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Abstract

Bayesian clustering models, such as Dirichlet process mixture models (DPMMs), are sophisticated flexible
models. They induce a posterior distribution on the set of all partitions of a set of observations. Analysing
this posterior distribution is of great interest, but it comes with several challenges. First of all, the number of
partitions is overwhelmingly large even for moderate values of the number of observations. Consequently the
sample space of the posterior distribution of the partitions is not explored well by MCMC samplers. Second,
due to the complexity of representing the uncertainty of partitions, usually only maximum a posteriori
estimates of the posterior distribution of partitions are provided and discussed in the literature. In this
paper we propose a numerical and graphical method for quantifying the uncertainty of the clusters of a given
partition of the data and we suggest how this tool can be used to learn about the partition uncertainty.
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1. Introduction

An infinite mixture model is a mixture model with potentially infinitely many mixture components. One
example of such models is the Dirichlet process mixture model (DPMM), an extremely popular model, used
for density estimation, prediction or clustering, which can estimate the number of components. This is a
flexible method which allows for many types of data (e.g. continuous, count, categorical, survival) and can
also allow for joint modelling of covariates and response variables. These models are widely used in many
fields, including machine learning, genetics and epidemiology.

Clustering aims at grouping individuals according to their degree of similarity. We expect that variability
is small intra-cluster but high extra-clusters. In model based clustering, each component of a mixture is
assigned to a cluster. Data from a same cluster are assumed to follow a same parametric probability
density, leading to the rule one component, one cluster. However, clusters may not arise from a single
parametric distribution and the mixture may fail to retrieve the clusters, over-estimating the number of
clusters (Baudry et al., 2010; Hennig, 2010). Bayesian mixture models are more flexible, since we consider a
probability distribution on the space of all possible partitions. In the case of DPMM the mixture distribution
is assumed to be engendered by a Dirichlet process. As a result, observations are not thought to be generated
by a unique mixture, but they could be generated by a large set of mixture distributions. In this context,
the clustering task is still debated. We could consider the partition derived from only one mixture, as it is
done when the maximum a posteriori is researched (Fritsch et al., 2009), but we choose not to ignore all of
the other possible mixtures. In this case, in practice, clustering is about finding a consensus from a large
set of data partitions. The consensus partition obtained is not necessarily a member of the initial set, and
it cannot be related to a given mixture.

In order to relativise the importance of the estimate partition, it is important to get information about its
uncertainty. Posterior similarity matrices are the tools generally used to assess partition uncertainty. Based
on the MCMC draws, the posterior similarity matrix gives for each pair of subject their probability to be in
a same cluster. However this matrix has the drawback of not giving an index of confidence for one partition.
Wade et al. (2018) develop the foundation of a mathematical framework to compute credible balls in the
partition space, using the variation of information as a measure of distance on the partition space. However,
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(1) the upper and lower bounds are generally not unique, (2) in practice, even for very small datasets, the
number of partitions expected within the 95% credible ball is so large that an analyst cannot consider all of
the them and (3) estimates are given among the MCMC draws. Considering only partitions explored in the
MCMC draws is a big limitation of the method, as the most desirable partition is often outside the MCMC
sample (Hastie et al., 2015; Jing et al., 2022). In practice, the ‘consensus’ partitions are usually obtained
by postprocessing the MCMC draws, for example applying partitioning around medoids on the dissimilarity
matrix (Liverani et al., 2015).

Finite mixture models are not subjected to all of these pitfalls, because first the space of partition is
limited by the fixed number of clusters and second, constraints are generally added in application to make
the different clusters identifiable accross the MCMC draws. As a consequence, it is possible to evaluate the
posterior distribution of a given cluster in a partition. It is then possible to evaluate the uncertainty of the
partition, by computing for each individual its posterior probability of belonging to a cluster.

In this paper we propose to take advantage of the two approaches: finite mixtures models and DPMM.
We supply a simple and efficient method for quantifying the uncertainty of any partition in a DPMM, as it
can be done for finite mixture models. Our method is based on the predictive distribution, a recommended
choice for model checking. The uncertainty can be evaluated for any partitions including those that do not
belong to the explored MCMC sample.

