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Abstract 

 

Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate 

is poorly understood. While photosynthesis is the dominant source of autotrophic carbon 

to rivers, chemosynthesis and particularly methane oxidation could provide alternative 

sources of primary production where the riverbed is shaded or at depth beneath the 

sediment surface. I highlight geographically widespread methanotrophic carbon fixation 

within the gravel riverbeds of over 30 chalk rivers and in 15 of these, the potential for 

methane oxidation (methanotrophy) was also compared to photosynthesis and stable 

isotope analyses were used to trace methane into the wider food web. Detailed concurrent 

measurements of photosynthesis and methanotrophy in one large chalk river over a 

complete annual cycle, showed methanotrophy to be active to at least 15cm into the 

riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic 

production reflected that of the riverine methane concentrations, and thus, the highest 

contribution to autotrophic production was in mid-summer. At the sediment surface, 

photosynthesis was limited by light for most of the year with heavy shading induced by 

dense beds of aquatic macrophytes and riparian vegetation. Across 15 rivers in mid-

summer, methane derived carbon was estimated to contribute 18% of production 

(methanotrophic plus photosynthetic) in well illuminated riverbeds and 51% in the shaded 

areas (median values). With warming conditions and associated increasing methanogenesis 

in fine sediments, methanotrophy is predicted to prevent increased methane emissions 

from rivers due to the strong kinetic response of methane oxidation. The gross carbon 

fixation efficiency of methane oxidation was calculated as 50% and was conserved across 

eight rivers with varying methane oxidation capacities and ambient methane 

concentrations. Methanotrophic production is widespread, efficient and most important 

when ambient methane concentration is high and light availability is low.
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Chapter 1: Introduction 

1.1 Integrating rivers into the global carbon cycle 

It is now widely acknowledged that freshwaters perform an important role in the global carbon 

cycle through the mineralisation and storage of terrestrial carbon as well as its transportation to 

the ocean (Aufdenkampe et al., 2011, Cole et al., 2007, Richey et al., 2002). It has been 

estimated that, globally 2.7 Pg C enters freshwaters from the surrounding catchment each year, 

and of that, only a third reaches the ocean and almost half is lost to the atmosphere (Figure 1.1) 

in the form of carbon dioxide or methane (Battin et al., 2009). 

 

Figure 1.1: Estimates of net carbon fluxes through freshwaters in Pg C y-1 showing delivery 

from the land, evasion to the atmosphere, storage in freshwaters and transport to the ocean 

(redrawn from Battin et al. (2009)). Inset, top-right, the now redundant view of freshwaters as 

passive pipelines which transport terrestrial carbon to the ocean (redrawn from Cole et al. 

(2007)). 
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The need to quantify carbon gas emissions from freshwaters is particularly pressing because of 

the role carbon dioxide and methane play in global warming, and the difficulties faced in 

forming mitigation strategies when we do not properly understand the natural carbon cycle. 

Recent meta-analyses have estimated the freshwater methane and carbon dioxide emissions and 

found them to be substantial (2.05 Pg C y-1) but there is a shortage of data for rivers (Bastviken 

et al., 2011, Tranvik et al., 2009). Although streams and rivers are small in their areal extent, 

accounting for just 3-5% of total freshwater surface area, they are hot-spots of biogeochemical 

cycling and account for ~17% of outgassing of carbon to the atmosphere (Aufdenkampe et al., 

2011). Momentum is now growing with regards to quantifying methane emissions from rivers 

(Crawford et al., 2014, Garnier et al., 2013, Sawakuchi et al., 2014, Vihermaa &  Waldron, 

2013) but few have investigated the controls on these fluxes. It is crucial to study the processes 

that govern the magnitude of the methane sources and sinks in order to fully understand this 

section of the carbon cycle and how it might alter under future climate change scenarios. Here, 

I focus on quantifying the main methane sink in rivers, aerobic methane oxidation.  Careful 

study of microbial methane oxidation is needed in order to understand the feedbacks and 

linkages with methanogenesis, temperature change and photosynthetic production which 

ultimately dictate the importance of methane as a carbon source for the benthic food web. 

1.2 General overview of work to date 

Most rivers are oversaturated in methane and so are net emitters of this potent greenhouse gas 

(Abril &  Borges, 2005, De Angelis &  Lilley, 1987, Devol et al., 1990, Koné et al., 2010, 

Rulik et al., 2000, Sanders et al., 2007) but little is known how much is oxidised before it 

escapes to the atmosphere. When methane undergoes microbial oxidation, carbon is fixed into 

organic matter which is then available to primary consumers in much the same way as for 

photosynthesis (Jones &  Grey, 2011). River water methane measurements were combined 

with stable isotope analyses of common invertebrate consumers along with their putative 
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dietary resources and process measurements to conclude that methane could be contributing 

significant carbon to the benthic food web in a chalk stream (Trimmer et al., 2009a, Trimmer 

et al., 2010). This finding has the potential to stimulate re-evaluation of photosynthesis as the 

dominant basal resource in rivers. If methanotrophy is found to provide a significant portion of 

new carbon to riverbed sediments where photosynthesis is also active, this further broadens the 

range of aquatic ecosystem types that should be investigated with regards to the role of 

chemosynthetic production. 

This thesis aims to expand upon these preliminary studies by answering the following 

questions: 

Central research question: How do light availability and methane concentration affect the 

importance of methane-derived carbon to chalk river food webs? 

o How widespread is methanotrophic production in chalk rivers and is it a significant 

source of carbon relative to the presumed dominant photosynthetic pathway? 

o How do ambient methane concentration and water temperature affect the rate of 

methane oxidation? 

o Does the importance of methanotrophic production relative to photosynthetic 

production change across rivers with different methane concentrations and between 

shaded and unshaded patches of the same river? 

o How efficient is microbial methane oxidation at fixing carbon? 



Chapter 1 

4 

 

Figure 1.2: Schematic diagram showing major carbon sources and sinks in chalk rivers and (inset) 

diagram of potential sites for methane production and oxidation when fine sediment is deposited around 

aquatic macrophytes such as the Callitriche and Ranunculus stands shown in the photograph of the 

River Itchen, Hampshire, U.K. 

1.3 Methane as a basal resource 

Methane-derived carbon (MDC) can be traced through trophic levels using stable isotope 

analysis due to its distinct δ
13C value which arises from methanogenic archea discriminating 

against the heavier 13C isotope during methanogenesis (Whiticar, 1999) and then further 

fractionation (0-16 ‰) when it is oxidised by methanotrophic bacteria (Summons et al., 1994). 
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Using stable isotope analysis, primary consumers have been shown to assimilate MDC in a 

wide range of aquatic environments including lakes, marine methane seeps and wetlands 

(Jones &  Grey, 2004, MacAvoy et al., 2002, van Duinen et al., 2013). More detailed studies 

have linked greater 13C depletion in chironomid larvae with greater methanogenic and 

methanotrophic potential in the sediments, both within a single lake (Deines &  Grey, 2006) 

and between lakes (Eller et al., 2005). Evidence of MDC in riverine food webs is scarce, 

perhaps because the methane concentrations in most rivers, although over saturated relative to 

the atmosphere, are much lower than those found in standing water bodies (nM range in rivers, 

µM or mM range in stratifying lakes) and riverbed sediments are often well oxygenated (Jones 

&  Mulholland, 1998). A rare example of a riverine study found MDC in aquatic insects 

feeding on detritus in a stream backwater (Kohzu et al., 2004) but the stagnant conditions mean 

this is more comparable to a shallow lake than a free-flowing river channel. More recently, gas 

(methane concentration), process and ecological (SIA of basal resources and consumers) data 

have been linked together to highlight potential contribution of MDC to a riverine food web 

(Trimmer et al., 2009a, Trimmer et al., 2010). However, many questions remain unanswered 

and this thesis seeks to address some of the biggest questions arising from our existing 

understanding. 

1.4 Methanotrophic bacteria 

Methane is oxidised aerobically in the riverbed by a group of bacteria called methanotrophs 

which are obligate methylotrophs, meaning they use one-carbon compounds as their sole 

energy source (Hanson &  Hanson, 1996). When oxygen is absent, sulphate, nitrate or nitrite 

can be used as alternative electron acceptors (Deutzmann &  Schink, 2011, Ettwig et al., 2010) 

but the majority of methane oxidation in freshwaters is aerobic (Conrad, 2009). There are 

thought to be two types of methanotrophic bacteria and they differ in the specific pathway 

through which they assimilate formaldehyde to formic acid; type I methanotrophs use the 
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ribulose monophosphate (RuMP) pathway and type II use the serine pathway. Both use the 

methane mono-oxygenase enzyme to catalyse the oxidation of methane to methanol and an 

increasing number of studies use the unique gene for this enzyme to identify the species 

present in a given sample (McDonald et al., 2008). Strictly speaking, methanotrophs are not 

chemosynthetic because they do not assimilate carbon dioxide, instead they oxidise methane to 

methanol and then formaldehyde which is assimilated into their biomass (Hanson &  Hanson, 

1996). True chemoautotrophs such as ammonia or hydrogen-sulphide or iron oxidisers use 

carbon dioxide as their sole carbon source but in the absence of broad term for all non-

photosynthetic forms of primary production, chemosynthesis is often used to cover 

methanotrophy.  Preliminary investigations using the functional gene for particulate mono-

oxygenase have shown that both types of methanotrophs are present in chalk streams 

(manuscript in prep., Chronopoulou, Shelley and Trimmer). They are thought to have different 

optimal conditions resulting in the dominance of one type over the other, but consistent 

patterns in mixed communities have not been found (Hanson &  Hanson, 1996, Horz et al., 

2002). 

1.5 The effect of light availability 

Multiple studies have concluded that light affects methanotrophy but there is no solid 

consensus as to how; some say it inhibits the activity of methanotrophs (Dumestre et al., 1999, 

Murase &  Sugimoto, 2005) and others conclude that it increases their activity (King, 1990).  

In the surface layers of poorly mixed lakes and reservoirs, intense photosynthesis during 

daylight hours removes the carbon dioxide from the water and, as a result, the pH rises 

(Talling, 1976), and it is this change in pH (>pH 10.0) that inhibits methane oxidation. In 

shallow rivers, where the riverbed is bathed in light, methane, and oxygen, and the water 

column is well mixed, inhibition through extreme changes in pH is unlikely. Moreover, 

methanotrophic bacteria and photosynthetic organisms co-exist on the riverbed biofilm and 
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have been shown to perform their functions simultaneously in laboratory incubations with high 

light intensities (Trimmer et al., 2010). There could even be a symbiotic relationship between 

methanotrophy and photosynthesis within the biofilm matrix whereby carbon dioxide, 

produced via methanotrophy, feeds directly into the photoautotrophs as has already been 

shown in mosses where active methanotrophs were found living within the internal structure of 

Sphagnum spp. (Raghoebarsing et al., 2005). I hypothesise that methanotrophy will be 

unaffected by riverbed irradiance but its significance as a carbon source will increase with 

increased shading because of the relative decrease in photosynthesis. 

Photosynthesis is the dominant form of autotrophic production in rivers (Odum, 1956) and as 

such, it is an important process to quantify in order to set methanotrophic production in 

context. We use short (<1 hour) light and dark laboratory incubations and quick response 

microelectrodes (Unisense) to quantify gross and net photosynthesis and dark respiration in 

discrete gravel samples (Figure 1.3). To accurately model riverbed photosynthetic production 

from laboratory measurements it is critical to understand the interplay between irradiances, 

chlorophyll pigments and carbon fixation. For example, a photosynthesis-irradiance (PI) curve 

is required to adjust laboratory measurements of photosynthesis to those expected on the 

riverbed where irradiances are site-specific (Hill et al., 1995).  Chlorophyll content is widely 

accepted as a proxy for photosynthetic biomass (Huot et al., 2007) and the efficiency of the 

chlorophyll (i.e. units of oxygen produced per unit chlorophyll) can be used as an indicator of 

carbon quality (Huettel &  Rusch, 2000). However, in terms of primary production and 

comparison with methanotrophy, net photosynthesis must be used because this is the measure 

of carbon fixation after consideration of that which is instantaneously respired. 
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Figure 1.3: Laboratory set-up for measuring photosynthesis in riverbed gravels. Light source 

positioned above four incubation chambers with 4-channel oxygen logger linked to 

microelectrodes (left) and a single incubation chamber (right). See chapter 2 for details of the 

method and equipment. 

1.6 The effect of methane concentration 

Where organisms are substrate limited, their metabolic rate will increase if they are exposed to 

increased substrate. The concentration of methane has been shown to correlate positively with 

the rate of methane oxidation in lakes (Deines et al., 2007, Duc et al., 2010), soils (Bender &  

Conrad, 1992, Bogner et al., 1997) and wetlands (Sundh et al., 1995). In such lotic aquatic 

environments there is usually a distinct oxycline where methane (often produced in anoxic 

sediments) meets oxygen (atmospheric equilibration in the mixed layer or oxic sediment layer) 

and this is where the peak in methanotrophic activity is found. In rivers with oxic gravel beds, 

the sites of methane production are continually shifting in size and location as a function of 

flow which dictates the location of depositional zones (Cotton et al., 2006, Trimmer et al., 
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2009b). Delineating the sites of methane oxidation is equally complex, particularly as we 

understand very little about the controls and drivers of methane oxidation in river beds. 

Nevertheless, the magnitude and spatial configuration of methane sources and sinks will play 

an important role in determining the net effect of methane cycling in the riverbed.  

The seasonal variation in river water methane concentration (Sanders et al., 2007), if combined 

with a kinetic response, as has been observed in other aquatic systems, will lead to increased 

methanotrophic production in the summer, when substrate is most abundant. Whether, seasonal 

or spatial (riverbed heterogeneity results in patches of methane production) changes in methane 

concentration in rivers will lead to changes in methanotrophic biomass, i.e. a change in the 

density of the community, is unknown. In soil cores, increased methanotrophic cell counts 

were observed in three month long incubations where methanotrophs were effectively grown 

on elevated methane concentrations (Kightley et al., 1995) which shows methanotrophic 

communities can grow in response to changing methane concentration. Dose-response studies 

are much more common, where an immediate increase in the rate of oxidation with increased 

substrate is measured, indicating a substrate-limited population of methanotrophs (Deutzmann 

et al., 2011). As far as we are aware, there are no studies on the response of methane oxidation 

in rivers to raised methane concentrations. The fate of methane in estuaries has been 

investigated, but the salinity gradient complicates the issue, apparently controlling methane 

oxidation rates more strongly than longitudinal changes in methane concentration (De Angelis 

&  Scranton, 1993, Zhu, 2010). Whilst others have looked for indicators of methane oxidation 

in rivers (Buriánková et al., 2012) there is only one study which has quantified the process by 

directly measuring its rate (Trimmer et al., 2010). This thesis documents investigations into 

how methane concentration affects the rate of methane oxidation over time and space in 

riverbed sediments. 
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1.7 Chalk streams as the study ecosystems  

 

Figure 1.4 Distribution of chalk a) in Europe (marked as green, Cretaceous sediments (West, 

2012)), b) in England (dark grey shows the chalk outcrops and light grey shows where the 

chalk is overlain by Quaternary sediments (Bromley &  Gale, 1982)), and c) the study sites 

covered in this thesis marked on a Google Map image. For further details see  chapters 4 and 5. 

Chalk streams are iconic ecosystems of intrinsic value for biodiversity and have conservation 

status within the UK Biodiversity Action Plan due to their importance as a habitat for 

Ranunculus and Callitriche species (JNCC Report, No. 270). Chalk is a soft, porous 

sedimentary rock, primarily composed of calcium carbonate laid down in the Cretaceous 

period when shallow seas covered the lowlands of north-western Europe, which is where most 

a b 

c 
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of the chalk outcrops are found today (see Figure 1.4a). Much of Southern England is underlain 

by chalk formations, but impermeable Quaternary sediments overlay the chalk along the 

Thames basin and eastern coastline (Figure 1.4b). All of the chalk stream sites visited for this 

thesis are marked on Figure 1.4c and cover all but the most northern (Lincolnshire and 

Norfolk) English counties dominated by chalk geology. They were chosen because of their 

clean gravel beds and the presence of the aquatic macrophyte Ranunculus and silt-intolerant 

cased caddis Agapetus fuscipes both of which are indicators of good ecological and 

hydrological status. Nutrient, pH and gas concentrations are presented in Chapter 4. Many of 

the sites were also chosen because they had previously been studied and so existing datasets 

and access arrangements made them ideal locations for further investigation. 

In chalk catchments, rainwater percolates through the permeable rock, losing particulate 

material and gaining carbonate ions as it does so, before re-emerging as springs where the 

water table breaches the surface (Berrie, 1992). The location of the spring often moves 

upstream in winter when rainfall is typically higher than in summer, hence the term 

winterbourne for stretches of the channel which only experience flow in winter. All of the 

study sites were in the perennial section of the streams. The dominance of groundwater inputs 

into chalk rivers results in annually stable water temperature, chemistry and discharge relative 

to semi-permeable and impermeable catchments as overland flow is minimal (Sear et al., 

1999). Aquatic macrophytes are often abundant in chalk streams and in many rivers they fill 

much of the channel in the summer months (Figure 1.5), considerably altering flow and 

trapping sediments (Cotton et al., 2006). The ultra-clear water means irradiances remain high 

through the water column (Trimmer et al., 2010), which facilitates benthic photosynthetic 

production on the coarse gravel bed. Chalk riverbeds support the larval stages of many fly 

species some of which are intolerant to the high silt and toxin loadings found in surface run-off 

fed streams. Due to the abundance of prey (Tod &  Schmid-Araya, 2009) and the quality of the 
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substrate for spawning, chalk streams are an important habitat for many fish species such as 

brown trout, Atlantic salmon and brook lamprey (Riley et al., 2006). Given these appropriate 

conditions for classical photosynthetic production, it is therefore particularly surprising that 

methane-derived carbon appears to be a significant contributor to a proportion of the secondary 

production in this environment. 

 

Figure 1.5: The River Lambourn, Berkshire, U.K. where Ranunculus spp. fill much of the 

channel in summer. 

The source of the dissolved methane in chalk streams is thought to be a combination of over-

saturated groundwater inputs (3-2,600 nmol CH4 L
-1 (median = 58 nmol L-1)  in chalk aquifers, 

Darling and  Gooddy (2006)) and in-stream methanogenesis which is much more widespread 

in the summer months relative to the winter (Sanders et al., 2007, Trimmer et al., 2009b), both 

of which are microbial rather than thermogenic in origin. Chalk streams are likely to have 

lower methane concentrations than rivers which run over more permeable geologies because 

chalk riverbeds are characterised by their high oxygen concentrations and coarse gravel beds, 
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neither of which are optimal for methanogenesis. Most reported measurements of methane 

concentrations in streams and rivers are from very large catchments such as the Amazon (6,400 

nmol L-1 (Devol et al., 1988)), the Congo (1,720 nmol L-1 (Salter et al., 2011)) and the Hudson 

(200-800 nmol L-1 (De Angelis &  Scranton, 1993)) where suspended sediment loads are high 

and oxygen is depleted in the sediments. A small, but well-studied stream in the Czech 

Republic illustrates the importance of riverbed substrate type in influencing methane 

concentrations; in the upstream sections of the Sitka Stream where gravels form the riverbed, 

oxygen is high (65-90% saturation) and methane is comparable with chalk streams  (40-80 

nmol L-1) but when clays and sands predominate the riverbed methane concentrations exceed 

450,000 nmol L-1 (Buriánková et al., 2012).  It is therefore reasonable to predict that the range 

of methane concentrations found in English chalk streams is likely to be heavily influenced by 

the connectivity with the groundwater and the amount of fine sediment in the channel which 

will determine the extent of in-stream methanogenic activity. 

1.8 Experimental approach 

In order to fully answer the research questions measurements of potential rates of methane 

oxidation in riverbed sediments are not enough. It is likely that potential for methanotrophy 

will vary between and within rivers and over time (seasonally). Once the potential rates have 

been established, calculation of the carbon fixation efficiency will be required in order to 

convert the measure of methane oxidised into carbon fixed. As chalk streams have a hyporheic 

zone, methanotrophic production in the sub-surface gravels needs to be estimated for 

calculating the importance of methanotrophic production in a reach scale. Chalk riverbeds have 

a seasonally evolving mosaic of anoxic fine sediment accumulations within the wider coarse 

gravel beds (Malard et al., 2002) and between these micro-sites the methanotrophic production 

is likely to vary. Temperature dependence is also poorly studied in riverbed carbon cycling and 

the few published studies focus solely on respiration (Acuna et al., 2008, Perkins et al., 2012), 
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leaving the interaction between temperature and methane sources and sinks largely unknown. 

This information is required to estimate seasonal trends in carbon fixation and longer term 

trends relating to climate change. 

As MDC is a proposed alternative basal resource to allochthonous or autochthonous 

photosynthetic carbon, a thorough understanding of photosynthetic production in riverbed 

sediments is necessary in order to place the importance of methanotrophy in context. As with 

methanotrophy, photosynthesis is likely to vary spatially and temporally due to variation in 

light (Kirk, 1994) and temperature (Yvon-Durocher et al., 2010). 

