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Abstract

Recent advances in automatic piano transcription have enabled large scale analysis of piano mu-
sic in the symbolic domain. However, the research has largely focused on classical piano mu-
sic. We present PiJAMA (Piano Jazz with Automatic MIDI Annotations): a dataset of over 200
hours of solo jazz piano performances with automatically transcribed MIDI. In total there are
2,777 unique performances by 120 different pianists across 244 recorded albums. The dataset
contains a mixture of studio recordings and live performances. We use automatic audio tagging
to identify applause, spoken introductions, and other non-piano audio to facilitate downstream
music information retrieval tasks. We explore descriptive statistics of the MIDI data, includ-
ing pitch histograms and chromaticism. We then demonstrate two experimental benchmarks
on the data: performer detection and generative modeling. The dataset, including a link to the

associated source code is available at REDACTED_FOR_ANONYMOUS_REVIEW.
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1. Introduction

Recent progress in automatic piano transcription has
made it possible to conduct large scale analysis of pi-
ano music in the symbolic domain. Thus far, the re-
search community has primarily focused on Western
classical piano music. Given the status of classical mu-
sic as the predominant genre of solo piano music, this
is understandable. Our goal is to focus on what is ar-
guably the second largest genre of solo piano music:
jazz piano.

Jazz is sometimes referred to as America’s classical
music (see Taylor, 1975). With its roots in the spir-
ituals of early African-Americans, jazz has developed
over the past hundred years into a prominent cultural
art form. The jazz piano tradition stretches back to the
origins of jazz, with early ragtime and boogie woogie
styles leading to stride piano. New styles continued to
develop, such as swing, bebop, cool, hard bop, fusion,
free, and modal. While much of this development took
place in ensemble playing, the solo jazz piano tradition
developed in parallel, with pianists seeking to incorpo-
rate these new styles into their own solo performances.

The depth and importance of jazz piano is in stark
contrast to the lack of available datasets for its analysis
and modeling. To this end, we present PiIJAMA: Piano
Jazz with Automatic MIDI Annotations. To our knowl-
edge, this represents the first dataset at this scale solely
focused on jazz piano music. By consulting jazz piano
pedagogical works, international piano competitions,
and jazz critics’ publications, we identify 120 pianists

to include in the dataset. For each pianist, we scrape as
much of their solo piano discography as possible from
YouTube. Using state-of-the-art algorithms for auto-
matic piano transcription, MIDI annotations for each
performance are computed and released. While there
do exist many manual transcriptions of jazz piano per-
formances, these can be difficult to digitize from sheet
music. Just as automatic transcriptions is not be per-
fect, neither is optical music recognition (OMR). Fur-
thermore, the transcriptions will lack the expressive
timing of a performance.

In this article, we discuss the current state of piano
datasets, describe the data collection methodology, ex-
plore the dataset via summary statistics, and demon-
strate multiple machine learning experiments on the
data. PiJAMA will be useful to researchers in music
information research, computational musicology, and
music performance studies, and in specific tasks such
as automatic music transcription, performer identifica-
tion, and cover song detection.

2. Related Work

This dataset and the methodology used in this research
work are made possible by significant improvements in
automatic piano transcription in recent years. In this
section, we review related datasets and then discuss
the current state-of-the-art in automatic piano tran-
scription.
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MAPS MAESTRO (v1)
Model Frame F1 Onset F1 On+offset F1 Frame F1 Onset F1 On+offset F1
~[Sigtia et al.| (2016)) 72.22 46.58 18.38 - - -
Hawthorne et al.| (2018) 78.30 82.29 50.22 - - -
Hawthorne et al.| (2019) 84.91 86.44 67.43 90.15 95.32 80.50
Kong et al.| (2021) 82.78 82.40 56.59 89.71 96.76 82.47
Hawthorne et al.| (2021) - - - 88.00 95.95 83.46

Table 1: Overview of automatic piano transcription techniques and their performance on the datasets MAPS
and MAESTRO. For [Hawthorne et al.| (2019), the MAPS results are from a training configuration with data
augmentation, and the MAESTRO results are without augmentation. For Kong et al.| (2021)), the MAPS results
were evaluated with the published checkpoint and the MAESTRO results are the published numbers. Note
that this model was trained without data augmentation.

2.1 Datasets

2.1.1 MAPS

MAPS (MIDI Aligned Piano Sounds, |[Emiya et al.,
2010) consists of MIDI files either algorithmically
generated (e.g. common chords, random chords) or
scraped from the Internet, and then rendered to audio
by software instruments and Yamaha Disklavier. The
scraped data are mostly classical performances with
some “traditional” pieces as well. All MIDI files were
taken from scores, with tempo curves manually edited
to create a more realistic synthesized performance. In
total the dataset has 65 hours of aligned audio and
MIDIL. Prior to MAESTRO, this was the most important
dataset for piano transcription research.

2.1.2 MAESTRO

The MAESTRO dataset (Hawthorne et al.l [2019) was
created from performances at the International Piano
e-Competition and consists of 1276 performances with
a total duration of about 200 hours. All audio comes
from Yamaha Disklavier pianos and all performances
are Western classical. Although the 200 hours are
unique performances, it is worth mentioning that there
are many duplicate compositions in the dataset. If
these duplicate pieces are removed, there are 84 hours
of unique compositions.

