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Abstract

In order to predict the behaviour of nuclear reactors, it is necessary to produce high

fidelity numerical solutions to the Boltzmann transport equation. However, this is

computationally expensive due to the complexity of both the equation and the physical

systems involved. The purpose of this work is to develop novel reduced order models

for the angular discretisation of the Boltzmann transport equation, based on proper

orthogonal decomposition (POD), in order to reduce the computational cost of producing

such solutions. Previous implementations of angular POD created global basis functions

spanning the sphere, and the entire problem domain in space. Chapter two presents the

first innovation of this work, which is to partition the snapshots in angle, such that each

POD basis function has compact support over a single octant. An algorithm for angular

adaptivity using these basis functions is also presented. Chapter three presents a model

which partitions both the angular and spatial dimensions, and generates independent

angular basis sets for each partition. An implementation of angular adaptivity for this

model is also described. Chapter four describes two solver acceleration methods involving

the aforementioned models. The first is a simple multigrid solver for the reduced order

models, and the second is an investigation into their ability to accelerate full order

model solves. The methods presented in chapter two are shown to significantly improve

solver stability and reduce error for a given number of basis functions, thus improving

computational efficiency over previous methods. The methods in chapter three are

demonstrated to reduce error compared to the methods in the previous chapter, thus

increasing computational efficiency further. The solver acceleration methods in chapter

four are shown to be effective in reducing solve times, though the benefits depend on

the complexity and resolution of the full order models.
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Abbreviations, Conventions and

Variables

This section provides an explanation of conventions, a table of frequently used abbre-

viations, and several tables of variable definitions used throughout the text, for the

convenience of the reader. Each abbreviation, convention and variable is also defined

upon its first use in the text.

Conventions

Throughout this work, variables in brackets will denote continuous dependance, so

that Ψ(r⃗,Ω) is continuous in space and angle, whereas Ψ(r⃗) is continuous in space but

discretised in angle.

All cross-sections used in this work are macroscopic, with units of inverse length. They

represent the expected number of interactions per second per unit flux.
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Chapter 1

Introduction

This chapter aims to provide an introduction to this project. It begins by explaining

the motivation and objectives of the investigation, including a brief description of the

relevant physics and solution methods, as well as the issues with existing methods which

this work intends to address. A summary of the information contained in each chapter

is then provided.

1.1 Motivation & Objectives

Nuclear fission is a radioactive decay process in which a large ‘parent’ nucleus splits

into two or more smaller ‘daughter’ nuclei, releasing some of the nuclear binding energy

of the parent nucleus in the process. The amount of energy released in each of these

events is relatively large on the scale of atoms, but insignificant on a macroscopic

scale, approximately 200MeV or 3× 10−11J for the fission of 235U [5]. Therefore, many

quadrillions of fission interactions are required to generate useful amounts of power.

While some level of radioactive decay occurs naturally, it is a relatively slow process in

the relevant cases. However, many decay paths release neutrons with significant kinetic

energy, which are capable of interacting with other parent nuclei and inducing fission.

This induced fission releases more neutrons, which can cause more fission in turn. This

cascading process by which fission begets fission is known as a nuclear chain reaction.

The purpose of a nuclear reactor is to sustain a controlled nuclear chain reaction in order

to generate heat, which is used to spin a turbine and produce electrical power.
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An important measure of this process is the effective multiplication factor, keff . This

represents the average number of neutrons released by each neutron in the system. If

keff < 1, then each generation of neutrons will be smaller than the previous generation.

This is known as a subcritical reaction, and will result in the chain reaction dying out.

If keff = 1, then each existing neutron produces exactly one additional neutron on

average, and the reaction will sustain itself at its current rate. This is known as a critical

reaction, the desired state of a nuclear reactor at operating power. If keff > 1, the

reaction is in a supercritical state. This means that each generation of neutrons will

produce more neutrons, and the reaction will increase in power exponentially. This

situation is likely to result in catastrophic damage to the reactor, and has the potential

to cause widespread devastation should the reactor’s containment be breached [6]. Since

most fission events are caused by interactions between neutrons and the nuclear fuel,

the value of keff is dependent on the distribution of neutrons within the reactor in both

position and momentum. It is therefore vital to accurately predict this distribution in

various circumstances, in order to ensure that the reactor in question can maintain a

critical chain reaction without the possibility of supercriticality.

The neutron distribution within a reactor is described by the Boltzmann transport

equation (BTE), a linear partial differential equation which describes the statistical

behaviour of systems of particles [7]. Rather than tracking the positions and momenta of

individual particles, it considers the probability distribution of particles within a system.

Solving the equation therefore provides the expected distribution of particles within a

particular system over time, in both position and momentum space. Properties such as

the rate of fission, nuclear burn-up and radiation dose rates can then be calculated from

such solutions. A more detailed theoretical discussion of the BTE is presented in section

2.1.

While the BTE can be solved analytically in some cases [8], this is not possible in

general. As a result, numerical methods are frequently used to produce approximate

solutions. This class of methods works through the process of discretisation - reducing

the degrees of freedom of a system from infinite to finite. This results in a solution which

is described by a finite number of unknown positions, momenta and times, and can

therefore be solved computationally. Outside of these points, interpolation is typically



1.1. Motivation & Objectives 22

used to produce an approximation to the continuous solution. Each type of dimension

must be discretised differently, and a variety of methods exist for each. Some common

methods of discretising the angular dimensions are presented in section 2.3, and methods

for the spatial dimensions are presented in section 2.4.

Numerical models of the BTE can require significant computational resources due to the

scale of the problems involved and the high dimensionality of the equations which must

be solved. Scale is an issue because accurately resolving a problem requires sufficient

spatial and angular resolution, which can be computationally expensive for problems

with large or complex domains. For example, reactor cores are constructed from tens

of thousands of fuel and control rods, and therefore require enormous spatial meshes

and high angular resolution to solve. The issue of dimensionality arises because the

BTE is a seven-dimensional equation - the distribution of particles has up to three

spatial coordinates, three momentum-space coordinates, and evolves over time [9]. Each

additional dimension multiplies the degrees of freedom of the problem, increasing both

the computation time and memory requirements. It is sometimes possible to simplify

the equation in order to reduce the number of relevant dimensions. For example, if only

the steady-state solution to a particular system is required, the time dimension can be

neglected, or if the problem is invariant in one spatial axis, that axis can effectively be

ignored. However, given the complexity of the systems involved, this is often insufficient,

even when it is possible.

Over the years, significant research effort has been dedicated to efficiently solving the

BTE using numerical methods. In the last decade, reduced order models (ROMs) have

gained popularity for this purpose, as they are often capable of reducing problem sizes

by multiple orders of magnitude, resulting in a similar scale of reductions to solve times.

This is achieved by projecting the governing equations onto a space which is capable of

representing the solution accurately with fewer degrees of freedom, typically because it is

optimised for the particular problem under consideration. ROMs can be broadly divided

into two categories - a priori ROMs attempt to use information about the problem to

create optimised basis functions before the problem has been solved, whereas a posteriori

ROMs allow solutions from a conventional model to be used in the creation of a new

model with comparable accuracy but reduced computational complexity. The motivation
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behind this project was to develop novel a posteriori ROMs to reduce the computational

cost of solving the BTE in the context of neutron transport calculations.

A wide variety of methods for generating reduced basis sets have been proposed, which

are discussed further in section 2.6.3. This work will focus on the method of proper

orthogonal decomposition (POD) in angle, which makes use of the singular value

decomposition (SVD) to generate basis functions which are guaranteed to be optimal

representations of the known solutions in the Frobenius norm [10]. This method has been

shown to drastically reduce the number of basis functions required to reach a given level

of error [11]. However, it introduced instability which caused the solver to converge more

slowly in some situations, counteracting the improvements in computational efficiency

from the use of a smaller basis. The primary objectives of this project were to eliminate

the solver instability of angular POD in order to realise its potential as a reduced order

modelling method, and to further improve its computational efficiency if possible.

1.2 Modelling Methods

A wide variety of discretisation, solution and reduced order modelling methods have

been applied to the BTE, which are discussed in more detail in chapter 2. However,

reduced order modelling methods are both easier to produce and more generally useful

when they rely on common techniques rather than being built upon more exotic methods.

Therefore, this project will exclusively utilise the integro-differential form of the BTE

derived in section 2.1.1, the spatial dimensions of both the full and reduced order models

will be discretised using the finite element method described in 2.4.3 with uniform

square grids and discontinuous Galerkin basis functions, and the discrete ordinates

method presented in 2.3.1 will be utilised to discretise the angular dimensions. These

techniques are widely used in the field of radiation transport, which maximises the utility

of the resultant models. Additionally, they are relatively simple both conceptually and

mathematically, which makes the models easier to understand and develop. Furthermore,

the full order model described is able to accurately resolve any problem given sufficient

resolution, including both purely advective and highly scattering problems, as well as

problems which combine the two. This is a significant advantage, as other formulations

can struggle in some situations. For example, the diffusion approximation is unable to
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accurately resolve fluxes which are highly anisotropic, the even parity formulation has

difficulty dealing with void regions, and the PN discretisation encounters problems in

the vicinity of physical discontinuities, all of which are of interest in reactor physics.

A sweep-based solver utilising first-order upwinding will be used to produce solutions

for both the full and reduced order models, as described in section 2.5.1. The full order

model sweeps each ray individually in one direction. For the reduced order models,

the basis functions are heavily coupled, and so all angular coefficients associated with

a particular element are solved for at once. In addition, standard angular POD basis

functions span the sphere, and are thus capable of transmitting flux in any direction.

Every basis function must therefore be swept in all four directions each iteration in order

to guarantee that information is propagated correctly through the domain. By contrast,

the reduced order models presented later in this thesis span a subset of the sphere, and

it should therefore be possible to sweep each a single time per iteration. This would be

a significant optimisation, improving the computational efficiency of the models by up

to a factor of four in two dimensions and eight in three dimensions. However, the focus

of this research is not on developing the most efficient solver technology to resolve the

various angular models, and doing so would require substantial development. Solver

optimisation is therefore left for future work to consider.

1.3 Test Problems

In order to investigate the efficacy of the models produced in the course of this research,

three benchmark problems which are commonly used in the field of radiation transport

have been examined. These problems were selected to provide a fair assessment of the

capabilities of the models in a wide range of material regimes, including highly scattering

materials, highly absorptive materials and voids. A diagram and brief description of each

problem is presented here, along with an explanation of their utility. The discretisations

and quantitative material properties used are provided in later chapters, as in some

cases these varied between chapters.
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1.3.1 The Dog-Leg Duct Problem

Figure 1.1: Schematic of the dog-leg duct problem. Green is a source, white is the duct and red is a
highly absorbing material.

The first test problem used in this work is an advective dog-leg duct problem [12]. Figure

1.1 shows a schematic of the domain. The green region is an isotropic source, the white

region is the duct, and the red regions are heavy absorbers. Vacuum boundary conditions

are applied to the top and right boundaries, and reflective boundary conditions to the

bottom and left boundaries. The domain does not contain any scattering materials,

and so tests the abilities of the models in a purely advective regime, such as those

found in radiation shielding. This is a particularly difficult class of problem for the SN

discretisation to solve, since the lack of scattering makes ray effects more prominent.
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1.3.2 The Watanabe-Maynard Problem

Figure 1.2: Schematic of the Watanabe-Maynard problem. Green is the source, white is a void and blue
is a highly scattering material.

The second test problem used in this work is the Watanabe-Maynard problem, proposed

by Watanabe and Maynard in 1986 [13]. A schematic is shown in figure 1.2. The green

region is an isotropic square source, the white region is a void, and the blue region is a

highly scattering material. Vacuum boundary conditions are applied to the top and right

boundaries, and reflective boundary conditions to the bottom and left boundaries. The

domain contains both void and highly scattering regions, which test different aspects

of the models. The void region tests their ability to resolve fluxes in purely advective

regions with no absorption. Some models struggle to deal with voids, particularly those

based on second order formulations of the BTE, as discussed in section 2.1.4. The

scattering region tests the ability of the models to resolve fluxes in highly scattering

media, such as neutron moderators. These tests are relevant because scattering and

near-void regions are both present in nuclear reactors. This is also a relatively difficult

problem for the models to solve as ray effects are a significant problem in void regions.
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1.3.3 The Checkerboard Problem

Figure 1.3: Schematic of the checkerboard problem. The green region is the source, the blue regions are
scattering and the red regions are highly absorptive.

The third test problem used in this work is a checkerboard problem first proposed by

Brunner in 2002 [14]. A schematic is shown in Figure 1.3. The green region is an isotropic

source, the blue regions are purely scattering, and the red regions are highly absorptive.

The full problem presented in [14] is symmetrical about a vertical line through the

centre. The right half of the problem has therefore been solved with reflective boundary

conditions on the left boundary and vacuum conditions applied to all other boundaries.

This is an equivalent problem, but with half of the spatial complexity, making it faster

to solve. The checkerboard problem has highly absorptive regions which create large

discontinuities in the flux. These discontinuities are difficult for some models to deal

with, such as those based on the PN angular discretisation, as discussed in section 2.3.2.

The problem also contains both scattering and heavy absorption, whereas the other

test problems contain one or the other. This is an important combination of material

properties to test, since both are common inside nuclear reactors.
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1.4 Chapter Contents

Chapter 2 provides a broader and more detailed introduction to the background and

theory of this research. It begins with a discussion of the Boltzmann transport equation,

including its derivation and commonly utilised formulations. Various methods for

discretising and solving the BTE are then described, along with some popular reduced

order modelling techniques. The history and importance of these topics are explained,

and the literature around reduced order modelling is reviewed, both for the neutron

transport equation and more generally.

The previous angular POD method described in [11] exhibited significant solver instability

which reduced its computational efficiency, and so the first objective was to fix this

instability. To that end, chapter 3 introduces a new model known as discontinuous

POD (DPOD), which partitions the angular domain and generates independent angular

POD functions for each partition. The resulting angular basis functions span only a

subset of the sphere, in contrast to previous angular POD methods which generated

basis functions spanning the entire sphere. It is demonstrated that DPOD is capable of

creating stable basis sets which produce efficient solutions to multi-dimensional transport

problems, eliminating the aforementioned solver instability of the existing angular POD

method. Chapter 3 also introduces a method of angular adaptivity which relies on the

fact that DPOD produces hierarchical basis functions with compact angular support.

An article on the DPOD method with angular adaptivity has been published in the

International Journal for Numerical Methods in Engineering (IJNME ) [15].

Chapter 4 presents a highly effective modification to DPOD which improves its ability to

reduce the dimensionality of problems, and therefore reduces error for a given solve time.

Known here as regional discontinuous POD (RDPOD), the new method partitions the

spatial domain as well as the angular domain, then forms and applies independent sets

of angular basis functions for each partition of the space-angle phase-space. That is, the

method forms separate angular POD functions over distinct regions of space, rather than

using a single basis set per octant for all regions of space as in the previous method. In

addition, chapter 4 presents an implementation of angular adaptivity using the RDPOD

basis functions. This method provided further improvements to computational efficiency

compared to DPOD, and has also been published in the IJNME [16].
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Chapter 5 discusses two solver acceleration techniques which utilise the reduced order

models presented in earlier chapters. The first of these is the use of low-order POD

solutions to accelerate the solution of higher-order POD solutions, which is a simple

multigrid method. This method allows solutions to be formed on coarse angular meshes,

which can then be used as initial solutions for fine angular meshes, reducing the number

of iterations required to converge the higher resolution solution. This allows relatively

large and accurate reduced order models to be solved in a fraction of the time that

would be required otherwise, by sequentially generating approximations of increasing

accuracy. The second acceleration technique is the use of the aforementioned angular

POD methods to generate an initial solution to a problem, which is then projected

onto the full order discrete ordinate model and solved again, increasing the solution’s

accuracy compared to the reduced order model solution. This allows a solution with

comparable accuracy to the full order model to be produced in fewer full order iterations,

and likely less time overall, depending on the speed and accuracy of the reduced order

model. These two investigations provide interesting insights into solver acceleration

technologies involving ROMs, and could potentially be developed into an additional

paper after further development and data gathering.

Finally, chapter 6 summarises the information presented in previous chapters. It discusses

the effectiveness of the new methods, and draws conclusions based on the results presented.

Potential improvements and new ideas related to the contents of this thesis are also

discussed.



Chapter 2

Numerical Models of Neutron

Transport

This chapter contains a detailed discussion of the theory behind this thesis, including the

Boltzmann transport equation (BTE), numerical methods, and reduced order modelling.

It describes the history and importance of these subjects, along with the current state

of the art. Many of the methods used to discretise and solve the BTE are presented,

including those used in this work. A review of the literature surrounding reduced order

modelling is also included, both for neutron transport and other applications.

2.1 The Boltzmann Transport Equation

This project is primarily concerned with finding solutions to the BTE, derived by Ludwig

Boltzmann in 1872 [7]. The equation is extremely difficult to solve analytically for any

but the simplest geometries. In the 1930s, the study of radiation transport in stellar

atmospheres led to analytical solutions for semi-infinite one-dimensional geometries, and

further research since then has expanded the range of analytically solvable problems,

but such solutions are still limited to idealised and simplified configurations [17]. At the

time of its discovery, computers were not sufficiently advanced to be a viable means to

solve the equation either. However, over the following century, computing power and

modelling techniques improved to the point where solving the BTE on complex domains

using numerical methods became a viable option. As the BTE governs the dynamics of
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systems of particles, numerical models capable of solving it play an essential role in the

analysis of many systems across a wide range of fields in science and engineering. For

example, it is used to model airflow and aerodynamic properties [18–21], the evolution

of various cosmological systems [22–25], and meteorological data [26–28]. The BTE has

also been used in the process of design optimisation [29,30], and to calculate material

properties by modelling the movement of force carriers. For example, [31] modelled the

transport of phonons in order to determine the thermal conductivity of various materials,

and [32] calculated the electrical conductivity of a fluid by modelling electron transport.

2.1.1 Derivation

The BTE can be derived in its integro-differential form by considering the expected

number of particles N(r⃗,Ω, E, t)dV dΩdE in an infinitesimal volume dV about the

position r⃗, travelling within the set of infinitesimal angles dΩ about Ω, with energy

in the range dE about E, at time t. Conservation requires that the change in N is

equal to the number of particles entering or emitted within N , minus the losses from

streaming and collisions. By considering each of these terms separately, and noting that

the angular flux Ψ(r⃗,Ω, E, t) = vN(r⃗,Ω, E, t), where v is the particle velocity, the BTE

can be obtained in integro-differential form.

1

v

∂

∂t
Ψ(r⃗,Ω, E, t) + Ω · ∇⃗Ψ(r⃗,Ω, E, t) + Σt(r⃗, E)Ψ(r⃗,Ω, E, t) =∫

Ω′
Σs(r⃗,Ω

′ −→ Ω)Ψ(r⃗,Ω′, E, t)dΩ′

+

∫
Ω′

∫
E′
νχ(E)Σf (r⃗, E

′)Ψ(r⃗,Ω′, E′, t)dΩ′dE′ + qex(r⃗,Ω, E, t), (2.1)

where the terms on the left hand side account for time dependence, particle streaming,

and particles removed due to interactions, respectively. The terms on the right hand side

account for particles added due to scattering, fission and external sources, respectively.

Σs(r⃗,Ω
′ −→ Ω) represents the macroscopic scattering cross section from the initial angle

Ω′ to the final angle Ω, and the integration over Ω′ therefore gives the amount of flux

scattering into Ω from all angles. Σf (r⃗, E
′) is the macroscopic fission cross section for

the initial energy E′, ν is the average number of neutrons released per fission, and

χ(E)dE is the probability that one of these neutron will have an energy within dE about

E. The integration over all initial energies E′ and initial angles Ω′ therefore gives the
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expected flux distribution produced by fission events. Σt(r⃗, E) is the total interaction

cross section. In this project, fission sources will be neglected in order to simplify the

gathering of results and the presentation of each problem, but they are relatively easy

to implement. A full derivation of equation 2.1 is given in [17].

2.1.2 The Diffusion Approximation

By integrating equation 2.1 over all angles, one may remove the angular dependence of

the equations and obtain an equation which involves only the scalar flux,

1

v

∂

∂t
Φ(r⃗, E, t) + ∇⃗ · J⃗(r⃗, E, t) + Σt(r⃗, E)Φ(r⃗, E, t) = Q(r⃗, E, t), (2.2)

where J⃗(r⃗, E, t) =
∫
dΩΩΨ(r⃗,Ω, E, t) defines the current vector, which gives the net

amount of neutrons flowing through a unit area in a unit of time, and Q(r⃗, E, t) =∫
dΩq(r⃗,Ω, E, t) defines the scalar source.

Fick’s first law gives the current vector of a purely diffusive system as,

J⃗(r⃗, E, t) = −D(r⃗, E, t)∇Φ(r⃗, E, t), (2.3)

where D is the diffusion coefficient. In a weakly absorbing medium, D ≈ (3Σtr)
−1,

where Σtr is the macroscopic transport cross section. By substituting equation 2.3 into

equation 2.2, one may obtain the diffusion approximation to the BTE,

1

v

∂

∂t
Φ(r⃗, E, t)− ∇⃗ ·D(r⃗, E, t)∇Φ(r⃗, E, t) + Σt(r⃗, E)Φ(r⃗, E, t) = Q(r⃗, E, t). (2.4)

This approximation is equivalent to assuming that the flux distribution is close to

isotropic throughout the domain. While this is a reasonable assumption in specific

circumstances, such as highly scattering media, it is a poor approximation to general

angular flux distributions. However, in circumstances where it is applicable, the diffusion

approximation is a highly computationally efficient method of solving the BTE, as

integrating out the angular dimension reduces the degrees of freedom of the system.
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2.1.3 The Integral Formulation

The integral form of the BTE can be derived starting from equation 2.1 by noting

that the streaming operator Ω · ∇⃗ is the directional derivative along the direction of

neutron travel. The equation can therefore be rewritten in terms of the distance along

the direction of neutron travel, u. However, in order to derive the integral transport

equation it is necessary to look back along the line of neutron travel, and so the equation

is formulated in terms of R = −u, the distance from r⃗ back along the path of the neutron

in the direction Ω to the point r⃗ − R(r⃗,Ω)Ω where neutrons enter the domain. This

gives,

− d

dR
Ψ(r⃗ −RΩ,Ω) + Σt(r⃗ −RΩ)Ψ(r⃗ −RΩ,Ω) = q(r⃗ −RΩ,Ω) (2.5)

The derivative of R can be removed by multiplying both sides of the equation with the

integrating factor,

exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
, (2.6)

where R′ is a dummy variable which is integrated between 0 and R. When differentiated

with respect to R, equation 2.6 gives:

d

dR
exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
= −Σt(r⃗ −RΩ)exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
. (2.7)

Hence, multiplying equation 2.5 by this integrating factor gives,

− d

dR
Ψ(r⃗ −RΩ,Ω)exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
= q(r⃗ −RΩ,Ω)exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
. (2.8)

Integrating along the path of neutron travel from 0 to R results in an equation for Ψ,

Ψ(r⃗,Ω) =

∫ R

0
dR′q(r⃗ −R′Ω,Ω)exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
+Ψ(r⃗ −RΩ,Ω)exp

(
−
∫ R

0
Σt(r⃗ −R′Ω)dR′

)
. (2.9)
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By analogy to the transmission of light, the optical path τ between r⃗ and r⃗ − R′Ω is

expressed as,

τ(r⃗, r⃗ −R′Ω) =

∫ R′

0
Σt(r⃗ −R′′Ω)dR′′, (2.10)

where R′′ is again a dummy variable used for integration. Inserting this expression into

equation 2.9 gives the integral form of the BTE for angular flux as,

Ψ(r⃗,Ω) =

∫ R

0
dR′q(r⃗ −R′Ω,Ω)exp

(
− τ(r⃗, r⃗ −R′Ω)

)
+Ψ(r⃗ −RΩ,Ω)exp

(
− τ(r⃗, r⃗ −RΩ)

)
. (2.11)

If R goes to infinity for all r⃗ and Ω, the second term in equation 2.11 goes to zero.