1.9 Structural outline of the thesis 

This research is divided into four main sections, outlined below: 

Chapter 2: Widespread methanotrophic primary production in lowland chalk rivers 

This chapter concerns the quantification of seasonal carbon fixation via methane oxidation and 

photosynthesis in the riverbed of the River Lambourn and potential methane oxidation data 

from a wider survey of 32 rivers. It has been published in Proceedings of the Royal Society: B. 

Chapter 3: Temperature dependence of methane cycling in riverbed sediments 

By incubating riverbed sediments at multiple temperatures and tracking methane concentration 

over time, I calculated the apparent activation energies for methane production 

(methanogenesis) and consumption (methane oxidation) in the riverbed of the River Itchen in 

Hampshire. Substrate availability (i.e. methane concentration) proved to be important in 

modulating the temperature dependence of methane oxidation. I explored the kinetics of 

methane oxidation in two different sediment patch types common across chalk rivers. The 

preliminary data for this paper were acquired by an undergraduate project student, Frah 
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Abudullahi under my supervision. This chapter is under review for publication in Freshwater 

Biology 

Chapter 4: The effect of methane concentration and light availability on the contribution of 

methane derived carbon to the food web: A field survey. 

In this chapter, a field survey approach was used to answer the central research question in a 

real stream setting. That is, how is the contribution of MDC to the food web affected by 

methane concentration and light availability? Here, production processes (i.e. methanotrophy 

and photosynthesis) were compared with stable isotope signatures of macroinvertebrates 

between adjacent well illuminated, open stretches, and darker, heavily shaded reaches of rivers. 

This comprehensive and detailed survey covered 15 rivers with varying methane 

concentrations, one of which was surveyed an additional six times over the year to explore the 

effect of seasonally changing methane concentrations and light levels incident on the riverbed. 

The fieldwork and some of the stable isotope preparation work were carried out along with Dr. 

Nicola Ings who is employed on a closely related NERC grant. We are currently preparing this 

chapter for publication. 

Chapter 5: Constant carbon fixation efficiency by methanotrophic communities across eight 

rivers 

In order to calculate the amount of carbon fixed via methanotrophy, the carbon fixation 

efficiency of the microbial process, i.e. how much organic carbon is produced for each unit of 

methane oxidised, is needed. I worked on this project along with a Masters by Research student 

(Susanna Maanoja), a Post Doctoral Research Assistant (Dr. Myrsini Chronopoulou) and my 

co-supervisor, Professor Mark Trimmer. I was responsible for all the experiments to determine 

the effectiveness of 13CH4 as a tracer, the kinetics of methane oxidation and the GCFE of 

methane oxidation in the 8 rivers using the 13CH4-
13
ƩDIC technique. This chapter has been 
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submitted as a paper to International Society of Microbial Ecology and is currently under 

review. 
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Chapter 2: Widespread methanotrophic primary production in lowland 

chalk rivers 

This chapter has been published in Proceedings of the Royal Society: B and as such, is 

formatted to their requirements.  I am the lead author and Dr. J Grey and Prof. M. Trimmer 

were the other authors on this manuscript. 

2.1 Summary 

Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is 

poorly understood. While photosynthesis is the dominant source of autotrophic carbon to 

rivers, chemosynthesis and particularly methane oxidation could provide alternative sources 

of primary production where the riverbed is heavily shaded or at depth beneath the sediment 

surface. Here we highlight geographically widespread methanotrophic carbon fixation within 

the gravel riverbeds of over 30 chalk rivers and in 15 of these, the potential for methane 

oxidation (methanotrophy) was also compared to photosynthesis. In addition, we performed 

detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk 

river over a complete annual cycle, where we found methanotrophy to be active to at least 

15cm into the riverbed and to be strongly substrate limited. The seasonal trend in 

methanotrophic activity reflected that of the riverine methane concentrations, and thus, the 

highest rates were measured in mid-summer. At the sediment surface, photosynthesis was 

limited by light for most of the year with heavy shading induced by dense beds of aquatic 

macrophytes. Across fifteen rivers, in late summer, we conservatively calculated that net 

methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic 

production within the gravel riverbed, with a median value of 4%. Hence, riverbed 

chemosynthesis, coupled to the oxidation of methane, is widespread and significant in 

English chalk rivers. 

Key words Methane oxidation, carbon, photosynthesis, rivers, chemosynthesis. 
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2.2 Introduction 

Inland waters have received relatively little attention in our attempts to quantify global 

carbon cycling, compared to the oceanic and terrestrial realms, yet they perform a significant 

role in carbon sequestration and mineralisation (Battin et al., 2009, Cole et al., 2007). Indeed, 

although modest in their areal extent, the close biogeochemical coupling with terrestrial 

systems means that globally, more carbon is buried in freshwaters than is sequestered on the 

ocean floor (Tranvik et al., 2009). However, burial is often short-lived as a wide array of 

microbial communities metabolise the organic carbon and release it back to the atmosphere 

either as carbon dioxide or methane (Aufdenkampe et al., 2011). Though data for rivers are 

comparatively scarce compared to lakes (Bastviken et al., 2011), many that have been 

surveyed are often oversaturated in methane and carbon dioxide (Prairie, 2013), the partial 

pressures of which will be influenced by carbon biogeochemistry in both the mainstream, 

groundwater and broader catchment (Darling &  Gooddy, 2006, Jones &  Mulholland, 1998). 

Outgassing of these greenhouse carbon gases from rivers has been widely researched 

(Butman &  Raymond, 2011, Miller et al., 2007), but their cycling within rivers and bed 

sediments has not received as much attention (Cole et al., 2007).  

Traditionally, riverine production is recognised as being supported by a combination of 

allochthonous carbon from the surrounding catchment and autochthonous carbon produced 

within the river, both ultimately driven by photosynthesis (Odum, 1953). Recent work makes 

the case for a third driver of riverine metabolism whereby methanotrophy provides a 

significant portion of carbon to invertebrates in chalk rivers (Trimmer et al., 2009a), as has 

been proposed for lakes (Bastviken et al., 2003, Jones &  Grey, 2011). Such a phenomenon 

may appear counterintuitive for chalk rivers, being well renowned for their high 

photosynthetic productivity. Chalk rivers are, however, also oversaturated in methane 

(Sanders et al., 2007); the source of methane is thought to be a combination of local 
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methanogenesis in fine sediments (Sanders et al., 2007) and upwelling groundwater which is 

enriched in methane relative to the atmosphere (Gooddy &  Darling, 2005). 

Riverbed sediments are known hotspots of biogeochemical cycling, having a concentration of 

organic matter and microorganisms several orders of magnitude greater than the overlying 

water column (Findlay, 1995). Unsurprisingly then, riverbed epilithic respiration may 

contribute significantly to whole stream metabolism (Naegeli &  Uehlinger, 1997). Although 

a small number of studies have measured dissolved methane in riverbed porewaters (Pretty et 

al., 2006, Rulik et al., 2000), fewer have measured the potential for methane oxidation within 

the subsurface gravels. Our previous study at the River Lambourn revealed lower 

concentrations of methane in the gravel bed porewater than in the main channel which 

suggested that the gravel bed is a sink for methane (Trimmer et al., 2010). Thus, in addition 

to altering the carbon gas balance of emissions from rivers, methanotrophy could account for 

a significant portion of the primary productivity i.e. chemosynthetic relative to photosynthetic 

production. We therefore chose this site to perform a detailed, seasonal study to assess the 

changing significance of methane-derived carbon as a proportion of photosynthetic 

production throughout the year. To explore the geographic extent of methane-derived carbon 

in chalk rivers, we made measurements of methane oxidation and photosynthetic potential in 

the gravel beds of chalk rivers spanning almost the entirety of the chalk aquifer in southern 

England.  
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2.3 Methods 

 2.3.1 Study sites and sampling 

Thirty-two chalk rivers with permanent flow, submerged macrophytes, and clean gravel beds 

were selected from across southern England (Figure 2.1a). Of these, fifteen were chosen for 

more detailed measurements of benthic photosynthetic and methanotrophic carbon fixation. 

An additional site, on the River Lambourn, was further selected for a more detailed seasonal 

study which consisted of nine sampling trips between October 2010 and September 2011 and 

the wider survey was performed in August 2011. One of the sites for the one-off survey was 

also on the River Lambourn and will be referred to as Lambourn (at Westbrook).  

 

Figure 2.1: Mean rates of methane oxidation across 32 sites (± se, n=5) with the solid line 

showing the annual average rate from the detailed seasonal study in the River Lambourn and 

the dashed lines show the maximum and minimum seasonal rates. Rivers with * are those for 

which photosynthetic production was also measured. The map insert details location of these 

rivers across the chalk aquifer. 
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2.3.2 River water methane 

Dissolved methane concentration in the river water was quantified by taking water samples 

(n=5) from the middle of the channel at mid-depth using polytetrafluoroethylene (PTFE) 

tubing attached to a 60 mL gas-tight syringe. The sample was then immediately discharged 

into a gas-tight vial (12 mL Exetainer, Labco) and allowed to overflow (3x) before being 

fixed (100 µL ZnCl2 50% w/v; bactericide) and sealed. A 2 mL headspace (analytical-grade 

helium) was introduced using a two-way valve and gas-tight syringe (Hamliton). After 

equilibration, gas samples (100 µL) were withdrawn from the headspace and injected into a 

gas chromatograph fitted with a flame-ionising detector (Agilent Technologies; (Sanders et 

al., 2007)). Headspace concentrations of methane were calculated from peak areas calibrated 

against known standards (Scientific and Technical Gases), and the total amount in the vial 

(headspace plus water) and thus, the river water concentration was calculated using solubility 

coefficients (Yamamoto et al., 1976).  

 

2.3.3 Sediment sampling  

To measure potential for methanotrophy, gravels from six discrete locations at each site (n=6) 

were gently kicked into a fine mesh net. Any large stones, detritus and invertebrates were 

removed, and the sediment was then stored in plastic zip-lock bags and placed into a portable 

fridge for transport back to the laboratory (<3 h). At the Lambourn, in order to measure 

methanotrophy with depth in the riverbed and the quality of allochthonous carbon, sediment 

cores were taken on each trip using a metal corer (internal dimensions: 18 cm x 5 cm) 

manually driven into the riverbed. The sediment core was then extruded and sectioned at 3 

cm-intervals, the maximum practical spatial resolution due to some large stones (>2 cm).  

Seven replicate cores (resulting in 35 subsections) were taken on all trips except for October 
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(n=5) and February (n=6). Grain size was determined by sieving the dried samples through 

nine sieves (0.1 mm- 5 mm) and weighing the fractions. 

 

2.3.4 Measuring rates of methane oxidation and estimating net methanotrophy 

In the laboratory, sediment (~1 g) and river water (5 mL) were transferred into gas-tight vials 

(12.5 mL Exetainer, Labco) and sealed. The air headspace was enriched with methane (BOC) 

by adding 300 µL of 10,000ppm methane in helium to give a final concentration of 450 nmol 

L-1 in the water (Trimmer et al., 2009a, Yamamoto et al., 1976). The concentration of 

methane in the headspace of each vial was measured by gas chromatography with flame 

ionising detection (GC/FID; Agilent Technologies UK Ltd., South Queensferry, U.K.; 

(Sanders et al., 2007)), immediately after spiking and then every 24 hours for 3-5 days 

(Trimmer et al., 2009a). Between measurements the vials were incubated on rollers (Denley, 

Spiramix) in a dark and refrigerated room set to 9°C (± 1 °C) to mimic average river 

temperature. Following the final measurement, the samples were dried to a constant weight 

and all calculated rates of methanotrophy were normalised for dry mass. Control vials were 

set up to test for any potential for methane oxidation in the river water which was always 

found to be negligible (Trimmer et al., 2009a). 

The potential for methanotrophy was measured at a constant initial methane concentration in 

all incubations (across all rivers and throughout the year at the Lambourn). However, the 

seasonal study showed that the ambient methane concentration in the river displayed strong 

seasonal variation (Figure 2.2b). To investigate the effect of changing methane concentration 

on methanotrophy, incubations were set up as described above but with varying spikes of 

methane to give final concentrations in the water ranging from 4-80,000 nmol L-1. We then 

used this linear relationship to normalise the measured rates of methane oxidation to the 
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ambient methane concentration for each month. Further, as part of a detailed parallel study 

using 13CH4 (Trimmer et al., unpublished) the carbon fixation efficiency of methanotrophy in 

these chalk rivers is consistently around 50% (±2%) i.e. for each mole of methane oxidised 

50% is fixed as new organic carbon. Accordingly, we multiplied our measured rates of 

methane oxidation by 0.5 to derive estimates of net methanotrophy to compare with our 

estimates of net photosynthetic production (detailed below). Although this is a potential 

method, performed in the laboratory, the gravels are well irrigated with both methane and 

oxygen (Pretty et al., 2006), which was captured in our vials, and the strong kinetic effect 

enabled us to scale the potential activity accordingly. The average rate of methanotrophy for 

each core (seasonal study, Lambourn) or surface sediment sample (wider survey) was scaled 

over a depth of 15cm and surface area of a square metre. We have previously shown that 

methanotrophy in well oxygenated riverbeds is not thought to be light dependant (see 

Discussion) unlike stratified water bodies or wetlands where light has indirect effects through 

changing the position of the oxycline (King, 1990) and so hourly rates were multiplied by 24 

to scale to daily rates. Diurnal temperature fluctuations were not included as methane 

oxidation is known to have no temperature dependence at these concentrations (see Chapter 

3). 

2.3.5 Measuring rates of net photosynthesis    

To quantify the potential for photosynthesis in the sediments we measured oxygen evolution 

over timed light and dark incubations. Approximately 30 g of each sediment sample was 

placed inside incubation chambers fitted with a stirrer and a cable gland for holding an 

oxygen electrode (OX50, Unisense).  The chambers were submerged in a temperature 

controlled bath (9°C)  and the oxygen concentration was logged at 1 minute intervals for 45 

minutes in the light (55 µmol quanta m-2 s-1 at the surface of the gravel) and then 45 minutes 

after the chambers were made dark (for further details see (Trimmer et al., 2010)). Benthic 
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photosynthetic carbon fixation was calculated by taking one mole of net oxygen production 

to equate to one mole of carbon fixed. The rates per square metre were multiplied by the 

average daylight length for the month at the latitude of the study site to give µmol C m-2 d-1. 

Given that we could isolate net methanotrophy we used net photosynthesis to calculate the 

respective contribution from each to net carbon fixation in the riverbed as that is what is of 

greatest significance in terms of export to higher trophic levels. 

2.3.6 Modelling riverbed irradiance and photosynthesis at the River Lambourn 

Whilst the laboratory light source remained constant, the light regime at the detailed study 

site changed seasonally, so we needed to normalise our measured rates of photosynthetic 

production for in situ irradiance by modelling the riverbed light regime using a 

photosynthesis-irradiance curve and riverbed shading data from a previous study (Trimmer et 

al., 2010) (see Supplementary Electronic Material). The ratios between modelled 

photosynthesis rates for each shading patch type over the annual cycle were used to convert 

the laboratory data to represent the whole riverbed surface-layer instead of just the open 

gravels. For the August 2011 survey of 15 rivers, we did not produce individual P-I curves 

for each site, so the estimates of photosynthesis are based solely on laboratory incubations 

and do not include the effect of shading; hence, we are probably over-estimating net benthic 

photosynthetic production and under-estimating the percentage accounted for by net 

methanotrophy. 

With methanotrophic and photosynthetic carbon fixation now in µmol C m-2 d-1, we divided 

the former by the latter and multiplied by 100 to give a percentage. When there was no NPP, 

i.e. respiration outstripped photosynthesis even in the light, methanotrophic C-fixation 

accounted for 100% of the new carbon produced in the gravels that would still be available to 

higher trophic levels. 
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2.3.7 Quantifying the quality of surface and subsurface chlorophyll-a 

Although light would not penetrate beneath the top 1 cm and so neither would photosynthetic 

production, we measured chlorophyll-a and oxygen evolution at depth (>1cm) to provide a 

measure of the quality of allochthonous carbon carried into the dark gravel bed. Chlorophyll-

a was extracted three times from the gravels with 30 mL of acetone (90% v/v with ultra-high 

purity water) over 24 hours in a dark refrigerator. Absorbance was measured at 750 nm to 

check for clarity, and at 650 nm for chlorophyll extinction (Dalsgaard, 2000). We divided the 

gross oxygen production rates by the chlorophyll-a content of the gravels to derive biomass 

specific photosynthetic production (nmol O2 µg-1 Chl h-1). Here, we used GPP because we 

wanted to quantify the overall capacity of the organisms associated with chlorophyll to 

produce oxygen. 
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2.4 Results 

2.4.1 Study site characteristics 

At the Lambourn, the temperature of the river water ranged from 6°C in December to 14°C in 

June, a much smaller range than that of the air temperature of -3°C and 28°C, reflecting the 

strong influence of groundwater typical for these chalk rivers. The macrophytes, 

predominantly Ranunculus spp., and riparian vegetation developed rapidly in late spring and 

shaded much of the riverbed by June (see Supplementary Electronic Material Figure S2.1) 

before dying back in the autumn as is typical for chalk rivers (Flynn et al., 2002). There were 

no seasonal patterns in nutrient concentrations and the average (n=14) ammonia, nitrate and 

phosphate concentrations were 2.2 (± 0.02 s.e.) µmol L-1, 489 (± 38 s.e.) µmol L-1, and 1.2 (± 

0.33 s.e.) µmol L-1 respectively (Environment Agency). Suspended solids remained low 

throughout the annual cycle (Oct 2010 to Sept 2011) at an average of 6 mg L-1 (Environment 

Agency). 

The rivers surveyed in August 2011 covered a wide range of water temperatures (14-20°C), 

nitrate (0.2-2 mmol L-1), ammonium (3-21 µmol L-1) and phosphate (0.2-97 µmol L-1) 

concentrations. The DIC (2.7-4.6 mmol L-1) and pH (7.80-8.75) were high across all sites as 

would be expected for chalk rivers due to the dissolution of calcium carbonate as the water 

moves through the rock.  

 

2.4.2 Dissolved methane concentration and methane oxidation 

At all sites, the concentration of dissolved methane in the river water was oversaturated 

relative to atmospheric equilibration (3.2 nmol L-1 at 10°C), ranging from 23 nmol L-1 at the 

Misbourne to 150 nmol L-1 at the Piddle. The gravel biofilms oxidised methane at all 32 sites 
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but the activity varied across rivers, ranging from 0.07 nmol CH4 g
-1 h-1 at the Ash, to 0.88 

nmol CH4 g
-1 h-1 at the Bulbourne, both in Hertfordshire (Figure 2.1). The detailed annual 

study showed that methane concentration was strongly seasonal in the Lambourn, peaking at 

103 nmol L-1 in late June and falling to 27 nmol L-1 in December (Figure 2.2b), in agreement 

with our previous findings (Trimmer et al., 2009a).  At the Lambourn, the gravels oxidised 

methane throughout the year (Figure 2.2a) but the process was clearly substrate limited, with 

a linear increase in rate of methane oxidation both within (Figure 2.2c) and well beyond the 

riverine concentrations (up to 80 µmol CH4 L-1). This linear relationship was used to 

normalise the measured rates of methane oxidation at the Lambourn to the methane 

concentrations measured in situ (Figure 2.2d). The rates of methane oxidation from the one-

off survey in August 2011 were not normalised for ambient methane concentration as the 

photosynthesis measurements were not be normalised to the ambient light regime. Finally, in 

the sediment cores from the Lambourn, the rate of methane oxidation decreased significantly 

with depth into the riverbed (see Supplementary Electronic Material for Table S2.2) with the 

rate tending towards zero at 35 cm beneath the surface.  

Rate of methane oxidation = 0.107 – 0.00308(depth)           Equation (1) 

For our calculations on the wider survey we used the same approach as at the Lambourn 

seasonal site, integrating over the top 15cm of the riverbed, as there are few data on 

subsurface methane and oxygen concentrations in other chalk rivers, or indeed any other river 

on different geologies. 



Chapter 2 
 

 

 
30 

 

 

Figure 2.2: a) Filled circles show mean (± se, n=7) rate of methane oxidation across the year 

at the Lambourn under a constant methane concentration and the open circle is the mean of 

all data (± se, n=60). b) Mean (± se, n=5) ambient river water methane concentration. c) Rate 

of methane oxidation as a function of methane concentration at the start of the incubation. d) 

Mean (± se, n=7) methane oxidation normalised to changing methane concentrations in the 

river by using the relationship shown in 2c. 
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2.4.3 Photosynthesis 

Net benthic photosynthetic production was measured in the surface gravels from all fifteen of 

the rivers surveyed in August 2011. Under laboratory conditions, which only simulate 

completely unshaded parts of the riverbed, the highest production was at the Lambourn 

(Westbrook) (319 nmol O2 g
-1 h-1) and the lowest at the Granta (6 nmol O2 g

-1 h-1) with the 

overall range in photosynthetic potential being explained by chlorophyll-a i.e. algal biomass. 