2.1.3 GiantMIDI

GiantMIDI (Kong et al. [2022)) is the most closely re-
lated work to our contribution. Similar to our ap-
proach, the dataset is compiled by scraping YouTube
audio and using an automatic piano transcription al-
gorithm. The metadata is sourced from the Interna-
tional Music Score Library Project (IMSLP), from which
over 140,000 compositions are identified. Through a
process of scraping and filtering, this set is narrowed
down to roughly 10,000 audio files with automatically
transcribed MIDI. All tracks in the dataset are classical
piano pieces.

2.1.4 ATEPP
Another work taking a similar approach to us is ATEPP

(Automatically Transcribed Expressive Piano Perfor-
mance, |Zhang et al., |2022). Whereas GiantMIDI

sought to maximize diversity of composition, ATEPP
seeks to find many different performances of the same
compositions to allow analysis of the expressive dif-
ferences between the individual pianists and perfor-
mances. In total, they collect 11,742 performances by
49 pianists, covering 1580 distinct movements. They
use the Spotify API to locate performances of pieces by
famous Western classical composers and find YouTube
URLs for the various performances. Once again, all
tracks in the dataset are classical.

2.1.5 RWC Jazz Music Database

The RWC (Real World Computing, |Goto et al., [2002)
Music Database has a collection of audio and (un-
aligned) MIDI with a wide variety of instrumentations.
Their RWC Jazz Music Database is one of the few
datasets we could find with solo jazz piano perfor-
mances. However, only five pieces are available with
a total duration of less than twenty minutes.

2.1.6 Weimar Jazz Database & Dig That Lick

The Weimar Jazz Database (Pfleiderer et al., |2017)
is a dataset of 456 transcriptions of monophonic jazz
improvisations (about 13.5 hours). These were tran-
scribed with a combination of manual (pitches, on-
sets, offsets, chords, beats) and automatic (dynamics
and intonation) techniques. A subsequent project, Dig
That Lick (Hoger et al.,2019), introduced the DTL1000
database with 1736 (22.2 hours) monophonic jazz so-
los that were automatically extracted with a CRNN-
based algorithm. These datasets represent two of
the most significant efforts to provide a computational
analysis of real, professional jazz performance. But the
focus is entirely on monophonic transcriptions: no solo
jazz piano transcriptions exist in the dataset.

2.2 Automatic Piano Transcription

Automatic piano transcription has seen dramatic im-
provement over the past decade, owing primarily to
the use of deep learning algorithms. Due to its acoustic
properties and the large amount of available training
data, solo piano transcription has witnessed the great-
est progress. We briefly review the recent literature
leading up to the current state-of-the-art.
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Figure 1: Diagram of the data collection process for the PiIJAMA dataset. Stages with a filtering effect are repre-

sented with an arrow block symbol.

The first end-to-end neural network for polyphonic
music transcription was put forth by |Sigtia et al.
(2016). Inspired by the success of deep learning in
speech recognition, they design a transcription system
composed of two parts: an acoustic model and a lan-
guage model. They use a convolutional neural network
for the acoustic model and a recurrent neural network
for the language model. A follow-up result (Kelz et al.,
2016) reached a new SOTA result on the MAPS dataset
using a simple, single-CNN based model that predicts
the pitches present in each frame.

A breakthrough occurred with the Onsets and
Frames paper (Hawthorne et al., 2018). They use an
acoustic model inspired by Kelz et al.| (2016)), and also
employ a bi-directional LSTM to allow temporal cor-
relations between frames to be learned by the model.
However, the key insight of their research is to decom-
pose the training objective into two parts: predicting
note onsets and note frames. Then, new notes will
only start if the onset detector predicts an onset of
that pitch. This factorization of the output space seems
to help the network learn better: the onset time se-
ries is relatively sparse compared to the frames (since
notes tend to be held down for many frames). Their re-
sult more than doubles Kelz’s previous SOTA F1-score
(notes + offsets) on the MAPS dataset. When the On-
sets and Frames model is trained on MAESTRO, the
accuracy improves dramatically.

Hawthorne et al.| (2018) mention that, “the current
practice of using a 50ms tolerance for note onset cor-
rectness allows for too much timing jitter.” Kong et al.
(2021) sought to address this limitation in their ap-
proach. Their architecture is heavily inspired by On-
sets and Frames, but they develop a novel strategy to
regress on the precise note onsets and offsets within a
single frame. This method is inspired by a paper from
computer vision research called “You Only Look Once”
(YOLO, [Redmon et al.,|2016). Here, an object recog-

nition system is trained with a technique of splitting an
image into grids. Then at each grid, the network pre-
dicts a distance from the coordinate of the grid to that
of the object being recognized. Similarly, Kong et al.
(2021) assign each frame a continuous value distance
to its nearest onset, and the network is trained to pre-
dict this distance. Then, using a sliding window, the
values from contiguous blocks of frames are geometri-
cally combined to predict a precise onset time within
a frame. Their system outperforms Onsets and Frames
and achieves very realistic sounding MIDI due to the
higher resolution of its predicted output. They expand
their approach to predict sustain pedal onsets, which
adds to the realism of the transcribed performances.