As isotropic scattering is assumed, the emission density is independent of angle and

q(r⃗ − R′Ω,Ω) can be replaced by Q(r⃗ − R′Ω), which depends only on the scalar flux.

The equation can therefore be integrated over all of Ω to give the scalar flux integral

equation,

Φ(r⃗) =

∫
dΩ

∫ ∞

0
dR′Q(r⃗ −R′Ω)exp

(
− τ(r⃗, r⃗ −R′Ω)

)
. (2.12)

This may be expressed as a volume integral by substituting R′ = |r⃗− r⃗ ′| and converting

to spherical coordinates with r⃗ as the origin, which gives dV ′ = 4πdΩR
′2dR′ and

dΩ = sinθ
4π dwdθ, resulting in the equation,

Φ(r⃗) =

∫
dV ′

Q(r⃗ ′)exp

(
− τ(r⃗, r⃗ ′)

)
4π|r⃗ − r⃗ ′|2

. (2.13)

Note that while the volume integral extends over all of space, this form of the BTE also

applies to finite problems provided that they have vacuum boundary conditions [17].

This form of the BTE enables solutions of arbitrary angular precision to be calculated,

depending on the accuracy with which the terms arising from the angular integration are

evaluated [17]. However, in this formulation all spatial points are coupled together, and

as such the computational complexity of finding solutions scales poorly with increasing

spatial resolution. This makes the integral transport method ideal for problems which

are spatially simple but have complex angular distributions, such as periodic flux

distributions within infinite reactor lattices. However, it is much less practical for



2.1. The Boltzmann Transport Equation 35

complex, high-resolution spatial meshes.

2.1.4 Second Order Formulations

Second order formulations of the BTE have also been proposed [33,34], including the

even parity [35] and self-adjoint angular flux [36] forms, which both transform the

first-order initial value problem into a self-adjoint second-order boundary value problem.

A significant advantage of these formulations is that they produce symmetric positive-

definite matrix systems, enabling the use of efficient numerical techniques such as the

conjugate gradient method [37].

The even parity form of the BTE may be derived from equation 2.1 [17]. The angular

flux in a direction Ω is split into two components - the even parity flux,

Ψ+(r⃗,Ω, E, t) =
1

2
[Ψ(r⃗,Ω, E, t) + Ψ(r⃗,−Ω, E, t)], (2.14)

and the odd parity flux,

Ψ−(r⃗,Ω, E, t) =
1

2
[Ψ(r⃗,Ω, E, t)−Ψ(r⃗,−Ω, E, t)]. (2.15)

−Ω is substituted into equation 2.1, and the result is added to equation 2.1 to obtain

an equation involving Ψ+ and Ψ−. A second equation is obtained in the same way,

but replacing addition with subtraction. The two equations can then be combined to

eliminate Ψ−, resulting in the second-order even parity form of the BTE:

−Ω·∇⃗ 1

Σt(r⃗, E)
Ω·∇⃗Ψ+(r⃗,Ω, E, t)+Σt(r⃗, E)Ψ+(r⃗,Ω) = Σs(r⃗, E)Ψ(r⃗,Ω, E, t)+Q(r⃗, E, t)

(2.16)

This formulation has the advantage that the odd parity moments can be ignored when

solving for the scalar flux, reducing the system’s degrees of freedom. An issue with

this formulation of the BTE is that the total absorption cross-section appears in a

denominator, which causes the system to become ill-formed in low absorption regions,

and undefined for voids.

The self-adjoint angular flux method presents an alternative to the even parity method

[38]. It can be obtained by adding together the even and odd parity equations, resulting
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in:

−Ω · ∇⃗ 1

Σt −Qs
Ω · ∇⃗Ψ+ (Σt −Qs)Ψ = Qex − Ω · ∇⃗ 1

Σt −Qs
Qex. (2.17)

Its main advantages over the even parity form are that the full angular flux is obtained,

and it allows boundary conditions to be more easily implemented. However, it becomes

ill-defined in low-absorption and void regions for the same reason as the even parity

formulation, and requires the solution of twice as many angular flux coefficients [39].

2.2 Deterministic and Stochastic Numerical Methods

Numerical solvers can broadly be classified into deterministic and stochastic methods.

Deterministic methods always produce the same output for a given input, whereas

stochastic methods involve randomness and produce a different result each time [40].

There have also been attempts to combine the two into a hybrid method [41]. This

project will focus exclusively on deterministic methods, but a brief discussion of stochastic

methods is also provided for completeness.

2.2.1 Deterministic Methods

Deterministic numerical methods rely on discretising the continuous governing equations

of a problem. As continuous equations have an infinite number of degrees of freedom,

meaning that the solution must be specified at an infinite number of points, they can

not be solved exactly using numerical methods. By converting continuous equations

into discrete equations which are defined by a finite number of unknown coefficients,

it becomes possible to find an approximate solution. Spatial, angular, energetic and

temporal dimensions must be discretised separately, using techniques which are specific to

each type of dimension. Methods of discretisation for the angular and spatial dimensions

of the BTE are discussed in sections 2.3 and 2.4, respectively. The time and energy

dimensions are neglected in this project, as the mono-energetic time-independent form

of the BTE is used.

Once the problem has been fully discretised, the result is a matrix equation of the form

Ax = b, where the solution vector x ∈ Rn must be found. Since direct methods of

solving such systems have order n2log(n) time complexity at best [42], and n can be

on the order of billions or even trillions, iterative methods are typically used to find
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approximate solutions. These methods involve producing an initial guess at the solution,

and using an iterative procedure which will converge the approximate solution towards

the exact solution. Typically this initial solution is a zero vector, though in some cases

an approximate solution produced by other means may be used. This can be beneficial,

as the closer the initial and final solutions are, the fewer solver iterations will be required

to converge the solution to a given level of accuracy. Some specific examples of iterative

methods are discussed in section 2.5.

2.2.2 Stochastic Methods

Stochastic methods rely on repeated random sampling to produce numerical solutions

to a problem [43]. For this reason, they are often known as Monte Carlo methods, in

reference to a famous casino of the same name. They work by simulating the lifetimes

of individual particles, tracking their path through space and any interactions which

occur until they are removed from the system. Typically a batch of particles, called a

generation, is simulated with the same initial distribution. The information from each

generation is used to refine the conditions of future generations in order to converge the

simulation towards an accurate result. For example, the random distribution of new

particles in each generation can be weighted by the distribution of emitted particles

throughout the domain in previous generations, so that more particles from highly

emitting regions will be tracked and vice versa. A major benefit of such methods is that

the energy dimension can be treated as continuous, since each particle may have any

value within the allowed range [44]. In addition, they are guaranteed to converge to

the true solution given enough particles [45]. However, stochastic methods tend to be

highly computationally expensive, and may require the simulation of an infeasibly large

number of particles in order to converge, depending on the problem.

2.3 Full-order Angular Discretisation Methods for the Boltz-

mann Transport Equation

The angular dimensions of the BTE represent the direction components of the particles’

momentum vectors. Discretisation of these dimensions involves generating a discrete

set of basis functions which are capable of approximately representing the directions
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in which particles may travel. The most commonly used angular discretisations for

the BTE are discrete ordinates (SN ), spherical harmonics (PN ) and to a lesser extent

wavelets, which are all discussed in this section.

2.3.1 Discrete Ordinates

Figure 2.1: Angular basis vectors in an octant for the S6 angular discretisation [1].

The method of discrete ordinates was first described by Chandrasekhar in 1950 [46].

It describes a class of quadrature schemes which convert the continuous variable of

solid angle into a discrete set of angular vectors, and treat the angular flux as a delta

distribution which is nonzero only in the directions of the angular vectors. There are

many options for the arrangement and weights of each discrete vector, but here the

level symmetric quadrature, referred to as SN , will be used exclusively [47]. N refers to

the order of the basis, which has N(N + 2) basis vectors, halved in two dimensions by

symmetry. Figure 2.1 shows the arrangement of basis functions in one octant for the S6

angular discretisation, and the other octants are reflections on the coordinate planes. A

notable downside of this method is the possibility for ray effects - in a low-scattering

medium with insufficient angular resolution, the angular flux may exhibit unphysical
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fluctuations due to its inability to travel in directions other than those described by

the angular vectors. Ray effects can be eliminated by increasing the number of angular

vectors, but doing so also increases the computational cost of finding a solution. An

example of this can be seen in figure 2.2, which depicts S6 and S30 solutions to the

Watanabe-Maynard extrapolation problem, as described in section 3.7.2. The S6 solution

exhibits significant ray effects, while in the S30 solution they are present but relatively

minor. As the number of angular vectors approaches infinity, SN is guaranteed to

converge towards the exact solution [48].

(a) S6 solution (b) S30 solution

Figure 2.2: Discrete ordinates solutions to the Watanabe-Maynard extrapolation problem

Unlike many other angular discretisations, the SN method has a well-defined direction

for each angular basis function. As a result, it is possible to determine for each ordinate

which spatial elements are ‘upstream’ and ‘downstream’ of each other - where downstream

elements receive advected flux from elements which are upstream of them. This enables

the implementation of an efficient sweep-based solver using first-order upwinding, which

traces the path of each ray through the domain element by element, and propagates

flux in the direction it is travelling [49–51]. Sweep-based solvers are discussed further in

section 2.5.1. The SN quadrature is used by several major neutron transport solvers,

including DENOVO [52], Rattlesnake [53] and DRAGON [54].
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2.3.2 Spherical Harmonics

Figure 2.3: The spherical harmonic functions for m ∈ {−2,−1, 0, 1, 2} and l ∈ {0, 1, 2} [2].

The spherical harmonic method (PN ) uses Laplace’s spherical harmonic functions

Y m
l (θ, ϕ) as basis functions to represent the angular dimension. Figure 2.3 depicts

these functions for m ∈ {−2,−1, 0, 1, 2} and l ∈ {0, 1, 2} [2]. They represent a complete,

orthonormal basis set on the sphere, and as such have the ability to accurately represent

any angular flux distribution if sufficient functions are utilised. They do not suffer from

ray effects as the SN method does, and may be more efficient to solve when few functions

are utilised. However, the PN method has several disadvantages. Gibbs oscillations

can occur near discontinuities in physical properties, which introduces error and can

potentially lead to unphysical negative values [55]. In addition, highly anisotropic flux

distributions may require a very large number of spherical harmonic functions to accu-

rately represent. Compounding this issue, the PN functions are highly coupled and so

models which use them scale poorly with high angular resolution. Finally, implementing

vacuum boundary conditions is difficult for PN approximations because each function

spans the sphere and only the components pointing out of the domain are removed,

whereas it is trivial when using the SN discretisation as each ray represents a single

direction which either leaves the domain or doesn’t [56]. Some major neutron transport

solvers use the PN discretisation, including Rattlesnake [53] and EVENT [35].



2.3. Full-order Angular Discretisation Methods for the Boltzmann Transport
Equation 41

2.3.3 Wavelets

Figure 2.4: The first three Haar functions, with offsets [3].

Wavelet methods represent angular flux distributions as a linear combination of wavelet

functions, which begin and end at zero and have some non-zero oscillation about the

origin. The simplest and most commonly used for radiation transport are Haar wavelets,

first described by Haar in 1910 [57]. They may be be defined on the interval [0, L) as,

Ψ(x) =


1 0 ≤ x < L

2

−1 L
2 ≤ x < L

0 otherwise.

(2.18)

A linear combination of these functions (along with shifted versions) can be used to

approximate any continuous, real function, with the accuracy of the approximation

increasing as additional wavelets are added [58]. Due to the discontinuous nature of the

wavelets, they are also capable of representing discontinuous functions in some cases.

While initially described on a line, equivalent functions on the sphere can readily be

constructed. A major advantage of the Haar wavelet discretisation is that, since the

functions are hierarchical, they enable the implementation of angular adaptivity [59].

However, wavelet discretisations are a relatively new technique, and not as widespread

or well-studied in the field of radiation transport as the aforementioned angular discreti-

sations. They have been implemented in the FETCH neutron transport solver [60], and

at least one experimental code [49].
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2.4 Full-order Spatial Discretisation Methods for the Boltz-

mann Transport Equation

The spatial dimensions of the BTE represent the spatial distribution of flux inside the

domain. Discretising these dimensions typically involves dividing space into discrete

partitions, and representing the spatial distribution within each partition with a finite

number of degrees of freedom. In order to model the advection of particles through space,

each partition must communicate with its neighbours. A wide variety of discretisations

have been applied to the spatial dimensions of the BTE, including the relatively common

finite volume, finite difference and finite element methods, and the less frequently used

spectral and wavelet-based methods. Each of these methods will be described in this

section.

2.4.1 The Finite Difference Method

The finite difference method (FDM) is the oldest method of numerically solving partial

differential equations, and as such it was employed by early neutron transport solvers to

discretise the spatial dimensions of the BTE [61]. The FDM divides the domain into

regularly spaced points, and approximates terms in the governing equation using the

finite differences between points. For example, first order derivatives can be approximated

by the difference quotient when the distance between points is relatively small:

lim
dx→0

dF

dx
=
F (x+ dx)− F (x)

dx
=⇒ dF

dx
≈ F (x+ dx)− F (x)

dx
. (2.19)

This enables the solutions at each point to be formulated as algebraic equations.
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Figure 2.5: A finite difference approximation to sin(2πx) + 2 with 6 grid points.

Figure 2.5 depicts a one-dimensional space discretised with the FDM using 6 points, a

continuous solution function sin(2πx) + 2, and a finite difference representation of the

solution function. In this example, the finite difference representation is exact at each

grid point, since the solution function is known rather than calculated numerically from

a differential equation. The figure is merely intended to show how the FDM discretises

the domain and defines approximate solutions, to be contrasted with figures 2.6 and 2.7.

The FDM typically produces sparse matrices, and so it tends to be computationally

efficient compared to other methods. It is also relatively simple to implement and

extend to higher-order accuracy. However, the FDM is usually restricted to operating

on structured grids, and as such it is not conducive to rounded or otherwise irregular

geometries, which are found frequently in nuclear reactors. This structured nature

also makes localised grid refinement difficult. In addition, the FDM is not guaranteed

to be conservative and special care must be taken to ensure that this property holds.

Most of these issues can be overcome with some effort, but the efficiency benefits of the

FDM tend to be reduced or lost in the process. Recent work on the FDM includes the

development of acceleration techniques based on coarse mesh finite difference (CMFD)

models, which have been applied to a wide range of solvers [62–64].
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2.4.2 The Finite Volume Method

The finite volume method (FVM) divides the domain into non-overlapping volumes, and

represents the solution in terms of the mean value over each volume, creating a piecewise

constant solution over the domain.

Figure 2.6: A finite volume approximation to sin(2πx) + 2 with 5 cells.

For example, figure 2.6 depicts a one-dimensional space discretised using the FVM, a

continuous solution function sin(2πx)+2, and an approximation to the solution function

constructed with the FVM. Communication between volumes is achieved by converting

volume integrals to surface integrals using the divergence theorem, and evaluating them

at the surface of each finite volume. These methods are guaranteed to be conservative, as

the flux entering a given volume through its surface is equal to the flux leaving adjacent

volumes. In addition, finite volume methods are able to handle unstructured meshes,

which are common in radiation transport problems. However, the method can become

complicated and difficult to implement when dealing with such meshes. Finally, it can

be difficult to implement boundary conditions which are easy if not trivial to implement

in the other spatial discretisation schemes.
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2.4.3 The Finite Element Method

The finite element method (FEM) originated in the works of Hrennikoff [65] and Courant

[66] in the early 1940s, and was first applied to neutron transport by Ohnishi [67, 68] in

1971. In 1973, Reed described the process of using a triangular spatial mesh to solve the

BTE for neutrons [69], and the following year Lesaint implemented a similar method in

order to model neutron population distributions [70]. The FEM operates by dividing the

spatial domain into small, geometrically simple elements, and approximating the solution

over each element with piecewise functions called basis functions, which are each nonzero

only in a localised region of the domain. This leads to a set of equations associated with

each element, which can be used to find an approximate solution for the corresponding

element, expressed in terms of the coefficients of the local basis functions. By solving

the local equations for each element and combining the solutions, an approximation of

the solution function across the entire problem domain is constructed.

Figure 2.7: A discontinuous Galerkin finite element approximation to sin(2πx) + 2 with 5 elements.

For example, figure 2.7 depicts a one-dimensional space spanned by discontinuous linear

basis functions, a continuous solution function sin(2πx) + 2, and an approximation

to the solution function constructed with these basis functions. More complex basis

functions can be used, which may increase accuracy if suitable functions are selected,

but will increase the computational complexity of solving the problem. For example, the
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use of quadratic polynomials as basis functions requires an additional node in the middle

of each element, as solutions at three points are required in order to uniquely define a

quadratic function. Unlike the FDM, the FEM allows nodes to be placed arbitrarily

within a domain, enabling more complex geometries to be closely approximated. It is also

relatively easy to increase the accuracy of the FEM approximation, and thus the model.

This can be achieved by increasing either the number of elements in critical regions of

the problem, or the order of the basis functions. The primary disadvantage of the FEM

is that the matrices generated are not as well-structured as those generated by the FDM,

and as such it can be more computationally expensive to solve. Recent work on the FEM

includes [71], which used B-spline wavelet functions as spatial basis functions rather

than the more commonly used polynomials. In [72], two procedures were developed

which enabled the use of different approximations of the transport operator over the

spatial domain. [73] used a finite element model to calculate thermal and mechanical

displacement of a fuel assembly duct, then used a Monte Carlo code to calculate keff for

the displaced assembly. [74] used a variation of the coarse mesh finite difference method

mentioned in section 2.4.1 to accelerate a finite element model.

2.4.4 Spectral Methods

Spectral methods were introduced in 1969 by Orszag, and developed further by him

and others in the following years [75,76]. Like finite element methods, they represent

solutions as a sum of basis functions, and solve problems by calculating the coefficients of

each basis function. However, spectral methods differ in that the basis functions are, in

general, nonzero throughout the domain. For example, a common spectral method uses

a finite number of Fourier modes which span the spatial domain to discretise a solution

in space [75]. This works because Fourier modes represent a complete, orthonormal basis,

which theoretically allows any function to be represented. Many other bases can be

used for this purpose, as long as they fulfil the same requirements. An early example is

[77], which used Chebyshev polynomials to solve radiative transfer problems. Chebyshev

spectral methods have also been used to solve heat transfer and fluid flow problems [78].

In 2017, [79] evaluated the use of Lobatto, Legendre and Chebyshev polynomials for

solving the transport equation with a PN angular discretisation. Lagrange polynomials

have also been used to solve general two-term differential equations [80]. These methods
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tend to excel at representing smooth functions, in which case their error can decrease

exponentially with additional basis functions. However, they are much less effective in

the presence of discontinuities, which can cause them to exhibit unphysical oscillations

in the solution, known as Gibbs oscillations. This makes them poorly suited for general

nuclear transport problems.

2.4.5 Wavelet Methods

Various types of wavelet have also been used as spatial basis functions, including Haar [81]

and Daubechies [82] wavelets. These methods utilise hierarchical spatial representations,

such that the lowest order basis functions span large spatial regions, and further basis

functions have increasingly compact support. Such methods have numerous advantages.

They are capable of producing well-conditioned bases which decrease in error rapidly, and

correctly chosen wavelets can produce sparse matrices which enables efficient solutions.

Their compact support and hierarchical nature also allows for the implementation of

adaptive resolution. However, determining the correct wavelets to use for a particular

problem can be challenging, and poorly-chosen wavelet bases lose the advantages which

make their use appealing.

2.5 Solver Technologies for the Boltzmann Transport Equa-

tion

The result of discretising the BTE is a system of equations of the form Ax = b. Since the

matrix A, source vector b and solution vector x can be extremely large, direct solution

methods are not practical and iterative methods are generally used [42]. This section

will discuss several techniques which have been applied to solve the BTE, some of which

were used in this project.

2.5.1 Sweep-based Solution Methods

Sweep-based solvers are a class of iterative solution methods based on the Gauss-Seidel

method, which are widely used for radiation transport applications [49, 51]. They work

by generating a system of equations for each element, and solving them one by one,

following the path of information flow throughout the domain [69]. This allows neutrons
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to propagate through the entire domain in a single sweep, since the solution for each

element relies only on coefficients that have already been solved in the current iteration,

and coefficients from previous iterations are not needed. In the BTE, flux is transferred

between elements via advection, and the incoming flux at each element is determined by

its upstream neighbours. Elements must therefore be swept in an order which ensures

that the upstream neighbours of each element are solved before the elements themselves.

On unstructured grids, finding a suitable sweep order may be difficult. Algorithms for

determining sweep orders exist, such as [4] which uses a list ordering heuristic, but

cyclic dependencies are still problematic. For example, consider figure 2.8, which depicts

elements in an unstructured mesh.

Figure 2.8: Elements in an unstructured mesh [4].

Flux travelling in the direction Ω must be transferred between elements 8 and 9 in both

directions. This issue is typically resolved by using previous coefficients in one of the

two cases, reducing the speed at which the solution converges. However, the process of

determining an appropriate sweep order is trivial on structured grids. For the regular,

rectangular 2D grids used in this project, each solve stage consists of four sweeps, as

depicted in figure 2.9.
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(a) Sweep order for rays travelling in -x, +y
direction.

(b) Sweep order for rays travelling in +x, +y
direction.

(c) Sweep order for rays travelling in -x, -y
direction.

(d) Sweep order for rays travelling in +x, -y
direction.

Figure 2.9: The order in which elements are visited in each sweep for an example problem with 3x3
square elements.

Since discrete ordinates have well-defined directions, each ray is swept individually in

the order corresponding to its direction of travel. This ensures that flux will be correctly

transported via advection, since the upstream neighbours of each element are guaranteed

to be solved when they are required. For the standard angular POD method mentioned

in section 1.1, this is not possible - since each basis function spans the sphere, each must

be swept in all four directions for advection to be correctly calculated.
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2.5.2 Multigrid Methods

Figure 2.10: A simple three-stage multigrid V-cycle.

Multigrid methods are a class of iterative solvers which use a hierarchy of discretisations

to improve their rate of convergence [83,84]. While many variations of such methods exist,

they typically involve some combination of steps known as restriction and prolongation.

Restriction is the process of projecting from a fine grid to a coarser grid, and prolongation

is the reverse process of projecting from a coarse grid to a finer grid, as shown in figure

2.10. Iteration on a coarse grid reduces the low frequency error and is computationally

relatively inexpensive, while solving on a fine grid is required to reduce the high frequency

error and produce a more accurate solution overall, but is also more computationally

expensive. By using multiple grids with varying resolutions, it is possible to produce a

solution with the accuracy of a fine grid, but reduced computational cost. Consider a

problem of the form,

Ax = b, (2.20)

where A is an operator matrix, x is the exact solution, and b is a constant vector. For

an approximate solution xg on a fine grid, with error ϵ,

xg = x+ ϵ, (2.21)

and the residual error r is given by,

Axg − b = r. (2.22)

Substituting equation 2.21 into equation 2.22, rearranging, then applying equation 2.20

gives,

A(x+ ϵ)− b = r =⇒ Ax− b+Aϵ = r =⇒ Aϵ = r. (2.23)



2.5. Solver Technologies for the Boltzmann Transport Equation 51

Let ϵc be the error on the coarse grid, which when multiplied by the prolongation

operator P gives the error on the fine grid,

ϵ = Pϵc. (2.24)

Making this substitution into equation 2.23 and premultiplying by the restriction matrix

R to project the residual error and operator matrix onto the coarse grid gives,

RAPϵc = Rr. (2.25)

The matrix RAP is the coarse grid operator matrix, which is denoted Ac, and the vector

Rr is the coarse grid residual error, denoted rc. This leads to the equation,

Acϵc = rc. (2.26)

This equation allows a correction to the approximate solution xg to be calculated rapidly

on the coarse grid to minimise the residual error. The correction can then interpolated

back up to the fine grid to adjust the solution, and then iterated further. This process

is known as a V-cycle, since a graph of the resolution at each stage is shaped like a V.

