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Abstract 34 

Background: Pericardial adipose tissue (PAT) is the visceral adipose tissue compartment 35 

surrounding the heart. Experimental and observational research has suggested that greater 36 

PAT deposition might mediate cardiovascular disease, independent of general or 37 

subcutaneous adiposity. We characterize the genetic architecture of adiposity-adjusted PAT 38 

and identify causal associations between PAT and adverse cardiac magnetic resonance 39 

imaging (CMR) measures of cardiac structure and function in 28,161 UK Biobank 40 

participants. 41 

 42 

Methods: The PAT phenotype was extracted from CMR images of using an automated image 43 

analysis tool previously developed and validated in this cohort. A genome wide association 44 

study was performed with PAT area set as the phenotype, adjusting for age, sex, and other 45 

measures of obesity. Functional mapping and Bayesian Colocalisation were used to 46 

understand biologic role of identified variants. Mendelian Randomization analysis was used 47 

to examine potential causal links between genetically-determined PAT and CMR-derived 48 

measured of left ventricular structure and function. 49 

Results: We discovered 12 genome-wide significant variants, with two independent sentinel 50 

variants (rs6428792, p= 4.20x10-8 and rs11992444, p= 1.30x10-12) at two distinct genomic 51 

loci, that were mapped to three potentially causal genes (TBX15, WARS2, EBF2) through 52 

functional annotation. Bayesian colocalization additionally suggested a role of RP4-712E4.1. 53 

Genetically-predicted differences in adiposity-adjusted PAT were causally associated with 54 

adverse left ventricular remodelling.  55 

Conclusion: This study provides insights into the genetic architecture determining differential 56 

PAT deposition, identifies causal links with left structural and functional parameters, and 57 

provides novel data regarding the pathophysiological importance of adiposity distribution. 58 

  59 



Clinical Perspective 60 

What is new?  61 

• This study identifies multiple distinct genetic loci associated with pericardial fat area, 62 

after accounting for multiple measures of whole-body adiposity 63 

• Mendelian randomization analyses identified an association of likely causal relevance 64 

of genetically-predicted pericardial fat with adverse cardiac structural and functional 65 

parameters 66 

What are the clinical implications? 67 

• In addition to being determined by whole-body adiposity this study suggests that the 68 

proportional deposition of pericardial adipose tissue is, to an extent, genetically 69 

determined 70 

• A greater genetically-predicted pericardial adipose tissue is linked with markers of 71 

adverse left cardiac structure and function, suggesting a role in determining adverse 72 

left ventricular remodelling 73 

 74 

  75 



Introduction 76 

Pericardial adipose tissue (PAT) is the visceral adipose tissue compartment surrounding the 77 

heart. Experimental research has suggested that a proportionally greater deposition of PAT 78 

might mediate risk of cardiovascular disease in addition to that conferred by general 79 

adiposity, through paracrine proinflammatory effects of the fat tissue on adjacent myocardium 80 

and coronary arteries1–4. In line with this, observational studies have reported associations 81 

between PAT and risk of coronary artery disease5, heart failure6 atrial fibrillation7,8, and 82 

adverse imaging markers of cardiac structure and function9,10 even after adjustment for 83 

multiple measures of general adiposity and its visceral and subcutaneous tissue distribution.  84 

Body fat distribution is a highly heritable trait, with twin-based estimates for body mass index 85 

(BMI)-adjusted waist:hip ratio (WHR) estimated between 30-60%11, and SNP-based 86 

heritability in the region of 20-50%12. So far, BMI-adjusted WHR13 has been the main focus 87 

of large-scale studies exploring genetic determinants of fat distribution. Consequently, the 88 

genetic architecture and disease consequences of this trait have been thoroughly explored14–17. 89 

On the other hand, current understanding of the genetic determinants of fat deposition 90 

specifically in the pericardial tissue, independent of general adiposity and its distribution, 91 

remains limited.  92 

At present, only two genome-wide association studies (GWAS) have evaluated genetic 93 

determinants of PAT in relation to whole-body adiposity18,19. The largest of these, carried out 94 

in 2017 by Chu et al, included 18,332 participants and discovered three genetic variants in 95 

distinct loci associated with PAT after height and weight adjustment: rs6587515 in ENSA, 96 

rs1650505 in EBF1, and rs10198628 in TRIB2. Genetic discovery in this field has been 97 

limited by the lack of large-scale data. We recently developed a fully automated, quality-98 

controlled tool for PAT quantification from cardiac magnetic resonance (CMR) images20, 99 

enabling extraction of PAT measurements in 42,598 participants in the UK Biobank, a large-100 

scale cohort study collecting clinical, genetic, imaging and laboratory data from participants 101 

throughout the United Kingdom.  102 



In this study, we employed UK Biobank data to investigate the genetic variants predisposing 103 

to deposition of PAT independent of other measures of total adiposity and its distribution. We 104 

additionally leverage these variants to assess the causal role of PAT on left ventricular 105 

structure and function.   106 



Methods 107 

Data access and availability  108 

This study was conducted using the UK Biobank under application 2964. The work is 109 

covered by ethical approval from the National Health Service (NHS) National Research 110 

Ethics Service on 17th June 2011 (Ref 11/NW/0382) and extended on 18 June 2021 (Ref 111 

21/NW/0157). Written, informed consent was obtained from all participants.  112 

The data produced from this study, including summary statistics, methods, and materials will 113 

be returned to the UK Biobank. These will become available to all bona fide researchers for 114 

the purpose of health-related research under approved applications, without preferential or 115 

exclusive access. Further details regarding application and access procedures are available at 116 

the UK Biobank website (http://www.ukbiobank.ac.uk/ register-apply/). 117 

Study population  118 

The UK Biobank is a population-based cohort study based in the United Kingdom. Over 119 

500,000 participants aged 40-69 years were recruited between 2006-2010, and underwent a 120 

baseline assessment and regular integration of health outcomes through healthcare record 121 

linkage. The detailed study protocol is publicly available21. The UK Biobank Imaging Study 122 

is an ongoing subset of the UK Biobank, aiming to perform multiorgan magnetic resonance 123 

imaging (MRI) of the heart, brain, and abdomen in a randomly selected 20% (n=100,000) 124 

subset of UK Biobank participants. 125 

Pericardial fat quantification  126 

CMR scans were performed using 1.5 Tesla scanners (MAGNETOM Aera, Syngo Platform 127 

