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Abstract 

A new method for safety risk management and assessment using Bayesian networks 

is proposed to resolve limitations of existing methods and to ensure that products and 

systems available on the market are acceptably safe for use. The method is applicable 

to a wide range of products and systems, ranging from consumer goods through to 

medical devices, and even complex systems such as aircraft. 

While methods such as Fault Tree Analysis (FTA) and Failure Mode and Effects 

Analysis (FMEA) have been used quite effectively in safety assessment for certain 

classes of critical systems, they have several limitations which are addressed by the 

proposed Bayesian network (BN) method. In particular, the BN approach enables us 

to combine multiple sources of knowledge and data to provide quantified, auditable 

risk estimates at all stages of a product’s life cycle, including especially when there 

are limited or no testing or operational safety data available. The BN approach also 

enables us to incorporate different perceptions of risk, including taking account of 

personal differences in the perceived benefits of the product under assessment.  

The proposed BN approach provides a means for safety regulators, manufacturers, risk 

professionals, and even individuals to better assess safety and risk. It is powerful and 

flexible, can complement traditional safety and risk assessment methods, and is 

applicable to a far greater range of products and systems. The method can also be used 

to validate the results of traditional safety and risk assessment methods when relevant 

data become available. It is demonstrated and validated using case studies from 

consumer product safety risk assessment and medical device risk management. 
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Chapter 1 Introduction 

1.1 Safety of Products and Systems 

Every day we interact with many different products and systems to complete various 

tasks and activities. For instance, we use mobile phones for communication, washing 

machines for laundry, and airplanes for travelling for work or vacation. Despite the 

many benefits offered by products and systems, their use also poses a potential risk to 

our health and safety. For example, the devastating Grenfell Tower fire in the UK on 

14 June 2017 was caused by a fridge freezer. In this disaster, 72 people died, and the 

UK public costs since the disaster have exceeded £500 million, including £221 million 

for rehousing survivors [1], [2]. Two Boeing 737 Max planes crashed due to flaws in 

the plane flight control system in 2018 and 2019, killing a total of 346 people [3]. Less 

well-known examples, but equally relevant to this thesis include the recall of more 

than 500,000 Whirlpool washing machines in the UK due to a fire risk in 2020 [4]. 

Since the consequences of risks associated with products and systems range from 

negligible injuries to fatal injuries or damage to property [2]–[6], it is mandatory that 

all of these kinds of products and systems are assessed to be acceptably safe before 

use. 

To ensure our safety, manufacturers, safety and risk professionals and safety 

regulators (both national and independent bodies) perform safety risk management 

and assessment for products and systems at all stages of their life cycle, from concept 

to decommissioning and disposal. These assessments include identifying potential 

risks and associated injuries, their likelihoods and severities, and implementing 

appropriate risk control measures to reduce risk to acceptable levels. Hence, risk 

assessment is essential for informing safety and risk management decisions during 

production and post-production, ensuring that the products and systems we use or 

available on the market comply with safety standards (both mandatory and voluntary). 

1.2 Risk Management for Product and System Safety 

Many different standards and legislation address the safety and risk management of 

products and systems in different industries and jurisdictions [6]–[9]. For instance, 

ISO 14971 [7] is the main standard used for medical device risk management, and the 
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European Union (EU) Rapid Information System (RAPEX) Risk Assessment 

Guidelines [8] is the primary method or guidelines used to assess the safety and risk 

for a wide range of consumer products in the EU, including toys, household appliances 

and automobiles. In general, safety standards and legislation require that product 

manufacturers establish a method for risk management throughout the entire life cycle 

of the product (from concept to decommissioning and disposal). Risk management is 

the “systematic application of management policies, procedures and practices to the 

task of analysing, evaluating, controlling and monitoring risks” [10]. It is iterative and 

dynamic and should be tailored to the culture and needs of an organisation or industry. 

Figure 1 illustrates the generic risk management process provided by ISO 31000 [11], 

which is adapted and applied in many domains and industries, including product 

safety.  

 

Figure 1 Risk Management Process 

An essential part of the risk management process is risk assessment, which consists of 

three activities: risk identification, risk analysis, and risk evaluation. In product safety, 

risk identification involves identifying known and foreseeable hazards, hazardous 

situations, and related harms associated with the product or system. For example, 

given a domestic iron, a hazard is ‘hot surface’, a hazardous situation is ‘user touches 

the hot surface’, and the associated harm is ‘burn’. Risk analysis involves estimating 



15 

 

the risk associated with the hazard or hazardous situation. Risk is the combination of 

the probability of occurrence of harm P and the severity of that harm S, i.e., 𝑅𝑖𝑠𝑘 =

 𝑃 ×  𝑆. The probability of occurrence of harm is the combination of the probability 

of a hazard or hazardous situation occurring 𝑃1 and the probability that a hazard or 

hazardous situation causes harm 𝑃2, i.e., 𝑃 =  𝑃1  ×  𝑃2. For instance, given the 

domestic iron example, the risk depends on the probability of the burn and its severity. 

Finally, risk evaluation involves determining risk acceptability by comparing the 

estimated risk of the product or system with the criteria for risk acceptance. In 

situations where the risk is judged not acceptable, appropriate risk treatment or risk 

control measures are implemented to reduce risks to acceptable levels. Risk control 

measures for products and systems include inherently safe design and manufacture 

and information for safety. 