In the Lambourn, gross photosynthesis was measured in the surface sediments throughout the 

year with the highest rates in summer (Figure 2.3a). However, net photosynthesis was only 

observed in six out of the nine months (Figure 2.3a). In April, August and October, demand 

for oxygen via respiration outstripped the production via photosynthesis under illumination 

and so, the biofilm was net heterotrophic. The P-I curve clearly showed that the biofilm was 

light saturated at around 100µmol quanta m-2 s-1 (Figure 2.3b) which means for considerable 

periods of the summer, the open gravels are fully light saturated. The biomass specific 

photosynthetic production, i.e. moles of oxygen produced per unit chlorophyll, remained 

constant throughout the annual cycle so we know the photosynthetic kinetics of the biofilm 

did not vary significantly with season. The modelled benthic photosynthetic activity showed 

two peaks, one in spring and the other in autumn, with a trough in summer when dense stands 

of macrophytes heavily shade up to 80% of the riverbed (see Sup. Figure S2.2); a pattern 

which is widespread across the chalk rivers of southern England. 
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Figure 2.3: a) Mean (± se, n=7) rates of gross (open circles) and net (filled circles) 

photosynthesis in surface gravels. Dashed line indicates the compensation point; b) 

Photosynthesis-irradiance curve for the gravel biofilm community at the River Lambourn 

(r2=0.92). 
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Table 2.1 Summary of mean grain size, methane oxidation, and chlorophyll quality in the sub-surface riverbed of the Lambourn. Here we have 

used the biomass specific photosynthetic potential (BSPP) to indicate the viability and quality of chlorophyll delivered to 15 cm into the 

riverbed. Note the decay in absolute amount of chlorophyll but consistency in BSPP with depth and the slight attenuation in methane oxidation 

(see Discussion).  

 

 

Depth 
interval 
(cm) 

Mean grain 
size (mm) 

Chlorophyll -a 
(µg g-1 sediment) 

Methane oxidation 
at 450 nM 
(nmol CH4 g

-1 h-1 ) 

Gross photosynthetic 
production 
(nmol O2 g

-1 h-1) 

Biomass specific 
photosynthetic 
production (nmol O2 
µg-1 Chl ) 

0-3 9.7 7.4 0.723 133 22.5 
3-6 6.7 5.6 0.72 79 17.7 
6-9 5 3.7 0.576 50 19.9 
9-12 4.8 3 0.528 37 20.3 
12-15 5.1 2.8 0.507 26 21.5 
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2.4.5 Benthic primary production: net photosynthetic versus net methanotrophic 

carbon fixation 

Across the 15 rivers, we estimated that between 260 and 960 µmol C m-2 d-1 was fixed via 

methane oxidation in August 2011. As a proportion of benthic NPP in the unshaded gravels, 

net methanotrophy accounted for between 1% and 46% of net carbon fixation (Figure 2.4). 

This is a conservative estimate as we did not take into account any shading from aquatic 

macrophytes or riparian vegetation.  

Over the year in the Lambourn, net methanotrophy could potentially fix between 50 and 300 

µmol C m-2 d-1 over the top 15 cm of the riverbed in winter and summer respectively (Figure 

2.5a). Once normalised to the ambient methane concentration, the rate of methanotrophic 

carbon fixation followed the same seasonal pattern as the dissolved methane concentration in 

the river water, with a peak in summer and trough in winter. The NPP also peaked in mid-

summer but with no NPP in April, August and October the relationship with season was 

weaker. As a proportion of carbon fixation via NPP, net methanotrophy fixed between 1% 

and 11% when there was NPP and 100% during periods of net heterotrophy (Figure 2.5b). 

This is not to say there was no photosynthesis, but there was no net carbon fixation because 

of rapid heterotrophic respiration within the biofilm. When integrated over the top 35 cm of 

riverbed (the inferred extent of methane and oxygen consumption in the riverbed;- here and 

see (Pretty et al., 2006)), the contribution increased by 2.3 times and so, even when methane 

concentration in the water was lowest, and thus methanotrophy slowest (February 2011), net 

methanotrophy could produce the equivalent of > 3% of benthic NPP. Annually, carbon fixed 

via methanotrophy when integrated over the top 35 cm of the riverbed, was equivalent to 

11% of benthic NPP.  
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Figure 2.4:  Estimated contribution of methane derived carbon in the wider survey (assuming 

15 cm of methanotrophy).Dashed lines show the maximum and minimum seasonal range of 

methanotrophic carbon contribution from the detailed seasonal study in the River Lambourn. 
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Figure 2.5: Carbon fixation via methanotrophy in the River Lambourn: a) integrated over the 

top 15 cm of the riverbed; b) as a proportion of that fixed via photosynthesis both over the 

first 15 cm (grey bars) and 35 cm (filled circles). 
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2.5 Discussion 

Our study has highlighted geographically widespread methanotrophic carbon fixation within 

the riverbeds of over 30 chalk rivers. By measuring carbon fixation via photosynthesis, the 

well characterised, dominant source of benthic autotrophic carbon fixation in rivers at 15 of 

these sites, we were able to estimate the contribution of methanotrophy to the production of 

new biofilm carbon, the grazing community and ultimately the entire ecosystem. Although 

the input of allochthonous carbon (Thorp & Delong, 2002), as with most rivers, is an 

important source of energy to the system, here our focus was the production of new carbon. 

The decomposition of allochthonous carbon, trapped around the macrophyte stands 

ultimately produces methane (Sanders et al., 2007) which is then available to methanotrophic 

bacteria as both an energy and carbon source (Hanson &  Hanson, 1996). In this study, we 

have demonstrated that methanotrophy provides new carbon both at the riverbed surface, 

where photosynthesis is light-limited, especially in summer due to extensive shading, and 

deeper down in the riverbed where it is completely dark.  Our results indicate a need to re-

evaluate the long-held view that rivers receive their carbon through just two major 

mechanisms: photosynthetic detritus from the catchment (allochthonous carbon) and 

photosynthetic production within the river itself (autochthonous carbon) (Odum, 1953, Thorp 

&  Delong, 1994). 

While we have shown that the capacity for carbon fixation via methanotrophy in chalk rivers 

is widespread, it is strongly methane limited with a linear increase in activity observed well 

beyond the measured riverine methane concentrations. In contrast, the P-I curve shows that 

photosynthesis in the open gravels is light-saturated for much of the year. In short, in the 

summer, the photosynthetic organisms cannot exploit the higher light intensities but the 

methanotrophs appear to thrive on higher methane concentrations. Photo-inhibition studies on 

methanotrophy have often been in bottle incubations from stratifying water bodies (Dumestre 
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et al., 1999, Murase &  Sugimoto, 2005) where strong gradients of methane and oxygen 

conflate the issue and high pH (caused by CO2 removal due to high numbers of 

photosynthetic organisms) in illuminated bottles cannot be ruled out. The riverbed, however, 

has well-mixed oxygen and methane-rich water, we have previously measured simultaneous 

photosynthesis and methane oxidation in the laboratory (Trimmer et al., 2010) and in our 

production calculations >80% of the length of the sediment core was from the dark 

subsurface. Our estimates for photosynthetic production over the fifteen riverbeds may be 

overestimates because we did not include the effect of shading as we were able to model with 

greater detail in the Lambourn.   

The strong substrate limitation of methanotrophy at riverine methane concentrations implies 

that the methanotrophs could continue to mitigate the efflux of methane from rivers even 

where there are hot-spots of higher methane concentrations in fine sediment patches (Jones &  

Mulholland, 1998, Sanders et al., 2007). Positive correlations between ambient methane 

concentrations and rates of methanotrophy have also been shown within (Deines et al., 2007) 

and among lakes (Duc et al., 2010), and in wetland sediments (Sundh et al., 1995). The 

seasonal pattern in dissolved methane measured here agreed with our previous observations 

for similar chalk rivers in southern England. Although our seasonal study was restricted to 

the top 15 cm of the riverbed, data from earlier piezometer work indicated ideal conditions 

for methanotrophy (i.e. ample oxygen and methane) extend to at least 40 cm into the riverbed 

(Pretty et al., 2006) and here, we estimate that methanotrophy extends to 35cm into the 

riverbed (Equation 1) which suggests the data presented in Figure 2.4 are underestimates of 

the potential contribution of methane-derived carbon to the food webs. The extensive river 

survey in August covered a greater range of both dissolved methane concentrations and 

methane oxidation rates, compared to the seasonal range in the Lambourn (see Figure 2.1). 

The methane oxidation rates were all measured with the same starting concentration of 
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methane and no normalisation for ambient methane concentration was carried out on the data, 

thus, the variation reflects real differences in capacity for methane oxidation across the 32 

rivers and therefore capacity for methanotrophic carbon fixation.  

The subsurface measurements of methanotrophy are strong evidence for new carbon fixation 

at depth and support our previous riverbed porewater gas data which had suggested a sink for 

methane at depth in the gravels (Trimmer et al., 2009a). We know, however, the dark, 

subsurface gravels have good hydrological connectivity with the overlying water, as the 

viability of the chlorophyll pigments measured at depth (Table 2.1) (Huettel &  Rusch, 2000) 

indicates rapid and continual delivery of fresh photoautotrophic organisms. The gravel beds 

of rivers are known to support a wide array of meiofauna and early ontogenetic stages of 

macroinvertebrates within the gravel interstices  (Tod &  Schmid-Araya, 2009) which are 

likely to graze on both new carbon, fixed via methanotrophy and high quality allochthonous 

import from above. Given the findings of our study, and by grazing the biofilm at depth, 

those fauna are likely to play an important role in delivering methane-derived carbon to 

higher trophic levels. 

The seasonal distribution of macrophytes in rivers and their impact on hydrology, and 

nitrogen cycling has been studied extensively (Cotton et al., 2006, Trimmer et al., 2009b) 

but, as far as we are aware, this is the first study which considers their impact on riverbed 

primary productivity through shading. The modelled photosynthesis for the whole riverbed 

shows two peaks, one in spring and the other in early autumn (see Sup. Figure S2.2c), and is 

a temporal pattern previously observed for chalk stream secondary production (Wright, 

1992). If the overhanging deciduous vegetation were to be included in the light model, 

thereby further reducing the summer riverbed irradiances, the summer trough in 

photosynthesis  would be even deeper and given the constant yeild of oxygen per unit 

chlorophyll, the mid-summer biofilm could be less photosynthetically productive than those 
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in mid-winter. In short, throughout the annual cycle, both methane oxidation and 

photosynthesis are limited, by methane concentration and light intensity, respectively. 

In combining estimates of both net photosynthetic and methanotrophic production, we placed 

our measurements of a relatively poorly understood process in the context of the traditionally 

accepted dominant source of autotrophic carbon fixation in clearwater rivers. At the surface, 

when the riverbed is illuminated, photosynthetic production completely dominates new 

carbon fixation. However, no river on Earth has a fully illuminated riverbed, irrespective of 

hour or season, and thus periods of darkness must be considered. Similarly, in permeable, 

well connected and oxygenated riverbeds, one cannot ignore the potential contribution of 

subsurface carbon fixation, namely, via methanotrophy, or even other chemosynthetic 

metabolism, to the total carbon budget. We have shown that just by considering the top 15 

cm of the riverbed at the Lambourn, methanotrophy fixes carbon equivalent to 11 % of that 

fixed via benthic NPP in summer and conservative estimates from our wider survey suggest 

elsewhere this rises to at least 46% in August (the highest methane concentrations are usually 

observed in June). When considering periods of negative NPP, even in the unshaded gravels 

we begin to see how important other forms of production may be in these rivers which are 

famed for their photosynthetic autochthony. 
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2.7 Supplementary Electronic Material 

 

Supplementary Methods: Modelling photosynthesis across a seasonally shaded 
riverbed. 

Firstly, we constructed a photosynthesis-irradiance curve to calculate the point at which 

photosynthesis in our samples reached light saturation(Guasch &  Sabater, 1995, Jassby &  

Platt, 1976). We set up four replicate glass vials (60 mL) each with ~4 g sediment and filled 

with river water. The glass vials were immersed in a 45 L Perspex temperature controlled bath 

(9°C ± 0.5°C) and light sources (high-intensity tungsten 400W) were positioned either side of 

the tank. Using filters and variation in the distance between the light sources and the vials we 

created eleven different light intensities for each incubation. The experiment was repeated five 

times to give 20 replicates. After each experiment the chlorophyll-a was extracted as above. 

Irradiance was scattered against biomass specific photosynthetic production and the following 

relationship was fitted to the data: 

P=Pmax [I]/ (K m + [I]) 

Where P is biomass specific photosynthetic rate, Pmax is the maximum biomass specific 

photosynthetic rate, I is the light intensity and Km is the half saturation constant.  

Surface and riverbed irradiance data for the site, including the effect of shading in three 

different vegetation cover patch types was taken from a previous published study (Trimmer et 

al., 2010). We estimated changing macrophyte cover over the year using studies of six 

English chalk streams (Flynn et al., 2002, Wharton et al., 2006, Wright et al., 1982) and 

study site observations. By combining the surface irradiance data with our modelled riverbed 

shading, average weekly riverbed irradiances were estimated. Using the P-I curve, modelled 

weekly irradiances for each of the three shading patch types (open gravels, marginal shading 

and dense shading) were converted to estimates of in situ photosynthesis.  



Chapter 2 
 

 

 
46 

 

Supplementary Figures 

  

Supplementary Figure S2.1: The study site on the River Lambourn in: a) January 2011; and b) July 
2011. 
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Supplementary Figure S2.2: Modelling the seasonal changes in shading and photosynthesis 
over the River Lambourn bed: a) percentage cover of dense macrophyte stands and resulting 
seasonal shading patterns across the river bed; and b) weekly average photosynthesis across 
the whole river bed using the P-I curve and Figure S2.2a to account for changing incident 
light.   
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Supplementary Results 

The biomass specific photosynthetic production (BSPP) (yield of oxygen per unit chlorophyll) 

did not vary over the year (see Supplementary Electronic Material Table S2.1) and so one 

photosynthesis-irradiance curve could be used to model changing photosynthesis with 

changing irradiances for all of the data and took the form: 

P= 0.14[I]/ (39+ [I])       Equation (2)  

The apparent half-saturation constant was 39 µmol photons m-2 s-1. In order to estimate 

photosynthetic production across the whole riverbed, the modelled riverbed irradiances from 

Trimmer et al. (Trimmer et al., 2010) were put into the P-I curve generated here to give 

predicted rates of photosynthesis throughout the year. The area of riverbed under dense 

shading varied considerably throughout the year (Electronic Supplementary Figure S2.2a). In 

July and August, over 70% of the riverbed was under dense shading with irradiance being only 

6% of that in the unshaded parts. The overall modelled rate of riverbed photosynthesis showed 

an increase in early spring but then a summer minimum reflecting the widespread, dense 

shading (Supplementary Figure S2.2b). A second peak in photosynthetic productivity occurred 

in autumn when the macrophyte coverage declined, outpacing the concurrent decline in 

photosynthesis due to lowering irradiance. The lowest overall modelled rate of photosynthesis 

occurred in winter, despite over 80 % of the riverbed being completely unshaded but by then 

photosynthesis was light limited. 
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Supplementary Table S2.2  1 

Summary of statistical analyses. Bold values are statistically significant. All organic carbon analysis was from August 2011 samples. 2 

Test 
Independent 

Variable 
Dependant Variable 

Random 
effect 

Degrees of 
Freedom 

F-value p-value 

Linear Regression  Methane 
concentration 

Rate of Methanotrophy  10 120.2 <0.001 

ANOVA Month Rate of Methanotrophy (normalised to riverine 
methane concentration) 

 291 27.6 <0.001 
 

Linear Regression Depth Rate of Methanotrophy  298 11.0 0.001 
ANOVA Depth Rate of Methanotrophy Month 287 5.7 <0.001 

Linear Regression Depth Organic carbon content  32 2.0 0.164 

Linear Regression  δ13C of the 
biofilm 

Rate of Methanotrophy (Aug 2011)  32 5.0 0.033 

Linear Regression Depth Chlorophyll-a content  297 88.9 <0.001 
ANOVA Month Biomass specific photosynthetic production at 

the surface  
 51 2.0 0.061 

Linear regression Depth Biomass specific photosynthetic production  297 0.01 0.935 
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Chapter 3: Methane oxidation has the potential to mitigate any increase in 

methane production in rivers 

This chapter moves on to focus on the effect of methane concentration and temperature on the 

rate of methane oxidation and how this varies between fine sediment and coarse gravels. This 

work was all done on the River Itchen which a large, well-studied river with a typical chalk 

stream riverbed characterised by clean gravels and patches of fine sediment deposited around 

dense macrophyte stands. This work  has been submitted for publication in Freshwater 

Biology with myself as the first author, a undergraduate project student as the second, and my 

two supervisors, Dr. J. Grey and Prof. M. Trimmer as the final two authors.  

3.1 Abstract 

Many rivers are oversaturated in methane (CH4) and carbon dioxide (CO2) relative to the 

atmosphere but we know little about what controls the balance between these two important 

greenhouse gases and how they might respond to warming. Here, we characterise the potential 

response to temperature in the production of CO2 and CH4 and the subsequent oxidation of that 

CH4 i.e. the sink and source components of the CH4 cycle, in contrasting riverbed sediments; 

largely anoxic fine sediments, and oxic, coarse gravels. In the fine sediments, anaerobic 

production of both CH4 and CO2 increased with temperature, with apparent activation energies 

for each being 0.51 eV and 0.24 eV, respectively. The difference between the two resulted in a 

4% increase in the ratio of CH4:CO2 production for a 1°C increase in temperature. In the 

coarse gravels, CH4 oxidation showed no response to temperature at their characteristic CH4 

concentrations (30-200 nmol CH4 L
-1), due to strong substrate limitation. In contrast, at higher 

CH4 concentrations, more characteristic of the fine sediment patches (2-4 µmol CH4 L
-1), CH4 

oxidation exhibited an increasingly strong response to temperature; eventually exceeding that 
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for CH4 production. In the fine sediment, the surface layers had a CH4 oxidation capacity over 

100 times greater than the gravels and the kinetic response to differing porewater CH4 

concentrations meant CH4 was oxidised some 2000 times faster in the fine sediment patches 

compared to the wider gravel riverbed. The calculated kinetic and temperature responses 

showed that with warming, methanogenesis is unlikely to outstrip methanotrophy and the ratio 

of CO2 to CH4 emitted could be conserved. Consequently, any change in the ratio of CH4 to 

CO2 emitted is more likely due to a bypassing of methanotrophy e.g. through ebullition or 

transport via plants, rather than an incapacity in the community of methanotrophs to match 

methanogenesis.  

Keywords: carbon, methanotrophy, chemosynthesis, greenhouse gas, methanogenesis, gravel 

riverbed.  
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3.2 Introduction  

Inland waters perform an important role in the global carbon cycle (Battin et al., 2009) but 

their small areal extent coupled to a poor understanding of the magnitude of their carbon 

cycling processes has meant they are seldom integrated into global carbon models (Cole et al., 

2007). However, freshwaters are often oversaturated in two of the major greenhouse gases 

(GHG), methane (CH4) and carbon dioxide (CO2), and are net emitters to the atmospheric 

carbon pool, but there is a paucity of data for rivers particularly for methane (Bastviken et al., 

2011). Traditional global carbon cycling perspectives that disregard rivers as mere conduits 

have now been rejected (Aufdenkampe et al., 2011) and rivers are now recognised as sites of 

rapid carbon cycling; whilst some carbon is ultimately exported to the ocean, much is 

metabolised within rivers and lost to the atmosphere (Battin et al., 2009). Quantifying the rate 

of GHG production in rivers, and how this might change under future climate change 

scenarios such as warming and the impact of fine sediments mobilised via more frequent 

storms or indeed agricultural practice, is of paramount importance if we are to properly 

integrate rivers into the global carbon cycle. 

Rivers receive much of their carbon from the surrounding catchment (Cole &  Caraco, 2001, 

Jones et al., 2001, Thorp &  Delong, 2002) and a combination of changes in catchment land 

use and climate over the past century have increased the delivery of organic carbon to rivers, 

in both dissolved and particulate form (Bellamy et al., 2005, Walling &  Amos, 1999, Worrall 

et al., 2004). Indeed, anthropogenic manipulation of catchments for urban or agricultural uses 

has been shown to have a greater effect on riverine metabolism than broad regional differences 

in catchment biogeography (Bernot et al., 2010). Conversion from woodland and grassland to 

arable farmland, has been linked with increased siltation in rivers (Walling et al., 2003) and 

this is problematic because fine sediment clogs gravel riverbeds (colmation) and becomes 

trapped around dense stands of macrophytes (Sand-jensen, 1998). As well as the destructive 
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biological consequences of habitat alteration on fish spawning and egg survival (Greig et al., 

2005, Soulsby et al., 2001) and macroinvertebrate community structure (Kaller &  Hartman, 

2004), the anoxic sediments in some rivers produce as much CH4 and CO2 per unit area as peat 

bogs and heavily industrialised estuaries (Sanders et al., 2007, Trimmer et al., 2009b).  