VD13A, Siemens Healthcare, Erlangen, Germany) in specific imaging units. Scanning was 128 

performed according to pre-defined protocols22. PAT area was extracted from CMR 4-129 

chamber cine images in end-diastole using an automated tool that has been developed and 130 

validated in the UK Biobank and an external cohort20. This involves a neural network trained 131 

to perform fully automated PAT segmentation through a multi-residual U-net architecture. It 132 



includes an in-built quality-control feature, which uses Dice scores as a measure of 133 

segmentation quality that was used to select scans with good segmentation (Dice score >0.7). 134 

In the study population, PAT areas had a right-skewed distribution, and were therefore log-135 

transformed for linear modelling. 136 

Measures of adiposity 137 

A key aim of the study was to determine whether the relationship between PAT and 138 

cardiovascular phenotypes was distinct from other obesity measures. We considered 139 

anthropometric measures of obesity, impedance fat measures, and abdominal MRI derived 140 

measures of visceral and subcutaneous adiposity. BMI and WHR were calculated from UK 141 

Biobank body size measures. Bioelectrical impedance measures of obesity were derived using 142 

the Tanita BC418MA body composition analyzer as per UK Biobank protocols23. We 143 

included whole body fat mass and trunk fat mass impedance measures. From abdominal MRI 144 

(available for 15,518 participants), we selected abdominal subcutaneous, visceral adipose 145 

tissue, and total adipose tissue volume measures, which are only available for a subset of 146 

participants24. 147 

Genetic data and quality control 148 

Genotyping was performed in all consenting individuals. Genotypes were directly called 149 

using the two closely related arrays UK Biobank Axiom (Affymetrix, Santa Clara, California) 150 

and UK BiLEVE Axiom. Imputation was carried out using the Haplotype Reference 151 

Consortium and UK10K + 1000Genomes (Phase 3) reference panels. 152 

Genome-wide association study  153 

For genome-wide association analysis, participants were excluded if their genetic samples 154 

failed bioinformatic quality control (missing rate on autosomes of >0.2 or mismatch between 155 

reported and genetically inferred sex), if they were related (based on a kinship matrix with 156 

threshold K>0.175) by excluding one of the pair. The cohort was restricted to European 157 

ancestry. After exclusion criteria were applied, 28,161 participants were included. Among the 158 



available imputed and genotyped variants, we restricted the analysis to autosomal variants 159 

with a MAF>0.01 and imputation quality score (INFO sore) >0.3. This resulted in an 160 

approximate 9,283,970 million variants. Genome-wide association analysis was performed 161 

using PLINK25 and BOLT-LMM26.  162 

In the main model, we assessed the association between variants and PAT after adjusting for 163 

sex, age, age2, age*sex, 10 genetic principal components (PCs), assessment centre, genotype 164 

array, BMI, WHR, whole body fat mass, trunk fat mass and body fat percentage. In this 165 

analysis, principal component analysis (PCA) was applied to BMI, WHR, whole body fat 166 

mass, trunk fat mass and body fat percentage to explain at least 90% of the variance, which 167 

resulted in 2 PCs that explained 99% of the variance in the included phenotypes. These two 168 

PCs were included when GWAS was run instead of the BMI, WHR, whole body fat mass, 169 

trunk fat mass and body fat percentage. For this model the population was randomly split into 170 

set of 18,774 participants for discovery and a replication set of 9,387 participants for 171 

replication. This is the primary analysis of the study. 172 

For discovery analysis, the threshold for statistical significance was considered p<5x10-8 to 173 

account for multiple tests. Replication analyses were carried out for all genome-wide 174 

significant variant associations in the primary model. For replication analysis, the statistical 175 

significance threshold was calculated using Bonferroni correction based on the number of 176 

variants tested for validation (p<0.05/n; where n = number of lead variants to validate).  177 

To increase the power to detect significant signal using the whole sample, we additionally 178 

performed a meta-analysis GWAS by combining the GWAS summary statistics of the 179 

discovery and replication. The analysis was conducted using Metal tool27. 180 

We have also carried out a more relaxed GWAS without adjustment for different fat 181 

measures. The analysis was adjusted for sex, age, age2, age * sex, 10 genetic PCs, assessment 182 

center and genotype array. 183 

Functional annotation 184 



Functional mapping was carried out using Functional Mapping and Annotation of GWAS 185 

(FUMA) v1.5.028. Independent significant SNPs were defined as those associated with PAT 186 

in the primary discovery analysis model with p<5x10-8 that were correlated with r2<0.6. 187 

Additional candidate SNPs were identified by extracting SNPs in LD with these at r2>0.6 188 

using the 1000Genomes Phase 3 European reference panel29. Finally, lead SNPs were 189 

identified among the candidates as the uncorrelated (r2<0.1) SNPs with prioritization of those 190 

with lowest p-value for the association with PAT. For lead SNPs and any SNPs in LD with 191 

these at r2>0.8, all reported phenotypic associations were listed using GWASCatalog30.  192 

The functional consequences of the candidate SNPs on genes were determined using 193 

ANNOVAR31. Deleteriousness score was described using CADD scores (with score > 12.37 194 

considered likely deleterious)32, and SNPs were annotated for regulatory functions using 195 

RegulomeDB score33, for 15-core chromatin state using ChromHMM34,35, tissue-specific 196 

eQTLs36, and for 3D chromatin interactions using Hi-C data37.  197 

Gene mapping was performed using positional, eQTL and chromatin interactions mapping. 198 

First, genomic risk loci near independent significant SNPs were outlined using a maximum 199 

distance of 10kB. Within each risk locus, the SNP with the lowest p-value was defined as the 200 

lead SNP for the locus. Probability of loss of function intolerance was annotated using pLI 201 

scores for coding genes38, and with non-coding residual variation intolerance scores (ncRVIS) 202 

for non-coding genes39. MAGMA gene-based analysis was performed to assess the 203 

association between protein coding genes and PAT40. Since the input SNPs were mapped to 204 

19,086 protein coding genes, genome wide significance for this analysis was Bonferroni 205 

corrected at p-value = 0.05/19,086 = 2.620x10-6. Tissue-specific eQTL mapping was then 206 

performed using data from single cell RNA sequencing (scRNA)41 in immune cells, and 207 

Genotype-Tissue Expression (GTEx) Project v836 tissue-specific eQTL data for arterial, 208 

adipose and cardiac tissues. Finally, chromatin mapping was performed using tissue-specific 209 

chromatin interaction (Hi-C) data for the aorta, left ventricle and right ventricle37,42–44.  210 



