), 

IDO1 (#8) or CXCL10 (#9). 

 

Another interesting finding of this sub-analysis was an over-representation of gene 

sets that represent cell states and perturbations within the immune system 

generated as part of the Human Immunology Project Consortium and the Mouse 

Immunological Genome Project. Significant overlap was detected between our 

dataset and 18 gene sets of the human project (p-values between 2.7x10-46 and 

4.0x10-18), the vast majority of them referring to differentially expressed genes 

between monocytes and other cells of the immune system, including B-cells.   

 

In the same line, we found a highly significant overlap between our differentially 

expressed genes and the ones defining several mouse immune cell populations. The 

50 most significant hits (p-values between 4.4x10-55 and 1.3x10-22) correspond to 

myeloid cell populations. 

 

Neither of the two studies defining the LN and “stromal-1” gene signatures figured in 

the Gene Signature DataBase and hence was retrieved in our analysis. Those 
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signatures were enriched for transcripts likely derived from macrophages, but a 

formal demonstration of that was deemed impossible due to the way the original 

studies were designed. However, the LN-signature was introduced by a secondary 

study,341 which permitted it to result in our analysis. We found a significant overlap of 

our gene list with the LN signature (25 out of 161 genes, p=3.5x10-22). Among some of 

those genes were: FCGR1A, CXCL10, CXCL9, CCL2, C3AR1, CD14, or CTSL. On the 

contrary, only six of our transcripts were represented in the “stromal-1” signature.  

 

5.4.8.4 Cancer Modules 

Through an integrated analysis of 1975 microarray studies spanning 22 tumour types, 

Segal et al. defined cancer modules, sets of genes that act in concert to carry out a 

specific function in cancer tissues.342 Toppfun analysis showed that the most enriched 

(53/531 genes, p=1.7x10-27) was the “immune (humoral) and inflammatory response” 

module. Importantly, this module has been shown to be over-represented in DLBCL, 

independently of the molecular subtype. 

 

5.4.8.5 Gene family 

Five metallothionein (MT) genes appeared overexpressed in DLBCL TAM compared to 

controls (p=7.1x10-7). MTs are metal-binding proteins that respond to oxidative stress 

and acute phase cytokines such as IL-1, IL-6, and TNF-α and have been implicated in 

immune regulatory effects.  MT knockout mice show impaired wound healing and 

higher susceptibility to inflammation. It was suggested by a single study that MT 

expression is associated with poor outcome in DLBCL.343 
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5.4.8.6 Upstream regulators 

Finally we used another bioinformatics tool, Ingenuity pathway analysis 

(http://www.ingenuity.com/products/ipa), to inquire for upstream regulators of 

expression of our gene set. Both prototypical M1 (IFN-γ, p=2.5x10-30) and M2 (IL-10, 

p=2.4x10-17; Ig, p=1.5x10-16; IL-13, p=5.0x10-15; IL-1β, p=9.5x10-14; IL-4, p=3.0 x10-6) 

cytokines were significantly reported. The most significant transcription factors 

identified were the M2, IL-10-induced STAT3 (p=5.0 x10-11) and the M1-related STAT1 

(1.9 x10-6). 

 

5.4.9 Comparative analysis with macrophage gene signatures 

As can be appreciated in Figure 5.1, “resting” and “activated” macrophage gene 

signatures were delineating for comparative analysis. Data overlap was tested both 

before and after the filtering step described. 

 

5.4.9.1 Comparison with a “resting” macrophage-specific signature 

To confirm the specificity of the “resting” macrophage signature we plotted the 

expression of the 839 genes across all immune cell populations from the study of 

Abbas et al.338 As can be appreciated in the heatmap (Figure 5.13), monocyte-derived 

macrophage replicates (gray square) showed concerted expression of the genes 

selected. Additionally, a higher degree of similarity was detected between the 

myeloid cells included in the study, particularly monocytes and dendritic cells 

compared to other immune cells. B-cells have a different expression pattern 

compared to macrophages. This data validates the bioinformatics approach to define 

macrophage signatures. 
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Figure 5.13 Heatmap of “resting” macrophage-enriched genes.  

As outlined in Figure 5.1, 704 genes were chosen to represent a macrophage-specific 
signature. Gene expression is represented on a scale with a Log2 range of +6 (red) to -6 (blue). 

 

 

Among the 202 differentially expressed genes between DLBCL TAM and controls, 51 

were also present in the “resting” macrophage-enriched gene list, representing a 

highly significant overlap as per the probability hypergeometric test (p=1.2 x10-39). All 

but six of these were upregulated in DLBCL TAM versus control macrophages.  

Finally we investigated the survival impact of each of the genes in the “resting” 

macrophage signature in an R-CHOP dataset.34 The 51 overlapping genes from our 

dataset were variably associated with OS: 22 with improved OS, 18 with worse OS 

and 11 had no impact. Overlapping genes and survival impact are depicted in Figure 

5.14. 
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Figure 5.14 Comparative analyses of our DLBCL macrophage associated gene signature with 

other macrophage gene signatures.  

Our gene expression signature is depicted in the top box. Overlapping genes between our 
signature and the ones developed by bioinformatics analysis are given in each box. The 
degree of significance was tested using hypergeometric distribution. R-CHOP OS impact of 
“resting” macrophage genes is represented in a colour code of red for worse outcome, blue 
for improved outcome and gray for negligible OS effect. Underlined genes are downregulated 
in DLBCL TAM versus controls. 
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5.4.9.2 Comparison with “activated” macrophage signature 

Martinez et al.194 stated in their original publication that the transcriptional profile 

variance from “resting” to M1 polarised is significantly greater than to M2 polarised 

(90% versus 8%), which can be explained by two reasons: M1 activators are more 

potent than M2 activators; and the addition of CSF-1 during the in vitro maturation 

process already switches cells towards an M2 phenotype, hence decreasing the 

impact of M2 activation. This justifies the identification of smaller M2-specific 

datasets compared to M1-specific datasets (see Figure 5.1). 

Given that it is conceivable that macrophage activation triggers expression of other 

than macrophage-restricted genes (for example expression of a chemokine), 

enrichment analysis was performed before the B-cell expression-filtering step (Figure 

5.1). 

The M1-polarised signature comprised 3705 genes, whereas the M2-polarised 

signature contained 959 genes (data not shown). As can be appreciated in Figure 5.1, 

these figures reduced to 318 M1 and 129 M2 genes after the expression-filtering 

step. Some transcripts were overlapping in M1 and M2 signatures, which is expected 

as selection was based on both up and downregulation compared to the remaining 

experimental conditions. Typically, overlapping genes between the two activation 

states were upregulated in LPS/IFN-γ and downregulated in IL4-treated macrophages. 

 

A comparative analysis between macrophage-polarised signatures and our own 

signature of 202 genes demonstrated that 99 genes were in common with an M1 

transcriptome (p=9.3 x10-42) and 34 (p=1.3 x10-16) were shared with an M2 

transcriptome. The majority of the overlapping genes were upregulated in DLBCL 

TAM compared to reactive LN macrophages, irrespective of the polarisation status 

(Figure 5.13).  

 

An additional 83 genes were exclusive to the DLBCL TAM transcriptome. Interestingly, 

within this gene set, a significantly higher number of transcripts were downregulated 

in DLBCL TAM compared to controls: 29 of 133 genes in polarised signatures 

compared to 39 of 83 genes in unique signature, p=0.0001. Fifteen of these genes 
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were among the ones overlapping with the “resting”-macrophage signature. Whereas 

this kind of analysis supports the quality of our methodology and suggests that a 

bidirectional macrophage polarisation is present in DLBCL, among our DLBCL TAM 

signature are relevant genes that have not been retrieved in this comparative 

analysis, including some FcγR genes (FCGR1A, FCGR1B, FCGR2A), the macrophage 

attractant CCL2,221 or the prototypic human M2 gene CTSD.195 Additionally, specific 

genes have been functionally validated in murine models studying TAM, such as 

GPNMB235 or C1QC. 

 

 

 

5.5 Discussion 

Our aim for this chapter was to recognize changes in gene expression within 

macrophages selected from LN infiltrated with DLBCL compared to macrophages 

selected from reactive LN. The underlying premise for using a high throughput 

approach was that, contrary to targeted protein studies, GEP could improve our 

understanding of the macrophage functional variability in DLBCL. To date there is a 

lack of global GEP from TAM selected from human cancer, thereby most assumptions 

regarding TAM functional features are derived from inbred mouse tumour models. 

 

The choice of DLBCL samples was totally dependent on availability of enough vials to 

perform cell sorting. Under this limitation, cases included in this study are not as 

representative of DLBCL heterogeneity as we wanted, with a bias towards a better 

biology group (low median age at diagnosis - 59 years - and 77% of cases with 

low/low-intermediate IPI). Age-matching control samples would be ideal in any study 

of immune cell function, but was impossible, since most LN reactive pathologies are 

diagnosed in young adults. These limitations raise even more the requirement of 

future validation of these findings in larger datasets. 

 

CD36 is a membrane scavenger receptor that participates in the recognition of 

apoptotic cells,344 thereby assuming an important role in maintaining homeostasis in 
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tissues populated by B-cells with a high proliferation index. The expression of CD36 is 

enhanced in macrophages by IL-4345 and CSF-1, traditional M2 cytokines. Using mouse 

and human CD36-deficient macrophages, Huang et al. proposed that this receptor is 

required for the acquisition of phenotypic and functional attributes of M2 

activation.346 This suggests that macrophage isolation based on CD36 expression is 

biased towards an alternatively activated population. Using flow cytometry, we saw 

that CD36 is homogeneously expressed in the whole population of CD68+ 

macrophages in tonsils, therefore being an excellent marker for cell sorting. 

Moreover, expression of well-recognized M1 markers was also detected in the 

transcriptomic analysis, suggesting that CD36-expressing macrophages might not be 

on the extreme of cell activation spectrum but have a mixed activation pattern 

adjusted to the requirements of their vicinity. 

 

Even using a single marker, therefore minimizing the risk of cell loss during sample 

preparation, CD36+ cells are rare in stored samples of both lymphoma and reactive 

samples. It is possible that macrophages are more prone to cell death during storage 

and preparation. That should also be the case of malignant B-cells, since we found 

that, although these should be the most abundant cells in DLBCL samples, T-cells 

outnumbered them. To examine this we would have to test fresh samples in parallel 

with frozen samples and this is planned for future studies, but is not within the scope 

of this thesis.  

 

Given that we were working with stored samples with poor viability and the low 

macrophage cell numbers obtained by flow sorting, it was of paramount priority to 

perform quality controls in all experimental steps of this study. Despite these 

features, except for sample R8639, which had a low but still acceptable RIN for GEP 

studies, RNA quality was excellent for all the remaining samples, supporting our 

protocol for cell isolation and RNA extraction when working with rare cell 

populations.  
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Even though samples with as low as 50 ng of cDNA are feasibly studied by GEP, not all 

samples in our study reached that amount of RNA. Therefore, cDNA amplification had 

to be performed. The Ovation Pico WTA System used here for cDNA synthesis and 

amplification has some unique features, including: (1) the use of random primers 

scattered along the transcriptome, which circumvents the amplification bias towards 

3’ regions of the gene when only oligo-DT primers are used; and (2) the use of a linear 

amplification method that retrieves multiple copies of single stranded DNA that is 

complementary to the mRNA and can be directly hybridised to probes immobilized on 

various microarray platforms. In a comparative analysis of amplifications methods for 

low RNA yields, it has been shown that the WT-Ovation pico system was the most 

suitable, providing reproducible results and good quality transcriptome analysis.347 

Indeed we obtained adequate electrophoretic traces after amplification. Moreover, 

none of the samples was flagged as defective in the quality control performed after 

array hybridisation, suggesting that the experimental work-flow undertaken was well 

thought.  

 

Sample R8639 had the lowest RIN and the most variable relative log expression. Since 

no formal recommendation was given by the quality control checks to consider this 

sample an outlier, we did not exclude it in the current study. Yet, given the known 

impact of potential outliers in array data normalisation, leading to decreased 

statistical power and biological significance of results, it would be worth performing a 

new analysis in the future excluding R8639. 

 

Unsupervised hierarchical clustering did not resolve DLBCL TAM samples from 

reactive macrophage samples. This, in itself is an interesting finding indicating that 

macrophage heterogeneity in DLBCL should be considered and bringing into question 

what would be suitable controls for this study. In any case, a perfect clustering of 

DLBCL and control macrophages would be surprising for two main reasons: (1) the 

cells from the microenvironment are being influenced by the tumour cells, but 

unlikely in a homogeneous fashion; and (2) as discussed in the introduction, 

macrophage functional heterogeneity is to be expected, even in tumour samples.  
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The supervised analysis identified 202 genes that were differentially expressed in 

DLBCL TAM relative to reactive controls. The identification of substantial gene 

expression variability in DLBCL TAM by unsupervised analysis suggested that 

corrected p-values would be modest and therefore the gene set would be small. Even 

among the genes that passed inclusion criteria, expression heterogeneity in DLBCL 

TAM was evident (Figure 5.9) and greater than that of control macrophages. Although 

these findings could potentially reflect technical problems with our data, we do not 

have clear evidence for that and instead interpret them as biological variability that is 

inherent of human samples, particularly in bystander cells of the tumour 

microenvironment. Going back to our original hypothesis of DLBCL cells influencing 

macrophage behaviour, it will be interesting to test whether such GEP variability of 

macrophages is related to unknown underlying differences of the tumour cells.  

 

The accuracy of microarray platforms has improved substantially since the 

introduction of these technologies. Whole transcriptome profiling represents an 

opportunity to functionally model a disease and bioinformatics approaches can help 

in giving biological meaning to high throughput data. However, when it comes to 

teasing out the significance at the single gene level, confirmation of expression 

differences by other methods, such as qRT-PCR is highly advisable. With microarray 

technologies gene expression values can be widely affected by sampling, 

normalisation techniques and the analysis strategies used. As can be appreciated in 

Figure 5.10, GEP results could be validated by qRT-PCR, suggesting that the 

transcriptomic data is trustfully representing biological differences between the two 

groups. However we should bear in mind that amplified cDNA was used in the 

validation step. Ideally results should have been checked with non-amplified material. 

A change in the magnitude of fold change values when array and qPCR experiments 

have been compared has been noted in our data (Figure 5.10) and previously in the 

literature.348 

 

Although our primary aim when performing validation by qRT-PCR was to ascertain 
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the validity of the transcriptomic data, we thought of testing whether the expression 

patterns of the eight genes studied could resolve DLBCL TAM from reactive controls. 

Surprisingly, qRT-PCR results for only eight genes that were among the highest 

differentially expressed of our dataset helped clustering DLBCL TAM samples apart 

from controls. This suggests that simpler and more feasible strategies can be used to 

explore differences between these two groups. Therefore, qRT-PCR will be taken 

forward for validation studies explained in Chapter 6. 

 

 

 

A common approach to functionally contextualize transcriptomic data is to perform 

gene enrichment analysis. We used a free, online tool that performs a thorough 

comparative analysis using a large number of data sources. This, in turn, increases the 

depth of functional annotation of the data inputted.  

The functional enrichment analysis undertaken here exposed critical elements of our 

data that sustain their quality and highlight their novelty: 

 

(1) Functional annotations are macrophage-related 

As can be appreciated, macrophages have instrumental roles in the GO cellular 

functions suggested, including innate immune and defence responses. Moreover, our 

gene set overlaps with gene signatures of myeloid cell populations, in particular 

monocyte and macrophage populations developed by the Human Immunology 

Project Consortium and the Mouse Immunological Genome Project. 

Additionally, a quarter of our genes were represented in the “immune and 

inflammatory response” gene cluster developed using cancer transcriptomes. 

Importantly, the expression of genes of this group was detected in both GCB and ABC 

DLBCL datasets, which might suggest that relevant features of the microenvironment 

are independent of the molecular features of the malignant B-cells. 

Furthermore, the top hit of this enrichment analysis was a GEP study on THRLBCL, a 

pathological DLBCL sub-entity where the bulk of the tumour is composed of 

macrophages.  
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We believe these findings provide additional support that our data not only reflects 

the transcriptomic features of macrophages, but also unique GEP changes 

characteristic of the DLBCL TAM. In consequence, our study has potential to generate 

hypotheses for functional validation of macrophage biology in human DLBCL.  

 

(2) The LN signature of DLBCL is derived from transcriptomic features of TAM in the 

microenvironment 

One of the most significant hits in the bioinformatics analysis was the overlap 

between our and the LN signature described by Rosenwald and collaborators,76 

providing compelling evidence that this signature genes result from transcriptional 

activation of the macrophages in the stromal microenvironment. This signature was 

linked to a better OS, contradicting what is found in other tumour models where TAM 

have a pro-tumoural behaviour.  

 

(3) DLBCL TAM have a bidirectional M1 and M2 functional activation 

A finding of utmost relevance is the differential expression of both M1 and M2 genes 

by DLBCL TAM. Evidence for this comes from different layers of our analysis. Over-

representation analysis retrieved functional attributes of M1 and M2 activated 

macrophages.  

Pro-inflammatory M1 cytokines, including IFN-γ, are likely more abundant in DLBCL 

than in reactive pathologies, as “Response to IFN-γ”, “IFN-γ signalling pathway” or 

“Inflammatory response” were enriched terms. Indeed, a significant upstream 

regulator of expression of our genes was the prototypical M1 cytokine IFN-γ. STAT1, 

an IFN-γ-induced transcription factor that induces expression of M1 genes was also 

detected. 