1.3 Limitations of commonly used risk assessment and 

analysis techniques 

There are many techniques and approaches used in the industry to assess and model 

the risks of products and systems, including the commonly used Failure Mode and 

Effects Analysis (FMEA) and static Fault Tree Analysis (FTA) (see Chapter 3). 

However, these traditional risk analysis techniques have the following limitations [6], 

[12]–[15], which can lead to inaccurate or ill-defined risk estimates when applied to 

products and systems: 

1. Limited approach to handling uncertainty: In situations where quantitative 

data are available for risk analysis, we find that most techniques and 

approaches use single-point values, e.g., 0.5, to describe the probability of 

events (hazards, failures, and hazardous situations) rather than probability 

distributions, e.g., Normal (0.5, 0.001). Hence, they cannot fully handle 

second-order uncertainty (i.e., the uncertainty in the probability values) during 

risk estimation. In addition, they are unable to provide a reasonable method for 

identifying and handling unidentified risks or hazards (i.e., unknown 

unknowns) for products and systems. Though Monte Carlo simulation 

(discussed in Chapter 3) may be used in conjunction with other risk analysis 

methods such as FTA [16] or as a standalone method to handle uncertainty, it 

is time-consuming and computationally expensive for complex systems. 
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2. Does not consider the causal nature of risk: Many risk analysis techniques 

compute risk as the product of the probability of occurrence of harm P and the 

severity of the harm S, i.e., Risk = P × S. However, this method of risk 

estimation does not consider the causal context in which the risk occurs. In the 

causal perspective, the risk depends on a set of events, including triggers (i.e., 

initiating events that cause the risk event), controls and mitigants (i.e., events 

that can stop the occurrence of the risk event or mitigate the consequence of 

the risk event) [13]. Moreover, since the assumptions that the risk is 

conditioned on may not be explicit or clearly defined, the values for P and S 

may be inaccurate and overly subjective. Finally, we find that ‘risk register’ 

approaches using the P × S metric, where P and S are measured on a scale of 

1 to 5, where the resulting number represents the size of the risk, are generally 

insufficient for decision making.  

 

3. Limited approach to computing risk for novel products with limited or no 

historical data: Many risk analysis techniques are unable to provide 

reasonable risk estimates for novel products or products with limited or no 

available data since the probability of the occurrence of harm P may be 

unknown. Though the parts count technique (discussed in Chapter 3) may be 

used in conjunction with other methods or as a standalone method to estimate 

the risk of a novel system, it is time-consuming and expensive for complex 

systems. Furthermore, the parts count technique can give inaccurate results if 

the system is redundant [17].   

 

4. Limited approach to handling multi-state variables: Some risk analysis 

methods, such as FTA, can only support binary state variables (i.e., variables 

with only two states); hence they are not suitable for performing analysis for 

products and systems with multi-state variables (i.e., variables with three or 

more states).  

 

5. Limited approach to handling sequence-dependent variables: Some risk 

analysis methods, such as FMEA, cannot estimate the risk of products and 

systems where component failures and hazards are causally dependent. In 

these situations, extensions of FTA such as Dynamic Fault Tree and Beta 
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factors (discussed in Chapter 3) can be used in conjunction with other methods 

or as a standalone method to address this limitation, however these extensions 

require expert knowledge and are time-consuming and computationally 

expensive for complex systems. 

 

6. Limited approach to updating risk estimates given new data (or evidence): 

For most risk analysis methods, revising the risk estimates for a product or 

system given new data (or evidence) entails repeating the risk analysis using 

the new data. For some methods, this approach to revising risk may be 

impractical since it is usually time-consuming and expensive.  

 

7. Limited approach to combining subjective and objective evidence: Most risk 

analysis methods cannot combine subjective (expert judgement) and objective 

evidence to estimate risk. 

Although some extensions to the commonly used risk analysis methods, such as 

Dynamic Fault Trees (DFTs), have resolved some of these limitations, Bayesian 

networks (BNs) can resolve all of these limitations [13].  

1.4 Research Hypotheses 

Despite the many benefits of using BNs for safety risk management, such as handling 

uncertainty, their widespread acceptance and use as a standard systematic method for 

product safety risk management in industry may be restricted due to limited or no 

standard method or guidelines for building BNs for the many different product safety 

cases. For instance, some of the published BNs are presented with little information 

on how the BN was developed and why it is suitable for a specific application. In other 

cases, the BN development process may be ad hoc and presents little or no opportunity 

for repeatability and standardisation. Although there are some established automated, 

mapping, and knowledge representation methods [18]–[21] for defining BN structure 

and parameters, for many product safety cases, some of these methods may not be 

feasible due to adoption barriers e.g., lack of knowledge, and the complexity of the 

safety risk (i.e., it is dependent on the interaction between hard factors e.g., systems, 

and soft factors e.g., users). In these situations, the BN must be developed using expert 

knowledge and literature. However, the literature lacks a systematic, repeatable 
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method or guidelines for developing BNs for product safety risk management using 

expert knowledge and literature. Therefore, the main objective of this thesis is to 

address this research gap. To achieve this objective, the following four hypotheses are 

argued in this thesis.  

Hypothesis 1: It is possible to develop a generic method to build Bayesian networks 

for product safety risk management.  

Hypothesis 2: It is possible to use Bayesian networks for safety risk management for 

many different types of products, including novel products or products with limited or 

no available data. 

Hypothesis 3: It is possible to use Bayesian networks to model consumer risk 

perception and/or perform benefits-risk analysis for products. 