To understand putative biological mechanisms behind mapped genes, gene to function 211 

mapping was performed within FUMA and GWASAtlas. GTEx v836 data was utilized to 212 

visualize normalized tissue specific expression patterns for each gene. Differentially 213 

expressed gene set (DEG) analyses were performed to test for differential expression of 214 

mapped genes across tissue types. Finally, phenome-wide associations were identified for all 215 

potentially causal genes using GWASAtlas45. Finally, the International Mouse Phenotyping 216 

Consortium (IMPC) database was searched for information regarding previous mouse models 217 

for potentially causal genes46.  218 

Colocalisation analysis 219 

To evaluate the probability that GWAS loci and expression quantitative trait loci (eQTLs) 220 

share a single causal variant, a colocalisation analysis was performed using coloc (v5.1.0.1) 221 

and colochelpR (version 0.99.1)47,48. Cis-eQTLs were derived from GTEx v836,49. GWAS loci 222 

within 1 Mb of the 11 significant GWAS SNPs were explored. Loci identified through 223 

chromatin mapping were not included as these were expected to have trans-associations. 224 

Associations were explored in seven GTEx tissues: aortic artery (N = 387), coronary artery 225 

(N = 213), tibial artery (N = 584), subcutaneous adipose (N = 581), visceral adipose (N = 226 

469), the cardiac atrial appendage (N = 372) and the cardiac left ventricle (N = 386). The 227 

prior probability that any random SNP in the region is associated with the GWAS (p1) or 228 

eQTL (p2), was set to the default 10-4, while the prior probability that any random SNP in the 229 

region is associated with both traits (p12) was set to 10-5. A posterior probability of hypothesis 230 

4 (PPH4) measures the probability that a locus is colocalised due to a single causal variant, as 231 

opposed to two distinct causal variants (PPH3). A PPH4 ≥ 0.8 was considered significant. All 232 

colocalizations were subjected to sensitivity analyses using coloc’s sensitivity() function, 233 

which plots prior and posterior probabilities of each coloc hypothesis as a function of the p12 234 

prior. This permits exploration of the robustness of results to changes in the p12 prior. Code 235 

for coloc analyses is openly available at 236 



https://github.com/aaronwagen/Pericardial_fat_gwas_coloc/. 237 

Heritability and genetic associations 238 

We used CTG-VL 0.5 beta (https://vl-dev.genoma.io/updates) to estimate trait heritability and  239 

calculate genetic correlation between PAT and multiple disease phenotypes. These included 240 

adiposity traits (trunk fat mass as percentage, whole body fat mass), cardiovascular risk 241 

factors (hypertension, diabetes, obesity), and cardiovascular outcomes (coronary heart 242 

disease, coronary event, heart failure, stroke, atrial fibrillation and flutter, and cardiac death). 243 

Mendelian randomization (MR) was performed to assess the causal relevance of PAT on 244 

multiple cardiovascular magnetic resonance (CMR) markers of left ventricular (LV) structure 245 

and function, motivated by the previously established observational evidence suggesting 246 

potential causal mechanisms9. Genome-wide significant (p<5x10-8), uncorrelated (r2<0.001) 247 

variants for PAT were selected as instrumental variants. Instrument strength was quantified 248 

using F-statistics. Gene-outcome association data was extracted from summary statistics of 249 

Pirruccello et al’s GWAS on 45,504 UK Biobank participants50 for indexed left ventricular 250 

end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), left 251 

ventricular stroke volume (LVSV), and left ventricular ejection fraction (LVEF). Additional 252 

gene-outcome association data was extracted from Aung et al’s GWAS on 16,923 253 

participants for left ventricular mass (LVM) and mass to end diastolic volume ratio 254 

(LVM:LVEDV)51. Inverse-variance weighted MR with fixed effects was utilized for primary 255 

analysis. Single-SNP analysis was performed using the Wald ratio method. Importantly, the 256 

data sources for both gene-exposure and gene-outcome association estimates in this case is 257 

the UK Biobank cohort. Though the MR methods utilized are considered ‘two-sample’ 258 

methods, they have been demonstrated to be robust for individual-level analysis when applied 259 

in the setting of large-scale biobanks52. All MR analyses were performed using the 260 

MendelianRandomization package (version 0.7.0) 53 in RStudio (R version 4.1.2)54. 261 



Results  262 

Genome-wide association study 263 

Genetic variants associated with pericardial fat independent of body mass index and other 264 

fat distribution measures 265 

We used previously validated, automated, and quality-controlled tool to extract measures of 266 

PAT area in 28,161 UKB participants, who were randomly split into a discovery set of 18,774 267 

participants, and a testing set of 9,387 participants.  268 

In the genome-wide association analysis in the discovery set, and after adjusting for sex, age,  269 

age2, age*sex, 10 genetic principal components (PCs), assessment centre, genotype array, and 270 

2 PCs reflecting BMI, WHR, whole body fat mass, trunk fat mass, body fat percentage, a total 271 

of 11 genome-wide significant variants were identified (rs11992444, rs6428792, rs10923752, 272 

rs10923748, rs6428794,  rs12036872, rs4304634, rs764891110, rs4659150, rs4659146, 273 

rs2885227) as reported in Supplementary Figure 1, Supplementary Table 1 and Table 1. 274 

The QQ plot for the results is presented in Supplementary Figure 2. Genomic inflation 275 

factor (lambda, λ) was 1.026, and λ1000 was 1.001.  276 

Among the discovered variants, one single variant was located on chromosome 8, rs11992444 277 

(p = 5.10x10-13) and ten variants were located on chromosome 1, among which the variant 278 

with lowest p-value was rs6428792 (p = 7.40x10-9). The association of all 11 genome-wide 279 

significant variants with PAT was replicated in the replication set at the Bonferroni-corrected 280 

p-value threshold (p<0.0045), as reported in Table 2.  281 

Functional annotation  282 

Functional annotation through positional, eQTL and chromatin interaction mapping identified 283 

a total of 10 potentially causal genes. A visual representation of the annotation process and 284 

key results are provided in Figure 1.  285 

Positional mapping 286 



In addition to the 11 GWAS-tagged variants, one additional closely correlated variant 287 

(rs72707349) was extracted using the 1000 genomes reference panel. Among the 12 288 

candidate SNPs, two lead variants were identified (r2<0.1): rs6428792 and rs11992444, in 289 

two separate genetic loci (Supp Tables 1-3). All previously reported phenotypic associations 290 

for these two SNPs and SNPs in close LD with these (r2>0.8) are reported in Supp Table 4, 291 

these included multiple BMI-adjusted adiposity traits, body shape indices, and lipid traits.  292 