The most recent development in automatic piano
transcription is the sequence-to-sequence Transformer
architecture by Hawthorne et al.| (2021)). The authors
criticise existing SOTA methods for piano transcription
as being very domain-specific and having complex de-
coding schemes. Their research investigates using an
“off-the-shelf” encoder-decoder Transformer. Its input
sequence comprises the single spectrogram frames and
its output sequence is a MIDI-like vocabulary, and the
network learns to “translate” from the first represen-
tation to the latter. Their system achieves SOTA in F1-
score incorporating onset time and offset time, but falls
short of Kong’s model when only measuring onset F1-
scores. The authors soon after released an extended
model that adds MIDI program number to the output
vocabulary and attain SOTA in a variety of datasets for
multi-instrument transcription (Gardner et al., |[2022).

A comparison of results for transcription perfor-
mance of the reviewed systems is given in Table|l} The
significant progress in this area has made it possible to
conduct large scale music analysis in the symbolic do-
main, which is the approach we follow in this research.
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Table 2: Evaluation on transcribed solo jazz piano performances. Due to varying quality in the transcriptions, we
report metrics for both 50- and 100-millisecond note onset tolerance. The results on RWC Jazz and Jazz Web
show little improvement from the increased tolerance, whereas the metrics on the human labeled evaluation
sets show significant improvement, suggesting greater misalignment in these sources.

Hawthorne et al. Kong et al.
Dataset # Note F1 (50ms) Note F1 (100ms) Note F1 (50ms) Note F1 (100ms)
RWC Jazz 4 0.932 0.938 0.909 0.91
Jazz Web 5 0.956 0.959 0.926 0.926
Joe Bagg 5 0.876 0.912 0.806 0.858
Daan Schreuder 8 0.889 0.910 0.865 0.881
per recording average 22 0.908 0.925 0.873 0.891

2.3 Evaluation on Solo Jazz Piano

One natural concern is the ability of these systems to
generalize to jazz piano data. They were trained on
nearly 200 hours of solo piano music and demonstrate
strong performance on held-out test data, but it is pos-
sible that jazz music contains harmonic, melodic, and
rhythmic features which may lead to lower transcrip-
tion accuracy.

To verify the ability of these systems, we evaluate
transcription performance on out-of-distribution solo
jazz piano data. We use the following sources of data:

1. RWC Jazz Music Database: Four! solo piano per-
formances.

2. Jazz Web?: A website with solo jazz piano tutori-
als of increasing difficulty. We only selected the
advanced pieces for evaluation; five in total.

3. Joe Bagg® Sheet Music Transcriptions: These are
sheet music transcriptions with a coarse align-
ment from www.soundslice.com. There are five
transcriptions in total, including one from a
recording in PiJAMA.

4. Daan Schreuder* MIDI Transcriptions: These are
note-for-note MIDI transcriptions by a profes-
sional pianist. All eight of the transcriptions are
from songs in the PiIJAMA dataset.

All data sources required some pre-processing for eval-
uation. The Jazz Web only required a small time shift
for optimal alignment, whereas the other three sources
required dynamic time warping to properly align with
the audio. The quality of the final transcriptions varied
across the set, so we report both 50 and 100 millisec-
ond metrics. The results are shown in Table The
results are comparable to the evaluation on MAPS in
Table 1, and demonstrate that the models can gener-
alize well to jazz performances. The Hawthorne et al.
model was trained with data augmentation, and it is
evident that this leads to significant improvement on
out-of-distribution transcription accuracy.

3. Methodology

This section describes the methodology used in compil-
ing the data and associated metadata. Data collection
consisted of five stages: selecting pianists for inclusion,

identifying solo piano albums for each artist, scraping
them from YouTube, applying quality filtering, and fi-
nally automatically transcribing the performances (see

Figure [I).

3.1 Pianist Selection

It is difficult to agree upon a definition of “jazz”. The
authors have their own listening preferences and an
intuitive sense of what qualifies as solo jazz piano, but
we took steps to have more objective criteria for in-
clusion in the dataset. This was mainly accomplished
by referring to widely-used textbooks of jazz piano in-
struction. The first reference used is “The Jazz Piano
Book” (Levine, [1989). At the end of the book, the
author gives a detailed list of listening recommenda-
tions with specific performances of many professional
jazz pianists. For every pianist mentioned in this list,
we add them to our set of artists. However, this book
was published in 1989, and so we also consult “Playing
Solo Jazz Piano: A New Approach for Creative Pianists”
(Siskind, 2020). In addition, we include past finalists
of the Thelonious Monk Institute of Jazz International
Piano Competition ® and the American Pianists Associ-
ation Jazz Competition ®. Another authoritative source
is the Live at Maybeck Recital Hall series of recorded
concert performances. We attempt to include every
artist who performs in this collection in our dataset.

3.1.1 Exceptional Inclusions

One issue that emerged from the data collection
methodology was a large gender skew. Only 10% of
the pianists in the dataset are female, and this is after
an intentional effort was made to increase represen-
tation. This raises an ethical question of gender rep-
resentation in jazz piano music which is beyond the
scope of this paper to address, but this statistical imbal-
ance is important to consider when using this dataset
for downstream tasks.

To increase the number of female pianists, we add
performances from the following pianists not found
in the aforementioned sources: Eliane Elias, Renee
Rosnes, Beegie Adair, and Lynne Arriale. In addition to
these inclusions, we add performances from two young
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modern prodigies of jazz piano: Joey Alexander and
Justin Kauflin.