However, all traditional M2 cytokines (IL-4, IL-13, IL-10) were significantly reported, 

suggesting that a number of our differentially expressed genes are M2-skewed. Most 

importantly, our data allows hypothesizing that B-cells are interacting with 

macrophages, driving them towards an alternative phenotype. Fcγ receptor activation 

by Igs is known to shift towards an M2 immunossupressive phenotype. This 

phenomenon might be in place in DLBCL, since “Ig binding” was the most enriched 



Chapter 5 Results 

195 

GO molecular function identified and FcγR genes were highly overexpressed in DLBCL 

compared to controls.  

 

The development of macrophage signatures served two purposes in this project. We 

wanted to reinforce two statements that could be withdrawn from the analysis 

already discussed: 

 

(1) Firstly, that the methodology used is appropriate to explore the GEP of rare 

populations in human complex tissues. To support it, we compared our genes of 

interest with a list of macrophage-specific genes. Finding a significant enrichment 

would be an indication of accuracy of our results. In fact, a comparative analysis 

between a macrophage-enriched signature and our own signature revealed a highly 

significant overlap. To tease out the prognostic relevance of the expression of those 

genes, we used GEP data from R-CHOP treated patients and demonstrated that the 

51 overlapping genes were variably associated with OS, with 22 being associated with 

improved OS. It would be interesting to explore the outcome impact of the remaining 

genes from our signature and develop multivariate prognostic models together with 

the IPI. 

 

(2) Secondly, we would like to provide additional evidence for the functional 

heterogeneity of DLBCL TAM. Again reiterating this phenomenon, a comparative 

analysis between macrophage-polarised signatures and our own signature 

demonstrated that 99 genes were in common with an M1 transcriptome and 34 were 

shared with an M2 transcriptome, the larger part of them being upregulated in DLBCL 

TAM compared to control macrophages, irrespective of the polarisation status.  

 

A large number of genes from our DLBCL TAM transcriptomic signature were, 

however, not represented in the macrophage signatures, reflecting the limitations of 

this kind of bioinformatics approaches.  Some of those have an established role in 

TAM biology. However, others are quite novel and may open a window for the 

recognition of TAM specificities in DLBCL. Although we do not have a mechanistic 
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explanation for this, we found that within this unique gene set, a significantly higher 

number of transcripts were downregulated in DLBCL TAM compared to controls: 29 

of 133 genes in polarised signatures compared to 39 of 83 genes in unique signature, 

p=0.0001.  

 

Some relevant data could only be identified by performing literature searches, which 

highlights the problem of relying solely on annotated data for microarray 

interpretation. It is known that while two-thirds of all the genes are annotated by at 

least one functional annotation, the remaining one-third is yet to be annotated. We 

used individual gene names to complete the knowledge of their functional 

implications in the context of macrophage biology and searched for studies 

implicating pertinent genes and lymphoma biology. During this literature search two 

papers were found of most relevance for our work. 

 

Hartmann et al.208 performed GEP of minute amounts of macrophages selected by 

laser-microdissection from the DLBCL subtype THRLBCL. This study conveys key 

findings that overlap with our own and therefore helps to support some of our 

conclusions for this chapter:  

 

(1) GEP changes in macrophages might be independent of the pathological subtypes 

of DLBCL and are not a mere reflection of the extent of infiltration of this cell type 

within the tumour microenvironment;  

(2) LN macrophages have a high degree of transcriptomic resemblance, 

independently of pathologic alterations, impeding a clear-cut clustering by 

unsupervised hierarchical analysis; 

(3) DLBCL macrophages overexpressed genes codifying for the metal-binding proteins 

MTs (overlapping with our signature MT2A, MT1G, MT1X), suggesting a role for these 

molecules in macrophage biology in DLBCL that could be functionally teased out; 

(4) DLBCL TAM have a unique bi-directional M1 and M2 transcriptome. 
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Finally, by acknowledging fundamental differences that exist between ours and their 

study design, method of cell selection, array normalisation and statistical testing of 

differentially expressed genes, the coincident findings are more surprising and should 

be taken as biologically genuine.  

 

To overcome the need for cell isolation, with inherent potential for inducing changes 

in the GEP of selected cells, bioinformatics analysis can be used to determine cell-

specific gene signatures in the tumour microenvironment. Doig et al.349 described 

GEP clusters reflecting stromal elements conserved across a variety of tumour 

datasets, including DLBCL. Using Lenz et al.34 dataset, the authors discovered that 

well known macrophage-specific transcripts (e.g. CD14, CSF1R, CD163) and previously 

unrecognised macrophage-related genes showed very similar, potentially concerted 

expression profiles across all patients and other cancer datasets.  

 

We found a very significant enrichment of our signature with transcripts belonging to 

this macrophage signature (39 of 161 genes, p=7.8 x10-48), which again suggests:  

(1) that our approach to define the DLBCL TAM transcriptome is valid and is likely 

providing authentic data despite all potential biases introduced by technically 

manipulation;  

(2) whereas the expression of the common genes between ours and the macrophage  

signature might be, as the authors state, an expected finding resulting from the 

relatively higher abundance of macrophages in the microenvironment of DLBCL 

compared to reactive LNs, other differentially expressed genes can potentially reflect 

the uniqueness of the DLBCL TAM; 

(3) these data similarities also validate in silico approaches to explore the function of 

cell subsets that are hard to study due to limited amounts or sensitiveness to 

laboratory manipulation, including macrophages. 

 

The impact of stromal cells in transcriptomic features of whole tumours is 

indisputable. The microenvironment contribution on GEP reflects not only the extent 

of infiltration of a given cell and the relative abundance of all cells on the 



Chapter 5 Results 

198 

microenvironment, but also likely the functional attributes of those same cell 

populations within the tumours.  All transcriptomic analysis of DLBCL tumours 

described the impact of stromal and macrophage transcripts for prediction outcome 

modelling, before and after the introduction of R-CHOP. Our data provides novel 

insights on the functional heterogeneity of macrophages in DLBCL.
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Chapter 6 Attempts for functional validation of transcriptomic analysis 

 

6.1 Introduction  

As already discussed in Chapter 1, independent transcriptomic studies demonstrated 

that whole DLBCL tumours display a distinctive macrophage and stromal remodelling 

gene signature that distinguishes these patients from patients with other histological 

subtypes of NHL. In our previous chapter we showed that the GEP of macrophages 

selected from DLBCL LN exhibits significant similarities with other transcriptomic 

analyses undertaken using DLBCL human samples. Therefore, it is conceivable that 

the malignant DLBCL cells are influencing macrophages towards this specific 

transcriptome, either directly or indirectly by inducing changes in other cells of the 

microenvironment.  

 

A limited number of publications tried to explore this hypothesis in functional studies.  

Mueller et al. used co-culture experiments to provide a mechanism by which human 

DLBCL B-cells can directly influence monocyte function.350 The authors suggested that 

B-cell-derived CCL5 was the culprit monocyte attractant to tumours. The later in turn 

sustained normal and malignant B-cell survival and proliferation through production 

of B-cell activating factor (BAFF) and IL-2.  

 

Lin et al. explored functional changes of CD14+ peripheral blood monocytes in 

patients with DLBCL.351 The authors demonstrated that immunossupressive HLA-DR-

/low monocytes are expanded in DLBCL and are able to decrease T-cell proliferation 

and Th1 responses to foreign antigens. Although likely, this study does not formally 

demonstrate that DLBCL B-cells drive monocyte immunossupressive functions.  

 

Using follicular lymphoma as a model, Guilloton et al. showed that malignant cells can 

induce the production of CCL2 by autologous mesenchymal stromal cells, which in 

turn attracts and skews monocytes towards an IL-10 secreting immunossupressive 

phenotype.221 This effect could be abolished by CCL2 inhibition. The same group was 
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able to establish another mechanism by which macrophages favour B-cell 

proliferation.284 Monocytes and monocyte-derived macrophages could trans-present 

IL-15 to B-cells, and in cooperation with T-cell derived CD40L, favour B-cell 

proliferation through STAT5 activation. 

 

In this chapter we worked under the hypothesis that DLBCL TAM transcriptome and 

proteome is shaped by the malignant B-cells. 

 

 

6.2 Aims  

For this chapter we aimed to perform a functional validation towards recognizing the 

effect of malignant B-cells in macrophage GEP and protein phenotype. The 

experimental design was based on the findings from Chapter 5.   

 

 

6.3 Materials and methods  

6.3.1 Samples 

PBMCs from healthy donors were isolated from buffy cones as described in section 

2.1.3 and used to select monocytes. Tonsil SCSs were obtained from our tissue bank 

storage, prepared as described in section 2.1.2 and used to select control B-cells. Two 

DLBCL cell lines were selected for co-culture experiments based on their molecular 

profile. The GCB cell line Su-DHL4 was gifted from Dr. A Letai and the ABC cell line Ri1 

was gifted from Dr. M Capasso. Both cell lines were maintained as described in 

section 2.1.4. 

 

6.3.2 Co-culture experiments 

Healthy CD14+ monocytes were positively selected from PBMCs using microbeads as 

described in section 2.8.1. Monocyte purity checks were performed by flow 

cytometry using CD14 antibody (Pacific Blue™ anti-human CD14 antibody, clone 
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M5E2, eBiosciences). Monocytes were matured for 7 days in petri dishes at 

4.5x106/ml concentration in DMEM medium with 10% human AB serum. The 

adherent cell fraction was then harvested using a cell scraper, washed and re-

adhered at a concentration of 2 - 5 X106/ml at 37oC into 24-well plates for 24h prior 

to co-culture set-up (see section 2.8.3). 

Reactive B-cells were positively selected from tonsil SCSs as detailed in section 2.8.2 

and resuspended in DMEM medium with 10% human AB serum. These and DLBCL cell 

lines with acceptable viability (>85%) were layered in triplicate over the adherent 

macrophages at a 1:1 concentration or placed in transwell inserts as detailed in 

section 2.8.4. Macrophages treated with 100ng/ml of LPS were used as positive 

control. Macrophages cultured alone constituted our negative internal controls for 

each biological experiment.  

 

After 24h, co-culture supernatant was centrifuged and stored at -20oC for cytokine 

quantification (see section 2.9). Adherent macrophages were harvested and used for 

surface marker analysis using flow cytometry (see section 2.4.2). Antibodies used are 

described in Table 6.1. A minimum of 10000 events gated on compensated viable-

singlet cells were acquired using the four laser BD Fortessa flow cytometer. Results 

are expressed as the difference of MFI compared to macrophages cultured alone in 

each individual experiment.  

 

Additionally, macrophages were sorted using size and intracellular complexity 

allowing clear separation from contaminant B-cells. After sorting, RNA was extracted 

from each cell pellet, assessed for quality, converted to cDNA and analysed by qRT-PCR. 

NanoDrop spectrophotometer 260/280 values were comparable across all samples and 

were within the accepted ranges for good quality RNA (data not provided). CT values 

generated by the qRT-PCR reaction were normalised to GAPDH and converted to RQ 

values as described in section 2.7.2.2. The TaqMan® Gene Expression Assays tested were 

described in Chapter 5.  
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6.3.3 Statistical analysis  

Statistical analyses were performed with GraphPad Prism software using the Students 

T-test or Mann Whitney U-test when appropriate.  

 

 

Table 6.1 Antibodies used in this study 

Marker Clone Isotype Fluorochrome Source 

CD80 L307.4 Mouse IgG1, κ PE BD 

CD86 2331 (FUN-1) Mouse IgG1, κ FITC BD 

PD-L1 MIH1 Mouse IgG1, κ APC BD 

HLA-DR G46-6 Mouse IgG2a, κ APC-H7 BD 

CD36 CB38 Mouse IgM, κ APC BD 

Fixable viability dye   eFluor® 780 eBioscience 

 

 

 

6.4 Results  

6.4.1 Investigating changes in the expression of macrophage activation markers 

after co-culture 

Given we had no previous experience with this experimental model, the first 

approach was to investigate the dynamics of expression of macrophage activation 

markers after co-culture. None of the markers explored was found to be differentially 

expressed in our GEP studies. However we thought they could be informative of the 

utility of the model. 

 

As can be appreciated in Figure 6.1, LPS significantly enhanced the expression of 

CD80, CD86 and HLA-DR, suggesting macrophage responsiveness and that this model 

could be valuable to test the influence of B-cells.  
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LPS significantly increased CD86 expression compared to untreated macrophages and 

all remaining co-culture conditions. Whereas reactive B-cells cultured in contact with 

macrophages had no significant impact on CD86 expression, all other experimental 

conditions significantly decreased CD86 expression. This is visually clearer in the right 

side graph of Figure 6.1 A, representing CD86 expression dynamics for each replicate. 

Co-culture with the ABC cell line Ri1 produced the most significant reduction 

compared to untreated macrophages and macrophages cultured with reactive B-cells.  

 

Likewise, CD80 expression was upregulated by LPS. However the magnitude of 

change was more heterogeneous across biological replicates. In two of six of the 

replicates, LPS decreased CD80 expression. In fact, these two biological replicates 

display a different expression dynamics suggestive of being less responsive in co-

culture. Otherwise, experimental conditions were associated with enhanced 

expression of CD80, particularly in contact with B-cells and the Ri1 cell line. 

 

HLA-DR expression varied in a more heterogeneous fashion in all experimental 

conditions, and contrary to the results of the other markers, HLA-DR did not exhibit a 

normal distribution (data not shown). Even applying the Wilcoxon matched-pairs 

ranked test we did not find any significant results, supporting experimental 

heterogeneity. 
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Figure 6.1 Expression dynamics of activation markers CD80 (A), CD86 (B) and HLA-DR (C) in 

macrophages harvested from co-culture.  

Samples were incubated with conjugated mAbs for 30mins on ice in the dark and analysed by 
flow cytometry. The left side graphs represent the change of MFI compared to macrophages 
cultured alone (median +- SEM of six independent experiments). The right side graphs 
portray the expression dynamics according to each biological replicate. Paired Students T-test 
with *p <0.05, ** p <0.005. Brown symbols represent comparisons with control 
macrophages. 
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6.4.2 Exploring whether changes in gene expression found by GEP can be mimicked 

using the co-culture system 

In order to comprehend the expression dynamics of selected transcripts in 

macrophages in this co-culture model we had to sort them after co-culture. Although 

several methods were used to eliminate B-cells from the harvested cell pellet (from 

extensive washing to treatment with trypsin or less aggressive digesting solutions), 

contamination with B-cells could not be avoided (confirmed by flow cytometry, data 

not shown). Macrophages were selected according to size and intracellular 

complexity using the forward and side scatter pattern.  

 

The transcripts studied in three independent biological replicates were chosen from 

the top differentially expressed genes between DLBCL TAM compared to reactive 

macrophages in GEP studies (Chapter 5). The transcripts studied were AQP9, which 

was among the most upregulated; and IDO1 and CDH1, both among the most 

downregulated in DLBCL TAM compared to reactive macrophages.  

 

Given the necessity to select macrophages after co-culture, we firstly explored 

whether the sorting affected gene expression results.  

Indeed, relevant changes occurred after flow sorting in expression of the transcripts 

investigated. However, this effect did not seem to be similar neither across genes nor 

across samples. mRNA levels for the three assays changed in an heterogeneous 

fashion, as is illustrated in Figure 6.2.  

 

Next we are going to describe the findings for each of the three genes studied using 

qRT-PCR. 
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Figure 6.2 Targeted mRNA expression is affected by sorting after co-culture.  

50ng of amplified cDNA was used in triplicate for each sample and analysed by qRT-PCR. CT 
values were normalised to GAPDH. RQ values, calculated using as calibrator the average ΔCT 
of untreated macrophages, are represented for unsorted and sorted macrophages. 
 

 

 

AQP9 belongs to the family of aquaporins (AQP) which are water-selective membrane 

channels critical for the regulation of cell volume and migration.352 AQP9 is the most 

prominent AQP in human inflammatory cells,353 including macrophages, and was the 

sixth most upregulated gene in DLBCL TAM compared to reactive LN macrophages in 

our array studies (Log2 FC 3,35, adjusted p-value 0.003).  

 

AQP9 is among the transcripts defining an M1 signature (Figure 5.13) and hence 

should increase when macrophages are triggered by LPS. Accordingly, we were able 

to document a rise in this membrane channel in macrophages under LPS treatment 

(Figure 6.3 A). Compared to untreated macrophages, all conditions induced a 

decrease in AQP9, with the exception of two of the three samples when in contact 

with B-cells. As can be appreciated in Figure 6.3 A, right side panel, reactive B-cells 

did not induce a significant change in AQP9 expression when in contact due to sample 

heterogeneity, but decreased it when in transwell in all samples.  

 

The second molecule investigated, e-cadherin (CDH1), was among the most 

downregulated genes in our TAM signature (Log2 FC -2,6, adjusted p-value 0,03). Van 

den Bossche et al. described that CDH1 expression is enhanced in macrophages 

exposed to the prototypic M2 cytokine IL-4 and IL-10.354 Mechanistically, e-cadherin 

was shown to be involved in macrophage interactions with T-cells in a Th2 immune 

context. In addition, M1 stimuli repress CDH1 in macrophages.354 

CDH1 expression in untreated macrophages was variable, as can be appreciated in 



Chapter 6 Results 

207 

Figure 6.3 B. In all experimental conditions a decrease of CDH1 mRNA levels was 

detected compared to controls particularly in contact conditions with both reactive 

and B-cell lines. As predicted, the M1 stimuli LPS induced a decrease in CDH1 

expression. 

