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Abstract

This thesis presents studies of the single top t-channel in the electron plus jets

mode. In order to understand this channel, an account of the present theoretical

models is given. This work relies on collisions data from the ATLAS detector and

its components are presented here. A summary of the work involving the SCT, part

of the tracking system in ATLAS, is also explained here. Studies were performed to

optimize the measurement of the Lorentz Angle of the holes in the Silicon for the

initial data taking period.

The data studied was acquired by ATLAS during 2011, with a total integrated

luminosity of 4.7 pb−1 at a
√
s = 7 TeV. Monte Carlo simulation of signal and

background events was also used throughout.

Background studies were performed to correctly determine the expected amount

of QCD via the Jet Electron data-driven method and of light or heavy flavour jets

produced in association with a W boson, which is one of the dominant backgrounds

for the t-channel.

A cut based analysis was then applied to the data and simulation in order to

better discriminate the t-channel signal. A binned likelihood fit to the invariant

mass of the reconstructed top quark was performed and the cross section value for

the t-channel process was calculated: σt−channel = 62.2±8.0(stat)+8.6
−8.8(syst) pb which

is in good agreement with the theoretically predicted value.

Finally, the response (precoT /ptrueT ) of light quark or gluon initiated jets is evalu-

ated for both the t-channel and the Wt associated production, in order to determine

the flavour composition uncertainty, as part of the framework that provides the jet

energy scale uncertainties in a multiple jets environment. Other sources of system-

atics are also reviewed.
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Chapter 1

Introduction

This thesis presents the work done as part of my PhD degree. The main topics

are the contribution towards the Semiconducter Tracker (SCT) and the analysis

performed to determine the cross section of the leptonic single top t-channel.

The top quark is the least known of all the other quarks present in the Standard

Model (SM). It was discovered at the Tevatron in 1995, by the CDF [1] and D∅ [2]

experiments and it has completed the three family structure of the SM. The top

quark mass is of about 175 GeV and its charge is 2/3e. It decays quickly and almost

exclusively as t→Wb.

The LHC particle collider is an ideal place for studies of the top quark, due to its

high energy proton collisions. These are exciting times for particle physics: the LHC

has acquired more data than ever before with higher energies than ever. As of July

2012 the Higgs boson was officially discovered at a mass MH ∼126 GeV with the

gg → H the dominant channel by the biggest experiments in the LHC: ATLAS [3]

and CMS [4].

The single top t-channel is the dominant process in the single top production,

at the LHC. Even so, the tt̄ production is twice as probable, making the signal

discrimination challenging. The data analysed in this work was acquired in 2011

and amounts to around 4.7 fb−1 in integrated luminosity. The statistics available is

enough for a measurement on the leptonic single top t-channel cross section, which

is the aim of this thesis. However, due to its signature being similar to part of

the tt̄ and to some of the W+jets background processes, there needs to be a robust

selection of events.

The contents of this thesis organize as follows. This chapter gives the motivation

for the work done.

Chapter 2 presents some theoretical background about the particles and inter-

actions of the SM. Some more recent results at the LHC are presented in the top

quark area: the mass and cross sections are the main ones.

16
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Chapter 3 describes the ATLAS detector and its main components. The trigger

system is briefly explained and an overview of the data acquired so far and future

plans is given.

Chapter 4 is about my contribution to one of the inner detector components, the

SCT. Calculations and studies towards the determination of the Lorentz angle are

presented and conclusions based on the results are made.

Chapter 5 explains the steps to scale data and simulation. The method for the

simulation of the QCD background based on a data-driven method is described.

Chapter 6 presents the cut based analysis of the t-channel. The objects needed to

select t-channel events are defined and reconstructed when needed. After a selection

of events, discriminating cuts are applied and a binned likelihood fit is performed to

the invariant mass of reconstructed top events. The cross section is then extracted.

Chapter 7 shows my contribution towards a tool to determine the uncertainty

associated to the jet energy scale in a multi-jet environment. Other sources of sys-

tematic uncertainties are listed, and the final cross section value with the associated

uncertainty is shown. Finally on Chapter 8 conclusions on this work are made.

In this thesis the convention ~ = c = 1 is used. Therefore momenta, energy and

mass are given in units of GeV.



Chapter 2

Theoretical Background

In this chapter, an introduction to the Standard Model of particles is given. The

properties of the top quark are presented, as well as the most recent experimental

measurements. Single top quark production is explained, with a special attention

to the t-channel, the object of study of this thesis.

2.1 The Standard Model

The Standard Model (SM) describes the physics of the strong and electroweak inter-

actions and was formulated between 1960 and 1970. It is the most accepted model

and has had, to this date, full experimental confirmation. The SM includes twelve

fermions, the top quark being one of them. These twelve fermions are divided into

leptons and quarks and the particles within each group belong to three distinct fam-

ilies with different masses. Besides the fermions, the SM also contains another kind

of particles, the exchange bosons.

Figure 2.1 [5] is a schematic diagram representing the elementary particles of

the SM: the three families of leptons and quarks and the bosons, which are the

force carriers. For each charged particle, there exists an antiparticle, with opposite

charge. Amongst the bosons, the photon is massless and mediates the electroweak

interactions, along with the massive bosons Z, W+ and W−. The gluon is the

mediator of the strong force. Table 2.1 presents the three families of fermions and

their properties: their helicity (L=left, R=right), the charge Q, the isospin T, the

third component of the weak isospin, T3, and the hypercharge Y. These will be

explained in the following sections.

The SM dynamics is determined through the Lagrangian:

LSM = LQCD + Lelectroweak. (2.1)

This is a classical construction, however it determines perturbatively the cross

18
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Figure 2.1: Scheme of the particles that constitute the Standard Model, all of them

experimentally observed: three families of quarks and leptons and the force carriers [5].

sections that can be measured experimentally. These are calculated through a per-

turbative series on the theory couplings, represented by the Feynman diagrams.

These diagrams are constructed through a set of Feynman rules that can be di-

rectly determined by the above Lagrangian. The kinetic terms of the fields give

its propagators and the remaining terms describe the interactions and determine

the vertices. With this set of rules it is possible to associate to each diagram an

analytical expression that allows us to compute a given cross section.

2.1.1 The Electroweak Theory

Structure of the Electroweak sector

Weak and electromagnetic interactions are described by the Weinberg-Salam-Glashow

model. These two forces are unified under a symmetric gauge group SU(2)L×U(1)Y .

This group acts differently on particles of different helicity (i.e. different helicity

fields group themselves in distinct representations) and is a spontaneously broken

symmetry. The electroweak Lagrangian can be divided into three parts:

Lelectroweak = Lgauge + Lfermions + LHiggs. (2.2)

The quarks and the leptons are grouped into SU(2) representations, according

to their helicity (L=left, R=right),
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Family Lepton T T3 Y Q Quark T T3 Y Q

νe,L
1
2

1
2

−1 0 dL
1
2

−1
2

1
3

−1
3

I eL
1
2

−1
2

−1 −1 uL
1
2

1
2

1
3

2
3

eR 0 0 −2 −1 uR 0 0 4
3

2
3

dR 0 0 −2
3

−1
3

νµ,L
1
2

1
2

−1 0 sL
1
2

−1
2

1
3

−1
3

II µL
1
2

−1
2

−1 −1 cL
1
2

1
2

1
3

2
3

µR 0 0 −2 −1 cR 0 0 4
3

2
3

sR 0 0 −2
3

−1
3

ντ,L
1
2

1
2

−1 0 bL
1
2

−1
2

1
3

−1
3

III τL
1
2

−1
2

−1 −1 tL
1
2

1
2

1
3

2
3

τR 0 0 −2 −1 tR 0 0 4
3

2
3

bR 0 0 −2
3

−1
3

Table 2.1: Fermions of the Standard Model and their respective charges with respect to

the electroweak sector SU(2)L×U(1)Y and to the U(1)Q groups. In terms of the strong

sector, SU(3), only the quarks transport colour.







leptons : ℓIL ≡




νe

e





L

, eR; ℓIIL ≡




νµ

µ





L

, µR; ℓIIIL ≡




ντ

τ





L

, τR;

quarks : qIL ≡




u

d′





L

, uR, dR; qIIL ≡




c

s′





L

, cR, sR; qIIIL ≡




t

b′





L

, tR, bR.

(2.3)

While ℓL and qL (which are doublets) rotate under SU(2)L, eR, tR and bR are left

invariant (they are singlets of this group). Thus SU(2)L only acts on left helicity

fields.

SU(2) has three generators {T1, T2, T3}. Each particle multiplet is an eigenstate of
∑
T 2
i and T3 (called the isospin). U(1) has one generator, Y , called the hypercharge.

The particle’s charge Q is related to its weak hypercharge and third component of

the weak isospin (T3) through Q = 1
2
Y + T3.

The kinetic and self-coupling terms of the massless Wµ and Bµ fields are given,

in its conventional form, by:

Lgauge = −

SU(2)
︷ ︸︸ ︷

1

4
F µν
i F i

µν −

U(1)
︷ ︸︸ ︷

1

4
BµνBµν , (2.4)
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with

F i
µν = ∂µW

i
ν − ∂νW

i
µ − g2ǫ

ijkW j
µW

k
ν , (2.5)

Bµν = ∂µBν − ∂νBµ. (2.6)

Where ~Wν is the three-component SU(2) gauge field and Bν is the U(1) gauge field.

The Pauli matrices indices are represented by i, j, k, while µ and ν are the Lorentz

indices. For the fermionic sector there is:

Lfermions =
∑

ψL

ψ̄LiD/ψL +
∑

ψR

ψ̄RiD/ψR, (2.7)

with

DµψR =

(

∂µ +
i

2
g1Y Bµ

)

ψR, (2.8)

DµψL =

(

(∂µ +
i

2
g1Y Bµ) +

i

2
g2~τ · ~Wµ

)

ψL, (2.9)

where ψL,R are the fermion fields, g1 and g2 are the electroweak couplings (associated

to the gauge field U(1)Y and SU(2)L, respectively), D/ = γµDµ, γ
µ the gamma

matrices, ǫijk the Levi-Civita symbol and ~τ the Pauli matrices.

Note that there is no mass term in the above expressions. To do this in a gauge

invariant way, which means remaining unchanged due to a local transformation of

the type φ(x) → eiα(x)φ(x) (α(x) is a function that depends on space and time in

an arbitrary manner), a mechanism in order to break the SU(2) symmetry and a

scalar particle called the Higgs boson are introduced.

2.1.2 QCD

The sector of the SM that describes the strong interactions is named Quantum

Chromodynamics (QCD) and is identified by the existence of local non-abelian SU(3)

symmetry (of colour). The fields that describe the quarks ψ(α) = (ψ
(α)
j ), where α

is the flavour index, are found in the fundamental representation of that group:

they transport colour and j = 1, 2, 3. In order for the theory to become invariant,

it is necessary to introduce a standard, non-Abelian (the symmetry group is non-

commutative) field, Aaµ, in which a is the colour index. The field is written in the

joint representation of the group: a = 1, . . . , 8. The field’s quanta are the eight

gluons. The Lagrangian for this sector then takes the form:

LQCD = −1

4
F µν
a F a

µν +
∑

α

ψ̄
(α)
j (iD/ jk −m(α)δjk)ψ

(α)
k , (2.10)
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with

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g3f

abcAbµA
c
ν , (2.11)

with g3 the theory coupling, m(α) the quark masses obtained from the electroweak

sector by spontaneous symmetry breaking, fabc the SU(3) structure constants and

Aaµ are the gluon fields. Dµ is simply the covariant derivative with respect to Aaµ,

Dµψ =

(

∂µ + ig3A
a
µ

λa
2

)

ψ, (2.12)

where λa are the Gell-Mann matrices.

By applying Equations 2.11 and 2.12 into Equation 2.10, the kinetic terms that

define the Feynman propagators can be determined along with the interaction terms

that are given by the vertices in the Feynmen rules.

CKM Matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is unitary and contains informa-

tion about couplings with the exchange of flavour and allows for interactions between

different family quarks to happen. It is [6]:

V ≡






Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






=






0.97427 ± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520 ± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0412+0.0011

−0.0005 0.999146+0.000021
−0.000046.




 (2.13)

This is a numerical matrix, determined experimentally and by using the unitarity

requirement. The CKM matrix determines the currents that change the flavour of

the quarks and these currents in its turn determine the vertices of interactions of

the type q1 → q2W
±, where a quark q changes flavour by emitting a charged gauge

boson. One can then interpret the CKM matrix as an indication of how favourable

a certain decay with a change of flavour is.

For example, the vertex of the decay t → Wb is proportional to Vtb = 0.999146,

whereas t → Wd is proportional to Vtd = 0.00867. The decay probabilities, are, as

a first approximation, proportional to V 2
tb and V 2

td. As Vtd << Vtb, t decaying into

b is much more probable. Higher order corrections in powers of Vtb and Vtd favour

this decay even more.
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Parton Distribution Functions

The protons can be treated as a set of partons (quarks and gluons) and its compo-

nents can be described by structure functions. Within this parton model context, the

calculation of production cross-sections at hadron colliders depends on the knowl-

edge of Parton Distribution Functions (PDF). The PDFs express the probability for

a parton i inside the proton to carry a fraction x of the proton’s momentum. This

distribution is described as a function of the squared momentum transfer Q2 carried

by the exchanged particle in the scattering process. The PDFs cannot be calculated

perturbatively, thus being evaluated through the measurement of deep-inelastic scat-

tering and jet production at colliders and extrapolated with the DGLAP1 evolution

equations[7, 8, 9, 10]. The DGLAP equations are a matrix equation of dimension

(2nf +1) where nf is the number of quark and anti-quark flavour that contribute.

In particular, the ZEUS and H1 experiments at HERA[11, 12] have performed fits

to the data acquired by HERA to extract parton distributions at low x, which is a

region dominated by gluons. Figure 2.2 shows the PDFs evaluated by the CTEQ

Collaboration that include data from experiments at HERA and Tevatron [13].

2.2 The Top Quark

The top quark belongs to the third family of quarks, according to the SM. It has

spin 1
2

and an electric charge of 2
3

times the electron charge. As it is a quark, it

transforms as a triplet according to the SU(3) group, responsible for the strong

force and forms, together with the b quark, a doublet according to SU(2)L from the

electroweak sector.

The top quark is very massive, nearly 35 times the mass of the b quark, posi-

tioning it close to the electroweak symmetry breaking scale. With such high mass

and since the Vtb element in the CKM matrix is greater than both Vtd and Vts and

very close to unity, the top quarks decays mainly as t→Wb.

The width predicted by the SM is, at next-to-leading order, NLO, and neglecting

the second order terms m2
b/m

2
t , α

2
s and (αs/π)M2

W/m
2
t [6]:

ΓNLO(t→ Wb) =
GFm

3
t

8π
√

2

(

1 − M2
W

m2
t

)2 (

1 + 2
M2

W

m2
t

)

[1 − 2αs
3π

(
2π2

3
− 5

2

)

], (2.14)

where MW and mt are the mass of the W boson and the top quark respectively, and

αs(MZ) the strong coupling constant. The width for a mass of mt = 171 GeV, based

on the world average, and αs(MZ) = 0.118 is 1.29 GeV and increases with the mass.

1DGLAP stands for Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
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Figure 2.2: Parton Distribution Functions for Q = 100 GeV, evaluated by the CTEQ

Collaboration, (CTEQ 6M) [13].

The top quark’s lifetime is very small, ∼ 0.5 × 10−24 s and so it decays before

hadronizing, and therefore any spin information is preserved by the decay products.

Due to all these properties, the top quark has been extensively studied by particle

colliders. It was the last quark to be observed, in 1995, by the Tevatron, at the

Fermilab laboratory, by the CDF [1] and D∅ [2] experiments. The Tevatron was

a proton-anti-proton collider, in operation between 1983 and 2011 and measured

most of the top quark properties, such as mass, top pair and single top productions

cross sections and kinematics. The latest Tevatron results are with a centre of mass

energy of
√
s = 1.96 TeV and it has acquired up to 10 fb−1 [14] of data.

Due to the differences of the energy of the centre of mass, between the Tevatron

and the LHC, the cross sections will be considerably different, and some physics

processes that were very hard to detect at the Tevatron, are easier to measure in

ATLAS. Figure 2.3 shows the different processes’ cross sections measured at the

Tevatron and predicted at the LHC [15].
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Figure 2.3: Cross sections of the different physics processes at the Tevatron and the LHC

as a function of the centre of mass energy (
√

s) [15].

2.2.1 Production of the Top Quark

Top quarks are produced mainly in pairs through quark pair or gluon fusion: qq̄ → tt̄

or gg → tt̄. At the Tevatron 85% of the top quark pairs are produced from qq̄ an-

nihilation, whereas at the LHCgluon-gluon fusion is the dominant way of producing

top pairs, creating about 90% for
√
s = 14 TeV (the design LHC centre of mass

energy) and 80% for a
√
s = 7 TeV. Figure 2.4 shows the Feynman diagrams for tt̄

production.

The NNLO cross section for the top pair at the Tevatron (
√
s = 1.96 TeV)

is σtt̄ = 7.93±0.36 pb for mt = 173 GeV, whereas for LHC (
√
s = 7 TeV) it is

σtt̄ = 165+10
−11 pb [16].

In this process, almost all the time, both t and t̄ decay to a W boson and a

b quark. But the W can decay into quark pairs or into a charged lepton and a

neutrino. Therefore, the final states for the top pair production are divided into

three sub-processes:
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Figure 2.4: The leading order Feynman diagrams for the tt̄ process. The gluon fusion

diagrams (bottom) dominate over the qq̄ diagram (top) at the LHC.

• all hadronic - tt̄→ W+bW−b → qq̄′b+ q′′q̄′′′b̄ (45.7%);

• lepton+jets - tt̄→ W+bW−b → qq̄′bℓ−ν̄ b̄+ ℓ+νbq′′q̄′′′b̄ (43.8%);

• dilepton - tt̄→W+bW−b→ ℓ+νb+ ℓ−νb̄ (10.5%);

where ℓ can be any charged lepton, electron, muon or tau.

Top quarks can also be created by electroweak single top mechanisms, such as

qq̄ → tb̄ and qb → q′t. These mechanisms have a smaller cross section and are

divided into three channels: t-channel, with the exchange of a virtual W boson, s-

channel with the decay of a virtual W boson and the associated production of a top

quark and a W boson. The Tevatron was able to observe the single top mechanism,

via the t-channel and s-channel, but observation of the associated production was

not possible due to its very small cross section. In pp̄ collisions at the Tevatron, the

production cross section for a top is the same as for an anti-top, however that is

not the case for the LHC. These three channels are presented in more details in the

following sections.