3.2 Metadata Curation

For each artist, we record the metadata of their name,
gender, and year of birth. We then manually search for
solo piano albums by each artist. This manual search
was performed primarily by querying the Discogs’
database of artist discographies. Albums were then
cross-referenced on Spotify and compiled into playlists.
The albums were organized into two playlists: “Live”
and “Studio”, corresponding to live performances in
the former case and recording studio conditions in the
latter.

3.3 YouTube Audio Search

Once the playlists were finalized, we used the open-
source software spotDL 8 to correlate each Spotify
URI with a YouTube URL. Following this, a combi-
nation of automatic and manual data validation was
conducted. First, all tracks were audio fingerprinted
with AcoustID’s Chromaprint algorithm and searched
against the MusicBrainz database (see |Swartz,, |2002)).
Tracks that were matched to the same metadata (artist,
track, and album) were moved forward to the next
stage of the quality pipeline. Any tracks that were un-
matched or mismatched were manually inspected by
opening the YouTube URL. False positive matches were
corrected when possible. If no YouTube URL could be
found manually, the track was excluded from the final
dataset. Of the 3,023 songs in the curated playlists,
2792 remained at this stage.

3.4 Quality Filtering

3.4.1 Solo Piano Detection

Next, we used the solo piano detector from [Kong et al.
(2022) to identify and remove any non-piano perfor-
mances. The authors use a threshold of 0.5 and re-
port precision, recall, and F1-score of 89.66%, 86.67%,
and 88.14%, respectively. Everything with an average
score above 0.5 was automatically retained, which ac-
counted for over 95% of the data. The remaining tracks
were manually inspected. Ultimately, only 15 tracks
were removed and each had an average score of less
than 0.12.

3.4.2 Audio Tagging

The subsequent stage of the pipeline was running an
audio tagging system on the data. For this, we uti-
lized the Audio Spectrogram Transformer (AST, |Gong
et al. |2021), a multi-label tagging system trained on
YouTube AudioSet. The labels in the AudioSet ontol-
ogy vary in quality, so we used only three labels: Music,
Applause, and Speech. We evaluate the AST on every
track using non-overlapping one-second segments and
record the scores for these three classes. For the live
performances, this allowed us to remove spoken intro-
ductions and interjections, and to filter out applause

at the beginning and end of the recorded track. For
each track, we compute the start and end times of the
performance with the following algorithm:

1. Divide the track into one-second segments

2. Let m, s, a be defined as the AST scores for

classes Music, Speech, and Applause, respectively.

3. Define a segment as “clean” if either:

(a) m>max(s,a) and a< T, and s< T, or

(b) max(m, s, a) < Trest

4. Find the longest contiguous sequence of clean

segments, and define the performance start and

end times to coincide with this section.
Intuitively, this says that a second of clean piano music
should yield AST class labels where music dominates
and applause and speech are relatively small. Oth-
erwise, if music is not the highest category, the ap-
plause and speech scores must be very low to permit
inclusion. This latter criterion lets us cleanly deal with
brief moments of rest in the musical performance. The
thresholds (T, = 0.4, Ts = 0.5, Tyest = 0.1) were manually
tuned.

To approximate the accuracy of the estimated start
and end times, we randomly select 25 studio and 25
live recordings and manually annotate the start and
end times. The selected performances were not used
in tuning the thresholds. An endpoint was considered
correct if it was within 1 second of the annotation. All
50 endpoints of the studio performances are correctly
predicted and 47 endpoints of the live recordings are
correct, for a total accuracy of 97%. Only one endpoint
deviated by more than 2 seconds, due to vocalizations
of the pianist (Keith Jarrett) causing an earlier region
of audio to be classified as speech.

3.5 Piano Transcription

For piano transcription, we use two state-of-the-art
systems to generate MIDI from the audio. First we
use Onsets and Frames by [Hawthorne et al.| (2018).
This model has the advantage of being trained with
data augmentation, and is more robust to the acoustic
variation across PiJAMA. The second model is High-
Resolution Piano Transcription with Pedals by Kong
et al.| (2021). This model has two main advantages:
arbitrary time resolution and pedal prediction. Both
models are used as-is with no fine-tuning for the jazz
genre. With respect to the sustain pedal: both mod-
els are trained such that note durations are extended
based on the pedal control signal, but the Kong model
additionally predicts when a pedal is pressed. For each
audio track, both MIDI transcriptions are made avail-
able.

3.5.1 Agreement Measure

Having computed the transcription output from both
systems, we can measure the similarity of the tran-
scriptions on a per-file basis. The motivation for this
analysis is the question of whether high agreement is
suggestive of a higher confidence transcription.
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Figure 2: Scatter plots depicting the relationship be-
tween transcription agreement and note onset F1
score. Each data point is computed from a perfor-
mance in the MAPS test set.

First we define our measure of agreement. For a
pair of transcriptions (Ty, T), we define our agreement
score A as

A(leTz) _ FlonSEt(TerZ);’Flonset(TZ,Tl) (1)

where T, T, are transcriptions, Flg,se;(r,e) is the F1-
score of note onset transcription accuracy with r as
reference and e as the estimated transcription, as com-
puted by mir_eval. Figure [2| shows the relationship
between agreement scores and F1 scores. The Pearson
correlation coeffecient between the agreement score A
and the F1 score of each system is 0.72 (Kong et al.)
and 0.50 (Hawthorne et al.). The lines of best fit have
slopes 1.7 and 1.0, respectively.