Hypothesis 4: It is possible to deploy BNs for product safety risk management in 

production in a practical format for easy access and use by end users, including 

manufacturers, consumers and safety regulators. 

Hypothesis 1 is explored by applying the idiom-based approach [19] for BN 

development to product safety risk management. The underlying concept of the idiom-

based approach is that complex modelling problems can be broken down into smaller 

manageable chunks. This thesis presents novel idioms called product safety idioms 

which represent generic causal reasoning patterns that are common in product safety 

risk management. The aim of this work is to provide a standard, repeatable method or 

guidelines for developing BNs specifically for product safety risk management. 

Hypotheses 2-4 are explored using two case studies. A case study on medical device 

risk management is used to investigate the application of BNs for managing the risk 

of medical devices. This case study provides a generic BN for medical device risk 

management that can assess the risk of many different types of medical devices during 

production and post-production, especially in situations where there is limited or no 

testing data available. The proposed BN also performs a benefit-risk analysis which is 

useful when the risk is judged not acceptable and additional risk control measures are 

not applicable. This case study is also used to demonstrate the deployment of BNs to 

end users using the Agena.ai cloud service. Therefore, this case study is a good 
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example of how manufacturers can use BNs for product safety risk management in 

production.  

The second case study on consumer product risk assessment is used to investigate the 

application of BNs for assessing the risk of consumer products as an alternative to the 

RAPEX risk assessment method [8] used by safety regulators in UK and EU. The 

proposed generic BN resolves the limitations of the RAPEX methodology and can 

assess the risk of many different types of consumer products, especially in situations 

where there is limited or no testing data available. The generic BN also models 

consumer risk perception and risk tolerability (acceptability). This case study includes 

empirical work examining the effect of risk communication on consumer risk 

perception done in collaboration with the UK Government Office for Product Safety 

and Standards (OPSS). Further collaboration was with the Royal Holloway University 

of London (RHUL). Since the proposed BN is tailored to the needs of safety 

regulators, this case study is a good example of how safety regulators can use BNs for 

product safety risk management in production. The case study results supported the 

development of the new product safety risk assessment method introduced by OPSS 

to replace the RAPEX methodology. It also informed and improved OPSS risk 

management decisions and strategies concerning non-compliant products by providing 

novel insights on consumer risk perception and how they are affected by risk 

communication.  

The BNs presented in this thesis were developed using AgenaRisk Desktop and 

deployed in production using the Agena.ai cloud service [22]. 

1.5 Publications and Awards 

The work in this thesis has led to the following list of publications and awards. 

Publications 

1. Hunte, J., Neil, M., & Fenton, N. E. (2021). A causal Bayesian network 

approach for consumer product safety and risk assessment: Research and 

Summary Report 2021/035. Office for Product Safety & Standards [23], 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a

ttachment_data/file/1018546/bayesian-networks-research-summary-report.pdf 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018546/bayesian-networks-research-summary-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018546/bayesian-networks-research-summary-report.pdf
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2. Hunte, J., Neil, M., & Fenton, N. E. (2022). A causal Bayesian network 

approach for consumer product safety and risk assessment [15]. Journal of 

Safety Research 80, pp 198-214, https://doi.org/10.1016/j.jsr.2021.12.003 

3. Hunte, J., Neil, M., & Fenton, N. (2022). Product safety idioms: a method for 

building causal Bayesian networks for product safety and risk assessment [24]. 

arXiv preprint arXiv:2206.02144. https://arxiv.org/abs/2206.02144  

4. Hunte, J., Neil, M., & Fenton, N. (2022). A hybrid Bayesian network for 

medical device risk assessment and management [25]. arXiv preprint 

arXiv:2209.03352. https://arxiv.org/abs/2209.03352, Revision submitted to 

Reliability Engineering and System Safety Journal 

5. Hunte, J., Neil, M., Fenton, N. E., Osman, M., & Bechlivanidis, C., (2022). The 

effect of risk communication on consumers’ risk perception, risk tolerance and 

utility of smart and non-smart home appliances, Revision submitted to Safety 

Science Journal 

6. Hunte, J., Jenkins, S., Fenton, N. E. (2022). The effect of product compliance 

and credibility of the risk communicator on willingness to pay and risk 

perception of consumer products, Research Report submitted to UK 

Government Office for Product Safety and Standards (OPSS) 

Other Related Publications 

The terms, concepts, and principles presented in Chapter 2 contributed to the 

development of the UK Government Office for Product Safety and Standards (OPSS) 

risk lexicon [26]. 

Awards 

The work presented in Publications 1, 2, 5, and 6 received funding from the UK 

Government Office for Product Safety and Standards (OPSS). 

 

 

https://doi.org/10.1016/j.jsr.2021.12.003
https://arxiv.org/abs/2206.02144
https://arxiv.org/abs/2209.03352
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1.6 Thesis Structure 

To investigate our hypotheses, this thesis is structured as follows. 

Chapter 1 provides an overview of risk management for products and systems. It also 

summarises the limitations of commonly used risk assessment methods and defines 

the hypotheses examined in this thesis.  

Chapter 2 provides the essential context required to understand the remainder of this 

thesis. We describe concepts, principles, and terms related to risk management, risk 

assessment, risk analysis and risk perception and their general application in the 

product safety industry. Since many risk management terms and concepts are 

application-specific (i.e., dependent on context, domain or industry), we define the 

risk management terms used in this thesis. The concepts and terms presented here were 

first presented in Publications 1-6. 

