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Abstract Using the generalized method of steepest descents for the case of two
coalescing saddle points, we derive an asymptotic expression for the bivariate
generating function of Dyck paths, weighted according to their length and their
area in the limit of the area generating variable tending towards 1. The result
is valid uniformly for a range of the length generating variable, including the
tricritical point of the model.

1. Introduction

A Dyck path is a trajectory of a directed random walk on the two-dimensional
square lattice above the diagonal y = x, starting at the origin and ending on
this diagonal. More precisely, the random walk starts at the point (0, 0) and,
from any given point (x, y), the random walker can only step towards (x+ 1, y)
and (x, y + 1). Steps from (x, y) to (x − 1, y) or to (x, y − 1) are forbidden.
Furthermore, each point on the trajectory (x, y) must satisfy x ≤ y, which
means that the random walker always stays above the main diagonal x = y,
and its final position (x, y) must be on the main diagonal. Figure 1 shows an
example of a Dyck path as it is usually drawn, with the lattice oriented such that
the main diagonal lies horizontally in the image. As a possible physical system
which can be described by Dyck paths, one can think of two-dimensional vesicles
attached to a surface [13], or of discrete trajectories of charged particles moving
in an external magnetic field [12].
Since we will only deal with Dyck paths in the following, we will refer to them
simply as “paths”.

The length of a path is the number of steps it consists of. Since the number
of horizontal steps must equal the number of vertical steps, it follows that the
length of a path is always even. Further, the area of a path is the number of
entire unit squares enclosed between the trajectory and the main diagonal. For
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Figure 1. A Dyck path of area m = 10 and length n = 18. The shaded squares have unit
area. The white triangles on the bottom do not contribute to the area.

example, the path in Figure 1 has length n = 18 and area m = 10 (occasionally
an alternative definition of the area under a path as the number of triangular
plaquettes enclosed by the trajectory and the main diagonal is used, see e.g. [7]).

The generating function of paths of length 2n, weighted according to their
area is defined as

Zn(q) =

∞∑
m=1

cm,n q
m, (1)

where cm,n is the number of paths of length 2n and area m and q is the weight
associated to the area. In physical terms, one can interpret Zn(q) as the canonical
partition function of two-dimensional surface-attached vesicles with perimeter 4n
and area-fugacity q. Note that the maximum area of a path of given finite length
is bounded, therefore the sum on the RHS of (1) is finite for finite values of n. As
a physical consequence, phase transitions can only occur in the thermodynamic
limit n→∞.

One can also define the generating function of paths of area m, weighted with
respect to their length, as

Qm(t) =
∑
n=0

cm,n t
n, (2)

where t is the weight conjugate to the length. The generating function of paths
weighted according to both their area and their length is defined as

G(t, q) =

∞∑
n=1

∞∑
m=1

cm,n q
m tn. (3)

With (1), this can be rewritten as

G(t, q) =

∞∑
n=1

Zn(q) t
n, (4)

and with (2), we can write

G(t, q) =

∞∑
m=1

Gm(t) qm. (5)

By a standard factorization argument [9], one obtains the functional equation

G(t, q) = 1 + tG(t, q)G(qt, q), (6)
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which can be solved by using the ansatz

G(t, q) =
H(qt)

H(t)
. (7)

Here,

H(t) =

∞∑
n=0

qn
2−n(−t)n

(q; q)n
, (8)

and we have used the standard notation for the q-Pochhammer symbol,

(z; q)n =

n−1∏
k=0

(1− zqk), (9)

which is a q-generalization of the Pochhammer symbol. The function H(qt) =
Aiq(t) is a q-Airy function [10].
For q = 1, we obtain the generating function of the Catalan numbers (see e.g.
[2]),

G(t, 1) =
1

2t
(1−

√
1− 4t). (10)

q

t

tc

1

∞

Figure 2. The qualitative behaviour of the radius of convergence t∞ of G(t, q) as a function
of q. The small circle marks the tricritical point.

In Figure 2, we show how the radius of convergence t∞ of the series on the
RHS of Eq.(4) behaves qualitatively as a function of q. This picture, which is also
called the “phase diagram” of the system, is typical for lattice polygon models
[16]. The radius of convergence is defined by a decreasing line of pole singular-
ities for q < 1 and zero for q > 1. From (10), the value of t∞ for q = 1 can be
deduced to be tc = 1/4. The point (t, q) = (tc, 1) is called the tricritical point
of the model (see e.g. [15]) and the area below t∞(q) is called the finite size region.
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In [7], the general form of continued fraction expressions for generating func-
tions of Dyck and Motzkin paths1 has been discussed. In particular,

G(t, q) =
1

1− t

1− tq

1− tq2

1− tq3

1− . . .