Among the 12 candidate variants, the 11 variants on Chromosome 1 were intronic (of which 293 

one in non-coding RNA), and the variant on Chromosome 8 was intergenic (Supp Table 5). 294 

RegulomeDB score for both variants was 7, indicating a lack of evidence regarding potential 295 

regulatory functions. The minimum 15-core chromatin state was 5 for rs6428792, indicating 296 

weak transcription function, and 7 for rs11992444, indicating enhancer chromatin state. 297 

Positional mapping prioritized three genes: WARS2 (protein coding), RPS3AP12 298 

(pseudogenic) and RP11-418J17.1 (antisense), all mapped to the Chromosome 1 locus (Supp 299 

Table 6). Among these, WARS2 had the highest maximum SNP CADD score of 10.56; and 300 

the remaining two had low risk of deleteriousness (CADD 6.85 for RPS3AP12, and CADD 301 

3.06 for RP11-418J17.1). The nearest genes for the chromosome 8 risk locus were CDCA2 302 

and RP11-219J21.1, though these were distant, respectively 99,254 and 78,624 bases from 303 

the risk locus (Supp Table 5).  304 

eQTL mapping 305 

eQTL mapping consistently prioritized WARS2 (protein coding, expressed in adipose, arterial, 306 

and cardiac tissues) and RP11-418J17.1 (antisense, expressed in adipose, arterial, and cardiac 307 

tissues); but additionally identified regulatory functions of the candidate variants on TBX15 308 

(protein coding, expressed in adipose tissues), and RP4-712E4.1 (lincRNA, expressed in 309 

adipose and arterial tissue) (Supp Table 6, Supp Table 7). No Chromosome 8 genes were 310 

mapped using eQTLs. The locus plots, positional mapping and corresponding eQTLs for 311 

Chromosome 1 variants are summarized in Figure 2. Notably, the TBX15 gene was also 312 



highlighted as the most strongly associated protein-coding gene with adjusted PAT in 313 

MAGMA genome-wide analysis (Supplementary Figure 3). 314 

Chromatin interaction mapping 315 

Finally, 11 chromatin interaction regions were identified (Supp Table 8) mapping to 5 316 

distinct genes (Supp Table 6). These are depicted in Figure 3 and Figure 4. Using chromatin 317 

interaction mapping, a total of 3 genes were mapped in Chromosome 8: EBF2, AC090103.1 318 

and SDAD1P1. Among these, the protein coding EBF2 gene appeared highly intolerant to 319 

loss of function (pLI 0.97).  320 

Colocalisation analysis 321 

Colocalisation analysis was performed to explore whether risk variants for PAT were 322 

associated with gene expression in adipose, arterial and cardiac tissues. Utilising cis-eQTLs 323 

from GTEx v8, associations were explored within 1 Mb of significant GWAS SNPs. In the 324 

discovery GWAS, evidence for colocalisation was found in the RP4-712E4.1 locus in 325 

subcutaneous adipose tissue (PPH4 = 0.93) and tibial artery (PPH4 = 0.96, Supp Table 9, 326 

Supplementary Figure 4, 5). For SNPs in the region surrounding RP4-712E4.1, PAT risk 327 

and RP4-712E4.1 tended to correlate, suggesting that increased PAT risk is associated with 328 

increased RP4-712E4.1 expression (Supplementary Figure 4-D, 5-D). These results were 329 

not duplicated in the replication dataset. Sensitivity analysis confirmed that these 330 

colocalisations were robust to changes in the prior probability of a variant associating with 331 

both traits (i.e., p12 prior, Supplementary Figure 6). An additional locus of high PPH4 was 332 

found between the gene CDCA2 in the left ventricle, in both discovery and replication 333 

datasets, although these were driven by a single SNP (Supplementary Figure 7).  Multiple 334 

associations were found for loci where SNPs independently associated with PAT risk and 335 

gene expression in a region, including the DOCK5 locus using the tibial artery eQTL (PPH3 = 336 

0.93 in discovery and replication datasets), and in the WARS2 and RP11-418J17.1 loci in all 337 

seven tissues tested (PPH3 ≥ 0.99 throughout the discovery GWAS, Supp Table 9).  338 



Gene to function 339 

To understand putative biological mechanisms behind the potentially causal genes (TBX15, 340 

WARS2, EBF2), gene to function mapping was performed within FUMA. A visual 341 

representation of normalized gene expression across tissue types is depicted in 342 

Supplementary Figure 8, highlighting elevated expression of EBF2 and TBX15 in adipose 343 

tissue; with only EBF2 specifically expressed in visceral omental adipose tissue. 344 

Differentially expressed gene set (DEG) analyses did not identify any statistically significant 345 

differences in gene expression across tissue types (Supp Table 10). The gene-set enrichment 346 

and pathway analyses did not yield any significant results. 347 

A phenome-wide association study was performed for protein-coding potentially causal 348 

genes. The two prioritized genes on Chromosome 1, TBX15 and WARS2, were associated 349 

with similar phenotypes, including male pattern baldness, white blood cells, measures of 350 

overall adiposity and its distribution, bone mineral density and height (Supplementary 351 

Figure 9, Supp Table 11). The prioritized Chromosome 8 gene, EBF2, was associated with 352 

traits relating to adiposity and its distribution and height, but was also associated with blood 353 

pressure traits. An association was also noted with inguinal hernias. The results are presented 354 

in Supplementary Figure 10 and Supp Table 11. In mice, homozygous loss of function in 355 

both EBF2 and WARS2 have been associated with embryonic lethality, whereas heterozygous 356 

loss of function mutations in EBF2 have been associated with a variety of cardiac, spleen, 357 

vascular and other malformations. The full list of mouse phenotypes is reported in Supp 358 

Table 12. 359 

 360 

Heritability and phenotypic associations  361 

Heritability and genetic correlations 362 

The genome-wide heritability (h2
g SNP) of adiposity-adjusted PAT was estimated at 9.15% 363 

(standard error 2.49%). The genetic correlations of adjusted PAT are displayed in Supp 364 



Table 13. There was no significant correlation with adiposity measures; which is expected 365 

given the adjustment for these measures in the GWAS analysis. A nominally significant 366 

correlation was noted between adjusted PAT and heart failure (rG=0.36, se=0.18, p=0.048). 367 

No further correlations were discovered with other cardiovascular outcomes, and no 368 

associations were significant after accounting for multiple testing.  369 

Mendelian randomization 370 

The instrumental variants extracted for Mendelian randomization (MR) analyses 371 

corresponded with the two prioritized lead variants at the two risk loci. F-statistics were 34.5 372 

for rs6428792, and 50.3 for rs11992444, indicating adequate instrument strength.  373 