Chapter 3 describes the commonly used risk analysis methods and techniques in the 

product safety industry. Risk analysis methods such as Fault Tree Analysis (FTA) and 

Failure Mode and Effects Analysis (FMEA) are reviewed. 

Chapter 4 introduces Bayesian networks (BNs) and their underlying theory. This 

introduction is followed by a review of the approaches used to build BNs, and a review 

of the inferences and reasonings done using BNs. This background knowledge is 

necessary to understand the contributions made in the following chapters. 

Chapter 5 provides a review of the BNs used in the safety domain. This background 

knowledge is necessary to understand the contributions made in Chapter 6 since none 

of the BNs reviewed provides a standard method for building BNs specifically for 

product safety risk management. However, each provides some insight into the use of 

BNs for the safety risk management of products and systems. 

Chapter 6 presents a generic method for building BNs for product safety risk 

management. The proposed method is based on the idiom-based approach [19] for 

building BNs described in Chapter 4. This chapter supports Hypothesis 1 and was first 

presented in Publication 3. 
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The ideas explored in Chapter 6 are applied in Chapters 7 and 8, where two case 

studies are presented, which illustrate the new approach to building BNs for many 

different product safety cases. 

Chapter 7 introduces the medical device risk management case study. This chapter 

describes the medical device risk management process as presented in ISO 

14971:2019 [7] and its supporting documentation ISO/TR 24971:2020 [6]. We 

introduce a novel method for manufacturers to manage the risk of medical devices 

using hybrid BNs. The proposed hybrid BN resolves the limitations of traditional risk 

analysis methods discussed in Chapter 1 and provides a systematic method for medical 

device risk management, especially when there is little or no relevant testing or 

operational data available. It also performs a benefit-risk analysis of medical devices, 

which is useful for making risk management decisions such as product recall. The BN 

for medical device risk management was developed using the method proposed in 

Chapter 6. Therefore, this chapter supports Hypotheses 2 and 3 and was first presented 

in Publication 4. 

Chapter 8 introduces the consumer product risk assessment case study. This chapter 

describes safety risk management for consumer products based on the RAPEX risk 

assessment guidelines [8]. We introduce a novel method for managing the risk of many 

different consumer products using hybrid BNs. The proposed BN for consumer 

product risk assessment developed using the method presented in Chapter 6 resolves 

the limitations of traditional risk assessment methods such as RAPEX and can provide 

reasonable risk estimates for products, especially when there is little or no relevant 

testing or operational data available. It also examines consumer risk perception of 

products and systems, useful for making risk management decisions such as product 

recall. This chapter supports Hypotheses 2 and 3 and was first presented in 

Publications 1 and 2. 

Chapter 9 presents the results of empirical work that examines how risk perception of 

consumer products is affected by sources of risk communication. The principal merit 

of this work is to inform and validate the predictions of the consumer risk perception 

component of the BN presented in Chapter 8. This chapter supports Hypothesis 3 and 

was first presented in Publications 5 and 6. 
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Chapter 10 describes the process for deploying Bayesian networks in production. This 

is demonstrated by deploying the BN for medical device risk management (see 

Chapter 7) to end users as a web-based application using Agena.ai cloud service [22]. 

This chapter supports Hypothesis 4. 

Chapter 11 revisits the research hypotheses of this thesis and summarises the related 

contributions. This chapter also discusses future directions of research.  
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Chapter 2 Risk Management Concepts and Terms 

This chapter provides the essential context required to understand the remainder of the 

thesis. The concepts, principles, and terms relating to risk management, risk 

assessment, risk analysis, risk modelling, risk perception, safety management and their 

general application in the product safety industry are described. We defined the risk 

management terms and concepts used in this thesis since many risk management terms 

and concepts are application-specific (i.e., dependent on context, domain or industry). 

Most of the terms and concepts presented in this chapter have been presented as part 

of the following publications: Publication 1 [23], Publication 2 [15], Publication 3 

[24], Publication 4 [25], Publication 5 and Publication 6.  

2.1 Fundamental risk terms, concepts, and principles 

In this section, we describe key risk concepts and terms used in this thesis. 

2.1.1 Risk 

In general, the term risk is often expressed in terms of a combination of the 

consequences of an event and the likelihood of occurrence of that event [27]. In this 

context, the consequences of an event will be something negative or an adverse effect. 

In product safety, risk is defined as “the combination of the probability of occurrence 

of harm (to the consumer) and the severity of that harm” [5], [7]. It is often expressed 

using the following equation: 

Equation 1 

𝑅𝑖𝑠𝑘 = 𝑃 × 𝑆 

Where P refers to the probability of occurrence of harm and S refers to the severity of 

the harm. 

Risk is estimated using subjective evidence (i.e., expert judgement), objective 

evidence (i.e., available quantitative data) or both subjective and objective evidence. 