An example of this type of operation performed on a simple spatial domain is shown

in figure 2.10, and a plot of the resolution at each stage of a V-cycle can be seen in

figure 2.11a. More than two resolution levels may be used, in which case alternate

procedures such as as W-cycles and F-cycles are also possible, as shown in figures 2.11c

and 2.11b respectively. Each type of cycle represents a different ordering of restriction

and prolongation operations, with its own advantages and disadvantages.
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(a) V-Cycle (b) F-Cycle

(c) W-Cycle

Figure 2.11: Examples of three common multigrid cycle procedures.

Multigrid methods have been applied to a wide range of problems across the field of

numerical modelling. Early applications include solving the incompressible Navier-Stokes

equations for high Reynolds number flows [85] and transonic viscous flows past airfoils

[86], as well as solving the linearised Poisson-Boltzmann equation with applications to

molecular biophysics [87]. More recently, an element agglomeration multigrid method

with applications to the BTE was introduced [88], and multigrid methods were applied

to model high voltage DC transmission lines [89] and the heat equation [90]. Multigrid

methods can also be used to precondition Krylov solvers [91], which are discussed further

in section 2.5.3. They have also been applied to train video models more efficiently [92].

2.5.3 Krylov Subspace Methods

For a matrix system of the form Ax = b, the residual rn of an approximation xn is

given by Axn − b = rn. Krylov subspaces are typically constructed by producing an

approximation x0 and finding the residual r0. The Krylov subspace κn(A, r0) is the
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linear subspace spanned by r0 multiplied by successive powers of A,

κn(A, r0) = span{r0, Ar0, A2r0, ..., A
n−1r0}. (2.27)

Krylov methods use this subspace as a basis for calculating corrections to the initial

guess in order to refine their solution. Many algorithms based on Krylov subspaces have

been employed, including the conjugate gradient method [93] and GMRES [94], among

others. They typically work by constructing an orthogonal basis in the Krylov subspace,

then following some iterative process which attempts to minimise the residual. For

example, the generalised minimal residual method (GMRES) approximates the solution

xn at iteration n as a vector in the Krylov subspace κn which minimises the L2-norm of

the residual at each iteration,

min
xn∈κn(A,b)

∥b−Axn∥2. (2.28)

Krylov subspace methods are frequently used to solve the system Ax = b in many fields.

Early implementations of Krylov subspace methods in neutron transport include the

work of Patton, who implemented the GMRES method to solve SN neutron transport

problems in 1996 [94] and continued to develop the method thereafter [95].

2.6 Optimisation Techniques for the Boltzmann Transport

Equation

2.6.1 Angular Adaptivity

Adaptivity is an attempt to improve the efficiency of numerical models by focusing

resolution in a problem-specific manner, rather than uniformly throughout the domain.

It can be applied to either angular or spatial resolution, and has also been applied to

both simultaneously.

The goal of angular adaptivity is to increase the angular resolution in regions where it

will be of the most benefit, such as in the presence of highly anisotropic flux distributions,

while keeping it at a minimum in regions where additional resolution will not make a

significant difference, such as highly scattering media with near-isotropic flux distributions.
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Hierarchical angular discretisations are generally used for this purpose, as they make the

implementation of adaptivity significantly easier. In this context, a hierarchical basis set

is one in which increasing the order of the discretisation adds new basis functions but

does not change the existing ones, enabling the existing coefficients to be retained. For

example, increasing the order of spherical harmonic and Haar wavelet discretisations

is simply a matter of including more harmonic functions or wavelets, respectively. By

contrast, increasing the angular resolution of the SN discretisation changes the existing

angular vectors, making the implementation of angular adaptivity difficult since existing

coefficients cannot simply be carried forwards to the next adaptive step.

In [39], an adaptive method was developed for the BTE using octahedral and hexahedral

wavelet bases, and more recently [96] implemented angular adaptivity using the Haar

wavelet angular discretisation. It has also been applied to the PN angular discretisation

in 2005 [97], and more recently to a filtered PN basis [98]. An adaptive PN algorithm

based on a variational method is presented in [99]. [100] developed an adaptive algorithm

based on a novel angular quadrature, which split the faces of an octahedron into triangles

and projected the triangles onto the unit sphere. Angular adaptivity has also been

implemented in other contexts, such as the analysis of structural and acoustic vibrations

in a wave-based model [101], and the simulation of semiconductor devices using adaptive

wavelets [102]. In addition to angular adaptivity which aims to reduce the overall error

of a solution, goal-based angular adaptivity has also been developed. These methods

aim to minimise the error within a particular region, such as a detector, rather than

throughout the whole domain. For example, [103] presented a goal-based adaptive

algorithm for the spherical harmonic angular discretisation, and compared it to standard

angular adaptivity. [59] presented an implementation of goal-based adaptivity for the

Haar wavelet angular discretisation, and [9] used a low-order spherical harmonic model

to determine the appropriate distribution of angular resolution for a Haar wavelet model

of the same problem. Kópházi and Lathouwers implemented adaptivity using a basis

which was constructed by subdividing each angular octant into increasingly smaller

triangles [49]. Angular adaptivity has also been implemented for the SN discretisation,

which required the development of techniques to transfer angular flux between different

quadratures since SN is not hierarchical [104].
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2.6.2 Spatial Adaptivity

Spatial adaptivity is a similar concept to angular adaptivity, except that instead of

focusing angular resolution in particular areas to improve performance, it distributes

spatial basis functions for the same purpose. This typically means that resolution will

be focused in areas with high spatial variance in the solution, while regions where the

solution varies more gradually over space will have lower resolutions. There are two

general approaches to spatial adaptivity - either the spatial mesh may be adjusted by

adding or removing nodes in a process known as mesh refinement or h-adaptivity, or

higher order basis functions may be used in particular regions, known as p-adaptivity.

Mesh refinement typically works by using an error metric to determine where new nodes

would be most beneficial, and altering the spatial mesh by splitting the elements in that

location into multiple new elements. Some of the nodes will be co-located with nodes

on the previous mesh, and can retain their coefficients, wheras the newly added nodes

will require interpolation to find initial values. There can be complications with this

method, including the need to re-calculate some properties - for example, the order in

which elements in the mesh are swept may change. In addition, mesh refinement is more

difficult for some implementations of structured grids, such as the FDM. Despite these

issues, h-adaptivity represents an effective option in many cases. Examples of mesh

refinement-based spatially adaptive methods include [105,106], which both developed

mesh refinement algorithms for the spherical harmonic angular discretisation. In [107],

it was applied to a mesh which included curved element boundaries, and [108] used it to

solve the even-parity form of the BTE with a PN angular discretisation.

P-adaptivity involves increasing the order of the polynomials used as basis functions in a

particular region. For example, a problem could be solved with constant basis functions

in some regions, linear in others, and quadrilateral functions in the most spatially varying

regions. A major advantage of this method is that the mesh does not have to be adjusted,

which can make it relatively simple to implement, and allows it to be used on structured

grids. Examples of p-adaptivity include [109], which implemented it on a discontinuous

finite element mesh in one dimension with discrete ordinates in space; and [110, 111],

which both used it for compressible flow problems in three dimensions.
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2.6.3 Reduced Order Modelling

In recent years, reduced order models have been developed which fulfil a similar purpose

to adaptivity - reducing the computational cost of solving a problem while minimising

the resultant error. These models rely on formulating new sets of basis functions which

can be used to describe the solution, with fewer degrees of freedom than the original.

This will inevitably introduce error, as an approximation is made, but if the basis sets are

well-chosen for the problem in question this error can be minimised. As with adaptivity,

reduced order modelling techniques can be applied to the spatial or angular dimensions,

or potentially both at the same time.

There are several techniques for constructing reduced basis sets, which can be categorised

as either a priori or a posteriori methods. A priori methods such as proper generalised

decomposition aim to generate reduced bases without solutions to a full model [112],

whereas a posteriori methods such as the empirical interpolation method [113, 114],

neural networks [115] and POD use existing solutions to produce a reduced basis for use

in further simulation. Many other model order reduction strategies have been developed,

including the Volterra [116] and Fourier [117] series expansions, space mapping [118], the

Kriging [119,120] and harmonic balance [121] methods, and radial basis functions [120].

ROMs have been applied to a vast range of problems, from signal analysis and pattern

recognition [122], to statistics [123], and geophysical fluids [124]. They have been

particularly successful in simulating fluid flows following the early work of Lumley [125],

and have been applied to turbulent pipe flows [126], wakes behind a cylinder [127], flows

across air foils [128], the mixing of fluid layers [129], thermal currents [130, 131] and

ocean models [132]. Neural network-based ROMs were proposed for general nonlinear

systems as early as 1995 [133], and have since been applied to various problems, including

the modelling of biomass fast pyrolysis in a fluidised bed reactor [134] and unsteady

fluid flows [135]. ROMs have also been developed that use and apply basis functions

over a domain decomposition - that is, they split the problem into multiple spatial

partitions, and form optimised basis functions for each partition. Such models have

been used to solve advection-diffusion problems [136], Maxwell’s equations [137], and

the Stokes equations [138], among many other applications. Mixed approaches have also

been described using both high-order methods and reduced order models over a domain
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decomposition, applying ROMs over regions that they can resolve well and utilising high

order methods elsewhere. Applications include solving the Laplace equations [139] and,

more recently, the compressible Euler equations [140]. These systems are significantly

smaller, and thus more efficient to solve, than high dimensional models.

This project will focus on the method of proper orthogonal decomposition, applied

to the angular dimension of the BTE. In 1873, Beltrami derived the singular value

decomposition (SVD) [141]. Though originally presented in bilinear form, the method

allows matrices to be decomposed into three component matrices which each contain

information about the data in the original matrix. The next relevant development came

in 1901, when Pearson introduced the technique of principal component analysis [142].

This presents a method for finding an optimised set of basis vectors, known as the

principle components, to represent a particular set of data. It can be shown that the

principle components of a set of data are given by the SVD of the data matrix [143].

This enables the technique of POD, which uses the SVD to decompose a matrix of full

order solutions, known as the snapshot matrix. This generates a set of basis vectors

which are optimised for representing the data contained in the snapshot matrix. While

the set of basis functions generated can be large, most of the variance in the snapshot

data can typically be captured by a relatively small number of basis functions. The rest

can be discarded, as described in section 3.4. In the field of radiation transport, among

others, POD is often used to reduce the degrees of freedom of spatial dimensions. In

this context, snapshots are vectors containing the coefficients at each spatial node, with

each snapshot typically taken at a different time or with varying material properties

[144]. [11] instead populated the snapshot matrix with angular flux vectors taken from

full order model solutions, and thus generated optimised angular basis functions capable

of efficiently representing the angular flux distributions which they have been produced

for. As previously mentioned, this method was effective at reducing the degrees of

freedom required to represent the angular dimension, but it caused solver instability

which reduced its effectiveness. The primary focus of this research was to fix the solver

instability of angular POD and improve its efficacy.

Recent developments include the application of POD to model transient heat conduction

in problems with temperature-dependent thermal conductivity [145], turbulent supersonic
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jets [146], acoustic waves inside enclosures [147], incompressible magnetohydrodynamics

[148], and many other problems. POD-based methods have also been combined with

neural networks to model elasticity and plasticity [149], unsteady flows in a combustion

problem [150], the viscous Burgers equation [151], and in detecting and quantifying

structural damage [152].

In the field of nuclear engineering, ROMs have begun to make progress towards providing

efficient and accurate predictions for both reactor physics and shielding problems.

Early work in reactor physics includes [153], which applied POD to resolve the spatial

dependence of reactor physics eigenvalue problems, and [154], which used it to perform

transient analysis of accelerator driven systems. A comparison of POD to modal methods

in transient analysis is given in [144], and the use of ROMs to resolve sub-channels

in lead cooled fast reactors is developed in [155]. Further developments include the

application of POD to the angular dimension of the BTE [11, 156, 157], space-angle

ROMs for radiative heat transfer [158], and the use of range-finding algorithms for

the linear transformation of parameters in multiphysics problems [159]. POD has also

been applied to resolve the angular dependence of the neutron transport equation [11],

which was followed by similar work to resolve the angular dimension in radiative heat

transfer problems [160]. More recent work has applied POD to non-linear feedback

effects within lead-cooled reactors [161], fuel burnup within benchmark systems [162],

molten salt reactor analysis [163], natural thermohydraulic circulation [164] and reactor

power distributions [165]. Many articles have also considered the problem of control

rod movement using various ROMs, including early work based on proper generalised

decomposition [166], and recent publications which employed POD [167], the empirical

interpolation method [168], and neural networks [169].

2.6.4 Adaptive Reduced Order Models

Reduced order models which are hierarchical in nature allow for the implementation

of adaptivity, since additional resolution can be added without disrupting the existing

solution. This provides a significant advantage, as adaptivity can increase the efficiency

even further than the model order reduction alone. In particular, if a hierarchical ROM

is constructed from a non-hierarchical full order discretisation, then adaptivity can be

implemented relatively easily in a context where it was previously difficult. This is the
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case with POD models based on SN full order models, which are the subject of this work.

Angular adaptivity is difficult to implement for the full order model because increasing

the order of the angular discretisation completely redistributes the ordinates rather than

merely adding new ordinates, as in a hierarchical system. However, the construction of

POD bases which are hierarchical enables angular adaptivity to be implemented in the

reduced order model.

Many adaptive ROMs based on POD have been implemented, due to its hierarchical

nature and widespread usage. Similar techniques have been applied to a wide range of

physical systems. [132] combined spatial mesh refinement with a POD-based ROM in the

context of ocean modelling. In [170], an adaptive POD model for the Reynolds-averaged

Navier Stokes equations was produced, which included additional basis functions based

on an a posteriori error estimator. [171] used adaptive POD to model population balance

in a simulation of the crystallisation process. Other methods of producing adaptive

reduced order models have also been demonstrated. For example, [163] recently produced

an adaptive ROM of a molten salt reactor based on neural networks, and [172] used an

adaptive finite element mesh along with a neural network to generate a correction term,

which was applied to the coarse mesh to produce the final reduced order model.



Chapter 3

A Discontinuous Angular Reduced

Order Model for the Boltzmann

Transport Equation

This chapter describes a novel reduced order model for the angular discretisation of

the BTE, known here as Discontinuous Proper Orthogonal Decomposition (DPOD).

It represents a modification of the angular Proper Orthogonal Decomposition method

described by Buchan in 2015 [11], which will henceforth be known simply as POD. The

motivation for this modification was an attempt to solve the issue of solver instability

which affects POD. Specifically, the number of iterations required to converge to a

solution using the POD method oscillates drastically as the number of basis functions

used is varied. In an attempt to fix this issue, a new type of angular POD basis function

was developed. In contrast to the POD functions which span the entire angular domain,

basis functions with compact support were developed. These functions are nonzero only

in a particular section of the sphere - in this project, the basis functions were restricted

to supporting individual octants, though in principle any partitioning of the angular

domain could be used. A complete basis spanning the sphere was then constructed by a

linear combination of basis functions from every octant. It will be demonstrated that

partitioning the angular domain in such a manner eliminates the solver instability of the

POD method, and additionally decreases the angular flux error for a given basis size in

many cases. A further advantage of this method is that it allows for the implementation
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of a more sophisticated form of angular adaptivity, as the number of basis functions

utilised can differ between angular octants as well as spatial elements. It also enables

the use of a more efficient sweep-based solver - since the angles represented by each basis

function lie within a single sweep direction, it should be possible to produce a solution

by sweeping one direction per basis function rather than all four. This possibility is

discussed in more detail in section 1.2, along with an explanation of why it was not

implemented in this project.

The chapter is organised as follows: First, the steady state, mono-energetic BTE is

defined. A complete derivation of the angular POD method described by Buchan is then

presented. Next, the DPOD method is derived in detail, along with a simple yet effective

implementation of angular adaptivity using the DPOD basis functions. Numerical results

for a range of problems are then presented to demonstrate the effectiveness of DPOD

compared to POD and the full order discrete ordinates method. Finally, conclusions are

drawn regarding the effectiveness of DPOD, based on the numerical results presented.

3.1 The Steady State, Mono-Energetic Boltzmann Trans-

port Equation

The steady state, mono-energetic BTE describes the angular flux Ψ(r⃗,Ω) in direction Ω

at position r⃗:

Ω · ∇Ψ(r⃗,Ω) + Σt(r⃗)Ψ(r⃗,Ω) = qex(r⃗) + qs(r⃗,Ω
′ −→ Ω). (3.1)

The first term in equation 3.1 is the advection operator Ω · ∇, which can be written in

Cartesian coordinates as:

Ω · ∇ = (Ωx,Ωy,Ωz) · (
∂

∂x
,
∂

∂y
,
∂

∂z
) = Ωx

∂

∂x
+Ωy

∂

∂y
+Ωz

∂

∂z
, (3.2)

where Ωx, Ωy and Ωz are the components of the unit vector Ω in Cartesian space. The

second term is the removal operator, which accounts for losses from both absorption

and scattering. qex denotes the isotropic external source, and the scattering source term
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qs is given by:

qs(r⃗,Ω
′ −→ Ω) =

∫
Ω′

Σs(r⃗,Ω
′ −→ Ω)Ψ(r⃗,Ω′)dΩ′, (3.3)

and represents the scattering into the angle Ω from all angles Ω′. The macroscopic

scattering, absorption and total removal cross sections are given by Σs, Σa and Σt

respectively, and are related by:

Σt = Σs +Σa. (3.4)

Throughout this work, variables in brackets will denote continuous dependence, so that

Ψ(r⃗,Ω) is continuous in space in angle and Ψ(r⃗) is continuous in space but discretised

in angle. ψ will be used to denote angular fluxes which are discretised in both space and

angle.

3.2 Angular Discretisation of the Boltzmann Transport

Equation

To discretise the angular dimension of equation 3.1, the angular flux Ψ(r⃗,Ω) is approx-

imated by a sum of Na angular basis functions Gj(Ω) multiplied by the coefficients

Ψj(r⃗):

Ψ(r⃗,Ω) ≈
Na∑
j=1

Gj(Ω)Ψj(r⃗). (3.5)

The approximation in equation 3.5 is inserted into equation 3.1, which is then weighted

and integrated over all angles. The Bubnov-Galerkin method is applied, which uses the

angular basis functions as weights, this time denoted Gi(Ω). The angularly discretised

form of the BTE can therefore be written as:

Na∑
j=1

((∫
Ω
Gi(Ω)Ω · ∇Gj(Ω)dΩ+

∫
Ω
Gi(Ω)Σt(r⃗)Gj(Ω)dΩ

)
Ψj(r⃗)

)

−
∫
Ω
Gi(Ω)qs(r⃗,Ω

′ −→ Ω)dΩ =

∫
Ω
Gi(Ω)qex(r⃗)dΩ

∀ i ∈ {1, Na} (3.6)
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The Cartesian components of the advection operator Ω · ∇, given by equation 3.2, are

substituted into equation 3.6:

Na∑
j=1

((∫
Ω
Gi(Ω)Ωx

∂

∂x
Gj(Ω)dΩ+

∫
Ω
Gi(Ω)Ωy

∂

∂y
Gj(Ω)dΩ

+

∫
Ω
Gi(Ω)Ωz

∂

∂z
Gj(Ω)dΩ+

∫
Ω
Gi(Ω)Σt(r⃗)Gj(Ω)dΩ

)
Ψj(r⃗)

)

−
∫
Ω
Gi(Ω)qs(r⃗,Ω

′ −→ Ω)dΩ =

∫
Ω
Gi(Ω)qex(r⃗)dΩ,

∀ i ∈ {1, Na}. (3.7)

Equation 3.7 can be written in matrix form as:

Ax
∂Ψ(r⃗)

∂x
+Ay

∂Ψ(r⃗)

∂y
+Az

∂Ψ(r⃗)

∂z
+HΨ(r⃗) = Q(r⃗) (3.8)

Where Ax, Ay, Az and H are matrices of size Na ×Na. Ψ(r⃗) and Q(r⃗) are vectors of

size Na, containing the coefficients of the angular basis functions and the contributions

of the source term, respectively. The components of each matrix and vector at row i,

column j are given by:

Aij
x =

∫
Ω
Gi(Ω)ΩxGj(Ω)dΩ

Aij
y =

∫
Ω
Gi(Ω)ΩyGj(Ω)dΩ

Aij
z =

∫
Ω
Gi(Ω)ΩzGj(Ω)dΩ

H ij =

∫
Ω
Gi(Ω)Σt(r⃗)Gj(Ω)dΩ−

∫
Ω
Gi(Ω)qs(r⃗,Ω

′ −→ Ω)dΩ

Qi =

∫
Ω
Gi(Ω)qex(r⃗)dΩ

A vector of matrices A is defined as A = (Ax, Ay, Az), which allows equation 3.8 to be

rewritten as:

(A · ∇+H)Ψ(r⃗) = Q(r⃗). (3.9)

This form of the equation is fully discretised in angle, but has yet to be discretised in

space.



3.3. Spatial Discretisation of the Boltzmann Transport Equation 64

3.3 Spatial Discretisation of the Boltzmann Transport Equa-

tion

The discontinuous Galerkin finite element method is applied to discretise the spatial

dimensions of equation 3.9. The equation is converted to its weak form by weighting it

with a set of Ns spatial basis functions Ni(r⃗) and integrating over the volume of each

element, Ve:

(∫
Ve

Ni(r⃗)A · ∇dVe +

∫
Ve

Ni(r⃗)HdVe

)
Ψ(r⃗) =

∫
Ve

Ni(r⃗)Q(r⃗)dVe

∀ i ∈ {1, Ns}. (3.10)

The divergence theorem is applied to the advection term in equation 3.10, splitting it

into an integral over Ve and another over the element boundary Γe:

(∫
Γe

Ni(r⃗)(A · n̂)dΓe −
∫
Ve

∇Ni(r⃗) ·AdVe +
∫
Ve

Ni(r⃗)HdVe

)
Ψ(r⃗)

=

∫
Ve

Ni(r⃗)Q(r⃗)dVe,

∀ i ∈ {1, Ns}, (3.11)

where n̂ is the unit vector normal to the element boundary. The angularly discretised

flux Ψ(r⃗) is approximated as a sum of the spatial basis functions Nj(r⃗) multiplied by

the coefficients Ψj(r⃗):

Ψ(r⃗) ≈
Ns∑
j=1

ψjNj(r⃗). (3.12)

The Bubnov-Galerkin method is applied, which uses the same set of functions as both

weights and basis functions. Inserting equation 3.12 into equation 3.11 gives:

Ns∑
j=1

(∫
Γe

Ni(r⃗)(A · n̂)Nj(r⃗)dΓe −
∫
Ve

∇Ni(r⃗) ·ANj(r⃗)dVe+∫
Ve

Ni(r⃗)HNj(r⃗)dVe

)
ψj =

∫
Ve

Ni(r⃗)Q(r⃗)dVe,

∀ i ∈ {1, Ns}. (3.13)
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First-order upwinding is used to calculate the flow at the element boundaries [49]. The

boundary term must therefore be split into inflow and outflow components [50]:

Ns∑
j=1

∫
Γe

Ni(r⃗)(A · n̂)Nj(r⃗)dΓeψj

=

Ns∑
j=1

(∫
Γe

Ni(r⃗)(A
in · n̂)Nj(r⃗)dΓeψ

in
j +

∫
Γe

Ni(r⃗)(A
out · n̂)Nj(r⃗)dΓeψ

out
j

)
,

∀ i ∈ {1, Ns}. (3.14)

ψout
j is the outflow, given by the angular flux vector of the element in question; and ψin

j is

the inflow, given by the angular flux vectors of the element’s upstream neighbours. The

matrices (Ain · n̂) and (Aout · n̂) are formed to pass the correct incoming and outgoing

information, respectively, through the element’s surface. For SN , they are produced by

simply retaining the negative and positive diagonal elements, respectively, of the matrix

(A · n̂). In the general case, a Riemann approach can be employed [173]. Equation 3.14

is inserted into equation 3.13 to give the final form of the fully discretised equations:

Ns∑
j=1

((
−
∫
Ve

∇Ni(r⃗)ANj(r⃗)dV +

∫
Ve

Ni(r⃗)HNj(r⃗)dV
)
ψj

+

∫
Γe

Ni(r⃗)(A
in · n̂)Nj(r⃗)dΓeψ

in
j +

∫
Γe

Ni(r⃗)(A
out · n̂)Nj(r⃗)dΓeψ

out
j

)

=

∫
Ve

Ni(r⃗)Q(r⃗)dV,

∀ i ∈ {1, Ns}. (3.15)

3.4 Proper Orthogonal Decomposition in Angle

This section describes the method of POD in angle, first presented by Buchan et al [11].