We caution that these two systems use the same
training data (although only Hawthorne et al. use
data augmentation) and have similar architectures, so
agreement will in general be high. Furthermore, both
systems may share typical error modes (e.g. octave er-
rors), which will increase agreement but hurt accu-
racy. However, these statistical results suggest that our
agreement metric can provide a weak signal of tran-
scription quality and confidence. In the absence of
ground truth, as is the case for PiIJAMA, this measure
may be valuable for curating a subset of transcriptions
with a higher expected accuracy. We provide the agree-
ment measure as an additional feature in the metadata.
Within the PiJAMA dataset, 1506 tracks (119 hours)
have an agreement greater than or equal to 0.90.

4. Descriptive Statistics

The dataset has 120 different artists and 244 albums.
During the original sourcing of data, 130 pianists were
identified. Those absent in the final dataset either
had no solo piano albums, either at all or on Spotify,

or their performances were not available on YouTube.
The total duration of audio is 223.6 hours and the to-
tal duration of performances (as determined by the
start/end times computed above) is 219.4 hours. In
total, there are 2,777 unique performances. On aver-
age, each track is 4 minutes and 50 seconds long and
has 2,560 notes. There are 7,108,460 total note events
in the transcribed MIDI.

4.1 Pitch Histograms

Figure [3| shows a pitch histogram of all note events in
the dataset. Each bar represents a piano key and is
colored accordingly. The mode of the distribution is
middle C (Cy).

Individual differences between pianists are clearly
observable even at this macroscopic level. Two exam-
ples of artist-specific pitch histograms are given in Fig-
ure [4 The first histogram of pianist Jessica Williams
shows a strong preference for white keys. The second
histogram is of pianist Erroll Garner. Two things are
noticeable from this: (1) a greater preference for black
keys and (2) a higher frequency of notes in the upper
register. These statistics confirm what many jazz critics
observe about Erroll Garner. For instance, in a recorded
piano lesson by Dick Hyman®, he imagines how Erroll
Garner might take the Tchaikovsky composition “Song
Without Words”. Hyman says, “I think the first thing
he might have done would be to put it in 4/4 time and
then I think the second thing he might have wanted
to do would be to play it in a different key, a key with
more flats in it because his style kind of demanded that
you grab a hold of those black keys.”

4.2 Frequent Compositions

The musical tradition of jazz music contains a num-
ber of compositions referred to as “standards” that are
frequently performed. Our data collection methodol-
ogy does not capture the composer for every track, but
we can approximate the frequency of compositions by
grouping by track title. Using an exact string match
would be too strict to group, so instead we map each
song title to a simpler string. We first note that many
songs have a suffix such as “ - Live in .*” or “(Live)”.
So we remove any suffix starting with a dash character
surrounded by two spaces, or any parenthetical suffix.
Next, we remove any punctuation and whitespace. Fi-
nally, we map the string to lowercase. With this derived
string, we compute frequencies across the dataset.

In the PiJAMA dataset, 51% of recordings are of
compositions that only appear once. If we filter for
tracks whose composition appears four or more times
by our grouping logic, we get 879 tunes, or 32% of the
dataset. Thus, PiJAMA may provide a useful dataset
for cover song or jazz standard identification.

4.3 Class Imbalance and Pij]AMA-30
It is much more common for jazz pianists to record in
the trio format with bass and drum accompaniment,
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Figure 3: Pitch histogram of all note events in the PiIJAMA dataset.
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Figure 4: Pitch histograms from pianists Jessica Williams (above) and Erroll Garner (below).

Table 3: Most frequently repeated compositions in the
PiJAMA dataset.

Frequency = Composition(s)

17 Body and Soul

13 All The Things You Are, Yesterdays

12 Sophisticated Lady

11 ‘Round Midnight

10 Blue Monk

9 Alone Together, Prelude to a Kiss, Sweet and Lovely

8 Someday My Prince Will Come, Jitterbug Waltz, Night

and Day, My Funny Valentine, Darn That Dream, Some-
one to Watch Over Me, Don’t Blame Me, Blue Bolero, 1
Should Care, Lush Life, Everything Happens To Me, In a
Sentimental Mood, Con Alma

and thus many artists have very few solo piano albums.
Some artists have no full length solo piano albums
and their samples in the dataset come from solo piano
tracks on albums with primarily group playing. On the
other hand, there is a small handful of prolific solo jazz
piano artists with immense output. As such, the dataset
does exhibit a skew relating to the amount of audio per
artist (see Figure[5)). The four artists with the most au-
dio are Dick Hyman, Brad Mehldau, Art Tatum, and
Fred Hersch, with total durations (in hours) of 18.8,
8.9, 8.0, and 7.2, respectively. Meanwhile, some artists
have only one track present in the collection. This class
imbalance can be problematic for evaluating predictive

models on the dataset, so we define a subset of the data
with a more even distribution.