Qualitative methods, such as matrices and quantitative methods, such as Fault Tree 

Analysis (FTA), discussed in Chapter 3, can be used to estimate risk. Hence, the 

magnitude or level of the risk can be expressed qualitatively using a ranked scale 

ranging from ‘low’ to ‘serious’ or quantitatively, such as ‘probability of injury per 

demand’ or in similar units considering the frequency of the risk event.    
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2.1.2 Causal Perspective of Risk 

As mentioned in Section 1.3, traditional risk analysis techniques compute risk using 

Equation 1; however, this method of risk estimation does not consider the causal 

context in which risk occurs. In the causal perspective of risk, the risk is characterised 

by a causal chain of events, including the risk event itself, consequences (i.e., negative 

or adverse events caused by the risk event), triggers (i.e., events causing the risk 

event), controls (i.e., events that help avoid the risk event) and mitigating events (i.e., 

events that help avoid the negative consequence event) [13]. In the product safety 

context, we are interested in the causal view of risk since the level of risk for a product 

or system depends on a causal chain of events, including triggers, controls and 

mitigating events. An example of the causal view of risk applied in product safety is 

shown in Figure 2. Figure 2 shows a causal diagram that describes the sequence of 

events that leads to a patient being burnt by a defibrillator (in Chapter 4, probabilities 

are assigned to these events).  

 

Figure 2 Causal view of risk in product safety – Defibrillator Example 

The causal view of risk in product safety supports comprehensive and practical risk 

estimates since the uncertainty associated with the risk for a product or system is not 

a separate notion (as assumed in traditional risk analysis approaches). Every event 

associated with the risk has uncertainty expressed by the event’s probability 

distribution (this is covered in depth in Chapter 4). Also, since the risk problem is 

decomposed into a causal chain of events and the risk event is identified from a 



26 

 

particular perspective, e.g., regulator, consumer or manufacturer, there is little 

ambiguity about the risk event, triggers, controls, mitigants and consequences. 

Therefore, factors affecting risk are easily identified and described. In Chapters 6, 7 

and 8 we show how the causal perspective of risk is used to assess the risk of products 

and systems using Bayesian networks (BNs). The underlying theory of BNs is 

presented in Chapter 4.  

2.2 Risk Assessment Terms and Concepts 

In this section, we describe the key concepts and terms used for risk assessment and 

the intended use of these terms in this thesis. 

2.2.1 Product and System 

In this thesis, we use the terms product and system interchangeably. A system is 

defined as “a combination of interacting elements or components organised to achieve 

one or more stated purposes” [9]. Elements of a system include hardware, software, 

material, facilities, personnel, data and services. A product is “any artefact offered in 

a market to satisfy consumer needs”. Since the general definition of a system 

encompasses all products, then all products are systems, and a system can be described 

as a product or as the services it provides [24].   

2.2.2 Defect, Fault and Failure 

In this thesis, we define a defect as a generic term for a fault. We use the definitions 

for fault, error and failure associated with a system as defined by Laprie [28]. A fault 

“is a hypothesised cause of an error”. An error is “that part of the system state that 

can lead to subsequent failure”. A failure is an event that “occurs when the delivered 

service deviates from fulfilling the system function”. Please note that faults, errors and 

failures are recursive notions that depend on the perspective of the user or system [24]. 

For instance, given a system with an embedded software component, if the failure of 

the software does not result in system failure, it will be considered a fault from the 

overall system perspective. In Figure 3, we show the relationship between a fault, error 

and failure. According to Laprie [28], [29], the three main classes of faults that can 
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affect a system leading to failure are physical faults, design faults and interaction 

faults.  

 

Figure 3 Relationship between system fault, error, failure and hazard 

Physical faults are faults in the hardware of a system or faults that affect the hardware 

of a system [28], [29]. They are caused by physical deterioration of system hardware, 

interaction faults or physical interference by external events in the use environment. 

As illustrated in Figure 3, physical faults can cause an error, a failure in the absence 

of an error, and hazards in the absence of a failure.  

Design faults are faults in the design of a system [28]. They are caused by interaction 

faults and development faults, e.g., errors in software code, incorrect or incomplete 

requirements. As illustrated in Figure 3, design faults can cause an error leading to 

failure and potential hazards.  

Interaction faults are faults occurring during the use of a system [28], [29]. These are 

external faults since they are caused by elements in the use environment. For instance, 

most interaction faults are caused by some human action in the use environment, such 

as device misuse, and others are due to physical interference caused by external events 

in the use environment, e.g., weather conditions. As illustrated in Figure 3, interaction 

faults can cause an error, a failure in the absence of an error, and hazards in the absence 

of a failure. 

2.2.3 Harm, Hazard and Hazardous Situation 

In product safety, the term harm is defined as “injury or damage to the health of people 

or damage to the property or the environment” [7]. In some risk assessment methods, 
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for example, RAPEX, the severity or level of the harm is usually defined using a four-

point or five-point scale ranging from ‘negligible’ to ‘fatal’. The level of harm is 

dependent on factors such as the type of medical intervention required, or the 

economic costs associated with the harm. For instance, any harm resulting in injuries 

that cause minor discomfort is considered ‘negligible’, while harm resulting in death 

is considered ‘fatal’. As shown in Figure 3, harm is caused by a hazard.  

A hazard is “a potential source of harm” [7], [8] usually caused by faults (i.e., physical, 

design and interaction) and failures (see Figure 3). According to the EU RAPEX 

guidelines, a hazard is “the intrinsic property of a product that may cause an injury to 

the consumer who uses the product”. In this thesis, both definitions of a hazard are 

considered when describing hazards associated with a system. A system can have one 

or more hazards that can cause harm. Where a system has several hazards, the risk 

associated with each hazard is assessed separately during the risk assessment. For 

instance, given a defibrillator with electrical and thermal hazards, the risk associated 

with each hazard is assessed to determine the overall risk of the product. Some risk 

assessment methods, such as RAPEX, usually chooses the highest level of risk 

estimated as the overall risk of the product [5].  