The ROM is based on the use of POD and the method of snapshots to form optimal

angular basis functions for a particular class of problem. Each snapshot is given by the

angular flux vector of its associated node, and a snapshot matrix S is formed whose
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columns are given by the snapshot vectors:

S =


| | |

ψ1 ψ2 ... ψnh

| | |

 , (3.16)

where nh is the total number of snapshots. Each snapshot is of length Na, which is the

number of angles defined by the discrete ordinate angular discretisation. The snapshot

matrix is therefore of size Na × nh. The model may be trained to account for variation

in one or more parameters by including snapshots from multiple solutions, each of which

is produced on the same domain by varying the parameter(s) in question. This allows

the model to interpolate and, to a certain extent, extrapolate to new values of the

parameter(s). The number of snapshots nh is therefore given by the number of nodes in

the domain, Nn, multiplied by the number of problems which the model is trained on,

Np.

Once the snapshot matrix has been generated, the singular value decomposition (SVD)

is performed,

S = UΣV T , (3.17)

where U and V are orthogonal matrices of size Na ×Na and nh × nh, respectively, and

Σ is of size Na × nh. The matrix U contains the POD basis functions as its columns,

ordered such that the first na columns form the optimal na basis vectors in the Frobenius

norm. Σ is a diagonal matrix containing the singular values, which give the fraction of

the information in the snapshot matrix which can be represented by the first na basis

functions as,

I(na) =

na∑
i=1

(Σi,i)
2

Na∑
i=1

(Σi,i)2
, (3.18)

where I varies from 0 to 1, with 1 being total capture of the snapshot information.

V T contains information which is extraneous to this application of the SVD, and is

discarded.

The reduced order basis matrix U is formed by truncating the matrix U such that only
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the first na columns are retained:

U jk = Ujk,∀j ∈ {1, Na}, ∀k ∈ {1, na}, (3.19)

where U jk and Ujk denote the jth row and kth column of each matrix. The basis matrix

U can be used to map the angular coefficients between the full and reduced order models

through the relationship,

Ψ(r⃗) ≈ Uα(r⃗), (3.20)

where α(r⃗) is the vector of reduced order angular coefficients at each point in space.

Substituting equation 3.20 into equation 3.8 and premultiplying by UT projects the

angularly discretised equations onto the POD space:

(
UTAxU

∂

∂x
+ UTAyU

∂

∂y
+ UTAzU

∂

∂z
+ UTHU

)
α(r⃗) = UTQ (3.21)

Spatial discretisation can then be performed on equation 3.21 as described in section

3.3, with α(r⃗) taking the place of Ψ(r⃗) in the derivation.

3.5 The Discontinuous Angular Reduced Order Model

This section describes a novel modification to the angular POD method which was first

proposed in [11], and described in section 3.4. The previous method used full angular flux

vectors to form the snapshot matrix, resulting in the formation of POD basis functions

that spanned the entire surface of the sphere. The fundamental difference in this work

is to relax the global nature of the POD basis functions, and to instead form basis

sets with compact support - that is, they span subsets of the sphere. The selection of

these angular regions can be arbitrary, but in this project each octant of the sphere

defines a separate region, which is shown to stabilise the basis functions and as such

should be considered the starting point for this method. Further subdivision may be

beneficial in some contexts, such as highly anisotropic flux distributions, but has not

been investigated here. The angular domain Ω is partitioned into the regions,

Ω =
8⋃

q=1

Ωq, (3.22)
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where Ωq defines the qth octant, which will have its own set of optimised basis functions.

Figure 3.1 depicts one such octant.

Figure 3.1: An octant on the sphere, which defines the boundaries of an angular region.

As previously, each class of problem may be resolved for Np cases with varying conditions,

such as perturbations to the nuclear material cross-sections. The vectors of angular

coefficients formed at the nodes of the spatial mesh are then partitioned into sets

according to their angular region,

ψ =



ψ1

ψ2

...

ψ8


, (3.23)

where ψq is a vector containing the Nq coefficients with associated directions within Ωq.

Note that Na =
q∑
Nq. This partitioning of the angular vector is used to form separate

snapshot matrices for each Ωq. When using the octants of the sphere as angular regions,

eight separate snapshot matrices are formed from the vectors of angular coefficients at

the mesh nodes, for all problems used in creation of the ROM. In two dimensions, half of

these octants are reflections of the other half and can be ignored. The snapshot matrices
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produced are given by

Sq =


| | |

ψ1
q ψ2

q ... ψnh
q

| | |

 , ∀q ∈ {1, 8}. (3.24)

The POD basis sets for each angular region Ωq can now be formed through the SVD of

each snapshot matrix,

Sq = UqΣqV
T
q (3.25)

where Uq and V T
q are unitary matrices of sizes Nq ×Nq and nh × nh, respectively. As

previously, the column vectors of Uq contain the basis vectors which optimally represent

the snapshot data, ordered such that the first na columns form the optimal na basis

vectors in the Frobenius norm. The angular POD basis matrices Uq are formed by

truncating each snapshot matrix such that only the first na columns are retained:

U jk
q = Ujk

q ∀q ∈ {1, 8},∀j ∈ {1, Nq},∀k ∈ {1, na}, (3.26)

where U jk
q and Ujk

q denote the jth row and kth column of the matrix associated with the

angular region q. Note that there is freedom to set the expansion size of each angular

region independently - that is, na may vary with q. The fraction of the information in

Uq which is retained in Uq can again be determined from the singular values:

Iq =

na∑
j=1

(Σjj
q )2

Nq∑
j=1

(Σjj
q )2

, (3.27)

where Iq varies from 0 to 1, with 1 being total capture of the snapshot information. The

matrices Uq can be used to map the angular coefficients between the full and reduced

order models through the relationship,

Ψq(r⃗) ≈ Uqαq(r⃗), (3.28)

for each angular partition Ωq. The combined mapping over all angular partitions can be
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expressed as,

U =



U1 0 0 0 0

0
. . . 0 0 0

0 0 Uq 0 0

0 0 0
. . . 0

0 0 0 0 U8


, α(r⃗) =



α1(r⃗)

...

αq(r⃗)

...

α8(r⃗)


=⇒ Uα(r⃗) =



U1α1(r⃗)

...

Uqαq(r⃗)

...

U8α8(r⃗)


. (3.29)

Equations 3.23 and 3.28 enable this to be compactly written as,

Ψ(r⃗) ≈ Uα(r⃗) (3.30)

Substituting equation 3.30 into equation 3.8 and premultiplying by UT projects the

angular discretised equations onto the POD space:

(
UTAxU

∂

∂x
+ UTAyU

∂

∂y
+ UTAzU

∂

∂z
+ UTHU

)
α(r⃗) = UTQ (3.31)

Spatial discretisation can then be performed on equation 3.31 as described in section

3.3, with α(r⃗) taking the place of Ψ(r⃗) in the derivation. Note that in the case of a

single angular region spanning the full sphere, the angular POD method implemented

by Buchan et al. [11] and described in section 3.4 is recovered.

3.6 Adaptivity in Angle

This section presents an adaptive algorithm using the DPOD basis functions. The

standard DPOD method uses the same number of basis functions na throughout the

domain, whereas in the adaptive DPOD (ADPOD) method each octant q and element e

has an associated number of basis functions nqe, which can be modified independently.

The adaptive algorithm seeks to determine where to add basis functions in order to

maximise their effectiveness in reducing total error. An initial solution is required in

order to calculate the error metric and begin to add basis functions, and so the problem

in question is first solved with

nqe = 2, ∀q, ∀e. (3.32)
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The DPOD basis functions form a hierarchical set, with each function describing a larger

fraction of the data than those which follow it, and so successive coefficients tend towards

zero. It is therefore possible to infer which locations are likely to benefit most from

additional basis functions by comparing their final coefficients. If the final coefficient in

a particular location is large, it is likely that an additional basis function would also

have a large coefficient, and would thus significantly impact the solution. By contrast, if

the final coefficient is small, then successive coefficients are also likely to be small and

have little impact on the overall solution. However, examination of solution vectors at

various points showed that the magnitude of successive coefficients tends to oscillate,

and so a single small coefficient does not guarantee convergence in that location. As a

result, the final coefficient alone was not a reliable metric. To account for this, the larger

of the final two coefficients at each location is compared. A list of these coefficients Lqe

is compiled:

Lqe = Max(αnqe−1
qe , α

nqe
qe ), ∀q ∈ {1, 8}, ∀e ∈ {1, Ne}, ∀j ∈ {1, Nn} (3.33)

Where αk
qj denotes the kth angular coefficient for octant q at node j, and Ne is the

number of elements in the spatial mesh. The list Lqe is sorted by magnitude, and the

largest n+ entries have their associated nqe values increased, while the smallest n− have

their nqe values decreased (to a minimum of two). Once nqe has been adjusted, the

process repeats until the problem has converged to within the desired tolerance. The

complete adaptive method is described by algorithm 1.
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Algorithm 1: Adaptive DPOD

/* Find an initial solution with the minimum number of basis

functions. */

nqe = 2 for all q and e.

Solve the ROM.

Calculate the error ϵ.

/* Iterate until the desired convergence is reached. */

while ϵ > tolerance do
Create the list Lqe and sort by magnitude.

Increment nqe by 1 for each of the first n+ entries in Lqe.

Decrement nqe by 1 to a minimum of 2, for each of the last n− entries in Lqe.

Solve the ROM.

Calculate the error ϵ.
end

3.7 Numerical Examples

In this section, two numerical examples are presented in order to compare POD, DPOD

and ADPOD. Uniform quadrilateral FEM spatial meshes are employed, using discon-

tinuous bilinear basis functions. The full order method employs the SN discretisation,

with a sufficiently high angular resolution to ensure that the solutions have converged

in angle. A sweep based solver is used to resolve the SN and all POD methods. This

solver was poorly optimised when results were gathered, and so computational efficiency

is determined based on the number of solver iterations required for solution convergence,

and the error for a given number of angular degrees of freedom. It should be noted that

for the POD and DPOD methods the complexity, and hence computation time, of each

solver iteration is the same for a given number of basis functions. Furthermore, the

sparsity within the DPOD angular streaming matrices (75% for 2D and 87% for 3D) has

not been considered, and so DPOD could potentially be implemented more efficiently

than POD. The purpose of this analysis is to demonstrate the novel methods’ improved

solver convergence and increased accuracy for a given basis size when compared with

SN and previous angular POD methods.
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3.7.1 The Dog-Leg Duct Problem

(a) Schematic
(b) S40 scalar flux solution

Figure 3.2: Schematic (a) and S40 scalar flux solution (b) for the dog-leg duct extrapolation problem.
Green is the source, white is the duct and red is a highly absorbing material.

The first example is an advective dog-leg duct problem [12] described in section 1.3.1.

Figure 3.2a shows a schematic of the domain. The green region is an isotropic source,

the white region is the duct, and the red regions are heavy absorbers. Vacuum boundary

conditions are applied to the top and right boundaries, and reflective boundary conditions

to the bottom and left boundaries. The spatial dimension is discretised with a 140×180

mesh of discontinuous bilinear quadrilateral elements. The full order solutions used for

snapshots and error calculations employed the S40 angular discretisation. Figure 3.2b

shows the scalar flux distribution of the S40 solution to the extrapolation problem.
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Problem Region Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

Green 1.00 0.40 0.00

1 White 0.00 0.00 0.00

Red 0.00 0.40 0.00

Green 1.00 0.50 0.00

2 White 0.00 0.00 0.00

Red 0.00 0.50 0.00

Green 1.00 0.60 0.00

3 White 0.00 0.00 0.00

Red 0.00 0.60 0.00

Green 1.00 0.50 0.00

Seen White 0.00 0.00 0.00

Red 0.00 0.50 0.00

Green 1.00 0.45 0.00

Interpolate White 0.00 0.00 0.00

Red 0.00 0.45 0.00

Green 1.00 0.35 0.00

Extrapolate White 0.00 0.00 0.00

Red 0.00 0.35 0.00

Table 3.1: Material properties for the dog-leg duct problems in chapter 3.

Table 3.1 lists the material cross sections for both the training and test problems. As the

problem is purely advective, altering its scattering coefficient would qualitatively change

the solutions. It was therefore left at 0 in all cases, and only the absorption coefficient

was altered. The snapshot matrix was formed from all three training solutions, and the

resulting POD bases were used to solve the test problems. The first test problem is

referred to as the seen problem, as its material properties are identical to one of the

training solutions. The other two are both unseen problems - the interpolation problem

has its Σa value within the range for which snapshots were produced, while Σa for the

extrapolation problem lies outside this range. Reduced order solutions to all three test

problems were used in producing results, in order to compare the models’ ability to cope
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with variations in material properties.

(a) Seen (b) Interpolation

(c) Extrapolation

Figure 3.3: The effects of increasing basis function count on relative scalar flux error for the dog-leg
duct problem.

Figure 3.3 presents the L1-norm of the relative scalar flux error in solutions of the

dog-leg duct problem against the mean number of basis functions per node. Low

order SN solutions with degrees of freedom equivalent to the ROMs’ are also shown,

with their number of basis functions equal to the number of SN angular directions,

given by Na = N(N + 2)/2 in two dimensions, where N is the order of the SN

discretisation. This provides a comparison between the ROMs and a full order model of

equivalent computational complexity. For example, the S12 angular discretisation has

84 basis functions, and the matrix systems it produces are equal in size and similar in

computational cost to POD and DPOD with a total of 84 basis functions per node. In

the case of adaptive DPOD, the number of basis functions varies by octant and element,

so the mean number of basis functions is used. This is not exactly equivalent, since

the computational cost scales with the square of the number of basis functions, but it

provides an approximate comparison. POD consistently has lower error than SN with
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the same number of basis functions. For this problem, DPOD outperforms POD in some

cases but underperforms in others. Overall, the two methods perform approximately

equally in terms of error per basis function. ADPOD is a huge improvement upon all

three of the other methods, particularly for larger numbers of basis functions, where

it has an error almost two orders of magnitude smaller than POD and DPOD. This

demonstrates the ability of angular adaptivity to drastically reduce the computational

cost required to reach a given level of error.

(a) Seen (b) Interpolation

(c) Extrapolation

Figure 3.4: The effects of increasing basis function count on the number of iterations required to
converge to a solution for the dog-leg duct problem.

Figure 3.4 shows the number of solver iterations required to converge the solution for each

method. A ROM solution was considered converged when the L1-norm of the difference

between current and previous iterations’ scalar flux solutions decreased below 10−6. In

the case of ADPOD, the number of iterations is presented for each adaptive step, in

order to demonstrate the stability of the ADPOD bases throughout the adaptive process.

Due to the non-scattering media, the SN discretisation required just two iterations to

converge to a solution, though a third was performed to verify its convergence. By
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contrast, POD required up to 1.8 orders of magnitude more iterations to converge.

The number of iterations required was also inconsistent, with a range of approximately

an order of magnitude, which caused unpredictable variation in the solve time. This

demonstrates the aforementioned problem with previous angular POD methods, which

this research was intended to solve. As the graph shows, DPOD and ADPOD do not

suffer from this disadvantage. Instead, they converge in two sweeps as with SN . This

provides the first evidence that DPOD and ADPOD may overcome the solver instability

issue of angular POD, at least in the case of non-scattering problems. As the solve

time is dependant on the number of iterations required to converge the solution, DPOD

provides significant benefits over POD despite their similar levels of error. ADPOD also

resolved the solver instability issue, and it also had significantly reduced error compared

to the non-adaptive methods, demonstrating that it provides significant benefits in this

case.
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(a) S8 (b) POD

(c) Discontinuous POD (d) Adaptive Discontinuous POD

Figure 3.5: Solutions to the dog-leg duct extrapolation problem for all four methods with 40 basis
functions per node, on average in the case of ADPOD.

Figure 3.5 depicts the scalar flux solutions for the extrapolation problem produced by

each method, using 40 basis functions per node (on average in the case of ADPOD).

The full order solution to this problem is shown in figure 3.2b. The S8 solution exhibits

significant ray effects, which results in a highly inaccurate flux distribution within and

outside of the duct. POD reduces these ray effects somewhat, though they are still visible

in some areas. However, it has the most inaccurate peak flux by far, overestimating the

flux in the source region by almost 10%. DPOD suffers from significant ray effects in

this case, but its peak flux is much closer to the expected value than that of POD. It

seems that the increased ray effects found in the DPOD solution somewhat counteracted

its more accurate approximation of the peak flux, but in this case the DPOD error was

still slightly lower overall, as figure 3.3c shows. ADPOD drastically reduces ray effects
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compared to every other method, and has the smallest error in its peak flux. Minor

distortions are present, but only in the regions with the least flux, where their effect on

the total error is insignificant. This is to be expected, since these regions should be of low

priority for additional basis functions. These results demonstrate the benefits of DPOD

and particularly ADPOD in resolving non-scattering problems with few basis functions,

when compared to previous methods. It also provides evidence that the adaptive method

worked as intended.

(a) -x, +y octant (b) +x, +y octant

(c) -x, -y octant (d) +x, -y octant

Figure 3.6: Number of ADPOD basis functions per octant per node for the duct extrapolation problem,
with a mean of 40 basis functions per node in total.

Figure 3.6 depicts the number of basis functions per node of each element and octant

in the domain for the adaptive method. A large section of the domain had zero flux in

three out of four octants, since it was only accessible by flux travelling in the +x, +y

direction. The adaptive algorithm successfully accounted for this by keeping the number

of basis functions in these regions at the minimum of two. Most basis functions were
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focused inside the duct, which is to be expected since it is also the location of most of

the flux, and so basis functions in this region are likely to have larger coefficients and

contribute most to the overall solution. However, the absorbing regions had a relatively

low cross section, and so flux penetrated into these regions rather than being immediately

attenuated. The adaptive algorithm therefore added basis functions to these regions as

well. These results provide further evidence of ADPOD’s ability to focus basis functions

where they are most beneficial, which explains its success in drastically reducing error

for a given number of basis functions.

Figure 3.7: The effect of increasing basis function count on relative angular flux error for the dog-leg
duct extrapolation problem.

Figure 3.7 presents the relative angular flux error against the number of basis functions

per node, which is a more accurate error metric than the scalar flux error. The results

are similar to the scalar flux error plots in figure 3.3, but in this plot DPOD is a slight

improvement upon POD in every case, and the error oscillates less about its trend line.

This suggests that cancellation of errors was responsible for the oscillating error, and for

POD outperforming DPOD in some cases. Since cancellation of errors does not occur

with angular flux, these problems are not present and the resulting graph is therefore

more reliable. However, it is not feasible to calculate the scalar flux error between two

different full order solutions in this case, as the SN model is not hierarchical, and so

both scalar and angular flux plots have been presented. Once again, ADPOD performs
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significantly better than either method, particularly for large basis function counts. Since

the angular flux error is a more reliable metric, this provides further evidence that the

adaptive method worked as expected.

(a) x = 1.5cm, y = 1.5cm (b) x = 6.0cm, y = 10.5cm (c) x = 7.5cm, y = 16.0cm

Figure 3.8: Angular flux distributions at various points in the dog leg duct problem. From top to
bottom, S40, S8, and adaptive discontinuous POD. Both S8 and ADPOD have a mean of 40 basis

functions per node, while S40 has 840 basis functions per node.

Figure 3.8 depicts the angular flux profiles at three points in the domain for the

extrapolation problem. The S40 solution has 840 basis functions in two dimensions,

while the S8 and ADPOD solutions both have 40. The S8 angular discretisation is

highly inaccurate. The solid angles subtended by each basis function are large, and so

complex angular flux profiles can not be accurately represented. By contrast, ADPOD

was able to reproduce the S40 angular flux profiles with only minor differences. The

ADPOD solution has a higher angular resolution as its snapshots were produced with

the S40 angular discretisation, and any angular flux profile it produced had the same

resolution. However, appropriate basis functions are required for ADPOD to accurately

reproduce the full order solution, as it has significantly fewer degrees of freedom. In this

case, the model produced useful basis functions and the adaptive algorithm included
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enough of them at each point to reproduce the S40 solution with only minor errors. This

demonstrates the benefits of ROMs (and ADPOD in particular) over low order models

when producing approximate solutions to higher order models.

3.7.2 The Watanabe-Maynard Problem

The second example is the Watanabe-Maynard problem, which was introduced in [13]

and is described in section 1.3.2. A schematic is shown in Figure 3.9a. The green

region is an isotropic square source, the white region is a void, and the blue region is

a highly scattering material. Vacuum boundary conditions are applied to the top and

right boundaries, and reflective boundary conditions to the bottom and left boundaries.

The domain is discretised using an 80×80 mesh of discontinuous bilinear quadrilateral

elements in space. Full order solutions for snapshot generation and error comparison

were produced using S30 in angle. Figure 3.9b shows the scalar flux distribution of the

S30 solution to the extrapolation problem.

(a) Schematic
(b) S30 scalar flux solution

Figure 3.9: Schematic (a) and S30 scalar flux solution (b) for the Watanabe-Maynard extrapolation
problem. Green is the source, white is a void and blue is a highly scattering material.
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Figure 3.10: Σa and Σs values used to produce snapshots and solutions for the
Watanabe-Maynard problem.

Figure 3.10 shows Σa and Σs values in the non-void regions for eight solutions and three

test problems. While previously the scattering cross-section was kept at 0 since the

problem was intended to be purely advective, this problem includes scattering, and so

both the scattering and absorption cross-sections were modified. The snapshot matrix

was formed by combining all eight training solutions, and the POD bases produced were

used to solve all three test problems. As previously, one set of material properties had

been seen in the offline stage, one was an interpolation between seen properties, and one

was an extrapolation outside the range of seen material properties.
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(a) Seen (b) Interpolation

(c) Extrapolation

Figure 3.11: The effects of increasing basis function count on relative scalar flux error for the
Watanabe-Maynard problem.

Figure 3.11 presents the L1-norm of the relative scalar flux error in solutions of the

Watanabe-Maynard problem against the mean number of basis functions per node

for each method. Results from low order SN solutions are shown for comparison, as

previously. In this case, POD generally had a lower error than SN with the same number

of basis functions, though it struggled with 12 and fewer. In particular, POD could not

solve the seen problem with 12 basis functions, as the system diverged. These issues

are likely due to the problem’s complexity when compared to the dog-leg duct. The

Watanabe-Maynard problem contains both void and scattering regions, and with few

basis functions the flux in some areas could not be resolved properly. DPOD did not

suffer from this issue, likely because the decoupling of angular fluxes in each octant

ensured that information could always flow in approximately the right direction. DPOD

also had consistently less error for a given number of basis functions than POD, usually

by a factor of two to three. ADPOD improved upon this, reducing error by a further

factor of two to three compared to DPOD. However, it did not provide the huge benefits
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seen previously. This is likely because the scattering present in this problem ensures

that flux travels throughout the domain, and so basis functions are required everywhere.

Therefore, the adaptive method could not simply ignore large portions of the domain.

By contrast, in the dog-leg duct problem flux is primarily limited to the duct itself, and

so basis functions can be focused in that region.

(a) Seen (b) Interpolation

(c) Extrapolation

Figure 3.12: The effects of increasing basis function count on the number of iterations required to
converge a solution for the Watanabe-Maynard problem.