This paper is organised as follows. In Section 2 we review DPMMs and methods to identifying the
consensus partition. In Section 3 we propose our tools for quantifying the uncertainty of a given partition.
In Section 4 we discuss how the methods proposed perform on a dataset.

2. Bayesian clustering with Dirichlet process mixture models

The DPMM is a Bayesian clustering model, in which a Dirichlet process (DP) is assigned as latent
distribution on the parameters of the observation distribution. We use the stick breaking representation
of the DP by Sethuraman (1994), in which the infinite mixture is explicit. The (possibly multivariate)
data Dn = (D1, D2, . . . , Dn) follow an infinite mixture distribution, where component c of the mixture is a
parametric density of the form fc(·) = f(·|Θc) parametrised by some component specific parameter Θc, so

Di|Θ1,Θ2, · · · ∼
∞∑
c=1

ψcf(Di|Θc) i.i.d. for i = 1, 2, . . . , n,

Θc ∼ PΘ0
i.i.d. for c ∈ Z+, and ψc = Vc

∏
l<c

(1− Vl) for c ∈ Z+ \ {1} (1)

with Θc independent of Vc for c ∈ Z+, with ψ1 = V1, and Vc ∼ Beta(1, α) i.i.d. for c ∈ Z+. By introducing
the latent allocation variable Zi of observation Di, the first line of the DPMM in Eq. (1) can be replaced
by Di|Zi,Θ1,Θ2, · · · ∼ f(Di|ΘZi

) i.i.d. for i = 1, 2, . . . , n, and P(Zi = c) = ψc for i = 1, 2, . . . , n and for
c ∈ Z+. Bayesian posterior samples for the latent allocation variables can be effectively obtained from the
model above. However, due to the categorical nature of the clustering variables and the lack of scalable
algorithms, it is not immediately clear how one can appropriately summarise the output of partitions from
this model. There are several methods available in the literature for selecting a single clustering estimate
Z∗ for an unknown number of clusters. Among them, many aim to retrieve the maximum a posteriori
(Fritsch et al., 2009). As Liverani et al. (2015), we prefer to use Partitioning Around Medoids (PAM) to
identify the partition Z. This method is very effective and robust in our experience. It consists of processing
the similarity matrix, S, through a deterministic clustering procedure where an optimal number of clusters
can be chosen by maximizing an associated clustering score. Our proposal below to quantify the partition
uncertainty is not influenced by the method used to derive the partition estimate.
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3. Quantifying the uncertainty of a consensus partition

Finite mixture models are an attractive alternative to deterministic methods such as k-means because
they supply a probabilistic framework for dealing with partition uncertainty. In these models, the density of
an observation y is defined as a weighted sum of standard densities which represent the clusters of a partition
and can overlap: f(y) =

∑K
c=1 ωcfc(y). The posterior probability that an observation y belongs to cluster c,

is thus readily obtained by the Bayes theorem and is given by P (“y belongs to cluster c”) = wcfc(y)/f(y).
However, when an infinite mixture model is considered, this method can not be readily applied, because
of the infinite number of potential clusters and label switching. Here, we propose to write the predictive
distribution of a DPMM, i.e. an infinite mixture model as a finite mixture, in order to take advantage of the
Bayes’ theorem. In the following section we present how we split the predictive distribution in k∗ components
and how they are connected to the k∗ clusters of a given partition. Then, the results of this method will be
visualised in an uncertainty table, as this is the most effective way to process the results.