. (11)

This expression enables us to continue G(t, q) analytically beyond the finite size
region.

The asymptotic behaviour of G(t, q) for q → 1− as one approaches the tri-
critical point has so far not been derived rigorously. The aim of this paper is to
close this gap by rigorously deriving an asymptotic expression for the generating
function G(t, q) in the limit q → 1− which is valid uniformly for a range of values
of t including the critical point tc. A similar calculation has been carried out in
[14] for staircase polygons.

Our main result is given in Proposition 1 and Corollary 1.

2. Results

According to Eq.(7), the function G(t, q) is given as a quotient of two alternating
q-series. In order to obtain its asymptotic behaviour, we first derive the asymp-
totic behaviour of both the enumerator and the denominator separately. Taking
the fraction of the two obtained expressions will then lead us to the asymptotic
behaviour of G(t, q). We will start with the asymptotic expansion of H(t).

2.1. Uniform asymptotic expansion of H(t). The first step in our calculation is
to express H(t) as a contour integral. We prove

Lemma 1. For complex t and 0 < q < 1,

H(t) =
(q; q)∞
2πi

∫
C

z(1+logq z)/2−logq t

(z; q)∞
dz, (12)

where C is a contour as shown in Figure 3b.

Proof. For complex q 6= 0 and n ∈ N0, we have

(−1)nq(
n
2)

(q; q)n(q; q)∞
= −Res

[
(z; q)−1∞ ; z = q−n

]
, (13)

1 Motzkin paths are a generalisation of Dyck paths.
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Figure 3. The contours C1 (a) and C (b).

from which it follows that

(−t)nqn2−n

(q; q)n(q; q)∞
= −Res[z

(1+logq z)/2−logq t

(z; q)∞
; z = q−n]. (14)

Suppose now that 0 < q < 1. Then the contour CN = C1
N ∪ C2

N ∪ C3
N , where

C1
N =

{
ρ+ λe−iψ | 0 < λ < q−N−1/2

}
,

C2
N =

{
ρ+ λeiϕ | 0 < λ < q−N−1/2

}
,

C3
N =

{
ρ+ q−N−1/2eiθ | − ψ < θ < ϕ

}
 , (15)

0 < ρ < 1 and (ϕ,ψ) ∈ ] 0, π [2, surrounds exactly the N leftmost singularities
of the integrand on the RHS of Eq.(12) – see Figure 3a . We can therefore write

N∑
n=0

qn
2−n(−t)n

(q; q)n
=

(q; q)∞
2πi

∮
CN

z(1+logq z)/2−logq t

(z; q)∞
dz. (16)

where the integration is performed in clockwise sense, as indicated by the arrows
in Figure 3a. Combining (8) and (16), we obtain

H(t) = lim
N→∞

(q; q)∞
2πi

∮
CN

z(1+logq z)/2−logq t

(z; q)∞
dz. (17)

It is left to show that in the limit N → ∞, the contribution of the circle
segment C3

N to the contour integral (17) vanishes, such that the contour CN can
be replaced by the contour shown in Figure 3b.

On C3
N , we can estimate the denominator of the integrand on the RHS of (17)

as

∣∣(z, q)∞∣∣ = ∣∣∣ ∞∏
n=0

(1− q−N−1/2+neiϕ)
∣∣∣ ≥ ∣∣∣ ∞∏

n=0

(1− q−N−1/2+n)
∣∣∣

=
∣∣∣ ∞∏
n=0

(1−q−1/2+n)
∣∣∣·∣∣∣ N∏

n=1

(1−q−1/2−n)
∣∣∣ ≥ c1 ∣∣∣ N∏

n=1

q−1/2−n
∣∣∣ = c1

∣∣q−N2/2−N ∣∣,
(18)
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where c1 is a constant independent of N .
Furthermore, the absolute value of the enumerator has for z ∈ C3

N the upper
bound

|z(1+logq z)/2−logq t| ≤ c2 |qN
2/2||t|N , (19)

where c2 is another constant independent of N . Therefore, we can estimate

1

2πi

∮
C3

N

z(1+logq z)/2−logq t

(z; q)∞
dz ≤ c3 |q|N

2

|t|N , (20)

where c3 is a third constant independent of N . Since the expression on the right
hand side tends to zero as N →∞ for q < 1, it follows that

lim
N→∞

1

2πi

∮
CN

z(1+logq z)/2−logq t

(z; q)∞
dz =

1

2πi

∫
C

z(1+logq z)/2−logq t

(z; q)∞
dz, (21)

where

C =
{
ρ+ λe−iψ | 0 < λ <∞

}
∪
{
ρ+ λeiϕ | 0 < λ <∞

}
, (22)

and where the integration is carried out as indicated by the arrows in Figure 3b.
Combining (21) with (17), we obtain (12).