Figure 3.12 shows the number of solver iterations required to converge the solution for

each method. As with the dog-leg duct problem, a solution was considered converged

when the L1-norm of the difference between current and previous iterations’ scalar flux

solutions decreased below 10−6. However, the Watanabe-Maynard problem contains

scattering regions which must be resolved by iteration, and so every method required more

iterations to converge than the dog-leg duct problem. As previously, POD performed

much worse than any other method by this metric. It consistently required more

iterations to solve than the other three methods, and the exact number of iterations

varied significantly. The other methods all converged faster and more consistently, with
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similar numbers of iterations required for each, though DPOD and ADPOD converged

slightly faster than SN in most cases. This provides further evidence that the solver

instability issue exhibited by POD has been resolved by the DPOD method, including

for problems with scattering materials. Since the solve time is dependant on the number

of iterations required to converge the solution, this constitutes a clear benefit of DPOD

and ADPOD over POD.

(a) S6 (b) POD

(c) Discontinuous POD (d) Adaptive Discontinuous POD

Figure 3.13: Solutions to the Watanabe-Maynard extrapolation problem for all four methods with 24
basis functions per node, on average in the case of ADPOD.

Figure 3.13 depicts the scalar flux solutions produced for the extrapolation problem

by each method with 24 basis functions per node, on average in the case of ADPOD.

The full order solution to this problem is shown in figure 3.9b. The S6 solution exhibits

significant ray effects which severely impact the accuracy of the solution. POD reduces

these ray effects somewhat, but makes them less regular and so increases error in some

regions. It is particularly poor at resolving the source region and its surroundings, which

leads to a more inaccurate peak flux than even the S6 solution. DPOD improves upon

the previous method - ray effects are significantly reduced, the source region is well
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resolved and the peak flux is relatively accurate. However, some visible ray effects are

still present due to the low number of basis functions used. ADPOD further reduces

ray effects compared to DPOD, and has a similar error in its peak flux, resulting in the

most accurate solution of the four. This further demonstrates the advantages of DPOD

and ADPOD in resolving scattering problems with few basis functions, and provides

more evidence that the adaptive method is effective.

(a) -x, +y octant (b) +x, +y octant

(c) -x, -y octant (d) +x, -y octant

Figure 3.14: Number of ADPOD basis functions per octant per node for the duct extrapolation
problem, with a mean of 84 basis functions per node in total.

Figure 3.14 depicts the number of ADPOD basis functions per node for each element and

octant in the domain, with a mean of 84 basis functions per node in total. In contrast to

the dog-leg duct results, a significant amount of flux was present in all four octants due

to scattering, which explains the reduced effectiveness of the adaptive algorithm for this

problem when compared with the dog-leg duct problem. Despite this, the algorithm was

able to distribute the added basis functions in order to maximise their contribution to

the solution. Most basis functions were added to the top right octant, which contained

the majority of the flux due to the problem’s geometry. In the other three octants, basis

functions were primarily added downstream of the source and scattering regions and the
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reflective boundaries. This optimisation enabled ADPOD to improve upon POD and

DPOD in terms of error per basis function, despite the broad angular flux distribution

in the Watanabe-Maynard problem.

Figure 3.15: The effect of increasing basis function count on relative angular flux error for the
Watanabe-Maynard extrapolation problem.

Figure 3.15 presents the relative angular flux error against the mean number of basis

functions per node. These are similar to the results for the dog-leg duct problem -

POD has the highest error, then DPOD, and ADPOD has the lowest, providing further

evidence for the efficacy of DPOD and the adaptive method. However, ADPOD does not

improve upon DPOD to the same extent as in the dog-leg duct problem. As mentioned

previously, this is expected because the scattering which is present ensures that some

amount of flux is present in most octants for most elements, and so basis functions must

be distributed more evenly.
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(a) x = 0.625cm, y = 0.625cm (b) x = 0.625cm, y = 4.375cm (c) x = 0.625cm, y = 8.750cm

Figure 3.16: Angular flux distributions at various points in the Watanabe-Maynard extrapolation
problem. From top to bottom, S30, S6, and adaptive discontinuous POD. ADPOD and S6 both use a

mean of 24 basis functions per node, while S30 has 480.

Figure 3.16 depicts the angular flux profiles at three points within the domain. The

locations of each point are shown in red in figure 3.9a. S6 and ADPOD both used

24 basis functions, while S30 has 480. The S6 discretisation is highly inaccurate, as

expected. It performs particularly poorly in the scattering region (c), where the flux

is distributed over a much wider range of angles than it should be. ADPOD performs

far better, producing a reasonable approximation to the expected result. However, the

errors in the ADPOD solutions are more visible in this case than previously, particularly

for the +x, +y octant. This is likely because the problem geometry ensures that this

octant contains the most flux, and scattering complicates the angular flux distributions.

The basis functions in that octant must therefore describe the widest range of angular

flux distributions, and will likely struggle the most. Further addition of basis functions

to that octant by the adaptive algorithm should alleviate this issue.
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3.8 Discussion

This chapter has presented a new reduced order model for discretising the angular

dimension of the BTE, which is based upon POD and the method of snapshots [15]. The

snapshots are formed from angular flux vectors taken from each spatial node, in a similar

manner to previous work on angular POD [11]. Snapshots are included from multiple

variations of the same problem with differing material properties, in order to enhance

the ability of the model to solve problems with unseen material properties. The novel

aspects of this work are the discontinuous formulation of the POD basis functions, which

each span one octant in angle rather than the entire sphere, and the implementation of

angular adaptivity using these discontinuous basis functions.

For the same angular size, the method of DPOD is shown to consistently reduce the

error for a given basis size slightly when compared to POD, which is itself more accurate

than SN by up to half an order of magnitude. Additionally, the number of solver

iterations required to converge each solution was both reduced by up to 1.8 orders of

magnitude, and made more stable - solver iterations oscillated with basis size when

using POD, while with DPOD they converged to the same value and did not oscillate.

When combined, these two factors reduced solve times by up to 2 orders of magnitude

compared to POD for the dog-leg duct problem, and by up to 1.5 orders of magnitude

for the Watanabe-Maynard problem. This data demonstrates that the solver stability

issue with POD is fixed by the introduction of DPOD, which was the primary goal of

this chapter, and that the new method also reduced error slightly, which was a secondary

goal. However, the reduction in error was relatively minor in most cases, excluding

adaptivity.

In both numerical examples, the implementation of angular adaptivity via ADPOD

provided further reductions in error. This was particularly successful in the dog-leg duct

problem, where ADPOD reduced error for a given number of basis functions by up to an

order of magnitude over DPOD, and thereby reduced solve times by up to 3 orders of

magnitude in total compared to POD. For the Watanabe-Maynard problem, the reduction

in error compared to DPOD was by a factor of 2-3, and the total reduction in solve

time compared to POD was by up to 1.8 orders of magnitude. As mentioned previously,

the disparity is likely a result of the scattering which was present in the Watanabe-
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Maynard problem, which ensured that angular flux was present in most combinations of

octant and element. The adaptive method therefore distributed angular resolution more

broadly across the space-angle phase-space, resulting in reduced effectiveness. However,

adaptivity was still effective in both cases, as expected. From the flux profiles examined,

it seems likely that the reduction of ray effects provided by ADPOD was a significant

contributor to the decreased error.

The benefits of DPOD and ADPOD compared to both POD and low-order SN approxi-

mations have been clearly demonstrated in this chapter. In addition to fixing the solver

instability and drastically reducing the iterations required to converge as a result, the

new methods also reduced the error per basis function somewhat. As both of these

factors contribute to the computational cost of producing an approximation with a

given level of error, when they are both reduced the computation required decreases

significantly.

Since the DPOD method does not merely reduce the aforementioned solver instability

but completely eliminates it, there must be a qualitative difference between the two

methods in this regard. It is suspected that the solver instability of the previous angular

POD method is caused by the incompleteness of the POD basis, combined with the

global nature of the basis functions it produces. As the basis is incomplete, it is not

possible to accurately represent all possible angular flux distributions. Since the basis

functions are global, a change in the coefficient of a particular function will, in general,

change the solution across the entire sphere. Figure 3.17 provides a simple demonstration

which will be used to discuss this issue further.
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(a) A training solution on the sphere, and the
POD basis function which describes it exactly.

(b) A test solution on the sphere, and an
approximate solution produced with the POD

basis function from 3.17a.

(c) A test solution on the sphere, and an
approximate solution produced with DPOD basis

functions from 3.17a.

Figure 3.17: POD vs DPOD demonstration.

Figure 3.17a plots the value of a single training solution in black. The solution is

dependent only on the azimuthal angle for simplicity, though the argument can easily

be extended to additional dimensions. In blue, the optimal POD basis function for

representing this solution is shown - in this case, it is simply a normalised version of the

function itself. Figures 3.17b and 3.17c show a test solution, which has a different shape

and a larger magnitude than the training solution in octant 1. In the rest of the domain,

both the training and test solutions are equal to one.

The red line in figure 3.17b shows a POD approximation to the test solution, which is

simply a scalar multiple of the single basis function, such that the POD approximation

has the same magnitude as the test function. However, the approximation erroneously

contains additional flux in octants 2-4, as if unphysical scattering had occurred. Figure

3.17c depicts a DPOD approximation to the same test solution, with the same training

solution as the previous plots. In this case, discontinuities in the basis and solution

functions are present at the locations with dots. Decoupling the fluxes in each octant
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ensures that the angular flux in octants 2-4 is not affected by the change in octant 1.

While the solution does become inaccurate, the error is contained within the octant

which changed, and no false scattering into other octants occurs. On a structured

quadrilateral mesh, the octant boundaries line up with the element boundaries such that

each octant will advect into a different element. Therefore, the additional flux in octants

2-4 for the POD solution will erroneously advect into the wrong elements, increasing

the number of iterations required to converge to a solution. By contrast, the DPOD

solution ensures that the correct amount of flux advects into each element even if the

distribution within each octant is not exactly correct.



Chapter 4

A Space-Angle Partitioned Reduced

Order Model for the Angular

Dimension of the Boltzmann

Transport Equation

This chapter describes a novel reduced order model for the angular discretisation of

the BTE, known here as Regional Discontinuous Proper Orthogonal Decomposition

(RDPOD). It develops upon the DPOD method presented in chapter 3, and intends to

improve the computational efficiency of the previous model by reducing the number of

basis functions required to reach a given level of accuracy. The new model partitions the

domain in space as well as angle, and forms independent sets of angular basis functions

for each partition of the space-angle phase-space of the BTE. As the neutron flux

distribution often varies substantially over space and angle, capturing the characteristics

of the neutron flux using a single set of basis functions can place high demands on

the original ROM formulation. Partitioning the spatial and angular dimensions and

creating separate anguar ROMs for each partition can help to overcome this issue. As

the variation in neutron flux distributions within each partition is considerably smaller

than the variation across the entire problem, the number of basis functions required to

resolve each distribution is reduced substantially. This can lead to smaller systems of
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equations, and therefore reduce solve times, as demonstrated in this chapter.

The chapter is organised as follows: First, the process of discretising the BTE is

briefly summarised. Next, the RDPOD method is derived in detail, along with a

simple yet effective implementation of angular adaptivity using the RDPOD basis

functions. Numerical results for a range of problems are then presented to demonstrate

the effectiveness of RDPOD compared to previous methods. Finally, conclusions are

drawn regarding the effectiveness of RDPOD, based on the numerical results presented.

4.1 Discretisation of the Boltzmann Transport Equation

The processes of angular and spatial discretisation closely follow sections 3.2 and 3.3,

respectively. A summary of the discretisation process is presented here.

The steady-state, mono-energetic BTE is given by:

Ω · ∇Ψ(r⃗,Ω) + Σt(r⃗)Ψ(r⃗,Ω) = qex(r⃗) + qs(r⃗,Ω
′ −→ Ω). (4.1)

The angular flux Ψ(r⃗,Ω) is approximated by a sum of Na angular basis functions Gj(Ω)

multiplied by the coefficients Ψj(r⃗),

Ψ(r⃗,Ω) ≈
Na∑
j=1

Gj(Ω)Ψj(r⃗). (4.2)

The approximation in equation 4.2 is inserted into equation 4.1, which is then weighted

and integrated over all angles. The basis functions G are also used as weighting functions.

The resulting angularly discretised equations can be expressed in matrix form as,

(A · ∇+H(r⃗))Ψ(r⃗) = Q(r⃗), (4.3)

where A is a vector of matrices (Ax, Ay, Az), the removal and scattering terms are

grouped into the matrix H, the coefficients of the angular expansion are contained in

the vector Ψ(r⃗), and the angularly discretised source term is represented by the vector

Q(r⃗). All matrices are of size Na ×Na, and all vectors besides A are of size Na.

The discontinuous Galerkin finite element method is applied to discretise the spatial
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dimensions of the BTE, as described in section 3.3. The angularly discretised flux Ψ(r⃗) in

equation 4.3 is approximated as a sum of the Ns spatial basis functions Nj(r⃗) multiplied

by the coefficients ψj ,

Ψ(r⃗) ≈
Ns∑
j=1

ψjNj(r⃗). (4.4)

This approximation is inserted into equation 4.3, which is then converted to its weak

form by weighting with the set of basis functions N (r⃗) and integrating over the volume

of each element, Ve. Green’s theorem is applied to the advection term, splitting it into

an integral over Ve and another over the element boundary Γe. Finally, the boundary

term is split into inflow and outflow components, as first order upwinding is used to

calculate the flow at element boundaries [49,50]. The result is a full order discretised

formulation of the BTE,

Ns∑
j=1

{(
−
∫

Ve

∇Ni(r⃗)ANj(r⃗)dV +

∫
Ve

Ni(r⃗)H(r⃗)Nj(r⃗)dV
)
ψj

+

∫
Γe

Ni(r⃗)(A
in · n̂)Nj(r⃗)dΓeψ

in
j +

∫
Γe

Ni(r⃗)(A
out · n̂)Nj(r⃗)dΓeψ

out
j

}

=

∫
Ve

Ni(r⃗)Q(r⃗)dV,

∀i ∈ {1, Ns}, (4.5)

where n̂ is the unit vector normal to the element boundary; ψout
j is the outflow, given by

the angular flux vector of the element in question; and ψin
j is the inflow, given by the

angular flux vectors of the element’s upstream neighbours.

4.2 The Discontinuous Angular Reduced Order Model

This section presents a new angular POD method that forms independent angular

basis sets, which are each optimised to resolve a specific partition of the space-angle

phase-space of the BTE. The angular domain Ω and spatial domain V are partitioned

into the two sets,

Ω =

8⋃
q=1

Ωq and V =

nr⋃
r=1

Vr, (4.6)

where Ωq and Vr represent subsets of the angular and spatial domains, respectively,

as illustrated in figure 4.1. nr is the number of spatial regions. The DPOD method
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described in chapter 3 corresponds to the use of a single spatial region spanning the

domain, that is, nr=1. If a single angular partition spanning the full sphere is also used,

then the angular POD method described in [11] is recovered.

(a) An angular octant on the sphere. The red lines
delimit the boundaries. Each basis function is

non-zero in one out of eight octants.

(b) A spatial region within an 8x8 element domain
which is partitioned into 4x4 regions. Dashed
black lines are element boundaries, solid black

lines are element and region boundaries, and the
red square encloses the region which takes
snapshots from all elements shaded blue.

Figure 4.1: The spatial and angular discontinuities imposed by the RDPOD method.

In line with the DPOD method, the angular domain is partitioned into eight octants in

three dimensions, though solutions for two dimensional problems are mirrored through

the spatial plane, and so only four octants must be solved for. Each spatial partition

may in principle contain any arbitrary set of elements in the spatial domain, though in

this project regular rectangular regions were used. Henceforth, the number of regions

used for a particular ROM will often be expressed as nrx × nry, where nrx and nry

denote the number of columns and rows which the domain is divided into, respectively.

The total number of regions nr is therefore given by nr = nrx × nry. A cross-product

of the two partitions in equation 4.6 forms the space-angle partition of the complete

phase-space, which is given by,

Z =
⋃
qr

Zqr, (4.7)

where the phase-space partition spanning the angular octant Ωq and spatial region Vr is

denoted Zqr.

The POD functions are formed for each partition via the method of snapshots [143]. The
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angular coefficients from the SN model are used to form the snapshot matrices for each

partition. The vectors of angular coefficients formed at the nodes of the spatial mesh are

first partitioned into sets according to their angular region as described in section 3.5,

ψ =



ψ1

...

ψq

...

ψ8


, (4.8)

where ψq is a vector containing the nq coefficients with associated directions within

Ωq. Each component of ψq is then assigned to a spatial region Vr based on its position.

Separate snapshot matrices Sqr are formed for each partition Zqr, resulting in 8 × nr

matrices in three dimensions or half as many in two.

The snapshot matrices Sqr also include vectors of angular coefficients from the elements

adjacent to Vr, as this helps to preserve information when mapping between regions. This

is shown in figure 4.1, where the region enclosed in red takes snapshots from all elements

shaded in blue. The first numerical example in section 4.4 presents the reasoning behind

this decision.

For each Zqr, the associated snapshot set is therefore defined as,

Sqr =


| | |

ψq,r,1 ψq,r,2 ... ψq,r,nh

| | |

 , ∀q ∈ {1, 8},∀r ∈ {1, nr}, (4.9)

where each ψq,r,i is a vector of size Na/8 containing the angular coefficients of the ith

snapshot associated with the partition Zqr. The term nh, which may vary for each

snapshot set, denotes the total number of snapshots in Sqr. This is given by nh = Nr×Np,

where Nr is the number of FEM basis nodes in partition Vr, including the neighbouring

nodes as shown in blue in figure 4.1, and Np is the number of problem variations used

to train the ROM.

The RDPOD basis sets for each partition Zqr can now be formed through the SVD of
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each snapshot matrix,

Sqr = UqrΣqrVT
qr, (4.10)

where Uqr and Vqr are unitary matrices of sizes Na/8×Na/8 and nh × nh, respectively.

The column vectors of Uqr contain the optimised basis vectors that best represent the

snapshot data, ordered such that the first na columns form the optimal na basis vectors

in the Frobenius norm. Here, na is the same for all q and r, though this is not required.

A method for varying the number of basis functions by region and octant is described in

section 4.3. The RDPOD basis matrices Uqr are formed by truncating each snapshot

matrix such that only the first na columns are retained. The fraction of the information

in Uqr which is retained in Uqr can be determined from the singular values,

Iqr(na) =

na∑
i=1

(Σq,r,i,i)
2

Na∑
i=1

(Σq,r,i,i)2
, (4.11)

where Iqr varies from 0 to 1, with 1 being total capture of the snapshot information. The

matrices Uqr can be used to map the angular coefficients between the full and reduced

order models through the relationship,

Ψq(r⃗) ≈ Uqrαqr(r⃗), ∀q ∈ {1, 8},∀r ∈ {1, nr}, (4.12)

where αqr(r⃗) contains a vector of na coefficients of Uqr, for each node within Zqr. The

combined mapping over all angular partitions in each region Vr can be expressed as,

Urαr(r⃗) =



U1,r 0 0 0 0

0
. . . 0 0 0

0 0 Uqr 0 0

0 0 0
. . . 0

0 0 0 0 U8,r





α1,r(r⃗)

...

αqr(r⃗)

...

α8,r(r⃗)


=



U1,rα1,r(r⃗)

...

Uqrαqr(r⃗)

...

U8,rα8,r(r⃗)


, ∀r ∈ {1, nr}.

(4.13)

Equations 4.8 and 4.12 enable this to be compactly written as,

Urαr(r⃗) ≈ Ψ(r⃗), ∀r ∈ {1, nr}. (4.14)
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Substituting equation 4.14 into equation 4.3 and premultiplying by UT
r projects the

angularly discretised equations onto the POD space,

UT
r (A · ∇+H(r⃗))Urαr(r⃗) = UT

r Q(r⃗), ∀r ∈ {1, nr}. (4.15)

This projection is applied to each region Vr separately. Equation 4.15 is then spatially

discretised as described in section 4.1, with αr(r⃗) taking the place of Ψr(r⃗) in the

derivation. This results in the fully discretised RDPOD formulation of the BTE.

The spatially discretised forms of equation 4.15, equivalent to projections of equation 4.5

onto the RDPOD bases, are constructed separately for each spatial partition Vr using

their own optimised RDPOD angular basis sets. Communication between the elements

within each partition, and between neighbouring partitions, is implemented through the

surface integrals of equation 4.5. As mentioned, a Riemann approach can be employed

to form the incoming and outgoing matrices inside the surface integrals for a general

angular discretisation. They can also be obtained through pre- and post-multiplication

of the full order matrices Ain and Aout by the RDPOD mapping matrices UT
r and Ur.

For adjacent elements within the same region Vr, the incoming and outgoing surface

matrices of equation 4.5 are given by,

Ain
r = UT

r A
inUr, and Aout

r = UT
r A

outUr, (4.16)

respectively. To obtain an element’s incoming surface information from an adjacent

element belonging to a different region, say Vr′ , one must use the correct mapping to

account for the fact that the incoming vector employs a different RDPOD basis. This is

simply achieved by mapping the RDPOD coefficients αr′ from the incoming element to

the full model space, applying the (SN ) incoming advection operator, then projecting

the resulting vector onto the basis of region Vr. That is, the incoming advection matrices

in the RDPOD formulation are given by,

Ain
r,r′ = UT

r A
inUr′ . (4.17)

The matrices Ain
r,r′ are precomputed for each pair of regions r and r′ with a common

border. They can then be employed in equation 4.5, where the incoming surface integral
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can be explicitly written as,

Ns∑
j=1

∫
Γe

Ni(r⃗)A
in
r,r′Nj(r⃗)dΓeα

in
r′,j , ∀i ∈ {1, Ns}. (4.18)

As stated previously, in the case of a single spatial region spanning the domain, the

DPOD method presented in [15] is recovered. Using a single spatial region together with

a single angular region spanning the sphere, the original angular POD method in [11] is

recovered.

4.3 Adaptivity in Angle

This section presents an adaptive algorithm using the RDPOD basis functions, known as

adaptive RDPOD (ARDPOD). Instead of utilising the same number of basis functions na

throughout the domain, each partition Zqr has an associated number of basis functions

nqr, which can be modified independently. The adaptive algorithm uses an error metric

to estimate the effect of increasing nqr for each Zqr, and adds basis functions where they

are likely to minimise the total error.

The contribution of each basis function to the solution is dependent only on the magni-

tudes of its coefficients. The basis functions form a hierarchical set, which implies that

the coefficients of each successive function will tend towards zero as the approximation

converges. It can thus be inferred that additional basis functions are likely to be most

beneficial in partitions where the coefficient of the final basis function currently included

is large. However, successive coefficients have been observed to oscillate in magnitude,

and so a single small coefficient does not guarantee convergence. The error metric

therefore considers the final two coefficients.

An initial solution is required in order to calculate the error metric and begin the adaptive

process, and so the problem in question is first solved with,

nqr = 2, ∀q ∈ {1, 8},∀r ∈ {1, nr}. (4.19)

Next, the relative contribution from the final two basis functions is calculated for each
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partition Zqr,

Fqr =
(αq,r,nqr−1 + αq,r,nqr)

8∑
q=1

nr∑
r=1

nqr∑
i=1

αq,r,i

, ∀q ∈ {1, 8},∀r ∈ {1, nr}, (4.20)

where αq,r,i denotes the ith angular coefficient in the partition Zqr. A threshold value τ

is set to some inital, relatively large value, typically 1. A variable known as the threshold

divisor, δτ , is set to some value greater than 1. In this chapter, δτ = 2. Each iteration,

basis functions are added according to the equation,

nqr = nqr + 1, ∀ (q, r) ∈ { (q′, r′) | Fq′,r′ > τ}. (4.21)

The number of basis functions added in this adaptive stage, n∆, is counted and compared

to the minimum number of basis functions to add per iteration, n+. If n∆ < n+, then

τ = τ/δτ and equation 4.21 is applied again with the new value of τ . The process

repeats until n∆ > n+, at which point the next iteration can begin. Once nqr has been

adjusted, the process repeats until a desired number of basis functions is reached. The

complete adaptive method is described by algorithm 2.
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Algorithm 2: Adaptive RDPOD
nqr = 2 for all q and r.