 

Finally, we investigated the expression dynamics of indoleamine 2,3-dioxygenase 1 

(IDO1), a catalyser of the rate-limiting step in the immunoregulatory pathway of 

tryptophan catabolism. IDO1 activity in human macrophages is triggered by direct 

interaction with CD4+ T-cells and controlled by the M1 cytokine IFN-γ.355 

 

Contact with reactive B-cells led to an important increase in IDO1 mRNA levels in 

macrophages, and even more so with LPS treatment (Figure 6.3 C), corroborating 

published data. All other conditions induced a more depreciable and heterogeneous 

increase in IDO1 transcript levels compared to untreated macrophages. We also 

inspected IDO1 protein expression and results will be discussed in our next chapter. 

 

Moreover, we addressed whether we could mirror, using this co-culture model, the 

expression changes documented in our transcriptomic analysis in two other genes, 

CTSL1 and C3AR1. Both genes increased in all conditions compared to untreated 

macrophages, with no significant differences detected (data not shown).
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Figure 6.3 Gene expression changes of targeted genes in macrophages harvested from co-

culture.  

50ng of amplified cDNA was used in triplicate for each sample and analysed by qRT-PCR. CT 
values were normalised to GAPDH. The left side graphs represent RQ values (median +- SEM 
of three independent experiments). The right side graphs depict the expression dynamics 
according to each biological replicate. Paired Students T-test with *p <0.05, **p <0.005. 
Brown symbols represent comparisons with control macrophages. 
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6.4.3 Expression dynamics of the immunoregulatory molecule PD-L1 

TAM can exhibit immunossupressive functions (see Figure 1.2) through diverse 

mechanisms, from the production of soluble molecules, including IDO-1; to the direct 

crosstalk with T-cells through, for instance, e-cadherin or PD-L1. Macrophages can 

induce profound suppression of T-cell proliferation and cytokine secretion through 

crosstalk between PD-L1 (CD274) and the T-cell surface receptor PD-1.228,237,356 

According to published data, PD-L1 can be induced in macrophages by both M1 (LPS 

and IFN-γ)357 and M2 (IL-4 and IL-10) cytokines.358 

In our transcriptomic studies, PD-L1 was upregulated in DLBCL TAM compared to 

controls. We hence decided to investigate PD-L1 protein expression dynamics in 

macrophages after co-culture (Figure 6.4).  

 

 

 

 

 

Figure 6.4 Expression of PD-L1 protein in macrophages after co-culture.  

PD-L1 protein expression was tested using flow cytometry, results being the ratio of MFI 
compared to untreated macrophages. Paired Students T-test with *p <0.05, **p <0.005. 
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Using flow cytometry we confirmed that LPS induces an increase in PD-L1 basal levels 

in macrophages. Reactive B-cells enhanced, whereas DLBCL cell lines decreased PD-L1 

expression. However responses were variable across the three replicates studied. 

 

6.4.4 Investigating changes in CD36 expression in macrophages after co-culture 

Given that CD36 was used for positive selection of macrophages in our GEP studies, 

we investigated the dynamics of expression of this scavenger receptor in 

macrophages after co-culture (Figure 6.5).  

 

 

 

 

 

Figure 6.5 CD36 expression dynamics in macrophages harvested from co-culture.  

Sample were incubated with an anti-CD36 APC-conjugated mAb for 30mins on ice in the dark, 
washed and analysed by flow cytometry. Bars represent the change of MFI compared to 
macrophages cultured alone. Mean and SEM of six independent biological experiments are 
displayed. Paired Students T-test with *p <0.05, **p <0.005. 
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CD36 expression was detected in 100% of macrophages and differences in expression 

intensity according to co-culture conditions were modest, as can be appreciated in 

Figure 6.5. 

The Ri1 ABC cell line significantly increased CD36 expression in macrophages 

compared to control macrophages. Co-culture in contact with reactive B-cells was the 

only condition inducing a decrease of CD36 expression in macrophages compared to 

control. The magnitude of reduction in expression intensity induced by reactive B-

cells was significantly different from the ones detected when reactive B-cells were 

cultured in transwell, when macrophages were cultured in contact with Ri1 cell lines 

or when the GCB Su-DHL4 cell line was placed in transwell. 

 

 

6.5 Discussion 

Over the last decade an abundance of transcriptomic studies have been reported in 

DLBCL. This high throughtput technique led to major findings in DLBCL biology. The 

COO model illuminated on the heterogeneity of this disease and served as starting 

point for a multiplicity of functional studies of genetic aberrations shown to be 

specific to each molecular subgroup.  

On the contrary, whereas GEP of whole DLBCL tumours hinted towards the 

importance of a stromal response in disease biology and outcome, the lack of further 

functional validation of this hypothesis is remarkable.  

 

GEP consensus clustering analysis performed by Margaret Shipp’s group in 2005 

delineated three groups of DLBCL independently of the molecular COO. Following this 

discovery, the group elegantly provided validation data and novel insights into 

disease pathogenesis. For example, Caro et al. demonstrated that the DLBCL cluster 

harbouring an oxidative phosphorylation GEP signature displayed enhanced 

mitochondrial energy transduction and glutathione levels and was, notably, 

selectively sensitive to manipulation of glutathione synthesis compared to the 

remaining patient’s subsets.359 We believe that with additional, more comprehensive 

validation, GEP signatures of the microenvironment in DLBCL can provide similar 
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insights into the biology of DLBCL.  

Towards that end, we defined the transcriptome of the DLBCL TAM and suggested 

that macrophages are indeed implicated in the expression of prognostic immune 

signatures previously reported in this disease and hence constitute an excellent cell 

population to study at the functional level.  

 

Under the hypothesis that differences in GEP detailed in Chapter 5 result from the 

influence of malignant B-cells on macrophages we used a co-culture system involving 

these two cell types.  

 

Work presented in this chapter using the current co-culture model does not fully 

support this hypothesis. 

 

In order to determine whether this model could be used to study the dynamics of 

macrophage phenotype, we firstly investigated the expression pattern of the 

macrophage activation markers CD80, CD86 and HLA-DR after 24h in co-culture.  

 

The co-stimulatory molecules CD80 and CD86 are important deliverers of T-cell 

activation signals during immune responses. It is established that CD80 and CD86 help 

determining to what extent macrophages are skewed towards a pro-inflammatory 

phenotype, since their expression increases when macrophages are stimulated with 

LPS.360 However, it has been suggested that the expression dynamics of both 

molecules is differential under IFN-y stimulation, with CD86 expression increasing and 

CD80 expression decreasing.360 Moreover, the kinetics of modulation is also different, 

with changes occurring between 18 and 42h after activation and with CD86 preceding 

CD80 expression after LPS treatment for approximately 12h.361 

 

In our snapshot analysis at 24h, we indeed confirmed that, in most cases, LPS 

increased the expression of CD80, CD86 and HLA-DR. The lack of response to such 

potent activation in some replicates regarding CD80 and HLA-DR most likely 

represents inter-sample heterogeneity, given that the same samples responded to 
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LPS by increasing CD86 expression. These dampened responses could be attributed to 

a pre-existent activation state towards a pro-inflammatory phenotype in basal 

conditions or to a different kinetics with later responses in some cases.  

After 24h, CD86 expression decreased in all experimental conditions compared to 

control macrophages, with only two biological replicates being exceptions when 

cultured in contact with reactive B-cells. On the other hand CD80 expression 

increased throughout, particularly when macrophages were cultured in contact with 

reactive B-cells and the ABC cell line Ri1. Overall no clear differences were induced by 

reactive B-cells compared to cell lines at 24h of co-culture and the relevance of this 

expression pattern is unclear. Since only one time point was applied, we are unaware 

of the kinetics of expression of these molecules, which could help clarifying the 

significance of these findings. 

 

We then intended to demonstrate that macrophage gene expression changes 

revealed in our microarray studies could be mirrored using the co-culture model. We 

recognize that a more comprehensive approach using whole transcriptomic analysis 

or customized qRT-PCR arrays would probably be more useful to demonstrate this 

assumption. 

 

Whereas B-cell contamination did not constitute a problem for protein studies using 

flow cytometry due to differences in cell size and internal complexity, it made 

macrophage sorting necessary before qRT-PCR. We demonstrated that targeted gene 

expression is affected by the sorting, a phenomenon that is remarkably under-

reported in the literature. Changes were heterogeneous and suggested that the 

effect of cell sorting could not be predicted, nor was dependent on the biological 

sample. Our approach was to sort macrophages from all co-culture conditions. This 

was taken forward in three independent biological replicates.  

 

We chose to study transcripts that: (1) were maximally differentially regulated 

between reactive and DLBCL macrophages; (2) have been previously implicated in T-

cell regulatory functions; (3) have not been properly studied in DLBCL. If we could 
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prove a direct influence of B-cells on expression of these genes in macrophages, it 

would constitute an interesting mechanism of immunoregulation in DLBCL that 

should be experimentally tested.  

In agreement with previously published data, AQP9 and IDO1 were upregulated and 

CDH1 repressed by LPS. CDH1 basal levels were extremely variable in the three 

samples tested. This biological heterogeneity can be related to differences in cytokine 

levels or oxygen tension in healthy donors. 

 

The expression dynamics of AQP9 and CDH1 was similar, with a decrease in 

expression being induced in all experimental conditions compared to untreated 

macrophages. Contrary to our transcriptomic data, no clear differences arose from 

culture with reactive B-cells and DLBCL cell lines. Moreover, IDO1 was clearly 

upregulated by reactive B-cells compared to cell lines, again not substantiating GEP 

findings. This discrepancy in the kinetics of expression of the M1 molecules AQP9 and 

IDO1 suggests that related cytokines such as IFN-y might not play an import role in 

this model.  

We also attempted to demonstrate a differential effect of co-culture conditions in the 

expression of macrophage PD-L1 protein. However responses were variable across 

the three samples studied.  

 

A number of aspects related to the experimental design can justify the heterogeneity 

of our results and, as a consequence, the inability to support our hypothesis. 

 

For this investigation we used healthy human monocyte-derived macrophages that 

were matured in vitro in DMEM media and human serum. After our experiments 

were finalized an important consensus publication was published proposing a 

standardized methodology for macrophage studies that will allow achieving more 

reproducibility across experiments and laboratories.213 The panel of experts 

suggested that monocytes should be matured in media with purified endotoxin-free 

recombinant CSF-1. We recognize that using different batches of human serum as the 

source of CSF-1 increases the potential of obtaining experimental variability. 
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Additionally it is likely that commercialized serum will contain variable amounts of 

IFN that can cause confounding effects. We tested this hypothesis and did not detect 

IFN- in supernatants (see following chapter). However, it has to be hypothesized that 

soluble factors present in human serum (including CSF-1) influence macrophage 

activation. Our choice to use human serum was based on data demonstrating that 

CSF-1 directs macrophages towards an M2 phenotype.  

 

Additionally, peripheral blood monocytes from different donors (from which no 

clinical or demographical information is available) are likely to be differently 

activated.  

We believe to have overcome these two limitations by establishing as controls 

unmanipulated macrophages that were cultured in the same circumstances in each 

biological experiment. 

 

The main drawback of our co-culture model is the use of DLBCL cell lines. Although 

malignant cell lines provide valuable preliminary data, they have limitations. Their 

infinite growth in culture, independent of microenvironment signals, likely make 

them unsuitable cells to tease out the potential effect of cell interactions in vivo in 

the original tumour. Moreover they are unable to reflect patient tumour 

heterogeneity.  

 

Finally, due to a complex experimental design and cumbersome procedural 

manipulations, the analysis had to be limited to a single time-point and to reduced 

read-out analysis. In our opinion this is an extremely important aspect that limits 

interpretation of the co-culture system.  

 

It was entirely expected that such simplified model was limited to replicate the 

complex crosstalk that can be established between DLBCL malignant cells and the 

non-malignant cells in the microenvironment. An in vitro culture system using patient 

samples, which much more closely resemble the original tumour, would be a valuable 

tool to test our hypothesis. This was intended but deemed impossible in the current 
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studies. The extremely low viability on thawing of primary B-cells (data not shown, 

but indirectly illustrated by the modest RIN numbers) was not surprising, given that 

SCSs were previously stored, submitted to cell sorting and then re-stored.  

 

A three cell (macrophages, B and T-cells in an autologous setting) co-culture model 

using fresh samples, and testing a larger panel of markers would help us to finally 

address our hypothesis.
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Chapter 7 Exploring macrophage heterogeneity in diffuse large B-cell 

lymphoma 

 

7.1 Introduction 

As already mentioned, there are limited studies towards understanding the 

polarisation status and effector function heterogeneity of macrophages in human 

cancer. Our data presented in Chapter 4 highlights important differences between 

the DLBCL TAM and reactive LN macrophages. The GEP analysis undertaken also hints 

towards genuine macrophage heterogeneity within the DLBCL samples, not related to 

patient characteristics. This is an interesting finding, likely related to a distinct impact 

of the tumour cells on macrophage function that has potential prognostic value.  

 

Remarkably, most GEP findings were hardly validated at the protein level, likely due 

to problems inherent to IHC analysis of macrophages. CD68 is a non-specific pan-

macrophage marker highly difficult to analyse.329 Diagnostic DLBCL samples have 

heterogeneous infiltrations of CD68+ macrophages. In chapter 4, we suggested that 

the extent of total macrophages has no impact on patient’s outcome, contradicting 

the prognostic models developed using transcriptomic analysis of DLBCL LNs. This 

data exposes a major limitation of IHC studies to functionally characterise TAM in the 

microenvironment. CD163 has been claimed to specifically identify M2 macrophages. 

A subset of STAT1+ M1 macrophages has been identified using double IF staining in 

follicular lymphoma and linked to a worse outcome.362 However recognizing global 

M1 and M2 populations using broad prototypic markers brings limited information 

regarding the detailed functional activation of macrophage subsets in the 

microenvironment. Identifying novel proteins, as SPARC has been identified, might be 

the way forward to recognize subsets of macrophages with more restricted functions, 

with an outcome impact potential and amenable to be targeted. 

 

In this study we aimed to consolidate our previous finding that macrophages are 

functionally heterogeneous in the DLBCL microenvironment. And with the assumption 
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that the malignant B-cells are partially contributing to macrophage polarisation in 

DLBCL, we hypothesized that a deeper analysis of GEP of TAM could help to segregate 

different groups of DLBCL establishing different patterns of crosstalk with 

macrophages in the microenvironment. 

Additionally, we predicted that novel markers discovered using GEP could help to 

better characterise the functional polarisation of TAM in the DLBCL 

microenvironment. 

 

 

7.2 Aims 

In this study we aimed at exploring the DLBCL TAM trancriptomic heterogeneity. 

After depicting subgroups within the TAM samples studied in Chapter 5, we intended 

to explore the cytokine and chemokine profile of corresponding malignant B-cells, 

hoping to illuminate on potential molecules partially responsible for the different 

macrophage polarisation statuses identified in the transcriptomic analysis. 

In the same line, we wanted to reinforce the underlying macrophage heterogeneity 

by demonstrating that DLBCL TAM express previously unexplored M1 and M2 

proteins.  

 

 

7.3 Materials and methods 

7.3.1 Samples 

The transcriptomic analysis was performed using samples described in Chapter 5.  

IHC and IF studies were performed using FFPE tissue from DLBCL patients treated 

with R-CHOP at St. Bartholomew’s Hospital. Patient’s characteristics have been 

described in Chapter 3.  

 

 



Chapter 7 Results 

219 

7.3.2 Cytokine studies 

CBAs were used to test for the presence of cytokines and chemokines in culture 

media. These studies were undertaken using samples from the co-culture 

experiments explained in Chapter 6 and from cell line supernatant. A detailed 

methodology is given in Chapter 2. 

 

7.3.3 IHC Staining and IF analysis 

Single protein immunostainings were performed as previously described. IF was used 

in this study to detect co-expression of two proteins of interest in macrophages in 

FFPE tissue of DLBCL and reactive LNs. A detailed staining protocol is provided in 

section 2.3. Primary antibodies and conditions of use are described in Table 7.1.  

Slides were scanned using an Olympus BX61 microscope and analyzed using the Ariol 

SL-50 visual analysis software. Scanned slides were observed on a computer screen. 

Single channel and overlapping images were used for final analysis quantifying single 

and double positive cell counts.  

 

7.3.4 Statistical analysis  

Statistical analyses were performed with GraphPad Prism software using the Students 

T-test or Mann Whitney U-test when appropriate.  
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Table 7.1 Antibodies used in this study 

Antibody Clone Species Dilution Source 

CD68 PGM1 Mouse 1/400 Dako 

CD163 10D6 Mouse 1/2800 Leica Biosystems 

ALOX15 3D8 Mouse 1/250 AbD Serotec 

IDO1 polyclonal Rabbit 1/50 Sigma-Aldrich 

 

 

 

7.4 Results 

7.4.1 Transcriptome heterogeneity in DLBCL TAM 

The gene and protein expression studies just described suggest that the co-culture 

model developed does not mirror the GEP data. This was entirely expected, and 

limitations of the model were already discussed.  

 

In this context, we considered addressing the previous finding of macrophage GEP 

heterogeneity within DLBCL TAM.  