3.1. The posterior predictive distribution as a finite mixture of distributions

Escobar and West (1995) discuss the posterior predictive distribution for DPMMs. They show that given
a partition Z, the predictive distribution of a new observation Dn+1 is a mixture of marginal densities, one
for each cluster formed by the partition Z and one for a potential new cluster. The predictive distribution
of a DPMM is obtained by integrating over the space of partitions,

P (Dn+1|Dn) =
α

α+ n
f0(Dn+1) +

1

α+ n

∑
Z∈Z

∑
c:nc(Z)>0

ncf(Dn+1|{Di : Zi = c})p(Z|Dn) (2)

where Z denotes the space of partitions of Dn, f0(Dn+1) =
∫
f(Dn+1|Θ̃n+1)PΘ0

(Θ̃n+1)dΘ̃n+1, and f(Dn+1|
{Di : Zi = c}) is the predictive distribution for cluster c of partition Z, f(Dn+1|{Di : Zi = c}) can be
written as

∫
f(Dn+1|Θc)p(Θc|{Di : Zi = c})dΘc.

The posterior predictive can be rewritten, using the power set of Dn, P(Dn). The order within Dn

does not influence the posterior predictive because the DPMM considered here is exchangeable. We now
consider Dn as a set. A partition Z is thus a collection of some of the 2n elements of P(Dn) denoted Sj .
Z = {Sj1 , · · · ,SjkZ

}, where elements are non empty, pairwise disjoint and covering Dn. Without loss of
generality we set S1 = ∅ and f0(Dn+1) = f(Dn+1|S1). We show that

P (Dn+1|Dn) =
1

α+ n

2n∑
j=1

ωjnjf(Dn+1|Sj), (3)

where ωj =
∑

{Z∈Z:Sj∈Z} p(Z|Dn) is the posterior probability that subset Sj is a cluster of the partition.

For the empty set, we set n1ω1 = α, so that
∑2n

j=1 njωj = α + n. The details of this proof are available in
Appendix A.

3.2. The predictive distribution as a finite mixture

Our aim is to formulate the predictive posterior distribution as a finite mixture model linked to par-
tition Z∗, which is the consensus partition identified by postprocessing. The partition Z∗ has k clusters,
S∗

1,S
∗
2, · · · ,S

∗
k. Therefore, our ideal finite mixture model will be a sum of k components with weights

proportional to nl, the number of observations in cluster l. Each component of the finite mixture will be
represented by f̃l(·) for cluster l, as follows,

P (Dn+1|Dn) =

k∑
l=1

nl
n
f̃l(Dn+1). (4)
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Because of the form of predictive distribution in Equation (3), the components of the finite mixture should
be of the form

f̃l(Dn+1) =

2n∑
j=1

njωj

α+ n
βl
jf(Dn+1|Sj) (5)

where βl
j represents the part of the marginal distribution f(Dn+1|Sj) relating to component l in the fi-

nite mixture in Equation (4). Of course, f̃l(Dn+1) should be a density distribution, constraining the sum∑2n

j=1 njωjβ
l
j to be equal to α+n, for any l. Also, the mixture in Equation (4) should be equal to Equation

(3), meaning that for each subset j,
∑k

l=1
nl

n β
l
j = 1. Therefore, our problem can be reduced to finding the

βl
j which satisfy these two sequences of constraints, and such that each component f̃l(Dn+1) is as close as

possible to the predictive distribution of data in cluster S∗
l .

We propose a solution based on the simple empirical principle that the more Sj has data in common
with S∗

l , the more f(.|Sj) is close to the predictive distribution of S∗
l . This principle leads us to propose

this simple rule of allocation based on proportionality. The part of f(.|Sj) allocated to cluster l will be
proportional to njl, the number of data both in Sj and S∗

l . From these rules, a solution that satisfies all
above mentioned constraints follows, βl

j = (nnlj)/(njnl) if j ≤ 2 and βl
j = 1 if j = 1. The proof is given in

Appendix B.