/* Iterate until the desired number of basis functions is reached.

*/

while sum(nqr) < maximumBasisFunctions do
Solve the ROM.

Calculate Fqr.

n∆ = 0;

while n∆ < n+ do

/* Loop through partitions and add basis functions. */

for q = 0 to 8 do

for r = 0 to nr do

if Fqr > τ then

nqr += 1;

n∆ += 1;

end

end

end

/* Decrease the threshold value τ if necessary. */

if n∆ < n+ then

τ = τ/δτ ;

end

end

end
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4.4 Numerical Examples

In this section, two numerical examples are presented in order to compare the performance

of DPOD, RDPOD and ARDPOD. Uniform quadrilateral FEM spatial meshes are

employed, using discontinuous bilinear basis functions. The full order method employs

the SN discretisation, with a sufficiently high angular resolution to ensure that the

solutions have converged in angle. As mentioned in section 1.2, the sweep-based solver

employed throughout is not fully optimised. Hence, whilst solve times are provided,

they should be considered conservative estimates, and it is highly likely that reductions

can and will be made in future. In addition, it was not practical to obtain exclusive

usage of a computation node for each test, and therefore some error was introduced

by the variance in other work performed by each node during the tests. However, this

variance was found to be small enough that it did not significantly impact the quality of

the data. The main purpose of this analysis is to demonstrate the methods’ increased

accuracy for a given basis size when compared to DPOD, which has been demonstrated

to outperform both SN and angular POD by the same metric in chapter 3.

In the examples presented, the spatial partitions used to construct the ROMs are of

regular structure, despite equation 4.6 allowing for any arbitrary partitioning to be used.

Whilst the ideal implementation would minimise the variation in angular flux profiles

within each partition, generating partitions in this manner would require significant

additional work. This chapter will instead focus on demonstrating that even regularly

shaped partitions can drastically improve modelling efficiency. This demonstration

therefore forms a foundation for future work on the generation of optimal partitions for

further improvements to efficiency.

Finally, it is worth mentioning that the computer memory requirements of the RDPOD

method are relatively small. The memory usage increases linearly with the number of

regions, nr, since each sub-region requires its own set of discretised angular matrices.

However, as shown in the numerical examples, the angular sizes of the reduced systems

are typically small, on the order of a few tens of basis functions. Thus, taking a large

angular ROM with 100 basis functions for example, and using a reasonably large set of

partitions, say nr = 1000, only 1.5 GiB of memory is required for storage.



4.4. Numerical Examples 105

4.4.1 The Region Test Problem

The first example in this chapter is an extremely simple setup which demonstrates

the benefit of including elements from the boundaries of each region in their snapshot

matrices, known as boundary elements (BEs), as discussed in section 4.2. The problem

is a 30× 10cm material with Σt=1 and qex=1 throughout. Vacuum boundary conditions

are applied to all domain boundaries. The domain is discretised using a 3×1 mesh of

discontinuous bilinear quadrilateral elements in space, and 3x1 RDPOD regions are used

for the reduced order model.

Figure 4.2: S20 scalar flux solution to the region test problem.

Figure 4.2 shows the scalar flux distribution of the S20 solution to the problem. The full

order solution is quite poor due to the extremely low spatial resolution, but the relevant

point here is how well the RDPOD model is able to reconstruct the solution, not the

accuracy of the solution itself.
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Figure 4.3: Relative angular flux error vs mean basis functions per node for the
region test problem, with varying numbers of boundary elements.

Figure 4.3 shows the relative angular flux error against the mean number of basis

functions per node for the region test problem, with 3x1 spatial elements. Each line

represents a different boundary radius (BR), which governs the number of BEs included

in the snapshot matrices. With a BR of 0, no neighbours are included. Each matrix

therefore contains 4 snapshots, and the SVD only produces 4 basis functions per region.

With a BR of 1, elements which are adjacent to each region are included as snapshots

for that region. Therefore, the two side elements have 8 snapshots in their snapshot

matrices, since they only have one adjacent element. The central element contains 12

snapshots, as it is adjacent to both of the other elements. The total number of basis

functions available is therefore 28, and the mean is 9.3 recurring when all 28 are used.

With a BR of 2, elements which are adjacent to the previous BEs are also included as

snapshots for each region. Each of the snapshot matrices therefore contains 12 snapshots,

which constitutes the entire problem. This is equivalent to solving the problem with

non-regional DPOD, since all three regions’ basis matrices are identical and contain the

entire solution as snapshots.

As the plot shows, all three solutions produce very similar results at first. Upon reaching

its maximum number of basis functions, 4, the solution with BR 0 performs slightly

better than the other two, which continue to produce near-identical results. However,
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the solutions with BEs quickly improve upon the peak performance of the solutions

with none. When the final basis function for each solution with BEs is included, the

error drops precipitously, decreasing by over 6 orders of magnitude to approximately

machine error. However, this occurs later for the solution with a BR of 2, as more basis

functions are available. This suggests that including BEs removes a limitation on the

peak performance of the method, while having a negligible impact on solutions which

are yet to reach this limit.

4.4.2 The Dog-Leg Duct Problem

(a) Dog-leg duct schematic (b) S50 scalar flux solution to interpolation
problem

Figure 4.4: Schematic (a) and S50 scalar flux solution (b) for the dog-leg duct interpolation problem.
The green region is the source, the white region is the duct, and the red region is a highly absorbing

material.

The second example in this chapter is a dog-leg duct problem [12]. Section 1.3.1

introduces the problem, and section 3.7.1 gives more detail about the discretisations

used in this work. However, in this chapter a wider range of material properties were

examined in order to investigate the limitations of the model further. The new set of

material properties used for both training and test problems is given in table 4.1. In

addition, the S50 angular discretisation was used rather than S40, as the efficiency of

the full order solver had been improved since the previous data was gathered. Figure

4.4a shows a schematic of the dog-leg duct problem, and figure 4.4b shows the scalar

flux distribution of the S50 solution to the interpolation problem.
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Problem Material Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

Green 1.00 0.50 0.00

1 White 0.00 0.00 0.00

Red 0.00 0.50 0.00

Green 1.00 1.50 0.00

2 White 0.00 0.00 0.00

Red 0.00 1.50 0.00

Green 1.00 0.50 0.00

3 White 0.00 0.05 0.00

Red 0.00 0.50 0.00

Green 1.00 1.50 0.00

4 White 0.00 0.05 0.00

Red 0.00 1.50 0.00

Green 1.00 1.00 0.00

Interpolation White 0.00 0.025 0.00

Red 0.00 1.00 0.00

Green 1.00 2.00 0.00

Extrapolation White 0.00 0.10 0.00

Red 0.00 2.00 0.00

Table 4.1: Material properties for the dog-leg duct problems in chapter 4.

The snapshot matrix was formed from all four training solutions, and the resulting

RDPOD bases were used to solve the test problems. As in prior chapters, the first

test problem is referred to as the interpolation problem, as its material properties are

within the range for which snapshots were produced, and the second is referred to as

the extrapolation problem, as its material properties lie outside of this range.
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(a) Interpolation (b) Extrapolation

Figure 4.5: Angular flux error vs number of basis functions for S50 solutions to the dog-leg duct
problems with varying numbers of spatial regions. “a× b" indicates a spatial partitions in x and b in y,

for a total of a× b.

Figure 4.5 compares the L2-norms of the relative angular flux errors for the dog-leg

duct interpolation and extrapolation problems using DPOD and RDPOD, with varying

numbers of basis functions and regions. The results show that RDPOD consistently

reduced error compared to DPOD for a given angular basis size. Furthermore, increasing

the number of spatial partitions reliably reduced the error further. For the largest set of

spatial partitions, the error was reduced by approximately 1 order of magnitude with 16

basis functions. The reduction in error compared to DPOD continued to grow as the

angular resolution was increased further.

(a) Interpolation (b) Extrapolation

Figure 4.6: Angular flux error vs solve time in seconds for S50 solutions to the dog-leg duct problems
with varying numbers of spatial regions. “a× b" indicates a spatial partitions in x and b in y, for a total

of a× b.

Figure 4.6 presents the L2-norm of the relative angular flux error against the solve

time for both interpolation and extrapolation problems, for varying numbers of basis

functions and regions. Similar trends are observed, with RDPOD reducing the solve
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time required to achieve a given error. For the largest spatial partition sets, the solve

times were reduced by over an order of magnitude with a relative error of around 10−5.

The trends in the graph also indicate that greater efficiency would be achieved for lower

error tolerances.

(a) Interpolation (b) Extrapolation

Figure 4.7: Angular flux error vs number of basis functions for S50 solutions to the dog-leg duct
problems with varying numbers of spatial regions using angular adaptivity.

Figure 4.7 presents the relative angular flux error vs the mean number of basis functions

per node for DPOD, and for RDPOD and ARDPOD with varying numbers of regions.

It is shown that ARDPOD significantly reduced the error for a given angular basis size.

With just 12 basis functions, the error was reduced by approximately half an order of

magnitude compared to RDPOD, and by more than an order of magnitude compared to

DPOD. By 84 basis functions, the reductions in error for a given basis size had increased

to almost 2 orders of magnitude compared to RDPOD and approximately 2.5 orders of

magnitude compared to DPOD.

(a) Interpolation (b) Extrapolation

Figure 4.8: Angular flux error vs solve time in seconds for S50 solutions to the dog-leg duct problems
with varying numbers of spatial regions using angular adaptivity. “a× b" indicates a spatial partitions

in x and b in y, for a total of a× b.
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Figure 4.8 presents the relative angular flux error against the solve time for DPOD,

RDPOD and ARDPOD. The adaptive solve times show the time taken to complete

the final iteration of the adaptive process, starting from a zero solution. This gives an

indication of the performance of ARDPOD once the adaptive stage is complete and an

efficient basis function distribution has been generated. The adaptive method drastically

reduced the solve time required to reach a given level of error in comparison to both

DPOD and RDPOD. At around 20 seconds of solve time, the ARDPOD errors were

reduced by just over an order of magnitude in comparison to RDPOD, and by around 2

orders of magnitude when compared to DPOD.

(a) Interpolation (b) Extrapolation

Figure 4.9: Angular flux error vs cumulative solve time in seconds for S50 solutions to the dog-leg duct
problems with varying numbers of spatial regions using angular adaptivity. “a× b" indicates a spatial

partitions in x and b in y, for a total of a× b.

Figure 4.9 presents the relative angular flux error against the total solve times using

ARDPOD. The total solve time is the time to complete the entire adaptive solution

process, up to and including the specified basis size. While the ARDPOD solver was far

from optimised, as discussed in section 1.2, the results still demonstrate that ARDPOD

reduced the angular flux error by up to an order of magnitude for a given solve time when

compared to DPOD, and that the error exhibited an increase in order of convergence.
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(a) -x, +y octant (b) +x, +y octant

(c) -x, -y octant (d) +x, -y octant

Figure 4.10: The number of ARDPOD basis functions per octant in each spatial region, for the dog-leg
duct extrapolation problem, with 70x90 regions and a mean of 84 basis functions per node in total.

Figure 4.10 shows the number of basis functions associated with each octant in each

spatial region, for the dog-leg duct extrapolation problem. The plots show that basis

functions were predominantly added to high flux regions, such as inside the duct and

at its borders. This demonstrates that the adaptive method successfully increased the

resolution in regions where additional basis functions were likely to be most beneficial,

and thus explains the method’s success in reducing the error for a given number of basis

functions.
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4.4.3 The Watanabe-Maynard Problem

(a) Schematic (b) S50 scalar flux solution

Figure 4.11: Schematic (a) and S50 scalar flux solution (b) for the Watanabe-Maynard interpolation
problem. The green region is the source, the white region is a void and the blue region is a moderately

absorbing and scattering material.

The third example in this chapter is the Watanabe-Maynard problem, introduced in

[13] and discussed previously in section 1.3.2. Figure 4.11a shows a schematic of the

spatial domain, and section 3.7.2 describes the problem in detail. Table 4.2 gives the

material properties of each region for the training and test solutions, which are the

same as the previous chapter. The spatial domain was discretised with a 160×160

mesh of discontinuous bilinear quadrilateral elements, and the S50 angular discretisation

was employed to produce full order angular solutions. Both the spatial and angular

resolutions were higher than in chapter 3, as the efficiency of the full order model was

improved since gathering the previous set of data. Figure 4.11b depicts the scalar flux

distribution of the S50 solution to the interpolation problem.



4.4. Numerical Examples 114

Problem Material Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

Green 6.40 0.01 0.19

1 White 0.00 0.00 0.00

Blue 0.00 0.01 0.19

Green 6.40 0.01 0.21

2 White 0.00 0.00 0.00

Blue 0.00 0.01 0.21

Green 6.40 0.03 0.19

3 White 0.00 0.00 0.00

Blue 0.00 0.03 0.19

Green 6.40 0.03 0.21

4 White 0.00 0.00 0.00

Blue 0.00 0.03 0.21

Green 6.40 0.02 0.20

Interpolation White 0.00 0.00 0.00

Blue 0.00 0.02 0.20

Green 6.40 0.02 0.22

Extrapolation White 0.00 0.00 0.00

Blue 0.00 0.02 0.22

Table 4.2: Material properties for the Watanabe-Maynard problems in chapters 4 and 5.

Table 4.2 lists the material cross sections for the training and test problems. As previously,

the snapshot matrix was formed from all four training solutions, and the resulting bases

were used to solve both an interpolation and an extrapolation problem.
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(a) Interpolation (b) Extrapolation

Figure 4.12: Angular flux error vs number of basis functions for S50 solutions to the
Watanabe-Maynard problems with varying numbers of spatial regions.

Figures 4.12a and 4.12b depict the L2-norm of the angular flux error for the Watanabe-

Maynard problems, for both DPOD and RDPOD with varying numbers of regions. As

the figures show, increasing the number of RDPOD regions consistently reduced the

angular flux error for a given basis size, excluding the results with just 4 basis functions

per node. With 8 basis functions per node, the maximum reduction in error was an order

of magnitude, which increased steadily to 2 orders of magnitude by 84 basis functions.

(a) Interpolation (b) Extrapolation

Figure 4.13: Angular flux error vs solve time in seconds for S50 solutions to the Watanabe-Maynard
problems with varying numbers of spatial regions. “a× b" indicates a spatial partitions in x and b in y,

for a total of a× b.

Figure 4.13 plots the relative angular flux error against the solve time for DPOD and

RDPOD. It is again shown that increasing the number of spatial regions consistently

decreased the error for a given solve time, with a maximum reduction of more than 2

orders of magnitude. In some cases, moving from 4 to 8 basis functions decreased both

the error and the solve time, which was not expected. This is likely because the iterative

solver converged slowly for the bases with 4 functions, so adding a basis function to each
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octant not only reduced the error as expected, but also allowed the solver to converge in

fewer iterations and thereby reduced the solve time.

(a) Interpolation (b) Extrapolation

Figure 4.14: Angular flux error for adaptive S50 solutions to the Watanabe-Maynard problems with
varying numbers of spatial regions. “a× b" indicates a spatial partitions in x and b in y, for a total of

a× b.

Figure 4.14 plots the relative angular flux error against the mean number of basis

functions per node for all three methods with varying numbers of regions. As the figure

shows, ARDPOD reduced the error compared to RDPOD in all cases, with a peak

reduction of approximately an order of magnitude. Compared to DPOD, ARDPOD

reduced the error by approximately 2.5 orders of magnitude. The figure also demonstrates,

once again, that increasing the number of regions consistently reduced error for both

RDPOD and ARDPOD.

(a) Interpolation (b) Extrapolation

Figure 4.15: Angular flux error vs solve time in seconds for S50 solutions to the Watanabe-Maynard
problems with varying numbers of spatial regions using angular adaptivity. “a× b" indicates a spatial

partitions in x and b in y, for a total of a× b.

Figure 4.15 compares the relative angular flux error to the solve times for DPOD, RDPOD

and ARDPOD. As explained in the discussion of figure 4.8, the solve times given are
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for a single iteration, and are merely intended to be indicative rather than precise

measurements of optimal performance. The figure shows that ARDPOD drastically

decreased the error for a given solve time, with a peak reduction of more than 3 orders

of magnitude. This demonstrates that, while RDPOD and ARDPOD both reduced the

error compared to DPOD for a given basis size, they did not significantly affect the

solve time. Similar anomalies to figure 4.13 were seen with four basis functions per node,

likely for the same reason.

(a) Interpolation (b) Extrapolation

Figure 4.16: Angular flux error vs cumulative solve time in seconds for S50 solutions to the
Watanabe-Maynard problems with varying numbers of spatial regions using angular adaptivity. “a× b"

indicates a spatial partitions in x and b in y, for a total of a× b.

Figure 4.16 presents the relative angular flux error against the cumulative solve time for

ARDPOD. As mentioned in the discussion of figure 4.9, the adaptive method is not yet

fully optimised, and significant improvements by this metric are likely possible. Despite

this, the graphs show that ARDPOD performed at least as well as DPOD in the case of

2x2 regions, and significantly better with more regions. At best, it offered over an order

of magnitude reduction in error with the same solve time as DPOD.
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4.4.4 The Checkerboard Problem

(a) Schematic

(b) S50 scalar flux solution

Figure 4.17: Schematic (a) and S50 scalar flux solution (b) for the checkerboard extrapolation problem.
The green region is the source, the blue regions are scattering and the red regions are highly absorptive.

The fourth example in this chapter is a checkerboard problem first proposed by Brunner

[14], which is discussed further in section 1.3.3. A schematic is shown in Figure 4.17a.

The green region is an isotropic source, the blue regions are purely scattering, and the red

regions are highly absorptive. The full problem presented in [14] is symmetrical about

a vertical line through the centre, and so here the right half of the problem has been

solved with reflective boundary conditions on the left boundary. All other boundaries

have vacuum conditions applied. The domain is discretised using a 70×140 mesh of

discontinuous bilinear quadrilateral elements in space. Full order solutions for snapshot

generation and error comparison were produced using S50 in angle. Figure 4.17b shows

the scalar flux distribution of the S50 solution to the extrapolation problem.
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Problem Region Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

Green 1.00 0.00 0.50

1 Blue 0.00 0.00 0.50

Red 0.00 5.00 0.00

Green 1.00 0.00 1.50

2 Blue 0.00 0.00 1.50

Red 0.00 5.00 0.00

Green 1.00 0.00 0.50

3 Blue 0.00 0.00 0.50

Red 0.00 15.00 0.00

Green 1.00 0.00 1.50

4 Blue 0.00 0.00 1.50

Red 0.00 15.00 0.00

Green 1.00 0.00 1.00

Interpolate Blue 0.00 0.00 1.00

Red 0.00 10.00 0.00

Green 1.00 0.00 2.00

Extrapolate Blue 0.00 0.00 2.00

Red 0.00 20.00 0.00

Table 4.3: Material properties for the checkerboard problems in chapters 4 and 5.

Table 4.3 lists the material cross sections for both the training and test problems. The

snapshot matrix was formed from all four training solutions, and the resulting POD

bases were used to solve the test problems. As reproducing a seen solution is relatively

simple and has already been demonstrated, both of the test problems in this example are

unseen problems - the interpolation problem has its material properties within the range

for which snapshots were produced, while the material properties of the extrapolation

problem lie outside this range.
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(a) Interpolation (b) Extrapolation

Figure 4.18: Angular flux error vs number of basis functions for S50 solutions to the checkerboard
problems with varying numbers of spatial regions. “a× b" indicates a spatial partitions in x and b in y,

for a total of a× b.

Figure 4.18 compares the L2-norms of the relative angular flux errors for the checkerboard

interpolation and extrapolation problems using DPOD and RDPOD, with varying

numbers of basis functions and regions. The results demonstrate that RDPOD generally

has a lower error than DPOD for a given number of basis functions, and that increasing

the number of RDPOD basis functions reduces the error in most cases, as expected.

However, the reduction in error is relatively low compared to other problems, at less than

half of an order of magnitude at best. This is somewhat unexpected, as it was assumed

that the complex nature of the checkerboard problem would benefit significantly from

RDPOD. One possible explanation is that the angular flux profiles involved are sufficiently

complicated that both DPOD and RDPOD struggle to compress them effectively, whereas

other problems were simple enough that RDPOD allowed for significant improvement

over DPOD. There are also some data points with few basis functions which perform

poorly compared to the general trend. This issue has been observed for other problems

as well, and is likely due to the potential instability of solvers with a very small number

of basis functions.
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(a) Interpolation (b) Extrapolation

Figure 4.19: Angular flux error vs solve time in seconds for S50 solutions to the checkerboard problems
with varying numbers of spatial regions. “a× b" indicates a spatial partitions in x and b in y, for a total

of a× b.

Figure 4.19 plots the relative angular flux error against the solve time for DPOD and

RDPOD. As previously, increasing the number of spatial regions tends to result in a

lower error for a given solve time. This trend is not perfect, however - in some cases the

RDPOD solutions all have comparable error, and the 20× 20 RDPOD model performed

poorly with few basis functions. As mentioned previously, the reduction in error is

relatively low for this problem, but the RDPOD method still improves computational

efficiency compared to DPOD in almost all cases, and matches it at worst.

4.5 Discussion

This chapter has developed upon the method of DPOD proposed in a recent article [15].

A new reduced order model for the angular dimension of the BTE, known as RDPOD,

has been described. The novelty of RDPOD lies in its separation of the spatial domain

into multiple regions, each of which has its own optimised DPOD basis set. A method of

projecting flux between each reduced order basis without full order calculations has also

been derived and implemented. Finally, an adaptive algorithm based on the RDPOD

bases has been presented.

The RDPOD method is shown to consistently decrease the relative angular flux error for

a given solve time and basis size when compared to DPOD, by an amount proportional

to the number of spatial regions. This was the expected result, as increasing the number

of regions reduces the number of elements per region, and therefore allows each basis

function to be better optimised for the angular flux profiles it represents. The relative
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angular flux error for a given number of basis functions was reduced by up to an

order of magnitude for the dog-leg duct problem, and 2 orders of magnitude for the

Watanabe-Maynard problem, demonstrating that the method can benefit both advection

and scattering problems. Similar results were observed when comparing the error to the

solve time, as RDPOD did not significantly affect the solve time for a given basis size

compared to DPOD.

The adaptive method, known as ARDPOD, was demonstrated to further reduce error

for a given basis size compared to RDPOD. The effect of adaptivity was significant -

for both the dog-leg duct and Watanabe-Maynard problems, the error was reduced by

up to 3 orders of magnitude compared to DPOD. Compared to RDPOD with the same

number of regions, ARDPOD typically reduced the error by up to an order of magnitude,

and more in some cases. The same was true when comparing the error to the solve time

for each iteration. However, the cumulative time to reach a given adaptive stage was not

optimised, as the algorithm instead aimed to form as close to an optimal basis set as

possible at each adaptive stage. Additional optimisation of the adaptive method could

significantly reduce the cumulative solve time, but this is left for future work.

The results for the region test problem demonstrate the purpose of including boundary

elements in the snapshot matrices of each region. When no BEs are included, the

minimum possible error is approximately 10−6 when every possible basis function is used.

Even though the RDPOD model has seen the angular flux distribution of each element,

it is not capable of reproducing the solution to machine error without boundary elements.

It is suspected that some error is induced in the transfer of flux between elements, since

the incoming flux uses a different basis and must be converted to the local one, which

can not represent it perfectly. By contrast, when boundary elements are included, each

region’s basis is capable of representing incoming fluxes without inducing error, since

they have seen the flux distributions of adjacent elements. While the effect of including

BEs is much less significant for larger problems, it was judged that including them was a

sensible precaution to ensure that the performance of the method was never constrained

by the aforementioned induced error.