Higher genetically-predicted adjusted PAT was associated with lower LVEDV (β -1.04, 374 

95%CI -1.88 to -0.19, p=0.016) and LVESV (β -0.91, 95%CI -1.74 to -0.08, p=0.032).  There 375 

was no significant association between genetically-predicted PAT and LVSV (β -0.72, 376 

95%CI -1.73 to 0.07, p=0.072), LVEF (β 0.23, 95%CI -0.64 to 1.11, p=0.602) and 377 

LVM/LVEDV Ratio (β 1.14, 95%CI -0.28 to 2.55, p=0.115).  378 

The results of the MR analyses are summarized in Figure 5 and Supp Table 14. Single SNP 379 

analysis revealed consistency in effect estimate directions with the main analysis and between 380 

both instrumental variants, as depicted in Figure 6.  381 

Sensitivity analyses 382 

The meta-analysis GWAS resulted in 185 SNPs that passed the GWAS p-value threshold (5 × 383 

10−8) mostly in chromosome 1 and 2 and one in chromosome 8 (Table 3). The leading SNPs 384 

are rs6428792 (Chr 1), rs1430788 (Chr 2) and rs1199244 (Chr 8) that are matching the 385 

GWAS summary of discovery and replication. rs1430788 (Chr 2) was neither significant in 386 

the discovery nor in the replication GWAS while it is among the leading SNPs in the meta 387 

analysis. 388 

The results of the more relaxed GWAS (without adjustment for fat measures) are presented in 389 

Supp Table 15. rs11992444 (Chr 8) SNP that was replicated in the adjusted model and in the 390 



meta analysis was also significant in the relaxed GWAS. In addition, the rs143078898 (Chr 2) 391 

SNP that was significant in the meta analysis GWAS was also significant in the relaxed 392 

GWAS analysis.  393 

Discussion 394 

This study is the largest individual-level GWAS to date exploring the polygenic basis and 395 

genetic architecture of PAT. To add to previous literature, we specifically aimed to 396 

disentangle PAT from multiple other biometric measures of total adiposity and its 397 

distribution, in order to isolate specific determinants of preferential fat deposition in the 398 

pericardial compartment. This strategy yielded a total of 11 genome-wide significant variants, 399 

with two lead uncorrelated SNPs relating to two genomic risk loci. These were mapped to ten 400 

potentially causal genes using positional, eQTL and chromatin interaction mapping. Among 401 

these, three protein coding genes were identified: TBX15, WARS2, and EBF2. For the latter 402 

two genes, enrichment analyses determined significant tissue-specific eQTLs and chromatin 403 

interactions in both adipose and cardiac tissue, supporting an overlapping physiology in these 404 

tissue types. Importantly, we also found that the proportion of phenotypic variance explained 405 

by the genotype was 9.1%, indicating a relatively high genetic determination of 406 

proportionally greater PAT deposition.  407 

To date, only two genome-wide association studies18,19 have been performed exploring the 408 

polygenic basis of PAT. Fox et al48 explored the genetic determinants of PAT adjusted for 409 

visceral fat volume, WHR and BMI in 5,487 participants of the Framingham Heart Study, 410 

uncovering one single genome-wide significant variant at one locus (rs10198628 mapped to 411 

the TRIB2 gene). In our relaxed GWAS, this SNP was only nominally associated with PAT 412 

(p-value = 0.029). The result was similar in the main GWAS analysis adjusted for fat 413 

measures (p-value= 0.037) and in the meta-analysis. (p-value= 0.012). Chu et al18 explored 414 

the genetic determinants of PAT, adjusted for height and weight only, in a cohort of 18,332 415 

participants that included individuals in Fox et al’s study. Three genome-wide significant 416 

variants were identified (rs6587515 mapped to the ENSA gene, rs1650505 mapped to the 417 



EBF1 gene, and rs10198628 mapped to the TRIB2 gene). Among them, one was replicated 418 

from Fox et al’s study (rs10198628 (Chr 2)). In our ‘relaxed’ GWAS, rs6689335 was 419 

(p=0.320), rs6587515 was (p=0.220), and rs10198628 was (p=0.015). In the main GWAS 420 

analysis with adjustment for fat measures, rs6689335 was not associated with PAT (p=0.900) 421 

and neither was rs6587515 (p=0.150), whereas rs10198628 was (p=0.160). In the meta-422 

analysis, rs6689335 (p=0.657) and rs6587515 (p=0.383) were not associated with PAT while 423 

rs10198628 (p=0.011) was nominally significant but did not pass GWAS threshold. This 424 

discrepancy is likely to relate to the lack of sample overlap, and more comprehensive 425 

adjustment for measures of total and relative adipose tissue distribution. Importantly, in our 426 

present study a replication analysis was carried out in an independent subset of UK Biobank 427 

participants that were excluded from the discovery analysis. This replicated all the genome-428 

wide significant signals at Bonferroni-adjusted p-value, increasing confidence in the validity 429 

of the results.  430 

Among the genome-wide significant variants discovered, ten of the eleven were located in a 431 

single genomic risk locus on Chromosome 1. Among these, one single lead variant was 432 

retained (rs6428792). Positional mapping identified three potential causal genes, eQTL 433 

mapping identified four potential causal genes (two overlapping) and chromatin interaction 434 

using Hi-C data from the left ventricle identified two further potential causal genes. 435 

Colocalisation analysis suggested that, for all the genes in the implicated region in 436 

chromosome 1, risk of PAT in both subcutaneous adipose and tibial arterial regions were 437 

associated with increase gene expression of RP4-712E4.1, a long non-coding RNA, at this 438 

locus. For the Chromosome 8 variant (rs11992444), positional and eQTL mapping did not 439 

identify any genes, and the colocalisation analysis was inconclusive. However, chromatin 440 

interaction mapping using Hi-C data from the left ventricle identified three potentially causal 441 

genes. Overall, among the identified potentially causal genes at both loci, five had been 442 

previously associated with BMI-adjusted adiposity distribution traits (TBX15, WARS2, EBF2, 443 



PSMC1P12, RNA5SP56), and one gene, SDAD1P1, has been previously associated with red 444 

cell distribution width. The remaining four genes had no previously reported associations.   445 