3.3. Estimation using MCMC draws

Consider the consensus partition Z∗ and its k clusters. Using MCMC draws, we propose a Monte Carlo
estimate of f̃l. From a sequence of parameters (Zt,Θt

1,Θ
t
2, · · · ) for t ∈ {1, · · · , T} drawn from the posterior

distribution, and a sequence of draws, Θt
0, in the baseline distribution, we approximate f̃l(Dn+1) using the

following Monte-Carlo estimate

(α+ n)
ˆ̃
fl(Dn+1) =

1

T

T∑
t=1

αf(Dn+1|Θt
0) +

n

nl

∑
c:n(Zt)>0

nlcf(Dn+1|Θt
c)

 . (6)

This estimate is based on the posterior draws, readily available when MCMC inference is done. Its computa-
tion demands at each step, the evaluation of a small number of functions in about n points. If the integrals
are in closed form, it is then possible to use the following estimate, with smaller variance

(α+ n)
ˆ̃
fl(Dn+1) = αf0(Dn+1) +

n

nl

1

T

T∑
t=1

 ∑
c:n(Zt)>0

nlcf(Dn+1|{Di : Z
t
i = c})

 . (7)

Finally, we estimate pli as the posterior probability that data point i belongs to cluster l of the Z∗

partition as: p̂li = nl
ˆ̃
fl(Di)/

∑k∗

j=1 nj
ˆ̃
fj(Di) We propose to calculate these probabilities for each data of Dn

and for each cluster of Z∗ and to visualize them graphically. In Appendix C we provide an application of
this to mixtures of Gaussian distributions.

4. Application to velocity galaxy data

We consider the velocity galaxy dataset proposed by Roeder (1990). See Appendix D for a detailed
description of the dataset and our implementation.

The predictive density and the densities f̃l(Dn+1) are represented on the left hand side of Fig. 1. From
the representation of the mixture of densities, the distinction between cluster 3 and 4 is unclear: some
element of cluster 4 have a higher probability to belong to cluster 3. A clear representation of the proposed
methodology is presented on the right hand side of Fig. 1, where the p̂li are displayed for a graphical analysis
of the uncertainty of the selected partition. In this figure we note that cluster 1, 2 and 5 are well defined,
because they are composed of elements that have a high probability to belong to the cluster that they are
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allocated to and low probability to belong to a different cluster. However, doubts may exist on the choice
of clusters 3 and 4, as observations that have been allocated to them have high probability of belonging
to either cluster. The graphical representation of cluster uncertainty was critically helpful to quantify this
uncertainty, and it can scale to higher dimensions.
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Figure 1: The plot on the left represents the predictive density (black), and densities f̃l(Dn+1) of the mixture of Eq. (C.2).
The consensus partition recognizes 5 clusters, data are represented by a star on the x-axis, they are colored according to their
cluster allocation. The plot on the right hand side is a graphical representation of p̂li for a visual analysis of cluster uncertainty.
In this matrix, each row of the matrix corresponds to an observation in the original dataset. Each column represents a cluster
in the partition that has been identified by PAM as a consensus. The observations are ordered according first to their cluster
allocation in the consensus partition, and then according to their probability of belonging to each cluster.

5. Discussion

In this paper we have provided the mathematical justification that underpins a much needed uncertainty
quantification tool for any given partition. As far as we know, we are the first to write the posterior predictive
distribution for a DPMM as a finite mixture. The uncertainty that we have computed can be visualised and
we have demonstrated this to be a powerful tool to learn about the partitions and the uncertainty of each
cluster. In practice, if this tool identifies significant uncertainty, it may trigger a further exploration of the
partition space or a more in-depth analysis of the observations at the boundaries between clusters.

Even though we have focused on Bayesian DPMM clustering in this paper, our work can be extended to
all Bayesian models which provide a sample of the posterior distribution of the partitions, and this is the
focus of our future work.
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Appendix A. The posterior predictive distribution as a finite mixture of distributions

Escobar andWest (1995) discuss the posterior predictive distribution for Dirichlet process mixture models.
They show that given a partition Z, the predictive distribution of a new observation Dn+1 is given by

P (Dn+1|Z,Dn) =
α

α+ n

∫
f(Dn+1|Θ̃n+1)PΘ0

(Θ̃n+1)dΘ̃n+1

+
∑

c:nc>0

nc
α+ n

∫
f(Dn+1|Θc)p(Θc|{Di : Zi = c})dΘc (A.1)

where nc is the number of individuals belonging to cluster c. Note that the predictive distribution is a
mixture of marginal densities. In the first term of the sum above, the parameter Θ̃n+1 is sampled from the
baseline distribution PΘ0

(·), whereas in the remaining terms of the sum, parameters Θc are sampled from
their posterior distribution given prior PΘ0

(·) and data {Di : Zi = c}. This implies that a new observation
Dn+1 could be assigned to one of the clusters defined by observations Dn = (D1, . . . , Dn) or to a new cluster.
For simplicity, in the following, we denote f0(·) the first component of the mixture in Equation (A.1) and
we note that it does not depend on the partition Z.