Chapter 5

Solution Acceleration Methods for

the Boltzmann Transport Equation

This chapter will present two methods of solver acceleration which aim to reduce the

computational cost of converging solutions to the BTE. Both methods utilise the DPOD

and RDPOD methods presented in chapters 3 and 4, respectively.

The first method presented is a simple multigrid algorithm which aims to accelerate

the solution of the ROMs. Since POD basis functions are hierarchical, low order basis

functions generally contribute more to the overall solution than higher order basis

functions. The multigrid method solves DPOD and RDPOD models on a coarse grid,

then increases the number of basis functions in the model while retaining the solution

coefficients of existing basis functions. This allows the low order basis functions to be

resolved at a reduced computational cost, before introducing higher order basis functions

which contribute relatively small corrections to the overall solution and therefore require

fewer iterations to converge to a given level of accuracy.

The second method presented aims to accelerate the solution of full order models. The

ROMs developed in previous chapters are used to produce an initial solution to a full

order model, which is then iterated further to improve the accuracy of the solution.

Since the reduced order models have significantly fewer degrees of freedom, they are

able to converge to a given level of accuracy more quickly than the full order model.

However, the process of dimensionality reduction inevitably introduces error due to
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the approximations made, which reduces the maximum accuracy which the models can

attain. By iterating ROM solutions in the full order model, this error can be eliminated

while retaining some of the computational cost reductions provided by the ROMs.

The chapter is split into two sections, the first describing the multigrid method, and the

second describing the use of ROMs to accelerate full order solutions. Each section is

organised as follows: First, the motivation and theory behind the method is described.

Numerical results for a range of problems are then presented to demonstrate its effec-

tiveness. Finally, conclusions are drawn on the utility of the method in question, based

on the numerical results.

5.1 Multigrid Reduced Order Modelling

This section will present a highly simplified implementation of a multigrid solution

algorithm, as introduced in section 2.5.2. It is intended to improve the solve times of

the reduced order models implemented in previous chapters.

5.1.1 Motivation and Theory

Multigrid methods use multiple discretisations of varying resolutions to accelerate the

solution of a high-resolution model. For example, a ‘V-cycle’ begins by solving for a

few iterations on a fine grid, then projecting the residual error onto coarser grids and

solving to find corrections which minimise the residual, before projecting the corrections

back up to the fine grid and iterating further. This minimises the approximation error

by generating solutions on a fine grid, without incurring the full computational cost of

converging such solutions. The most commonly used multigrid cycles are discussed in

section 2.5.2.

In order to project between grids, prolongation and restriction operators are typically

constructed. If a flux vector ψn is associated with resolution level n, where the resolution

increases with increasing n, then the prolongation operator Pn is defined as,

ψn+1 = Pnψn, (5.1)



5.1. Multigrid Reduced Order Modelling 125

and the restriction operator Rn is defined as,

ψn−1 = Rnψn. (5.2)

In this case, the multigrid method is applied to the angular dimension of the reduced

order model, meaning that the problem is solved with varying numbers of angular basis

functions. The standard multigrid method described in section 2.5.2 was modified due

to the properties of the existing models. Since the models constructed for this project

utilise a sweep-based solver, the residual error is not available and would need to be

constructed. Instead, the full solution vector is projected between grids and solved for at

each stage. Therefore, only prolongation was used in this case, and not restriction. The

result of these modifications was a model which begins by solving on a coarse angular

grid, then prolongates the entire solution and solves it with additional basis functions.

This process may be repeated several times before reaching and solving on the final

grid, which has the highest resolution. A plot of the grid resolution at each stage of this

simplified ‘up-cycle’ is shown in figure 5.1.

Figure 5.1: An example of the simplified ‘up-cycle’ used in this project.

For example, consider a two-stage multigrid method with n0 basis functions in the first

stage and n1 in the second, where n1 > n0. The solution to the reduced order model
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on a single node at stage n is given by the vector ψn. Before the model is run, ψ0 is of

length n0, and is initialised with every coefficient set to zero:

ψ0 =


ψ0,1

...

ψ0,n0

 =


0

...

0

 . (5.3)

After the first stage solution, the coefficients in ψ0 are nonzero in general. The second

stage begins by creating a ψ1 vector of length n1, and transferring the coefficients from

the previous stage using the prolongation operator P0. This will result in a vector with

n0 nonzero coefficients, and n1 − n0 coefficients of zero, which correspond to the newly

added basis functions:

ψ1 = P0ψ0 =



ψ0,1

...

ψ0,n0

0

...

0


=⇒ P0 =

I
0

 . (5.4)

P0 is therefore a rectangular matrix with dimensions n1 × n0, containing the n0 × n0

identity matrix I in a block at the top, and zeros elsewhere. It is not necessary to actually

construct the prolongation matrices in this case, since merely transferring coefficients

from ψ0 to the top of ψ1 has the same effect.

Solving for ψ1 will converge the newly added coefficients, and slightly adjust the old

ones due to contributions from the new basis functions. The second solution will have

equivalent accuracy to simply solving with n1 basis functions from the start, but requires

fewer iterations of the high-order model to converge to a solution, because the early

basis functions which contain most of the data are already close to converged when the

model is initialised, and the new basis functions represent relatively small corrections

which converge quickly.
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5.1.2 Numerical Examples

This section presents several numerical examples which demonstrate the ability of the

multigrid method to rapidly produce solutions to the BTE. The majority of the data

presented uses two multigrid stages, a coarse grid followed by a fine grid. This is

primarily because each multigrid stage can have its own resolution and tolerance, and

the more stages used, the larger the number of possible combinations. With two stages

and a final stage with 21 basis functions per node, the only possibilities are 1>21, 2>21

and so on, for a total of 20. With three stages, a first stage with n basis functions has

20− n possible second stages - 1>2>21, 1>3>21, ..., 1>20>21, 2>3>21, 2>4>21 and

so on, for a total of 190. The threshold value at each stage besides the last can also vary,

further increasing the number of configurations. Since the search space of the two-stage

method was relatively small, comprehensive data collection was possible. To gather

this data, each problem was first solved with 4-80 basis functions per node and varying

convergence thresholds. These solutions were then used as initial solutions for a solve

with 84 basis functions per node and a threshold of 10−9.

Some data gathered using more than two multigrid stages is shown for the first problem.

However, this consists of a small subset of possible configurations due to the large number

of configurations available, as explained above. The data which was gathered using more

than two multigrid stages found minor benefits over a two stage process at best, and did

not seem to justify more extensive data collection.
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5.1.2.1 The Scattering Test Problem

(a) Schematic (b) S50 scalar flux solution to extrapolation problem

Figure 5.2: Schematic (a) and S50 scalar flux solution (b) for the scattering test extrapolation problem.

The first example is a highly scattering problem, which was designed to demonstrate

the utility of the methods in this chapter. Problems shown in previous chapters have

required relatively few iterations to converge the full order model, typically in the tens

and as low as two for purely streaming problems such as the dog-leg duct. However,

many problems which are of interest do not converge so quickly, and it is these problems

which are likely to benefit most from this method of acceleration. The problem consists

of a single material which is highly scattering, weakly absorbing and an isotropic neutron

source. The material properties for each variation of the problem are listed in table

5.1. Vacuum boundary conditions are applied to all four boundaries. The problem was

discretised with a 50x50 mesh of discontinuous bilinear quadrilateral elements, and the

S50 angular discretisation was used to generate snapshots for the ROMs. As in prior

chapters, the first test problem is referred to as the interpolation problem, as its material

properties are within the range for which snapshots were produced, and the second is

referred to as the extrapolation problem, as its material properties lie outside of this

range.
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(a) Interpolation problem, DPOD solver. (b) Interpolation problem, RDPOD 25x25 solver.

(c) Extrapolation problem, DPOD solver. (d) Extrapolation problem, RDPOD 25x25 solver.

Figure 5.3: The number of iterations required to converge the final stage solution with 84 reduced order
basis functions per node, for varying solver tolerances and basis functions.

Figure 5.3 shows the number of iterations required to converge a solution of the scattering

test problem with 84 basis functions per node to a threshold of 10−9, after solving with

fewer basis functions and retaining that solution. The number of iterations required

when solving for 84 basis functions alone without the multigrid method is also shown for

comparison. As the figure shows, the multigrid method consistently reduced the number

of iterations required in the final stage. For each first stage threshold value, increasing

the number of basis functions used tended to decrease the number of iterations required

up until a minimum. Once the minimum number of iterations for a particular threshold

value was reached, adding more basis functions to the first solve stage made no difference

to the number of iterations in the final stage. It appears that the effectiveness of the

multigrid method in reducing the number of iterations in the final stage is limited by

both the threshold value and the number of basis functions used in the first stage. This is

to be expected, since the first stage solution asymptotically approaches the best possible

solution for the number of basis functions it is using. If the number of basis functions is
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too low, then error is caused by an inability to accurately represent the solution, and if

the threshold is too low, insufficient iterations will be performed and the solution will

not converge fully. In both cases, the resulting error forces the final stage to perform

more iterations in order to converge to the full order solution.

(a) Interpolation problem, DPOD solver. (b) Interpolation problem, RDPOD 25x25 solver.

(c) Extrapolation problem, DPOD solver. (d) Extrapolation problem, RDPOD 25x25 solver.

Figure 5.4: The total computation time required to converge a solution with 84 reduced order basis
functions per node, for varying solver tolerances and basis functions.

Figure 5.4 shows the total computation time required to converge solutions to the

scattering test problem with a threshold of 10−9, as the threshold and number of basis

functions used in stage 1 were varied. This is given by the sum of computation times for

each multigrid stage. Increasing the number of basis functions used in the first stage

decreased the total time to converge up to a point, then began to increase it again and

decrease the overall efficiency of the method. At best, the convergence time was reduced

by approximately 0.8 orders of magnitude.

Increasing the threshold tended to make the gradient steeper in both sections, with

the solve time reducing faster initially and thus reaching a lower minimum, but also

increasing faster once the minimum was reached. This can be understood by examining
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figure 5.3 - while adding more basis functions in the first stage reduced the number of

iterations in the final stage, it tended to be beneficial. Once the final stage iterations

were at or close to their minimum, adding more basis functions increased the overall

solve time. This is because the additional solve time required in the first stage was more

than counteracted by the reduced solve time of the second stage if fewer iterations were

required to solve it. At a certain point, however, adding more basis functions failed to

decrease the number of iterations in the final stage, but continued to increase the solve

time of the first stage, thus increasing the total solve time. These results suggest that

the multigrid method works as expected, successfully reducing the overall solve time.

They also demonstrate that there is an optimal setup in terms of threshold and basis

function values for each combination of problem, solver and desired error. However,

finding the optimal setup is not required in this case, as the method is beneficial for a

wide range of settings. Both DPOD and RDPOD exhibited similar levels of reduction in

solve times, though the final RDPOD solves resulted in much less error than the DPOD

solves with equal numbers of basis functions, as previously.
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(a) DPOD solutions with thresholds of 10−5, 10−9,
10−9.

(b) DPOD solutions with thresholds of 10−7, 10−9,
10−9.

(c) RDPOD 25x25 solutions with thresholds of 10−5,
10−9, 10−9.

(d) RDPOD 25x25 solutions with thresholds of 10−7,
10−9, 10−9.

Figure 5.5: The cumulative amount of time required to converge each stage of the extrapolation
problem with three multigrid stages with varying angular resolutions and threshold values.

Figure 5.5 shows the cumulative time required to solve each step of the scattering test

extrapolation problem using various 3-stage multigrid configurations, all of which had a

final stage with 84 basis functions and a threshold of 10−9. The times taken to solve the

final stage alone, without using the multigrid method, are also shown for comparison. As

explained in the introduction to section 5.1.2, each additional multigrid stage significantly

increases the number of combinations of basis function numbers and threshold values.

Due to the prohibitively large number of possible configurations, only a small subset

were tested. The configurations were selected by examining figure 5.3 for inflection

points where the derivative of the gradient changed from negative to positive, since these

represent particularly efficient combinations of basis function count and threshold value.

For example, there was a steep decline in iterations between 32 and 36 basis functions

with a threshold of 10−9 in both DPOD plots, followed by a gradient of 0 between 36 and

40 basis functions. DPOD was therefore particularly efficient with 36 basis functions,
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as confirmed by figure 5.4. As such, several of the three-stage configurations shown in

figure 5.5 use 36 basis functions at one stage.

As the figures show, the selected configurations consistently converged faster than the non-

multigrid solutions, by up to an order of magnitude. In some cases, they also improved

upon the best two-stage multigrid results shown in figure 5.4, thus demonstrating the

utility of using more than two multigrid stages. However, the improvements over the

two-stage solves were minor even when present. More optimal configurations likely exist,

but the increased search space compared to the two-stage process makes finding them

difficult.

5.1.2.2 The Watanabe-Maynard Problem

The second example used to test the multigrid method is the Watanabe-Maynard problem

[13], which is described in section 4.4.3. The problem setup in this case was identical to

that presented in chapter 4, besides the use of the multigrid method.

(a) Interpolation problem, DPOD solver. (b) Interpolation problem, RDPOD 25x25 solver.

(c) Extrapolation problem, DPOD solver. (d) Extrapolation problem, RDPOD 25x25 solver.

Figure 5.6: The number of iterations required to converge the final stage solution with 84 reduced order
basis functions per node, for varying solver tolerances and basis functions.
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Figure 5.6 shows the number of iterations required to converge a solution of the Watanabe-

Maynard problem with 84 basis functions per node to a threshold of 10−9, after first

solving with fewer basis functions. The number of iterations required when solving for

84 basis functions alone without the multigrid method is also shown for comparison.

As previously, the multigrid method consistently reduced the number of iterations

required in the final stage, and additional basis functions tended to reduce the number

of iterations required further. However, in this case the reduction was only by 0.5 orders

of magnitude at best. When the threshold was 10−5 or more, the number of iterations

reached a minimum, but with a smaller threshold it continued to decrease throughout the

graph, with minor oscillations. This is likely a result of the increased complexity of the

Watanabe-Maynard problem compared to the scattering test problem, which meant that

more basis functions were required to accurately represent its solutions. Adding basis

functions therefore continued to be beneficial for longer, unless the first stage accuracy

was limited by the solver threshold rather than the number of basis functions used.

These results suggest that the optimal threshold and basis function count for reducing

the number of iterations required to converge the final stage are problem-dependent,

and increase with the complexity of the problem.
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(a) Interpolation problem, DPOD solver. (b) Interpolation problem, RDPOD 32x32 solver.

(c) Extrapolation problem, DPOD solver. (d) Extrapolation problem, RDPOD 32x32 solver.

Figure 5.7: The total computation time required to converge a solution with 84 reduced order basis
functions per node, for varying solver tolerances and basis functions.

Figure 5.7 shows the total computation time required to converge the Watanabe-Maynard

problem, including both stages of the multigrid method, as the threshold and number

of basis functions used in the first stage were varied. While the multigrid method did

tend to reduce the total solve time in most cases, the reduction was small, reaching

approximately 0.2 orders of magnitude at best. This is likely because the increased

complexity of this problem compared to the scattering problem meant that more basis

functions had significant contributions to the solution. Therefore, the final stage was

different enough from previous stages that a significant amount of iteration was required

to converge the solution, regardless of the resolution and threshold used in the first stage.

This implies that the method would be more beneficial if the final stage used significantly

more basis functions, since a higher proportion of them would have small contributions

and therefore the first stage solutions would be closer to the final stage solution. However,

in this case the method was probably not worthwhile when considering the additional

complexity introduced by its implementation, and the experimentation required to find
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close-to-optimal settings.

(a) DPOD solver iterations. (b) RDPOD 32x32 solver iterations.

(c) DPOD total solve time. (d) RDPOD 32x32 total solve time.

Figure 5.8: The number of final stage iterations and total time required to converge to a solution of the
Watanabe-Maynard extrapolation problem with 200 basis functions per node, for varying solver

tolerances and basis functions.

Figure 5.8 shows the number of iterations and total time required to converge the

Watanabe-Maynard extrapolation problem, with 200 basis functions per node in the

final stage. This investigation was intended to test the hypothesis that more complex

problems would still benefit significantly from the multigrid method if a larger basis was

used, as mentioned in the discussion of figure 5.7. Since the number of basis functions

used was much larger, the convergence threshold was lowered to 10−6 so that the solve

times would not be impractically large, and the interpolation problem was not examined.

As expected, the multigrid method was significantly more beneficial in this case. The

number of iterations in the final stage decreased by up to an order of magnitude, which

was a significant improvement upon the 0.5 orders of magnitude improvement seen in

figure 5.7. The reduction in total solve time was also much larger, reaching over 0.5

orders of magnitude at best compared to approximately 0.2 in the previous results.

These results demonstrate that the multigrid method can have significant benefits even
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for complex problems, and provide evidence that the reduction in solve time increases

with the final stage resolution, as hypothesised.

5.1.2.3 The Checkerboard Problem

The third example used to test the multigrid method is the checkerboard problem [14],

first described in section 4.4.4. The problem was set up as presented previously, besides

the use of the multigrid method.

(a) Interpolation problem, DPOD solver. (b) Interpolation problem, RDPOD 25x25 solver.

(c) Extrapolation problem, DPOD solver. (d) Extrapolation problem, RDPOD 25x25 solver.

Figure 5.9: The number of iterations required to converge the final stage solution with 84 reduced order
basis functions per node, for varying solver tolerances and basis functions.

Figure 5.9 shows the number of iterations required to converge a solution of the checker-

board problem with 84 basis functions per node to a threshold of 10−9, after first

solving with fewer basis functions. The number of iterations required when solving for

84 basis functions without the multigrid method is also shown for comparison. The

results show many similarities with the Watanabe-Maynard results in figure 5.6, with the

same implications. Once again, the multigrid method consistently reduced the number

of iterations required to converge the final stage, and both the basis function count
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and threshold value affected the extent of this reduction. However, the reduction was

by approximately 0.5 orders of magnitude at best, and generally less. This suggests

that, much like the Watanabe-Maynard problem, the checkerboard problem was too

complicated to obtain the same benefits as the scattering test problem.

(a) Interpolation problem, DPOD solver. (b) Interpolation problem, RDPOD 25x25 solver.

(c) Extrapolation problem, DPOD solver. (d) Extrapolation problem, RDPOD 25x25 solver.

Figure 5.10: The total computation time required to converge a solution with 84 reduced order basis
functions per node, for varying solver tolerances and basis functions.

Figure 5.10 shows the total computation time required to converge the checkerboard

problem, including both stages of the multigrid method, as the threshold and number

of basis functions used in stage 1 were varied. As in figure 5.7, the multigrid method

successfully reduced the total time required to converge to a solution, but only by

a relatively small amount, and not in every case. Since this problem is even more

complicated than the Watanabe-Maynard problem, these results seem to confirm that

the multigrid method is less effective the more complex the problem is. As explained

in the discussion of figure 5.7, it is hypothesised that using more basis functions in the

final stage would make the multigrid method more effective, but in this case the method

does not seem worthwhile.
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(a) DPOD solver iterations. (b) RDPOD 32x32 solver iterations.

(c) DPOD total solve time. (d) RDPOD 32x32 total solve time.

Figure 5.11: The number of final stage iterations and total time required to converge to a solution of
the checkerboard extrapolation problem with 200 basis functions per node, for varying solver tolerances

and basis functions.

Figure 5.11 shows the number of iterations and total time required to converge the

checkerboard extrapolation problem, with 200 basis functions per node in the final stage..

This investigation was intended to provide further evidence for the hypothesis that

more complex problems could still benefit significantly from the multigrid method if

a larger basis was used, as explained previously. As with figure 5.8, the convergence

threshold was lowered to 10−6 so that the solve times would not be impractically large,

and the interpolation problem was not examined. As predicted, the multigrid method

was significantly more beneficial in this case. Once again, the number of iterations

in the final stage decreased by up to an order of magnitude, significantly improving

upon the 0.5 order of magnitude reduction seen in figure 5.9. While not particularly

large, the reduction in total solve time was more significant than in figure 5.10, reaching

approximately 0.4 orders of magnitude at best compared to approximately 0.2 in the

previous figure. These results provide further evidence that the multigrid method can

benefit even complex problems, and that the reduction in solve time increases with the
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final stage resolution, as hypothesised.

5.1.3 Discussion

This section has demonstrated that the multigrid method is able to decrease the total

computation time required to generate a converged solution in most cases. However,

with 84 basis functions in the final stage the effect was only significant enough to be

worthwhile in the simplest case, the highly scattering test probem. The two more

complex problems still benefited, but only by a small amount. As mentioned previously,

this is likely because the simplicity of the scattering problem meant that higher order

basis functions had relatively small contributions and thus the solutions required few

iterations to converge when provided with approximate coefficients for the low order basis

functions. By contrast, additional basis functions provided significant contributions to

the solutions of the more complex problems. As a result, their final stages required more

iterations for a given first stage configuration than the scattering problem, and therefore

their solve times were reduced by less. This hypothesis led to speculation that solving

with more basis functions in the final stage would likely increase the benefits of the

multigrid method for the Watanabe-Maynard and checkerboard problems, since a higher

proportion of the basis functions would have small contributions and converge quickly.

In order to test this, both the Watanabe-Maynard and checkerboard problems were

solved with 200 basis functions in the final stage. The expectation was that the multigrid

method would be more beneficial in this context, since the high order basis functions

would contribute less to the overall solution in a similar manner to the scattering test

problem. In both cases, the multigrid method performed better with a larger number of

basis functions, as predicted. This provides strong evidence for the hypothesis presented,

and suggests that the multigrid method could be practical for large, complex problems

despite its poor performance in initial testing.

Overall, these results seem to suggest that the multigrid method has potential for

generating high-accuracy solutions in a shorter time than the standard method. However,

the more complex the problem, the higher the model resolution required for the multigrid

method to be of significant benefit. Optimisation of the solver and settings could likely

mitigate this issue and make the method beneficial in a wider range of circumstances. It

may also be worthwhile to experiment with more than two or three multigrid stages.
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While this was attempted during testing with little benefit, the search space of possible

configurations increases significantly with each additional stage, as explained in the

introduction to section 5.1.2. As a result, it is almost certain that the optimal multi-stage

configurations were not found. Further research into this technique should therefore

consider a more rigorous method of determining which configurations to investigate.

5.2 Reduced Order Acceleration of the Full Order Model

5.2.1 Motivation and Theory

This section will present an application of the DPOD and RDPOD methods described

in chapters 3 and 4, whereby reduced order models are used to accelerate the solution

of full order models, as mentioned in section 2.2.1. Reduced order solutions to unseen

problems are generated, and the angular flux vectors produced are used as the starting

point for full order model solutions. The advantage of this method is that it generates a

solution of equal accuracy to the full order model alone, while incurring significantly

reduced computational costs due to the efficiency provided by the reduced order model.

The process begins by generating full order model solutions with a representative range

of material properties, such that any unseen material properties which are to be applied

will produce qualitatively similar solutions. DPOD and RDPOD models are then

generated using these solutions as described in chapters 3 and 4. When a new solution

for unseen material properties is required, the new problem is first solved using a reduced

order model, generating a solution which consists of a vector αq,r for each spatial node,

containing the coefficients of the POD basis functions at that node. The coefficient

vectors are projected back up to the full order model space using the basis matrices

Uq,r associated with their corresponding node, as implied by equations 3.20 and 4.12

for DPOD and RDPOD respectively. This generates a reduced order approximation to

the solution in the full order model’s angular representation, SN in this case. These SN

solution vectors ψq are then fed into a full order SN angular model as the initial solution.

The full order model is solved using an iterative upwind sweep solver, as described in

sections 1.2 and 2.5.1.

As the initial solution is already an approximation to the full order solution, with its
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accuracy dependent on the number and distribution of basis functions used in the ROM,

the full order model converges in fewer iterations than if the solution vector had started

from zero, as is usual. Since initial solutions are generated with reduced order models,

they are produced much more quickly than the full order model would take to reach a

similar level of accuracy. This ensures that the process has a reduced computational

cost for the same level of accuracy, for any sensibly constructed reduced order model -

that is, any which converges in less computational time than the full order model would

take to reach the same level of accuracy.