The potentially causal protein-coding genes have been implicated in a variety of physiological 446 

pathways. EBF2 is known to play a key role in activating the expression of brown fat-447 

selective genes in adipocytes55. WARS2 encodes a cytoplasmic form of tryptophanyl-tRNA 448 

synthetase, which has been shown to play a central role in angiogenesis, including cardiac 449 

angiogenesis56. In mouse models, reduction of WARS2 gene function was shown to lead to 450 

reduced food intake and depot-specific changes in fat mass and brown fat distribution57. 451 

Similarly, TBX15 activation has been implicated in the preferential distribution of abdominal 452 

adiposity58 as well as in andergenic-induced adipocyte browning59. Generally, white adipose 453 

tissue is considered predominantly an inactive energy storage, whereas brown adipose tissue 454 

contains a higher concentration of mitochondria and expresses uncoupling protein 1 (UCP1), 455 

a protein that enables its metabolic utilization and thermogenesis60. PAT is considered 456 

predominantly a white adipose tissue depot, though it is known to have higher expression of 457 

UCP1 compared to white adipose tissue in the rest of the body. The results of our study and 458 

functional annotation suggest that a reduced propensity toward fat browning likely 459 

contributes to higher proportional PAT deposition. Indeed, both lead variants in this study 460 

were inversely associated with PAT, and unaligned eQTL mapping displayed a 461 

predominantly inhibitory role of the unaligned variants on WARS2, but an enhancing role on 462 

TBX15. Thus, aligning the variants towards greater PAT would suggest an enhancing role on 463 

WARS2, and an inhibitory action on TBX15, both of which are consistent with a phenotype of 464 

inhibited adipose tissue browning. This is mechanistically consistent with previous 465 

observational work outlining an inverse association between brown adipose tissue and 466 

visceral adiposity deposition61.  467 

To relate the genetic data with potential biological consequences of PAT, we examined 468 

genetic correlation analyses and performed MR. A genetic correlation was observed between 469 

adjusted PAT and HF, consistent with previous evidence linking PAT with heart failure6 and 470 



adverse cardiac structure and function independent of overall adiposity9. Building on this 471 

observational data, we performed MR analyses to elucidate the potential causal relevance of 472 

PAT on cardiac structure and function. This revealed an association of higher PAT with lower 473 

LVEDV, LVESV, and a suggestive result for lower LVSV. This is broadly reflective of a 474 

reduction in ventricular chamber volume, consistent with remodeling patterns seen in ageing62 475 

and in heart failure with a preserved ejection fraction (HFpEF)63. Beyond the reduction in left 476 

ventricular volumes and stroke volume, the ageing HFpEF phenotype is characterized by 477 

lower LV mass due to cardiomyocyte attrition63,64, typically occurring to a lesser proportion to 478 

the reduction in volumes, leading to an increased LVM/LVEDV ratio reflecting greater 479 

concentricity63. In this phenotype, LVEF would be expected to remain similar, or 480 

paradoxically increase with the rise in concentricity65. Though not all these associations were 481 

statistically significant, the directionality of MR results is consistent with remodeling in a 482 

HFpEF cardiac phenotype. This is consistent with the cardiac remodeling pattern that has 483 

previously been associated with PAT in observational studies66–68. 484 

We acknowledge some limitations. Despite being the largest currently available GWAS of 485 

PAT, the number of loci discovered remains small. Additionally, due to the restricted sample 486 

size, analysis was restricted to variants with MAF>1%. Incorporation of rare variants in 487 

further analyses when larger sample sizes are available might enhance genetic discovery. 488 

Finally, the UK Biobank population was restricted to European ancestry, therefore further 489 

research is warranted in populations of other ancestries.  490 

In summary, the results of this study enhance the current knowledge regarding the genetic 491 

basis of preferential PAT deposition, prioritized a number of potentially causal genes that 492 

might exert influence through modulation of adipose tissue browning, and provide genetic 493 

evidence to support causal relevance of PAT on cardiac structure and function that might 494 

contribute to heart failure risk.   495 
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Figure Legends 784 

Figure 1 – Methods and key results of functional annotation of genome-wide significant 785 

variants, and exploration of functional consequences of prioritised variants and genes.  786 

Figure 2 – Regional plot of the Chromosome 1 locus. Genes prioritized by FUMA are 787 

highlighted in red, and genome-wide significant SNPs are coloured based on r2. From the top; 788 

genome-wide significance p-value, CADD score and eQTL P-value. eQTLs are plotted for 789 

each gene and are colored based on tissue types.  790 

Figure 3 – Chromatin interactions and eQTLs of PAT risk loci on Chr1. The outer layer 791 

displays GWAS p-values, with the lead SNP labelled. Genes mapped by either eQTLs or 792 

chromatin interactions are displayed in the innermost circle. Genes mapped by chromatin 793 

interactions are displayed in orange, eQTLs in green, and those mapped by both red. Orange 794 

links display chromatin interactions, green links display eQTLs.  795 

Figure 4 – Chromatin interactions and eQTLs of PAT risk loci on Chr8. The outer layer 796 

displays GWAS p-values, with the lead SNP labelled. Genes mapped by either eQTLs or 797 

chromatin interactions are displayed in the innermost circle. Genes mapped by chromatin 798 

interactions are displayed in orange, eQTLs in green, and those mapped by both red. Orange 799 

links display chromatin interactions, green links display eQTLs.  800 

Figure 5 – Inverse-variance weighted Mendelian randomization analysis exploring the 801 

association between pericardial fat area (PAT) and left ventricular end diastolic volume 802 

(LVEDV), end systolic volume (LVESV), ejection fraction (LVEF), mass (LVM) and mass 803 

to end diastolic volume ratio (LVM:LVEDV).  804 

Figure 6 – Single-SNP Mendelian randomization analysis (Wald ratio method) exploring the 805 

association between pericardial fat area (PAT) through rs6428792 and rs11992444; and left 806 

ventricular end diastolic volume (LVEDV), end systolic volume (LVESV), ejection fraction 807 

(LVEF), mass (LVM) and mass to end diastolic volume ratio (LVM:LVEDV).  808 



Supplementary Figure 1 – Genome-wide significant variants for pericardial fat area after 809 

adjusting for sex, age, age2, age*sex, 10 genetic principal components (PCs), assessment 810 

centre, genotype array, and 2 PCs reflecting BMI, WHR, whole body fat mass, trunk fat mass, 811 

body fat percentage. The dashed line represents the genome-wide significance threshold, 812 

p<5x10-8. 813 

Supplementary Figure 2 – Q-Q plot of for association of genetic variants with pericardial fat 814 

area after adjusting for sex, age, age2, age*sex, 10 genetic principal components (PCs), 815 

assessment centre, genotype array, and 2 PCs reflecting BMI, WHR, whole body fat mass, 816 

trunk fat mass, body fat percentage. The dashed line represents the null hypothesis.  817 