In [14] it was shown by applying the Euler-Maclaurin summation formula that

ln(z; q)∞ = − 1

ln(q)
Li2(z) +

1

2
ln(1− z) + ln(q)R(z, q), (23)

where the remainder satisfies the non-uniform bound

|R(z, q)| ≤ 1

6

(
ln |1− z|+ Re(z)

Im(z)
arctan

Im(z)

1− Re(z)

)
. (24)

Here, Li2 denotes the Euler dilogarithm [1], which can be defined as

Li2(z) = −
∫ z

0

ln(1− s)
s

ds. (25)

Combining (12) with (23) and defining

f(z, t) = ln(t) ln(z) + Li2(z)−
1

2
ln(z)2, (26a)

g(z) =

(
z

1− z

)1/2

, (26b)

we can write

H(t) =
(q; q)∞
2πi

∫
C

exp

(
1

ε
f(z, t) + εR(z, q)

)
g(z)dz, (27)

where ε = − ln(q).
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The function f(z, t) is analytic for arg(z) < π and arg(1−z) < π and has the
two saddle points

z1(t) =
1

2

(
1 +
√
1− 4t

)
; z2(t) =

1

2

(
1−
√
1− 4t

)
, (28)

which coalesce for t = tc = 1/4.

From the identity

Li2(λe
iφ) = −1

2
ln(−λeiφ)2 − π2

6
− Li2(

1

λ
e−iφ) (29)

(see e.g. [11]), we obtain

Lemma 2. For 0 < |φ| ≤ π,

Li2(λe
iφ)) ∼ −1

2
ln(−λeiφ)2, (30a)

Re[Li2(λeiφ))] ∼ −
1

2
ln(λ)2, (30b)

Im[Li2(λe
iφ))] ∼ −1

2
Im[(ln(−λeiφ)2] (30c)

as λ→∞.

Consequently we have

Corollary 1. For complex t and 0 < |φ| < π,

f(λeiφ, t) ∼ − ln(λ)2 − iψ ln(λ) as λ→∞, (31)

where ψ = 2φ+ π for φ < 0 and ψ = 2φ− π for φ > 0.

The remainder R(z, q) is not uniformly bounded with respect to z, therefore it
is not immediately clear that it can be neglected in the limit ε → 0+. How-
ever, from the asymptotic behaviour of f(z, t) one can conclude that the tails
of the integration contour do not contribute to the asymptotics of the integral.
Therefore we have

Lemma 3. For complex t and 0 < q < 1,

H(t) ∼ (q; q)∞
2πi

∫
C

exp

(
1

ε
f(z, t)

)
g(z)dz as ε→ 0+. (32)

It was shown in [17] (see also [4] and [18]) that for a function f(z, t), which
is analytic with respect to both z and t and which has two saddle points z1(t)
and z2(t), there is a unique transformation u : z 7−→ u(z), such that

f(z, t) =
1

3
u3 − α(t)u+ β(t), (33)

which is regular and one-to-one in a domain containing z1(t) and z2(t) if t lies
in some small domain containing tc. Moreover,

u
(
z1(t)

)
= |α(t)1/2| ; u

(
z2(t)

)
= −|α(t)1/2|. (34)
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Combining (33) with (34), one gets the explicit form

u(z) =

(3

2
(f(z, t)− β)

)2

+

((
3

2
(f(z, t)− β)

)2

− α3

)1/2
1/3

+

+ α

(3

2
(f(z, t)− β)

)2

+

((
3

2
(f(z, t)− β)

)2

− α3

)1/2
−1/3 , (35)

where the two parameters are obtained by inserting (34) into (33) as

α(t) =

(
3

4
[f(z2, t)− f(z1, t)]

)2/3

,

β(t) =
1

2
(f(z1, t) + f(z2, t)) =

1

2
ln(t)2 +

π2

6

 . (36)

Note that for t→ tc, one has α(t) ∼ 1− 4t. From Corollary 1 it follows that

u(ρ+ iλ) ∼ exp
(
±iπ

3

)(3

2
ln |λ|

)1/3

, (37)

for λ→ ±∞. This leads us to

Lemma 4. For complex t,

H(t) ∼ (q; q)∞
2πi

∫
C

e

1

ε

(
1

3
u3 − αu+ β

)
g(z(u))

dz

du
du (38)

as ε→ 0+, where C is a contour as shown in Figure 3b with ϕ = ψ = π/3.