2.2.2 Top Quark measurements at the LHC

The LHC, in operation since 2009, has already provided accurate studies of the top

quark. With
√
s = 7 TeV (8 TeV in 2012) and a recorded integrated luminosity of
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5 fb−1 (20 fb−1 in 2012), already exceeding that from the Tevatron, 10 fb−1.

The mass of the top quark has been measured mainly through the production of

top quark pairs by all the capable experiments. Figure 2.5 presents the latest (as of

July 2012) measurements and combined values, in the Tevatron and the LHC [17].

Figure 2.5: Combined values of the top quark mass, measured by the experiments at CDF

and D∅ at the Tevatron and by ATLAS and CMS at the LHC [18].

Besides the mass, a number of properties are currently under study at the LHC.

Right from the beginning of its operation with proton collisions, both ATLAS and

CMS have had access to a number of top quarks candidates created and had the

ability to determine with an increasingly better precision the cross section of the

top quark pairs (173.3± 2.3stat ± 9.8syst pb [19]), the top charge, where the exotic

quark charge of -4
3
|e| was excluded [20], and other properties of the quark top, such

as tt̄ spin correlations, charge asymmetries and also properties related to the t-W-b

decay vertex, such as the helicity of the W bosons originating from the top decay

(all these properties compiled in [6]).

2.3 Single Top Quark Production

The production of a single top quark was officially observed in 2009, by D∅ [21] and

CDF [22] based on analyses counting events of t-channel and s-channel combined.

Single top quark production is sensitive to the parton distribution function (PDF)

of the light quarks in the proton. As mentioned before, there are three different

single top mechanisms:

• t-channel: also called ‘W-gluon fusion’, this is the dominant mechanism for

the single top production. It is characterised by the exchange of a virtual W
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Figure 2.6: Feynman diagrams of the single top production: (a) the s-channel, (b) t-

channel and (c) Wt associated production.

boson. The final state has a W boson decaying into a lepton plus a neutrino

and a quark;

• s-channel: is the least probable mechanism, involving the decay of a virtual

W boson into a t and a b̄. In the final state there are two b quarks, the other

one comes from the top decay and a W which can decay into a charged lepton

and a neutrino.

• Wt production: involves the associated production of a real W boson. The

final state has two W bosons, either one decaying leptonically (lepton and

neutrino) and other hadronically (quark pair) or both leptonically;

Figure 2.6 shows the Feynman diagrams of the three single top mechanisms:

(a) s-channel, (b) t-channel and (c) Wt associated production. The expected next-

to-next-to-leading order (NNLO) cross sections of each process are presented in

Table 2.2 [23, 24, 25].

Process σ [pb]

t-channel 64.2+1.8
−1.1

s-channel 4.6 ± 0.3

Wt 15.6 ± 1.2

Table 2.2: Expected NNLO cross sections for the three single top production mechanisms

at the LHC, at
√

s = 7 TeV, for mt = 173 GeV.

Table 2.2 indicates the expected cross sections of the single top mechanisms at

the LHC, with
√
s = 7 TeV, for a mt = 173 GeV. At the Tevatron, the t-channel

and the s-channel cross sections were first measured combined, and the measured

cross section for the two processes is σs+t = 2.76+0.58
−0.47 pb, for a mt = 170 GeV [26].
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The single top cross section is proportional to |Vtb|2, providing the only direct

measurement of Vtb without having to rely on the number of quark generations.

Single top production is a very interesting channel of study, because it poses an

important background to Higgs production (for example with ttH production) and

may be relevant to new physics searches, such as anomalous couplings, a fourth quark

generation, FCNC (production of a single top via flavour-changing neutral-currents)

and charged Higgs production.

Experimentally, the observation of single top quark production is somewhat chal-

lenging, not only because of the relatively small cross sections (the tt̄ cross section

is twice the t-channel one), but mainly because the signature of such processes is

not completely distinctive, as it is very similar to one branch of the tt̄ and has large

backgrounds composed mainly of W+jets processes and tt̄.

At the Tevatron, the discovery of the single top quark was through the combina-

tion of the t-channel and the s-channel as signal. The Wt production channel was

very hard to detect there.

At the LHC, as for the Tevatron, the t-channel is the dominant one, however the

least probable one is the s-channel. In Figure 2.7 one can see the relative amount of

each channel, for the Tevatron (left) and for the LHC (right).

Figure 2.7: The relative amount of each of the three single top channels for the Tevatron

(left) and for the LHC (right).

2.3.1 t-channel

Measurement of the t-channel is the goal of study of this thesis. It is the dominant

channel in the single top production. Experimentally, the way to look for this signal

is to detect the final state products and try to reconstruct the channel considered.

The top quark almost always decays into a W boson and a b quark. The W

can decay into a charged lepton and a neutrino. The lepton can be an electron e

, muon µ or a tau τ , however the τ decays leptonically or into a combination of
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mesons, making it a complex particle to reconstruct, so only the cases when the W

decays to an e or a µ are considered. Figure 2.8 on the left shows the diagram of the

production and decay of the top. On the right is a representation of the experimental

signature of the t-channel: the lepton and the neutrino and the quarks, represented

here as jets.

Figure 2.8: Diagram of the t-channel production and decay (left) and the experimental

signature of the t-channel (right).

Jets are the experimental manifestation of quarks in the detector, which sees

a quark or anti-quark as a shower of hadronized particles within a defined area of

energy. So the final state has the b-jet from the top decay, the light jet from the

top production and a second b-jet, that is very soft and emitted at very low angle,

thus escaping detection by the ATLAS detector. This b-jet is normally ignored in

the selection.

The latest published result for the t-channel in ATLAS is with a total integrated

luminosity of 1.04 fb−1 which corresponds to data acquired between March and June

2011 [27]. The cross section for the t-channel has been measured by selecting events

with two or three jets, one of them tagged as a b-jet, a charged lepton being an

electron or a muon and a large quantity of missing transverse energy (representing

the neutrino that cannot be fully detected in ATLAS).

The method applied for the determination of the cross section involves a set of

selection requirements in order to best isolate the signal and afterwards, because

the signal is still difficult to distinguish between the background, a multivariate

discriminant constructed with a Neural Network is applied. The Vtb component can

also be determined, since |Vtb|2 is proportional to the cross section, so one of the

first results for the t-channel in ATLAS is:

σt = 83 ± 4 (stat)+20
−19 (syst) pb,

|Vtb| = 1.13+0.14
−0.13, |Vtb| > 0.75, 95% CL.
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The background for the t-channel signal needs to be well studied, taking into

account Monte Carlo simulation of both the signal and the expected background,

based on the current theory models, and afterwards needs to be modelled to the

actual detector and the real data. The better knowledge one has of the detector,

the more precise is the measurement.

Since LHC has started operation recently, most measurements are still dominated

by the systematic errors, as can be seen in the following measurements. Figure 2.9

shows the most recent measurements of the Single Top processes cross sections in

ATLAS.
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Figure 2.9: Measurements of the single top processes cross sections in ATLAS as a

function of the centre of mass energy compared to the theoretical calculation based on

NLO QCD complemented with NNLL resummation. Only an upper limit is shown for the

s-channel [28].



Chapter 3

The ATLAS Detector

In this chapter, the ATLAS detector is described. ATLAS, A large Toroidal LHC

ApparatuS, is a multi purpose particle detector, of cylindrical shape with several

sub systems to detect the various particles involved. It is one of the four main

experiments of the Large Hadron Collider (LHC), part of the CERN laboratory,

based in Geneva, Switzerland. The LHC will be briefly described in this chapter,

and attention will be given to each of the sub detectors in ATLAS.

3.1 CERN

CERN, European Organization for Nuclear Research is one of the largest particle

physics research centres in the world. Its goal is as complex as the laboratory itself:

to understand the elementary world of the particles, achieving a knowledge of the

Universe and its creation.

CERN was founded in 1954 and nowadays it includes collaboration with more

than 20 countries.

3.1.1 The discoveries

Since the beginning of its existence, CERN has been providing a number of discov-

eries and breakthroughs, not only in physics, but in several fields, including medical

instrumentation, computing and electronics. Here are only a few of the many dis-

coveries made at CERN, throughout the times:

• In 1968 Georges Charpak developed the multi-wire proportional chamber, a

gas-filled box with parallel detecting wires connected to amplifiers, which pass

the information to a computer. This type of chambers is still used in detectors

for the tracking system;

32
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• In 1973, neutral currents are confirmed in a Gargamelle bubble chamber ex-

periment, by observing that neutrinos could interact with particles in a target

without producing charged leptons;

• 1983 was the year the bosons W and Z were discovered in proton-anti-proton

collisions;

• In 1990 the World Wide Web (WWW) was created to meet the demand for

information sharing between scientists all over the world;

• In 1995 anti-hydrogen atoms were created for the first time;

• In 2000 it was announced the discovery of a state of matter twenty times

denser than the nuclear one, in which the quarks, instead of forming protons

or neutrons, are free. This state is called quark-gluon plasma.

• In July 2012, ATLAS and CMS (Compact Muon Solenoid), the two multi-

purpose experiments, announced the discovery of a new particle consistent

with the Standard Model Higgs boson, thus approaching the completion of

such model.

3.2 LHC

The LHC is a particle accelerator and collider of beams of protons (or heavy-ions),

constructed in a circular 26.7 Km tunnel, the same tunnel used for the previous

experiment, LEP.

Figure 3.1 is a representation of the LHC, where the main experiments can be

observed: ATLAS, CMS (the two multi purpose detectors), ALICE (used for heavy-

ion physics) and LHCb (B-physics). Along the 26.7 Km accelerator, there are four

collision points of the two beams, one for each experiment. Dividing the LHC into

eight octants, ATLAS is situated in the first octant, between ALICE and LHCb and

CMS is right opposite, on the fifth octant.

Table 3.1 shows some quantities relevant to the LHC [30].

3.2.1 Luminosity in the LHC

The aim of the LHC is to reveal physics beyond the known Standard Model, with

collisions of protons of design centre of mass energy up to 14 TeV. The number of

events generated per second is given by [31]:

Nevent = Lσevent, (3.1)
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Figure 3.1: Scheme of the LHC, divided in eight octants [29]. The collision points and the

main experiments can also be seen. Beam 1 (showed in red) circulates clockwise, whereas

Beam 2 (showed in blue) circulates counter-clockwise.

where σevent is the cross section1 of that event considered and L the luminosity of

the machine, given by:

L =
N2
b nbfrevγr
4πǫnβ⋆

F, (3.2)

where Nb is the number of particles per bunch, nb is the number of bunches per

beam, frev the revolution frequency, γr is the Lorentz factor
(
γr = 1

q

1− v2

c2

)
, ǫn is the

normalized transverse beam emittance, β⋆ is the beta function at the collision point

and F is the geometric luminosity reduction factor due to the crossing angle at the

interaction point (IP):

F =
(

1 +
θcσz
2σ⋆

2)−1/2

, (3.3)

where θc is the full crossing angle at the IP, σz is the RMS bunch length and σ⋆

is the transverse RMS beam size at the IP. The previous expression assumes round

beams, σz << β and equal parameters for both beams.

1The cross section of an interaction is a measure of the likelihood of a specific process to occur

and is quantified as an effective area.
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Quantity number

Circumference 26 659 m

Dipole operating temperature 1.9 K

Number of magnets 9593

Number of main dipoles 1232

Number of main quadrupoles 392

Number of RF cavities 8 per beam

Design energy, protons 14 TeV

Operation energy, protons 7 TeV (2009-2011), 8 TeV (2012-onwards)

Nominal energy, ions 2.76 TeV/u (energy per nucleon)

Peak magnetic dipole field 8.33 T

Min. distance between bunches ∼7 m

Design luminosity 1034 cm−2 s−1

No. of bunches per proton beam 2808

No. of protons per bunch (at start) 1.1 × 1011

Number of turns per second 11 245

Number of collisions per second 600 million

Table 3.1: Some interesting design LHC parameters [30].

Therefore, when exploring rare events, both a high beam energy and a high beam

intensity are required [31].

3.3 ATLAS

ATLAS is a general purpose particle detector, that is designed to focus on the

measurement of the broadest possible range of signals.

The detector is of cylindrical shape, with various sub-detectors: from the centre

there is the inner detector, which identifies electrons and measures the momenta of

charged particles, including leptons. Through secondary vertex reconstruction, it

is also where jets are associated to heavy flavour quarks. After the inner detector

there is the calorimeter system, composed of the electromagnetic (EM) calorimeter

which identifies electrons and photons, the hadronic calorimeter which measures the

energy deposition of hadrons, such as protons, neutrons, pions and kaons and the

forward calorimeter which detects jets at very small angles. Neutrinos are inferred

from the overral missing energy and momentum. Finally in the outer layer, there is

the muon spectrometer (MS), to detect and measure the momenta of muons.

Figure 3.2 shows the ATLAS detector, with its main parts in evidence. ATLAS
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Figure 3.2: Computer generated image of the ATLAS detector [29]. People can be seen

on the left side, as scale.

is about 45 m long and 25 m high, and weighs about 7000 tons. It is roughly the

size of a 7-storey building. It is a very big collaboration of around 3000 physicists

and engineers from 38 countries around the world.

In subsequent sections, more details will be given for each of the subdetectors.

3.3.1 Main Requirements

With the unprecedented amount of luminosity and energy being reached at the LHC,

ATLAS will be able to observe new phenomena at the TeV scale.

The main objective is the search for the Standard Model Higgs boson, H . The

predominant decay mode would be to hadrons, which is a very difficult channel to

assess, due to the large amount of QCD background in the detector. The two-photon

decay mode is very important. One can also consider the associated production of

H , through tt̄H , WH , ZH with H → bb̄.

Besides the H searches, in masses up to 6 TeV, new heavy W ′ and Z ′ would

also be accessible in ATLAS. There are also searches for flavour changing neutral

currents and lepton flavour violation through decays such as τ → 3µ or τ → µγ.

Furthermore, it is possible to search for super-symmetric particles such as squarks

and gluinos, by measuring a large amount of missing transverse energy in the detec-

tor.
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Here are the main requirements for such ambitious physics goals [29]:

• Close to full azimuthal angle (φ) coverage and large acceptance in pseudora-

pidity (η) are required;

• The electronics and sensors of the several sub-detectors need to be fast and

radiation-hard. Also, a high granularity (η × φ) is necessary, in order to deal

with the particle fluxes and being able to reduce the influence of overlapping

events;

• In order to tag τ leptons and b jets by observing secondary vertices, vertex

reconstruction detectors need to be near the interaction point;

• For the electron and photon identification and measurements, a very good

electromagnetic calorimeter is necessary. In addition, a full coverage hadronic

calorimeter for jets and missing transverse energy measurements is needed to

complete the calorimeter system;

• Excellent muon identification and momentum resolution, from a low to high

pT range, and an unambiguous high pT muon charge determination;

• In order to achieve a reasonable trigger rate, a high efficiency triggering on low

momentum objects with sufficient background rejection is necessary.

3.3.2 Coordinate System

The ATLAS coordinate system is defined such that the beam direction defines the z

axis. The collisions point is the origin of the coordinate system. The positive x axis

points towards the centre of the LHC circumference and the positive y axis direction

is upwards. The x-y plane is transverse to the beam direction. The transverse

momentum, pT and energy ET are defined in such x-y plane. Figure 3.3 (a) represents

the Cartesian axis system in ATLAS.

In spherical coordinates, the azimuthal angle φ is the angle around the beam

axis. The polar angle θ is the one measured from the beam axis. A quantity widely

used in ATLAS is the pseudorapidity, η, defined as:

η = − ln tan
(θ

2

)
.

In Figure 3.3 (b), η as a function of φ is shown, for angles between 0 and π radians.

The distance in the pseudorapidity-azimuthal angle space, ∆R is also used, which

translates into a cone around an object and is given by:
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Figure 3.3: (a) Non scale schematics of the ATLAS coordinate system; (b) η as a function

of θ.

∆R =
√

(∆η)2 + (∆φ)2.

The design resolutions and |η| coverage for each of the subdetectors are presented

in Table 3.2 [29].

Components Resolution η Trigger (η)

Tracking
σpT

pT
= 0.05%pT ⊕ 1% ±2.5

EM Calorimetry σE

E
= 10%/

√
E ⊕ 0.7% ±3.2 ±2.5

Hadronic Calorimetry (jets)

Barrel and Endcap σE

E
= 50%/

√
E ⊕ 3% ±3.2 ±3.2

Forward σE

E
= 100%/

√
E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon Spectrometer
σpT

pT
= 10% at pT =1 TeV ±2.7 ±2.4

Table 3.2: General resolutions and |η| coverage of the ATLAS sub-detectors [29].

3.3.3 Inner Detector

The Inner Detector (ID) is, as the name indicates, in the inner-most layer of AT-

LAS. In Figure 3.4, the ID is represented. It consists of three independent but

complementary systems for the tracking of charged particles: the Pixel detector, the

Semiconductor Tracker (SCT) and the Transition Radiation Tracker (TRT).

The ID is 6.2 m long and has a maximum diameter of 2.1 m. It is surrounded

by a 2 T magnetic field generated by the central solenoid. Both Pixels and the SCT

cover the region |η| < 2.5. The goal is to provide a hermetic and robust pattern

recognition, excellent momentum resolution and the ability to measure both primary

and secondary vertices of charged tracks with a minimum pT as low as 0.5 GeV.
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Figure 3.4: View of the Inner Detector [29]. The innermost layer is the Pixels system,

followed by the SCT and the TRT.

Particles traversing the ID interact with the material which causes energy loss

and deviation from the trajectory. Because the main requirement of the ID is the

precise reconstruction of particles’ trajectories, the material in the ID needs to be

as minimum as possible. Figure 3.5 shows the amount of material expressed in

number of radiation length, X02, averaged over φ as a function of |η| separated by

the contribution of each sub-detector and the various services (area in red) required

to operate the ID.

Pixel

The Pixel system is the one closest to the IP. It consists of three layers of silicon pixel

sensor in the Barrel and three discs each side in the Endcap, of the same material.

The sensors are 250 µm thick, with oxygenated n-type wafers with the readout pixels

on the n+ implanted side of the detector. There are 1744 pixel sensors in total, which

can operate at voltages of up to 600 V in order to provide good charge collection

efficiency throughout the years of use. The size of one pixel sensor is 50×400 µm2 for

90% of the sensors, and the rest are 50×600 µm2. There are in total 46080 readout

channels.