Hazard identification is a key part of the risk management process, it entails 

identifying and documenting hazards associated with a system based on the intended 

use, foreseeable misuse and characteristics of the system. Any hazards for a system 

that are not identified during this phase would not be assessed, resulting in unknown 

harms and potential injuries to consumers. Risk analysis techniques such as 

Preliminary Hazard Analysis and Failure Mode and Effects Analysis (see Chapter 3) 

are used to identify hazards associated with a system. Other techniques for hazard 

identification include reviewing hazards reported in injury databases, publications, 

and scientific literature.  

In this thesis, we used a combination of risk analysis methods, injury databases and 

scientific literature to identify hazards for our case study examples discussed in 

Chapters 7 and 8. Once the hazards of a system are identified, the hazardous situation 

is described. A hazardous situation is “any circumstance in which people, property or 

environment are exposed to one or more hazards” [7]. Hence a hazard can only cause 

harm if a hazardous situation occurs. Please note that some risk assessment and 
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analysis methods may describe an injury scenario (i.e., steps leading to injuries) 

instead of a hazardous situation, given identified hazards. Therefore, in this thesis, we 

use the terms injury scenario and hazardous situation interchangeably. 

2.2.4 Risk Criteria 

This thesis also uses the term risk criteria when discussing risk management, 

especially risk evaluation. According to ISO Guide 73 [27], risk criteria are the “terms 

of reference against which significance of a risk is evaluated”. It can include 

qualitative and quantitative requirements based on standards, policies and laws. The 

risk criteria are defined at the start of the risk management process and used during 

the risk evaluation phase to determine whether the risk is acceptable. In summary, the 

risk criteria determine whether the estimated risk for a system is acceptable or not and 

inform additional risk control measures.  

2.2.5 Risk Control, Risk Treatment and Residual Risk 

In this thesis, we use the terms risk control and risk treatment interchangeably. Risk 

control is any process, policy or action taken to reduce or eliminate a risk [27]. It can 

include removing the source of the risk and changing the likelihood of occurrence of 

harm. The risk remaining after risk treatment is called residual risk.  

2.3 Risk Perception Terms and Concepts 

In this section, we describe key terms and concepts for risk perception. 

2.3.1 Risk Perception 

According to ISO Guide 73 [27], risk perception is the “stakeholder’s view on a risk”. 

A stakeholder is “any person or organisation that can affect or be affected by a decision 

or activity”. These include consumers, regulators and manufacturers.  

In this thesis, we investigate consumer risk perception and how it is influenced by risk 

communication sources (see Chapter 9). We define consumer risk perception or 

perceived risk as consumers’ subjective judgement of risk when purchasing or using 

a product or service [30], [31]. Previous research suggests that risk perception consists 

of two dimensions: dread and unknown [32]. Dread risk refers to the lay-person 

feelings about risks or hazards. It is defined in terms of the likelihood of consequence 
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(harm) and its severity, lack of control and feelings of fear. Unknown risk refers to 

risks considered new, unobservable, unknown, and delayed in their manifestation and 

consequences.  

2.3.2 Utility or Benefit  

In this thesis, we use the terms utility and benefit interchangeably. Utility is the 

(perceived) benefits consumers receive from using a product. Since each consumer is 

unique, utility is personal and situational. For example, a consumer will assign utility 

to a product based on their personality, situation and experience [33]–[35]. In general, 

perceived benefit (or utility) has an inverse relationship with perceived risk [36]–[38]. 

For instance, Alhakami and Slovic [36] found that when people perceive an item as 

having high benefits, they perceive it as low risk (and vice versa).  

2.3.3 Risk Tolerance (Acceptance) 

In this thesis, we defined risk tolerance (acceptance) as the amount of (perceived) risk 

consumers are willing to accept or tolerate to obtain the benefits (value or utility) of a 

product [39]. It is influenced by individual characteristics, knowledge (or experience) 

of the product, risks, risk controls and benefits. For instance, some research suggests 

that risk tolerance is a personality trait [40]–[42]. For example, consumers with a high 

propensity to take risks are more tolerant of risks. On the other hand, other research 

suggests that risk tolerance is based on experience and knowledge [43]–[45]. For 

example, consumers that are more familiar with a particular product via experience or 

knowledge will be more tolerant of its risks. 

2.3.4 Risk Communication 

Risk communication is the exchange of information between different stakeholders 

about the risks associated with products [46]. The most common and familiar sources 

of risk communication are the government, manufacturers and the media [47]. 

Previous research shows that the risk communication source can affect risk perception. 

For example, if consumers perceive the risk communication source as reliable and 

trustworthy, e.g., the government, they will most likely adhere to the risk message. 

However, they may ignore or reject the risk message if they perceive the risk 

communication source as unreliable and untrustworthy, e.g., non-experts [48], [49]. 
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These observations are essential when deciding on the best media for informing 

consumers about risk and will be covered in Chapter 9.  

2.4 Chapter Summary 

In this chapter, the concepts, terms and principles that underpin risk management and 

assessment in the product safety industry were defined. Definitions were provided for 

key terms that will be used throughout the thesis.  