The set of artists included are the 30 pianists with
the most data, and we refer to this as PiJAMA-30.
This subset has one final modification of reducing the
amount of data from Dick Hyman by excluding his Cen-
tury of Jazz Piano (over 5 hours in duration). See Fig-
ure [6] for the distribution of durations in the PiJAMA-
30 subset. This subset is more suitable for tasks such
as pianist identification, which is explored in the next
section. For other tasks, such as generative modeling,
semi-supervised learning (e.g. using the data for train-
ing automatic piano transcription), and statistical anal-
ysis, the full PiIJAMA dataset may be more appropriate.

4.4 Notes per Second

Figure[7|shows the artists in PIJAMA-30 sorted by notes
per second (NPS). Note that this metric should not be
directly associated with “playing speed” or tempo: fast,
sparse sections may have a lower NPS than moderately
paced chordal passages. The highest NPS in the dataset
is Erroll Garner, a result of his predominantly chordal
playing in both hands. Oscar Peterson and Art Tatum
are both pianists well known for their dense playing
and technical speed, and unsurprisingly they attain the
next highest NPS scores.
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Figure 5: Histogram grouping the number of artists by their duration of performance data, in half-hour incre-
ments. One pianist (Dick Hyman) is an outlier with over 18 hours of solo piano recordings.
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Figure 6: Total performance duration for each artist in
the PiIJAMA-30 subset.
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Figure 7: Bar plot of notes-per-second.

4.5 Chromaticism

Our next inquiry regards the degree of chromaticism
during a performance. According to|Forte| (1962), “The
chromatic expansion of tonality [...] is illustrated [...]
by the substitution of a chromatic harmony for an ex-
pected diatonic harmony.” Furthermore, he writes,
“Notes which do not belong to the key [...] are called
chromatic notes.” Thus, a true measure of chromati-
cism would require knowledge of the key and chord
at any point in a performance in order to be able to
identify notes as belonging to the scale or not. We take
a simpler approach as a rough approximation of how
chromatic a performance is by introducing a measure
we call sliding pitch class entropy (SPCE).

Consider a sequence of n note events

S=((pi,ti):iedl,..,n})

where p; € {21,...,108} is the pitch (as MIDI note num-
ber) and ¢; € Rs is the time of the note onset. First, we
give the definition of pitch class entropy. It is the Shan-
non entropy of the normalized pitch class histogram.

Formally,

1, ifp modi2z=c¢
1 = 2
e(p) {0, otherwise (2)
n
v 1.(p;
o= iz P2 3
11
PCE(S) = -} fclog(f) 4
c=0

Thus, 1.(p) indicates whether p has pitch class ¢, and
fe is the proportion of notes belonging to pitch class c.
Some reference values for PCE: the maximum entropy
is 2.4849 and drawing notes from a major scale with
equal probability would be have entropy 1.9459.

The problem with this measure is that it has no no-
tion of time. A pianist may play in a very diatonic
style in a single performance with multiple modula-
tions. Within each modulated section of music, the
pitch class entropy could be low, but across the piece it
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Figure 8: Bar plot of mean sliding pitch class entropy.

would be higher. Thus, SPCE is defined for a window
size w:
[max(;)]-w

1
SPCE(S=— ),
Z s=0

PCE(p;:s<t;<s+w) (5

where s and w are in units of seconds and Z is the nor-
malizing factor equal to the total number of windows.
Note that this formulation corresponds to a hop size of
one-second.

Music audio examples of low and high SPCE for a
window size w = 15 can be found in the supplemental
materials. In Figure 8] we plot the average SPCE for
each artist in PIJAMA-30. The lowest scoring artist is
Keith Jarrett, which quantitatively supports the analy-
sis by (2001), where he frequently comments
on the predominantly diatonic style of Jarrett’s impro-
visation:

* “Free improvisers who eschew any kind of ref-
erence to convention may consciously avoid dia-
tonic material, something which does not apply
to Keith Jarrett.” (p. 138-139)

* ‘Jarrett’s gospel style involves the deployment of
diatonic progressions in such a way as to evi-
dence a link with this kind of tradition of play-
ing.” (p. 159)

* “Chorales are one instance of a style which has
increased in importance in Jarrett’s improvisa-
tions over a number of years [...]. As is typical for
a chorale, the harmony here is mainly diatonic.”
(p- 160-161)

* “The harmonic approach of such [folk] passages
is predicated almost entirely on unaltered dia-
tonic triads, moving often in sequential motion.”
(p- 163)

The highest scoring pianist is Art Tatum. For an
excellent blog on Art Tatum’s playing style and his ex-

tensive use of chromatic passages, see Bayley| (2023).

5. Experiments

As a demonstration of the potential research utility of
this dataset, we conduct a number of experiments. We
consider a supervised learning task to predict the pi-
anist from a short snippet of their playing. Then we
briefly look at the task of generative modeling.

5.1 Performer Identification

We explore the task of identifying a pianist based on a
short (15 second) snippet of piano performance. For
this experiment, we use the PiJAMA-30 subset. All
of our experiments use convolutional recurrent neural
network (CRNN) architectures, largely inspired by the
work of Kong et al.| (2021)). In all cases, training is
performed with gradient descent using the Adam opti-
mizer and loss is computed as negative log-likelihood.