It is possible to write

g(z(u))
dz

du
=

∞∑
m=0

(pm + uqm)(u2 − α)m (39)

and insert this expansion into (38). Interchanging the order of integration and
summation, we obtain the asymptotic expansion

H(t) ∼ (q; q)∞
2πi

∞∑
m=0

∫
C

(pm + uqm)(u2 − α)me

1

ε

(
1

3
u3 − αu+ β

)
du. (40)

The two leading coefficients can be obtained from (33) and (34). We get

2 g(z1)

√
α

f ′′(z1)
= p0 + α1/2q0 ; 2 g(z2)

√
α

f ′′(z2)
= p0 − α1/2q0, (41)
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and these two equations can be solved with respect to p0 and q0 respectively to
obtain

p0 =
(α
d

) 1
4
(
z
3/2
1 + z

3/2
2

)
; q0 =

(
1

αd

) 1
4 (
z
3/2
1 − z3/22

)
. (42)

Here, we have set d = 1− 4t.

Inserting (42) into (40), we arrive at an asymptotic expression for H(t) in terms
of the Airy function

Ai(z) =

∫
C

exp

(
w3

3
− zw

)
dw. (43)

This presents the main result of this section,

Lemma 5. For complex t,

H(t) ∼ (q; q)∞
2πi

(
1

αd

) 1
4

exp

(
β

ε

)(
α1/2ε1/3(z

3/2
1 + z

3/2
2 )Ai(αε−2/3)+

+ε2/3(z
3/2
2 − z3/21 )Ai′(αε−2/3)

)
as ε→ 0+. (44)

2.2. Uniform asymptotic expansion of H(qt). The approach used in the last
section can be applied in a completely analogous way to H(qt). The function
f(z, t) remains the same, whereas now

g(z) =

(
1

z(1− z)

)1/2

. (45)

This changes the leading coefficients of the expansion towards

p0 =
(α
d

) 1
4
(
z
1/2
1 + z

1/2
2

)
; q0 =

(
1

αd

) 1
4 (
z
1/2
1 − z1/22

)
, (46)

and we obtain

Lemma 6. For complex t,

H(qt) ∼ (q; q)∞
2πi

(
1

αd

) 1
4

exp

(
β

ε

)(
α1/2ε1/3(z

1/2
1 + z

1/2
2 )Ai(αε−2/3)+

+ε2/3(z
1/2
2 − z1/21 )Ai′(αε−2/3)

)
as ε→ 0+. (47)
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2.3. Uniform asymptotics of G(t, q). Combining Lemmas 5 and 6, we arrive at

Proposition 1. For complex t and q → 1−,

G(t, q) ∼ α1/2(z
1/2
1 + z

1/2
2 )Ai(αε−2/3) + (z

1/2
2 − z1/21 )ε1/3 Ai′(αε−2/3)

α1/2(z
3/2
1 + z

3/2
2 )Ai(αε−2/3) + (z

3/2
2 − z3/21 )ε1/3 Ai′(αε−2/3)

, (48)

where ε = − ln(q),

z1 = 1
2 (1 +

√
1− 4t)

z2 = 1
2 (1−

√
1− 4t)

}
and α(t) is given by Eq.(36).

0.1 0.2 0.3 0.4 0.5

1

2

3

Figure 4. Plot of G(t, q) (black) against the uniform asymptotic expression (48) (grey) for
ε = 10−2 and t ranging between 0 and 1/2 (horizontal axis).

One easily shows that for t ≤ tc and q → 1−, G(t, q) tends towards the
generating function of the Catalan numbers,

C(t) =
1

2t

(
1−
√
1− 4t

)
. (49)

This is consistent with the well-known result for the generating function of un-
weighted Dyck paths. By applying Dini’s theorem, one can further show that
the convergence is uniform for t ∈ [ 0, tc ]. However, (48) is also valid for t > tc,
though not in a uniform sense due to the occurence of poles in the denominator.
This fact is illustrated in Figure 4, where we have plotted G(t, q) against the
uniform asymptotic expression (48) for ε = 10−2 and t ∈ [0, 1/2].

Defining the tricritical scaling function

F (s) :=
Ai′(s)

Ai(s)
, (50)

we can conclude
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Corollary 2. For fixed s = (1− 4t) · (1− q)−φ and q → 1−,

G (t, q) ∼ 2
[
1 + (1− q)−γ0F ((1− 4t)(1− q)−φ)

]
, (51)

where the critical exponents are φ = 2/3 and γ0 = −1/3.