Microarray unsupervised hierarchical clustering based on the 12000 most variables 

probesets of the 13 samples studied showed that DLBCL TAM agglomerated in two 

main clusters (Figure 7.1 A). No differences in clinical features were detected 

between these two groups (data not shown). 
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We hence thought of interrogating for differential expressed genes between the two 

groups (identified in Figure 7.1 A and B in gray and blue). Using a FC 3 and adjusted 

p-value 0.05 we identified 150 well-annotated genes that were differentially 

expressed between the DLBCL TAM groups. The genes we investigated in our co-

culture model were among the differentially expressed genes between the two 

groups, as can be visualized in Figure 7.1 C. This could be expected by simply 

inspecting the two-dimensional scaling image, showing that the DLBCL TAM 

population 1 (in gray) clusters closer to reactive LN macrophages. Indeed, both CD1E 

and CDH1, found to be upregulated in reactive controls versus the whole DLBCL TAM 

group, were both upregulated in the DLBCL TAM population 1. To test the degree of 

similarity between the reactive macrophages DLBCL TAM population 1, we looked at 

differentially expressed genes between the two groups. Top transcripts from our 

original analysis were still differentially expressed, including FCγR genes, MT genes, 

ANKRD22, AQP9, IDO1, C3AR1 or CTSL1.  

 

7.4.2 Investigating soluble factors differentially expressed between DLBCL TAM 

groups 

As has already been described, it is likely that malignant B-cells influence macrophage 

polarisation and function through the production of soluble factors. Cytokines and 

chemokines are deregulated in tumours. These can contribute in an autocrine fashion 

to tumour growth, but can also affect the microenvironment. 

 

We hypothesized that the differences documented in DLBCL TAM GEP profiles relate 

to differences in the cytokine and chemokine profile of corresponding malignant B-

cells.  

To this end we selected, among the pure (>95%) B-cell samples stored from DLBCL 

and reactive LN, three samples from each group (group 1: R0433, T2628, T4570; 

group 2: T6932, R8756, R9516) and two from reactive B-cell samples (T5900, T5996) 

and performed whole trancriptome analysis using Affymetrix U133 Plus 2.0 arrays. A 

targeted analysis of cytokines, chemokines and adhesion molecules was undertaken. 
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Figure 7.1 GEP analysis suggesting two groups of DLBCL TAM.  

A. Two-dimensional scaling based on expression of 12,000 genes, distances between samples 
calculated using Euclidean distance metrics. B. Heatmap representing differentially expressed 

genes between the two patient groups with a FC4 and adjusted p-value ≤0.05. Euclidean 
distance and Ward linkage applied. C. qRT-PCR results for targeted genes comparing the two 
DLBCL TAM groups. Bars represent mean + SEM, unpaired T-test, * p-value ≤0.05, ** p-value 
≤0.005.  
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Within the archetypal molecules involved in macrophage activation, the expression of 

M2 cytokines IL-4, IL-13 and IL-10 or IL-6 was not significantly different between B-

cells of both DLBCL groups and controls. On the contrary, IFN-γ, the prototypical M1 

cytokine was the most differentially expressed soluble factor between DLBCL B-cells, 

with an absolute FC of group 1 versus group 2 of -9.4 and an adjusted p-value of 

6.4X10-5 (Figure 6.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Differentially expressed soluble factors between B-cells.  

Initial RNA integrity was comparable across samples (RIN between 7.4 and 8.9). 12.5 g of 
fragmented and labelled aRNA were hybridised to Affymetrix U133 Plus 2.0 arrays according 
to manufacturer’s recommendations and analysed in a single batch. Data was normalised 
using RMA and filtered using 20% standard deviation of signal intensity as threshold on O-
miner (http://o-miner.org/onlinetool/index.html). Differentially expressed genes were tested 
using the limma method. Boxplots represent the log intensity for each group, and significance 
was tested using BH FDR.
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We hence explored whether there was a predominance of M1-skewed genes 

overexpressed in the DLBCL TAM group 2 compared to group 1. We confirmed that 

DLBCL TAM group 2 preferentially upregulated M1 genes compared to group 2 (56 of 

62 M1 genes upregulated in group 2 versus 5 of 62 in group 1).  

 

As can be appreciated in Figure 7.2, the two reactive B-cell samples profiled showed a 

much lower and tighter expression of IFN-γ, CCL4 or CCL5 compared to DLBCL 

samples. CCL5, previously implicated in interactions between DLBCL cells and 

monocytes was also significantly upregulated in group 2 compared to group 1. CCL4 

expression between DLBCL groups was also strikingly different. Although CCL4 is 

predominantly produced by macrophages, it can be secreted by normal and 

malignant B-cells upon BCR crosslinking, suggesting that differences in serum levels of 

this chemokine can be expected in DLBCL according to oncogenic BCR signalling 

activation.  

 

We then investigated whether DLBCL cell lines exhibited constitutional secretion of 

IFN-γ or CCL5 using CBAs. This experiment had as objective identifying cell lines with a 

discrepant cytokine profile that could be used in co-culture models instead of primary 

cells.  

 

Using CBA as described in Chapter 2, DLBCL cell lines did not seem to secrete either 

IFN-γ or CCL5 in the conditions tested.  

IFN-γ was undetectable in all conditions (data not shown). The two culture media 

where DLBCL cell lines are generally maintained, RPMI or IMDM with FCS, had 

undetectable CCL5 (Figure 7.3). However, human serum utilised to mature 

macrophages in vitro and in our co-culture system, contains traceable amounts of 

CCL5. DMEM with human serum had similar levels of CCL5 as the same media 

extracted from wells where cell lines where grown for 24h. DMEM media alone had 

undetectable CCL5.
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Figure 7.3 CCL5 is detected in the cell culture media used in co-culture experiments.  

DLBCL cell lines were cultured in triplicate in 24 well plates in DMEM and human AB serum 
(HAS) for 24h, in an attempt to mimic co-culture conditions. For each condition, 50 ml of 
culture media was tested in triplicate using CBAs. Media only was tested in parallel. Bars 
represent the mean and SEM. 

 

 

In this context, we treated macrophages for 24h with the five soluble factors 

described in Figure 7.2 and analysed the expression of CD80 and PD-L1. The objective 

of this experiment was to investigate whether such factors could induce expression 

changes similar to the ones obtained in our co-culture models.  

 

In the absence of standardized protocols for macrophage stimulation with some of 

the molecules, different concentrations of CCL4 (10 and 20 ng/ml), CCL5 (1 and 5 

ng/ml) and IL-15 (50 and 100 ng/ml) were used. The data presented refers to the 

dose inducing relevant expression changes compared to untreated macrophages. In 

this pilot experiment (Figure 7.4) we confirmed our previous and others data 

describing LPS and IFN-γ as potent activators and CD80 and PD-L1 as M1-induced 

proteins in macrophages. With the exception of LPS and IFN-γ, the added molecules 

produced modest changes compared to untreated macrophages. However, those 

changes were within the range of the ones induced by reactive B-cells or DLBCL cell 

lines (see Figures 6.1 and 6.3).
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Figure 7.4 Expression of CD80 and PD-L1 in macrophages treated with soluble factors.  

Cells were harvested from 24 well plates 24h after treatment, stained for CD80 and PD-L1 by 
flow cytometry. Bars represent the difference in MFI compared to untreated macrophages 
from one biological replicate. 

 

 

All treatment conditions induced an increase of CD80 and PD-L1 MFI compared to 

controls. We found the same effect on CD80 in all co-culture settings, but a different 

effect on PD-L1, which expression decreased when DLBCL cell lines were added in 

contact or in transwell. 

 

7.4.3 Investigating Th1 and Th2 cytokines in co-culture supernatant 

Finally we investigated whether we could identify Th1 and Th2 cytokines in co-culture 

media. IFN-γ was undetectable in all five experiments. The Th1 cytokine TNF-α and 

the Th2 cytokines IL-6 and IL-10 could be identified in our model (Figure 7.5). 

Stimulation with LPS led to a considerable secretion of these cytokines by 

macrophages. Although in a significantly lower concentration IL-6, IL-10 and TNF-α 

were traced in supernatants from macrophages and reactive B-cells in contact 

conditions. When reactive B-cells were cultured alone, none of the three cytokines 

could be identified. All remaining conditions were negative. 
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Figure 7.5 Detection of Th1 and Th2 cytokines in co-culture supernatants.  

50 ml of co-culture supernatant was tested using CBA as described. Results represent the 
mean and SEM of five independent experiments. Bars represent mean + SEM, unpaired T-
test, * p-value ≤0.05. 

 

 

 

7.4.4 Using immunohistochemistry and immunofluorescence to discover specific 

macrophage subsets in the microenvironment 

We hypothesized that the expression of proteins codified by M1 and M2 genes 

previously identified by GEP could help identifying subsets of macrophages in the 

microenvironment, as well as corroborating the existence of macrophage 

heterogeneity in human DLBCL. Using novel markers might aid defining cell subsets 

with potentially different functions. 

 

Most studies trying to define M2 macrophage density in lymphoma used IHC for 

CD163. We claim that, in some circumstances, this is an inadequate approach for the 
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purpose.  

Manual counting of both markers would likely produce ambiguous data, with CD163 

outnumbering CD68, particularly in cases with heavy infiltration (Figure 7.6 A, case 1). 

This can be better appreciated in a correlation plot (Figure 7.6 C) showing a significant 

number of cases (~ 25%) scored higher for CD163 than for CD68. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Analysis of CD68 and CD163 immunostainings.  

A. Consecutive TMA sections were stained with CD68-KP1 and CD163. Images taken from the 
same core areas for two illustrative cases of heavy and low cell density. Amplification x20 and 
x40. B. Distribution of cases according to % stained area for CD68 and CD163 using 
Pannoramic Viewer. C. Correlation between results plotted in Figure B. 
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7.4.4.1 ALOX15 helps identifying a macrophages M2 subset in DLBCL 

Arachidonate 15-Lipoxygenase (ALOX15) is a lipid-peroxiding enzyme involved in the 

clearance of apoptotic cells by macrophages. It has been demonstrated that ALOX15 

belongs to an IL-4-induced, M2 transcriptional programme in human macrophages 

controlled by the transcription factor MYC. Coordinate induction of PPAR- and 

ALOX15 mediates interleukin-4-dependent transcription of the CD36 in macrophages.  

Immunostaining for ALOX15 in reactive LN TMAs suggested its expression was 

restricted to the stromal compartment (illustrative example pictured in Figure 7.7 A).  

 

Morphologically, a substantial number of ALOX15+ cells in DLBCL were smaller than 

macrophages, likely representing monocytes. By performing IF in TMAs we 

determined that ALOX15 expression is circumscribed to a small subset of CD68+ cells 

in DLBCL (Figure 7.7 A). Hence, a comparative analysis could be done using single 

ALOX15 immunostaining.  

 

Quantification of ALOX15+ cells in TMA corroborated GEP data (logFC -2,513 of DLBCL 

TAM versus controls, p=0.003). R-CHOP treated DLBCL showed a significantly lower 

expression of this enzyme compared to reactive LNs (Figure 7.7 B). Although a 

relatively small number of DLBCL cases were investigated (results available for 64 of 

the 77 patients treated with R-CHOP at Bart’s), a training validation method 

suggested that having ALOX15+ cells in the stromal compartment was associated with 

an improved PFS (Figure 7.7 C). It will now important to validate these results in an 

independent cohort.
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Figure 7.7 Expression of ALOX15 in reactive LNs and DLBCL.  

A. HRP-DAB immunostaining for ALOX15 in representative cases of reactive LN (x20 and x40 
magnification) and DLBCL (x40 magnification). IF studies performed in DLBCL TMAs showed 
that ALOX15 is restricted to CD68+ cells (white arrows, 20x magnification). B. Manual 
quantification of ALOX15 in DLBCL (64 cases) and reactive LN (29 cases) TMAs. Mann-Whitney 
U-test p-value <0.001. C. PFS according to absence or presence of ALOX15 expression (HR for 
negative cases 2.6, 95% CI 1.120-9.891). 
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7.4.4.2 IDO1 helps identifying a macrophages M1 subset in DLBCL 

IDO1 transcript levels were upregulated in DLBCL macrophages compared to reactive 

controls, particularly in a subset of patients (group 2). Its promoter includes 

transcription factor sites that confer responsiveness to IFN- and it has been shown 

that macrophages, DCs and endothelial cells increase IDO1 expression when exposed 

to this cytokine and to LPS.  

IDO1 protein expression was previously explored in DLBCL by a single group. The 

authors established a direct correlation of IDO1 expression by malignant B-cells with 

a worse survival in R-CHOP treated patients.  

 

Corroborating previous findings, IDO1 expression was detected in stromal cells in 

reactive and DLBCL LN, likely in monocytes/macrophages, DCs and endothelial cells. 

In some cases (on example is illustrated in Figure 7.8, case 1), IDO1 appears to be 

expressed by malignant B-cells, but with a much lower intensity compared to stromal 

cells. Even within the stromal compartment, expression was variable, as is illustrated 

in case 2.  

 

IF staining in DLBCL and reactive LN TMA showed co-localization of IDO1 and CD68 in 

the cytoplasm of a subset of small and large, interdigitating cells (identified in Figure 

7.8 A). Both CD68+/IDO- macrophages and CD68-/IDO1+ cells were also identified. 
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Figure 7.8 Expression of IDO1 in reactive LNs and DLBCL.  

A. HRP-DAB immunostaining for IDO1 in representative cases of reactive LN (x20 and x40 
magnification) and DLBCL (x40 magnification). Representative IF results for case 2 are 
illustrated, with white arrows identifying CD68+/IDO+ cells (40x and 63x magnification). B. 
The %CD68+/IDO1+ within the total macrophage population in DLBCL and control cases was 
manually quantified using IF.  
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IF analysis was performed manually on a computer screen. Firstly, CD68+ cells were 

quantified using the green channel. By switching the red channel on and off, 

CD68+/IDO1+ cells were then estimated for each case. Results for 59 R-CHOP treated 

patients and ten reactive LN samples are presented (Figure 7.8 B). 

According to our data, the proportion of IDO1+ macrophages in DLBCL is variable. 

Two-thirds of DLBCL patients had <12.5% infiltration, whereas the remaining had a 

denser infiltration of dual positive cells. This is in accordance to our transcriptomic 

studies, in which IDO1 transcript was upregulated in a smaller DLBCL subset (group 2, 

five patients) compared to the remaining (group 1, eight patients). Additionally, 

although control cases studied are scarce, the proportion of IDO1+ macrophages 

seems to be lower than in DLBCL, again supporting our GEP results. These findings, 

however, need to be validated in a larger dataset. 

 

 

7.5 Discussion 

Given the impossibility of designing an optimal co-culture model, we thought of 

addressing DLBCL TAM heterogeneity that was hinted by the initial unsupervised 

hierarchical clustering of GEP clusters.  

 

Supervised analysis showed that transcripts investigated in our co-culture model 

were among the differentially expressed genes between the two groups. However we 

believe these results do not devaluate the initial GEP results, which put into relevance 

the homogeneity of reactive LN macrophage GEP compared to DLBCL TAM GEP. To 

corroborate this, when results from reactive macrophages and samples belonging to 

the DLBCL TAM population 1 were compared, top transcripts were still differentially 

expressed. This is visually illustrated in the multidimensional scaling results placing 

DLBCL TAM population 1 in an intermediate position between controls and DLBCL 

TAM population 2.  

 

We then postulated that TAM GEP relate to differences in the cytokine and 

chemokine profile of corresponding malignant B-cells. Recognizing differentially 
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expressed soluble factors could help to design simpler models to test their influence 

in macrophage transcriptome and proteome and to illuminate on potential cell 

interactions. 

 

Emulating T helper-cell functional classification, it has been proposed that effector B-

cell subsets can be identified by the pattern of cytokines secreted when stimulated 

with antigen and T helper cells.263 When triggered by Th1 cells, B-cells are able to 

produce Th1 cytokines including IFN-, which in turn are able to amplify a Th1 

immune response by affecting T-cell polarisation. This effector classification has not 

been addressed in the context of B-cell malignancies. 

 

ABC DLBCL cell lines harbouring MYD88 mutations can secrete IL-6 and IL-10.125 

Studies using human DLBCL samples confirmed an increase in these JAK/STAT 

pathway-related serum cytokines and established a link between higher levels and a 

worse outcome.363-365 It can be envisaged that DLBCL-derived IL-6 and IL-10, similarly 

to what has been described for IL-10 in BL and in other tumour contexts, polarise 

macrophages towards an M2, immunossupressive phenotype and sustain their 

survival in the microenvironment. Data developed in our laboratory (Hallam, SL, 

unpublished) confirmed a rise in circulating concentrations of IL-10 and IL-6 in mice 

transplanted with an aggressive B-cell NHL. In this model IL-6 decreased after 

macrophage ablation. 

 

The expression of genes codifying the M2 cytokines IL-4, IL-13 and IL-10 or IL-6 was 

not significantly different between B-cells of both DLBCL groups and controls. 

However, the prototypical M1 cytokine IFN-γ was the most differentially expressed 

soluble factor between DLBCL B-cell groups. It is possible that B-cell-derived IFN-γ can 

intervene in macrophage M1 polarisation. We confirmed that DLBCL TAM group 2 

preferentially upregulated M1 genes compared to group 2, which could corroborate 

the existence of different B-cell polarised effector population and an IFN-γ enriched 

milieu.  

 



Chapter 7 Results 

235 

However, correlations between cytokine mRNA levels and secretion are generally 

poor. In an attempt to identify cell lines with a discrepant cytokine profile that could 

be used in co-culture models instead of primary cells, we measured cytokines in 

supernatants. None of the six DLBCL cell lines exhibited constitutional secretion of 

IFN-γ or other molecules tested, which could have been predicted given the lack of 

polarising triggers.  

 

Measuring cytokines in DLBCL LN immediately after collection, yet not revealing their 

source, would be the only way to support the relevance of our findings. This could not 

be performed in our studies and is hard to pursue given the obstacles in obtaining 

fresh material. Although FFPE immunostaining could be used, we suggest that 

problems of quantification would be encountered. 