5.1.1 Spectrogram CRNN

The first class of model operates on mel spectrograms
from a 16 kHz resampling of the scraped audio. We
use 229 mel bins, a hop size of 160, and frequency
range of 30 Hz to 8 kHz. The network has five
convolutional blocks followed by a two-layer Gated
Recurrent Unit (GRU). Each convolutional block has
two convolutional layers, each with a 3-by-3 kernel.
Each convolutional layer is followed by a rectified lin-
ear unit (ReLU) and batch normalization. Following
each convolutional block, we apply 2-by-2 average-
pooling. The number of filters used in each block is
[64,128,256,512,1024]. The final state of the GRU is
used as the embedding to pass into a fully-connected
layer with output dimension equal to the number of
artists to predict (30). The total number of parameters
is 27.1M.

5.1.2 Transcription Features CRNN

The second class of model uses a piano transcription
model as a frozen backbone for providing features
to a learnable CRNN head. The model used is also
a CRNN, specifically the High-Resolution Piano Tran-
scription model by Kong et al| (2021). We take the
pretrained network and feed in the mel spectrogram
as above. Kong’s transcription network has four sim-
ilar acoustic models that predict at each time frame
and for each piano note: onsets, offsets, frame activity,
and velocity. These four feature maps are layered to
create a four channel “image” of size (4,88, T). From
this feature representation, we train a CRNN. Two con-
volutional layers are followed by a max pooling layer,
followed by one last convolutional layer with average
pooling. The result is processed by a two-layer bidirec-
tional GRU with hidden dimension of 256, yielding a
1024 dimensional feature vector. This is fed into a fully
connected layer to predict the artist. The total number
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Model Condition Split Test Accuracy | Album Effect
Spectrogram CRNN }'\rlflfri 83;; 0.647
Spectrogram CRNN (Data Augmentation) zlflf; 8223 0.383
Transcription Feature CRNN er;f; gigg 0.176
Transcription Feature CRNN (Data Augmentation) leiif; 8?42}? 0.085
Piano Roll CRNN Zlfﬁl g:igg 0.055

Table 4: Accuracy of artist prediction models. Two test scores are presented for each model condition: the
accuracy on the track-split (all tracks of the dataset shuffled into an 80-10-10 split) and the average accuracy
across three album-splits (one random album held out for each artist, yielding roughly an 80-10-10 split). The
Album Effect column is the difference between accuracies on the track-split and average album-split.

of learnable parameters is 27.6M.

5.1.3 Piano Roll CRNN

The last model operates on piano rolls using MIDI data
from the PIJAMA dataset. Here we use MIDI from the
Onsets and Frames model. Each piano roll is a one
channel image, (1,88, T), where the channel dimension
is the velocity of the note onset.

5.1.4 Overfitting and “The Album Effect”

Early experiments for the spectrogram model condition
were suspiciously accurate on test data. Further analy-
sis revealed the neural network was learning to recog-
nize the acoustic properties of the piano and recording
conditions, and not the qualities of the pianist. Previ-
ous research has termed this phenomenon the “album
effect” (see [Flexer and Schnitzer, [2010; [Rodriguez-
Algarra et al.,[2019). The original train-validation-test
split was created by shuffling all tracks in the dataset,
such that every sample in the test set is from a track not
contained in the training set. However, tracks from the
same album did appear across splits. New splits were
created to prevent this. For each artist, we randomly
select one album to hold out as test data, while still en-
suring an approximate 80-10-10 split. We perform this
random process three times. We call the new train-test
splits album splits and the original split the track split.

It is worth mentioning that the use of album splits
has its own complications. In some cases, multiple al-
bum releases correspond to the same recording condi-
tions. For instance, the artist in the dataset with the
second most albums is Art Tatum. However, accord-
ing to jazz critic Scott Yanow on AllMusic.com, all the
albums were captured in very similar conditions: “Dur-
ing four marathon recording sessions in 1953-55, Nor-
man Granz recorded Art Tatum playing 119 standards,
enough music for a dozen LPs. The results have been
recently reissued separately on eight CDs [...]”. Fur-
thermore, artists may perform in a meaningfully dif-
ferent style between albums, which could make the al-

bum split inherently more difficult even with identical
acoustic conditions.

5.1.5 Results

Table |4| contains the experimental results. Each model
condition is trained four times: once on the track split
and once on each of the three album splits. Test accu-
racy is computed across all 15-second segments in the
test set. A true positive is only achieved when the high-
est predicted pianist matches the ground truth. For the
album splits, the test accuracy is averaged across the
three sets. In the rightmost column we report the delta
between the accuracy on the track split and the aver-
age accuracy on the album splits.

When the Spectrogram CRNN approach is trained
on the track split, it has a test accuracy of 0.914. How-
ever, when trained and evaluated on the album splits,
its average test accuracy falls to 0.267. For the Spec-
trogram and Transcription Feature models, we show
how data augmentation can reduce the acoustic over-
fitting. The transformations applied include pitch shift-
ing, gain adjustment, high- and low-pass filtering, and
adding coloured noise.!® In both cases, the album ef-
fect is reduced. The Piano Roll CRNN suffers the least
from the album effect, as expected.

Our main takeaways from the experiments are as
follows:

* The Spectrogram CRNN memorizes the acoustic
condition of each recording session, and uses that
to predict the artist with a very high degree of
accuracy. Informally, it simply learns how each
piano sounds.