2Radiation length, X0 is the mean path length required to reduce the energy of high energy

electrons through Bremsstrahlung by the factor 1/e, or 0.368, as they pass through matter.
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Figure 3.5: Material in the ID in terms of radiation length X0 as function of |η| [29].

SCT

The SCT consists of four cylindrical layers in the Barrel and nine disks on each side

of the Endcap. Each layer contains modules of two pairs of single-sided micro-strip

sensors glued back to back. There are a total of 15912 sensors of p-in-n junction3

with AC-coupled readout strips.

In Chapter 4 a more extensive description is provided.

TRT

The TRT consists of Polyamide drift, straw-shaped, tubes. The straw tube wall was

developed to have good electrical and mechanical features within a small amount of

material and is made of two 35 mm multi-layer films glued back to back. The TRT

provides discrimination between electrons and pions over the energy range between

1 and 200 GeV by utilizing transition radiation. Transition radiation happens when

a charged particle passes through inhomogeneous media.

The TRT provides a large number of hits per track (usually 36) and allows

3p-n junction consists of two semiconductor regions with opposite doping type. Current will

flow readily in one direction (forward biased) but not in the other (reverse biased). The -n is the

conducting band while the p- is the valence band. When a p-n junction is formed, some of the free

electrons in the n-region diffuse across the junction and combine with holes to form negative ions

in the depletion area.
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Figure 3.6: View of the Calorimeter system [29]. The inner part is the electromagnetic

calorimeter. This is surrounded by the hadronic calorimeter system.

tracking up to |η| < 2.0. It only provides R−φ (R denotes radial length) information

when an intrinsic accuracy on 130 mm per straw is provided. In the Barrel region,

the straws are 144 cm long and run parallel to the beam axis. In the Endcap, the

37 cm long straws are arranged radially in wheels. The total number of readout

channel is around 351000.

3.3.4 Calorimetry

The calorimeter system provides the information on both position and energy of a

given particle with excellent resolution.

A calorimeter works by collecting and measuring the energy deposited by a par-

ticle shower. The energy may be measured fully if the calorimeter is able to fully

contain the particle shower, or it can be sampled, which is the case of the calorimeter

under discussion. Calorimeters typically consist of layers of absorbing high density

material, such as lead alternated with layers of active medium, like solid lead-glass

or liquid argon.

In Figure 3.6 the system of calorimeters in ATLAS is presented. It consists of two

sub-systems: the EM calorimeter and the hadronic calorimeter. The calorimeters

cover a range |η| < 4.9, so they have to cope with the specifics of the different

physics processes that occur through them. They consist of sampling detectors with

full symmetry in φ and good coverage around the beam axis.
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The EM calorimeter detects the particles that interact electromagnetically, such

as charged particles and photons, whereas the hadronic calorimeter absorbs the

energy from the particles that go through the EM calorimeter and interact via the

strong force; these are mainly hadrons, as the name suggests.

EM Calorimeter

The EM calorimeter is the closest to the beam line. It is divided into a Barrel part

(|η| < 1.475) and two Endcap components (1.375 < |η| < 3.2), all of them enclosed

in their own cryostat. There is a centre solenoid in front of the EM calorimeter,

which shares the same vacuum vessel with the ID, thus eliminating the need for two

vacuum walls. The active medium of the EM is lead-liquid Argon (LAr) and the

absorber medium is lead over the full coverage of the system. The EM calorimeter

consists of accordion-shaped kapton electrodes. Such geometry gives full φ symmetry

without cracks in the azimuthal component. In terms of radiation lengths, the total

thickness of the EM calorimeter is more than 22 X0 in the Barrel and more than 24

X0 in the Endcap.

The Barrel is divided into two halves, separated in z = 0 by a gap of approxi-

mately 4 mm. Each Endcap is divided into two coaxial wheels: the outer one covers

the region 1.375 < |η| < 2.5 whereas the inner one covers 2.5 < |η| < 3.2.

For the region |η| < 1.8, a presampler detector is used to correct for the energy

lost by electrons and photons before the detector. This presampler consists of a

1.1 cm layer of active LAr in the Barrel and a 0.5 cm layer of active LAr in the

Endcap.

Hadronic Calorimeter

The hadronic calorimeter is the next system after the EM calorimeter. In Fig-

ure 3.6 the different subsystems are shown: the Tile Barrel and extended Barrel,

LAr hadronic Endcap and the LAr forward calorimeter.

• Tile Calorimeter. The Tile calorimeter is a sampling calorimeter with steel

as the absorbent medium and scintillator as the active medium. Radially, it

extends from an inner radius of 2.28 m to an outer radius of 4.25 m. It is

composed of a Barrel, that covers |η| < 1.0 and two extended Barrels, covering

0.8 < |η| < 1.7. These two parts are divided azimuthally into 64 modules.

The Tile calorimeter is segmented in depth in three layers of different inter-

action lengths (λ): 1.5, 4.1 and 1.8 (Barrel) and 1.5, 2.6 and 3.3 (extended

Barrel). The total detector thickness, in terms of interaction length is 9.7 λ, at
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η = 0. Two separate photomultiplier tubes read out, by means of wavelength

shifting fibres, the two sides of the scintillating tiles.

• LAr Hadronic Endcap Calorimeter. The Hadronic Endcap Calorimeter

(HEC) has a flat designed copper/liquid-argon (copper plates interleaved with

the active medium LAr) sampling calorimeter, which covers 1.5 < |η| < 3.2. It

shares each of the two liquid-argon Endcap cryostats with the EM calorimeter

Endcap and the forward calorimeter. The limits of the range in η overlap with

both the EM calorimeter and the forward calorimeter in order to reduce in

material at the transitions with these detectors.

The HEC is composed of two wheels in each Endcap cryostat, the front and

the back wheel, containing two longitudinal sections. These four wheels each

have 32 identical wedge shaped modules. The wheels closer to the interaction

point are built from 25 mm parallel copper plates, whereas the ones further

away have 50 mm copper plates. The inner and outer radius of the copper

plates is 0.475 m and 2.03 m respectively.

• LAr forward calorimeter. The Forward Calorimeter (FCal) shares its cryo-

stat with the Endcaps of the calorimeter and provides a coverage of 3.1 <

|η| < 4.9. As it is quite close to the other systems, it is of a hermetic design

and allows for less energy loss in the cracks and minimises background for

the Muon system. The FCal is approximately 10 λ, and each FCal side is

composed of three 45 mm deep modules: one electromagnetic module (FCal1)

and two hadronic modules (FCal2 and FCal3). Copper plates are the absorber

medium for FCal1 and tungsten is the absorber for FCal2 and FCal3, in order

to contain and decrease the lateral spread of the hadronic showers.

Also to reduce background in the Endcap muon system, a shielding plug of

copper alloy was mounted behind the FCal3.

3.3.5 Muon System

The Muon system is the outer most layer of the ATLAS detector. It is shown in

Figure 3.7. It is designed to detect charged particles exiting the detector (mainly

muons) and measure their momentum in a range of |η| < 2.7. It also serves to

trigger high energy muons. The toroids that can be observed in Figure 3.7 are large

superconducting air core toroid magnets and serve to bend the trajectories of the

muons. In the Barrel the toroid has a trajectory coverage over a range of |η| < 1.4

and in the Endcaps over the range of 1.6 < |η| < 2.7. In the range 1.4 < |η| < 1.6,

which is a transition region, the magnetic deflection is given by a combination of
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Figure 3.7: View of the Muon system and its different composing parts [29].

Barrel and Endcap fields. The other components of the muon system showed in

Figure 3.7 are: Monitored Drift Tubes (MDT), Cathode Strip Chambers (CSC),

Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC).

The MDT provide a precision measurement of the track coordinates in the de-

flecting direction of the magnetic field over almost all η range. The drift tubes are

mechanically isolated to ensure a reliable and robust operation.

The CSC are multi-wire proportional chambers with cathodes segmented into

strips and cover the range 2 < |η| < 2.7, placed in the innermost plane of the

system.

The RPC and TGC are part of the triggering system. The RPC are used in the

Barrel and the TGC in the Endcaps; they cover the region |η| < 2.4 and serve three

purposes: provide bunch crossing identification, give well defined pT thresholds and

measure the muon coordinates which are orthogonal to the one determined by the

precision tracking chambers.

3.3.6 Magnetic System

The magnetic system involves the whole of the ATLAS detector. It is composed of

four systems of large superconducting magnets, as listed below:

• Central Solenoid: is aligned with the beam axis and provides a 2 T magnetic
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(a) (b)

Figure 3.8: (a) shows a schematic diagram of the magnet system with the magnetic field

lines indicated. (b) shows the mapping of the magnetic field intensity around the central

solenoid [32].

field to the ID. Because of its proximity to the calorimeter, the material thick-

ness next to the calorimeter needs to be very small, in this case of 0.66 λ at

a normal incidence. The inner and outer diameters of the solenoid are 2.46 m

and 2.56 m, with an axial length of 5.8 m. The conductor used is Al-stabilised

NbTi, developed to achieve high fields while optimized the thickness.

• Barrel toroid: creates a 0.5 T magnetic field for the muon detectors around the

centre. It consists of 8 flat superconducting race-track coils around the outer

calorimeter structure, individually encased in stainless steel vessels. These

coils are supported by 16 rings. Its conduction material is similar to the

central solenoid: Al-stabilised Nb/Ti/Cu conductor.

• Two Endcap toroids: create a 1 T magnetic field for the muon detectors in

the Endcaps. They can slide along central rails to facilitate access to other

components. Each Endcap is composed of one cold mass inserted into the

cryostat, eight coils and eight keystone wedges, all bolted and glued together

into a rigid structure. Their inner and outer diameters are 1.65 m and 10.7 m,

respectively.

Figure 3.8 (a) shows the shapes of all the magnet system components, as well as the

field lines along the structure. Figure 3.8 (b) shows the mapping of the magnetic

field intensity along the central solenoid, which goes up to 2 T.
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Figure 3.9: Scheme for the Trigger system. There are three distinct trigger levels: Level 1,

Level 2 and Event Filter, which accept decreasing rates of data [33].

3.3.7 Forward Detectors

In addition to these main components described in the previous sections, there are

three smaller detecting systems in the forward region of ATLAS:

• LUCID - LUminosity measurement using Cherenkov Integration De-

tector, situated at ± 17 m from the IP, as the full name indicates, this system

determines the luminosity delivered to ATLAS. It is the main online monitor

for the relative luminosity in ATLAS. It also detects inelastic p-p scattering

in the forward region.

• ALFA - Absolute Luminosity For ATLAS, situated at ± 240 m of the IP.

It also measures the luminosity via scintillating fibre trackers inside Roman

pots designed to approach the beam as close as 1 mm.

• ZDC - Zero Degree Calorimeter is located at ± 140 m from the IP and its

goal is to detect forward neutrons in a range |η| < 8.3 in heavy-ion collisions.

3.3.8 Trigger System and Data Acquisition

The Trigger system consists of three levels of event selection: Level-1 (L1), Level-2

(L2) and Event Filter (EF). The L2 and EF compose the High Level Trigger (HLT).
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Figure 3.9 shows a schematic diagram of all these levels for the trigger system [33].

The L1 Trigger is implemented using electronics. It searches for signatures from

high pT muons, electrons/photons, jets, τ leptons that decay into hadrons, miss-

ing transverse energy and large total transverse energy. The information from the

RPC and TGC, described above, is used by the L1 for the high pT muons. For the

remaining signatures, the calorimeter systems are used. The maximum rate which

the L1 readout systems can handle is 75 kHz and its decision time is within 2.5 µs

after the associated bunch crossing. The regions of the detector where the L1 has

identified possible trigger objects in the event are called Regions of Interest (RoI’s).

These carry information on coordinates (η and φ), energy and type of signatures.

The events selected by the L1 are passed to the readout drivers (RODs) via deran-

domizers, which average out the high data rate at the output to match with the

input bandwidth of the RODs.

The L2 trigger then uses the RoI information to limit the amount of data trans-

ferred from the detector readout. It reduces the event rate to around 3 kHz, with a

processing time of up to 40 ms. The information then passes to the readout buffers

(ROBs) and from there to the EF, in a process called event building. The EF uses

offline analysis procedures on fully-built events to further select events and to be

able to reduce its rate to about 200-600 Hz, with an average processing time of

about four seconds.

The whole HLT uses the data from the whole detector (muon system, ID and

calorimeters) given full information on granularity and precision, since information

on energy deposition improves the selection threshold cuts.

The Data Acquisition system (DAQ) receives and stores data temporarily in local

buffers. If an event is associated with a RoI, the L2 passes that event. The events

selected by the L2 are then passed on to the EF for final selection. The events that

pass the EF are moved to permanent storage at the CERN computer centre. The

DAQ is also used to monitor and control the software and hardware components

that provide the data-taking tasks.

3.3.9 Radiation

The main source of background radiation in ATLAS comes from the IP. At smaller

radii, the dominant background radiation is in the inner detector, created by charged

hadrons from inelastic proton-proton interactions. At a larger radius other sources

of background are dominant, mainly from neutrons.

Most of the energy from primary particles is absorbed in two regions: the FCal

and the Target Absorber Secondary (TAS) collimators, which end up being the

sources for secondary radiation.
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In order to contain the effects from radiation, around 3000 tonnes of shielding are

used in ATLAS. These are composed of three-layers: the inner layer, made of iron or

copper stops high energy hadrons. The second layer is made of doped polyethylene

hydrogen enriched and moderates the neutron radiation that escapes from the first

layer. The third layer is made of steel or lead and stops the photons created by

neutron capture.

3.3.10 Acquired Data And Detector Performance

From March 2010 up until November 2011, the LHC has been running at a centre-

of-mass energy (
√
s) of 7 TeV and ATLAS has recorded around 5 fb−1. During

this time the LHC delivered a total of 48.1 pb−1 of integrated luminosity during

the 2010 operation, and a total of 5.6 fb−1 of integrated luminosity during the

2011 operation. Furthermore, from March 2012 until December 2012, the LHC

has been running at a centre-of-mass energy of 8 TeV and ATLAS has recorded

around 20 fb−1. The highest instantaneous luminosity achieved during this period

was 7.4×1033cm−2s−1 [34].

Since 2009 ATLAS has been successful in acquiring data. A timeline of the

ATLAS operation can be summarised as:

• End of 2009 - Second startup of LHC and first event collisions at a total energy

of 0.9 TeV and later at 2.36 TeV. This was the highest achieved collisions

energy ever;

• March 2010 - Proton-proton collisions with a centre of mass energy of 7 TeV,

for about eight months. Also there were a few days of heavy-ion collisions in

November;

• March 2011 - A full year of intensive data taking at 7 TeV, followed by a few

weeks of heavy-ion collisions and a winter shutdown;

• March 2012 - Event collisions at
√
s = 8 TeV. Another year of intensive data

taking;

• 2013 - A shutdown is scheduled to prepare ATLAS to increase the energy up

to its design value of 14 TeV;

• Next 15-20 years - Data taking and publications are due to continue.

Figure 3.10 (a) shows, the delivered online luminosity in the years 2010, 2011 and

2012, for the p-p collisions and the Pb-Pb collisions. The latest we acquired during

a few weeks in November 2010 (magenta line) and November 2011 (torquoise line).
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Figure 3.10: (a) Delivered luminosity throughout the months for the years 2010, 2011

and 2012, for the p-p collisions (green, red and blue lines) and the Pb-Pb ones (torquoise

and magenta). (b) Total integrated luminosity for the year 2011, delivered to (green), and

recorded by ATLAS (yellow) [35].

Figure 3.10 (b) shows the total integrated luminosity for the whole 2011, in which this

thesis will mainly focused. This luminosity is accumulated in ATLAS from the start

of stable beams until the LHC requests to turn the sensitive detectors off, to start

a beam dump. This luminosity is obtained through counting rates provided by the

luminosity detectors, which are calibrated via the Van-Der-Meer beam-separation

method, where the two opposing beams are scanned in the horizontal and vertical

planes in order to be able to measure their overlap functions [35].

The first performance studies were done with the first collisions in 2009 [36]. The

overall efficiency for data-taking was about 90% and the subdetectors operated in

general at 99%. Collision candidates were selected with very low background levels.

The Trigger/DAQ computing infrastructure was very effective. The tracking and

electromagnetic calorimeter were the most tested, due to their proximity to the in-

teraction point and performed well [36]. For the tracking system, there was a very

precise clustering due to studies related to incident and Lorentz angles and very

good spatial resolution. Its hit efficiencies, resolutions and particle identification ca-

pabilities are well modelled by Monte Carlo simulations, indicating that the tracking

system is well understood. Good calorimeter performance was demonstrated by the

measurement of the resolution of the missing transverse energy, following the expec-

tations from Monte Carlo over the entire energy range studied [36].

Figure 3.11 shows the relative fraction of good quality data for the most recent

pp collision runs. As can be seen, the overall performance is nearly 96% and the
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Figure 3.11: Relative fraction of good quality data obtained between April and December

of 2012 amounting to 21.3 fb−1, weighted by luminosity for the different subdetectors in

pp collisions at
√

8 TeV [37].

detector uptime is higher than 99% for all systems.



Chapter 4

Lorentz Angle Studies In The

ATLAS SCT

This chapter describes the Semiconducter Tracker (SCT) and the calculation of the

Lorentz angle.

4.1 The SCT

The SCT is a high resolution tracking system which measures the trajectories of

charged particles produced in particle interactions at high energy at the LHC. It

is a part of the Inner Detector, along with the Pixels detector (closest to the col-

lision point) and the TRT. These three detectors are designed to allow precision

measurements of charged particles trajectories where numerous tracks are present.

The Pixels mainly measure vertices accurately, whereas the SCT measures precisely

the particle momenta and the TRT facilitates the pattern recognition, through its

large number of hits.

51
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Figure 4.1: Top, diagram of a quarter-section of the inner detector system, in terms

of the z and radial distances. Bottom, a scheme of the SCT cylindrical shape. Both the

Barrel and the Endcap are shown [29].

In Figure 4.1, top, is a diagram of a quarter-section of the Inner Detector system:

the Pixels, SCT and TRT, where the z and radial distances are shown, as well as

the |η| coverage. The ID covers a region of |η| < 2.5. The bottom diagram shows

the shape of the SCT: cylindrical, with the Barrel layers around the collision point

and the Endcap layers perpendicular to the beam direction.