5.2.2 Numerical Examples

In this section, several numerical examples are presented which demonstrate the effective-

ness of DPOD and RDPOD in accelerating solutions of the full order model, compared

to the full order model alone. Uniform quadrilateral FEM spatial meshes are employed,

using discontinuous bilinear basis functions. The full order method employs the S50

angular discretisation for all three problems. A reference solution for each problem

was produced using the full order model and converged to within a tolerance of 10−12.

Reduced order models were then created by taking snapshots from the reference solutions,

and used to solve unseen problems. These reduced order solutions were converged to a

tolerance of 10−6, and used as initial solutions for the full order models. The accelerated

full order models were then solved with tolerances of 10−6 and 10−9, in order to compare

the results in each case. The following sections will compare the standard full order

models to the accelerated models in order to demonstrate the utility of this method.

Solve times will be presented, though as explained in section 1.2 the reduced order

model is not fully optimised, and as such they should be taken as a general indication

of whether the method works rather than a demonstration of its optimal performance.

The dog-leg duct problem shown in other chapters is not considered, as it is a purely

advective problem and as such only requires two iterations to converge - one for the

initial rays, and one for reflected rays.

5.2.2.1 The Scattering Test Problem

The first example is a highly scattering problem, which was designed to demonstrate

the utility of the methods in this chapter. A full description and explanation of the
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problem is provided in section 5.1.2.1. Figure 5.2 shows a schematic of the problem and

an S50 scalar flux solution to the extrapolation problem. The material properties of each

problem are listed in table 5.1.

(a) Interpolation problem, 10−6 threshold. (b) Extrapolation problem, 10−6 threshold.

(c) Interpolation problem, 10−9 threshold. (d) Extrapolation problem, 10−9 threshold.

Figure 5.12: The number of SN iterations required to converge to a solution, for various accelerator
configurations.

Figure 5.12 shows the number of SN iterations required to converge to a solution of the

scattering test problem after acceleration with both DPOD and RDPOD solutions, with

varying numbers of basis functions and spatial regions used to generate the reduced

order solutions. The number of iterations required to converge the full order model from

an initial solution of zero is also shown for comparison. As the graphs demonstrate,

acceleration with a reduced order model reduced the number of iterations required to

converge to a solution in every case. Increasing the number of basis functions used in the

reduced order model further reduced the number of full order model iterations. This was

to be expected because adding basis functions reduces the ROM’s error, thus ensuring

that the initial solution is closer to the final solution. In the two graphs with thresholds

of 10−6, by around 12 BFs the reduced order model was able to approximate the SN
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solution so closely that the SN model only required 1-2 iterations to converge, with 1

the minimum possible since an iteration must be performed to determine whether the

model has converged past the threshold value. This represents a reduction of up to 3

orders of magnitude in the number of iterations required. In the 10−9 threshold case,

the number of iterations required reached a minimum value greater than 1 and stayed

there. This is likely because the reduced order model reached the smallest error it was

capable of, which was not sufficient to reduce the number of iterations required to 1.

Since the problem is simple, it is no surprise that this limit was reached with relatively

few basis functions. As the variance in angular flux profiles across the snapshots is low,

they can be accurately represented with a smaller basis than more complex problems.

(a) Interpolation problem, 10−6 SN convergence
threshold.

(b) Extrapolation problem, 10−6 SN convergence
threshold.

(c) Interpolation problem, 10−9 SN convergence
threshold.

(d) Extrapolation problem, 10−9 SN convergence
threshold.

Figure 5.13: The total computation time required to converge to a solution, for various accelerator
configurations.

Figure 5.13 depicts the total computation times required to converge SN solutions of

the scattering test problem, with varying numbers of basis functions used to generate

the reduced order acceleration solutions. This includes the time required to solve the
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reduced order model for an initial full order solution, plus the time required to iterate

the accelerated SN solution to the desired threshold. The plots demonstrate that ROM

acceleration consistently reduces the total time required to converge a solution by up

to 2 orders of magnitude with a threshold of 10−6, and 0.5 orders of magnitude with

a threshold of 10−9. Increasing the number of basis functions used in the ROM was

beneficial up to around 12-20 basis functions, at which point adding more basis functions

begins to increase the total solve time. This can be understood by considering the results

in figure 5.16. When increasing the number of basis functions used by the ROM reduces

the number of SN iterations required, it is beneficial to the overall solve time, since

the reduction in SN iterations more than counteracts the additional time required to

produce the reduced order solution. Once the number of SN iterations has reached a

minimum, no further benefit can be gained from increasing the number of ROM basis

functions. However, doing so will still increase the time required to produce ROM

solutions, and so the total solve time begins to increase. It is also noteworthy that

RDPOD with 25x25 regions performed worse than DPOD and RDPOD with fewer

regions. The reason for this is not clear, but may be due to the reduced sparsity of the

25x25 matrices increasing the time required to perform matrix multiplications, without

reducing the error sufficiently to provide a net positive effect. These results demonstrate

the effectiveness of acceleration with reduced order models, and show that there exists

an optimal number of ROM basis functions, beyond which additional basis functions are

detrimental to the overall efficiency of the method.

5.2.2.2 The Watanabe-Maynard Problem

The second example in this section is the Watanabe-Maynard problem [13]. The problem

setup in this case was identical to that presented in chapter 4.
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(a) Interpolation problem, 10−6 threshold. (b) Extrapolation problem, 10−6 threshold.

(c) Interpolation problem, 10−9 threshold. (d) Extrapolation problem, 10−9 threshold.

Figure 5.14: The number of SN iterations required to converge to a solution, for various accelerator
configurations.

Figure 5.14 shows the number of SN iterations required to converge a solution to the

Watanabe-Maynard problem after acceleration by both DPOD and RDPOD solutions,

with varying numbers of basis functions used to generate the reduced order solutions.

The number of iterations required with an initial solution of zero throughout the domain

is also shown for comparison. As previously, acceleration consistently reduced the number

of SN iterations required to converge the full order model. Additional basis functions

tended to reduce this number further, but oscillations about the general trend line meant

that this was not always true. In this case, the reduction was not as large as for the

scattering model, and never reached 1 iteration to converge. This is likely because the

problem is significantly more complicated, and thus many more basis functions would

be required to reach the required level of accuracy.
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(a) Interpolation problem, 10−6 SN convergence
threshold.

(b) Extrapolation problem, 10−6 SN convergence
threshold.

(c) Interpolation problem, 10−9 SN convergence
threshold.

(d) Extrapolation problem, 10−9 SN convergence
threshold.

Figure 5.15: The total computation time required to converge to a solution, for various accelerator
configurations.

Figure 5.15 depicts the total computation time required to converge an SN solution

to the Watanabe-Maynard problem, with varying numbers of basis functions used to

generate the reduced order acceleration solutions. This includes the time required to

solve the reduced order model, plus the time required to iterate the accelerated SN

solution to the desired threshold. The acceleration method reduced the total solve

time in almost all cases, though it was unchanged or increased slightly for a few data

points. However, the effect was much less significant than previously, reducing solve

times by approximately 0.25 orders of magnitude at best. This is likely because the

Watanabe-Maynard problem is more complex and thus the reduced order model requires

more basis functions to reach the same level of accuracy, reducing its advantage over

the full order model. The number of iterations required to solve the accelerated full

order model therefore decreases relatively slowly, and as such acceleration provides less

benefit. However, these results demonstrate that the acceleration method works, and
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with further optimisation to the reduced order model it would provide a more significant

reduction to the total solve times.

5.2.2.3 The Checkerboard Problem

The third example in this section is the checkerboard problem [14], first described in

section 4.4.4. The problem was set up as presented previously.

(a) Interpolation problem, 10−6 threshold. (b) Extrapolation problem, 10−6 threshold.

(c) Interpolation problem, 10−9 threshold. (d) Extrapolation problem, 10−9 threshold.

Figure 5.16: The number of SN iterations required to converge to a solution, for various accelerator
configurations.

Figure 5.16 shows the number of SN iterations required to converge to a solution for the

checkerboard problem after acceleration with both DPOD and RDPOD solutions, with

various reduced order model configurations used to generate the acceleration solutions.

The number of iterations required without acceleration by a reduced order model is

also shown for comparison. As previously, ROM acceleration consistently reduced the

number of iterations required to converge the SN model, and increasing the number of

ROM basis functions tended to decrease the iterations required further, though not in

every case. Interestingly, DPOD performed better than RDPOD in most cases for these
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tests. It is not clear why, since RDPOD had a lower error than DPOD as expected.

However, it may be that the DPOD and RDPOD models had qualitatively different

error distributions, and the DPOD error was located such that it decreased more than

the RDPOD error with each SN iteration.

(a) Interpolation problem, 10−6 SN convergence
threshold.

(b) Extrapolation problem, 10−6 SN convergence
threshold.

(c) Interpolation problem, 10−9 SN convergence
threshold.

(d) Extrapolation problem, 10−9 SN convergence
threshold.

Figure 5.17: The total computation time required to converge to a solution, for various accelerator
configurations.

Figure 5.17 depicts the total computation time required to converge an SN solution to

the checkerboard problem, with varying numbers of basis functions used to generate the

reduced order solutions for acceleration. This includes the time required to solve the

reduced order model, plus the time required to iterate the accelerated SN solution until

it converged to the desired threshold. As with the Watanabe-Maynard problem, the

total solve time was reduced in most cases, but usually by a relatively small amount,

approximately 0.5 orders of magnitude at best. This is likely for the same reason -

the complexity of the problem meant that the ROM required many basis functions to

approximate it accurately, which reduced the effectiveness of the acceleration. It should
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once again be noted that the reduced order solver is not fully optimised, and that if it

were, the benefit of accelerating the full order solution in this manner would be much

greater.

5.2.3 Discussion

This section has demonstrated the effectiveness of using the reduced order models

developed in earlier chapters to generate initial solutions to a full order model. As

expected, the method was consistently able to reduce the number of SN iterations

required to converge to a solution. This resulted in a reduction in the total solve time

in almost all cases. For the scattering test problem, this reduction was large, up to 2

orders of magnitude in some cases. However, the improvement was much smaller for the

more complex problems. This is likely a result of the complex problems having much

higher error for a given number of basis functions, which caused the initial solution

to the full order model to be further from the converged solution and require more

iterations to solve. However, as explained in section 1.2, the reduced order models were

not fully optimised, and in fact there is an obvious way to reduce their solve times by a

factor of four in two dimensions. If this was implemented, solving the ROM to generate

an initial solution would take far less time, and therefore the total solve times with

acceleration would all be reduced. Despite the lack of optimisation, it is clear from the

results presented here that acceleration of a full order model by a reduced order model

is effective in reducing overall solve times. As with the multigrid method, this type of

acceleration seems to be more effective for relatively simple problems which the reduced

order model can resolve with few basis functions.
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5.3 Tables

Problem Source (cm−2s−1) Σa (cm−1) Σs (cm−1)

1 1.00 0.10 10.00

2 1.00 0.10 14.00

3 1.00 0.20 10.00

4 1.00 0.20 14.00

Interpolation 1.00 0.15 12.00

Extrapolation 1.00 0.25 16.00

Table 5.1: Material properties for the scattering test problems in chapter 5.



Chapter 6

Summary, Conclusions and Future

Research

This project has developed two novel reduced order models, known as DPOD and RDPOD.

It described each method, explained the reasoning behind their implementation, and

presented findings concerning their effectiveness. It then presented two applications of

the aforementioned models in solver acceleration, the first being the implementation of

a multigrid solver, and the second being the use of the reduced order models to find

an initial solution to a full order model, in order to reduce the overall solve time. This

chapter will summarise the findings of this project, draw conclusions from said findings,

and propose avenues for future research.

6.1 Summary and Conclusions

6.1.1 Chapter 2

Chapter 3 presented a novel reduced order model based on angular POD, which produced

basis functions with compact support, known as discontinuous POD. It demonstrated

that the DPOD method was successful in eliminating the solver instability of previous

angular POD techniques, which was in itself a significant improvement to computational

efficiency and consistency. DPOD also reduced the error of solutions produced with a

given number of basis functions in many cases, which provided further computational

efficiency benefits. In addition, an adaptive DPOD method was implemented, which
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took advantage of the hierarchical and discontinuous nature of the DPOD basis functions

to allow the angular resolution to vary across both spatial element and angular octant.

This method was highly effective at generating efficient bases with low error for the

number of degrees of freedom. However, the adaptive process was optimised to generate

as efficient a basis as possible at each stage, rather than to minimise the total time

required to adapt and then produce a solution. In addition, the solver itself was not

fully optimised, and could have been significantly improved. The adaptive method was

therefore fairly inefficient in terms of total solve time, despite the fully adapted model’s

excellent efficiency. This could certainly be improved by altering settings, or the adaptive

method itself, and by optimising the ROM solver. However, the implementation of

adaptivity was intended to demonstrate that it could be effective in reducing the error

for a given number of basis functions, and in this regard it was successful. Further

improvements to the adaptive method are left for future work to consider.

6.1.2 Chapter 3

Chapter 4 presented a model known as Regional DPOD (RDPOD) which partitioned the

spatial dimension and produced separate DPOD basis sets for each partition. This was

intended to improve computational efficiency by reducing the variance in the angular flux

profiles which each DPOD basis set would need to reproduce, thus requiring fewer basis

functions to reach the same level of error. This method was demonstrated to significantly

improve upon the computational efficiency of DPOD in many cases, and to equal it

at worst. It was also found that increasing the number of spatial regions tended to

consistently improve the computational efficiency of the model, which was expected since

increasing the number of regions meant that each region was smaller and likely contained

less variation in angular flux profiles. While this relationship was fairly consistent, in

some cases the efficiency appeared to be asymptotically approaching a maximum as the

number of regions was increased. An adaptive method was also implemented for the

RDPOD basis functions, which allowed the number of basis functions used to vary by

angular octant and spatial region. This method was demonstrated to be highly effective

at reducing the error for a given basis size, to the extent that the cumulative time for the

full adaptive process to reach a given level of error was faster than a single non-adaptive

solve with the same level of error in many cases. As previously, the adaptive method
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was optimised to reach the lowest error possible for a given basis size, rather than for

a given amount of cumulative solve time, and as such its performance by that metric

could likely be improved further. In theory, this method could also be modified to adapt

on a per-element basis as the adaptive DPOD method did, which should produce better

results, but this would be significantly more difficult to implement.

These modifications are believed to be effective because the neutron flux distribution

often varies substantially over space and angle. Capturing the characteristics of the

neutron flux using a single set of basis functions can therefore place high demands on

the original ROM formulation. Partitioning the spatial and angular dimensions and

creating separate angular ROMs for each partition can help to overcome this issue. As

the variation in neutron flux distributions within each partition is considerably smaller

than the variation across the entire problem, the number of basis functions required to

resolve those distributions is reduced substantially. This can lead to smaller systems of

equations, and therefore reduce solve times.

6.1.3 Chapter 4

Chapter 5 presented two solver acceleration methods which both utilised the DPOD

and RDPOD models introduced in previous chapters. The first was a simple angular

multigrid method, which solved problems in multiple stages with increasing angular

resolution at each stage. The intent behind this was to allow the solution to converge to

a given threshold faster. The low-order ROM coefficients which contributed most to the

solution could be found relatively cheaply with low-resolution sweeps, and the high-order

model would then converge faster since its initial solution was closer to the reference

solution. The method was demonstrated to function as expected, successfully reducing

the number of iterations required to converge the high-resolution model in all cases.

However, the extent to which this reduction benefited the overall solve time varied. In the

case of the relatively simple scattering test problem, the method provided a significant

net benefit, reducing solve times by almost an order of magnitude. On the other hand,

the Watanabe-Maynard and checkerboard problems were significantly more complex,

and benefited far less overall, with their solve times reduced by approximately 0.2 orders

of magnitude with 84 basis functions. As explained previously, this is suspected to be

a result of the more complex problems requiring more basis functions to accurately
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represent. This means that the difference between solutions using, say, 32 and 84

basis functions is much greater for complex problems like the checkerboard than simple

problems like the scattering test. Therefore, when the former problem moves from a

coarse to a fine grid the difference is substantial and significant iteration is required,

whereas in the latter case the solutions are relatively similar and less iteration is needed.

This hypothesis led to the suspicion that the multigrid method would be much more

effective if the highest-resolution grid used more basis functions, since a coarse solve could

then be performed which would be closer to the fine grid than was achievable with just

84 basis functions per node on the fine grid. In order to test this, the Watanabe-Maynard

and checkerboard problems were solved with a fine grid that had 200 basis functions

per node. As predicted, the multigrid method performed significantly better in this

situation, providing evidence for the hypothesis and demonstrating its utility for even

complex problems. This suggests that the multigrid method provides more benefit the

more basis functions are used in the final stage, though insufficient evidence is available

to determine whether this relationship holds in all circumstances.

The second method presented in this chapter was the use of DPOD and RDPOD models

to generate initial solutions for a full order model, which was then used to reduce the

error of the solution through further iteration. This was intended to generate solutions

of equal accuracy to a full order model solve alone, but with reduced computational

time. Reduced order models decrease the computation time required to generate a

solution, but have the trade-off of increasing error due to the approximations involved

in constructing the ROM. However, by taking a ROM solution and iterating it further

with a full order model, this induced error can be eliminated. This does increase the

computation time compared to solving the ROM alone, but should still be faster to reach

a given level of error than solving on the full order model alone, thanks to the increased

modelling efficiency provided by the ROM. As predicted, this method was successful

in reducing the number of SN iterations needed to converge a solution to a given level

of accuracy, which resulted in a reduced total solve time compared to the full order

model alone in almost all cases. For the scattering test problem, which was designed

specifically to demonstrate the benefits of the methods in this chapter, the reduction in

solve times was by up to 2 orders of magnitude. However, the Watanabe-Maynard and

checkerboard problems benefited less, as they required more iteration of the full order
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model to converge to a solution. This is suspected to be a result of the relative error of

the more complex solutions being significantly larger, resulting in them converging to

the reference solution more slowly. Despite this issue, the method was demonstrated

to be effective in many situations. As discussed previously, it would also benefit from

optimisation of the reduced order models. Significant optimisation of the ROM solver is

expected to be possible, as discussed in section 1.2.

6.2 Future Research and Development

Many possibilities exist in terms of improvements to the models in this thesis, as well as

future research based upon the methods presented. Some have been mentioned elsewhere

in this document, while others are introduced for the first time here.

6.2.1 Improvements to Existing Models

This section will discuss potential improvements to the methods employed in this project.

Some were apparent from initial testing but not implemented due to time limitations,

and others did not become apparent until later stages of the project.

6.2.1.1 Solver Optimisation

As introduced in section 1.2 and mentioned several times in later chapters, the sweep-

based solver used in the reduced order model was not well optimised for angular POD.

This project aimed to develop novel reduced order modelling techniques, and not to

produce an efficient and well-optimised solver. However, such optimisation would provide

significant benefit in terms of the time required to solve the reduced order models, which

is a key metric in almost any real-world application. In addition, it would allow the

reduced order models to compare more favourably to other models of a similar kind, and

to the full order model itself. As previously mentioned, an obvious improvement would

be to solve only for the basis functions which are pointed in the current sweep direction.

This was not possible for previous angular POD methods since every basis function

spanned the sphere, but DPOD introduced basis functions with compact support on

the sphere. As a result, it should be possible to solve only for the basis functions in

one octant for each sweep, corresponding to the current sweep direction. This should
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immediately reduce solve times by a factor of four in two dimensions, and a factor of

eight in three dimensions. Other improvements are likely possible, but this modification

alone presents a clear opportunity for significant efficiency improvements.

6.2.1.2 Adaptivity

In chapter 3, an adaptive method which varies the number of basis functions by element

and octant is presented. When the adaptive method in chapter 4 was developed, the

number of basis functions was restricted to varying by region rather than element for

simplicity of implementation. While this version of adaptivity was highly successful, it

is likely that the ability to adapt on a per-element basis would provide further benefit.

In addition, the adaptive methods were developed with the goal of producing as close to

an optimal basis at each adaptive stage as possible. That is, the goal was to minimise

the error for a given number of basis functions in the domain. This goal was chosen

because, as previously mentioned, the reduced order solver was not optimised. Therefore,

the number of basis functions used was initially employed as an approximate stand-in

for the solve time, as can be seen in chapter 3. As a result, a large number of adaptive

stages were required, and therefore the total solve times were suboptimal. The adaptive

methods frequently reduced overall solve times despite this, but if they were designed

to get reasonably close to an optimised basis function distribution quickly, rather than

closer but more slowly, they would likely be of more benefit to solve times.

6.2.2 Novel Research Opportunities

During the course of this project, several ideas have arisen which may be worthy of

investigation. They are presented here in the hopes of inspiring future work.

6.2.2.1 Optimal Spatial Partitioning

The RDPOD method introduced in chapter 4 worked by partitioning the spatial domain

of a problem and producing independent basis sets for each partition, referred to as

‘regions’. In the chapter, each spatial region is rectangular (usually square) and regular.

This made the implementation relatively simple, but is highly unlikely to be optimal

in most cases. In theory, there is no requirement for each spatial region to be regular,

or even contiguous. For example, in a grid of regularly spaced fuel pins, it may turn



6.2. Future Research and Development 158

out to be advantageous to group every pin into the same region despite their lack of

proximity, due to similarities in their angular flux profiles. While there are various

possibilities for achieving a more optimised distribution of partitions, one in particular

is suspected to have promise. The singular values obtained when performing the SVD

contain information on the contribution of each basis function to the overall solution, as

described in equation 4.11. The goal is to minimise the number of basis functions required

to represent the data in a particular region. This could be achieved by maximising the

early singular values and minimising later ones, as this corresponds to the early basis

functions having a larger contribution in the region. This is equivalent to maximising

Iq,r(n) for a given number of basis functions n. Therefore, a method which algorithmically

assigned each element to the region whose singular values were least affected by its

addition could be highly beneficial. Naively, this could be achieved by selecting a single

element to begin with, and performing an SVD for every possible pair of elements

including that one. Then, the pairing which resulted in the largest value of I(1) would

both be included in the same region. Similar tests which attempted to maximise I for

small values of n could then be performed, adding the element which resulted in the

smallest change each time. At some threshold, a new region would be created and the

same process performed until every element was assigned to a region. While the benefits

of such a method would clearly be problem-dependent, and may be minor in some cases,

it is suspected that this method could provide significant reductions in error for a given

number of basis functions in the domain. In addition, as presented the algorithm would

require significant computation, but far more efficient implementations of the same

concept are likely possible.

6.2.2.2 Combining Reduced and Full Order Models

Since the reduced and full order models constructed for this project use the same spatial

grid and differ only in angular discretisation, it should be possible to produce a model

which uses reduced order modelling in some spatial regions and full order modelling in

others. This may be highly beneficial for some applications, particularly when small

portions of the domain are either of greater interest, or have more variance in their

angular flux profile. By solving these small sections with a full order model and the rest

with a reduced order model, their error could be minimised while retaining most of the
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efficiency benefits of the ROM. This would require the implementation of appropriate

boundary conditions between the two models so that flux could flow between them,

which should be relatively simple. Such a method would likely only be worthwhile

for some problems, and it is not clear how much benefit it would provide, but further

investigation may be warranted.

6.2.2.3 Combining Angular and Spatial Reduced Order Modelling

This project has focused on the development of angular ROM methods - that is, methods

which reduce the degrees of freedom of the angular dimensions of the model. Similar

methods can be applied to the spatial domain, as discussed in section 2.6.3. These

involve taking snapshots of the spatial domain, either over time or with varying material

properties, and generating basis functions which can efficiently represent the spatial

variance of the flux. In principle, it should be possible to combine the angular ROMs

presented in this thesis with spatial order reduction in the same model. This would be

a significant undertaking to implement, but may perform better than ROMs involving

either the angular or spatial dimensions alone. As such, it represents a promising avenue

for future research to explore.
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