 

IFN-γ was also undetected in all co-culture conditions, suggesting: (1) that this model 

is not adequate to demonstrate B-cell polarisation; (2) that IFN-γ, if produced, is not 

release to the media. On the other hand, TNF-α and the Th2 cytokines IL-6 and IL-10 

were identified in supernatants and likely are macrophage-derived. Stimulation with 

LPS led to a considerable secretion of these cytokines, suggesting that macrophages 

are able to establish a secretory response to pro-inflammatory stimuli. Moreover, 

reactive B-cells cultured alone did not secrete any of the three molecules. Cell lines 

had no influence on cytokine secretion. Instead, IL-6, IL-10 and TNF-α were detected 

in supernatants from macrophages and reactive B-cells in contact conditions, 

suggesting macrophage activation by B-cells. However, this was not formally 

demonstrated in our experiments. It would be interesting to perform intracellular 

cytokine staining by flow cytometry of both B-cells and macrophages, since there is a 

possibility that both cell subsets trigger each other to produce these cytokines. These 

findings should be pursued in future experiments using primary DLBCL B-cells.  

 

 

Other approach to validate GEP data is to perform protein studies using IHC. The 

availability of TMAs of DLBCL and reactive LN in our laboratory permitted analysing 
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protein expression patterns in DLBCL TAM and reactive macrophages in parallel, 

emulating the transcriptomic studies. 

 

In this part of our investigations we wanted to clarify whether both M1 and M2 

macrophages, expressing novel markers identified by GEP, are present in DLBCL 

tumours.  

 

As already mentioned, it has been postulated that CD163 identifies M2 macrophages 

in the microenvironment of lymphoma. We think defining smaller, functionally 

skewed subsets would be more useful. Moreover, we claim that CD163, yet being a 

macrophage specific marker, is an inadequate M2 marker and hope to convey it by 

showing that one quarter of cases analysed for % stained area of CD68 and CD163 in 

parallel score higher for CD163 than for CD68. 

 

Within the list of differentially expressed genes resulting from our transcriptomic 

studies we investigated several markers, but chose to show only results for ALOX15 

and IDO-1 due to holding more comprehensive results. The remaining proteins 

(ANKRD22, CTSL1, PD-L1, AQP9, CDH1) are still under investigation.  

The expression pattern of ALOX15 in LNs is underreported in the literature. According 

to our data, ALOX15 expression is restricted to cells of the microenvironment in 

DLBCL and reactive LNs and co-localizes with CD68 in all cases studied. Some double 

positive cells have morphology not suggestive of macrophages. It is possible that 

these are monocytes instead. It is known that CD68 staining can be identified in cells 

other than macrophages, such as mast cells. In our studies we used the monoclonal 

antibody PGM1, which is more specific to macrophages, giving less positivity to mast 

cells than the monoclonal antibody KP1. However, due to staining pattern of ALOX15 

and its universal co-localization with CD68, it would be important to perform co-

staining with triptase to exclude we are observing mast cells. Certainly, ALOX15 

allows identifying only a subset of CD68+ cells, which is easily quantifiable using HRP-

DAB immunostaining. Quantification of ALOX15+ cells in TMA corroborated GEP data 

with DLBCL cases showing a significantly lower expression of this enzyme compared 
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to reactive LNs. We suggest that ALOX15 presence in the microenvironment of DLBCL 

is associated with a longer PFS, but agree that an independent study performed in a 

larger dataset needs to be undertaken to validate this potential biomarker.  

Similarly, we suggest that IF using IDO1 and CD68 permits identifying an M1 

macrophage subset, likely displaying immunoregulatory functions in the 

microenvironment. By analysing a small dataset of patients and controls, we found 

that the proportion of IDO1+ macrophages in DLBCL is variable, being heavier in one 

third of patients. These cases can approximate to the ones belonging to DLBCL TAM 

group 2, which had a higher IDO1 gene expression. These findings, however, need to 

be validated in a larger dataset. Moreover, we need to gain more experience in 

analysing IF data before suggesting any methodology to replicate such results in 

independent studies. We recognize that interpretation of IDO1 is difficult due to a 

wide expression intensity range in LN cells. Automated analysis would certainly 

increase reproducibility and a method is being devised for that purpose using the 

Ariol system. 

Despite some limitations, we demonstrate in these studies that M1 and M2 

macrophage subsets co-inhabit in DLBCL tumours. Using novel markers that have a 

better functional translation might help to interpret the role of subpopulations in the 

microenvironment. 

 

Although it is plausible that a single cell is able to express both M1 and M2 markers 

simultaneously, we currently do not have data demonstrating it. RNA in situ 

hybridisation and IF using M1 and M2 proteins will help to address this hypothesis. 

However, it is possible that studying targeted markers using these techniques still 

does not rule out this hypothesis, and we plan to perform macrophage single cell 

sorting and RNA sequencing to definitely clarify this matter.
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Chapter 8 Final discussion and further work 

Whereas only the IPI is established as a robust prognostic model, a number of 

biomarkers have the potential of better identifying poor-risk DLBCL patients. The 

underlying biological diversity of this disease explains the heterogeneous responses 

to first line chemoimmunotherapy and warrants the development of novel prognostic 

models for this disease incorporating such biomarkers. In this thesis we investigated 

biomarkers of the tumour and the microenvironment of DLBCL.  

 

The hypotheses underlying our investigation were based on two critical findings of 

transcriptomic analysis of DLBCL: 

 

 Two molecularly distinct forms based upon the cell-of-origin (COO) of DLBCL could 

be identified using GEP, which assume distinct genetic changes, oncogenic 

signalling pathways and response to R-CHOP. Thus, the COO molecular 

classification provides prospects for individualized treatment approaches that 

could improve patient’s outcome. The obstacle to this enticing clinical scenario is 

the inexistence of robust strategies that enable us to recognize patients with GCB 

and ABC DLBCL. 

 

 The differential expression of genes derived from the microenvironment can be 

used to identify patients with different outcome after R-CHOP. GEP-based 

prognostic signatures devised by independent research groups using independent 

patient cohorts incorporated genes encoding for tumour-infiltrating macrophages 

and matrix components. However, this data largely lacks independent validation. 

Moreover, a clear understanding of the macrophage functional heterogeneity in 

DLBCL is lacking. 
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The translational impact of transcriptomic studies has been demonstrated to be much 

limited compared to what is proposed in the original studies.  

 

A number of obstacles to the acceptance of GEP-derived biomarkers can be 

acknowledged, including:  

 Biomarkers need to be easily studied in any laboratory;  

 Validation processes need to be robust; 

 Microarray technology is still reserved to the research setting.  

 

Undoubtedly, the methodology applied in independent studies exploring GEP-based 

biomarkers has an important impact on their validation. IHC has been used both as a 

surrogate to classify patients according to the COO classification and to enumerate 

and functionally characterize the microenvironment in DLBCL. Importantly, the Hans 

algorithm is being utilised to recognize ABC-DLBCLs in clinical trials offering NF-kB 

targeting agents to patients with this subtype.  

 

Our first two studies encapsulate the problems and hopes of IHC methodologies for 

validation of prognostic biomarkers in DLBCL.  

 

Our first study provides evidence that IHC algorithms are unreliable predictors of the 

molecular classification and hence should not be used for clinical decisions in DLBCL. 

Our second study establishes semi-automated methods as the best for IHC studies 

assessing cell infiltration in large tissue areas using TMAs.  

 

While we suggest that the strategies used in previous investigations defining COO IHC 

algorithms are hardly replicated, we do not fully discard the notion that IHC can be 

used for the molecular classification of DLBCL.  
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We propose several approaches that could help demonstrating whether IHC can 

indeed be utilised for this purpose: 

 

 Future investigations could be done in RCTs involving expert 

haematopathologists, haemato-oncologists and statisticians from different 

countries; 

 

 An exhaustive document could arise from these trials that details guidelines for 

every single procedural step known to impact on IHC results, from tissue fixation 

to image and statistical analysis;  

 

 In order to demonstrate that the methodologies can indeed be put in place in a 

robust manner, fresh tissue samples from a single patient could be distributed to 

different laboratories and final results could be compared; 

 

 Once this is confirmed, the dissemination of this protocol could be done by 

experts in international meetings gathering other pathologists responsible for 

optimization of the techniques in their own countries; 

 

 Different institutions could be invited to report their results in follow-up 

meetings, stimulating discussion and further optimization of the established 

guidelines.  

 

 While we used the immune microenvironment in DLBCL as a model, the findings 

from our second study suggest that computerized systems eliminate the 

underlying variability of manual counting of IHC immunostainings and could also 

be explored for the analysis of proteins incorporated in the COO algorithms. A 

consensus methodological approach could be developed in the context of RCTs 

incorporating different systems of semi-automated analysis as delineated above.  
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Our subsequent studies address the unmet need for comprehensive analysis of 

macrophage  activation status and effector function in human DLBCL. We conducted 

transcriptomic studies on purified macrophages from DLBCL and reactive LN. Using 

this data we explored in vitro cell systems to capture the functional dialogue of 

malignant B-cells and macrophages in the microenvironment. In the last study we 

explore macrophage heterogeneity in DLBCL, either by dissecting the findings of the 

transcriptome analysis and establishing parallels with paired B-cell analysis, or by 

exploring double IF staining to recognize macrophage populations in LN. 

 

 

Previous publications using GEP of DLBCL correlated macrophage gene expression 

and outcome in DLBCL. Immunostaining for CD68 is taken as a surrogate of the extent 

of macrophage infiltration in tissues. However, difficulties posed by its analysis have 

to date hampered the ability to obtain consistent results. The computerized analysis 

of CD68 undertaken here using different machines and methods showed extremely 

good correlation, suggesting that this approach will be useful in clarifying the role of 

CD68 in outcome prediction in lymphoma. However, macrophages are highly plastic 

cells, assuming unique phenotypes and functions contextualized in their dynamic 

microenvironment. Consequently, IHC analysis of single markers is unable to 

represent subsets of polarised macrophages.  

 

Our approach was to use GEP to clarify the functional repertoire of macrophages in 

DLBCL. A number of technical aspects could detract from our findings. However, we 

assured that all procedural steps were subjected to strict quality controls and 

demonstrate that it is feasible to undertake this kind of study in stored samples. 

 

Unsupervised hierarchical clustering alone did not resolve disease from control 

samples in our study. This is an enticing discovery suggesting macrophage 

heterogeneity in DLBCL. In fact, it is doubtful that microenvironmental influences of 

the tumour cells work in a homogeneous fashion.  
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By performing a supervised hierarchical clustering analysis, we identified a 202-gene 

signature that distinguishes DLBCL TAM from reactive controls. The recognition of 

substantial gene expression variability in DLBCL TAM by unsupervised analysis 

suggested that corrected p-values would be modest and therefore the gene set 

would be small. Indeed expression variability was higher in DLBCL TAM. Although 

these findings could potentially reflect technical problems with our data, we do not 

have clear evidence for that and instead interpret them as biological variability that is 

inherent of human samples, particularly in bystander cells of the tumour 

microenvironment. In future studies we would like to test whether such GEP 

variability of macrophages is paralleled by underlying differences of the malignant B-

cells. 

 

A key approach taken in our GEP studies was the bioinformatics analysis. Whole 

transcriptome profiling represents an opportunity to functionally model a disease and 

bioinformatics approaches can help in giving biological meaning to high throughput 

data.  

 

The functional enrichment analysis undertaken exposes that our data not only 

reflects the transcriptomic features of macrophages, but also unique GEP changes 

characteristic of the DLBCL TAM. Our gene expression signature significantly overlaps 

with other GEP-defined signatures of DLBCL, including the LN-signature and others 

developed in THRLBCL. Moreover, an enrichment of our macrophage-related genes 

was detected in both GCB and ABC cases, suggesting that relevant features of the 

microenvironment are independent of the molecular features of the malignant B-

cells.  

 

Our studies suggest that DLBCL TAM have a bidirectional M1 and M2 functional 

activation. Additionally, univariate survival analysis points towards a variable impact 

of the expression of M2 genes in R-CHOP treated cases, refuting the common 

assumption that M2 macrophage activation is necessarily associated with poor 

survival. In future studies we would like to explore the outcome impact of the 
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remaining genes from our signature and develop multivariate prognostic models 

together with the IPI. 

 

Overall, these data commonalities validate in silico approaches to explore the 

function of cell subsets in complex tissues that are hard to study due to limited cell 

amounts or sensitiveness to laboratory manipulation. However, functional studies are 

the only ones able to provide definitive biological explanations towards the impact of 

specific molecules. In this context we conducted in vitro studies to functionally 

validate the trancriptomic studies. 

 

Macrophage activation is influenced by a multitude of factors. Numerous cells, 

cytokines and growth factors interact in vivo to determine macrophage function. 

Ultimately there is no macrophage identical to another, as dynamic changes in the 

microenvironment have a great potential to affect the cell transcriptome and 

function. Such microenvironmental complexity is hardly mimicked in a culture plate, 

more so when using a two-cell co-culture system, as we did in our fourth results 

chapter.  

 

In our last study we propose B-cell derived IFN-γ as the culprit molecule involved in a 

preferential M1 activation pattern in a subset of DLBCL TAM. However we did not 

formally test this experimentally in the current investigations and this will be subject 

of future experiments. To robustly demonstrate the hypothesis that the malignant 

DLBCL cells are influencing macrophages towards a specific transcriptome, we 

suggest in the future using three cell (macrophages, B and T-cells) co-culture models 

of primary samples, in an autologous setting and investigating a larger panel of 

markers. In this manner we shall better replicate the complex crosstalk that can be 

established between malignant and non-malignant cells in the microenvironment.  

 

Using molecules that have a better functional translation might help to interpret the 

role of macrophage subpopulations in the microenvironment. By studying novel 

markers depicted from the transcriptomic analysis we clarify that macrophages 



Chapter 8 Discussion 

244 

express both M1 and M2 markers in DLBCL tumours.  

 

Although it is likely that a single macrophage is able to express both M1 and M2 

molecules simultaneously, we do not yet have data demonstrating this. As our own 

and other genomic data become available underlining macrophage heterogeneity, 

novel techniques to label several proteins and RNA transcripts concurrently in situ 

will be required to validate potential prognostic subsets in large datasets of patients. 

Furthermore, transcriptomic studies of single macrophages acquired by cell sorting 

would help clarifying whether subsets of macrophages within DLBCL have different 

activation profiles or whether a macrophage can acquire a unique and hybrid 

activation pattern. We suspect both situations are in place in vivo and aim to 

demonstrate it in future studies. 

 

In conclusion, the work developed in this thesis significantly deepened the 

understanding of the role of IHC methodologies for the validation of biomarkers for 

DLBCL. Although there are still large gaps to fulfil in order to comprehend the more 

complex phenomenon of macrophage activation in DLBCL, our investigations 

significantly moved the field forward by demonstrating cell functional heterogeneity 

and raising novel questions that will hardly be answered through simplified 

experimental designs.  
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Appendix 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Hibridisation intensity of control probesets 
The hibridisation intensity (varying from 8.91 to 13.77) for the spiked-in control probes are 
represented for each sample. bioB, bioC and bioD are genes in the biotin synthesis pathway 
of E. coli, and cre is the recombinase gene from P1 bacteriophage. The intensity pattern for 
these 4 controls should show the increase in target concentration (from bioB to CreX). Other 
patterns would be a sign of bad hybridization.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Ratio of hibridisation intensity between positive and negative probes  
This metrics helps to assess the ability to distinguish true signal from noise. All arrays 
analysed had positive versus negative AUC (area under the curve) value of ≥ 0.8 and hence 
passed the quality criteria. 
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Figure 3: Mean hybridisation intensities including all probesets 

The mean value of the hibridisation intensity of all probes for each sample is graphically 
represented to demonstrate the minimal variability (< 0.05) across samples. 
 