The SCT is a system of 4088 Silicon Strip modules. 2112 of the modules are

distributed through four layers around the beam pipe (Barrel) and 1976 modules in

18 disks (nine on each side) perpendicular to the beam pipe (Endcap).

The SCT uses semiconductor technology, each module is built with two pairs

of single-sided, p-in-n silicon micro-strip sensors glued back to back around a high

thermal conductivity substrate.

When silicon is doped in a manner that a region of n-type is adjacent to a p-

type, a p-in-n junction is created. For the p-in-n junction to be in thermal energy,

the Fermi energy1 must be at the same level on both sides. This equilibrium hap-

pens with a small transfer of electrons from the n-type to the p-type, where they

will annihilate with the holes. When this transfer happens, a region without free

1Fermi energy is the energy difference between the highest and lowest occupied single-state

particles in a quantum system of non-interacting fermions at absolute zero temperature.
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charge carriers is created, called the depletion zone. In this zone, the donor and

acceptor ions are locked into the lattice creating a region of space charge, that in

its turn originates a potential difference across the junction which bends the valence

and conduction bands. Valence band is the highest energy band that is occupied

and conduction band is the next group of electron energy levels above the valence

band [38]. Figure 4.2 shows the described behaviour of a p-in-n junction: a) shows

p- and n- zones, with the junction at x = 0, b) shows the variation of the charge

carrier concentration with x. c) Shows the charge density, ρ(x) and d) shows the

bending of the valence and conduction bands.

Figure 4.2: Schematics of a p-in-n junction in silicon: a) p- and n- zones, with the

junction at x = 0, b) the variation of the charge carrier concentration with x, c) the

charge density, ρ(x) and d) the bending of the valence and conduction bands. [38].

The sensor strips are AC coupled to binary read-out electronics with the ABCD3TA

custom ASICs providing front-end amplification, discrimination, pipeline, deran-
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domisation and data compression functions. A threshold of 1 fC is used to detect

charge deposited on the strip [39].

The design of the SCT modules is shown in Figure 4.3, for the Barrel (left) and

the Endcap (right). For the Barrel modules, the readout is between the two pairs of

sensor strips, whereas for the Endcap modules it’s located at the extremity of one

of the pairs. The two sides of the strips are rotated by an angle of 40 mrad.

The ID is surrounded by a 2 T magnetic field created by the central Solenoid.

This magnetic field is perpendicular to the modules of the Barrel and parallel to the

ones in the Endcap.

4.2 The Lorentz Angle

The presence of a magnetic and electric fields generate a Lorentz force: the charge

carriers drift at an angle, called the Lorentz angle. A particle passes through the

silicon and generates charge carriers which drift along a direction at an angle φL

(Lorentz angle) with respect to the electric field direction.

In Figure 4.4 a schematic view of particles crossing the silicon is shown. The top

diagram shows a particle passing through the silicon perpendicularly; the charge

carriers drift to the sensor and a hit is recorded if the deposited charge is above a

certain threshold. In the bottom diagram, the incident particle crosses the sensor at

an angle equal to the Lorenz angle, and the mean number of strips above threshold

(cluster size) is a minimum in this case.

The Lorentz angle can be measured in the Barrel, where the magnetic field

is perpendicular to the drift. For the Endcaps, the drift being almost parallel to

the magnetic field, the Lorentz angle is approximately zero. The charge carriers

considered for the SCT are the holes collected at the p-implant electrode.

4.2.1 Lorentz Angle Model Prediction

Theoretically, the Lorentz angle φL of the silicon in a magnetic field B is given

by [41]:

tanφL = µHB = γµdB, (4.1)

where µH is the Hall mobility, γ is a Hall factor, which is of the order 1 and µd is

the drift mobility, proportional to the drift velocity, vd. The following relationship

holds: µd = vd

E
, where E is the electric field.

According to the digitisation model [42], the electric field along the z direction

of the sensor depth is given by:
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Barrel Module

Endcap module

Figure 4.3: Modules used in the Barrel and Endcap of the SCT [29].
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Figure 4.4: Diagram of a particle passing through the silicon: the top figure shows a

particle crossing the module perpendicularly. The bottom figure shows the particle crossing

the sensor at the Lorentz angle [40].

Ez =
VB + VD

d
− 2

VD
d2
z, (4.2)

where VB is the bias voltage necessary for the sensor to work, with its nominal value

of 150 V, VD = 70 V is the depletion voltage, d is the sensor thickness (285µm). The

Lorentz angle is estimated in the centre of the sensor at z = d/2. The theoretical

Lorentz angle value is predicted using Equations 4.1 and 4.2, for a temperature

T = −2◦ C (Layers 0, 1, 2) or T = 4.5◦ C (Layer 3) and a magnetic field B of 2 T,

with a drift velocity vd of 2.29 × 106 cm s−1 [42]:

φL(T = −2◦) = 3.88 ± 0.28, φL(T = 4.5◦) = 3.71 ± 0.27, (4.3)

where the errors come from the model and are obtained with the uncertainties

mentioned in Section 4.2.2. These are the values shown for the model expectation

comparison in all the Lorentz angle results given in this chapter.
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4.2.2 Drift velocity uncertainty

As shown in the next sections, the value for the Lorentz angle for collisions data

differs from the one predicted by the model. The cosmic data results fail to show that

this discrepancy due to the large statistical error associated with the measurement,

derived from the low number of events available after selection.

The Pixel group already reviewed the uncertainty in the drift velocity, which in

the case of this detector is the drift velocity of electrons, from 5% to 12% (see [40]),

based on a set of different references. The Lorentz angle value in the Pixel system

is also above the model prediction, but within the uncertainty [43]. The uncertainty

on the drift velocity vd dominates the systematic error, along with the electric field’s

non-uniformity, both currently set to 5%. In this section only a possible change in

the drift velocity uncertainty is attempted, since the literature has not suggested

a variation in the electric field uncertainty. The temperature and magnetic field

variables also contribute to the systematic error in the Lorentz angle, but to a

smaller degree, 0.03 degrees and 0.75%, respectively. The bias voltage and impurity

in concentration uncertainty values are negligible. The expression for vd is given by

the parametrization [44]:

vd = µdE = vs
E/Ec

[1 + (E/Ec)β]1/β
. (4.4)

Where E (V/cm) is the electric field, vs (cm/s) is the saturation velocity, Ec

(V/cm) is the electric field scale at which the transition from the linear regime

to the saturation occurs, and β describes the rapidity of the transition between

the two regimes. The values can be found in Table 4.1, with T = 300 K and

E = 6 × 106 kV m−1.

Parameter Value

vs 1.68 × 108× T−0.52 cm sec−1

Ec 1.24 × T 1.68 V cm−1

β 0.46 × T 0.17

Table 4.1: Parametrization values used for the drift mobility calculation [44].

This parametrisation can be used in the case where the temperature T is above

150 K and the electric field is along the < 111 > crystallographic direction. It has

been obtained by the fitting of experimental data using the parameters listed above.

Figure 4.5 shows the drift velocity as a function of the electric field for room

temperature, using the described parametrisation. This model is implemented in

the SCT digitisation [42] and thus is present in the Monte Carlo simulation.
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Figure 4.5: Room temperature drift velocity of holes in silicon as a function of the electric

field, according to parametrisation given in [44].

Following the references given by Jacoboni ([44]-Figure 2), five articles are stud-

ied. They present two different methods of calculating the drift velocity of both

electrons and holes, Time of Flight (ToF) and conductivity Technique:

• Time of Flight - Measures the time TR taken by the charge carriers to travel

across a region of thickness W under the influence of an electric field E (vd =

W/TR) [44].

• Conductivity Technique - Measures the current density j(E) = nqvd(E),

where n, the carrier density, is determined by the Hall effect and q is the carrier

charge. n needs to be constant or a short-pulse can be applied to avoid being

affected by changes of E [44].

The Conductivity Technique is less accurate in the determination of the vd, since it

is only applicable to materials of low resistivity and gives an indirect measurement

of vd. Hence, the ToF technique is more reliable.

The values obtained for the drift velocity are shown in Table 4.2. The drift veloc-

ity calculated through the Conductivity Technique gives lower values than the ToF

technique. Taking into account the different values obtained in the literature, the

uncertainty on the drift velocity should be increased to 12%, calculating this value
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Reference Method vd (× 106 cm s−1) Uncertainty (%)

Canali et al [45] ToF 2.20 5

Seidel [46] Cond. Techn. 2.00 10

Rodriguez, Ruegg [47] Cond. Techn. 1.70 5

Sigmon, Gibbons [48] ToF 2.25 5

Norris, Gibbons [49] ToF 2.30 5

Combined value (all methods) 2.04 12.03

Combined value (only ToF method) 2.25 2.22

Parametrisation value 2.29

Table 4.2: Values found in the literature for the drift velocity of holes in Silicon. The

combined value is calculated through standard deviation and the parametrisation value is

given by Equation 4.4.

through the standard deviation, assuming all the measurements are independent

and have the same weight.

However, if one only considers the ToF method, as it gives a more precise mea-

surement, the uncertainty amounts to 2%, as shown in Table 4.2. So in the deter-

mination of the uncertainty for the drift velocity, only the ToF method was taken

into account, and thus it can be concluded that the uncertainty value should not be

changed from its previous value of 5%, which is already a very conservative value.

4.2.3 Lorentz angle Extraction and Calculation

The Lorentz angle is extracted mainly using the information of the number of con-

secutive strips above a chosen charge threshold.

Layers 0, 1 and 2 have a temperature of -2◦ C, whereas Layer 3 has a higher

temperature of +4.5◦ C. Therefore, the Lorentz angle is different on the layer further

away from the interaction point.

The incidence angle is measured in the plane defined by the normal to the wafer

surface and the axis (in the wafer plane) perpendicular to the strip direction. The

cluster size is given by the number of consecutive strip that were above threshold.

Hence the Lorentz angle is given by the incidence angle which corresponds to the

minimum of the average cluster size.

Figure 4.6 shows a schematic view of a cosmic ray traversing the SCT Barrel.

The modules are slightly tilted with respect to the Barrel, as can be seen on the

left side. On the right hand-side of Figure 4.6 the diagram of an incident particle

trajectory in the module and the angle that is measured are shown. To extract the
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Figure 4.6: Drawings of the SCT transverse section and the SCT wafer [50].

angle for which the cluster size has its minimum, a fit is made following the empirical

expression [51]:

f(φ) = (a| tanφ− tanφL| + b) ⊗ Gaussian(φ) (4.5)

=

∫ +∞

−∞

(a| tanφ− tanφL| + b)
1√
2πσ

exp

(

−(φ− φ′)2

2σ2

)

dφ′.

This expression gives the average cluster size as a function of the track’s incidence

angle, f(φ) and has four parameters: the Lorentz angle, φL, the slope, a, the mini-

mum cluster size, b and the smearing effect, σ. The experimental data is only well

fitted by this expression in a small region around the minimum (the literature range

is within ±12.5◦ around the minimum). This function fails to be adequate for larger

incidence angles. Figure 4.7 shows the shape of the function used, for the whole

range of the incidence angle (left) and for the area around the minimum (right).

The fit is done on a TProfile distribution, a 2D histogram that displays the mean

value of Y (the average cluster size) and its RMS for each bin in X (the incidence

angle) [52].

There are two types of different data acquired on the SCT: cosmic ray data, when

the SCT is ON and records the events originating only from cosmic ray events and

collision data, when the SCT records the proton-proton collisions. The statistics

acquired for the cosmic runs are far less than for the collision data.
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Figure 4.7: The function f(φ) used in the fit of the profile of the average cluster size as

a function of the incidence angle. The parameters used for this plot are adequate for the

latter. The plot on the left shows the full range of the function. On the right the function

zoomed around the minimum is shown.

The Monte Carlo simulation is obtained through the digitisation model for the

SCT. In this chapter, the several cosmic ray data samples are presented in tables

throughout, the collisions data runs used are the ones acquired when 7 TeV collisions

where available, choosing only the luminosity blocks when the SCT Barrel had the

high voltage (HV) on at a nominal voltage of 150 V. The reconstruction stream used

is the MinBias stream. In order to compare with the collisions data, the Monte

Carlo used is a Minimum Bias sample (dataset 105001).

4.3 Cosmic Rays Studies

Before collision data were available, the SCT was already working fully with the

available data originating from cosmic ray events. This data allowed for a range of

studies to be performed, concerning the Lorentz angle measurement.

Selection of Events

The cosmic ray events here analysed were acquired between October 2009 and Febru-

ary 2010. Due to low statistics, a set of very loose selections are applied:
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• Number of Silicon Hits ≥ 8 or number of TRT Hits ≥ 30;

• Impact Parameter2, d0 ≤ 500 mm;

• Transverse momentum, pT ≥ 1 GeV;

• −10ns ≤ TRT event phase3 ≤ 40 ns (not zero);

• Consider clusters associated with a good track.

This selection is taken from the previous analysis [51] and kept for all the cosmic

data analyses.

4.3.1 Voltage Dependence Studies

The Lorentz angle depends on the magnetic field, the temperature, the mobility and

the bias voltage. For full depletion of the sensors, the minimum bias voltage is 70

V. The nominal reverse bias voltage is set at 150 V. To check the dependence on

the bias voltage, cosmic runs were taken varying the voltage of Layer 2 of the SCT

Barrel, between 30V and 350V. All the other layers (Layers 0, 1 and 3) remain with

the unchanged nominal voltage of 150 V. Table 4.3 lists the run number of the data

used, the voltage set for Layer 2 and the date those runs were taken. The nominal

voltage of 150 V is also used in some of the runs.

Figures 4.8 and 4.9 show the dependence of the Lorentz angle on the voltage. On

Figure 4.8 is the value as a function of the voltage. The full lines show the expected

values for different temperatures. The red dots are from more recent runs than the

black ones. For smaller voltages, the Lorentz angle values are less reliable, since the

minimum applied voltage to have fully depleted sensors is about 70 V. The values

of the more recent runs differ and are smaller than the runs acquired earlier.

On Figure 4.9, is shown the average cluster size as a function of the incidence

angle for all the runs with different voltage, older and more recent ones. The runs

above the minimum depletion voltage have a similar distribution, whereas the ones

below show a visibly decreasing slope, which is caused by the cluster size being

smaller, as not all the charge is deposited.

2The Impact Parameter, d0, is defined as the distance between the point of closest approach of

a track and primary vertex in the transverse plane x,y.
3The TRT event phase is the measurement of the time of an interaction. For collision data, it’s

defined as the time when a track passes through the Barrel of the TRT with respect to the bunch

spacing. For the cosmic ray data case the time is measured with respect to the readout window

measured by the TRT. This event phase information includes readout window offset and time of

flight effects [53].
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Layer 2 HV Run number Date

30 V 136455, 136459, 136460, 136599 October 2009

40 V 136379, 136409 October 2009

50 V 135863, 135855, 136183, 136176, 135926 October 2009

60 V 135664, 135736, 135813, 135816 October 2009

100 V 139016 October 2009

150 V 134967, 135106 October 2009

147931 February 2010

200 V 135140, 135146, 135195 October 2009

250 V 135304, 135351, 135356 October 2009

300 V 135388, 135441 October 2009

148072 February 2010

350 V 148209 February 2010

Table 4.3: List of cosmic ray runs for which Layer 2 of the SCT Barrel has a different

voltage applied. Three runs at nominal 150 V are also included.

θ angle re-weighting study

Taking into consideration the discrepancy between cosmic runs acquired at different

dates, a study has also been made to assess whether the θ angle is dependent on the

incidence angle used to measure the Lorentz angle. The θ angle is defined as the

angle measured in the plane described by the normal to the wafer surface and the

axis parallel to the strip direction.

The θ distribution of the old run (October 2009) is weighted to the distribution of

the most recent runs, and the incidence angle distribution is redrawn with a different

weight for each event. In Figure 4.10 the result of the re-weighting is shown. (a)

shows the θ distribution for the two different runs and the oldest run re-weighted.

As intended, the re-weighted run has the same shape as the February run. The

incidence angle as a function of the average cluster size is also shown (Figure 4.10

(b), (c) ) and as can be observed, the incidence angle distribution does not change.

This is also verified in Figure 4.11, where the Lorentz angle value is shown by

layer for the February run (left), October run (middle) and the reweighed October

run (right). To be noted that despite the Lorentz angle being a negative quantity,

it is depicted as positive on these plots. That is a mere case of convenience. All the

similar distributions henceforth will have the same feature.
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Figure 4.8: Lorentz angle value as a function of voltage. Continuous lines show the

temperature dependence of the Lorentz angle value from the model. Points correspond to

fit results for Layer 2 of the SCT Barrel as this is the only one on which the applied voltage

has changed in each run. Black points represent the October 2009 runs, while the red ones

represent February 2010 [50].

4.3.2 Threshold Cut

In the SCT, the signal collected is of the holes which drift towards the electrodes.

This signal is amplified with a nominal threshold of 1 fC: when the charge exceeds

this value, an impulse is recorded.

Run t.c. (fC) date duration # events

138460 1 Nov 09 2009 12h 13m 8,548,90

138598 1.1 Nov 10 2009 2h 7m 178,411

138623 1.1 Nov 10 2009 0h 20m 101,947

138628 1.1 Nov 10 2009 0h 9m 47,090

138630 1.1 Nov 10 2009 12h 24m 8,314,904

138790 1.2 Nov 11 2009 12h 7m 13,033,631

Table 4.4: Cosmic runs taken between June and November 2009, varying the threshold

cut in the SCT, in the range from 0.9 fC to 1.2 fC. One run with the nominal 1.0 fC

threshold is included for comparison.
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Figure 4.9: Distribution of the average cluster size as function of the incidence angle

for various cosmic runs corresponding to different voltages applied to Layer 2 of the SCT

Barrel. The High voltage for this layer changes between 30 V up to 350 V [50].

Some cosmic runs were taken varying this threshold in the SCT, in the range

from 0.9 fC to 1.2 fC. These cosmic runs were taken between June and November

2009 and they are shown in Table 4.4: one run with the nominal 1.0 fC threshold is

included for comparison. All these runs have been analysed and the Lorentz angle

determined and compared to the previously measured values.

The plots in Figure 4.12 show the Lorentz angle values as function of layer for

each threshold cut value (left column) and some example fitted plots for the average

cluster size as function of the incidence angle for these test runs. No meaningful

difference or defined trend can be observed in the values, dominated by statistical

fluctuations varying layer by layer. Note that the results for a threshold cut of

0.9 fC were considered inconclusive, due to the lack of statistics, not allowing the fit

to converge.