With such amplified allochthonous inputs the potential for rivers to emit CO2 and CH4 to the 

atmosphere is already high but how these supplements of carbon will interact with increased 

temperatures is largely unknown. Across both terrestrial and aquatic environments, respiration 

has a stronger temperature response than photosynthesis (Regaudie-de-Gioux &  Duarte, 2012, 

Yvon-Durocher et al., 2010a). In terrestrial environments, any potential temperature response 

in respiration is ultimately constrained by carbon fixed by photosynthesis whereas, due to their 

allochthonous carbon sources (Cole &  Caraco, 2001), lakes and rivers have the potential to 

emit far more carbon as gases compared to the carbon they produce, thus becoming greater net 

sources of carbon to the atmosphere with increased temperature (Gudasz et al., 2010, Trimmer 

et al., 2012).  Although less abundant than CO2, atmospheric CH4 is an especially potent 

GHG, with a warming potential, per mole, some 29 times higher over 100-years (Forster et al., 

2007). Moreover, as methanogenesis exhibits a stronger temperature response than respiration 

(Yvon-Durocher et al., 2010b), moderate warming (approximately 2°C by the end of the 21st 

Century, (Stocker, 2013)) could result in a greater proportion of carbon being released from 

aquatic systems as CH4 versus CO2 (Yvon-Durocher et al., 2014, Yvon-Durocher et al., 

2010b). Recent carbon gas budgets for lakes and reservoirs show that the global emissions of 

CO2 and CH4 (expressed in CO2 equivalents) are currently on a par with one another (Tranvik 

et al., 2009) and a further small increase in temperature could see CH4 overtake CO2 (Trimmer 

et al., 2012). However, microbial CH4 oxidation provides a sink for CH4 and could attenuate 

some or all of the increase in CH4 production due to warming.  
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The oxidation of CH4 has been widely investigated in  lakes (e.g. Bastviken et al., 2008, 

Deutzmann et al., 2011, Eller et al., 2005) and more recently in rivers (Shelley et al., 2014, 

Trimmer et al., 2010) and its temperature dependence is often supressed under substrate 

limitation (Duc et al., 2010, Lofton et al., 2014). A recent meta-analysis of CH4 emissions 

from aquatic ecosystems suggested that methanotrophy is unlikely to interact with temperature 

and CH4 production in natural systems under in situ concentrations (Yvon-Durocher et al., 

2014) and our recently published kinetic response to the seasonal range of CH4 concentrations 

in rivers confirms this substrate limitation in gravel riverbeds (Shelley et al., 2014). 

Nevertheless, due to the contrasting environmental requirements of CH4 oxidation and 

methanogenesis, the spatial configuration and magnitude of CH4 sources and sinks will 

determine the final fate of CH4 and therefore the overall balance of GHGs emitted from a 

river. 

At our study site, a lowland river, the main riverbed  is a mosaic of coarse gravel bed, with 

patches of predominantly anoxic fine sediment that accumulate around dense macrophyte 

stands (Figure 3.1, Sand-jensen, 1998) and the latter are known sources of both CH4 and CO2 

(Jones &  Mulholland, 1998, Sanders et al., 2007, Trimmer et al., 2009b).  The coarse gravels 

also provide a sink for CH4, oxidising CH4 dissolved in the river water to CO2 (Trimmer et al., 

2010). Benthic photosynthesis has long been recognised as a sink for CO2 (Odum, 1956), but 

many riverbeds are net heterotrophic, with the sediments acting as a net source of CO2  

(Richey et al., 2002).  Here we sought to understand the interactions and feedbacks between 

CH4 and CO2 production, CH4 oxidation and temperature in a naturally heterogeneous 

riverbed in order to better understand the role of rivers in global carbon cycling. 

 

We broke our aims down into three research questions: 
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1. How will CH4 and CO2 production in riverbed sediments respond to warming? 

2. How will riverbed CH4 oxidation respond to increased temperature and CH4 

concentrations? 

3. To what extent will CH4 oxidation be capable of mitigating any increase in CH4 

production in riverbed sediments?  
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3.3 Methods  

3.3.1 Study site and sample collection 

Sediment was collected from the River Itchen at Ovington (51.083530 N, -1.1995214 W) in 

November, 2012. Here the river is 10-15 m wide, 0.5-1.2 m deep and there are dense stands of 

submerged macrophytes (Figure 3.1), predominantly Ranunculus, Berula and Callitriche spp. 

which trap fine sediment around their rhizomes and main stems.  

We have already established that CH4 oxidation is active throughout the oxic coarse gravels 

(Shelley et al., 2014) and that methanogenesis occurs in the anoxic fine sediment patches 

(Sanders et al., 2007) and so we decided to sample the sediment types separately to look at the 

cycling of CH4 in the riverbed as a whole and how they interact with temperature. As the river 

water is well-oxygenated we also looked at the anoxic-oxic boundary layer on the surface of the 

fine sediment patches where we expected methanotrophic bacteria to be exploiting the high CH4 

concentrations (Jones &  Mulholland, 1998, Sanders et al., 2007, Trimmer et al., 2010). 

 The coarse gravels were taken from the open gravel bed (Figure 3.1), using a kick-net and were 

then sieved (resulting in a sample with a grain size between 1.4 mm and 2.4 mm) and the fine 

sediment was collected from under the macrophytes stands using truncated syringes (60 mL) 

which were pushed into the sediment then sealed from beneath with a rubber bung. All sediment 

was refrigerated, and returned the laboratory within 3 hours.  
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 Figure 3.1: Photograph of the site on the River Itchen showing the contrasting patches of fine 

sediment within the dense macrophyte stands (methane sources) and coarse gravel beds 

(methane sinks) which are typical for the chalk streams of southern England (Cotton et al., 

2006, Flynn et al., 2002). Dr. J Grey provided the photograph. 

 

 3.3.2 Methane production: temperature dependence  

We measured the rate of CH4 and CO2 production in anoxic slurries and while some of the CO2 

production will be from anaerobic respiration and fermentation, some will be released through 

acetoclastic methanogenesis (1:1 CH4:CO2 produced) and this must be considered when 

interpreting the temperature response of CO2 production in these anoxic sediments. Moreover, a 

smaller, yet significant portion of methanogenesis could be hydrogenotrophic whereby CO2 is 

reduced with H2 to produce CH4 and H2O (Kotsyurbenko et al., 2004). In the laboratory, the fine 

sediment cores were transferred to an anoxic glove-box (CV204; Belle Technologies, Portesham, 
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UK) and then, after careful extrusion to isolate the oxic surface layer from the rest of the anoxic 

core, ~2 g sediment and 2 mL of deoxygenated (10 minutes flushing with oxygen-free nitrogen 

(BOC)) river water were transferred into 12.5 mL gastight vials which were then sealed (n=32) 

with a nitrogen headspace. Within 30 minutes, gas samples (100 µL) were withdrawn from the 

headspace and injected into a gas chromatograph (GC) fitted with a flame-ionising detector 

(Agilent Technologies; for details see Sanders et al. (2007)). Headspace concentrations of CH4 

and CO2 (after catalytic reduction over hot nickel (385°C) to CH4) were calculated from peak 

areas calibrated against known standards (Scientific and Technical Gases), and the total amount 

in the vial (headspace plus water) was calculated using solubility coefficients (Weiss, 1974, 

Yamamoto et al., 1976). The vials were placed on rollers (Denley, Spiramix 10) in temperature 

controlled rooms set at 3°C, 10°C, 15°C and 22°C and further gas measurements were made at 

24, 48 and 72 h. After the final measurement, the vials were opened and the sediments dried to a 

constant weight.  

 3.3.3 Methane oxidation: substrate limitation  

To identify the extent of substrate limitation (i.e. CH4 concentration) on the potential for CH4 

oxidation in the gravels, gastight vials (n=60) were set up with sediment (~2 g) and river water (5 

mL) and spiked with pure (100%) CH4 (BOC) to generate concentrations in the water of 3-10500 

nmol L-1. For the fine sediment, the oxic surface layer was homogenised and ~0.5 mL was 

transferred into a gastight vial (n=18) then river water (5mL) was added and the vials were then 

spiked generating CH4 concentrations between 14 - 21,300 nmol L-1.  The vials were gently 

shaken for 30 seconds and the concentration of CH4 in the headspace measured by GC/FID (as 

above), and then over time (as above). The vials were incubated on rollers  at 10°C to mimic 

average river water temperature (Mackey &  Berrie, 1991) and the change in total CH4 

(headspace and water phase) was used to calculate the rate of CH4 oxidation.  
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3.3.4 Methane oxidation: temperature dependence in coarse gravels 

Previous work in aquatic sediments had shown a supressed response to temperature by CH4 

oxidation, arguing that this was due to strong limitation by CH4 (Duc et al., 2010). Given that we 

typically measure 60 nmol CH4 L
-1 in gravel pore waters (Trimmer et al., 2009a), we assumed a 

similar suppressed response to temperature. To test this we set up a series of temperature 

incubations with increasing CH4 concentration (n=11). For each concentration, replicate vials 

(n=12) with gravel (2 g) and river water (5 mL) were set up and spiked, generating CH4 

concentrations in the water phase of 30-6250 nmol CH4 L
-1 and a total of 132 vials. After spiking, 

the vials were gently shaken and the headspace measured and vials incubated at four different 

temperatures as above.  

3.3.5 Methane oxidation: temperature dependence in fine sediments 

To measure the temperature dependence of CH4 oxidation in the oxic surface layer of the fine 

sediments, vials were set up as above (~0.5 mL sediment, n=32) but the headspace was only 

enriched to one concentration of CH4, that found in the immediately underlying anoxic pore 

water (~2.5 µmol CH4 L-1). The rate of CH4 oxidation at four different temperatures was 

measured as above. 

3.3.6 Sediment Organic Carbon Content 

To quantify the organic carbon content of the sediment samples, we performed a persulphate 

oxidation reaction to convert all organic carbon to CO2. Sediments were freeze dried for 24 

hours, weighed (200 mg) into 20 mL crimp-top vials (Anatune) and H2PO4 (4 mL of 6% v/v) 

added to drive off any carbonate. After 48 hours, potassium orthophosphate (4 mL of 0.15 M) 

was added to each vial and the vials capped with butyl rubber stoppers and aluminium tear-

away seals (Grace Discovery Sciences). The headspace was then purged with oxygen-free 

nitrogen (BOC) to degas any CO2 from the liquid and then pure oxygen (BOC) (to ensure 
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complete oxidation) and the samples were then autoclaved at 120 °C for 3 hours. After 

cooling, the CO2 concentration in the headspace was measured by GC/FID. The organic 

carbon content was calculated by using potassium biphthalate prepared in a series of 

concentrations (resulting in total carbon 0-5 mg C) and then treated in the same way as the 

samples. 

 3.3.7 Deriving the apparent Activation Energies for the measured processes  

The rates of each measured process (e.g. nmol CH4 oxidised g-1 gravel h-1) were log transformed 

and the incubation temperatures were converted to the form 1/kT, where T is absolute temperature 

in Kelvin and k is Boltzmann’s Constant (8.62x10-5
 eV K-1 (T)).  The logged rates were then 

plotted on an Arrhenius plot against 1/kT where the negative slope of the linear regression line 

gives an estimate of the apparent activation energy in electron volts (1 eV = 96.49 kJ mol-1) for 

each process. We acknowledge that this “apparent” or “realised” activation energy will always be 

lower than the theoretical sensitivity of the biochemical reaction to temperature because of 

environmental constraints, such as substrate limitation. Here, we are merely using it as an 

empirical index of temperature response following the similar approach used by Yvon-Durocher 

et al. (2010b). 
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3.4 Results 

3.4.1 Methane production: temperature dependence  

The rate of anaerobic CH4 production in the  fine sediment increased with temperature (Figure 

3.2a, Table 3.1) from 22 to 80 nmol CH4 g-1 h-1 (at 3°C and 22°C, respectively), as did the 

production of CO2 (from 147-261 nmol CO2 g
-1 h-1) but with a lower temperature dependency 

than that for CH4 (Figure 3.2a, Table 3.2). The apparent activation energies for both CH4 and CO2 

production in the fine sediments were 0.51 eV and 0.24 eV, respectively (Figure 3.2a and Table 

3.2). As a result, the ratio of anaerobic CH4:CO2 production increased by 0.04 °C -1, 

approximately doubling over the full range of temperatures investigated (Figure 3.2b). 

Acetoclastic methanogenesis is likely to be the dominant pathway for CH4 production in these 

sediments because of the isotopic signature of the CH4 produced (~-58‰, unpublished data, 

Trimmer et al.) and because they are from freshwaters rather than marine (Whiticar et al., 1986). 

A conservative estimate that two thirds of CH4 production was via this pathway could account for 

up to 20 % of the CO2 and would lower the activation energy for non-methanogenic CO2 

production from 0.24 to 0.19eV. 
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Figure 3.2: a) An Arrhenius plot showing the temperature dependency of methane and 

anaerobic CO2 production. The slope of the regression line gives the activation energy (eV), b) 

The mean ratio of CH4 to CO2 gas production in the anoxic fine sediments with increasing 

temperature (error bars ± SE). 

3.4.2 Kinetics of CH4 oxidation in coarse gravels and fine sediments 

In the gravels, we measured a linear increase in the initial rate of CH4 oxidation with CH4 

concentration, from approximately atmospheric equilibration (2 nmol CH4 L
-1) up to 10.5 CH4 

µmol L-1 (Figure 3.3a), suggesting strong substrate limitation at typical riverine concentrations 

(<200 nmol CH4 L
-1). We also measured strong substrate limitation in the fine sediments but 

here the capacity for CH4 oxidation was much greater and the activity became saturated at 

around 10 µmol CH4 L
-1 (Figure 3.3a). CH4 oxidation in the fine sediments could be explained 

by simple Michaelis-Menten kinetics and took the form: 

Rate of CH4 oxidation= (586C)/ (3.68 + C) 

Where C is the starting concentration of CH4 and Vmax equated to 586 nmol CH4 g
-1 h-1, with an 

apparent Km equivalent to 3.7 µmol CH4 L
-1

.  
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3.4.3 Temperature response of aerobic CH4 oxidation  

i) in the coarse gravels 

At 10°C (~ average river temperature) and with CH4 concentrations representative of the gravel 

bed (30-200 nmol L-1), CH4 oxidation was only 0.1 nmol CH4 g
-1 h-1 (SE ±0.03) and, there was 

no significant effect of temperature on the rate of CH4 oxidation in the gravels (Table 3.1 and 

Figure 3.3b). Above this concentration, we measured an increasingly strong effect of 

temperature on the rate of oxidation which increased from a negligible sensitivity (0.05 eV, 

SE±0.031)  at 260 nmol CH4 L
-1 to 0.6 eV (SE ±0.09) at 6250 nmol L-1 (Figure 3.3c, Table 3.2). 

At the highest concentration measured, the response to temperature was even greater than that 

for methanogenesis (0.6 eV to 0.51 eV). 

ii) in the fine sediments 

In the surface layer of fine sediments where the porewater CH4 is high (2-4 µmol L-1), the rates 

of CH4 oxidation were some 1800-3100 times faster than those for the coarse gravels, ranging 

from 172 nmol CH4 g
-1 h-1 to 376 nmol CH4 g-1 h-1 (over 3°C to 22°C), with an apparent 

activation energy of 0.3 eV (Figure 3.3b and Table 3.2). Even when the rates of CH4 oxidation 

were normalised to the same starting concentration of 120 nmol CH4 L
-1, the fine sediments still 

oxidised CH4 112 times faster than the gravels, indicating a greater methanotrophic capacity in 

the fine sediment than in the gravel. 
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Figure 3.3: a) Initial rates of methane 

oxidation in the gravels (open circles) 

and fine sediments (filled circles) at a 

range of initial starting concentrations of 

methane. Inset shows CH4 concentrations 

lower than 150 nmol L-1
 i.e. those typical 

of the seasonal range found in many 

chalk rivers (Shelley et al., 2014). Where 

c is the starting concentration of CH4, the 

trend line for the gravels is a 1st order 

linear regression, where rate=0.3 + (2.8 c) 

and, for the fine sediments a Michaelis-

Menten, where rate=(586Vmax c)/(3.68Km+ 

c). b)Initial rates of methane oxidation in 

the gravels (open circles) and fine 

sediments, measured with starting CH4 

concentrations equivalent to those found 

in the pore waters of the two patch types 

(120 nmol CH4 L
-1 for the gravels and 2.5 

µmol CH4 L
-1). Rates in the fine sediment 

incubations are 1800-3100 times faster 

than those in the gravel incubations. c) 

Apparent activation energies of CH4 

oxidation in the gravels between 30-6250 

nmol L-1 (open circles) and for the fine 

sediments at 2.2 µmol L-1 (filled circles) 

with the range of CH4 concentrations 

expected in the gravels and the fine 

sediment patches marked with horizontal 

grey bars. Error bars ±     SE.  
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3.4.4 Aerobic CO2 production and organic carbon content  

The fine sediments had a higher organic carbon content (18.2 mg C g-1) and rates of aerobic CO2 

production (495-1278 nmol CO2 g
-1 h-1 at 3 and 22°C, respectively) compared to the coarse 

gravels (3.9 mg C g-1 and 28-145 nmol CO2 g
-1 h-1). Normalising each rate of CO2 production by 

the respective organic C content for each sediment type, showed that the fine sediments produced 

more CO2 per unit of organic carbon (25-89 nmol CO2 mg C-1 h-1 at 3 and 22°C, respectively) 

compared with the gravels (10-33 nmol CO2 mg C-1 h-1) indicating a denser population of micro-

organisms in the fine sediments. However, aerobic CO2 production in the coarse gravels 

exhibited a stronger temperature dependence (0.59 eV) than in the fine sediment patches (0.44 

eV), both of which are at least twice that for anaerobic CO2 production (Figure 3.4 versus Figure 

3.2).  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: An Arrhenius plot showing the temperature dependency of aerobic CO2 production 

in the two different sediment types. Mean values and error bars ± SE. The fine sediment (filled 

circles) CO2 production is faster but has a weaker response to temperature than the coarse 

gravels. 

 

4

Temperature (1/kT)

39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5

Ln
 [r

at
e

 o
f 

ae
ro

bi
c 

pr
o

du
ct

io
n]

 
(n

m
o

l C
O 2

 g
 s

e
di

m
e

nt-1
 h

-1
)

3

4

5

6

7

8

Fines sediment (0.44 eV)
Gravels (0.59 eV)

 



Chapter 3 

69 
 

Explanatory 
variable 

Response variable df F  p  
Intercept 

(a1) 
Slope 
(b1) 

Temperature (°C) CH4 production 1,29 154.18 0.00 6.08 3.11 

Temperature (°C) 
CH4 oxidation (30-
240nM data pooled) 

1,46 0.45 0.50 0.102 0.00188 

Temperature (°C) 
CH4 oxidation (260-

6250nM data pooled ) 
1,106 35.01 0.00 0.390 0.259 

Initial 
concentration 

(CH4) 
CH4 oxidation (10°C) 1,41 838.9 0.00 0.701 0.00266 

Temperature (°C) 
Anaerobic CO2 
production (fine 

sediments) 
1,29 22.04 0.00 116 6.64 

Temperature (°C) 
Aerobic CO2 production 

(gravels) 
1,30 147.1 0.00 3.2 6.18 

Temperature (°C) 
Aerobic CO2 production 

(fine sediments) 
1,30 11 0.002 506 41.4 

 

Table 3.1: Response in rate of activity to temperature or initial concentration of CH4. The 

dimensions of the slopes (b1) are nmol g-1 h-1 °C-1 except for the relationship between initial 

CH4 concentration and CH4 oxidation where the dimensions are nmol CH4 g
-1 h-1. 

Table 3.2: Apparent activation energies for each measured process (nmol g-1 h-1 (1/kT)-1) and 

the standard error and the r2 of the regression line. * indicates that the slope, was not 

significantly different to zero. The full range of activation energies for CH4 oxidation at the 11 

CH4 concentrations are shown on Figure 3.3c. 

  

Process 

Apparent 
activation 

energy 
 derived 

between 3°C to 
22°C(eV) 

Standard 
error 

r2 

Anaerobic CO2 production (fine sediment) 0.24 0.04 0.49 
Anaerobic CH4 production (fine sediment) 0.51 0.05 0.79 
Aerobic CO2 production (fine sediment) 0.44 0.03 0.51 
Aerobic CO2 production (gravels) 0.59 0.06 0.86 
CH4  oxidation (gravels <200nmol CH4 L

-1) 0.01*  0.02 0.01 
CH4 oxidation (gravels 260-6250 nmol CH4 L

-1) 0.05-0.59   
CH4  oxidation (fine sediment at 2.5 µmol CH4 L

-1) 0.30 0.02 0.99 
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3.5 Discussion 

Here, we have quantified the sources and sinks of CH4, their temperature dependencies, and 

the interplay between the three, in contrasting types of sediments in a large riverbed. CH4 

production responds twice as strongly as CO2 production to temperature and although strong 

substrate limitation supresses the temperature dependency of CH4 oxidation in the gravel 

riverbed, in the fine sediment patches, where CH4 concentrations are much higher, this is not 

the case. There is a marked interaction between methanotrophy and temperature which is 

dependent on substrate, which differs with sediment type. While we only calculated these 

detailed process measurements in one riverbed, local sources and sinks for dissolved CH4 have 

previously been identified in rivers right across southern England (Shelley et al., 2014) and so 

we are confident that this phenomenon is more widely spread.  