Supplementary Figure 3 – Manhattan plot of the MAGMA gene-based test. The red line 818 

represents genome wide significance. With the inclusion of 19,086 protein coding genes, this 819 

was defined at P = 0.05/19086 = 2.62x10-6 820 

Supplementary Figure 4 – Results from colocalisation analysis of RP4-712E4.1 in 821 

subcetaneous adipose tissue. A and C show regional association plots for Regional 822 

association plots for GWAS and eQTL respectively, with chromosome position as mapped in 823 

GRCh38. Comparison of betas (B), and p-values (D) from eQTLs and GWAS are shown, 824 

with overlay of Pearson’s correlation) 825 

Supplementary Figure 5 – Results from colocalisation analysis of RP4-712E4.1 in tibial 826 

artery. A and C show regional association plots for regional association plots for GWAS and 827 

eQTL respectively, with chromosome position as mapped in GRCh38. Comparison of betas 828 

(B), and p-values (D) from eQTLs and GWAS are shown, with overlay of Pearson’s 829 

correlation). 830 

Supplementary Figure 6. Results of sensitivity analysis showing prior and posterior 831 

probability distributions as a function of the p12 prior for: A – RP4-712E4.1 in subcutaneous 832 

adipose tissue; B – RP4-712E4.1 in tibial artery; and C – CDCA2 in the left ventricle. 833 

 834 



Supplementary Figure 7. Results from colocalisation analysis of CDCA2 in the left 835 

ventricle. A and C show regional association plots for regional association plots for GWAS 836 

and eQTL respectively, with chromosome position as mapped in GRCh38. Comparison of 837 

betas (B), and p-values (D) from eQTLs and GWAS are shown, with overlay of Pearson’s 838 

correlation). Results are driven by a single SNP and are therefore less likely to be a true 839 

colocalisation. 840 

Supplementary Figure 8 – Average normalised expression of all mapped genes in 54 tissue 841 

types extracted from GTEx v8. Red indicates higher gene expression, normalised per gene. 842 

Supplementary Figure 9 – Phenome-wide associations for TBX15 and WARS2 gene among 843 

currently available studies on GWASAtlas. Coloring corresponds to phenotype cluster, 844 

summarized in labels on the right. Only associations with a minimum p-value of 0.05 are 845 

displayed. 846 

Supplementary Figure 10 – Phenome-wide associations for EBF2 gene among currently 847 

available studies on GWASAtlas. Coloring corresponds to phenotype cluster, summarized in 848 

labels on the right. Only associations with a minimum p-value of 0.05 are displayed.  849 
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 859 



Tables 860 

Table 1 – Genome-wide significant variants. Genome-wide analysis identified 11 sentinel variants that were genome-wide significant (P<5x10-8). The table 861 

displays beta coefficients with standard errors, and p-value estimates. Allele 1 is the effect allele.  862 

SNP Chrom Pos Allele 
1 

Allele 0 Allele 1 
Frequency 

Missing rate Beta Std error p-value 

rs11992444 8 25464690 G T 0.490 0.003 -0.012 0.002 1.30E-12 

rs6428792 1 119656867 G A 0.380 0.006 -0.010 0.002 4.20E-09 

rs10923752 1 119658925 G A 0.341 0.007 0.010 0.002 1.40E-08 

rs10923748 1 119647946 G C 0.341 0.007 0.010 0.002 1.60E-08 

rs6428794 1 119657743 A T 0.341 0.007 0.010 0.002 1.60E-08 

rs12036872 1 119660505 C G 0.341 0.007 0.010 0.002 1.60E-08 

rs4304634 1 119650931 T A 0.340 0.009 0.010 0.002 1.80E-08 

rs764891110 1 119651167 T TTATGA 0.341 0.010 0.010 0.002 1.80E-08 



rs4659150 1 119660819 T G 0.340 0.008 0.010 0.002 1.90E-08 

rs4659146 1 119645535 T C 0.342 0.009 0.010 0.002 2.10E-08 

rs2885227 1 119650928 C A 0.340 0.009 0.010 0.002 2.00E-08 

 863 

Table 2 – Replication of association between genome-wide significant variants and adjusted pericardial fat area (PAT) in the testing set. All variants passed 864 

replication at Bonferroni-adjusted statistical significance threshold (P<4.5x10-3).  865 

 SNP  Chrom  Pos  Allele 1  Allele 0  Allele 1 

Frequency 

Missing rate  Beta  Std error  p-value  

rs11992444  8  25464690  G  T  0.489 0.002 -0.015 0.002 5.00E-11  

rs6428792  1  119656867  G  A  0.380 0.007 -0.008 0.002 0.00078  

rs10923752  1  119658925  G  A  0.339 0.008 0.007 0.002 0.0028  

rs10923748  1  119647946  G  C  0.339 0.008 0.007 0.002 0.0026  

rs6428794  1  119657743  A  T  0.339 0.008 0.007 0.002 0.0027  

rs12036872  1  119660505  C  G  0.339 0.008 0.007 0.002 0.0027  

rs4304634  1  119650931  T  A  0.338 0.009 0.007 0.002 0.0026  

rs764891110  1  119651167  T  TTATGA  0.339 0.011 0.007 0.002 0.0025  



rs4659150  1  119660819  T  G  0.338 0.008 0.007 0.002 0.0026  

rs4659146  1  119645535  T  C  0.339 0.010 0.007 0.002 0.0021  

rs2885227  1  119650928  C  A  0.338 0.009 0.007 0.002 0.0025 

 866 
 867 
 868 
Table 3 – Meta-analysis GWAS summary statistics for the lead SNPs using the Metal tool. 869 
 870 
 871 
SNP CHR BP Allele1 Allele2 Effect StdErr P-value Direction 
rs6428792 1 119656867 A G -0.0092 0.0014 1.67E-11 -- 
rs143078898 2 229994086 T C -0.0133 0.0023 1.53E-08 --
rs11992444 8 25464690 T G -0.0127 0.0013 8.77E-22 --



Supplemental tables Legends 

Supplementary Table 1 – Candidate SNPs, defined as all genome-wide significant SNPs 

associated with adjusted PAT (p<5x10-8) and additional highly correlated SNPs identified via 

1000G Phase 3 data.  

Supplementary Table 2 – Genomic risk loci of interest, respective lead SNPs and 

independent significant SNPs in the locus.  