As expected, the conclusion can be made that the Lorentz angle does not depend

on the threshold cut.

4.3.3 Null test: B-off runs

In the absence of a magnetic field, the charge carriers are not deflected, so the

minimum of the cluster size must occur at null incident angle. As a test, runs in
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Figure 4.10: Re-weight of the 150 V October run to the February run: (a) θ distribution

for the October run (red line), February run (blue line) and the October run re-weighted

(dashed line). (b) Incidence angle as a function of the average cluster size for the same

conditions. (c) The latter plot zoomed around the minimum. (d) The incidence angle

distributions.

which the magnetic field is switched off have been analysed (see Table 4.5 for the

runs description).

As can be observed from Figure 4.13, there is an agreement with zero and with

previous measurements [51].
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Figure 4.11: Lorentz angle values by layer of the February run (a), October run (b) and

the reweighed October run (c) The consistency in the reweighing process (statistical errors

only) is shown.
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Figure 4.12: Left column: Lorentz angle values as a function of layer, for runs with a

threshold cut of 1 fC (a), 1.1 fC (b) and 1.2 fC (c). The right column presents example

plots of the average cluster size as a function of the incidence angle, including details on

the fitting curve, for Layer 1, for runs with a threshold cut of 1 fC (d), 1.1 fC (e) and

1.2 fC (f).
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Run date (in 2010) duration # events

145720 Feb 02 11h 26m 359,771

145829 Feb 03 10h 44m 3,671,549

146046 Feb 06 11h 18m 508,686

146049 Feb 07 8h 19m 377,430

146054 Feb 07 9h 35m 433,367

Table 4.5: List of cosmic runs taken between in February 2010 with no magnetic field

used for the null test.

The values for the Lorentz angle extracted from these runs are as follows:

φL (◦)

Layer 0,1,2 0.05 ± 0.03

Layer 3 0.04 ± 0.05

Overall 0.05 ± 0.03

As expected from runs with the B field off, these values are compatible with zero

within the statistical uncertainty. B-off data are useful method to cross-check the

analysis technique and the behaviour of the fitting function. Unfortunately, these

runs suffer from low statistics and therefore it is harder to do a layer by layer analysis.

4.4 Collisions Data

As of 2009, the SCT started acquiring data from the collisions of protons. For the

collisions data with
√
s = 7 TeV, the initial selection applied followed the Minimum

Bias 4 analysis on first collision data, as listed below:

• d0 < 10 mm;

• Transverse momentum, pT > 400 MeV;

• Number of SCT hits > 6;

• Number of Pixel hits > 1.

However, since a large amount of collision events was available, it was neces-

sary to study which selections to apply, in order to best study the Lorentz angle

measurement.
4Minimum bias refers to the selection of inelastic events with the minimum possible trigger

requirements necessary to ensure that an inelastic collision occurred. Minimum bias events are

typically dominated by low transverse momentum and low particle multiplicity [54].
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4.4.1 Event Selection Study

Impact Parameter, d0

Figure 4.14 shows the distributions of the average cluster size as a function of the

incidence angle for different bins of d0, ranging from a larger d0, to a d0 as small as

1 mm.

For a d0 further away from the collision point at 0, one can see a degradation in

the information, for example, for the extreme cases of 1 = [-30,-5] and 6 = [5, 30].

The choice for d0 was made such that:

d0 < 1 mm,

which corresponds to the best defined distribution and still a large amount of statis-

tics.

Transverse Momentum

The transverse momentum of the track has also been studied, and as shown in

Figure 4.15, for smaller pT tracks, the incidence angle is very large and the region

of the distribution where the Lorentz angle could be measured is not populated.

So a necessary cut in the transverse momentum has been chosen such that:

pT > 500 MeV.

Negative and Positive Tracks

A study has been made separating negative from positive tracks. Figure 4.16, shows

a diagram of the modules, tilted by 11◦ with the positive (blue) and negative (red)

tracks pictured hitting the modules (not to scale). It can be seen that the negative

tracks contribute to a positive incidence angle and the positive tracks contribute

to the negative incidence angles. The tracks intersect at around -10◦, so, for the

minimum cluster size, the Lorentz angle of -4◦ is dominated by the negative tracks.

In Figure 4.17, is a set of distributions showing the contribution of the negative (red)

and positive (black) for the incidence angle.

In this study, the selection applied, apart from the separation between negative

and positive tracks, is: d0 < 1 mm, pT > 500 MeV, number of SCT hits and number

of Pixel hits > 1. The value around the minimum cluster size can be perfectly

measured using only the negative tracks, as can be observed. In fact, seeing that

the fit is better for a smaller interval, the contribution from the positive tracks

worsens the fit. Thus, it has been decided to consider only the negative tracks for

the determination of the Lorentz angle.
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Figure 4.14: Layer 0 average cluster size as a function of incident angle for different bins

of impact parameter d0. The ranges of d0 bins are (in mm) from top-left to bottom-right:

1 = [-30,-5], 2 = [-5, -1], 3 = [-1, 0], 4 = [0, 1], 5 = [1, 5], 6 = [5, 30]. No other cuts

are applied to the tracks selected in these plots.
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Figure 4.15: Layer 3 average cluster size as function of incident angle for different bins

in transverse momentum. The ranges of pT bins are (in MeV) from top-left to bottom-

right: 1 = [100, 200], 2 = [200, 300], 3 = [300, 400], 4 = [400, 500], 5 = [500, 1000], 6

= [1000,1500]. No other cuts are applied to the tracks selected in these plots.
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Figure 4.16: schematic drawing showing the trajectories of positive and negative tracks

with respect to the SCT barrel geometry [50].

Fitting Range Studies on Collisions Data

The choice of the fitting range has been made using data from the cosmic ray

runs [51]: the optimal range was found to be ±12.5◦ around the minimum of the

distribution. With collisions data available and the selection defined previously, the

study was thus repeated for negative tracks only.

For collisions data, the distribution of the incidence angle varies between -30◦

and 60◦, as a function of the average cluster width, hence being asymmetric. So

an asymmetric fitting range is considered. The lower bound of the fitting range is

varied between -10◦ and -6◦in steps of 1◦, whereas the upper bound is varied between

-2◦ and 8◦ in steps of 2◦.

Figure 4.18 (a) shows an example of the Lorentz angle values for the fit between

-9◦ and x◦, where x = −2◦, 0◦,+2◦,+4◦,+6◦,+8◦. The same Figure 4.18 (b) shows
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Figure 4.17: Set of plots for positive and negative tracks study. The cluster size as a

function of the incidence angle in the four SCT layers is shown. Red points represent

cluster sizes from negative tracks, while black points correspond to positive tracks.

the fit parameters, slope, minimum cluster, σ and χ2/DoF for each range considered

and from the distribution of the χ2/DoF. Fit ranges such as [x,6◦], or [x,8◦], can be

excluded, as the values are large and don’t define the fit well. The ranges with a

smaller upper bound have a reasonable χ2/DoF, however, ranges ending in -2◦ or 0◦

are rather small and close to the minimum, which is a risky fitting limit. So, within

the range of an upper limit of 2◦, the range [-9◦,2◦] has been chosen, which presents

the best χ2/DoF.

Figure 4.19 (a) and (b) show the average cluster size as a function of incidence

angle for a chosen range of [-9◦,2◦] and for a range of [-7◦,8◦], respectively. A complete

set of plots for all the considered fitting ranges, for Layer 0, can be found as an

Appendix in [50].

Fitting Range Studies on Monte Carlo

For the Monte Carlo simulation, the same study was conducted. Since the Lorentz

angle value measured in collision data and in simulation is different, a different fitting
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Figure 4.18: Plots from the fitting range optimisation for Layer 0 on collision data. (a)

Lorentz angle value as a function of the tested fit ranges with a lower bound of −9◦ and

variable upper bound x. (b) The other three parameters of the fit function and the fit χ2

as a function of the fit ranges tested.
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 / ndf 2χ  111.5 / 26
Prob   1.453e-12
a         0.024± 2.103 
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Figure 4.19: (a) Example of the distribution of average cluster size as a function of

incidence angle. The fitting function is shown for a fitting range of [-9◦, +2◦]. This is the

chosen fit range to be used in the study of the Lorentz angle in 7 TeV collision data. (b)

Another example of the distribution to be fitted in order to extract the Lorentz angle. The

fit is shown using the fitting range [-7◦, +8◦] [50].

range may be applied.

Figure 4.20 shows the Lorentz angle values for the different ranges applied ((a)

and (b)) and examples ((c) and (d)) of the distributions fitted within one of the

ranges shown above.

Similar conclusions can be drawn from the Monte Carlo study as for the collision

data analysis: the value of the Lorentz angle does not change when varying the fit

range, but the other fit parameters, shown in Figure 4.21, are less stable, hinting to

a sub-optimal fitting function. From the χ2/DoF distribution, the optimal fit range

to be used in Monte Carlo studies for the Lorentz angle determination is chosen

to be [−8◦, 0◦]: the fitted distribution is shown in Figure 4.20 (d). This range is

different than the one chosen for data due to the fact that the Lorentz angle value

determined for the MC simulation is lower than in data (cf. Figure 4.30).

As a summary, here is the selection chosen for the collisions data, in view of

improving the Lorentz angle measurement:

• d0 < 1 mm;

• pT > 500 MeV;

• Fitting range: [-9◦,2◦] ([-8◦, 0◦] for Monte Carlo);

• Track charge < 0.
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Figure 4.20: Plots from the fitting range optimisation for Layer 0 on Monte Carlo data.

(a) Lorentz angle value as a function of the fit ranges with a lower bound of −7◦ and

variable upper bound x. (b) Same as (a) with the ranges [-8◦, x]. (c) Example of the

distribution of average cluster size as a function of the incidence angle. The fitting function

is shown for a fitting range of [-7◦, +6◦]. (d) Another example of the distribution to be

fitted in order to extract the Lorentz angle. The fit is also shown with the fitting range [-8◦,

0◦]. This is the chosen fit range to be used in the study of the Lorentz angle in MC data.

4.5 Region Dependence of the Modules

Due to the large amount of collision events available, the SCT module can be studied

through the Lorentz angle value in more detail.

A study has been performed by dividing each module of the SCT Barrel into 12

equal rectangular regions and determining the Lorentz angle in each region sepa-

rately. Figure 4.22 (a) shows how the modules are divided into regions with respect

to their local coordinates LocX and LocY 5.

5(LocX , LocY , LocZ) is the local coordinate frame on the Barrel modules of the SCT [55]:

the origin of the frame is the centre of the module; LocXand LocY are defined in the plane of the

module and are parallel to the symmetry axis of the module.
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Figure 4.21: Three parameters of the fit function: slope, minimum cluster size, σ and

the fit χ2/DOF as a function of the fit ranges tested [50].

(a) (b)

Figure 4.22: (a) Scheme of the region division along the LocX and LocY coordinates,

(b) Picture of a Barrel module of the SCT.

The distributions of the average cluster size as a function of the incidence angle

are studied in each region individually. This is shown here for run 153656, acquired

in April 2010, but other runs have also been studied.
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Figure 4.23 shows the regions regrouped with the same LocX, for Layer 1. The

first feature to be observed is that a small peak can be found in all three distributions

(a), (b) and (c). This peak is at the same incidence angle for equal LocX, but varies

with different LocX. Therefore, the peaks occur at three different incidence angles.

The slope and the range of the distribution also vary with the LocX.
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Figure 4.23: Average cluster size as a function of the incidence angle for Layer 1: com-

parison between the twelve regions of the module. Each plot refers to a different region

in LocX. Within the same plot, the contribution of four regions in LocY are plotted. (a)

Regions 1, 2, 3 and 4. (b) Regions 5, 6, 7 and 8. (c) Regions 9, 10, 11 and 12 [50]. The

region numbers refer to the diagram on Figure 4.22.

Figure 4.24 shows the behaviour of the average cluster size as a function of the

incidence angle for the four different LocY regions. Top row is from collisions data

and bottom row is from Monte Carlo simulated data. In each plot there are the

three peaks corresponding to the three different regions in LocX.
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Figure 4.24: Average cluster size as a function of the incidence angle for Layer 0 for different regions of the module. In each plot, the same

region in LocY is considered. Within the same plot three different LocX regions are plotted together for comparison. Top row: (a) Regions 1,

5 and 9. (b) Regions 2, 6 and 10. (c) Regions 3, 7 and 11. (d) Regions 4, 8 and 12. Bottom row are the respective distributions for Monte

Carlo simulation (e), (f), (g) and (h) [50]. The region numbers refer to the scheme in Figure 4.22.
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These peaks occur due to the kinematics of the tracks transversing the SCT

Barrel modules and their geometry and tilt angle. Such a feature has not been

observed so far because, when the average of all regions is made, the peaks also

average up and disappear. Furthermore, if a track comes from the IP, for each region

in LocXthere is a different range of the track momentum, at the same incidence

angle.

Hence, as can be explained by Figure 4.26, for a positive track (a) for the same

incidence angle but increasing LocX, the pT of the track increases, which leads to

an increase in the deposited charge, resulting in a bigger cluster size. For a negative

track (b), the reverse is true: for increasing LocX, the pT decreases, which results

in a smaller cluster size. Figure 4.25 shows the division into negative and positive

tracks for one region (R1) and the combined track. It is observed that the peak is

created at the intersection between the positive and negative tracks.
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Figure 4.25: Example of how negative and positive tracks contribute to the distribution

generating the peak. Region 1 for modules of Layer 0 is shown.

As for the value in the Lorentz angle, it also changes with the LocX. Figure 4.27

shows the Lorentz angle for each of the 12 regions for each layer of the SCT Barrel.

The Lorentz angle is always bigger for the regions of smaller LocX. Layer 0 (top

left plot) shows the most pronounced difference with the LocX.
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(a) (b)

Figure 4.26: Schematic showing three tracks passing through the module at three different

LocX with same incidence angle φ. The transverse momentum of the tracks increases as

the LocX coordinate increases. (a) shows positive tracks, (b) shows the case of negative

tracks [50].
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Figure 4.27: Lorentz angle measured in collision data for each of the twelve regions of

the module. Each plot refers to a different layer of the Barrel of the SCT.
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For the other layers, the difference of the value with the LocXis not so evident.

This can be explained by the fact that these layers are further away from the IP,

thus some tracks overlap. The full line is the model prediction.
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Figure 4.28: Lorentz angle measured in Monte Carlo data for each of the twelve regions

of the module. Each plot refers to a different layer of the Barrel of the SCT.

Figure 4.28 shows the Lorentz angle results for the Monte Carlo simulated data

analysed. From these plots, it is clear that the value for the Lorentz angle is smaller

at all times with respect to the corresponding data collisions value. The Monte

Carlo calculation is done following the digitisation model, as previously mentioned,

so it is logical that its value approaches the Lorentz angle model prediction. The

collision data show that the predicted Lorentz angle is lower than the actual value,

but it is still unknown why.
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Figure 4.29: Distributions of average cluster width as function of incidence angle: (a)

Data-Monte Carlo comparison for Layer 0 for two opposite module regions: regions R1

and R12. (b) is for Layer 2.

Figure 4.29 shows a zoom over the average cluster size as a function of the

incidence angle, for two opposite regions, R1 and R12, and for both data and MC.

The difference in the minimum cluster size can be clearly observed. It is also clear

that in the Monte Carlo, although the slope does change, the minimum does not

shift for the two extreme regions.

4.6 Results

The 7 TeV collision runs used are from the MinBias stream, acquired from March

2010 onwards. They are:

• 152166, 152221, 152345, 152409, 152441, 153565, 155160, 159086, 159224,

162882, 165591.
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Figure 4.30: (a) Example of a fitted profile of the average cluster size vs the incidence

angle on both collision and simulated data. (b) The Lorentz angle values for all the SCT

Barrel layers and both collision and simulation data.

In Figure 4.30 results are shown for the Lorentz angle for collision data and for

Monte Carlo simulation.

On the right plot, where the Lorentz angle is shown by layer, it is clear that the

model is not in agreement with the results given by collision data. The simulation

does agree with the model prediction, since it is generated based on such a model.

The left distribution clearly shows the difference in the minimum of the cluster size,

not only at a different incidence angle but also a different magnitude. Table 4.6

contains the values corresponding to collision data.

Run 167576 Lorentz angle value

Layer 0 −4.197 ± 0.018

Layer 1 −4.256 ± 0.018

Layer 2 −4.172 ± 0.021

Layer 3 −4.079 ± 0.024

Table 4.6: The Lorentz angle values for all the layers in the collision run 167576, with

statistical errors only. These values correspond to the points in Figure 4.30 (b).

Other runs have been analysed and as can be observed from Figure 4.31, the

results are all consistent. It is shown the Lorentz angle for several runs for all four

layers in the SCT Barrel. All collisions data values are above the model prediction

and its uncertainty.
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Figure 4.31: Lorentz angle measured in each of the collision data runs considered in this

study. From left to right and from top to bottom: Lorentz angle value as a function of the

run number in Layer 0 to 3. The band represents the model prediction with its uncertainty

as discussed in Section 4.2.1 [50].

4.7 Conclusions

In this chapter, studies related to the calculation of the Lorentz angle in the SCT

have been presented.

Recent literature suggests a change in the uncertainty value, however with the

models available to determine the value of the drift velocity, such change is unjusti-

fied.

Studies were also made using cosmic rays data. Data has been acquired with

voltages in Layer 2 of the Barrel different than the nominal one, at 150 V, from a

minimum of 30 V to 350 V. As expected, the Lorentz angle depends on the voltage

and different values are obtained. Also it is observed that data runs acquired in

different periods with the same nominal voltage (150 V or 300 V were available for

comparison), show a different Lorentz angle value. Looking at the θ angle (normal
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to the Lorentz angle) reveal a different shape in θ, however it does not depend on

the Lorentz angle. Unfortunately no more runs are available to pursue this study

further.

Consistency tests were made using cosmic rays data: a variation of the threshold

selection for the collected charge does not influence the Lorentz angle value; by

turning the magnetic field off the Lorentz effect ceases to exist and the Lorentz

angle value is consistent with zero.

With the collisions data available for
√
s = 7 TeV, it was necessary to define

certain selection cuts for the tracks to better improve the results, since a large

amount of statistics were present. The studied quantities are the impact parameter,

the transverse momentum and the charge of the tracks. The fitting function used

is improved by decreasing the range of the incidence angle that should be fitted.