We obtain predictive distribution by integrating Equation (A.1) over the space of partitions, so that

P (Dn+1|Dn) =

∫
Z
P (Dn+1|Z,Dn)p(Z|Dn)dZ (A.2)

=
α

α+ n
f0(Dn+1)

+
1

α+ n

∑
Z∈Z

∑
c:nc(Z)>0

ncf(Dn+1|{Di : Zi = c})p(Z|Dn) (A.3)

where Z denotes the space of partitions of Dn, and f(Dn+1|Z, {Di : Zi = c}) is the predictive distribution
for cluster c of partition Z,

f(Dn+1|Z, {Di : Zi = c}) =
∫
f(Dn+1|Θc)p(Θc|{Di : Zi = c})dΘc. (A.4)

Equation (A.4) is in closed form if the baseline distribution PΘ0
(.) is a conjugate prior for the likelihood

f(.|Θc). Therefore, the predictive distribution in Eq. (A.3) can be interpreted as a mixture of parametric
densities, weighted by the marginal posterior partition probability p(Z|Dn).

Then we introduce the 2n subsets of Dn, denoted Sj with j = 1, 2, . . . , 2n. We recall that any partition
Z is a set of these subsets Sj , Z = {Sj1 , · · · ,SjkZ

} such that

Dn = Sj1 ∪ · · · ∪ SjkZ

|Sjl | > 0 for all l = 1, 2, . . . , kZ and

Sjc ∩ Sj′c
= ∅

for any pair of subsets (Sjc ,Sj′c
) for jc = 1, 2, . . . , kZ and jc′ = 1, 2, . . . , kZ . Without loss of generality we

set S1 = ∅ and f0(Dn+1) = f(Dn+1|S1). We then rewrite Equation (A.3) using the subsets Sj and then
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switch the summations between partitions and subsets.

P (Dn+1|Dn) =
α

α+ n
f0(Dn+1)

+
1

α+ n

∑
Z∈Z

kZ∑
c=1

njcf(Dn+1|Sjc)p(Z|Dn) (A.5)

=
α

α+ n
f(Dn+1|S1)

+
1

α+ n

2n∑
j=2

∑
{Z∈Z:Sj∈Z}

p(Z|Dn)njf(Dn+1|Sj) (A.6)

For a non-empty subset j, we set ωj =
∑

{Z∈Z:Sj∈Z} p(Z|Dn), the posterior probability that subset j is

sampled over the space of partitions. For the empty set, we set n1ω1 = α. We notice that
∑2n

j=1 njωj = α+n
because

∑
Z∈Z p(Z|Dn) = 1. We have

P (Dn+1|Dn) =
1

α+ n

2n∑
j=1

ωjnjf(Dn+1|Sj). (A.7)

With this formulation, we have shown that the predictive distribution is a mixture of posterior parametric
distributions given each subset. The predictive distribution belongs then to the space generated by the
functions f(·|Sj).