3.5.1 CH4 and CO2 production 

The difference in the temperature dependencies of CH4 and CO2 production (Fig. 2a) means 

that if emissions were driven by temperature alone,  the predicted temperature rise of 2°C  by 

the end of this century (scenarios RCP4.5, 6.0 and 8.5, Stocker, 2013), could result in an 8% 

increase in the proportion of carbon emitted as CH4 (rather than CO2) from the patches of fine 

sediment. Further, the delivery of fine sediment is likely to increase under some climate 

change scenarios and ongoing intensification of agriculture (Goudie, 2006, Sanders et al., 

2007). Despite this potential for methanogenesis, its apparent activation energy presented here 

(0.51 eV)  is much lower than those calculated for other aquatic sediments: 1.7-2.0 eV in lake 

sediments (Lofton et al., 2014);  1.3-2.8 eV in peat slurries (Dunfield et al., 1993));  0.85 eV 

in freshwater mesocosms (Yvon-Durocher et al., 2010b); and 0.96 eV for a meta-analysis of 

127 aquatic field sites (Yvon-Durocher et al., 2014). This could be explained by poor substrate 

quality as has previously been demonstrated in wetland sediments (Bergman et al., 1998, 



Chapter 3 

71 
 

Valentine et al., 1994), lakes (Duc et al., 2010)  and rice paddy soils (Fey &  Conrad, 2003). 

The more labile DOC is often leached from the allochthonous sediments into rivers long 

before they are deposited on the riverbed (Stanley et al., 2012), resulting in increasingly 

refractory particulate carbon over time. Further evidence for the relatively poor carbon quality 

in the fine sediment can be seen in the aerobic CO2 measurements where the apparent 

activation energy was higher on the gravels (0.59 eV, close to that of general heterotrophic 

metabolism 0.65 eV (Yvon-Durocher et al., 2010a)) than that in the fine sediment (0.44 eV) 

which we already know to be mainly of terrestrial origin (Collins &  Walling, 2007).  

3.5.2 Methane oxidation  

The capacity for CH4 oxidation in gravel riverbeds has only recently begun to be investigated 

(Shelley et al., 2014, Trimmer et al., 2010) and here, we followed the kinetic response in two 

contrasting sediment types, which differ markedly in their porewater CH4 concentrations. Our 

calculated Vmax for CH4 oxidation in the fine sediments (586 nmol CH4 g
-1 h-1) is comparable 

with those reported around CH4 seeps in Lake Constance (511 nmol CH4 g
-1 h-1,Deutzmann et 

al., 2011) and landfill soils (743 nmol CH4 g
-1 h-1, Bogner et al., 1997) and  although we did 

not find a plateau in the kinetic response in the gravels, it was clearly much slower than the 

fine sediment (Figure 3.3a), probably due to lower densities of methanotrophic bacteria on the 

gravel particles (Deutzmann et al., 2011). Methanotrophs exploit the thin oxic layer 

enveloping the anoxic sites of methanogenesis and as CH4 production increases, the increased 

substrate will stimulate faster oxidation of CH4 (Megonigal &  Schlesinger, 2002). At 10°C 

CH4 oxidation (at 2.5 µmol CH4 L
-1) was ~8 times faster than CH4 production, illustrating the 

capability of the methanotrophic community to counteract any local increase in CH4. The 

effect of substrate limitation on the temperature dependence of CH4 oxidation gradually 
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weakened as CH4 concentrations rose, eventually, at the top end of our concentration gradient 

(0.58 eV at 6350 nmol CH4 L
-1), superseding that calculated for methanogenesis (0.51 eV). 

 Substrate limitation often supresses the temperature dependence of CH4 oxidation, as  has 

previously been documented in lake sediments (Duc et al., 2010) and hypolimnetic waters 

(Lofton et al., 2014) but our experiment at 11 different CH4 concentrations (spanning the 

ambient range) gives a much more detailed picture of the potential interaction between 

temperature and substrate availability which, in rivers, is ultimately governed by sediment 

type. At the lowest CH4 concentrations observed in rivers, typical of clean gravel beds (Jones 

&  Mulholland, 1998, Trimmer et al., 2009a), methanotrophy does not respond to temperature 

but there is a marked kinetic effect (see Figure 3.3a) and at only marginally higher 

concentrations (where substrate is still limiting) there is a temperature effect too.  

These findings counter the recently published statement by Yvon-Durocher et al. (2014) that 

methanotrophy does not interact with CH4 production and temperature under the substrate-

limiting conditions encountered in aquatic ecosystems. Moreover, in other aquatic ecosystems, 

where anoxic, fine sediments constitute a much higher proportion of the bed (e.g. lakes and 

wetlands), the kinetics of methanotrophy enable it to offset temperature-induced increases in 

CH4 (Duc et al., 2010, Lofton et al., 2014, Megonigal &  Schlesinger, 2002), resulting in no 

change in CH4:CO2 emissions with increasing temperature. We propose that surface flux 

measurements which show an increase in CH4 emissions with warming (Yvon-Durocher et al., 

2010b) must be as a result of CH4 oxidation being physically bypassed, either through plants 

(Chanton et al., 1993, Nouchi et al., 1990, Sanders et al., 2007), which play a globally 

important role in the CH4 cycle (Carmichael et al., 2014), or ebullition (Crawford et al., 2014, 

Prairie, 2013) rather than the failure of methanotrophy to oxidise any increase in CH4. Indeed, 

the seasonal pattern in river water CH4 concentration often with a peak in summer (Devol et 

al., 1990, Koné et al., 2010, Trimmer et al., 2009a) shows that some CH4 is avoiding 
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oxidation, and in clear-water rivers, where water column methanotrophy is negligible, once the 

CH4 is in the main channel water, the oxic gravel beds are the final barrier to CH4 degassing to 

the atmosphere. Although the rates of oxidation in the gravels are comparatively slow, relative 

to the surface fine sediment layer, the large three-dimensional volume (to some 35 cm in depth 

(Shelley et al., 2014)) of oxic gravels means they do oxidise a substantial amount of CH4 to 

CO2 (Shelley et al., 2014), the less potent of the two GHGs and therefore provide an important 

role in carbon cycling that has, until recently, largely been undocumented.   

The data presented here are novel as we are the first to consider the effect of warming on the 

individual CH4 cycling processes and the feedbacks between them as substrate concentrations 

vary across a heterogeneous riverbed. We have demonstrated the potential for CH4 oxidation 

to respond rapidly to increasing CH4 production, mitigating efflux of CH4 diffusing through 

the anoxic-oxic sediment layer. These data show the importance of detailed process 

measurements in understanding carbon cycling in aquatic systems; surface flux measurements 

may be useful to track trends in emissions but a more thorough approach is necessary to fully 

comprehend the direction and magnitude of the interactions in the methane cycle within these 

dynamic natural environments. 
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Chapter 4: The effect of light availability and methane concentration on the 

importance of methane derived carbon in chalk rivers: a spatial and 

seasonal survey. 

In this chapter, I exploited the natural variation in methane concentrations across English 

chalk streams in order to explore its effect on the importance of methane-derived carbon 

relative to photosynthetic carbon. To quantify the influence of light availability on the 

importance of methane-derived carbon to the food web, adjacent shaded and unshaded 

stretches of each river were sampled. The fieldwork and some of the laboratory analyses were 

performed in collaboration with Dr. Nicola Ings as part of a wider NERC grant. This chapter 

has not yet been submitted for publication. 

4.1 Introduction 

 Methane gas is oversaturated relative to the atmosphere in many aquatic environments and it 

is increasingly apparent that methanotrophy provides a mechanism for channelling the energy 

from this single-carbon compound into aquatic food webs (Jones &  Grey, 2011). 

Methanotrophic bacteria are unique in being able to use methane as their sole carbon and 

energy source (Hanson &  Hanson, 1996); they oxidise it to carbon dioxide and in doing so 

fix methane into organic carbon. The fastest rates of aerobic methane oxidation occur at the 

interface between anoxic sites of methane production and the oxic layer above, and this has 

been widely studied in stratifying lakes (Bastviken et al., 2003), wetlands (Segers, 1998), 

marine methane seeps (Sassen et al., 1998) and soils (Bender &  Conrad, 1995).  There have 

been relatively few studies on methane oxidation in rivers but earlier parts of this thesis focus 

on the activity of methanotrophs and have found widespread capacity for methanotrophic 

production in the riverbed gravels of chalk rivers. In this chapter we go one step further by 

employing stable isotopes to assess the contribution of methane derived carbon (MDC) to the 

food web and investigating whether light availability and methane concentration affect the 

size of this contribution. 
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Using stable isotope analysis, the distinctive depleted δ13C value associated with methane 

(Whiticar, 1999), can be used to estimate its contribution to the biomass of specific food web 

components such as pelagic and benthic invertebrates (Jones et al., 2008, Kankaala et al., 

2006), and fish (McLeod &  Wing, 2007, Ravinet et al., 2010). Although stable isotope 

analysis is widely used to indicate MDC, the most robust food web studies use it in 

conjunction with process measurements or molecular techniques (Bastviken et al., 2003, Eller 

et al., 2005, van Duinen et al., 2013). The need for supporting evidence is particularly acute 

when stable isotope data indicate the contribution of MDC to organism biomass may be small 

or that the isotopic signal in the methane may not be particularly distinct from other basal 

resources (e.g. the δ
13C value of groundwater methane can be >-40‰ (Zhang et al., 1998)) 

leading to ambiguity. 

Rivers are often over-saturated with methane (Jones &  Mulholland, 1998, Koné et al., 2010, 

Shelley et al., 2014) but to a much lesser extent than still water bodies such as wetlands (Van 

der Nat &  Middelburg, 2000), reservoirs (Abril et al., 2005) and lakes (Huttunen et al., 

2003). However, there is now evidence that secondary production in some rivers is, in part, 

fuelled by MDC (Trimmer et al., 2009).  Studies indicating high incorporation of MDC from 

the profundal zones of lakes are perhaps not surprising because of high (mM concentrations) 

methane concentrations and capacity for methane oxidation, and because they are below the 

euphotic zone meaning any photosynthetic carbon must be transported there i.e. there is no 

fresh photosynthetic carbon being produced in situ. The findings of Trimmer et al. (2009) 

showed that MDC may be contributing ~30% of the organic carbon of the abundant grazing 

cased-caddis, Agapetus fuscipes in a free-flowing chalk river, where methane concentrations 

are relatively low (30-150 nM) and benthic photosynthetic production is high (Trimmer et al., 

2010). Subsequent detailed potential measurements of photosynthetic and methanotrophic 

primary production at 15 chalk rivers highlighted seasonal and geographical variation in the 
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ratio of methanotrophic to photosynthetic production in riverbed sediments (Chapter 2) but 

we have yet to link this with the depleted δ
13C signature in grazing invertebrates.  

The gravel biofilm is a site of both photosynthetic and methanotrophic (chemosynthetic) 

primary production (Shelley et al., 2014) and invertebrates grazing unselectively upon this as 

their sole source of nutrition would typically have very similar or slightly enriched δ13C 

values (~+0.4‰) to the biofilm due to trophic fractionation during metabolism (Post, 2002). 

The δ13C value of riverbed algal carbon, although very variable, generally falls with -35‰ to -

20‰  (Finlay, 2001) whereas methanotrophic biomass has a much more depleted signature of 

-50‰ or lower (Summons et al., 1994, Whiticar, 1999). Therefore, any change in the relative 

proportions of the two autotrophic carbon pools should result in a change in the overall δ
13C 

value of the biofilm which will be conserved as it passes up a trophic level into the grazers.  

If shading decreases benthic photosynthetic production and methanotrophic production is 

unaffected we would expect an increase the relative contribution of MDC to the food web in 

shaded areas relative to open areas of riverbed. Consequently, we might expect the 

isotopically light methane signature to be more pronounced in organisms feeding in shaded 

stretches of a river compared to those feeding in well illuminated stretches. Moreover, the 

well characterised response of methanotrophs to raised methane concentrations (Bender &  

Conrad, 1992, Bogner et al., 1997, Dunfield et al., 1999) means the bulk biofilm carbon 

should be more 13C-depleted in rivers with higher methane concentrations as has been shown 

in chironomids from lake sediments of varying methanogenic potentials (Deines &  Grey, 

2006). We would therefore predict the most depleted δ13C signatures to be in invertebrates 

feeding in heavily shaded stretches of rivers with high methane concentrations. 

To quantify the seasonal variation in the importance of MDC as a basal resource we sampled 

one river seven times over a year. Then, to assess the natural variation between rivers we 
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performed a field survey of 15 rivers, encompassing a broad range of methane concentrations. 

Within each river, we quantified photosynthetic and methanotrophic production in adjacent 

heavily shaded and well illuminated stretches to estimate the effect of shading on the ratio of 

chemosynthetic to photosynthetic basal resources. Additionally, we analysed the δ
13C of the 

main food web components to test our hypothesis regarding the changing contribution of 

methane derived carbon as a function of shade. We chose to analyse the key basal resources 

(leaf litter, the dominant aquatic macrophyte, Ranunculus spp., and the riverbed biofilm) and 

the most abundant primary consumers (two species of cased caddis (Agapetus fuscipes  and 

Silo nigricornis) and freshwater limpets (Ancylus fluviatilis)). 
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4.2 Methods 

4.2.1 Study sites 

To assess the intra-river effect of seasonal changes in light and methane concentration on the 

importance of MDC as a basal resource, we sampled bimonthly for one year at Bere Heath 

Farm on the Bere stream, in Dorset, from in February to December 2011 (n=6). To investigate 

the inter-river variation, fifteen chalk streams (Table 4.1) from across southern England were 

visited in August 2011 (15th- 30th) during maximum riparian shading and the end of the 

summer peak in river-water methane (Shelley et al., 2014) both of which were hypothesised 

to affect the origin of carbon available to the river food web.  At each site, adjacent shaded 

and unshaded stretches of river were sampled and, across the 15 sites, eight had the open 

areas upstream of the shaded and seven vice versa (Table 4.1). Each stretch was ~30m long 

and the two areas were always within 100m of each other except for the Granta were the 

shaded area was ~300m upstream of the open area due to access constraints. 

4.2.2 Water CH4, pCO2 and ƩDIC concentration 

Dissolved methane and carbon dioxide in the river water was quantified by taking water 

samples (n=12 for each river section at mid-depth and mid-channel) using 

polytetrafluoroethylene (PTFE) tubing attached to a 60 mL gas-tight syringe. Water was 

gently discharged into the bottom of a 12 mL gas-tight vial (Exetainer, Labco) and allowed to 

overflow (3 times) before half were fixed (100 µL of the bactericide ZnCl2 50% w/v in ultra-

pure water) and all were then sealed. The samples for pCO2 analysis could not be fixed as the 

bactericide also acidifies the sample but we know there is no change in pCO2 within the first 

24 hours if the vial is kept refrigerated. Upon return to the laboratory, within 3 hours, a 2mL 

headspace (analytical grade helium) was introduced using a two-way valve and a gas-tight 
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syringe (Hamilton). After equilibration (30 minutes), gas samples (100 µL) were withdrawn 

from the headspace and injected into a gas chromatograph equipped with a flame ionising 

detector and a hot-nickel catalyst to reduce the CO2 to CH4 (Agilent Technologies, (Sanders et 

al., 2007)). The concentration of CH4 or CO2 in the headspace was calculated from peak areas 

calibrated against known standards (Scientific and Technical Gases) and the amount in the 

original river water sample was calculated using solubility co-efficients (Yamamoto et al., 

1976). To measure total dissolved inorganic carbon (ƩDIC), 100 µL of HCl (12.2 M) was 

injected through the septa of the fixed samples and, after equilibration, the concentration of 

CO2 in the headspace was measured as above against a calibration series (0-10 mM) of 

sodium carbonate. Water temperature, pH (Hanna Instruments) and nutrient concentrations 

(nitrate, nitrite, ammonia and phosphate) were also measured at all sites. 

4.2.3 Stable isotope analysis of dissolved pCO2 and ƩDIC 

The stable isotopic signatures of pCO2 and ƩDIC in the water samples were measured with an 

elemental analyser (Flash EA 1112, Thermo-Finnigan), coupled to a continuous flow isotope 

ratio mass spectrometer (IRMS; Finnigan MAT DeltaPlus, Thermo-Finnigan). Gas samples 

from the headspace of either the acidified samples for ƩDIC (100µL) or the un-fixed samples 

for pCO2 (500 µL) were injected into to the mass spectrometer with helium used as a carrier 

gas and certified CO2 gas, calibrated against a secondary standard (Sucrose, -12.42‰ vs. 

VPDB, ref. 8542), was used as a reference gas. 

δ
13C values were calculated using the following equation: 

 ���� = � �	
��
�
�	�
��
��

− 1� × 1000       Equation 1 

where R is the ratio of the heavy isotope to the light isotope and the units are parts per 

thousand (‰). 
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4.2.4 Potential for methane oxidation 

To quantify the potential for methane oxidation, gravels from six discrete patches within each 

open and shaded area (n=6x2 for each river), were carefully kicked into a net and then 

transferred to zip-lock bags, and kept cold during transfer to the laboratory.  Approximately 

500 mL of river water was also collected. In the laboratory, approximately 1 g of gravel was 

placed into a gas-tight vial (as above) with 5 mL of river water (n=6 for each river). Once 

sealed, the air headspace was enriched with methane (300 µL of 10,000 ppm CH4 in He) to 

give an initial concentration of 450 nmol CH4 L
-1 in the water. The concentration of methane 

in the headspace of each vial was measured immediately after spiking and then at 24 hour 

intervals for 4 to 5 days. Between measurements, samples were incubated on rollers (Denley, 

Spiramix 10), at 11°C, in the dark to mimic average riverbed temperature and prevent 

photosynthesis from removing CO2 and raising the pH. The rate of methane oxidation was 

calculated from the negative slope of the relationship between the number of hours since the 

first measurements and the amount of methane at each time point, i.e. the nmol CH4 

consumed per hour during the linear phase. After the final measurement, gravels were dried 

and weighed and rates of methane oxidation were normalised to dry mass. Control vials were 

set up to test for any potential for methane oxidation in the river water used in the incubations. 

4.2.5 Quantifying riverbed irradiances 

Photosynthetically active radiation (PAR; 400 to 700nm) was measured (as µmol quanta m-2 

s-1) on each visit using a Skye Quantum sensor (Skye Instruments Limited). Measurements 

(n=6-12 depending on channel width) were taken on the  river bed  along transverse transects 

(n=3) which were spaced by approximately 10 m. Shaded and unshaded sections were 

measured within a 10 minute time frame, to minimise the effect of changing light conditions.  
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4.2.6 Photosynthetic production and chlorophyll 

To quantify the potential for photosynthetic production in the riverbed, gravel samples 

(n=6x2 for each river) were collected, as above and oxygen evolution was measured over 

timed periods of light and dark. Approximately 30 g of sediment was placed into Perspex 

incubation chambers (internal diameter 13 cm) which were then fully submerged in a well-

oxygenated, temperature-controlled water bath (45 L of river water, kept at 11°C). The 

chamber lids were fitted with a built-in rotating magnetic flea (200 rpm), driven by an 

external magnetic unit (Rank Brothers Ltd.) and a cable gland for holding an oxygen 

electrode. The oxygen concentration was logged at 1 minute intervals using four fast-response 

calibrated oxygen electrodes (50 µm tips fitted with stainless steel protective guards, 

Unisense), connected to in-line amplifiers and a four-channel data-logging meter (Unisense).  

A photon flux density of 55 µmol photons m-2 s-1 was generated at the gravel surface by 

placing a high intensity tungsten light source 50 cm above the tank. After 45 minutes of 

logging in the light, the water bath was made dark and logging continued for a further 45 

minutes (Shelley et al., 2014, Trimmer et al., 2010). The chambers were then opened and 

sediment was transferred to 200 mL bottles (Nalgene) along with 20 mL of acetone (90% v/v 

with ultrapure water). They were left to extract for 24 hours in a dark refrigerator after which 

absorbance was measured at 750 nm to check for clarity, and 650 nm for chlorophyll 

extinction (Dalsgaard, 2000). Finally, the gravel samples were dried to a constant weight and 

both the rates of photosynthesis and chlorophyll content were normalised to dry mass. 

4.2.7 Estimating carbon fixation 

Daily methanotrophic production was estimated using the following equation:  

���ℎ������ ℎ!"  ��#$"�!�� = ���%
&'

� × �()* × + × �,- × # × ℎ     Equation 2 
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Whereby, Rmo is the rate of methane oxidation, Ci is the initial methane concentration, Camb is 

the ambient methane concentration at the site, V is the volume in cubic centimetres taken up 

by one gram of gravel (0.95), CFE is the carbon fixation efficiency (0.5, see Chapter 5), d is 

the depth over which we have integrated the methane oxidation (15 cm is the conservative 

estimate of riverbed depth over which methane oxidation occurs at a similar rate to that at the 

surface (Shelley et al., 2014)) and h is the number of hours in one day (24). 