Different values for the optimal fitting range are found for the collisions data and the

Monte Carlo simulated data. The reason for the difference in the range is caused by

the fact that the minimum cluster size occurs at a different magnitude and different

incidence angle for collisions data and Monte Carlo. As a consequence, the Lorentz

angle value for simulation does not agree with that from data. Such disparity is still

being studied and it may result in changes to the digitisation model for the SCT.

As a final study, the Lorentz angle is calculated individually for twelve regions of

the SCT Barrel module. The value changes according to the position on the module

and the distribution of the average cluster size as a function of the incidence angle

reveals a peak at an angle near to the intersection of the positive with negative

tracks. Such peak is due to the kinematics of the tracks and the geometry of the

module.

The fact that the Lorentz angle measured from collision data deviates from the

model prediction, is maybe an indication that the model needs to be rethought.

Between different data runs the Lorentz angle has remained consistent throughout,

so it may be concluded that such measurement is robust and may be used to control

the operation of the SCT.



Chapter 5

t-Channel Cut Based Analysis

In this chapter, the data and Monte Carlo simulation samples are presented. The

scaling necessary for the Monte Carlo simulation to agree with the data is described.

The analysis to determine the t-channel cross section is presented. Demanding

selection cuts are implemented and a selection of discriminant variables is described.

A binned likelihood fit on the top invariant mass is done to calculate the cross section.

5.1 Data And Simulation Description

5.1.1 Data

The data considered for the main analysis has been acquired during the 2011 proton-

proton running, with a total luminosity of 4.7 fb−1. This data is divided into runs,

which are blocks of continuous data acquisition and go from periods B to M. The

different periods are marked by a change in conditions, whether an improvement or a

fault in the detector or a change in the bunch spacing or an additional trigger menu

(list of signatures that trigger the acquisition of an event). The runs are part of

the Good Runs List (GLR), which indicate that all data acquired has the maximum

quality on all sub-detectors, with the full ATLAS detector ON.

Relevant Triggers

The trigger naming convention is to use the trigger level and then the threshold,

for example, a EF e20 medium refers to an electron trigger with ET > 20 GeV

at EF and medium identification required. For the electrons, the triggers ap-

plied were [56] EF e20 medium, for periods B-H, EF e22 medium for periods I-K and

EF e22vh medium1 for periods L-M. This last menu accounts for the increase in the

luminosity (called the V3 chain), includes a hadronic core veto (the “h” in the name)

and has a tighter selection than the medium menu [57].

88
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Process Cross Section [pb] k-factor Generator Nevents

t-channel (e+jets) 6.94 1.0 AcerMC+Pythia 700,000

Wt (all decays) 15.74 1.0 MC@NLO+Herwig/Jimmy 800,000

s-channel (e+jets) 0.498 1.0 MC@NLO+Herwig/Jimmy 250,000

t̄t no fully hadronic 80.1 1.12 MC@NLO+Herwig 12,500,000

Table 5.1: Monte Carlo samples names, cross sections and number of generated events

for the top quark processes. The cross sections include the decay branching ratios. The

k-factor accounts for NNLO corrections.

5.1.2 Simulation

The background and signal simulation samples are given by the Monte Carlo MC11c

samples which correspond to the 2011 reprocessing with Athena Releases 17.0.X.Y.

The MC11c uses the Pythia6 pile-up information and the simulation, digitization

and reprocessing tag GEO-18-01-01. Both data and MC are produced with the

reprocessing tags p937 corresponding to the production around June 2012.

Signal and Background Normalisation

The signal and background MC samples are normalised to the luminosity of the data

(4.7 fb−1). Additional scales are determined later for the the W+jets and W+heavy

flavour samples, since their compositions are not accurately known and simulated.

The luminosity of each sample can be calculated knowing the channels’ cross

sections and the number of generated events. Table 5.1 indicates the top samples

used and their parameters, including which generators are used. As for the remaining

background processes, they are indicated in Table 5.2. The k-factor accounts for

NNLO corrections.

Generators

Each sample is generated with a combination of generators. Some generators are

specific to the channel whereas others are more generic and help to complete the

simulation of the hard event, adding initial and final state radiation, hadronisation

and decays.

As can be observed in Table 5.1, all top background is generated with MC@NLO [58]

generator 4.10 with the CT10 [59] parton distribution functions (PDF) and for par-

ton shower and underlying event, Herwig v6.50 [60] and Jimmy v4.31 [61] using

the same PDF. However, due to a modelling deficiency in the MC@NLO and Her-

wig setup, for the t-channel signal, the AcerMC generator [62] is used, alongside
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Process Cross Section [pb] k-factor Generator Nevents

Z→ ee + 0 partons 668.4 1.25 Alpgen+Herwig 8,000,000

Z→ ee + 1 parton 134.4 1.25 Alpgen+Herwig 2,000,000

Z→ ee + 2 partons 40.4 1.25 Alpgen+Herwig 734,000

Z→ ee + 3 partons 11.2 1.25 Alpgen+Herwig 300,000

Z→ ee + 4 partons 8.4 1.25 Alpgen+Herwig 78,300

Z→ ee + 5 partons 0.8 1.25 Alpgen+Herwig 25,000

W→ eν + 0 partons 6931.3 1.20 Alpgen+Herwig 3,500,000

W→ eν + 1 parton 1305.3 1.20 Alpgen+Herwig 2,500,000

W→ eν + 2 partons 378.0 1.20 Alpgen+Herwig 3,750,000

W→ eν + 3 partons 101.9 1.20 Alpgen+Herwig 1,000,000

W→ eν + 4 partons 25.7 1.20 Alpgen+Herwig 250,000

W→ eν + 5 partons 7.0 1.20 Alpgen+Herwig 70,000

W→ ℓν + bb̄ + 0 partons 47.35 1.20 Alpgen+Herwig 475,000

W→ ℓν + bb̄ + 1 parton 35.76 1.20 Alpgen+Herwig 205,000

W→ ℓν + bb̄ + 2 partons 17.33 1.20 Alpgen+Herwig 175,000

W→ ℓν + bb̄ + 3 partons 7.61 1.20 Alpgen+Herwig 70,000

W→ ℓν + cc̄ + 0 partons 127.53 1.20 Alpgen+Herwig 1,275,000

W→ ℓν + cc̄ + 1 parton 104.68 1.20 Alpgen+Herwig 1,050,000

W→ ℓν + cc̄ + 2 partons 52.08 1.20 Alpgen+Herwig 525,000

W→ ℓν + cc̄ + 3 partons 16.96 1.20 Alpgen+Herwig 170,000

W→ ℓν + c + 0 partons 644.4 1.52 Alpgen+Herwig 6,500,000

W→ ℓν + c + 1 parton 205.0 1.52 Alpgen+Herwig 2,070,000

W→ ℓν + c + 2 partons 50.8 1.52 Alpgen+Herwig 520,000

W→ ℓν + c + 3 partons 11.4 1.52 Alpgen+Herwig 115,000

W→ ℓν + c + 4 partons 2.8 1.52 Alpgen+Herwig 30,000

WW (all decays) 11.5 1.48 Herwig 2,400,000

WZ (all decays) 3.46 1.48 Herwig 1,000,000

ZZ (all decays) 0.97 1.48 Herwig 250,000

Table 5.2: Monte Carlo samples used for the background in the analysis. Their designa-

tions, cross section, generator used and number of generated events are also presented.
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Pythia [63] which uses MRST LO as the PDF. The cross section normalisation

values for the top processes are:

• tt̄ : 177+10
−11 pb, approximate NLO order prediction [64, 65, 66, 67, 68, 69];

• t-channel: 64.6 pb, NNLO prediction [24];

• s-channel: 4.6 pb, NNLO prediction [23];

• Wt production: 15.7 pb, NNLO prediction [25].

For the vector boson production (W+jets, W+heavy flavour, Z+jets), Alp-

gen [70] interfaced with Herwig and Jimmy was used. The PDF used was CTEQ6.1 [71]

A heavy flavour overlap removal tool is used to avoid double counting of heavy quark

production [72]. The di-boson samples (WW, ZZ and WZ) are produced with Alp-

gen and Herwig.

The parameters widely used by the generators are:

Parameter value

Top Mass 172.5 GeV

W Mass 80.399 GeV

W Width 2.085 GeV

Z Mass 91.1876 GeV

Z Width 2.4952 GeV

The detector full simulation is done with GEANT4 [73] which is a tool to simulate

the passage of particles through matter.

5.2 Objects Definitions and Reconstruction

This analysis is performed on the 2011 data acquired by ATLAS with a total lumi-

nosity of L = 4.7 fb−1. Both data and simulation samples are in the D3PD format.

The definitions or corrections of the objects and scaling or smearing of energy follow

the default recommendations of the Top working group.

5.2.1 Electrons

For single top events, one high transverse momentum lepton, in this case an electron,

needs to be selected. At the trigger level, (at the initial L1 hardware level) an energy

deposition of ET > 10 GeV or ET > 12 GeV, depending on the instantaneous

luminosity (which increased throughout the data taking), is required. For the high

level trigger EF, ET > 20 GeV or ET > 22 GeV is required.
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The electron candidates are reconstructed using a cluster-based algorithm and

the transverse energy is required to be ET > 25 GeV, with ET = Ecl/cosh(ηtrack),

where Ecl is the calorimeter cluster transverse energy and ηtrack is the pseudorapidity

associated to the tracks in the inner detector. On an analysis level, the electron

combined four-momentum is reconstructed with the cluster energy and the track

information for the η and φ components. The calorimeter crack is taken into account

by requiring the cluster η component to be 1.37 < |ηcl| < 1.52.

Events with only one electron with pT > 25 GeV, |ηcl| < 2.7 and no muons are

chosen. Moreover the electron candidates must satisfy the high quality requirements

set of cuts defined as tight++: the variables used are the acceptance of the detector,

track quality (number of hits in the pixel and SCT, transverse impact parameter) and

matching Inner Detector tracks with EM clusters; the plus-plus regimen is optimised

for a higher pileup environment [74].

The background electrons originate from three different sources: hadrons faking

electron signatures, electrons from heavy flavour decays and photon conversions. In

order to reduce such backgrounds, the sum of the calorimeter cell energies within a

cone of radius ∆R = 0.2, excluding the cells at the centre associated to the electron

(variable called Etcone20) [75], and the sum of the pT of all Inner Detector tracks

within a cone of radius ∆R = 0.3 with a pT > 0.4 GeV excluding the electron tracks

(variable called Ptcone30)[75], must correspond to a 90% isolation efficiency. To

further reduce these background sources, the electrons are required to be isolated,

if they are within a cone of radius ∆R < 0.4 with a jet with pT > 25 GeV and

JVF>0.75, the candidate electron is rejected.

5.2.2 Muons

This analysis vetoes objects reconstructed as muons, so it is necessary to define

them. Muons are reconstructed when hits from the muon spectrometer are matched

with the inner detector tracks, using the track information from both detectors,

also having into account material effects. The candidate objects are required to

have pT > 20 GeV and |η| < 2.5. These candidates must also satisfy a set of

requirements on the muon track quality and must be classified as tight, satisfy the

isolation requirements, and have as author MuidCombined. As for isolation criteria,

Etcone20 > 2.5 GeV and Ptcone30 > 4 GeV [76].

5.2.3 Jets

Jets are observed as groups of topologically related energy deposits in the calorime-

ter. ATLAS uses the reconstruction algorithm called Anti-kT 0.4 [77], which is a jet
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finding algorithm of the clustering type, within a cone of ∆R = 0.4.

The jet finding is done at the electromagnetic (EM) scale with a jet energy

scale (JES) calibration, EM+JES [78]. This is the simplest scheme in which the jet

calibration is obtained as a simple correction relating the calorimeter’s response to

the true jet energy. Jets are selected if pT > 30 GeV and |η| < 4.5. In order to avoid

pile-up events to be considered as jets, the jet vertex fraction (JVF) is required to be

greater than 75%. The JVF variable measures the fraction of tracks that originates

from the primary vertex that are associated with the jet, which allows to estimate

the contribution from multiple interactions. To prevent electron-jet duplicates, if a

jet is within ∆R < 0.2 of the identified electron object, then that jet is removed

from the jets list.

5.2.4 B-Tagging

The b-tagging algorithm chosen is called MV1, which is a neural network combina-

tion of three different b-tagging algorithms [79]:

• IP3D - Impact parameter based algorithm that uses a likelihood ratio technique

where the input variables are compared to the b-jet and light-jet hypothesis’

pre-defined distributions obtained from MC simulation;

• SV1 - Secondary Vertex based algorithm that builds two-track pairs that form

a good vertex using jet associated tracks far away from the primary vertex.

All the selected tracks are combined into a single inclusive vertex using an

iterative process to exclude the tracks that give the worst χ2 fit;

• JetFitter - Uses a Kalman filter to find the b-jet and c-jet vertices positions

as well as a common line on which the primary vertex lies with respect to the

latter, in order to give an approximated flight path for the b-hadron.

The MV1 tag weight cut applied is wMV 1 > 0.905, which corresponds to a b-tagging

efficiency of 60%, with the jets considered having pT > 30 GeV and |η| < 2.5.

5.2.5 Missing Energy

The missing transverse energy (Emiss
T ) measures the neutrino transverse momentum

and is calculated using calorimeter cells calibrated according to the different high

pT objects they are associated with. Those objects are electrons, photons, τs, jets,

soft jets and muons. They are associated in the order they were referred to. The

remaining energy that is not attributed to any object is included as a Cell Out term

(ECellOut
x,y ), calibrated to EM scale. The Emiss

T is thus calculated as:
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−Emiss
x,y = EElec

x,y + EJet
x,y + ESoftJet

x,y + EMuon
x,y + ECellOut

x,y , (5.1)

Emiss
T =

√

(Emiss
x )2 +

(
Emiss
y

)2
. (5.2)

EElec
x,y , EJet

x,y and ESoftJet
x,y are calculated from the sum of the cluster energies of

the respective objects. The electron term uses tight quality selected electrons with

pT > 10 GeV. The jet term uses jets with pT > 20 GeV corrected to the EM+JES

scale, whereas the soft jets have 7 GeV < pT < 20 GeV and are corrected to the

EM scale.

EMuon
x,y is calculated from the sum of the measured momenta and the sum of the

energy lost by the muons in the calorimeter. Photon and τ objects are not included

in this calculation.

In this analysis the missing transverse energy is required to be greater than

30 GeV.

Determination of the Neutrino pZ Component

The neutrino object needs to be reconstructed at analysis level because the W boson

object needs to be reconstructed in order to then be able to reconstruct the top

quark. Since in ATLAS the neutrinos are undetected, there is only access to the sum

of the transverse missing energy which is assumed to come from neutrinos. So the

pZ component of the neutrino is calculated through energy-momentum conservation

of the W boson:

M2
W = (P e + P ν)2 = 80.42[GeV ], (5.3)

M2
W ≃ 2(EeEν − ~pe · ~pν), (5.4)

where P e and P ν are the four-momentum of the electron and neutrino, respectively.

The W mass is fixed to its known value of MW,pdg = 80.4 GeV [6]. The expression 5.4

produces two solutions, as shown in expression 5.5; the one that is chosen is the one

that attributes to the neutrino a smaller η [80].

pνz =
λ±

√
δ

2.0
(5.5)

where,
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α = M2
W,pdg + (pνx + pex)

2 + (pνy + pey)
2 − (Ee)2 (5.6)

β = 0.5(α− (pνT )2 + pez)
2) (5.7)

γ = −β
2 − (Ee)2(pνT )2

(Ee)2 − pez)
2

(5.8)

λ =
2βpez

(Ee)2 − pez)
2

(5.9)

δ = λ2 − 4γ (5.10)

In 25% of the cases this gives an imaginary solution. This happens when the

transverse mass of the W boson (MT = 2(Eν
TE

e
T − ~peT · ~pνT )) is larger than MW,pdg

because the W width is not taken into account. For these cases, one assumes the

approximation of MT ≃ MW . Considering a longitudinal, ML and transverse com-

ponents for the W mass, MT :

M2
W = M2

T +M2
L,where (5.11)

M2
L = 2|pe||pν |(1 − cos(θe − θnu)) (5.12)

where θe,θnu are the polar angles for the electron and neutrino respectively and

when MT ∼ MW , θe ≃ θnu or ηe ≃ ηnu. Therefore, in order to solve the imaginary

solutions for equation 5.5, in these cases, the η component of the neutrino is replaced

by the η of the electron [80].

5.3 Data and Simulation Scaling

A data driven method is applied to determine the contribution of the QCD multijets

background to the data. because this background is generally difficult to predict in

theory In this section the JetElectron method is thus explained and implemented.

The W+jets background, with light flavour jets and heavy flavour jets, one of the

most significant in the t-channel analysis also needs to be scaled to better describe

the data, through a charge asymmetry study.

5.3.1 QCD Estimation

With protons colliding at such high energies, the main high energy objects produced

are jets. Their production is accounted for in the theory of strong interactions, Quan-

tum Chromodynamics (QCD). At higher energies, and beyond the 2→2 scattering,

the deviations from the predictions of QCD follow a perturbative expansion in αS

(coupling constant). So, inclusive jet or di-jet production is well known and tested
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in hadron colliders, however multijets, where there are more than two jets in the

final state, are difficult to deal with in simulation.

In ATLAS, and when high energy jets are required, the QCD is a significant

part of the background, more specifically for the t-channel analysis. So in order to

estimate the amount of QCD without having to rely on simulation, a data driven

method has been applied.

JetElectron Model

The JetElectron model is a data driven method that makes use of the fact that the

QCD multijet background is present when there is a jet that is wrongly identified

as a lepton. A data sample is produced with a different set of triggers so that

a jet can be identified as an electron [56]. A binned-likelihood fit to the data is

performed, where the fit parameters are obtained with the conjunction of the so-

called JetElectron sample and the rest of the available MC. The normalisation of the

QCD background is taken from the fit, whereas the shape is given by the JetElectron

sample.

Figure 5.1 illustrates the idea of the fit which looks into a region of a certain

variable in which practically no signal can be found. The result of the fit is then

extrapolated into the rest of the distribution. The variable chosen in this case is the

Transverse Missing Energy, Emiss
T . The sideband area is defined as Emiss

T < 30 GeV.

The binned likelihood fit, that is performed to the data, is done using the TFrac-

tionFitter routine [81] in ROOT. This fit is based on a standard likelihood fit, using

Poisson statistics. In this manner, the statistical uncertainties of both data and MC

are taken into account. The fit is done bin by bin, for different MC and a minimisa-

tion of the fit parameters is done analytically. The final result is one scale factor for

each MC considered and for the JetElectron sample, which is then scaled to meet

the data (together with the MC). The QCD-multijet background is thus determined,

with the normalisation provided by the fit and the shape by data.