Appendix B. The predictive distribution as a finite mixture

Our aim is to formulate the predictive posterior distribution as a finite mixture model linked to par-
tition Z∗, which is the consensus partition identified by postprocessing. The partition Z∗ has k clusters,
S∗
1 , S

∗
2 , · · · , S∗

k . Therefore, our ideal finite mixture model will be a sum of k components with weights propo-
tional to nl, the number of observations in cluster l. Each component of the finite mixture will be represented
by f̃l(·) for cluster l, as follows,

P (Dn+1|Dn) =

k∑
l=1

nl
n
f̃l(Dn+1). (B.1)

Because of the form of predictive distribution in Equation (A.7), the components of the finite mixture should
be of the form

f̃l(Dn+1) =

2n∑
j=1

njωj

α+ n
βl
jf(Dn+1|Sj) (B.2)

where βl
j represents the part of the marginal distribution f(Dn+1|Sj) relating to component l in the finite

mixture in Equation (B.1). Of course, f̃l(Dn+1) should be a density distribution, constraining the sum∑2n

j=1 njωjβ
l
j to be equal to α+ n. Also, the mixture in Equation (B.1) should be equal to Equation (A.7),

meaning that for each subset j,
∑k

l=1
nl

n β
l
j = 1. Therefore, our problem can be reduced to finding the βl

j

which satisfy these two sequences of constraints,

2n∑
j=1

njωjβ
l
j = α+ n for all l ∈ {1, 2, · · · , k} (B.3)

k∑
l=1

nl
n
βl
j = 1 for all j ∈ {1, 2, · · · , 2n} (B.4)
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and such that each component f̃l(Dn+1) is as close as possible to the predictive distribution of data in cluster
S∗

l .
We propose a solution based on the simple empirical principle that the more Sj has data in common

with S∗
l , the more f(.|Sj) is close to the predictive distribution of S∗

l . This principle leads us to propose
this simple rule of allocation based on proportionality. The part of f(.|Sj) allocated to cluster l will be
proportional to njl, the number of data both in Sj and S∗

l . From these rules, a solution that satisfies all
constraints in Equations (B.3) and (B.4) follows.

βl
j =

nnlj

njnl
if j ≤ 2

βl
j = 1 if j = 1.

(B.5)

For the constraints in Equation (B.3) we have

2n∑
j=1

njωjβ
l
j = n1ω1β

l
1 +

2n∑
j=2

njωj
nljn

nlnj
= α+

n

nl

2n∑
j=2

nljωj

= α+
n

nl

2n∑
j=2

∑
Z∈{Z∈Z:Sj∈Z}

p(Z|Dn)nlj

= α+
n

nl

∑
Z∈Z

p(Z|Dn)

2n∑
j=2

nlj1Sj∈Z = α+
n

nl
nl = α+ n.

For the constraints in Equation (B.4) we have, if j ̸= 1,

k∑
l=1

nl
n
βl
j =

k∑
l=1

nl
n

n

nl

nlj
nj

=

k∑
l=1

nlj
nj

= 1 (B.6)

and, if j = 1,

k∑
l=1

nl
n
βl
j =

k∑
l=1

nl
n

= 1.

Appendix C. Application to mixtures of Gaussian distributions

Perhaps the most common model to be implemented under the DPMM framework is the Gaussian mixture
model, where Dn = Y n for some continuous multidimensional data Yi of dimension p, and Yi follows a
mixture of Gaussian distributions. Under this setting for each cluster c, the cluster specific parameters are
given by Θc = (µc,Σc), where µc ∈ Rp is a mean vector and Σc ∈ Rp×p is a covariance matrix. Under this
setting

p(Yi|Zi,ΘZi) = f(Yi|µZi ,ΣZi) = (2π)−
p
2 |ΣZi |−

1
2 exp

{
−1

2
(Yi − µZi)

⊤Σ−1
Zi

(Yi − µZi)

}
. (C.1)

The normal inverse Wishart prior is a convenient prior choice for (µc,Σc) due to its conjugacy with
the multivariate Gaussian distribution, facilitating Gibbs updates. It is parametrised with µ0, ν0, κ0, R0

(NIW (µ0, ν0, κ0, R0)), and is such that µc ∼ Normal(µ0, (1/ν0)Σc) and Σc ∼ InvWishart(R0, κ0), for each
c.