 
 
 
 
 
 
 

Figure 4: Mean hybridisation intensities for perfect-match and background probes 
The number of expressed genes is estimated using the differences in intensity between the 
PM (perfect match) and the MM (mismatch) probes. The hibridisation intensity of the last is a 
surrogate of the background intensity of the array.  
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Figure 5: Relative Log Expression signal; mean and standard deviation represented 
The Relative Log Expression (RLE) values for each probe-set correspond to the ratio between 
the expression of a probe-set and the median expression of this probe-set across all arrays of 
the experiment. It is assumed that most probe-sets are not changed across the arrays, so it is 
expected that these ratios are around 0 on a log scale. The boxplots presenting the 
distribution of these log-ratios should then be centered near 0 and have similar spread. 
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Table 1: Differentially expressed probesets between DLBCL TAM and reactive LN control macrophages 
 

HGNC 
symbol 

Probeset Gb accession Description 
Log2 Fold 
Change 

Average 
Expression 

Adjusted p-
value 

ACP2 7947815 NM_001610 acid phosphatase 2, lysosomal 2,334 6,881 0,014 

ACSL1 8103951 NM_001995 acyl-CoA synthetase long-chain family member 1 1,956 7,704 0,027 

ADAMDEC
1 

8145317 NM_014479 ADAM-like, decysin 1 2,495 7,126 0,048 

AFF3 8054254 NM_002285 AF4/FMR2 family, member 3 -1,215 7,170 0,023 

AGTRAP 7897745 NM_020350 angiotensin II receptor-associated protein 1,195 7,762 0,004 

ALOX15 8011680 NM_001140 arachidonate 15-lipoxygenase -2,513 5,078 0,003 

ANKRD22 7934898 NM_144590 ankyrin repeat domain 22 3,882 7,733 0,002 

APCDD1 8020141 NM_153000 adenomatosis polyposis coli down-regulated 1 -1,046 6,500 0,008 

APOBEC3A 8073056 NM_145699 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A 2,035 7,630 0,012 

APOC1 8029536 NM_001645 apolipoprotein C-I 2,863 8,138 0,007 

APP 8069644 NM_000484 amyloid beta (A4) precursor protein -1,024 10,501 0,048 

AQP9 7983910 NM_020980 aquaporin 9 3,351 6,814 0,003 

ASAH2 7927599 NM_019893 N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2 -1,075 4,266 0,027 

BATF 7975793 NM_006399 basic leucine zipper transcription factor, ATF-like 1,178 7,054 0,041 

BCL2A1 7990818 NM_001114735 BCL2-related protein A1 1,679 8,598 0,012 

C14orf145 7980496 NM_152446 chromosome 14 open reading frame 145 -1,077 6,799 0,039 

C15orf48 7983478 NM_032413 chromosome 15 open reading frame 48 2,552 6,356 0,033 

C1QA 7898793 NM_015991 complement component 1, q subcomponent, A chain 2,492 6,529 0,003 

C1QB 7898805 NM_000491 complement component 1, q subcomponent, B chain 2,203 8,667 0,009 
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C1QC 7898799 NM_001114101 complement component 1, q subcomponent, C chain 2,616 8,946 0,011 

C3AR1 7960874 NM_004054 complement component 3a receptor 1 3,925 8,092 0,000 

C5AR1 8029907 NM_001736 complement component 5a receptor 1 1,853 7,883 0,009 

C6orf192 8129649 NM_052831 chromosome 6 open reading frame 192 -1,323 5,350 0,045 

CA8 8150978 NM_004056 carbonic anhydrase VIII -1,784 5,272 0,025 

CASP5 7951385 NM_004347 caspase 5, apoptosis-related cysteine peptidase 2,071 5,486 0,039 

CCL2 8006433 NM_002982 chemokine (C-C motif) ligand 2 2,478 7,539 0,027 

CCL3 8014369 NM_002983 chemokine (C-C motif) ligand 3 1,353 11,035 0,050 

CCL4 8006602 NM_002984 chemokine (C-C motif) ligand 4 1,875 9,678 0,024 

CCRL2 8079407 NM_003965 chemokine (C-C motif) receptor-like 2 1,829 5,826 0,022 

CCRL2 8093304 NM_003965 chemokine (C-C motif) receptor-like 2 1,645 5,699 0,039 

CD14 8114612 NM_000591 CD14 molecule 2,781 10,282 0,000 

CD151 7937508 NM_004357 CD151 molecule (Raph blood group) 1,160 5,542 0,045 

CD163 7960794 NM_004244 CD163 molecule 2,843 7,676 0,011 

CD1A 7906339 NM_001763 CD1a molecule -1,345 4,813 0,049 

CD1C 7906348 NM_001765 CD1c molecule -1,918 8,858 0,024 

CD1E 7906355 NM_030893 CD1e molecule -2,314 7,937 0,039 

CD207 8052916 NM_015717 CD207 molecule, langerin -1,464 5,357 0,008 

CD274 8154233 NM_014143 CD274 molecule 2,344 7,215 0,038 

CD58 7918902 NM_001779 CD58 molecule 1,159 7,583 0,041 

CD81 7937802 NM_004356 CD81 molecule 1,087 9,165 0,049 

CDCA7L 8138489 NM_018719 cell division cycle associated 7-like -1,344 7,529 0,049 
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CDH1 7996837 NM_004360 cadherin 1, type 1, E-cadherin (epithelial) -2,589 7,756 0,034 

CEBPB 8063386 NM_005194 CCAAT/enhancer binding protein (C/EBP), beta 1,004 6,393 0,012 

CHML 7925500 NM_001821 choroideremia-like (Rab escort protein 2) -1,088 6,799 0,049 

CLEC4D 7953749 NM_080387 C-type lectin domain family 4, member D 1,886 5,733 0,025 

CLEC4E 7960900 NM_014358 C-type lectin domain family 4, member E 2,809 6,340 0,008 

CLEC6A 7953737 NM_001007033 C-type lectin domain family 6, member A 2,587 6,965 0,012 

CLEC7A 7961120 NM_197947 C-type lectin domain family 7, member A 1,310 7,239 0,049 

CREG1 7922051 NM_003851 cellular repressor of E1A-stimulated genes 1 1,103 8,021 0,017 

CRYM 8000117 NM_001888 crystallin, mu -1,047 6,327 0,012 

CSF1R 8115076 NM_005211 colony stimulating factor 1 receptor 1,309 9,169 0,044 

CSF3R 7914950 NM_156039 colony stimulating factor 3 receptor (granulocyte) 1,080 8,104 0,024 

CTSD 7945666 NM_001909 cathepsin D 1,027 9,086 0,018 

CTSL1 8156228 NM_001912 cathepsin L1 3,099 7,806 0,012 

CXCL10 8101126 NM_001565 chemokine (C-X-C motif) ligand 10 3,277 10,407 0,002 

CXCL9 8101118 NM_002416 chemokine (C-X-C motif) ligand 9 3,191 9,471 0,008 

CXCR2 8048227 NM_001557 chemokine (C-X-C motif) receptor 2 -1,180 4,605 0,032 

DAB2 8111772 NM_001343 
disabled homolog 2, mitogen-responsive phosphoprotein 
(Drosophila) 

-1,079 8,450 0,028 

DENND5B 7962151 NM_144973 DENN/MADD domain containing 5B -1,048 5,736 0,049 

DMXL2 7988789 NM_001174116 Dmx-like 2 1,394 8,152 0,048 

DOCK4 8142345 NM_014705 dedicator of cytokinesis 4 1,694 5,670 0,027 

DRAM1 7958019 NM_018370 DNA-damage regulated autophagy modulator 1 2,036 6,641 0,011 

EMR1 8025103 NM_001974 egf-like module containing, mucin-like, hormone receptor-like 1 1,956 5,578 0,024 
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ENG 8164269 NM_000118 endoglin 1,218 7,740 0,037 

EPB41L3 8022118 NM_012307 erythrocyte membrane protein band 4.1-like 3 1,740 7,318 0,029 

FAM160A1 8097801 NM_001109977 family with sequence similarity 160, member A1 -1,823 6,435 0,014 

FBXO16 8150002 NM_172366 F-box protein 16 -1,064 4,163 0,012 

FCAR 8031374 NM_002000 Fc fragment of IgA, receptor for 1,004 5,965 0,045 

FCER1A 7906443 NM_002001 Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide -1,671 6,511 0,028 

FCER2 8033420 NM_002002 Fc fragment of IgE, low affinity II, receptor for (CD23) -2,420 5,829 0,002 

FCGR1A 7905047 NM_000566 Fc fragment of IgG, high affinity Ia, receptor (CD64) 3,810 8,473 0,001 

FCGR1A 7905060 NM_000566 Fc fragment of IgG, high affinity Ia, receptor (CD64) 3,794 8,801 0,001 

FCGR1B 7919133 NM_001017986 Fc fragment of IgG, high affinity Ib, receptor (CD64) 3,780 8,830 0,000 

FCGR2A 7906757 NM_001136219 Fc fragment of IgG, low affinity IIa, receptor (CD32) 2,313 9,679 0,008 

FCGR3A 7921868 NM_000569 Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 4,184 8,330 0,000 

FCGR3A 7921873 NM_000569 Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 3,672 8,706 0,001 

FCRL1 7921319 NM_052938 Fc receptor-like 1 -1,571 6,400 0,024 

FLT3 7970737 NM_004119 fms-related tyrosine kinase 3 -1,317 7,854 0,024 

FNBP1L 7903092 NM_001024948 formin binding protein 1-like -1,247 5,677 0,025 

FPR1 8038899 NM_002029 formyl peptide receptor 1 2,412 9,463 0,006 

FPR2 8030860 NM_001462 formyl peptide receptor 2 2,402 6,295 0,036 

GAS7 8012605 NM_201433 growth arrest-specific 7 1,007 6,058 0,027 

GBP1 7917516 NM_002053 guanylate binding protein 1, interferon-inducible, 67kDa 2,295 9,863 0,022 

GBP2 7917532 NM_004120 guanylate binding protein 2, interferon-inducible 2,679 7,752 0,003 

GBP4 7917561 NM_052941 guanylate binding protein 4 2,285 8,113 0,018 
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GBP5 7917576 NM_052942 guanylate binding protein 5 2,902 8,467 0,017 

GCH1 7979269 NM_000161 GTP cyclohydrolase 1 1,445 8,073 0,019 

GIMAP5 8137257 NM_018384 GTPase, IMAP family member 5 2,486 8,087 0,011 

GNG10 7946559 NM_001017998 guanine nucleotide binding protein (G protein), gamma 10 1,014 10,540 0,039 

GOLPH3L 7919780 NM_018178 golgi phosphoprotein 3-like -1,122 6,923 0,039 

GPNMB 8131844 NM_001005340 glycoprotein (transmembrane) nmb 2,532 6,225 0,024 

GPR84 7963770 NM_020370 G protein-coupled receptor 84 2,550 7,451 0,003 

HAPLN3 7991224 NM_178232 hyaluronan and proteoglycan link protein 3 1,425 6,794 0,017 

HEATR5B 8051464 NM_019024 HEAT repeat containing 5B -1,065 7,857 0,041 

HHAT 7909510 NM_001170580 hedgehog acyltransferase -1,245 5,940 0,024 

HK3 8115957 NM_002115 hexokinase 3 (white cell) 1,247 5,866 0,031 

HLA-DPB2 8118607 NR_001435 major histocompatibility complex, class II, DP beta 2 (pseudogene) -1,005 6,332 0,013 

HLA-DRB5 8125436 NM_002125 major histocompatibility complex, class II, DR beta 5 -2,316 7,834 0,048 

HMOX1 8072678 NM_002133 heme oxygenase (decycling) 1 1,686 9,062 0,014 

HNMT 8045499 NM_006895 histamine N-methyltransferase 1,516 6,333 0,023 

HOMER2 7991034 NM_199330 homer homolog 2 (Drosophila) -1,886 5,973 0,000 

HSPA6 7906764 NM_002155 heat shock 70kDa protein 6 (HSP70B') 1,490 8,163 0,048 

IDO1 8146092 NM_002164 indoleamine 2,3-dioxygenase 1 3,337 8,055 0,018 

IER3 8124848 NM_003897 immediate early response 3 1,345 9,484 0,029 

IER3 8179704 NM_003897 immediate early response 3 1,345 9,484 0,029 

IER3 8178435 NM_003897 immediate early response 3 1,363 9,777 0,030 

IFITM3 7945371 NM_021034 interferon induced transmembrane protein 3 (1-8U) 1,109 10,160 0,017 
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IFNGR2 8068280 NM_005534 interferon gamma receptor 2 (interferon gamma transducer 1) 1,168 9,628 0,012 

IL15RA 7931899 NM_002189 interleukin 15 receptor, alpha 1,150 7,958 0,049 

IL1R1 8043995 NM_000877 interleukin 1 receptor, type I -1,469 5,217 0,036 

IL4I1 8038487 NM_172374 interleukin 4 induced 1 1,253 7,750 0,010 

IRF1 8114010 NM_002198 interferon regulatory factor 1 1,233 9,154 0,024 

ITGAM 7995096 NM_001145808 integrin, alpha M (complement component 3 receptor 3 subunit) 1,328 7,632 0,049 

KCNA5 7953278 NM_002234 
potassium voltage-gated channel, shaker-related subfamily, member 
5 

-1,252 6,083 0,018 

KCNJ10 7921533 NM_002241 potassium inwardly-rectifying channel, subfamily J, member 10 1,665 5,874 0,044 

KCNK10 7980605 NM_021161 potassium channel, subfamily K, member 10 -1,009 4,494 0,029 

KCTD5 7992685 NM_018992 potassium channel tetramerisation domain containing 5 -1,047 7,454 0,012 

LDOC1 8175539 NM_012317 leucine zipper, down-regulated in cancer 1 -1,018 5,605 0,009 

LEPREL1 8092707 NM_018192 leprecan-like 1 -1,389 6,795 0,040 

LGALS3 7974461 NR_003225 lectin, galactoside-binding, soluble, 3 1,185 7,348 0,008 

LILRA3 8039226 NM_006865 
leukocyte immunoglobulin-like receptor, subfamily A (without TM 
domain), member 3 

2,490 8,123 0,008 

LILRA5 8039236 NM_021250 
leukocyte immunoglobulin-like receptor, subfamily A (with TM 
domain), member 5 

1,580 7,254 0,027 

LILRB2 8039212 NM_005874 
leukocyte immunoglobulin-like receptor, subfamily B (with TM and 
ITIM domains), member 2 

1,543 8,983 0,008 

LPAR1 8163257 NM_057159 lysophosphatidic acid receptor 1 1,030 5,414 0,039 

LRP1 7956301 NM_002332 low density lipoprotein receptor-related protein 1 1,327 6,491 0,027 

MAFB 8066266 NM_005461 
v-maf musculoaponeurotic fibrosarcoma oncogene homolog B 
(avian) 

2,056 8,373 0,008 

MT1DP 7995813 NR_027781 metallothionein 1D (pseudogene) 1,076 7,464 0,033 
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MT1E 7995797 NM_175617 metallothionein 1E 2,336 7,332 0,011 

MT1G 8001531 NM_005950 metallothionein 1G 2,595 7,651 0,034 

MT1X 7995838 NM_005952 metallothionein 1X 1,480 8,731 0,028 

MT2A 7995783 NM_005953 metallothionein 2A 2,092 11,737 0,001 

MT2A 8095376 NM_005953 metallothionein 2A 2,058 10,375 0,003 

MT2A 8095362 NM_005953 metallothionein 2A 2,170 11,164 0,004 

NET1 7925954 NM_001047160 neuroepithelial cell transforming 1 -1,100 6,981 0,012 

NKG7 8038809 NM_005601 natural killer cell group 7 sequence 1,569 9,396 0,029 

NR1H3 7939751 NM_005693 nuclear receptor subfamily 1, group H, member 3 1,767 6,327 0,011 

NRP1 7932985 NM_003873 neuropilin 1 -1,393 7,770 0,046 

ODF3B 8077116 NM_001014440 outer dense fiber of sperm tails 3B 1,140 7,987 0,019 

P2RX4 7959267 NM_002560 purinergic receptor P2X, ligand-gated ion channel, 4 1,132 7,298 0,048 

P2RX7 7959251 NM_002562 purinergic receptor P2X, ligand-gated ion channel, 7 1,567 6,087 0,011 

PAIP2B 8052940 NM_020459 poly(A) binding protein interacting protein 2B -1,410 5,023 0,033 

PDCD1LG2 8154245 NM_025239 programmed cell death 1 ligand 2 2,371 6,513 0,040 

PHLPP2 8002571 NM_015020 PH domain and leucine rich repeat protein phosphatase 2 -1,061 5,303 0,024 

PILRA 8134814 NM_013439 paired immunoglobin-like type 2 receptor alpha 1,525 9,426 0,012 

PIM1 8119161 NM_002648 pim-1 oncogene 1,126 8,017 0,046 

PLA2G7 8126784 NM_001168357 
phospholipase A2, group VII (platelet-activating factor 
acetylhydrolase, plasma) 

2,161 8,046 0,005 

PLD4 7977319 NM_138790 phospholipase D family, member 4 -1,650 8,756 0,050 

PLXNA4 8142997 NM_020911 plexin A4 -1,691 6,803 0,002 

PLXND1 8090591 NM_015103 plexin D1 1,215 7,168 0,025 
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PON2 8141076 NM_000305 paraoxonase 2 -1,174 5,805 0,010 

PPA1 7934133 NM_021129 pyrophosphatase (inorganic) 1 1,435 9,731 0,006 

PSTPIP2 8023043 NM_024430 proline-serine-threonine phosphatase interacting protein 2 2,138 8,337 0,011 

PTGER2 7974366 NM_000956 prostaglandin E receptor 2 (subtype EP2), 53kDa 1,717 5,792 0,027 

RAB20 7972805 NM_017817 RAB20, member RAS oncogene family 1,204 6,712 0,029 

RALGPS2 7907657 NM_152663 Ral GEF with PH domain and SH3 binding motif 2 -1,382 6,865 0,008 

RARRES3 7940775 NM_004585 retinoic acid receptor responder (tazarotene induced) 3 1,892 8,028 0,039 

RASSF4 7927186 NM_032023 Ras association (RalGDS/AF-6) domain family member 4 1,325 7,808 0,017 

RBMS3 8078330 NM_001003793 RNA binding motif, single stranded interacting protein 3 -1,503 5,134 0,008 

RGL1 7908125 NM_015149 ral guanine nucleotide dissociation stimulator-like 1 1,635 8,193 0,013 

RGS7 7925457 NM_002924 regulator of G-protein signaling 7 -1,226 6,730 0,014 

RNF125 8020806 NM_017831 ring finger protein 125 -1,218 6,090 0,050 

S100A12 7920238 NM_005621 S100 calcium binding protein A12 2,292 8,013 0,039 

S100A8 7920244 NM_002964 S100 calcium binding protein A8 1,921 11,019 0,008 

S100A9 7905571 NM_002965 S100 calcium binding protein A9 2,113 10,269 0,004 

SCARB1 7967544 NM_005505 scavenger receptor class B, member 1 -1,064 7,289 0,029 

SCO2 8077099 NM_005138 SCO cytochrome oxidase deficient homolog 2 (yeast) 1,026 8,108 0,041 