Event Selection For Application of JetElectron Model

In order to search for the Single Top t-channel signature, one has to have in the final

state, at least two jets, one of them tagged as a b-jet, EMiss
T and one lepton, in the

case of this analysis, one electron. Thus, each event needs to pass the requirement

of having exactly one electron with a pT > 25 GeV and |η| < 2.7, excluding the

regions of 1.37 < |η| < 1.52. The objects identified as jets need to have a transverse

momentum greater than 25 GeV, |η| < 4.5 and there have to be present at least two

jets. The normalisation studies focus on the two-jet and three-jet bins because they

are the most probable regions to find the signal. In this study there is no minimum
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Figure 5.1: Sketch to illustrate the fit done to obtain the rate of QCD background. The

distribution of a chosen variable, in this case the Missing Transverse Energy, is fitted in

a side-band where there is close to no signal, and then extrapolated to the other region of

the variable [56].

EMiss
T required, since the fit will be performed in the low energy area as well. There

is also the requirement of the transverse mass of W boson, MT (W ) to be greater

than 30 GeV, defined as:

MT (W ) =
√

2(pelecT EMiss
T − pelecx EMiss

x − pelecy EMiss
y ), (5.13)

where pelecT , pelecx and pelecy are the transverse x and y components of the momentum of

the electron and EMiss
T , EMiss

x and EMiss
y are the missing energy known components.

In the JetElectron data sample, the trigger used to obtain the fake electron is

Jet20. The jet that is mis-identified as an electron needs to have a pT > 25 GeV

and the same |η| coverage as the electron (although with no crack region). The

fraction of the electromagnetic energy needs to be between 0.8 and 0.95 of the total

jet energy. The number of tracks within the jet needs to be greater than 3, in order

to avoid contribution from converted photons.

Two stages in the selection are studied: before the requirement of a b-tagged jet,

which is referred to as the PreTag selection and after selecting at least one b-tagged

jet, referred to as the Tag selection.

The distributions of the transverse missing energy can be found in Figure 5.2.

Note that the data and MC samples for this study, besides covering the full EMiss
T

spectrum (there was no cut on this variable at any point of the datasets’ production),

are the so-called Loose samples, where the trigger criteria for the electron is set to

Loose. The four distributions are then for the two stages of the selection, PreTag
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and Tag and for the 2-jet and 3-jet samples.
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Figure 5.2: Transverse Missing Energy distributions after the binned likelihood fit per-

formed in order to determine the fraction of the QCD multijet events, for the PreTag

dataset (top plots, left for a 2-jet multiplicity and right for 3-jet) and for the Tag datasets

(bottom plots, left for a 2-jet multiplicity and right for 3-jet). The MC is normalised to

the fit values.

From these distributions, one can observe that the QCD contribution is greatest

at low transverse energy (EMiss
T < 30 GeV), so is the Z+jets background. Therefore,

a cut in the EMiss
T is perfectly justified in the analysis. There is relatively more

QCD background in the 2-jet selection and that fact may be attributed to the di-jet

processes. By tagging a b-jet, the processes with top quarks start to be noticeable.

For the 3-jet selection the contribution of top samples increases, mainly due to the

tt̄ background.

5.3.2 W-Jets Scale Factors

There is a charge asymmetry in the W+jets background, since the rate of W++jets

is larger than that of the W−+jets because there are more valence u quarks than d
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quarks in the proton, thus the parton distribution functions (PDFs) will be different.

The ratio of the cross sections σ(pp→W+)
σ(pp→W−)

is well understood theoretically, so one can

use this knowledge to determine the contribution of the W+jets background to the

data. This method works because the QCD multijets, Z+jets and tt̄ are charge

symmetric and do not contribute to the difference. The single top channels are also

charge asymmetric, however, at a low level in the selection, their contributions are

very small amongst the background and thus its contributions may be subtracted.

The overall W+jets scale factor are determined before the b-tagging requirement,

in the PreTag selection samples, with a cut in the EMiss
T > 30 GeV and all other

selection cuts maintained as above.

The expression used to extract the W+jets background is:

NW+ +NW− =

(
NMC
W+ +NMC

W−

)

(
NMC
W+ −NMC

W−

)
(
D+ −D−

)
=

(
rMC + 1

rMC − 1

)
(
D+ −D−

)
, (5.14)

where NW+ +NW− is the final total number of W+jet events, D+ (D−) are the total

positive (negative) number of W+jets extracted from data, obtained by subtracting

all the other MC; rMC = NMC
W+/N

MC
W−

, taken from the simulated MC W+jets events.

The overall normalisation scale factor for the W+jets before the b-tagging is

0.807±0.031 for the two jet bin and 0.917±0.051 for the three jet bin.

For the Tag samples, the flavour composition of the W+jets e.g as Wc, Wbb̄

and Wcc̄ has to be taken into account. Each scale factor needs to be computed and

determined through a set of dependent expressions [56]. The values used for this

analysis are [76]:

Kll Kc Kcc Kbb Wnorm

2 jet 0.906 0.578 2.199 2.199 0.816

3 jet 0.854 0.545 2.073 2.073 0.777

Here Kll is the light jet scale factor, Kcc = Kbb and Wnorm is the overall W+jets

scale factor with a b-tagged jet.

Energy Scaling or Smearing

The energy measured in the electromagnetic calorimeter needs to be corrected, and

this is done using the well-known resonances decays such as Z→ee, J/ψ →ee or

E/P studies that use isolated electrons from W→eν. The energy of the electron in

a certain η/φ bin is rescaled using the expression Ecorrected = E/(1 + scale). The

smearing of the MC is done to match the energy resolution of the data, taking into

account the relevant uncertainties [56].
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Pileup Reweighting

In ATLAS, with an increase in luminosity during the data taking, the pileup also

increases. The Monte Carlo simulation also takes the pileup into account, but not

its increase with the luminosity. As a consequence, the MC needs to be reweighted

to account for the true pileup. For this purpose, the pileup information in data is

used, the number of primary vertices (PV) are counted and the MC is reweighted

to the data values. Because the bunch spacing decreases to 50 ns during the 2011

runs, there is also out-of-time pileup (when the detector has overlapping signals with

the neighbouring bunches) to be considered. So, instead of the reweighting being

performed with the number of PV, it is, for the 2011 MC, done with the average

number of primary vertices, < µ > [72].

5.4 The t-channel Analysis

As previously stated, the single top t-channel analysis aims at reconstructing a top

that decays into a b-jet and a leptonic W. The leptonic W is reconstructed from the

neutrino and the electron. The top quark is reconstructed from the W boson and

the b-tagged jet. An additional one or two light jets are required. In this study,

the background processes are divided into the following categories when presented

in distributions or event yield tables:

• t-channel: the signal process, single-top t-channel;

• other top: includes all other top processes: tt̄ , Wt associated production and

the s-channel;

• W+jets: production of the W-boson associated with light jets;

• W+heavy flavour: production of the W-boson associated with heavy flavour

jets (Wbb, Wcc and Wc);

• Z+jets, Diboson: production of Z-boson associated with light jets and diboson

production: WW, WZ, ZZ;

• Multijets: QCD-multijet background.

5.4.1 Selection Criteria

The following selection is are made to select the exact topology of the t-channel:

• Veto on muons;
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• One isolated electron, with pT > 25 GeV and |η| < 2.5;

• Two or three jets with pT > 30 GeV and |η| < 4.5;

• One of the jets is b-tagged and with |η| < 2.5;

• Transverse mass of the W MW
T > 30 GeV;

• Missing Transverse Energy Emiss
T > 30 GeV.

The cuts on MW
T and Emiss

T help reduce the contribution of the QCD-multijet

background.

Initially two different stages of the analysis are presented: the PreTag selection,

which includes the cuts described above with the exception of requiring a b-tagged

jet. The Tag selection follow the PreTag selection plus the requirement of one of

the selected jets to be tagged. Each sample will be studied separately in the cases

where there are two and three jets.

Figure 5.3 shows some kinematic variables for the PreTag selection: the pT and

η of the electron, first jet and second jet, the transverse momentum of the missing

energy (Emiss
T ) and the transverse mass of the W boson (MW

T ), defined as:

MW
T =

√

2(pTET − pxEx − pyEy), (5.15)

where pT , px and py are the transverse, x and y components of the momentum of the

electron and ET , Ex and Ey are the transverse, x and y components of the missing

energy.

At this level of selection, the dominant backgrounds are W+jets, light and heavy

flavour processes. Both Z+jets/Diboson and the QCD multijets backgrounds have

small contributions, from the obvious choice of requiring only one isolated electron

and high missing transverse energy. Table 5.3 show the number of events in the

simulation and observed data for both 2-jet and 3-jet multiplicity for the PreTag

selection.

Figure 5.4 shows the same kinematic distributions as in Figure 5.3, when one of

the jets is tagged as a b-jet. It can be seen that most of the W+light jets background

is eliminated; the dominant backgrounds remaining are W+heavy flavour jets and

tt̄ events. Table 5.4 shows the number of events in the simulation and data for both

2-jet and 3-jet multiplicity for the Tag selection. However the t-channel signal is

still almost undetectable, at this stage.
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Figure 5.3: Kinematic distributions for the PreTag selection for the data and simulation

for events with two or more jets. Both multijets and W+jets (light flavour and heavy

flavour jets) are normalised with data driven methods. The remaining MC is normalised

to the SM prediction.
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Figure 5.4: Kinematic distributions for the Tag selection for the data and simulation for

events with two or more jets. Both multijets and W+jets (light flavour and heavy flavour

jets) are normalised with data driven methods. The remaining MC is normalised to the

SM prediction.
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Process 2 jet 3 jet

t-channel 3126.5 ± 10 1441.7 ± 7

Other Top 8369.3 ± 17 11667.1 ± 18.8

W+light jets 134522.0 ± 483 29105.3 ± 181

W+heavy flavour 71746.6 ± 266 16933 ± 129

Z+jets, Diboson 29995.9 ± 96 14119.2 ± 63

Multijets 37428.1 ± 1140 6315.8 ± 408

Total Expected 285189.0 ± 1270 79582.4 ± 469

Obs. data 282464 75727

Table 5.3: Number of events in the simulation and observed data for 2-jet (left column)

and 3-jet (right column) multiplicity for the PreTag selection. Only statistical errors are

shown.

Process 2 jet 3 jet

t-channel 1706 ± 8 753 ± 5

Other Top 4206.3 ± 12 5926.7 ± 13

W+light jets 1087.8 ± 98 224.6 ± 48

W+heavy flavour 10215.7 ± 122.1 3434.7 ± 68

Z+jets, Diboson 640.3 ± 12 430.7 ± 10

Multijets 1122.7 ± 152.6 273.1 ± 58

Total Expected 18979.3 ± 220 11042.7 ± 103

Obs. data 18773 12277

Table 5.4: Number of events in the simulation and data for 2-jet (left column) and 3-jet

(right column) multiplicity for the Tag selection. Only statistical errors are shown.

5.4.2 Discriminating Cuts

Later in the analysis one can look into trying to further discriminate the signal from

the background. Four discriminating variables are presented here:

• The pseudorapidity of the most energetic of the non-tagged jets, |ηujet| ;

• The sum of the transverse momentum of the jets, the electron and the missing

transverse energy, HT ;

• The difference between the pseudorapidity of the b-jet and the most energetic

non b-jet, |∆η(bjet,ujet)|;
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• The invariant mass of the electron, b-tagged and neutrino system, Mℓνb, which

translates into the invariant mass of the top.

Mℓνb is given by:

M2
ℓνb = (Eℓ + Eb + Eν)

2 − (~pℓ + ~pb + ~pν)
2 , (5.16)

where E and ~p are the energy momentum of each object. Assuming that the electron

and neutrino masses are close to zero, the invariant mass is given by:

M2
ℓνb = M2

b + 2pℓpν
(
1 − cosφ(ℓ,ν)

)
− pb

(
pℓ cosφ(ℓ,b) + pν cosφ(ν,b)

)
+ 2Eb (pℓ + pν) ,

(5.17)

where Mb and Eb are the mass and energy of the b-jet, pℓ, pν and pb are the

magnitudes of the momentum for the electron, neutrino and b-jet, respectively. The

φ(a,b) quantities are the angles between objects (a,b) = electron, neutrino or b-jet.

Figures 5.5 and 5.6 show these discriminant variables after the Tag selection level

for 2-jet and 3-jet, respectively.

The cuts performed on the discriminant variables are:

• |ηujet| > 2.0;

• HT > 210 GeV;

• |∆η(bjet,ujet)| > 1.

These cuts aim at excluding the areas where the signal to background ratio is much

smaller. They are very conservative and eliminate most of the events, but result in

a more discriminated sample. The invariant mass discriminant is used to fit the MC

to the data.

5.5 Cross Section Determination

The cross section, σtchannel is determined by:

σtchannel =
ftchannelNdata

ǫrecotchannelLP(W→eν)

, (5.18)

where ftchannel is the fitted fraction of the data corresponding to the t-channel signal,

Ndata is the number of events observed, L is the total integrated luminosity, ǫrecotchannel

is the reconstruction efficiency given by

ǫrecotchannel =
N reco
MC

Ngenerated
MC

,
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Figure 5.5: Distributions of the discriminating variables for the samples of 2 jets, one of

them tagged: (a) the top invariant mass, (b) |ηujet|, (c) HT and (d) |∆η(bjet,ujet)|. Both

multijets and W+jets (light flavour and heavy flavour jets) are normalised with data driven

methods. The remaining MC is normalised to the SM prediction.

where Ngenerated
MC is the total number of generated t-channel events and N reco

MC is the

number of MC t-channel events that remain after all the analysis cuts. This analysis

is only studying the case when the W boson decays leptonically into an electron and

a neutrino. The W decays into an electron and neutrino (10.75 ±0.03)%, however

the case when W decays into τ and neutrino, (11.25 ±0.20)% must be taken into

account when the τ lepton decays into the τ → eνeντ (17.85 ±0.05)% or τ → eνeντγ

(1.75 ±0.18)% (all values taken from [6]), because they have similar topologies. The

variable P(W→eν) is the probability of this channel to occur taking into account all

possibilities.

In order to obtain the fraction of events corresponding to the t-channel, a binned

likelihood fit is performed to the invariant mass distribution, with the ROOT func-

tion TFractionFitter [81]. This fits the Monte Carlo fraction to the data histogram.

The free parameters for the fit are the fraction of t-channel simulation and the

fraction of the other top added to the W+heavy flavour simulation. As can be

seen from the invariant mass distribution in Figure 5.7, the contributions of the
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Figure 5.6: Distributions of the discriminating variables for the samples of 3 jets, one of

them tagged: (a) the top invariant mass, (b) |ηujet|, (c) HT and (d) |∆η(bjet,ujet)|. Both

multijets and W+jets (light flavour and heavy flavour jets) are normalised with data driven

methods. The remaining MC is normalised to the SM prediction.

Z+jets/Diboson, QCD and W+light jets backgrounds are very small after the dis-

criminating selection, and since both QCD and W+light jets backgrounds have

already been scaled through data driven methods, they are excluded, along with the

Z+jets contribution from the fit. The shape of the invariant mass distributions for

the non t-channel top events (which are mainly from tt̄ events) and the W+heavy

flavour backgrounds are very similar, considering that the selected events have the

same topology, so these backgrounds are considered together, scaled with the fit

parameters and their relative amounts taken from the MC.

The values for the quantities of the cross section calculation are:

L = 4660 ± 0.084 pb−1,

P(W→eν) = 0.1295 ± 1.7334 × 10−6,

and also the values for each of the samples considered are presented in Table [?]

Figure 5.8 shows on the left column the invariant mass distributions fitted to the

fractions provided, for 2-jet (top) and 3-jet (bottom). On the right column are the
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Figure 5.7: Invariant mass distributions after the selection is applied for the 2-jet and

the 3-jet samples.

Quantity 2-jet 3-jet

Ndata 1898 633

ftchannel 0.317±0.044 0.260±0.070

ǫrecotchannel 0.015± 1.215×10−4 4.754×10−3± 6.895× 10−5

Table 5.5: Values for each of the samples for the calculation of the cross section.

adjusted MC prediction of each template used, in this case the t-channel and other

top plus W+heavy flavour.

Table 5.5 gives the final event yields for the 2-jet and 3-jet samples, with the t-

channel, other top and W+heavy flavour MC scaled to the fit results. QCD multijets

and W+light jets are scaled with data driven methods.

The values for the cross sections for the 2-jet, 3-jet and 2-jet+3-jet samples are:

2-jet 3-jet 2-jet+3-jet

σtchannel [pb] 67.62 ± 9.58 57.43 ± 15.61 62.23 ± 8.04

The 2-jet sample is statistically more significant, whereas the 3-jet sample has more

background present, especially due to the tt̄ contribution. The 2-jet+3-jet sample

is considering the sum of the two invariant mass distributions and a new fit is

performed.

Charge separation

By dividing the samples according to the lepton charge, one can calculate the in-

dividual cross sections of top-quark and top-antiquark, with the same procedure

as before. The resulting values for the cross section assuming the reconstruction

efficiency is the same as for the full sample, are:
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Figure 5.8: Fitted top invariant mass distributions for the 2-jet (a) and 3-jet (c) samples.

(b) and (d) (2-jet and 3-jet respectively) show the MC prediction for both templates used

and indicate the resulting scale as opposed to the MC simulation provided scale.

Channel 2-jet 3-jet 2jet+3jet

σt→W+b [pb] 46.28 ± 8.08 42.46 ± 14.56 41.40 ± 7.12

σt̄→W−b [pb] 24.37 ± 6.41 33.80 ± 11.60 22.63 ± 6.04

These results are in good agreement with the theoretical prediction of 41.9+1.8
−0.8 pb

and 22.7+0.9
−1.0 pb for top-quark and top-antiquark, respectively [24].

The top process dominates with respect to the anti-top due to the PDF of the

proton and the fact that the LHC collides proton with proton. Protons have two

valence u quarks, so the light quark in the initial state is more likely to be of this

flavour and thus resulting in a final state with a top quark.
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Process 2 jet 3 jet

t-channel 538.5 ± 96 147.1 ± 44

Other Top 358.9 ± 30 248.7 ± 39

W+light jets 44.6 ± 23 17.2 ± 14

W+heavy flavour 951.6 ± 80 219 ± 34

Z+jets, Diboson 39.5 ± 3 23.8 ± 2

Multijets 94.4 ± 21 18.8 ± 7

Total Expected 2027.4 ± 132 674.6 ± 69.6

S/B 0.36 ± 0.07 0.28 ± 0.09

S/
√
S +B 11.96 ± 2.17 5.67 ± 1.72

Obs. data 1898 633

Table 5.6: Final selection after the likelihood fit event yields for the data and simula-

tion, for the 2-jet and 3-jet samples. The signal (S) over background (B) ratio and the

significance are also indicated. Only statistical errors are shown.