In the next chapter, we review the commonly used methods for risk analysis and 

assessment in the safety domain.  
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Chapter 3 Review of commonly used risk assessment 

and analysis techniques  

This chapter describes commonly used techniques for risk analysis in the product 

safety domain. The following risk analysis techniques are discussed: Preliminary 

Hazard Analysis (PHA), Failure Mode and Effects Analysis (FMEA), Fault Tree 

Analysis (FTA), Event Tree Analysis (ETA), Bow-tie models, Risk Matrices, Monte 

Carlo Simulation, Beta Factor Method and Parts Count Method. These techniques are 

complementary and can be used as required to facilitate a comprehensive risk analysis. 

This chapter is adapted from Publication 4 [19], previously published by Arxiv.org.  

3.1 Preliminary Hazard Analysis 

Preliminary Hazard Analysis (PHA) is an inductive analysis method that is performed 

early in the development of a product when there is little information about its design 

or operating procedures [6], [12]. It is used to identify hazards, hazardous situations 

and events that can cause harm for a product. Hazards and hazardous situations are 

identified by considering product characteristics such as the use environment and 

interfaces among system components. PHA is often done using brainstorming 

techniques and is a precursor to more elaborate risk analysis methods such as FTA. 

The PHA method includes the following steps: 

1. Describe the product and scope of the analysis. 

2. Identify applicable hazards and hazardous situations for the product. 

3. Identify the probability of occurrence of harm P. Please note that since PHA 

is done early in the development process, there would be insufficient 

information about the product to estimate probabilities accurately. However, 

the reported injury information from previous similar products can be used to 

provide reasonable estimates for the probability of occurrence of harm P.  

4. Identify the severity of the harm S. 

5. Estimate the risk of the product, i.e., P × S, using a risk matrix (see Section 

3.6). 

6. Identify potential risk controls. 
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The results of a PHA may be presented in a tabular format, as shown in Table 1. A 

PHA is essential for informing risk management decisions such as risk controls.  

Table 1 Example of preliminary hazard analysis for a defibrillator 

Preliminary Hazard Analysis (PHA) 

Product: Defibrillator 

ID # Hazard Harm Potential 

Causes 

Probability 

of harm 

(1-5) 

Severity 

of harm 

(1-5) 

Risk 

Score 

P × S 

Risk 

controls 

1 Hot 

surface 

The patient 

is burnt 

during use 

Device 

malfunction 

1 2 2 Automatic 

switch off 

 

Several studies have used PHA to identify potential hazards and hazardous situations 

for systems [12], [50]–[53]. For instance, Zhang et al. [50] used a PHA to identify 

hazards and hazardous situations for an insulin infusion pump. Masci et al. [51] used 

a PHA to identify hazards for the number entry part of an infusion pump interface. 

Aloqaily [53] used it to identify hazards associated with pipelines. Elahi [12] used it 

to identify hazards and hazardous situations associated with medical devices. 

3.2 Failure Mode and Effects Analysis 

Failure Mode and Effects Analysis (FMEA) is an inductive, bottom-up analysis 

method that explores the failure modes of a system and how each failure mode affects 

the system [54], [55]. The causes, consequences, risks, and risk controls for each 

failure mode are recorded in an FMEA worksheet. An example of an FMEA worksheet 

is shown in Figure 4. FMEA is useful for analysing systems containing many 

components, e.g., medical devices. However, since device components are analysed 

one at a time, FMEA is usually a time-consuming activity and is not suitable for 

analysing systems with common cause failures or systems with a high degree of 

redundancy. The FMEA method includes the following steps: 

1. Describe the product and scope of the analysis. 

2. Identify the failure modes of the system. 

3. Identify the cause and effect of each failure mode. 
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4. For each failure mode, determine and assign ratings for the severity of the 

effect S (using a 5-point ranking scale ranging from negligible to fatal), the 

probability of occurrence O (using a 5-point ranking scale ranging from 

improbable to frequent), and the detectability D (using a 5-point ranking scale 

ranging from almost certain to undetectable).  

5. For each failure mode, compute the Risk Priority Number (RPN) and estimate 

the risk. The RPN is the product of severity, occurrence and detection ratings, 

i.e., S × O × D, and it is used to determine the criticality ranking of the failure 

modes. Failure modes with a high RPN are the most critical for the system. 

The risk is computed using a risk matrix that combines severity and occurrence 

ratings (see Section 3.6). 

6. Identify potential risk controls for each failure mode. 

Additional information on performing an FMEA can be found in the standard IEC 

60812:2018 [55]. Although several studies have used FMEA to assess failures of 

system components [12], [56]–[58], it can also be used to assess failures in the 

manufacturing process (process FMEA) and the use and misuse of a system (use 

FMEA). In the product safety domain, FMEA is used to identify failure modes of a 

system that can cause a hazard or hazardous situation. Since FMEA is usually 

performed during the design phase of a system, the results from the FMEA are useful 

for informing risk management decisions such as risk controls and providing the basis 

for further analysis methods such as FTA.  
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Figure 4 Example of an FMEA worksheet 
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3.3 Fault Tree Analysis 

A Fault Tree Analysis (FTA) is a deductive, top-down analysis method that is usually 

used in the safety domain to analyse hazards identified by other methods such as PHA 

[54], [59]. FTA starts with an assumed undesired consequence or event, e.g., harm, 

followed by the identification of its causes or contributing events. The assumed 

undesired event is called the top event, and the independent events contributing to the 

top event are called basic events. Hence, a fault tree (FT) can be described as a 

graphical representation of the (basic) events or contributing factors causing the top 

event. An example of a fault tree to determine the likelihood of an engine fire (adapted 

from [12]) is shown in Figure 5. In a fault tree (see Figure 5), the top event is connected 

to the basic events using logic gates such as OR and AND gates. The symbols for OR 

gates, AND gates, and top and basic events are shown in Figure 6. In this thesis, when 

discussing FTA, we are referring to static FTA unless specified otherwise. 