* The piano rolls remove almost all acoustic infor-
mation from the signal, and thus the album effect
is minimized.

* Some acoustic information is leaking into the
Transcription Feature network. This is not sur-
prising, since no thresholding is performed on
the activations from the transcription model.

* Data augmentation can reduce but not eliminate
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reliance on non-musical features in the predictive
task.

We invite future researchers to explore ways of
learning distinguishing musical features from raw au-
dio without overfitting to acoustic conditions, and we
hope the PiJAMA dataset will be a useful benchmark
for progress.

5.2 Generative Modeling

As a final demonstration with the dataset, we con-
duct a brief generative modeling experiment. Our ex-
periments leverage the Music Transformer of [Huang
et al.[ (2019), working with the Score2Perf implemen-
tation, a codebase by Google Magenta based on the
Tensor2Tensor project.

First we train a system from scratch. Initially we
use the default settings in the Score2Perf project: 6
hidden layers, 8 attention heads, an initial learning
rate of 0.2 with a linear warmup for 8000 steps fol-
lowed by exponential decay. Training runs for 1M
steps. The generated samples attain some superficial
similarity to the ground truth data, but have sporadic
and disconnected quality. In quantitative terms, the
best negative log perplexity score reached is —1.953.

In a follow-up blog post to the Music Transformer
publication (Simon et al., |2019), the authors pro-
vide a pretrained model that has trained on over
10,000 hours of automatically transcribed piano per-
formances. The architecture is deepened to 16 hidden
layers. We finetune the model on a subset of the Pi-
JAMA dataset for 400K steps with a variety of learning
rates (0.001,0.005,0.01,0.05). Quantitative performance
was similar across runs, with an optimal negative log
perplexity score of —1.884 computed on a held-out test
set. For comparison, we also train this architecture
from scratch for 1M steps, and the quantitative results
are not significantly different from the first experiment
of training from scratch. The optimal negative log per-
plexity score is —1.936.

Rendered audio for many samples is included in
our supplemental materials. The finetuned model pro-
duced the most compelling musical samples. Subjec-
tively, we found the performances more coherent and
realistic than the results of training from scratch, while
still sounding much more like the PiJAMA data com-
pared to samples taken from the pre-trained model
prior to the fine-tuning. However, the samples lack
the basic structure of jazz performances. Most solo
jazz piano performances contain a clear statement of
the melody followed by improvisations based upon a
repeated harmonic structure. Nearly all of the sam-
ples sound more like random sections of improvisa-
tion. There is often local harmonic stability and fa-
miliar melodic language, but on the whole they do
not convey a pianist performing a tune. Informally, it
sounds a bit like a professional pianist “noodling” or
“riffing” at the keyboard. Nevertheless, we are encour-

aged and excited by the potential for future research
in modeling jazz piano performances in the symbolic
domain.

6. Conclusion

We present PiJAMA, a curated dataset of over 200
hours of jazz piano performances with automatically
transcribed MIDI. The data collection methodology re-
lies on jazz piano pedagogy and uses open-source soft-
ware to find YouTube performances. Modern tech-
niques for filtering and audio tagging are employed
to enhance the collection’s metadata. Multiple experi-
ments are conducted to demonstrate the utility of the
dataset in the context of music information research.
For future directions, we encourage using PiJAMA to
pursue tasks such as cover song detection, melody
extraction, unsupervised pre-training, and music lan-
guage modeling.

From a critical perspective, there are some limita-
tions of our approach. The need to manually compile
artists and albums is a bottleneck to greater scalability.
Whereas classical music has sources like IMSLP, jazz
music lacks such a well-curated catalogue. Methods
for automatic data collection, such as genre detection
(“solo jazz piano”), could possibly permit a larger scale
data effort. Another thing lacking from our dataset
is annotations beyond MIDI. Having labels for beats,
bars, chords, phrases, sections, and other structural as-
pects would enrich the dataset (see |[Eremenko et al.,
2018; Balke et al., [2022). From a more musical per-
spective, our methodology focuses entirely on solo jazz
piano. However, there exists much more jazz piano
playing in the ensemble format, and it is likely the case
that piano performances from group playing have been
hugely influential on the development of jazz piano, in-
cluding solo playing.

We have released the source code to generate the
full PIJAMA dataset and provide the MIDI and meta-
data for direct download at REDACTED_FOR_ANONYMOUS_
REVIEW.

Notes

1 The dataset states there are five solo piano perfor-
mances, but one of the performances has two piano
parts (one accompaniment and one lead) with signif-
icant intersection of pitches. This was excluded from
the evaluation.

2 http://mir.audiolabs.uni-erlangen.de/
jazz-piano/

3 https://www.patreon.com/Joe_Bagg

4 https://daanschreuder. gumroad.com/

5 https://hancockinstitute.org/competition/

6 https://www.americanpianists.org/jazz

7 https://www.discogs.com/, a crowdsourced on-
line database and marketplace of music releases.

8 https://github.com/spotDL/
spotify-downloader, by Kah, J., Kot, J., and Malho-
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tra, R.

? Dick Hyman is an educator, writer, and accom-
plished pianist. He is well represented in the Pi-
JAMA dataset. The piano lesson is available at https:
//www.youtube.com/watch?v=R_B8nHqsGsI
10" pitch shifting is not used for the Transcription Fea-
ture condition.
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