If the Normal inverse Wishart prior for parameters µ0, ν0, κ0, R0 (NIW (µ0, ν0, κ0, R0)) is chosen, then
f0(·) is the density of a multivariate Student distribution with mean µ0, covariance matrix Ψ = 1+ν0

(κ0−p+1)ν0
R0

and degree of freedom κ0 − p+1, denoted Tκ0−p+1(µ0,Ψ) with Yi ∈ Rp (Fraser and Haq, 1969). We use this

9



h
Speed

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5

0
5

10
15

Figure D.2: Histogram of galaxy velocity data.

widely used model for illustrative purposes but see Jing et al. (2022) for a warning on the use of these prior
distributions for highly dimensional data.

Thus we can write f̃l(Dn+1) as

f̃l(Dn+1) =
α

α+ n
Tκ0−p+1(µ0,Ψ)

+
1

α+ n

∑
Z∈Z

∑
c:nc(Z)>0

ncl(Z)f(Dn+1|{Di : Zi = c})p(Z|Dn).

In the same way, f(Dn+1|Z, {Di : Zi = c}) ∝
∫
f(Dn+1|Θc)p(Θc|Z, {Di : Zi = c})dΘc is the density of a p

multivariate Student distribution Tκ0+nc−p+1(µc,Σc), with

µc =
ν0

ν0 + nc
µ0 +

nc
ν0 + nc

ȳl (C.2)

Σc =
ν0 + nc + 1

(ν0 + nc)(κ0 + nc − p+ 1)
(R0 + Sc +

ν0nc
ν0 + nc

(µ0 − D̄l)(µ0 − D̄l)
′) (C.3)

Sc =
∑

i:Zi=c

(Di − D̄c)(Di − D̄c)
′. (C.4)

Appendix D. Application to velocity galaxy data

We consider the velocity galaxy dataset proposed by Roeder (1990) and largely used in the literature for
comparing different clustering methods. It contains the velocities of n = 82 galaxies from a redshift survey
in the Corona Borealis region (Fig. D.2). The distribution of the data appears clearly multimodal.

Escobar and West (1995) apply a DPMM to these data for density estimation. We use the same model
to illustrate our method. Observation Di for i = 1, . . . , n are modelled with the DPMM. Conditionally on

10



the partition, observations are supposed Normally distributed,

Di|Zi,Θ ∼ N (µZi
,ΣZi

)

with Θc = (µc,Σc). We chose of the conjugated normal inverse Gamma distribution (NIW (µ0, ν0, α, β)) as
baseline distribution. We use the hyperparameters as proposed by Escobar and West (1995), i.e. µ0 = 0,
ν0 = 0, 001, α = 2 and β = 1. For the illustration purposes, we fix α = 4. The model is fit with the
PReMiuM package (see below), with one run of 300,000 iterations of a Gibbs algorithm. The ‘consensus’
partition Z∗ is obtained applying PAM on the dissimilarity matrix.

The plot on the left hand side of Fig. 1 shows that each component f̃l is not Gaussian. Indeed, each
component is a mixture of the 2n marginal densities. This point suggests that mixture components derived
from a clustering using DPMM should not be thought of as the parametric component f(.|Θc) of the model.
Only if each data of cluster j has a posterior probability 1 to be sampled from this cluster, each component
corresponds to a cluster. The finite mixture model components f̃l are themselves a mixture of densities.
This phenomenon has been discussed by Baudry et al. (2010) and Hennig (2010). Clusters are supposed
to represent subpopulations, and the associated distribution is not necessarily Gaussian. As a consequence,
several mixture components can account for a single cluster. With this decomposition of the predictive
distribution, we show that using DPMM for clustering, implicitly results in multi-components clusters.

All the functions discussed in this paper are available in the R package PReMiuM, a package developed
by Liverani et al. (2015) for profile regression, a method that has a wide range of applications, such as spatial
modelling (Liverani et al., 2016; Lavigne et al., 2020) and epidemiology (Hastie et al., 2013; Molitor et al.,
2014; Pirani et al., 2015; Mattei et al., 2016; Coker et al., 2016, 2018; Liu et al., 2020; Liverani et al., 2021;
Ricciardi et al., 2022). The functions used to create the figures and plots in this paper are open source and
available on Github at https://github.com/silvialiverani/partitionuncertainty
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