For photosynthetic production, the measured rates of net photosynthesis were scaled using a 

photosynthesis-irradiance curve constructed with gravels from the River Lambourn. The 

scaling was dependant on the riverbed irradiance measured at our visit relative to that in the 

laboratory incubation chambers (55 µmol photons m-2 s-1). After adjustment for riverbed 

irradiance, the rates were calculated using a similar equation:  

.ℎ���/0��ℎ��!"  ��#$"�!�� = 123 × + × �,- × 4 × ℎ                Equation 3 

Whereby net photosynthesis (RNP) was multiplied by 0.95 (V), 1 (CFE), 1 (depth) and 13 (the 

number of hours of sunlight during August at 51.5°N). 

4.2.8 Stable isotope analysis of organisms 

We collected three basal resources and three common grazing invertebrates to measure δ
13C 

and assess changes in the importance of MDC. Plants and leaf litter were collected by hand 

and stored in plastic zip-lock bags. Biofilm samples were collected by scrubbing cobbles 

(>4cm length) with a toothbrush, dislodging the biofilm into a tray filled with river water (<50 

mL) which was then decanted into a plastic 50 mL centrifuge tube (Falcon). A standard kick-

net sample was used to collect gravel (n=5 per area, 10 per river) that was tipped into trays 

with river water and individual invertebrates were manually picked out using forceps. They 

were stored in centrifuge tubes along with river water  for return to the laboratory in a 
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portable refrigerator, left for 24 h to clear their guts (Feuchtmayr &  Grey, 2003) before being 

frozen. Following defrosting, caddis-fly larvae and limpets were extracted from their 

cases/shells and then all of the samples were covered (2-5 mL) with hydrochloric acid (0.5 M) 

to remove inorganic carbon. After acidification (~24 h or until effervescence stopped even 

with additional acid) samples were rinsed with deionised water, dried to a constant weight (at 

60 °C) and then homogenised with an agate pestle and mortar. Samples were weighed (~0.5 

mg for invertebrates, ~0.8 mg for biofilm and plants) into ultra-clean tin capsules (Elemental 

Microanalysis, U.K.) and run through an elemental analyser (Flash EA 1112, Thermo-

Finnigan), coupled to a continuous flow isotope ratio mass spectrometer (IRMS; Finnigan 

MAT DeltaPlus, Thermo-Finnigan). δ
13C values were calculated as in section 4.2.3. 

4.2.9 Statistical analyses 

To determine the significance of differences between the shaded and open areas of the rivers, 

paired t-tests (two tailed) were performed and the p-values are reported. The stable isotope 

value for the organisms were not available for every site and so two sample (unpaired) t-tests 

were used instead. To test for a significant correlation between two continuous variables, we 

used linear regression analysis. For the seasonal study, date was fitted as a random effect 

when a mixed effects model to determine whether the changing capacity for methane 

oxidation with changing methane concentration, was different in the shaded and open areas.  
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4.3 Results 

4.3.1 Seasonal survey 

At the Bere Stream, the concentration of methane in the river water (Figure 4.1a) and the 

capacity for methane oxidation varied seasonally; both at a maximum in late summer and 

were at their minimum in winter. The increase in methanotrophic capacity, that is, the rate of 

methane oxidation at a constant initial concentration of methane, was correlated with an 

increase in the ambient methane concentration (p=0.002). The riverbed gravels from the 

shaded area had a greater capacity to oxidise methane compared to the open area in the 

summer (Figure 4.1b) but over the whole year, the capacity was not significantly different 

between the two areas. Moreover, there was no difference in the response of methanotrophic 

capacity to ambient methane concentration between the shaded and open areas (p>0.05). The 

carbon fixed via methanotrophy displayed a similar seasonal pattern to the methane 

concentration (Figure 4.1c), not surprising as the calculation is driven by the strong kinetic 

response of methane oxidation to changing substrate concentration. Over the year, 

methanotrophic production was not different in the shaded and open areas (p=0.195) but if we 

exclude the winter times points, when methane concentrations were low and shading was 

minimal, then the methanotrophic production was greater in the shaded area than in the open 

area (p=0.043, Table 4.1 Figure 4.1c).  
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Table 4.1: Key statistical results and test details for the seasonal study at the Bere Stream. 

MO=methane oxidation, MOP= methanotrophic production, NPP= net photosynthetic 

production. All t-tests were paired except for when data was missing for one area as was the 

case for limpets where none were founded in late August and September.

Dependant 
variable 

Independent variable Test n p-value 

MO capacity Methane concentration ANOVA linear 
regression 

14 0.002 

MO capacity Open/Shade T-test (paired) 14 0.195 
 

MO capacity (date 
as random effect) 

Methane concentration 
and open/shade 

Mixed effect 
Model 

58 >0.05 

MOP Open/Shade T-test (paired) 14 0.195 
MOP (excl. Feb 
and March) 

Open/Shade T-test (paired) 10 0.043 

GPP Open/Shade T-test (paired) 12 0.017 
Chrolophyll Open/Shade T-test (paired) 12 0.458 
NPP Open/Shade T-test (paired) 12 0.082 
MOP as % of 
(MOP+NPP) 

Open/Shade (excl. 
August where no NPP) 

T-test (paired) 8 0.046 

δ
13C biofilm Open/Shade T-test (paired) 14 0.044 
δ

13C Ranunculus  Open/Shade T-test (paired) 12 0.004 
δ

13C Agapetus Open/Shade T-test (paired) 14 0.766 
δ

13C Silo Open/Shade T-test (paired) 13 0.153 
δ

13C limpets Open/Shade T-test (unpaired) 11 0.03 
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Figure 4.1: a) The dissolved concentration of methane in the river water in the shaded (filled circles) and open (open circles) stretches of the Bere 

Stream. Mean values (n=6) ±SE. b) The rate of methane oxidation when incubated at a constant initial methane concentration (100 nmol CH4 L
-

1) i.e. the capacity for methane oxidation in the summer (May, August and September) and winter (December, February and March). Median 

(solid line), mean (dashed line) and 25% and 75 % quartiles (box ends) are shown. c) Carbon fixed via methane oxidation in the shaded and open 

stretches of the Bere Stream. 
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Riverbed irradiance remained low throughout the year in the shaded area (Figure 4.2a) 

because the increased shading in the summer counteracted the seasonal increase in sunlight 

intensity. In contrast, in the open area, we measured over 20 times more light reaching the 

riverbed in August than in early February (Figure 4.2a). Gross photosynthesis was higher in 

the open gravels than in those from the shade (p=0.017) but there was no difference in the 

chlorophyll content (p=0.176) which averaged 3.2 µg g-1 dry sediment (Table 4.1). Net 

photosynthetic production (NPP) did not follow a smooth seasonal pattern because there was 

no net photosynthesis in either area in August, nor in the shaded area in March, August and 

December. In all but one month (August), there was more NPP in the open area than the 

shaded area but over the whole year, statistically there was no difference in NPP (p=0.082). 

The light intensity reaching the gravels in the laboratory incubations (55 µmol photons m-2 s-

1) was more intense than that measured at the riverbed in five out of the six visits in the open 

area and always more intense than riverbed irradiances in the shaded area. Also, the 

laboratory light was below saturation and therefore in the light limiting part of the PI curve 

(see Chapter 2), the normalisation for ambient light was a down-scaling for most data points 

and the adjustment was greater for the shaded area gravels (~23 times) than the open are 

gravels (~7 times). The highest estimate of photosynthetic production was 432 nmol C cm-3 d-

1 in the open area in late May, when, at the same time, only 30 nmol C cm-3 d-1 was fixed in 

the shaded stretch (Figure 4.2b). 
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 1 

Figure 4.2: a) Riverbed irradiances at the Bere Stream measured within 5 cm of the gravels at 2 

noon (± 1 h) along three transects in the shaded area (filled circles) and open area (open 3 

circles). Mean values ±SE, n=6-18. b) Net photosynthetic production in the shaded and open 4 

stretches (filled and open circles, respectively) of the Bere Stream, modelled using laboratory 5 

oxygen evolution measurements, a photosynthesis-irradiance curve, the in situ light 6 

measurements and day length. The horizontal line indicates the compensation point, below 7 

which respiration outstrips photosynthesis and so the surface gravel layer is heterotrophic and 8 

there is no autochthonos carbon fixed that is then available to the food web. 9 

Methanotrophic carbon fixation was calculated as a percentage of that fixed via both 

photosynthesis and methanotrophy.  At the Bere Stream, in the months when there was NPP, 

methanotrophic carbon fixation accounted for the equivalent of 5-13 % of production in the 

open area (Figure 4.3) and 30-64 % in the shaded area where riverbed light was less intense 

which limited photosynthesis. When there was no NPP, methanotrophy contributed 100% of 

the fixed C.  
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Figure 4.3: Methanotrophic carbon fixation over an annual cycle at the Bere Stream as a 

percentage of the sum of photosynthetic and methanotrophic production. Where there was no 

net photosynthetic production, methanotrophy contributes 100% of the ratio. Gaps represent 

periods not sampled. 

  

The stable isotope analysis data did not show any strong seasonal trends but there were 

differences between the organisms from the open and shaded stretches (Figure 4.4). The 

biofilm (p=0.044) and Ranunculus spp. (p=0.004) were more 13C-depleted in the shaded area 

than the open area (Table 4.1) and the biofilm was more depleted (in the shade) in summer 

when shading and methane concentration were greatest (Figure 4.4). However, there was no 

difference in the δ13C of the caddis Agapetus (p=0.766) nor Silo (p=0.153) between the 
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shade (Table 4.1) but they were not sampled in late August or September because they were 

too small and difficult to find. 

 

Figure 4.4: Results of the stable isotope analysis for three basal resources and three of the 

most abundant grazing invertebrates in the Bere Stream throughout 2011. Mean values ±SE 

(n=1-3). Mean values for the annual dataset are presented on the right of the graph. 
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4.3.2 Geographical Survey of 15 rivers 

The rivers sampled covered much of the geographical extent of chalk in southern England, 

stretching from the Frome in west Dorset, to the Granta in Cambridgeshire and down to the 

Darenth in Kent (Figure 4.5). All 15 rivers were sampled within 15 days in August 2011 yet 

still displayed a wide range of methane concentrations, ranging from 35 nmol L-1 at the 

Misbourne in Buckinghamshire to 218 nmol L-1 at the Piddle in Dorset (Figure 4.5). As with 

the seasonal study at the Bere Stream, the methane concentration was higher in the shaded 

area than in the open area (average of 90% higher in the shade) (Figure 4.5, Table 2, 

p=0.025).  

The reduction in riverbed irradiances in the shaded areas relative to the open areas was 

quantified as a percentage reduction in riverbed irradiance and the mean average reduction 

was 89% (Table 4.2). The nutrient concentrations across the survey sites covered a wide 

range, particularly with regards to nitrate (from 196 to 1716 µmol L-1 at the Darenth and Stort, 

respectively) and phosphate (from 0.2 to 82.6 µmol L-1 at the Allen and Stort, respectively) 

which is driven by proximity sewage treatment plant outlets and the prevailing land use in the 

catchment. ƩDIC (2.5-4.6 mmol L-1), pCO2 (83-512 µmol L-1, 5-43 times air equilibration) 

and pH (7.8-8.8) were high across all sites as is common in chalk rivers (Table 4.2).



Chapter 4  

97 
 

 

Figure 4.5: a) Annotated map showing the geographical distribution of the study sites on 15 chalk rivers. b) The concentration of methane in 

both the shaded (filled circles) and open (open circles) stretches of river at the study sites in August 2011. Mean values ±SE, n=6. 
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River Date 
sampled 

Upstream 
section 

Water 
temperature 

(°C) 

pH Irradiance (% 
difference) 

ƩDIC 

(mmol L-1) 

pCO2 

(µmol L-1) 

CH4 

(nmol L-1) 

NO3 

(µmol L-1) 

NO2 

(µmol L-1) 

NH4 

(µmol L-1) 

PO4 

(µmol L-1) 

Itchen 15/08/2011 Open 14.5 7.84 92 4.1 274 49 688 2.3 6.5 0.5 

Test 15/08/2011 Open 15.3 7.99 92 3.9 83 71 774 1.2 6.1 0.4 

Bourne 16/08/2011 Open 16.3 8.14 88 3.7 131 111 880 1.3 5.5 1.3 

Lambourn 16/08/2011 Open 14.5 8.30 91 4.2 120 71 923 1.4 3.5 1.0 

Darenth 20/08/2011 Shade 17.8 8.10 74 2.5 346 94 196 0.7 4.0 0.5 

Cray 20/08/2011 Shade 20.0 8.15 98 3.8 512 51 245 2.2 7.1 0.6 

Stort 23/08/2011 Open 15.6 7.80 90 3.1 286 90 1716 1.9 10.3 82.4 

Granta 23/08/2011 Shade 17.5 8.11 96 3.8 150 66 1221 2.4 15.6 36.4 

Chess 24/08/2011 Shade 16.5 8.19 80 4.2 148 42 785 4.1 13.1 5.4 

Misbourne 24/08/2011 Shade 18.5 8.26 68 4.2 117 38 866 1.7 10.1 4.2 

Meon 29/08/2011 Shade 14.0 8.75 91 3.7 102 74 732 0.9 4.4 0.4 

Allen 29/08/2011 Open 16.3 8.21 89 3.7 117 63 994 0.8 3.5 0.2 

Bere 29/08/2011 Open 16.2 8.11 95 4.2 202 192 946 1.8 5.5 0.5 

Piddle 30/08/2011 Open 14.3 8.12 97 4.6 219 224 835 1.1 8.5 0.3 

Frome 30/08/2011 Shade 14.4 8.27 93 4.1 151 147 407 0.7 4.3 1.4 

Table 4.2: Site sampling details. Water temperature and pH were measured at mid-channel and mid-depth and average concentrations for water 

gases and chemistry are reported. Surface irradiances are reported as the percent reduction in the shade compared to the open stretches at each 

river and are averages of at least 20 measurements. Nutrient concentrations are an average of three replicate water samples which were filtered 

and frozen on site and measured on a Skalar San++ continuous flow analyser in the laboratory.
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The capacity for methane oxidation was significantly higher in the shaded areas than in the 

open areas (Figure 4.6a, Table 4.3, p=0.027). The shaded area of the Piddle had, by far, the 

highest capacity for methane oxidation and was also the site with the highest concentration of 

dissolved methane. Using a gross carbon fixation efficiency of 50 % (Chapter 5) and 

conservatively integrating over the top 15 cm of the riverbed (Shelley et al., 2014) 

methanotrophic production in August 2011 accounted for between 18 nmol C cm-3 d-1 (open 

area of the Cray) and 794 nmol C cm-3 d-1 (shaded area of the Piddle) and over the annual 

cycle this ranged from 5-80 nmol C cm-3 d-1 in the Bere Stream. 

 

Figure 4.6: a) The capacity for methane oxidation in the riverbed gravels from 15 different 

chalk rivers. Means values (n=6 ±SE) for the shaded (filled circles) and open (open circles) 

for each river.  All rates were calculated from a constant (100 nmol L-1) initial concentration 

of methane in order to eliminate the kinetic effect of substrate availability and determine any 

true differences in methanotrophic capacity. b) Rates of methane oxidation in the riverbed 

gravels at the methane concentration at each specific river in August 2011. The data are 

ordered in ascending methane concentration order from left to right.   
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Table 

4.3: Statistical results for the comparison of photosynthetic and methanotrophic production 

parameters and stable isotope analyses of organisms. GPP= gross photosynthetic production, 

BSPP= biomass specific photosynthetic production (units of O2 produced per unit 

chlorophyll), NPP= net photosynthetic production, MO= methane oxidation, and MOP= 

methanotrophic production.Significant p-values are shown in bold. 

 

Given the short period over which the sampling took place and the small range of latitudes 

covered, the average riverbed irradiances in the open areas should be very similar. Therefore, 

it makes sense that the lower values displayed in Figure 4.8a are those that were obtained at 

dusk (Test and Stort) or on overcast days (Frome, Bere and Piddle) which was unavoidable on 

our schedule. Nonetheless, the riverbed in the shaded areas consistently received less light 

than the riverbed in the open areas (Figure 4.7a, Table 3, p=0.000) and at 13 out of the 15 

sites, photosynthesis was light limited at the time of sampling in the shaded areas and in all of 

the open areas it was light saturated (estimated from our single P-I curve with a Km of 38 

Test variable Open 
average 

Shaded 
average 

Statistical test p-value n 

Riverbed 
irradiance 

243 35 T test (paired) 0.000 30 

Chlorophyll 
content 

6.1 6.0 T test (paired) 0.958 30 

GPP 349 426 T test (paired) 0.133 30 
BSPP 64 100 T test (paired) 0.005 30 
NPP 200 116 T test (paired) 0.054 30 
Methane 
concentration 

89 96 T test (paired) 0.025 30 

MO capacity 0.4 0.6 T test (paired) 0.027 30 
MO rate 0.3 0.7 T test (paired) 0.096 30 
MOP as % of 
(MOP+NPP) 

48 83 T test (paired) 0.025 30 

δ
13C biofilm -32.4 -33.0 T test (2 sample) 0.542 29 
δ

13C Ranunculus  -29.9 -33.2 T test (2 sample) 0.066 19 
δ

13C Agapetus -37.1 -38.9 T test (2 sample) 0.065 22 
δ

13C Silo -37.0 -33.0 T test (2 sample) 0.101 17 
δ

13C limpets -37.6 -34.3 T test (2 sample) 0.125 8 
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µmol photons m-2 s-1). There was no difference in the chlorophyll content of the gravels in the 

shaded and open areas (p=0.958) but photosynthesis was more efficient in the shaded areas 

(p=0.005), averaging 100 nmol O2 µg Chl h-1 and only 64 nmol O2 µg Chl h-1 in the open 

areas under laboratory light conditions (Table 4.3).  NPP was measured in all of the gravels 

from the open areas and in 12 of the 15 from the shaded areas (no NPP in the Cray, Bere and 

Frome) (Figure 4.7b). In most rivers, NPP was higher in the open area relative to the shaded 

area with the only anomaly being the River Chess where NPP was almost twice as high in the 

shaded area (Figure 4.7b). Overall, NPP was not significantly different between the two areas 

(p=0.054).  

 

Figure 4.7: a) Riverbed irradiances as measured when sampling each river. b) Net 

photosynthetic production at each site in August 2011, modelled from laboratory oxygen 

evolution measurements, a PI curve and in situ light measurements. Filled circles are shaded 

areas and open circles are open areas. 
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As with the seasonal study, we have expressed methanotrophic carbon fixation as a 

percentage of the sum of that fixed via methanotrophy and photosynthesis. Where there was 

NPP, MDC was least important in the Lambourn (open area, 3.7%) and most important in the 

Piddle (shaded area, 97.8%) with a median value of 18.2% in the open areas and 51.3% in the 

shaded areas and when there was no NPP (net oxygen consumption in light incubations), 

methanotrophy accounted for 100% of production. There was a significant positive 

correlation between the importance of MDC as a basal resource and the ambient methane 

concentration in both the open 

(p=0.004) and shaded areas 

(p=0.043, Figure 4.8). 

 

Figure 4.8: Ambient methane 

concentration scattered against the 

importance of methane derived 

carbon as a percentage of net 

photosynthetic and methanotrophic 

production in open (open circles) 

and shaded (filled circles) areas. 

ANOVA of linear regression returned significant p-values for both open (0.004) and shaded 

(0.043) datasets. 

 

 In the wider survey (August 2011), all of the grazing invertebrates sampled were 13C-

depleted relative to the putative photosynthetic (autotrophic and allochthonous) basal 

resources (Figure 4.9) but there was no difference in the δ13C of the resources or invertebrates 
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between the shaded and open areas (Table 4.3). The δ
13C of the biofilm was negatively 

correlated with ambient methane concentration (p=0.006) with the most depleted biofilms at 

the sites with the highest methane concentration but there was no correlation with capacity for 

methane oxidation.  
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Figure 4.9: The δ13C of the major photosynthetic basal resources and grazing invertebrates 

from 15 rivers. The median line crosses the box formed of the 25th and 75th percentiles. The 

whiskers show the 10th and 90th percentiles. Two-tailed, t-tests found no difference between 

the open and shaded samples (Table 4.2). 
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4.4 Discussion 

Here, we have quantified the contribution of photosynthetic and methanotrophic carbon 

fixation to autotrophic production in 15 major chalk rivers across southern England. As 

hypothesised, we measured more methanotrophic production in the shaded areas than in the 

open areas and the difference between the two was greatest in summer when the difference in 

riverbed irradiances was at its maximum. At all sites, the grazing invertebrates were 13C-

depleted relative to the biofilm, leaf litter and plants which is generally regarded by stable 

isotope ecologists to indicate significant contribution of methane derived carbon to their diet 

(Jones &  Grey, 2011). However, the quantified significance of methanotrophy to autotrophic 

production in the riverbeds (as calculated from the process data) did not correlate with any of 

the carbon stable isotope data. 