Supplementary Table 3 – Lead SNPs identified from genome-wide SNPs at r2<0.1. 

Genomic locus: the index of genomic risk loci specified in Supp Tab 3. #Ind. Sig. SNPs: 

Independent significant SNPs which are in LD with the corresponding lead SNPs at r2<0.1 

Supplementary Table 4 – Phenotypic associations for lead SNPs and additional closely 

correlated SNPs (r2>0.8) available in GWASCatalog 

Supplementary Table 5 – Variant annotation for all candidate SNPs using ANNOVAR.  

Supplementary Table 6 – Genes prioritized using positional mapping, eQTL mapping 

(immune cells, arterial, adipose and cardiac tissue types) and chromatin interaction (aorta, 

right ventricle, left ventricle) mapping.  

Supplementary Table 7 –Tissue-specific eQTLs discovered in adipose, heart and arterial 

tissue for genomic risk loci (FDR<0.05).   

Supplementary Table 8 – Significant chromatin interactions (Hi-C) within aorta, left 

ventricle and right ventricle discovered for genomic risk loci (FDR<0.05). 

Supplementary Table 9 – Results for colocalisation analysis. Table shows results for all 

genes within 1Mb of a significant GWAS hit, tested with expression quatitative trait loci from 

GTEx8. PPH4 > 0.8 suggests colocalisation of GWAS risk and gene expression. 

Abbreviations: nsnps – number of snps tested at a locus; PP.H0-4.abf – posterior probability 

of hypothesis 0-4 respectively; sum_PPH3_PPH4 - sum of posterior hypotheses 3 and 4; 

ratio_PPH4_PPH3 – ratio of posterior hypothesis 4 to posterior hypothesis 3. 



Supplementary Table 10 – Differential gene expression analysis (DEG) comparing 

expression of candidate genes in each tissue type, versus all other tissue types.   

Supplementary Table 11– Phenome-wide associations for EBF2, TBX15 and WARS2 gene 

among currently available studies on GWASAtlas. 

Supplementary Table 12 – List of prior associations for loss-of-function in potential causal 

genes with phenotypes in mouse studies, sources using International Mouse Phenotyping 

Consortium (IMPC) data.  

Supplementary Table 13 – Genetic correlations between PAT and adiposity traits (trunk fat 

mass ad percentage, whole body fat mass), cardiovascular risk factors (hypertension, diabetes, 

obesity), and cardiovascular outcomes (coronary heart disease, coronary event, heart failure, 

stroke, atrial fibrillation and flutter, and cardiac death).  

Supplementary Table 14 – Mendelian randomization analysis exploring the association 

between genetically-predicted pericardial fat area (PAT), overall and in single-SNP analysis, 

and left ventricular end diastolic volume (LVEDV), end systolic volume (LVESV), stroke 

volume (LVSV), ejection fraction (LVEF), mass (LVM) and mass to end diastolic volume 

ratio (LVM/LVEDV Ratio).  

Supplementary Table 15 – Genome-wide significant variants without adjustment for fat 

measures. The table displays beta coefficients with standard errors, and p-value estimates. 

Allele 1 is the effect allele. 



Genome-wide association study results 
Age, sex, BMI, WHR, whole body fat mass, trunk fat mass and body fat percentage-adjusted pericardial fat area

Functional mapping

Characterizing genomic loci
1. Independent significant SNPs + candidates in LD
2. Definition of genomic loci
3. Definition of lead SNPs

Annotating candidate SNPs
1. Functional consequences on genes (ANNOVAR)
2. Genome-wide gene-based analysis (MAGMA)
3. Deleteriousness (CADD) 
4. Regulatory functions (RegulomeDB)
5. 15-core chromatin state
6. eQTL (GTEx V8) 
7. Previous phenotypic associations (GWASCatalog)

Gene mapping
1. Positional mapping
2. eQTL mapping (adipose, cardiac, arterial tissues)
3. Chromatin interaction mapping (aortic, left and right 

ventricular tissues)

Gene to function
1. Normalized gene expression heatmap
2. Tissue specificity (DEG analysis)
3. Phenome-wide association study (OpenGWAS)
4. Previous mouse model associations (IPMC)
5. Mendelian randomization for causal relevance on cardiac structure and function

Characterizing genomic loci
3 independent significant SNPs (p<5x10-8, r2<0.6)
2 risk loci (Chr1:119645535-119742942, Chr8:25464690)
2 lead SNPs (rs6428792 and rs11992444, at r2<0.1)

Gene mapping

eQTL

Chromatin
Positional

EBF2
AC090103.1
SDAD1P1
RNA5SP56
PSMC1P12TBX15

RP4-712E4.1

WARS2
RP11-418J17.1

RPS3AP12

Bold = previously 
associated with BMI-
adjusted adiposity 
distribution traits









Pericardial fat area

LVEDV

LVESV

LVSV

LVEF

LV Mass

LVM/LVEDV Ratio

Beta coefficient (95% CI)
     p value

−1.04 (−1.88 to −0.19)
p=0.016

−0.91 (−1.74 to −0.08)
p=0.032

−0.83 (−1.73 to  0.07)
p=0.072

 0.23 (−0.64 to  1.11)
p=0.602

−0.88 (−2.32 to  0.56)
p=0.232

 1.14 (−0.28 to  2.55)
p=0.115

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
Beta coefficient, 95% confidence interval



rs11992444

LVEDV

LVESV

LVSV

LVEF

LV Mass

LVM/LVEDV Ratio

Beta coefficient (95% CI)
     p value

−0.96 (−2.05 to  0.14)
p=0.089

−0.63 (−1.71 to  0.45)
p=0.253

−0.87 (−2.04 to  0.30)
p=0.144

−0.02 (−1.16 to  1.13)
p=0.979

−1.50 (−3.35 to  0.35)
p=0.112

 1.06 (−0.79 to  2.91)
p=0.261

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
Beta coefficient, 95% confidence interval

rs6428792

LVEDV

LVESV

LVSV

LVEF

LV Mass

LVM/LVEDV Ratio

Beta coefficient (95% CI)
     p value

−1.15 (−2.47 to  0.17)
p=0.087

−1.32 (−2.62 to −0.02)
p=0.047

−0.76 (−2.17 to  0.65)
p=0.290

 0.59 (−0.78 to  1.97)
p=0.397

 0.00 (−2.20 to  2.19)
p=0.997

 1.25 (−0.95 to  3.45)
p=0.267

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
Beta coefficient, 95% confidence interval
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