SCRN1 8138824 NM_014766 secernin 1 -1,076 8,928 0,049 

SECTM1 8019486 NM_003004 secreted and transmembrane 1 1,375 8,783 0,049 

SERPINA1 7981068 NM_001002236 
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 
antitrypsin), member 1 

1,678 10,490 0,008 

SERPINB9 8123609 NM_004155 serpin peptidase inhibitor, clade B (ovalbumin), member 9 1,016 9,627 0,049 

SIDT1 8081710 NM_017699 SID1 transmembrane family, member 1 -1,337 6,135 0,040 
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SIGLEC14 8038885 NM_001098612 sialic acid binding Ig-like lectin 14 2,056 7,581 0,017 

SIRPB2 8064451 NM_001122962 signal-regulatory protein beta 2 1,214 5,938 0,037 

SLC11A1 8048283 NM_000578 
solute carrier family 11 (proton-coupled divalent metal ion 
transporters), member 1 

2,145 6,406 0,006 

SLC1A3 8104930 NM_004172 
solute carrier family 1 (glial high affinity glutamate transporter), 
member 3 

2,417 6,048 0,028 

SLC25A37 8145281 NM_016612 solute carrier family 25, member 37 1,245 7,226 0,025 

SLC37A2 7944931 NM_198277 
solute carrier family 37 (glycerol-3-phosphate transporter), member 
2 

1,226 6,455 0,030 

SLC38A1 7962516 NM_030674 solute carrier family 38, member 1 -1,160 9,610 0,022 

SLC39A10 8047174 NM_001127257 solute carrier family 39 (zinc transporter), member 10 -1,011 6,640 0,046 

SLC41A2 7965964 NM_032148 solute carrier family 41, member 2 -1,575 6,389 0,044 

SLC47A1 8005603 NM_018242 solute carrier family 47, member 1 -1,206 4,810 0,011 

SLC7A7 7977786 NM_003982 
solute carrier family 7 (cationic amino acid transporter, y+ system), 
member 7 

1,744 8,381 0,049 

SOD2 8130556 NM_001024465 superoxide dismutase 2, mitochondrial 1,972 10,526 0,001 

SPTBN1 8041995 NM_003128 spectrin, beta, non-erythrocytic 1 -1,152 6,773 0,040 

STAB1 8080344 NM_015136 stabilin 1 1,209 6,413 0,011 

STEAP4 8140840 NM_024636 STEAP family member 4 2,319 6,190 0,039 

SYCP2L 8116874 NM_001040274 synaptonemal complex protein 2-like -1,626 4,402 0,008 

TASP1 8065018 NM_017714 taspase, threonine aspartase, 1 -1,055 6,334 0,009 

TBC1D2B 7985224 NM_144572 TBC1 domain family, member 2B 1,195 7,121 0,048 

TBC1D4 7972021 NM_014832 TBC1 domain family, member 4 -1,211 7,739 0,044 

TCF7L2 7930537 NM_001146274 transcription factor 7-like 2 (T-cell specific, HMG-box) 1,638 7,738 0,044 

TCN2 8072360 NM_000355 transcobalamin II 1,373 6,211 0,044 
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TIMP1 8167185 NM_003254 TIMP metallopeptidase inhibitor 1 1,730 10,423 0,033 

TLR10 8099826 NM_030956 toll-like receptor 10 -1,026 7,802 0,044 

TLR2 8097903 NM_003264 toll-like receptor 2 1,619 7,192 0,024 

TLR4 8157524 NR_024168 toll-like receptor 4 2,322 7,912 0,002 

TMEM176
A 

8137264 NM_018487 transmembrane protein 176A 2,514 8,524 0,008 

TNFAIP2 7977046 NM_006291 tumor necrosis factor, alpha-induced protein 2 1,284 7,874 0,029 

TNFSF10 8092169 NM_003810 tumor necrosis factor (ligand) superfamily, member 10 1,662 8,924 0,039 

TREM1 8126303 NM_018643 triggering receptor expressed on myeloid cells 1 1,597 7,886 0,031 

TYMP 8077103 NM_001113756 thymidine phosphorylase 1,395 8,677 0,011 

UBD 8124650 NM_006398 ubiquitin D 1,694 7,030 0,032 

UBD 8178295 NM_006398 ubiquitin D 1,570 6,943 0,039 

UPP1 8132725 NM_003364 uridine phosphorylase 1 1,429 6,242 0,018 

VCAN 8106743 NM_004385 versican 2,091 8,315 0,021 

VSIG6 7981732 
ENST000003385
67 

V-set and immunoglobulin domain containing 6 -2,017 7,491 0,032 

ZNF585B 8036389 NM_152279 zinc finger protein 585B -1,049 5,589 0,036 

ZNF660 8079198 NM_173658 zinc finger protein 660 -1,024 3,907 0,011 
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Table 2. Toppfun Analysis 

GENE ONTOLOGY – CELLULAR FUNCTIONS 

# Name FDR 
# genes 

included/ 
annotated 

Genes 

1 immune response 5.3X10
-32

 77/1416 

CEBPB, IDO1, TNFSF10, CXCL10, GIMAP5, LILRB2, HLADRB5, CLEC7A, GBP1, GBP2, IRF1, GCH1, BCL2A1, HMOX1, ITGAM, 
APOBEC3A, S100A8, S100A9, S100A12, CLEC4E, SERPINB9, FCAR, FCER1A, RNF125, FCER2, GBP4, FCGR1A, FCGR1B, ADAMDEC1, 
GBP5, FCGR2A, FCGR3A, IFITM3, CXCL9, C1QA, C1QB, C1QC, CCL2, CCL3, C3AR1, CCL4, C5AR1, LILRA5, ALOX15, SECTM1, CLEC6A, 
UBD, BATF, SIGLEC14, NR1H3, APP, AQP9, LGALS3, TLR10, IFNGR2, CD1A, CD1C, CD1E, MT2A, CSF1R, SLC11A1, CD14, P2RX7, 
CLEC4D, SCARB1, TLR2, TLR4, TREM1, CD58, CD274, CD81, IL1R1, CDH1, CTSL, CXCR2, PHLPP2, PDCD1LG2 

2 defence response 1.1 X10
-27

 74/1515 

CEBPB, IDO1, CXCL10, GIMAP5, LILRB2, HLADRB5, CLEC7A, GBP1, GBP2, IRF1, GCH1, HMOX1, ITGAM, CD163, APOBEC3A, STAB1, 
S100A8, S100A9, S100A12, SERPINA1, SERPINB9, FCER1A, RNF125, GBP4, FCGR1A, FCGR1B, GBP5, FCGR2A, FCGR3A, IER3, 
IFITM3, KCNJ10, CXCL9, C1QA, C1QB, C1QC, CCL2, CCL3, C3AR1, CCL4, C5AR1, LILRA5, ALOX15, PLA2G7, LILRA3, CLEC6A, UBD, 
BATF, FPR2, CD207, SIGLEC14, CASP5, CCRL2, NR1H3, APP, LGALS3, TLR10, IFNGR2, MT2A, CSF1R, SLC11A1, CD14, CSF3R, P2RX7, 
CLEC4D, SCARB1, TLR2, TLR4, TREM1, CD58, IL1R1, CTSL, CXCR2, PHLPP2 

3 innate immune response 2.5 X10
-18

 48/883 
GIMAP5, HLA-DRB5, CLEC7A, GBP1, GBP2, IRF1, GCH1, ITGAM, APOBEC3A, S100A8, S100A9, S100A12, FCER1A, RNF125, GBP4, 
FCGR1A, FCGR1B, GBP5, FCGR2A, FCGR3A, IFITM3, C1QA, C1QB, C1QC, CCL2, CCL3, LILRA5, CLEC6A, UBD, SIGLEC14, NR1H3, APP, 
LGALS3, TLR10, IFNGR2, MT2A, CSF1R, SLC11A1, CD14, P2RX7, CLEC4D, SCARB1, TLR2, TLR4, TREM1, CD58, CTSL, PHLPP2 

4 inflammatory response 4.9 X10
-18

 40/599 
CEBPB, IDO1, CXCL10, HLA-DRB5, CLEC7A, HMOX1, ITGAM, CD163, STAB1, S100A8, S100A9, S100A12, SERPINA1, SERPINB9, 
FCER1A, FCGR1A, FCGR2A, IER3, KCNJ10, CXCL9, CCL2, CCL3, C3AR1, CCL4, C5AR1, ALOX15, PLA2G7, FPR2, CASP5, CCRL2, NR1H3, 
TLR10, CSF1R, SLC11A1, CD14, P2RX7, TLR2, TLR4, IL1R1, CXCR2 

5 response to biotic stimulus 3.8 X10
-16

 42/760 
CEBPB, IDO1, CXCL10, LILRB2, HLA-DRB5, CLEC7A, GBP1, GBP2,IRF1, GCH1, PTGER2, HNMT, APOBEC3A, STAB1, S100A8, S100A9, 
S100A12, SERPINA1, SERPINB9, GBP4, FCGR1A, FCGR3A, IER3, IFITM3, CXCL9, CCL2, CCL3, CCL4, C5AR1, CLEC6A, BATF, CD207, 
NR1H3, IFNGR2, SLC11A1, CD14, P2RX7, SCARB1, TLR2, TLR4, TREM1, SOD2 

6 
response to other 

organism 
3.8 X10

-18
 41/726 

CEBPB, IDO1, CXCL10, LILRB2, HLA-DRB5, CLEC7A, GBP1, GBP2, IRF1, GCH1, PTGER2, APOBEC3A, STAB1, S100A8, S100A9, 
S100A12, SERPINA1, SERPINB9, GBP4, FCGR1A, FCGR3A, IER3, IFITM3, CXCL9, CCL2, CCL3, CCL4, C5AR1, CLEC6A, BATF, CD207, 
NR1H3, IFNGR2, SLC11A1, CD14, P2RX7, SCARB1, TLR2, TLR4, TREM1, SOD2 

7 
response to external biotic 

stimulus 
3.8 X10

-16
 41/726 

CEBPB, IDO1, CXCL10, LILRB2, HLA-DRB5, CLEC7A, GBP1, GBP2, IRF1, GCH1, PTGER2, APOBEC3A, STAB1, S100A8, S100A9, 
S100A12, SERPINA1, SERPINB9, GBP4, FCGR1A, FCGR3A, IER3, IFITM3, CXCL9, CCL2, CCL3, CCL4, C5AR1, CLEC6A, BATF, CD207, 
NR1H3, IFNGR2, SLC11A1, CD14, P2RX7, SCARB1, TLR2, TLR4, TREM1, SOD2 
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8 response to wounding 1.2 X10
-14

 51/1255 

CEBPB, IDO1, CXCL10, HLA-DRB5, CLEC7A, IRF1, HMOX1, ITGAM, CD163, NRP1, STAB1, S100A8, S100A9, S100A12, SERPINA1, 
SERPINB9, FCER1A, FCGR1A, FCGR2A, IER3, KCNJ10, CXCL9, CCL2, CCL3, C3AR1, CCL4, C5AR1, ALOX15, PLA2G7, FPR2, CASP5, 
CCRL2, NR1H3, APP, SLC7A7, SLC1A3, TLR10, CSF1R, SLC11A1, CD14, P2RX7, TIMP1, SCARB1, TLR2, TLR4, TREM1, CD58, IL1R1, 
ENG, SOD2, CXCR2 

9 
positive regulation of 

immune system process 
1.7 X10

-14
 39/732 

IL15RA, IDO1, CXCL10, GIMAP5, LILRB2, HLA-DRB5, CLEC7A, IRF1, BCL2A1, HMOX1, ITGAM, FCER1A, FCER2, FCGR1A, FCGR2A, 
FCGR3A, C1QA, C1QB, C1QC, CCL2, CCL3, C3AR1, CCL4, C5AR1, PLA2G7, NR1H3, LGALS3, TLR10, SLC11A1, CD14, P2RX7, SCARB1, 
TLR2, TLR4, CD274, CD81, CTSL, CXCR2, PDCD1LG2 

10 
regulation of immune 

system process 
2.7 X10

-13
 48/1212 

IL15RA, IDO1, CXCL10, GIMAP5, LILRB2, HLA-DRB5, CLEC7A, TMEM176A, IRF1, BCL2A1, HMOX1, ITGAM, FCER1A, FCER2, FCGR1A, 
FCGR1B, FCGR2A, FCGR3A, C1QA, C1QB, C1QC, CCL2, CCL3, C3AR1, CCL4, MAFB, C5AR1, ALOX15, PLA2G7, FLT3, NR1H3, LGALS3, 
TLR10, IFNGR2, CSF1R, SLC11A1, CD14, P2RX7, SCARB1, TLR2, TLR4, CD274, CD81, CDH1, CTSL, CXCR2, PHLPP2, PDCD1LG2 

11 response to IFN-γ 2.7 X10
-13

 18/123 
HLA-DRB5, GBP1, GBP2, IRF1, GCH1, GBP4, FCGR1A, FCGR1B, GBP5, IFITM3, CCL2, CCL3, UBD, NR1H3, IFNGR2, MT2A, SLC11A1, 
CD58 

12 response to cytokine 1.1 X10
-12

 34/629 
IL15RA, CXCL10, HLA-DRB5, GBP1, GBP2, IRF1, GCH1, HNMT, ACSL1, SERPINA1, GBP4, FCGR1A, FCGR1B, GBP5, IFITM3, CCL2, 
CCL3, ALOX15, FLT3, UBD, AFF3, CCRL2, NR1H3, IFNGR2, MT1X, MT2A, CSF1R, SLC11A1, CD14, CSF3R, TIMP1, CD58, IL1R1, CXCR2 

13 response to bacterium 1.7 X10
-12

 29/451 
CEBPB, IDO1, CXCL10, LILRB2, HLA-DRB5, GBP2, GCH1, PTGER2, STAB1, S100A8, S100A9, S100A12, SERPINA1, SERPINB9, GBP4, 
FCGR1A, FCGR3A, CCL2, CCL3, C5AR1, NR1H3, SLC11A1, CD14, P2RX7, SCARB1, TLR2, TLR4, TREM1, SOD2 

14 cell chemotaxis 2.0 X10
-12

 21/210 
DOCK4, CXCL10, ITGAM, NRP1, S100A8, S100A9, S100A12, FCGR2A, CXCL9, CCL2, CCL3, C3AR1, CCL4, C5AR1, PLA2G7, LPAR1, 
LGALS3, CSF3R, TREM1, ENG, CXCR2 

15 
positive regulation of 
response to stimulus 

4.6 X10
-12

 53/1584 

IDO1, TNFSF10, CXCL10, GIMAP5, HLA-DRB5, DAB2, CLEC7A, IRF1, BCL2A1, HMOX1, ITGAM, NRP1, S100A8, S100A9, S100A12, 
FCER1A, FCER2, FCGR1A, FCGR2A, FCGR3A, CXCL9, C1QA, C1QB, C1QC, CCL2, CCL3, C3AR1, CCL4, C5AR1, ALOX15, SECTM1, 
PLA2G7, FLT3, TCF7L2, CLEC6A, UBD, FPR1, NR1H3, LPAR1, LGALS3, TLR10, CSF1R, SLC11A1, CD14, P2RX4, P2RX7, SCARB1, TLR2, 
TLR4, CD81, ENG, CTSL, CXCR2 

16 
response to 

lipopolysaccharide 
5.8 X10

-12
 22/250 

CEBPB, IDO1, CXCL10, LILRB2, GBP2, GCH1, PTGER2, S100A8, S100A9, SERPINA1, FCGR3A, CCL2, CCL3, C5AR1, NR1H3, SLC11A1, 
CD14, P2RX7, SCARB1, TLR2, TLR4, SOD2 

17 
response to molecule of 

bacterial origin 
2.4 X10

-11
 22/269 

CEBPB, IDO1, CXCL10, LILRB2, GBP2, GCH1, PTGER2, S100A8, S100A9, SERPINA1, FCGR3A, CCL2, CCL3, C5AR1, NR1H3, SLC11A1, 
CD14, P2RX7, SCARB1, TLR2, TLR4, SOD2 

18 cytokine production 3.1 X10
-11

 29/451 
CEBPB, IDO1, GIMAP5, LILRB2, HLA-DRB5, CLEC7A, IRF1, HMOX1, S100A8, S100A9, S100A12, CLEC4E, FCER1A, RNF125, FCGR2A, 
CCL2, CCL3, C3AR1, CCL4, CLEC6A, BATF, TLR10, CSF1R, SLC11A1, CD14, P2RX7, TLR2, TLR4, TREM1, CD58, CD274 

21 leukocyte activation 6.8 X10
-11

 33/695 
IL15RA, IDO1, GIMAP5, LILRB2, HLA-DRB5, CLEC7A, IRF1, BCL2A1, HMOX1, ITGAM, S100A12, FCER1A, FCGR2A, FCGR3A, CCL2, 
CCL3, MAFB, FLT3, UBD, BATF, NR1H3, LGALS3, CD1C, MT1G, SLC11A1, P2RX7, TLR2, TLR4, CD274, CD81, CD151, CXCR2, 
PDCD1LG2 
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27 immune effector process 6.0 X10
-10

 30/628 
CXCL10, GIMAP5, HLA-DRB5, CLEC7A, GBP1, IRF1, HMOX1, APOBEC3A, SERPINB9, FCER1A, FCER2, FCGR1A, FCGR2A, FCGR3A, 
IFITM3, CXCL9, C1QA, C1QB, C1QC, CCL2, CCL3, BATF, CD207, LGALS3, CD1C, SLC11A1, P2RX7, TLR2, TLR4, TREM1 