Chapter 6

Systematic Uncertainties

This chapter describes my contribution made to the MultiJetsUncertaintyProvider

package in order to determine the flavour composition uncertainty. Some observa-

tions are made and the example distributions are shown.

The main sources of systematic uncertainties are briefly explained and the final

measured value for the cross section is presented.

6.1 Multi-jet JES Uncertainty

The Jet Energy Scale (JES) is an energy calibration of jets originating from the frag-

mentation of quarks and gluons, which are the most common and complicated final

state objects in hadron collider experiments such as ATLAS. The uncertainty asso-

ciated to the JES is one of the main source of uncertainties for many measurements

involving jets.

This uncertainty can be estimated using two C++/ROOT compatible packages

to access the current estimation of the JES uncertainty on the full 2011 7 TeV

dataset: MultijetJESUncertaintyProvider and the package from which is derived,

JESUncertaintyProvider [82]. In the case of multijets, as more than two jets are

involved in this particular analysis, the uncertainty provided includes the global

JES uncertainty from the JESUncertaintyProvider for isolated QCD jets plus the

additional terms accounting for the flavour composition, calorimeter response and

close-by jets effects, via the MultijetJESUncertaintyProvider package. The uncer-

tainty is valid for Anti-kT 0.4 or 0.6 (this study only uses 0.4) jets with the EM+JES

calibration and it takes into account pile-up corrections.

In the MC simulation, gluon-initiated jets (gluon-jets) have a slightly different

calorimeter response from the light-quark-initiated jets (LQ-jets). This is verified

because jets that are associated to the gluon-jets tend to be wider, with less energy

density in the central cone of the jet before interacting with the detector and to have

111
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more particles that are also softer than in the case of the LQ-jets [83]. This feature

is one source of systematic uncertainty.

Only the tt̄ process input files, with a few selection cuts specific to that channel

are available as part of the package, therefore the need to create input files for the

single top processes. Both t-channel and Wt production processes are considered for

this study. The s-channel input files could not be produced due to lack of statistics

and available samples.

The goal is to calculate the fractions of LQ-jets and gluon-jets for each single-

top process, in order to determine the flavour composition uncertainty. The Mul-

tijetJESUncertaintyProvider package receives three types of information as input:

gluon-jets fraction, uncertainty of the gluon-jets fraction and the average response

of jets.

The samples used are from MC10 simulation, using Release 16, in the form of

Single Top ntuples, using the LooseTopInputs tree with loose electron and muon

definitions from those ntuples. To access the truth information, TruthTree is used.

Table 6.1 lists the samples used for this study including the generator. For the gluon-

jet fraction determination and the jet-response calculation for each process, both

electron and muon channels are considered. The nominal samples are the MC@NLO

generated ones. The AcerMC generated samples are used for the determination of

the uncertainty in the gluon-jet fraction.

Jets with pT > 10 GeV are considered. Firstly, events with electron

(∆R(jet,electron) < 0.2) or muon (∆R(jet,electron) < 0.4) overlap are excluded. The

highest energy truth particle, if it is a gluon or a light-quark (all quarks excluding

the top quark) and within a cone of ∆R = 0.4 is then associated to each jet1.

For the calculation of the fraction of gluon-jets, a simple counting of matched

jets is done:

Fg =
Ng

Ng +Nq
,

where Ng is the number of gluon-jets and Nq is the number of LQ-jets in the sample

considered.

The gluon-jets fraction uncertainty is a systematic uncertainty obtained by the

maximum difference between the default MC@NLO and the three samples: the

gluon-jets fractions obtained with a different generator (AcerMC) and variations in

initial and final state radiation (referred to as ISR/FSR) processed with AcerMC

as well. Any uncertainty on the gluon-jets fraction consequently propagates into

an uncertainty on the JES. Figure 6.1 shows the gluon-jet fraction as a function

1Association of partons to jets is not theoretically accurate, as it depends on the analysis and

the definition of light-quark of gluon is at best a leading-order concept. However, for purposes of

these performance studies, leading-order is sufficient [83].
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Channel Generator ID

108340

t-channel MC@NLO 108341

108342

wt-prod MC@NLO 108346

117360

t-channel AcerMC 117361

117362

wt-prod AcerMC 105500

117380

t-channel AcerMC,ISR/FSR up 117381

117382

wt-prod AcerMC, ISR/FSR up 117386

117370

t-channel AcerMC,ISR/FSR down 117371

117371

wt-prod AcerMC, ISR/FSR down 117376

Table 6.1: Samples used for the determination of gluon-jet fraction and the jet-response

in each process. The nominal samples are the MC@NLO generated ones. The AcerMC

generated samples are used for the determination of the uncertainty in the gluon-jet frac-

tion.

of the jet pT for the four different samples of t-channel considered. The gluon-jet

fraction differs with the two generators (MC@NLO and AcerMC) and also shows

an increase (decrease) with the increase (decrease) of ISR/FSR, with respect to the

default AcerMC generator.

The jet transverse momentum response (henceforth referred to as jet-response)

is given by Response =
preco

T

ptrue

T

, where precoT is the reconstructed transverse momentum

of the selected jets and ptrueT is the truth transverse momentum which is associated

to that jet. The response is computed in bins of η and pT . The average response

is the mean given by a Gaussian for each fraction bin. For this calculation isolated

jets are required: with ∆R > 2.5 × 0.4 from the closest jet with pEMT > 7 GeV and

need to be within ∆R = 0.3 of its associated parton.

The gluon-jets fraction, its uncertainty and the jet-response as described above,

need to be provided as input to the package, in the form of three distributions in bins

of: 0 < pT < 2500 GeV and 0 < |η| < 4.5. With such a high pT range, some higher

pT bins fail to have relevant statistics so those values are obtained by extrapolating
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Figure 6.1: Gluon-jet fraction for the t-channel process with four different samples:

two generators, MC@NLO (black points) and AcerMC (red points) and with an increase

(AcerMC up, green points) or decrease (AcerMC down, blue points) in the ISR/FSR.

the response values of the nearest bins.

The jet flavour composition uncertainty can be therefore calculated by estimating

the maximum (relative) increase or decrease in response when varying the fraction

of gluon jets:

∆+ =
rlquark − rsample

rsample
,

∆− =
rsample − rgluon

rsample
,

where rlquark, rgluon and rsample are the light-quark, gluon and sample response, re-

spectively. rsample is the term provided in the input files, since it is analysis depen-

dent.

This can be understood with the simple sketch below[82]:
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∆+ and ∆− are multiplied with the fraction of the maximum increase or decrease

in response that is possible with the gluon fraction uncertainty (∆fgluon):

α+
c = ∆fgluon/fgluon , α

−

c = ∆fgluon/(1 − fgluon),

where α+
c /α

−

c are called the alpha correction factors, which are supplied by the pack-

age as a function of the jet pT . These combined quantities represent the provider’s

knowledge of how the mean response would change due to the uncertainty of how

many gluon-jets are found in data [82].

Figure 6.2 shows the jet-response 3-dimensional distribution obtained from the

input files for the package. The jet-response is shown as a function of η and pT of the

jets for the t-channel process; the Wt-production process has a similar behaviour.

One can see that there is a small response at low pT region, which reflects on a large

relative positive uncertainty and a small relative negative uncertainty.
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Figure 6.2: Jet-response as a function of η and pT for the jets for the t-channel process.
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While performing these studies, it has been shown that a percentage of jets,

mainly at low pT , fail to be matched to a gluon or light-quark parton, as can be seen

from Figure 6.3: the pT (left) and η (right) of the jets which can be associated to

light-quarks (green line), to gluons (yellow line) or the non-matched jets (red line)

is shown for the default t-channel MC@NLO sample. These unmatched jets could

be assumed to be gluon-jets from ISR/FSR. However they make around 6% of the

isolated jets2 and so, until a better understanding of their provenance is found, they

will not be considered.
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Figure 6.3: The pT (left) and η (right) distributions of the jets which can be associated

to light-quarks (green line), to gluons (yellow line) or the non-matched jets (red line) for

the t-channel MC@NLO sample.

Figure 6.4 shows the jet response for all jets (black points) and for the isolated

jets (red points). The isolated jets show a greater response than overall jets.

Figure 6.5 shows example plots of the relative negative (left side) and positive

relative (right side) uncertainties for the t-channel process as a function of the pT ,

in the 1.2 < |η| < 2.1 bin. Some bins have large statistical fluctuations (due to low

statistics), which are not a physics effect, and therefore the distributions need to be

smoothed. This effect can push the jet response below or above the response for

gluons or light-quark jets respectively. This may lead to a zero negative or positive

flavour composition uncertainty.

The input files created with this study are also used throughout Release 17. They

are thus valid for this analysis.

2as mentioned before isolated jets are the ones outside a ∆R > 2.5 × 0.4 from the closest jet

and have a pEM
T > 7 GeV
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Figure 6.4: Response for all jets (black) and for isolated jets (red points) as a function

of jet multiplicity.

6.2 Sources of Systematic Uncertainties

The systematic uncertainties for the cross section determination have several sources:

jets, electron, missing transverse energy and others (listed below). These systematics

are used in accordance to the Top Group systematic uncertainties recommendations

and their applications are mainly described in [76].

6.2.1 Jets

• Jet Energy Scale - Provided by the MultijetJESUncertaintyProvider pack-

age, the uncertainty depends on the pT and η of the reconstructed jet. The jet

energy is scaled 1σ up and down, its change is propagated to the EMiss
T cal-

culation and the analysis is repeated. The package also includes uncertainties

due to pile-up events and on b-tagged jets, which are added quadratically to

the JES uncertainty.

• Jet Reconstruction Efficiency - These studies are done using a tag-and-

probe method on QCD di-jet events, where jets are reconstructed from tracks

and from the calorimeter cells. A tool [84] provides the probability of the jet

being badly reconstructed. The analysis is run and jets above a probability



CHAPTER 6. SYSTEMATIC UNCERTAINTIES 118

 [GeV]
T

p
50 100 150 200 250 300 350 400 450 500

re
la

tiv
e 

ne
ga

tiv
e 

un
ce

rt
ai

nt
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

single top, t-channel
|<2.1η1.2<|

 R=0.4
T

anti-k

isolated
=1Vtxn

MultijetJESUncertaintyProvider

JESUncertaintyProvider

flavour composition

 [GeV]
T

p
50 100 150 200 250 300 350 400 450 500

re
la

tiv
e 

po
si

tiv
e 

un
ce

rt
ai

nt
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

single top, t-channel
|<2.1η1.2<|

 R=0.4
T

anti-k

isolated
=1Vtxn

MultijetJESUncertaintyProvider

JESUncertaintyProvider

flavour composition

Figure 6.5: Response for all jets (black) and for isolated jets (red points) as a function

of jet multiplicity.

value are discarded and a comparison is made with the nominal analysis.

• Jet Energy Resolution - The jet energy is smeared in MC events with a

tool provided by the jet group [84] and the analysis is run and compared with

the nominal one.

6.2.2 Electron

• Electron reconstruction, ID efficiency, Isolation and Trigger Scale

Factors - The scale factors (SF) applied to the MC events have associated

uncertainties which are used as systematics uncertainties.

• Electron Energy Scale and Resolution - The systematic estimation is

done by scaling the transverse momentum 1σ up and down and performing

the event selection. For the electron energy resolution, the energy is smeared

in data and its impact is evaluated, according to the Top Group suggestions.

6.2.3 Missing Transverse Energy

• CellOut and SoftJet Uncertainty - These uncertainties are 100% corre-

lated and account for the uncertainties in the cell out and soft jets terms used

in the calculation of the Emiss
T , as described in Chapter 5.

• Pile-up Uncertainty - Application of 6.6% uncertainty is suggested by the

top group of ATLAS and accounts for uncertainties on the value of EMiss
T due

to pile-up.
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6.2.4 Other Systematics

• Luminosity - The recommendation is to attribute the luminosity an uncer-

tainty of 1.8%.

• PDF - The uncertainty in the PDFs is calculated by taking the envelope of

the estimated uncertainties for the CT10, MSTW2008NLO and NNPDF2.0

PDF sets, following the PDF4LHC recommendations[85].

• ISR/FSR - The variation in ISR/FSR is determined with collision data and

its dependence on the acceptance for all top processes is estimated with a set

of AcerMC+Pythia samples tuned to those variations.

• MC generator - This uncertainty is estimated by comparing different genera-

tors: for instance, the tt̄ process default generator is MC@NLO+Herwig, which

is then compared with Powheg+Herwig and Alpgen+Herwig. The largest dif-

ference is considered. For single-top processes, the generator is the same, and

the uncertainty is estimated through a parton level study using 4-flavour or

5-flavour schemes.

• Background MC cross section normalization - The uncertainty on the

background simulation normalization is considered statistical for the top, di-

boson and Z+jets processes. For the data driven processes, W+jets (light and

heavy flavour) and QCD, an uncertainty of 50% is considered.

• Template Fit - The uncertainty on the template fit is estimated by vary-

ing each of the background distributions by 50% (in the cases where the fit

converges) and extracting the maximum difference.

6.2.5 Summary of Uncertainties

Table 6.2 shows the breakdown of the systematic uncertainties discussed above. The

values, except from the Template fit uncertainty, are either fixed recommendations or

calculated by [76] with its analysis coinciding with the same data-taking period and

luminosity. The ISR/FSR and MC generator are the largest sources of systematic

uncertainties. Statistical uncertainties include data and MC simulation statistics,

the errors associated with the template fit parameters and each variable used for the

calculation of the cross section.

The overall t-channel cross section, by combining two different channels (with

two or three jets) is:

σt−channel = 62.2 ± 8.0(stat)+8.6
−8.8(syst) pb.
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Source ∆σobs/σobs [%]

Jet Energy Scale +5.0/-5.5

Jet Reconstruction Efficiency ±0.8

Jet Energy Resolution ±2.6

Electron reconstruction, ID eff, Isolation and Trigger SF ±1.3

Electron Energy Scale and Resolution ±0.7

CellOut and SoftJet ±0.4

EMiss
T Pile-up +0.9/-0.8

Luminosity ±1.8

PDF +4.1/-2.6

ISR/FSR ±7.9

MC generator ±7.3

Background MC cross section normalization ±3.8

Template Fit +2.2/-3.3

Total systematics +13.8/-14.2

Total +16.0/-16.3

Table 6.2: Contribution [76] of each source of uncertainty of the t-channel cross section.

Statistical uncertainties are quadratically added to the total.

This value agrees well with the theoretical prediction 64.2+1.8
−1.1 pb [24].



Chapter 7

Conclusions

The main study of this thesis is the calculation of the cross section of the single top

t-channel process with a cut based analysis.

After the theoretical background and the ATLAS detector are explained, my

contribution to the SCT is presented. The Lorentz angle is calculated for cosmic

ray and collisions data, as well as for MC simulation data. Even though the result

for the collisions data differs from the theoretical predicted one, such measurement

is consistent between different data runs and robust enough to serve to control the

SCT operation.

For the analysis of t-channel events, the data and MC simulation needs to be

tuned. The MC is simulated with the present knowledge of the theory models,

of previous data taken in previous detectors and of the expected behaviour of the

current detector. With real collisions data arriving, it is understandable that the MC

will need to be corrected. The single top is expected to be found amongst several

backgrounds: tt̄ and W+heavy flavour jets are the main ones. Other backgrounds

are Z+jets, W+light jets, QCD multijets and diboson (WW, ZZ and WZ processes).

QCD multijets background is not very well known and simulation does does

predict it accurately. Thus, a data-driven method was implemented to simulate this

background: the JetElectron model, where a jet is wrongly identifies as a lepton.

This method is a good approximation to the QCD multijets background, however

one is left with little statistics after all the selection cuts, leaving some pT ranges

with zero QCD simulated events. A different method could be implemented for

future studies.

A cut based analysis is performed. The selection cuts are the necessary to

best eliminate the background: high transverse momentum jets and electron, high

amount of missing transverse energy, a jet tagged as a b-quark, and the reconstruc-

tion of the W boson and the top quark. Three powerful discriminating cuts are

applied to exclude the areas where the signal to background ratio is much smaller.

121
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Finally a binned likelihood fit is performed using the invariant mass of the recon-

structed top distribution. The fit chooses the amount of data one believes to corre-

spond to the t-channel signal.

The value for the cross section, combining the samples for two and three jets

present is

σt−channel = 62.2 ± 8.0(stat)+8.6
−8.8(syst) pb.

This value is in good agreement with the theoretically predicted value of 64.2+1.8
−1.1 pb.

The value obtained has an uncertainty of about 19%. This can be improved by

increasing the amount of data analysed and improving the knowledge on the sources

of systematics. As a future work proposal, the muon channel can be included in

order to combine statistics. The data acquired at
√
s= 8 TeV can also be looked at.

For the continuation of studies of the t-channel, the top quark polarization can be

calculated.

Single top quark production in the t-channel has been studied in
√
s = 7 TeV

and
√
s = 8 TeV pp collision data recorded with the ATLAS and CMS detectors

in 2011 and 2012. With ∼1 fb−1 of 7 TeV data the inclusive cross section was

measured with multivariate techniques: for ATLAS, a neural network technique

is used which combines several variables into one discriminant; the obtained cross

section is: σt−channel = 83 ± 20 pb [27]. For CMS, two independent multivariate

analyses are performed as a cross-check for each other, one based on a neural network

discriminant and the other on Boosted Decision Trees (BDT) discriminant; the

obtained cross section is σt−channel = 62 ± 6 pb [86].

The result presented in this thesis benefits from more statistics (4.7 fb−1) than the

published result for 7 TeV (more luminosity is currently being used for
√
s = 8 TeV)

and the cut selection of the analyses are the same. With the use of Multivariate

analyses the results take into account the effects of all variables on the responses of

interest, as opposed to only one variable (the invariant mass in the case of this anal-

ysis) and provide a result more robust an less dependant on statistical fluctuations.

Overall, it can be concluded that with an amount of 4.7 fb−1, the single top

t-channel can be observed performing a straightforward cut based analysis.
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