In particular,

G(tc, q) ∼ 2 ·
(
1 +A0 · (1− q)−γ0

)
(q → 1−), (52)

where A0 = Ai′(0)/Ai(0) = −0.72 . . . .

Both (48) and (51) can be rearranged in order to obtain an asymptotic ex-
pression for F (s). In Figure 5, we have plotted −2F (s) against the expressions
obtained from (48) and (51) for ε = 10−3, 10−4 and 10−5. For fixed value of q,
(48) provides a more accurate approximation than (51).

2.4. Finite size scaling and specific heat. Given the observed scaling behaviour
(51) of the generating function, we now aim to calculate an expression for the
finite size scaling function of the fixed-area partition function (2). For this pur-
pose, we first derive a further asymptotic expression for G(t, q).

We define the singular part of G(t, q) as

Gsing(t, q) := G(t, q)− 1

2t
(53)

and prove

Proposition 2. Let I = [t0, tc], where 0 < t0 ≤ tc. Then

Gsing(t, q) ∼
1

2t
(1− q)−γ0F ((1− 4t)(1− q)−φ) (q → 1−), (54)

uniformly for t ∈ I.

Proof. By using that F (s) ∼ −
√
s for s → ∞, one easily sees that for t ∈ I,

the RHS of (54) converges in a pointwise sense towards Csing := −
√
1− 4t/2t,

which is a continuous function on I. On also proves easily that for all t ∈ I,
the RHS of (54) decreases monotonically with q. It therefore follows from Dini’s
theorem that the RHS converges uniformly to Csing(t). It is also clear that the
same holds for the LHS, Gsing(t, q). Hence, both sides of (54) have the same
uniform asymptotic expression and are therefore uniformly asymptotic to each
other.

It is possible to use the Hadamard product expression [8]

Ai(s) = Ai(0) exp(−A0s)

∞∏
k=1

(
1− s

sk

)
, (55)
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(b)

Figure 5. Plot of the scaling function F (s) (black) against the asymptotic expressions (48)
(a) and (51) (b) (grey) for ε = 10−3, 10−4 and 10−5 (the smallest value of ε corresponds to
the closest approximation).

where sk is the kth zero of the Airy function. Taking the derivative of the loga-
rithm of this expression and exercising some careful analysis we get

F (s) = −1

s

∞∑
j=1

Z(j)sj , (56)

where we have used the Airy Zeta function

Z(j) =

∞∑
k=1

(
1

sk

)j
(57)

and inserted the conjectured value Z(1) = −Ai′(0)/Ai(0) [6].
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Inserting (56) into (54), we obtain that for m→∞,

Gsing(t, q) ∼ −
∞∑
j=0

Z(j + 1)(1− 4t)j(1− q)−2/3j+1/3

= −
∞∑
m=0

∞∑
j=0

Z(j + 1)(1− 4t)j
(
m+ 2

3j −
4
3

m

)
qm. (58)

For n ∈ N and α ∈ C \ Z≤0, theorem VI.1 from [9] states that

[zn](1− z)−α =

(
n+ α− 1

n

)
∼ nα−1

Γ (α)

(
1 +

α(α− 1)

2n

)
. (59)

Inserting the leading order of this expansion into (58) and extracting the mth
coefficient, one formally arrives at

Qm(t) ∼ m−4/3
∞∑
j=0

Z(j + 1)

Γ ( 23j −
1
3 )
m2/3j(1− 4t)j (m→∞). (60)

Defining the finite size scaling function

φ(s) :=
∞∑
j=0

Z(j)

Γ ( 23j −
1
3 )
sj , (61)

we can rewrite (60) as

Qm(t) ∼ m−4/3φ((1− 4t)m2/3). (62)

This expression is of the generic form expected for models which exhibit tricrit-
ical scaling [5,15].

3. Conclusion

We have calculated an asymptotic expression for the generating function of Dyck
paths, weighted with respect to both their perimeter and their area in the limit
of the area generating variable tending towards 1. The result is valid uniformly
for a range of values of the perimeter generating variable, including the tricritical
point.

In the limit of both the perimeter and the area generating variable tending
towards their critical values, we have shown the existence of a scaling function,
expressible via Airy functions and their derivatives. The same type of scaling
expression has been proven before to hold in the case of staircase polygons [14].

Note in particular that the scaling function is obtained as a particular limit of
the uniform asymptotic expansion. This is in contrast to the behaviour found in
[14], where the scaling function and the uniform asymptotic expansion are related
by a local variable transformation. In [5], uniform asymptotic expansions for tri-
critical phase transitions were also constructed from scaling functions using such
transformations.

From the scaling function of the generating function we derived an expression
for the scaling function of the finite-area partition function.
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