The seasonal pattern in dissolved methane concentration in the river water at the Bere Stream 

was very similar to those previously published for other groundwater fed streams (Sanders et 

al., 2007, Shelley et al., 2014) with a five-fold increase in summer relative to winter, but the 

range of methane concentrations across the 15 rivers in August 2011 was even greater, 

displaying more than a six-fold increase (35-229 nmol CH4 L
-1). The strong kinetic response 

of methanotrophs at riverine methane concentrations has previously been described (Shelley 

et al., 2014), but we have also shown a changing capacity for methanotrophy in response to 

methane concentration which, to our knowledge, has not previously been seen in riverbed 

sediments. This relationship did not hold true across the 15 rivers which suggests the inter-site 

variation in other variables swamped the effect of substrate availability on the development of 

the methanotrophic community. 

Photosynthetic production was calculated from NPP (rather than GPP as explained in Chapter 

2) because it is the true equivalent of methanotrophic production as both quantify the carbon 

fixed into biomass and therefore available to higher trophic levels. The use of a single P-I 
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curve for both sections of all fifteen rivers was not ideal but was the only practical solution 

within the time frame. Stream biofilm communities do not respond to changing irradiances in 

the same way as phytoplankton do, and chlorophyll content is thought to be a better indicator 

of biomass specific photosynthetic production (BSPP) than ambient light intensity when 

comparing sediments from different rivers of varying light regimes (Boston &  Hill, 1991). 

Given this finding, as the chlorophyll content was equal in the shaded and unshaded areas, the 

use of a single PI curve to normalise the laboratory photosynthesis measurements, should not 

cause significant skew to the data. Indeed, the riverbed irradiances were so much lower in the 

shaded stretches than in the open stretches (>90%), the leaving NPP unadjusted for ambient 

light would have led to a massive overestimate of NPP in the shade. 

The importance of MDC relative to NPP was correlated with ambient methane concentration. 

Indeed, both seasonally and geographically, changing methane concentrations drove 

variations in methanotrophic production and the changes in NPP (driven by riverbed 

irradiances) were of secondary importance. Within sites, the differing contributions of MDC 

to the basal resource pool was driven by concurrent reduced NPP and increased capacity for 

methane oxidation in the shade relative to the open. The reduction in NPP can be explained by 

the light limitation of photosynthesis but the increased capacity for methane oxidation 

requires more thought. It could be a response to the higher concentrations of methane in the 

shade relative to the open (Table 4.3) and the consequential increased methanotrophic 

biomass in the shade, as was measured across the seasons in the Bere Stream. But the 

difference in methanotrophic capacity (45% lower in open) is much greater than that in 

methane concentration (7%) and so it is does not fully explain the differences measured. 

Competition for space on the gravel particles in the open is likely to be greater than in the 

shade because NPP is greater. There is also some evidence that methanotrophs are inhibited 
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under high irradiances (Murase &  Sugimoto, 2005) but this has never been shown in 

sediments. 

The significance of MDC in the open areas was of a similar magnitude to that previously 

calculated at another site on the River Lambourn (median= 18%, 11% at the Lambourn, see 

Chapter 2). However, in the shaded areas, the relative contribution of MDC rose substantially 

(58.4%) which highlights the value of adding this extra layer of complexity to the survey. 

The data presented here suggest that methanotrophy should be much more important in the 

shaded areas, relative to the open areas, and particularly in summer, but our stable isotope 

data for invertebrates does not offer these hypotheses any support. The biofilm was more 

depleted in 13C in the shade than the open, in line with the changing importance of MDC and 

therefore predicted relative size of the methanotrophic biomass relative to the photosynthetic 

biomass. However, this was not a pattern conserved across sites, or at least not strong enough 

to be significant at the 0.05 level of confidence. We know that grazing caddis larvae and 

limpets feed directly upon sediment biofilms (Alvarez &  Pardo, 2005, Becker, 2005, Hunter, 

1953) and that they are capable of assimilating (indirectly, via biolfilm) methane in laboratory 

incubations (unpublished data), yet we do not see any change in the δ
13C of the Agapetus with 

increasing importance of MDC in the biofilm. One explanation may be that the 

methanotrophic biomass is not sufficiently isotopically distinct from the rest of the biofilm to 

be traced into invertebrate biomass. This is possible when the pool of methane is relatively 

small (as it is in riverbed gravels, compared with stratifying water bodies) because as the 

lighter isotope is preferentially assimilated, the remaining methane pool becomes isotopically 

enriched (Fry, 2006) and so methanotrophs fixing this methane would also be less depleted 

relative to those in high methane environments. Biogenic methane in rivers is typically ~-

60‰ but when a high proportion of the substrate is exhausted, the δ
13C of the remaining 
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methane will approach that of the original organic matter (Whiticar, 1999), which in rivers, is 

almost always photosynthetic (typically -25 to -30‰). Furthermore, methane that has spent 

many years undergoing oxidation in fully closed systems such as groundwater aquifers, could 

be more enriched (-20‰ in Dorset groundwater, Trimmer et al. manuscript in prep.) than 

photosynthetic carbon which is particularly important to note as our study systems are 

groundwater fed rivers.  

In short, there are large obstacles with using stable isotope analyses to infer carbon sources to 

primary consumers in rivers; first, we cannot isolate the end members in order to quantify 

their δ13C value because they are present in a mixed community biofilm, secondly, it is likely 

that the two resources are not isotopically distinct and finally, the grazing community are 

unselective in their feeding behaviour. It may be that the isotopic signal is only strong enough 

to be traced up a trophic level when methanotrophs constitute a much higher percentage of the 

organic carbon within the biofilm community. Besides photoautotrophs, there are many other 

non-methanotrophic members of the mixed community, which will further dilute any 

isotopically light carbon signal, provided by the methanotrophs, in the bulk biofilm. 

Nonetheless, we have presented evidence of the importance of MDC in rivers as a basal 

resource even in the presence of NPP and we have begun to untangle the drivers of variation 

in its relative importance across sites and seasons. 

1 
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Chapter 5: Sustained carbon fixation efficiency of riverbed methanotrophy  

 

This work was done in collaboration with Susanna Maanoja (MRes student), Dr. Myrsini 

Chronopoulou (Post Doc.) and Prof. Mark Trimmer and has been submitted to ISME Journal 

for publication. SM performed the initial step of tracing the 13CH4 into both the organic and 

inorganic C fractions with laboratory and field support from me. I have marked the sections 

carried out by SM with a * but have left them in for completeness of the scientific story. The 

molecular analyses performed by MC have been removed as I had no part in them nor are 

they integral to my part of the project. 

 

5.1 Introduction 

It is now well established that the majority of methane produced in situ under anoxia in aquatic 

ecosystems does not escape to the atmosphere. Indeed, up to 91% (wetland sediments), 97% 

(ombrotrophic peats), and ~50% to 100% (lake water columns) of that methane is aerobically 

oxidised to CO2 (Bastviken et al., 2002, King et al., 1990, Nedwell &  Watson, 1995) by 

methanotrophic bacteria at the oxycline (He et al., 2012). Rivers are commonly oversaturated 

with methane with respect to the atmosphere and in the last few years we have furthered our 

understanding of how this carbon can be harnessed through riverbed methanotrophy to 

supplement photosynthetic primary production (Shelley et al., 2014, Trimmer et al., 2010). 

However, we are still unsure about the amount of methane that is oxidised en route through the 

broader landscape, which is thought to be considerable, and the overall proportion transformed 

within a river itself, before the remainder outgases to the atmosphere (Cole et al., 2007, De 

Angelis &  Scranton, 1993, Melack et al., 2004). 

Clearly methane oxidation will alter the balance of carbon gases (CO2 + CH4) released 

from any aquatic ecosystem to the atmosphere but, in addition, the methanotrophic bacteria 

responsible produce chemosynthetic carbon (Hanson &  Hanson, 1996). Such chemosynthetic 
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production is now known to be significant in many lakes (Jones &  Grey, 2011) across the 

globe and recently we highlighted its widespread potential throughout the chalk rivers of 

southern England (Shelley et al., 2014, Trimmer et al., 2009a, Trimmer et al., 2010). The 

groundwater percolating through the chalk that dominates the flow in these productive rivers is 

oversaturated with methane (Darling &  Gooddy, 2006) and the riverbed community of 

methanotrophs acts as a sink for some of that methane. To date, most freshwater ecologists 

would argue that riverine food webs and production are based firmly on allochthonous detrital 

resources and authochthonous photosynthetic production, with only the balance between the 

two contentious. Hence, our previous finding that the highly abundant grazing 

macroinvertebrates (Agapetus fuscipes and Silo nigricornis) in these chalk rivers appeared to 

derive up to 30% of their carbon from metabolised methane was surprising (Trimmer et al., 

2009a, Trimmer et al., 2010). 

Now, in order to more fully assess the significance of methanotrophy as a source of 

primary production in rivers, we need to better quantify its carbon fixation efficiency; i.e. how 

much carbon is fixed per mole of methane oxidised? Methanotrophs derive both their carbon 

for assimilation and energy from the oxidation of methane and the fraction assimilated (x) can 

be represented as (Urmann et al., 2009): 

 

CH4 + (2-x)O2 → (1-x)CO2 + xCH2O + (2-x)H2O    (1) 

 

 While it is comparatively easy to measure an amount of methane oxidised by a sample 

of water or substratum (sands, muds, gravels), actually converting this to an amount of carbon 

assimilated or fixed (x in equation 1) has proved to be a non-trivial task (Bastviken et al., 

2003, King et al., 1990, Maxfield et al., 2012). The recent development of a stable isotope 

switching technique (13CH4/
12CH4), in combination with sophisticated multi-compound-
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specific mass spectrometry, has begun to probe the true dynamics of carbon assimilation, 

turnover and decay in soils, but it cannot give a genuine measure of the efficiency of organic 

carbon production via methanotrophy (Maxfield et al., 2012). Here we propose a simple 

alternative approach: first we used mass balance in a series of repeat batch incubations of 

riverbed gravel and water to quantify the partitioning of 13C-CH4 during methanotrophy into 

either organic or inorganic carbon (∑DIC: CO2, HCO3
-, CO3

2-); then we show that the same 

estimate of carbon fixation efficiency can be derived more simply by just quantifying the 

fraction 13C-CH4 recovered as 13C-DIC. We have already characterised a gradient in the 

potential for methanotrophy across thirty-two chalk rivers in southern England (Shelley et al., 

2014); we now examine the efficiency of carbon fixation by methanotrophy across that 

gradient.  
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5.2 Materials and Methods 

5.2.1 Study site and sediment collection 

To trace 13C-CH4 into 13C-organic and 13C-inorganic carbon, we collected gravels from the 

River Mimram (51.80524N – 0.151212W, Hertfordshire) for the repeat batch incubations and 

then, due to site access restrictions, for the follow-up set of 13C-DIC yield experiments, we 

used gravels from the River Lambourn (51.438585N – 1.384889W, Berkshire), a chalk stream 

of similar size and water chemistry. Both are typical chalk rivers with coarse gravel beds and 

dense growths of macrophytes (predominantly Ranunculus spp.) (Pretty et al., 2006). Surface 

layer gravels (n=6) were sampled using a kick-net and stored in a portable refrigerator for 

return to the laboratory where they were pooled, mixed, and sieved (1.4 mm ≤ x < 5.66 mm).  

 

5.2.2 Tracing 13C-CH4 into 13C-organic and 13C-inorganic carbons* 

Sub-samples (8 × 8 g) of gravel were weighed into serum bottles (20 mL) along with river 

water (10 mL) and then sealed (butyl and tear-off aluminium seals), leaving an air headspace. 

The vials were enriched with 13C-CH4 (99 atom%) to give  613 nM (± 50 nM, SE, n=8) in the 

water phase and additional control vials were setup with just river water before all of the vials 

were incubated on a tipper in the dark at 8°C (to mimic average river water temperature). The 

headspace was then measured repeatedly (~ every 8h-12h) for methane by GC/FID (Sanders et 

al., 2007) and in order to calculate the rate of methane oxidation, the change in methane over 

the first two or three time points was divided by the number of hours, and then normalised to 

the dry mass of gravel in each vial. Once > 90% of the methane had been oxidised in each 

batch, the headspace was analysed for 13C-CO2 (pCO2) by continuous flow isotope ratio mass 

spectrometry (CF/IRMS), and then the water was removed, acidified (50 µl HCl 12.2M), and 
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measured for 13C as DIC (Σ CO2, HCO3
- and CO3

2-) by CF/IRMS (Miyajima et al., 1995, 

Trimmer et al., 2009a). Summation of p13CO2 plus 13C-DIC equalled the total amount of 13C-

CH4 metabolised to inorganic carbon. Following the end of each incubation, gravel (2 g) was 

harvested, freeze-dried and stored at -18°C for analysis of 13C in either the lipid or bulk 

organic carbon (TOC) fraction (see below). New water was added and the vials were enriched 

again with CH4 and the process was repeated seven more times to test the effect of repeat 

incubations and track isotopic labelling of the biofilm over time. Thus, the labelling of TOC 

was a cumulative measure and the ƩDIC was discrete for each incubation (as both the 

headspace and the water were replaced). 

 

5.2.3 Quantifying the yield of bulk 13C-organic carbon by wet oxidation to CO2* 

An adaptation of a standard wet-oxidation method (no. 505C; (APHA, 1995)) was used to 

recover and quantify the yield of bulk 13C-organic carbon from the harvested gravels. A 

subsample (~300 mg) of freeze-dried gravels was transferred into a serum bottle (20 mL), 

which was then acidified to remove carbonates (4 mL H3PO4 6% v/v), before the addition of 5 

mL of 0.15 M potassium persulfate. After sealing, all of the vials were autoclaved (121°C, 3 h) 

and the headspace subsequently analysed for CO2, first by GC/FID (as above but after 

catalytic reduction to CH4 over hot nickel) to quantify the TOC and then by CF/IRMS for 

abundance of 13C-CO2  to quantify the labelled fraction.  

 

5.2.4 Quantifying the carbon fixation efficiency (CFE) by the yield of 13C-DIC. 

After establishing that we could recover 100% of the 13C-CH4 as either 13C-DIC or 13C-organic 

carbon, we could use the 13C-DIC fraction to more simply quantify the efficiency of organic 

carbon production, without the need to quantitatively extract and purify the organic fractions. 

If the production of 13C-DIC is linear over time, with an origin through zero, then all of that 
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13C-DIC must be due solely to methanotrophic metabolism and not reworking of the 13C-CO2 

within the biofilm. Consequently, the proportion of 13C-CH4 recovered as 13C-DIC yields a 

direct measure of the CFE e.g. 1 – (∆
 13C-DIC/∆13C-CH4) = x. Here, we take the total amount 

of 13C-CH4 oxidised to represent gross methanotrophy, while our measure of CFE is 

equivalent to net methanotrophy i.e. the amount of fixed carbon that would potentially be 

available to higher trophic levels and which, as such, is synonymous with net photosynthetic 

production (Shelley et al., 2014).  

Accordingly, we followed the oxidation of 13C-CH4 and parallel evolution of 13C-DIC 

during short (60 h) incubations. Independent aliquots (55 to give 5 replicates at 11 time points) 

of prepared gravels were enriched with 99 atom% 13C-CH4 to give 1900 ppm in the headspace 

and 2400 nM in the water (± 28 SE, n=55), incubated as above and then sacrificed (5 vials 

~every 5 h) for quantification of CH4 and 13C-DIC (as above). Next, we tested the effect of 

methane concentration on the oxidation kinetics and fixation efficiency at 37 different 

concentrations (~10 nM to 7000 nM CH4 in the water), spanning the seasonal range in the 

river water and gravel porewater (~30 nM-150 nM) and far beyond (Shelley et al., 2014, 

Trimmer et al., 2009a). The headspace was sampled repeatedly over time (as above) and 

analysed for CH4 and 13C-DIC to calculate the CFE (as above).  

Finally, although the use of 99 atom% 13C-CH4 assures detectable labelling of products 

during short incubations (<5h), fractionation can occur during methanotrophy (Whiticar, 

1999). So to test for any effect of fractionation prepared gravels were incubated under 11 

different mixtures of 13CH4/
12CH4: from natural abundance (here simply 12CH4) to 99 atom% 

13CH4 in 10% increments, and at a final concentration in the water phase of 635 nM (± 32nM, 

SE, n=11).  
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5.2.4 Carbon fixation efficiency across multiple rivers  

Having established a simple routine assay for estimating the CFE of methanotrophy, we now 

wanted to estimate that efficiency using a larger sample of rivers and examine whether that 

efficiency was consistent across a natural geographical gradient of riverbed sediments. We 

previously characterised a gradient in the potential for methanotrophy across 32 chalk rivers in 

southern England (Shelley et al., 2014) and here, we selected eight of those rivers covering the 

range of oxidation potentials (Figure 5.1). The GCF of methane oxidation for each gravel bed 

was quantified as above (tracing 13C-CH4 into 13C-DIC).  

 

5.2.5 Potential interference from copper in the methane oxidation experiments 

Given the potential sensitivity of methane mono-oxygenase to copper (Leak and Dalton, 

1986a), we set-up replicate (n = 10) incubations of gravel plus river water (as above), gravel 

plus UHP water, river water only and UHP only, all in the acid-washed (0.1M HCl) gas-tight 

vials which we use routinely for this type of incubation and let them incubate at 8°C, as above, 

for 4 days. After, each vial was opened, the water phase filtered (pre-rinsed 0.2µm Mini-Sart) 

and analysed for copper by furnace atomic absorption spectrometry (Varian GTA 110 & 

220FS, Victoria, Australia) calibrated between 0 and 21 µg Cu L-1.     
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Figure 5.1: Distribution of the 32 (open and closed circles) Chalk rivers in southern England that 

have all proved positive for methane oxidation (see (Shelley et al., 2014) for full details). Closed 

circles indicate the location of the eight rivers used in this study, where the total distance west to 

east was approximately 110 km. 1. Lambourn 2. Misbourne, 3. Chess, 4. Ver, 5. Gade, 6. Mimram, 

7. Cray, 8. Darenth. The graph shows the changing methane oxidation rate (means ± SE, n=6) 

across 32 rivers with those revisited for this study circled. All started at a constant methane 

concentration and so variation in rate represents a changing capacity for methane oxidation across 

the sites. 
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5.3 Results  

5.3.1 Recovery of 13C-CH4 in 13C-organic and 13C-inorganic carbon fractions*  

Methane was oxidised rapidly over the first 20 to 30 hours in each of the eight batch 

incubations (Figure 5.2) and, although there was some variation in the rates of oxidation, there 

was no significant change over the entire 17 days of incubation, with an average rate of 1.8 

nmol CH4 g
-1 h-1 (± 0.2, SE, n=8). We subdivided the 13C assimilated into a crude lipid extract 

and bulk organic carbon fraction. Our crude lipid extract approached an isotopic steady-state 

(i.e., an approximately constant δ13C) after approximately 9 days, while the bulk organic 

carbon fraction took a little longer. Importantly for our approach we were able to recover all of 

the 13C-CH4 introduced to the vials (105% ± 6 SE, n=8; one-sample t-test, t = 0.83, P > 0.05) 

as either 13C-DIC (ΣCO2+HCO3
-+CO3

2-) or as total 13C-organic carbon (bulk plus lipid 

fractions), with the proportion being evenly split (~50% each) between the two (Table 1). 

Finally, the percentage of 13C-CH4 recovered as 13C-organic carbon did not vary significantly 

between the repeat batch incubations (ANOVA, F7,7 = 1.49, P > 0.05) and was 52% (± 6 SE, 

n=8) on average (Table 5.1). 
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Figure 5.2:  Oxidation and incorporation of 13C-CH4 during repeat batch incubations with 

small amounts of riverbed gravel. Rapid initial rates of methane oxidation following each 

enrichment of the headspace with CH4.The sequential enrichment approach was to check 

whether the labelling (and therefore the assimilation of MDC) was linear over time.
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Table 5.1:  Summary budget for the recovery of oxidised 13CH4 as either dissolved inorganic carbon (∑DI13C= CO2, HCO3
- and CO3

2-) or total 
organic carbon in the first eight repeat batch incubations. Note, there was no significant difference between the recovery in either fraction and 
both were indistinguishable from 50% and, overall, the total recovery of 13CH4 was ~ 100%. Methane oxidised was calculated from time series 
gas chromatography measurements. DIC was calculated from 3 mL sub-samples of the water after each batch had finished and TOC from the wet 
oxidation assay performed on a subsample of the gravel after each batch incubation. 

Batch 1 2 3 4 5 6 7 8 
 

Time (hours) 51 90 119 166 212 289 344 414 
 

13CH4 oxidised (nmol g-1) 25 31 20 47 53 127 88 87 
 

Cumulative 13CH4 oxidised (nmol g-1) 25 56 75 122 176 302 390 477 
 

TO13C (nmol g-1) 15 34 49 62 86 57 274 183 
 

∑DI13C (nmol g-1) 12 13 9 33 32 63 49 49 
 

         
mean 

Recovered as TOC (%) 61 61 65 51 49 19 70 38 52 ± 6 
Recovered as DIC (%) 46 42 46 69 60 49 56 57 53 ± 3 

Total (%) 107 103 111 120 109 68 126 95 105±6 
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5.3.2 Quantifying the carbon fixation efficiency by the yield of 13C-DIC. 