GENE ONTOLOGY – MOLECULAR FUNCTIONS 

1 immunoglobulin binding 3.9 X10
-8

 8/23 FCAR, FCER1A, FCER2, FCGR1A, FCGR1B, FCGR2A, FCGR3A, LGALS3 

2 receptor activity 1.3 X10
-5

 42/1617 
IL15RA, LILRB2, DAB2, CLEC7A, GPR84, PLXND1, PTGER2, CD163, NRP1, STAB1, CLEC4E, FCER1A, FCGR1A, FCGR1B, FCGR2A, 
C3AR1, C5AR1, AGTRAP, FLT3, LILRA3, FPR1, FPR2, CCRL2, NR1H3, LPAR1, TLR10, IFNGR2, CSF1R, CD14, CSF3R, P2RX4, P2RX7, 
SCARB1, TLR2, TLR4, PLXNA4, TREM1, LRP1, EMR1, IL1R1, ENG, CXCR2 

3 RAGE receptor binding 2.0 X10
-5

 5/12 S100A8, S100A9, S100A12, FPR1, FPR2 

4 
signaling pattern 

recognition receptor 
activity 

6.7 X10
-5

 5/16 CLEC7A, CD14, SCARB1, TLR2, TLR4 

5 
pattern recognition 

receptor activity 
6.7 X10

-5
 5/16 CLEC7A, CD14, SCARB1, TLR2, TLR4 

6 receptor binding 7.2 X10
-5

 36/1405 
DOCK4, CEBPB, TNFSF10, CXCL10, LILRB2, DAB2, CLEC7A, S100A8, S100A9, S100A12, KCNA5, FCER2, KCNJ10, CXCL9, C1QC, CCL2, 
CCL3, CCL4, GPNMB, HOMER2, SECTM1, FLT3, TCF7L2, FPR1, FPR2, CCRL2, NR1H3, APP, TYMP, P2RX4, P2RX7, TIMP1, LRP1, 
CD58, IL1R1, ENG 

7 
immunoglobulin receptor 

activity 
7.8 X10

-5
 4/8 FCER1A, FCGR1A, FCGR1B, FCGR2A 

8 signalling receptor activity 1.1 X10
-4

 35/1390 
IL15RA, LILRB2, CLEC7A, GPR84, PLXND1, PTGER2, NRP1, FCER1A, FCGR1A, FCGR1B, FCGR2A, C3AR1, C5AR1, AGTRAP, FLT3, 
FPR1, FPR2, CCRL2, NR1H3, LPAR1, TLR10, IFNGR2, CSF1R, CD14, CSF3R, P2RX4, P2RX7, SCARB1, TLR2, TLR4, PLXNA4, EMR1, 
IL1R1, ENG, CXCR2 

9 signal transducer activity 1.2 X10
-4

 40/1730 
IL15RA, LILRB2, CLEC7A, GPR84, PLXND1, HMOX1, PTGER2, NRP1, S100A9, FCER1A, FCGR1A, FCGR1B, FCGR2A, C3AR1, C5AR1, 
GNG10, AGTRAP, SECTM1, FLT3, FPR1, FPR2, CCRL2, NR1H3, LPAR1, RGS7, TLR10, IFNGR2, CSF1R, CD14, CSF3R, P2RX4, P2RX7, 
SCARB1, TLR2, TLR4, PLXNA4, EMR1, IL1R1, ENG, CXCR2 

10 
molecular transducer 

activity 
1.2 X10

-4
 40/1730 

IL15RA, LILRB2, CLEC7A, GPR84, PLXND1, HMOX1, PTGER2, NRP1, S100A9, FCER1A, FCGR1A, FCGR1B, FCGR2A, C3AR1, C5AR1, 
GNG10, AGTRAP, SECTM1, FLT3, FPR1, FPR2, CCRL2, NR1H3, LPAR1, RGS7, TLR10, IFNGR2, CSF1R, CD14, CSF3R, P2RX4, P2RX7, 
SCARB1, TLR2, TLR4, PLXNA4, EMR1, IL1R1, ENG, CXCR2 

11 IgG binding 3.1 X10
-4

 4/12 FCGR1A, FCGR1B, FCGR2A, FCGR3A 
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12 
transmembrane signaling 

receptor activity 
3.1 X10

-4
 32/1228 

IL15RA, LILRB2, GPR84, PLXND1, PTGER2, NRP1, FCER1A, FCGR1A, FCGR1B, FCGR2A, C3AR1, C5AR1, AGTRAP, FLT3, FPR1, FPR2, 
CCRL2, LPAR1, TLR10, IFNGR2, CSF1R, CD14, CSF3R, P2RX4, P2RX7, TLR2, TLR4, PLXNA4, EMR1, IL1R1, ENG, CXCR2 

13 glycosaminoglycan binding 5.0 X10
-4

 11/202 CXCL10, ITGAM, NRP1, STAB1, CCL2, GPNMB, APP, VCAN, TLR2, HAPLN3, ENG 

14 IgE binding 5.0 X10
-4

 3/5 FCER1A, FCER2, LGALS3 

15 
lipopolysaccharide 

receptor activity 
5.0 X10

-4
 3/5 SCARB1, TLR2, TLR4 

PATHWAYS 

1 
Staphylococcus aureus 

infection 
5.5 X10

-10
 13/59 HLA-DRB5, ITGAM, FCAR, FCGR1A, FCGR2A, FCGR3A, C1QA, C1QB, C1QC, C3AR1, C5AR1, FPR1, FPR2 

2 Hematopoietic cell lineage 7.9 X10
-7

 12/88 HLA-DRB5, ITGAM, FCER2, FCGR1A, FLT3, CD1A, CD1C, CD1E, CSF1R, CD14, CSF3R, IL1R1 

3 Interferon gamma signaling 8.9 X10
-4

 10/71 HLA-DRB5, GBP1, GBP2, IRF1, GBP4, FCGR1A, FCGR1B, GBP5, IFNGR2, MT2A 

4 Tuberculosis 2.0 X10
-4

 13/182 CEBPB, HLA-DRB5, CLEC7A, ITGAM, CLEC4E, FCGR1A, FCGR2A, FCGR3A, IFNGR2, CD14, TLR2, TLR4, CTSD 

5 Phagosome 2.3 X10
-4

 12/158 HLA-DRB5, CLEC7A, ITGAM, FCAR, FCGR1A, FCGR2A, FCGR3A, CD14, SCARB1, TLR2, TLR4, CTSL 

6 Leishmaniasis 9.3 X10
-4

 8/76 HLA-DRB5, ITGAM, FCGR1A, FCGR2A, FCGR3A, IFNGR2, TLR2, TLR4 

7 
Peptide ligand-binding 

receptors 
9.3 X10

-4
 12/189 CXCL10, CXCL9, CCL2, CCL3, C3AR1, CCL4, C5AR1, FPR1, FPR2, CCRL2, APP, CXCR2 

8 
Chemokine receptors bind 

chemokines 
9.3 X10

-4
 7/56 CXCL10, CXCL9, CCL2, CCL3, CCL4, CCRL2, CXCR2 

9 Interferon Signaling 2.0 X10
-3

 11/174 HLA-DRB5, GBP1, GBP2, IRF1, GBP4, FCGR1A, FCGR1B, GBP5, IFITM3, IFNGR2, MT2A 

10 
pyrimidine 

deoxyribonucleosides 
degradation 

3.6 X10
-3

 3/6 UPP1, SCO2, TYMP 
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CO-EXPRESSION 

1 THRLBCL, Van Loo et al. 4.5 X10
-60

 63/373 

PDCD1LG2, CREG1, DMXL2, ACSL1, ANKRD22, DOCK4, TLR2, TLR4, ACP2, FCGR1A, CD274, KCNJ10, TNFSF10, CEBPB, SOD2, 
TNFAIP2, CD163, PILRA, AGTRAP, MT1X, APOBEC3A, MT1G, HNMT, MT1E, P2RX4, HK3, GPR84, SLC1A3, CXCL10, IDO1, C1QB, 
LILRB2, C1QA, GCH1, C1QC, C3AR1, IL15RA, GBP1, RASSF4, GBP5, SLC7A7, LRP1, PSTPIP2, PTGER2, S100A9, CCRL2, S100A8, 
SECTM1, IFNGR2, CASP5, RAB20, NR1H3, EPB41L3, RGL1, CD14, LGALS3, CTSD, FPR1, FPR2, CTSL, CSF1R, SERPINA1, CSF3R 

2 cHL EBV +/-, Chetaille et al. 4.9 X10
-38

 46/348 
CREG1, GPNMB, DMXL2, DOCK4, TLR2, ACP2, FCGR1A, TNFSF10, RNF125, CD163, HMOX1, TCF7L2, PILRA, TCN2, MT1G, HK3, 
PLA2G7, SLC1A3, CXCL10, IDO1, C1QB, LILRB2, C1QA, GCH1, C3AR1, MAFB, IL15RA, GBP1, RASSF4, SLC7A7, SLC47A1, GAS7, 
PSTPIP2, PTGER2, SCO2, CCRL2, SECTM1, APOC1, CASP5, RAB20, CXCL9, RGL1, CD14, CTSD, CTSL, SERPINA1 

3 
NPM mutated AML, 

Verhaak et al. 
1.6 X10

-36
 

 
48/427 

FCER1A, DMXL2, ACSL1, TLR4, LILRA5, TNFSF10, SOD2, TNFAIP2, SCRN1, BCL2A1, CD163, TMEM176A, HMOX1, PILRA, APOBEC3A, 
HNMT, HK3, IER3, CXCL10, C1QB, LILRB2, C1QA, GCH1, C3AR1, MAFB, C5AR1, SIDT1, SLC38A1, TYMP, SCO2, SECTM1, APP, 
PLXND1, TREM1, CCL4, EPB41L3, AQP9, CD14, SPTBN1, EMR1, CTSD, CD1C, FPR1, CTSL, VCAN, SERPINA1, CSF3R, LILRA3 

5 
Lymph-node signature, 

Rosenwald et al. 
3.4 X10

-22
 

 
25/155 

IL15RA, CEBPB, CXCL10, DAB2, GBP1, IRF1, CREG1, FCGR1A, IFITM3, CXCL9, CCL2, C3AR1, NKG7, FPR1, FPR2, MT2A, CSF1R, CD14, 
CSF3R, TIMP1, CD81, IL1R1, ENG, CTSL, SOD2 

6 
Low-dose radiotherapy in 

follicular lymphoma, 
Knoops et.al. 

4.9X10
-22

 23/121 
TNFSF10, CXCL10, LILRB2, GBP1, HMOX1, EPB41L3, CREG1, ANKRD22, FCGR1A, ADAMDEC1, GBP5, CXCL9, C1QA, C1QB, GPNMB, 
PLA2G7, TCN2, UBD, NR1H3, APOC1, RAB20, TLR4, CTSD 

7 CD molecules, Zola et al. 3.1 X10
-21

 32/345 
TNFSF10, LILRB2, SIRPB2, ITGAM, CD163, NRP1, FCAR, FCER2, FCGR1A, FCGR2A, FCGR3A, FLT3, LILRA3, CD207, TLR10, CD1A, 
CD1C, CD1E, CSF1R, CD14, CSF3R, TLR2, TLR4, LRP1, CD58, CD274, CD81, CD151, IL1R1, ENG, CDH1, PDCD1LG2 

CANCER MODULES 

1 Genes in module 84 1.7 X10
-27

 53/531 

CREG1, GPNMB, ACSL1, DAB2, TLR2, HSPA6, FCGR3A, FCGR2A, TNFSF10, TNFAIP2, KCNA5, BCL2A1, CD163, RARRES3, ITGAM, 
IRF1, HK3, PLA2G7, IER3, C1QB, LILRB2, GCH1, C1QC, C3AR1, MAFB, HLA-DRB5, GBP1, GBP2, SLC7A7, IL1R1, TBC1D2B , S100A9, 
S100A8, SECTM1, APOC1, IGLJ3, CCL3, IGHM, CCL4, EPB41L3, CCL2, IGKC, AQP9, CXCL9, RGL1, ENG, CD14, LGALS3, FPR1, CSF1R, 
NKG7, CDH1, VCAN, UBD, SERPINA1, CSF3R 

2 Genes in module 5 3.2 X10
-18

 39/423 
GPNMB, ACSL1, DAB2, TLR2, ACP2, PON2, FCGR3A, FCGR2A, TNFSF10, TNFAIP2, CD163, RARRES3, HMOX1, ITGAM, IRF1, IER3, 
C1QB, GBP1, SLC7A7, UPP1, IL1R1, TBC1D2B, S100A9, S100A8, SECTM1, APOC1, PLXND1, STAB1, CCL3, IGHM, EPB41L3, CCL2, 
ENG, CD14, PIM1, NKG7, VCAN, CD151, SERPINA1, CSF3R 

3 Genes in module 46 6.6 X10
-18

 37/386 
CREG1, FCER1A, NRP1, TIMP1, DAB2, TLR2, FCGR3A, FCGR2A, TNFSF10, CEBPB, IFITM3, IRF1, CXCL10, LILRB2, C1QA, C3AR1, 
IL15RA, HLA-DRB5, C5AR1, GBP1, GBP2, LRP1, IL1R1, IFNGR2, CCL3, CCL4, CCL2, AQP9, CXCL9, FLT3, CD14, CD1C, BATF, UBD, 
CSF3R, CD81, LILRA3 
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The cutpoint FDR p-value considered was 1.0 X10
-3

.  From the top 20 hits for each category, the most relevant data is provided

4 Genes in module 75 4.4 X10
-15

 34/391 
CREG1, FCER1A, NRP1, TIMP1, DAB2, TLR2, FCGR3A, FCGR2A, TNFSF10, IFITM3, IRF1, CXCL10, LILRB2, C1QA, C3AR1, IL15RA, HLA-
DRB5, C5AR1, GBP1, GBP2, LRP1, IL1R1, CCL3, CCL4, CCL2, AQP9, CXCL9, FLT3, CD14, CD1C, BATF, UBD, CSF3R, CD81 

5 Genes in module 170 4.5 X10
-13

 18/100 
TIMP1, DAB2, FCGR1A, FCGR2A, TNFSF10, IFITM3, IER3, C3AR1, GBP1, GBP2, IL1R1, CCL2, CXCL9, CD14, FPR1, CTSL, CSF1R, 
CD151 

6 Genes in module 64 4.3 X10
-12

 34/506 
FCER1A, NRP1, TLR2, FCGR1A, FCER2, FCGR3A, FCGR2A, TNFSF10, CD163, ITGAM, P2RX7, HK3, CXCL10, ADAMDEC1, LILRB2, 
C3AR1, IL15RA, HLA-DRB5, C5AR1, IL1R1, S100A9, CCL3, CCL4, CCL2, AQP9, CXCL9, FLT3, CD14, LGALS3, EMR1, CD1C, FPR1, 
NKG7, CSF3R 

7 Genes in module 79 4.3 X10
-12

 17/100 TIMP1, DAB2, FCGR1A, FCGR2A, IFITM3, IER3, C3AR1, GBP1, GBP2, IL1R1, CCL2, CXCL9, CD14, FPR1, CTSL, CSF1R, CD151 

8 Genes in module 45 3.8 X10
-12

 36/563 
ACSL1, TLR2, SLC11A1, HSPA6, FCGR3A, FCGR2A, TNFSF10, SOD2, TNFAIP2, KCNA5, BCL2A1, RARRES3, ITGAM, IRF1, HK3, IER3, 
LILRB2, GCH1, GBP1, GBP2, SLC7A7, TBC1D2B, S100A9, SCO2, S100A8, SECTM1, STAB1, IGHM, AQP9, FLT3, CD14, PIM1, NKG7, 
VCAN, SERPINA1, CSF3R, CD58 

9 Genes in module 128 3.8 X10
-12

 17/98 TIMP1, DAB2, FCGR1A, FCGR2A, IFITM3, IER3, C3AR1, GBP1, GBP2, IL1R1, CCL2, CXCL9, CD14, FPR1, CTSL, CSF1R, CD151 

10 Genes in module 76 2.2 X10
-11

 15/79 TLR2, CEBPB, PLA2G7, CXCL10, C3AR1, ALOX15, IL1R1, S100A9, S100A12, CCL3, CCL4, CCL2, CXCL9, CD14, FPR1 

GENE FAMILY 

1 CD molecules 4.5 X10
-22

 28/276 
ITGAM, CD163, NRP1, FCER2, FCGR1A, FCGR2A, FCGR3A, C5AR1, LILRA5, FLT3, CD207, TLR10, CD1A, CD1C, CD1E, CSF1R, CD14, 
CSF3R, TLR2, TLR4, LRP1, CD58, CD274, CD81, CD151, CDH1, CXCR, PDCD1LG2 

2 Metallothioneins 8.1 X10
-6

 5/20 MT1DP, MT1E, MT1G, MT1X, MT2A 
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Thermal Cycler Programming 

 

 First strand cDNA synthesis 

Program 1: 65°C for 2 min, hold at 4°C 

Program 2: 4°C for 2 min, 25°C for 30 min, 42°C for 15 min, 70°C for 15 min, hold at 

4°C 

 Second strand cDNA synthesis 

Program 3: 4°C for 1 min, 25°C for 10 min, 50°C for 30 min, 80°C for 20 min, hold at 

4°C 

 SPIA amplification 

Program 4: 4°C for 1 min, 47°C for 75 min, 95°C for 5 min, hold at 4°C 

 cDNA fragmentation 

Program 5: 37°C for 30min; 95°C for 2 min, hold at 4°C 

 Biotin labelling 

Program 6: 37°C for 60min, 70°C for 10 min, hold at 4°C 

 