In our follow-up short (<60 h) incubation the evolution of 13C-DIC was linear over the first 28 

hours, after which the small remaining pool of 13C-CH4 limited the rate of production of 13C-

DIC (Figure 5.3a). We then used the ratio of 13C-DIC produced per 13C-CH4 oxidised (0.48 ± 

0.02 SE, n=30; Figure 5.3b) during the first 25 hours (when linearity was greatest) to estimate 

carbon fixation efficiency through methanotrophy to be 0.52 (i.e., 1-0.48 x 100 = 52% 

efficient ± 2%). Note that this estimate of 52% was indistinguishable from that measured 

directly as fixed 13C-organic carbon over the previous 17 days of the repeat batch incubations 

(52 ± 6 SE, n=8, as above). 

 

Figure 5.3. The production of 13C-DIC over time used as a measure of carbon fixation 

efficiency by riverbed gravel methanotrophs during short-term incubations. (a) Production of 

13C-DIC from the oxidation of 13C-CH4 over ~ 60 hour to the point of CH4 limitation. Mean ± 

SE, n=5  (b) the 13C-DIC as a function of the amount of 13C-CH4 oxidised during the first 15h, 

when the linearity of DIC production was strongest (r2=0.93, P<0.001) and each datum is the 

result of a single incubation. The slope (0.48) is equivalent to the ratio of DIC to CH4 and 1 – 

0.48 is a measure of carbon fixation efficiency i.e., 0.52 x 100 = 52% fixed.  
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5.3.3 The effect of methane concentration on the oxidation kinetics and fixation efficiency 

We measured a clear kinetic effect of methane concentration, with the rate of oxidation 

increasing some 10 fold over the local seasonal range in river-water methane concentration 

(e.g. ~ 20 nM to 150 nM, inset Figure 5.4) and even beyond towards a potential plateau at 

approximately 7000 nM CH4 (Figure 5.4), indicating a high capacity for methane oxidation in 

these riverbed gravels. In contrast to the marked kinetic effect, there was no significant 

relationship between the fraction of 13C-CH4 recovered as DIC and the initial concentration of 

methane (Figure 5.4b) and over this range, the average carbon fixation efficiency was 53% (± 

0.01 SE, n = 40) and in good agreement with the previous trials which both yielded 52%. 

There was no effect on the rate of methane oxidation as a function of the proportion of 13C 

atom % within the CH4 with gravels exposed to the eleven different mixing ratios (Figure 5.5, 

p=0.185). 

 

Figure 5.4. Kinetic effects of methane on its rate of oxidation and the efficiency of carbon 

fixation. (a) Rate of methane oxidation as a function of methane concentration from below, 

within and far beyond ambient river concentrations (insert, 1st order linear regression r2=0.90 

within chalk river annual methane concentrations). (b) Carbon fixation efficiency exhibiting 
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no relationship with methane concentration from ~ 10 nM CH4 to 9000 nM CH4. The mean 

value estimated for efficiency of 53% (± 1) was indistinguishable to those determined either in 

the repeat batch incubations (52%, ± 6) or that from 13DIC over 15h (52%, ± 2, see Figure 

5.3). Each datum point is the result of a single incubation. 
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Figure 5.5. Methane oxidation rate at eleven different atom percent mixing ratios. There was 

no effect of using 13C-CH4 as a tracer on the rate of methane oxidation.
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5.3.4 Carbon fixation efficiency across multiple rivers and potential interference from 

copper 

The gravels collected from the eight rivers in our broader survey all oxidised methane with 

varying degrees of activity  (Figure 5.6a) with the slowest rate measured in the Ver gravels 

(1.6 nmol CH4 g
-1 h-1) and the fastest were those from the River Gade (10.3 nmol CH4 g

-1 h-1). 

Using the ratio of 13C-CH4 oxidised to 13C-DIC produced (as described above), we calculated 

the CFE for each river and they ranged from 0.4 (±0.14, SE) at the River Chess to 0.60 (±0.13, 

SE) at the River Ver. There was no relationship between the capacity for methane oxidation 

and the efficiency of the process (P=0.105) The difference between samples was not very 

strong (ANCOVA for rate x river P=0.015) and so to account for this moderate ‘river effect’ 

we treated ‘river’ as a random effect in a mixed-effects model and used that to derive an 

overall population estimate of the ratio of 13C-DIC produced per 13C-CH4 oxidised (ß 0.55, 

±0.055, SE d.f. 83). Accordingly, the model estimated the carbon fixation efficiency via 

methanotrophy across all eight rivers to be 45% (i.e. (1-0.55) x 100) (Figure 5.6b).  

 

The highest concentrations of copper were measured in the gravel plus UHP incubations (7.5 

µg Cu L-1), probably as a consequence of the dissolution of chalk in the mildly acidic UHP 

(~pH5.5). Gravels plus river water yielded a final concentration of 5.1 µg Cu L-1 which was 

greater than that for river water only (4.0 µg Cu L-1) and the UHP (2.3 µg L-1). Hence, we 

would conclude that the gravels are a natural source of copper to their associated biofilms. 
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Figure 5.6: Carbon fixation efficiency of methane oxidation in the riverbed gravels from eight 

chalk rivers. (a) Rate of methane oxidation as measured in the 13C-CH4 incubations used to 

calculate the CFE. Mean values, ±SE, n=10. (b) Pooled data for the 13C-CH4 time series 

incubations for all eight rivers.  
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5.4 Discussion  

Recently we demonstrated that chemosynthetic production coupled to the oxidation of 

methane is widespread throughout the 32 major chalk rivers of southern England (Shelley et 

al., 2014) and here we have clearly shown that the fraction of carbon fixed via that widespread 

methanotrophy is indeed high. In addition, the efficiency with which the riverbed 

methanotrophs fix carbon is independent of the methane concentration. The concentration of 

methane in the rivers studied here varies with the season, as indeed it does for many others, 

reflecting both greater production within the river and its wider catchment, plus changes in 

lateral import and oxidation in the river itself (Bouillon et al., 2012, De Angelis &  Lilley, 

1987, De Angelis &  Scranton, 1993, Kone et al., 2010, Sanders et al., 2007, Trimmer et al., 

2009a). Such efficiency, coupled to the methanotrophs’ high dynamic range for methane, will 

enable this chemosynthetic production to track the seasonal range of methane in the river 

water but also to exploit the much higher concentrations found in the depositional sediments; 

both in the channel margins and trapped beneath the luxuriant growths of Ranunculus spp. and 

Berula spp. (Sanders et al., 2007, Trimmer et al., 2009b).  

Here we have used the fraction of 13C recovered as 13C-DIC to more simply and directly 

quantify the efficiency of methanotrophic production, without the need to quantitatively 

extract and purify the organic fractions (Maxfield et al., 2012). We know that there was no 

significant loss of 13C-methanol (or other intermediate metabolite) through cell leakage or lysis 

during our initial phase of 13C-DIC production (that was then incorporated by non-

methanotrophs) because the production was linear and went through zero. Eventually, some of 

the 13C assimilated by the methanotrophs will be reworked and shared amongst other members 

of the gravel community, otherwise it would be of no greater ecological significance, but this 

process has been shown to de detectable only after some 2 to 3 weeks in soils (Maxfield et al., 
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2012). During this latter phase the 13C-DIC respired would no longer represent pure 

methanotrophy. However, we are confident that such an effect was negligible in our, much 

shorter incubations, for the following reasons. 

First, the 13C-DIC produced in our experiments was strongly diluted by the 12C-DIC produced 

by total community respiration, only making-up some 1.8% of the total DIC pool (12C+13C-

DIC). The chances, therefore, of 13C-DIC being fixed by any non-methanotrophic metabolism 

would have been negligible. Second, there was no increase in the rate of methane oxidation 

over the 17 days of repeat batch incubations, which indicated no net growth in the population 

of methanotrophs during this time. If this steady state was due to any growth being balanced 

by cell death, then those cells undergoing lysis would only have played a minor role in the 

metabolism and potential loss of any 13C-methane, especially during the short 13C-DIC 

experiments. If, however, there was only significant death, with no cell renewal, then not only 

would the rates of methanotrophy have systematically declined with time, but an isotopic 

steady-state would not have been reached during our initial batch incubations.  

It has been known for a long time now that the efficiency of carbon fixation via 

methanotrophy is heavily NAD(P)H dependent and that this dependency can be modulated by 

the form of nitrogen being assimilated for growth (Anthony, 1978, Leak &  Dalton, 1986b). 

For example, growth on nitrate would further exacerbate limitation by NAD(P)H because 

some of the NAD(P)H generated by the oxidation of CH4 would need to be expended reducing 

NO3
- to NH2 during assimilation, whereas this metabolic cost would be less for growth on 

NH4
+. The availability of copper also affects the efficiency of carbon fixation by regulating the 

synthesis of pMMO, which, compared to the soluble form (sMMO), has a lower overall 

demand for NAD(P)H (Leak &  Dalton, 1986a). Accordingly, with suffient copper enabling 

synthesis of pMMO, the thoretical carbon fixation efficiencies for growth are: 45% to 47% on 

NO3
- and higher at 59% to 62% on NH4

+ (Leak &  Dalton, 1986a).  
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Original work with 14C-CH4 in high-methane, land-fill cover soils, reported that 69% of 

methane oxidised was recovered from soils in the bulk organic carbon fraction, or a lesser 

fraction of 31% to 43%, in low-methane, forest soils (Roslev et al., 1997, Whalen et al., 1990). 

Here we directly determined the carbon fixation efficiency to be 45% on average (CI 36% to 

54%), for a sample of eight chalk rivers in southern England.  Having shown that the riverbed 

is a natural source of copper, we assumed that any expression of sMMO would have been 

neglible and that any methane oxidation would be driven by pMMO. In addition, the presence 

of sMMO appears rare, with it being absent from the vast majority of methanotrophs in pure 

culture (Chen and Murrell 2010). Note though, that these isolates fall into the group of low 

affinity methanotrophs (>40ppm~1.8µmol CH4 L
-1), whereas there are no pure cultures of the 

high affinity methanotrophs which these river-types would belong to (down to 0.02 µmol CH4 

L-1).  

With the good agreement between our carbon fixation efficiency of 45% and the original 

theorectical predictions for growth on NO3
-, we would infer that the riverbed methanotroph 

community is largely dependent on NO3
- for its N requirements. Nitrate is abundant (800 µmol 

L-1 on average) in chalk rivers, both in the overlying water and at depth in the riverbed (Pretty 

et al., 2006, Sanders et al., 2007). The upper limit of our efficiency estimate (54%) implies 

that some of the methanotroph communties maybe assimilating NH4
+ or, alternatively, that 

they are supplementing their growth by the co-metabolism of methanol (Chen and Murrell 

2010). While we have no data for methanol, we do know that these riverbed sediments are 

areas of intense mineralisation and NH4
+ is freely available in the porewater, albeit at 

concentrations orders of magnitude below those for NO3
- (Pretty et al., 2006, Triska et al., 

1994). In turn, the lower end of our estimate may reflect patchiness in the availabilty of copper 

or other restraints on growth (Leak and Dalton, 1986b). Overall, our findings suggest that 

chalk riverbeds provide a favourable habitat for methanotrophs. 
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The role of inland freshwaters in the global methane cycle is attracting renewed interest 

(Bastviken et al., 2011) but whereas the potential for methane oxidation is both high and well 

characterised in wetlands and lakes (King et al., 1990, Tranvik et al., 2009), data from rivers 

have been lacking. Here we have demonstrated that riverbed methanotrophs have a high 

capacity to oxidise methane as well as fix carbon very efficiently. Not only does the riverbed 

attenuate some of the potential efflux of methane before it outgases from the river but 

methanotrophy provides an alternative chemosynthetic source of energy, in parallel to the well 

documented route of photosynthesis. 
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Chapter 6: Conclusion and suggestions for future work 

6.1 Overview 

The data presented in the preceding chapters highlight widespread, efficient and ecologically 

important methanotrophic production in rivers. The activity of methanotrophs was driven by 

changes in the ambient methane concentration (i.e. substrate availability) which displayed 

seasonal and inter- and intra-river variation. Photosynthesis was also active on the surface 

layer of the riverbed, but there was not always net photosynthetic production (NPP).  In the 

subsurface hyporheic gravels, where it is dark, methanotrophy continues to fix new carbon and 

allochthonous ingress of fresh chlorophyll from the surface provides a supplement to 

autotrophic carbon. The natural (and in some cases anthropogenic e.g. influence of sewage 

treatment plants) variation in field sites adds strength to my findings because it means the 

general patterns found in the research have prevailed in spite of broad changes in catchment 

land-use, nutrient loadings and discharges. As such, the results presented here can be used, 

with confidence, when up-scaled to apply to groundwater fed rivers worldwide. Moreover, 

many of the conclusions are independent of the groundwater influence and, particularly those 

from chapter 3, can be applied to patches of oxic gravel riverbeds and/or anoxic fine sediment 

patches of riverbed irrespective of the wider hydrological patterns. 

6.2 The effect of methane concentration on the importance of MDC as a basal resource 

Perhaps the clearest outcome from this body of work is the substrate limitation of 

methanotrophy at riverine methane concentrations. This forms an integral part of the 

calculations and conclusions in all four data chapters. In chapter two I characterised the dose 

response of methanotrophy and used the linear relationship to normalise measurements of 

methanotrophic capacity to monthly riverbed methanotrophic production. I used the same 

principals to model the data from our laboratory measurements in chapter four. Interestingly, I 

found variation in the methanotrophic capacity across 15 rivers, between the shaded and open 
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stretches of those rivers and over time in the same stretch at the Bere Stream. The ambient 

methane concentration did not fully explain the changing capacity, which suggested that other 

factors influence the size of the methanotrophic community.  

Substrate availability played an integral part in shaping chapter three as the extent of substrate 

limitation determined the temperature dependence of methane oxidation. Moreover, the kinetic 

response to substrate was much stronger than the response to temperature. Methanogenesis has 

a strong temperature dependency but the high capacity for methane oxidation in the fine 

sediments, where methane is produced, combined with the kinetic response of methanotrophy, 

meant that methanotrophs will be capable of oxidising all of the methane produced in 

riverbeds even with a warming climate. However, even with this ability to oxidise methane 

over four orders of magnitude (2 nM – 20 µM), physical bypassing of the methanotrophs in 

the oxic sediment layer (either through ebullition or via plant stems) resulted in some of the 

gas escaping to the main channel water and then, ultimately, to the atmosphere. The 

relationship between microbial methane production and consumption with increasing 

temperature is such that the ratio of CH4 to CO2 emitted would remain constant. Thus, any 

change in the ratio of carbon gas emissions from aquatic systems as a function of temperature 

is likely due to the bypassing of methanotrophy rather than its inability to deal with rising 

methane concentrations.  

Finally, converting rates of methane oxidation to estimates of methanotrophic production 

would not have been possible without knowing the carbon fixation efficiency (CFE) of the 

riverbed methanotrophs (chapter five). Given the response to raised methane concentrations, it 

was important to test whether the CFE was affected by initial methane concentration, and it 

was not. CFE was not significantly related to methane concentration and remained constant 

from 10 nM - 10 µM at 53% (±1). Further, the CFE was constant across different rivers 

spanning a range of methane concentrations (22 -126 nM) and capacities for methane 
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oxidation (0.30-1.05 nmol CH4 g
-1 h-1) which was crucial for validating the rest of the work in 

this thesis. Without a constant CFE, calculation of methanotrophic production would have 

been extremely imprecise as the previously reported CFEs from the literature ranged from 6-

80% (Bastviken et al., 2003, King, 1992). 

6.3 The effect of light availability on the importance of MDC as a basal resource 

Light availability can affect the importance of MDC to riverine food webs in  two ways: first, 

the direct effect of light on the activity of methanotrophic bacteria, and second, the effect on 

photosynthetic production which ultimately reduces or increases the relative importance of 

MDC as it is the competing basal resource within the gravels. With regards to the first 

approach, there are no solid conclusions to be drawn from this thesis. Preliminary attempts to 

incubate small volumes of riverbed sediments (<5 g) with methane under varying light 

intensities suffered from typical batch incubation problems. The mixed biofilm contains 

photosynthetic organisms as well as methanotrophs and a whole host of other micro-

organisms. Even under low intensity lighting, photosynthesis drew the carbon dioxide 

concentration down to zero which pushed the pH up to 10, which inhibited methane oxidation. 

This is also likely to be the explanation for the photo-inhibition of methane oxidation observed 

in mixed cultures from a reservoir (Dumestre et al., 1999). The use of pH buffers could allow 

these laboratory incubations to progress but field measurements using the benthic chamber and 

conservative tracer method would perhaps offer a better solution. 

Chapters two and four address the question of how light affects the contribution of MDC by 

carefully modelling photosynthetic production. The study sites are famed for their high 

photosynthetic production but the dense stands of macrophytes, which can completely fill the 

channel in summer, heavily shade the riverbed and inhibit benthic NPP as a consequence.  The 

detailed modelling presented in chapter two used published irradiance decay coefficients (from 
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surface to riverbed as a function of macrophyte cover patch type) and long term light data 

(Trimmer et al., 2010), combined with a newly constructed photosynthesis-irradiance curve, 

chlorophyll content and oxygen evolution measurements (for GPP and NP) to model whole 

riverbed photosynthesis for each month. The strong seasonal trend in macrophyte cover had a 

larger impact on benthic NPP than the seasonal trend in sunlight intensity, resulting in dip in 

NPP in mid-summer. This chapter did not consider higher level, riparian shading, which can 

also drastically reduce riverbed irradiances in summer, limiting NPP and giving 

methanotrophic production a proportional increase in importance but this was addressed in 

chapter four. 

An unexpected finding in chapter four was the significantly greater capacity for methane 

oxidation in the shaded stretches of stream relative to the more open areas. The NPP was 

reduced in the shaded areas, but chlorophyll content was unchanged.  No single explanation 

for the increased MDC in the shade was found but the marginally higher methane 

concentrations here are likely to play a part, and preference for low light conditions and the 

photo-inhibition argument (Murase &  Sugimoto, 2005) cannot be ruled out. Irrespective of 

the precise explanation for this pattern, methanotrophic production is higher in shaded areas 

and NPP is lower resulting in very high (median 51.3%) contribution of MDC to primary 

production in the shade. As with the changing methane concentration, the riparian (mainly 

deciduous trees) and in-stream shading peak in mid-summer creating optimum conditions for 

methanotrophic production and poor conditions for NPP, results in MDC always being most 

significant in the summer. 
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6.4 Wider ramifications and upscaling of findings  

This body of work has shown that all riverbed sediments have the potential to oxidise methane 

even when the ambient methane concentrations are only marginally oversaturated relative to 

the atmosphere. Indeed, this in not unexpected as there is a plethora of research from soil 

scientists who have measured oxidation of atmospheric methane in surface soils (King et al., 

1989, Smith et al., 2000). Moreover, the riverbed methanotrophs increase their rate of 

oxidation linearly, in response to raised methane concentrations over at least four orders of 

magnitude (2-20,000 nmol L-1) which is a larger range than has been reported for wetlands, 

soils and lakes. These two characteristics lead me to conclude that this is a very plastic group 

of bacteria, but also crucially, they allow the upscaling of the results presented in the 

preceding four chapters to most freshwater systems.  

The techniques applied to calculate the methane oxidation rates, capacities and carbon fixation 

efficiencies can be applied to any type of aquatic sediment as long as the ambient methane 

concentration, oxygen saturation and temperature are known. The magnitude (i.e. the slope) of 

the linear kinetic response of methanotrophs (as shown in chapters 2, 3 and 5) will vary 

depending on the density of the methanotrophic population in a given sediment sample, but 

once this is calculated, using a dose-response experiment, the rates can be used to estimate 

seasonal and spatial patterns in methanotrophic production within that environment. As such, 

the next logical step would be to continue to build the library of methane oxidation potentials 

across rivers, broadening out to other geologies and stream orders to build a global model for 

riverbed methane cycling. Further, the results in this thesis show methanotrophy can oxidise 

all of the methane produced under anoxic conditions and yet rivers are net sources of methane 

to the atmosphere indicating that some is escaping the sediment. Therefore, further work is 

needed to quantify the alternative pathways of methane transport e.g. ebullition and plant stem 

transport, so that methane cycling in rivers can be accurately modelled. 
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6.5 Parallel research projects 

Aside from the research presented within this thesis, I have been involved with a number of 

other experiments, the most prominent of which centres on a suite of artificial channels and a 

larger NERC grant. Over two years myself and a post-doctoral researcher have used 

experimental channels to expose gravels and invertebrates to a range of methane and light 

treatments in order to disentangle the drivers of low δ13C values in grazing caddis fly larvae 

(as published in Trimmer et al. (2009)). Ambient methane concentration consistently dictated 

methanotrophic capacity and shading reduced chlorophyll but no discernable effect on the 

δ
13C values of the grazers was observed. This research is ongoing and I hope it will result in 

publication in the near future.  

Further afield, I spent six weeks on the RSS James Cook looking at carbon cycling in the 

North-Eastern Tropical Pacific oxygen minimum zone just off the Guatemalan coastline. I 

used isotope labelling techniques to measure aerobic and anaerobic methane oxidation and my 

water column profiling work indicated pelagic and benthic sources of methane. Sediment 

slurries showed high potential for methanogenesis but no potential for methane oxidation. I 

hope to combine my data with molecular results and publish the findings very soon. 
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