 

 

Figure 5 Example of a fault tree for an engine fire 
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Figure 6 Common symbols used in a fault tree 

FTA can be used to perform quantitative and qualitative analyses. Quantitative 

analysis is done when the probabilities of the basic events are known. These 

probabilities are combined using probability rules based on the structure of the FT to 

determine the probabilities of occurrence for the top event. In situations where the 

probabilities of the basic events are unknown, qualitative analysis is done using 

descriptive probabilities of occurrence such as ‘frequent’ or ‘remote’. The primary 

output of an FTA is the identification of the set of basic events that can cause the top 

event to occur, referred to as a cut set. The smallest set of basic events that can cause 

the top event to occur is called a minimal cut set. Identifying the minimal cut set is 

important for informing appropriate risk controls. In summary, the FTA method 

includes the following steps: 

1. Identify and define the system or system component and scope of the analysis. 

2. Define the top event. 

3. Identify basic and intermediate events. 

4. Construct the FT: Link the top event to basic events using logic gates and 

intermediate events. 

5. Perform the analysis: 
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a. Identify the minimal cut set 

b. Calculate the probability of occurrence of the top event if quantitative 

data is available. 

6. Estimate the risk using a risk matrix given the severity of the top event and the 

probability of occurrence of the top event (see Section 3.6). 

Additional information on performing FTA can be found in the standard IEC 

61025:2006 [59]. FTA has been used in many domains, including safety and 

reliability. In the safety domain, the top event is usually a hazard or hazardous 

situation; in the reliability domain, it is usually a failure. In the safety domain, FTA 

can be used to analyse the entire system or components of the system that may pose a 

risk to operational safety. This is useful since the interaction between the system 

components causing the top event can be incorporated into the analysis, unlike in an 

FMEA (see Section 3.2). Since FTA is a useful tool for assessing the safety of systems, 

it should be performed at all stages of the life cycle of a system. At each stage of the 

life cycle, the FT will increase understanding of existing and potential failures, hazards 

and hazardous situations of the system. It is important to note that FTA is not limited 

to a system or its components but is sufficiently flexible also to incorporate factors 

such as human errors when estimating the occurrence of the top event. This is essential 

since a hazardous situation can only occur when users are exposed to a hazard or 

interact with a system. However, estimating probabilities for human errors may be 

challenging since it is time-consuming and context-specific (i.e., requiring many 

observations for a particular system). Despite the popularity of FTA in the safety 

domain [60]–[64] and benefits such as informing and complementing other risk 

analysis methods such as FMEA and PHA, it is important to note the following 

limitations of the method: 

1. Limited approach to handling uncertainty: In a FT, the probabilities for basic 

events are usually assigned using single-point values rather than probability 

distributions. As a result, uncertainty cannot be incorporated in the 

probabilities for basic events when estimating the probability of the top event. 

 

2. Limited approach to handling multi-state variables: In a FT, events are usually 

binary state, e.g., working or fail; however, it is possible to have scenarios with 

events that are multi-state, e.g., working, fail-open or fail-closed. In these 
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situations, the multi-state events are represented using one or more events. For 

instance, given an event with three states, e.g., working, fail-open or fail-

closed, in a FT, this will be represented as two independent binary events, e.g., 

working/fail-open and working/fail-closed. This approach to handling multi-

state variables is usually time-consuming and expensive. 

 

3. Unable to model sequence-dependent failures: In situations where component 

failures are dependent, a FT is not suitable for modelling these types of failures. 

There are several extensions to the static FT that resolve the above mentioned 

limitations. For instance, dynamic fault trees (DFTs) [65] have been proposed to 

handle sequence-dependent failures, fuzzy fault trees [66] have been proposed to 

handle uncertainty in data and the beta factor method have been proposed to improve 

modelling of common cause failures [67], [68]. In this thesis, we propose that BNs 

can resolve all these limitations. We discuss BNs and their underlying theory in 

Chapter 4. 

3.4 Event Tree Analysis 

An Event Tree Analysis (ETA) is an inductive method of analysis that shows all 

potential outcomes or consequences of an initiating event [6], [54]. An event tree (ET) 

is a logic tree diagram used to analyse “the occurrence of accidents as consequences 

of hazard events in a system” [20] [13]. In general, systems usually have risk controls 

or mitigants to avoid or mitigate the consequences of potential initiating events. Hence 

the potential outcomes or consequences of an initiating event are affected by the 

success or failure of the risk control measures. An example of an ETA for an explosion 

(presented in [54]) is shown in Figure 7. In this example, given an explosion (initiating 

event), the probability of a fire occurring (outcome/consequence) depends on the 

operation or failure of the sprinkler and the alarm system.  
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Figure 7 Example of an event tree for an explosion 

In general, the outcome of events in the tree are assumed to be binary, e.g., true or 

false; however, some events may include multiple outcomes, e.g., true, false or open. 

ETA can be used to perform quantitative and qualitative analyses. Quantitative 

analysis is done when probabilities are assigned to events in the tree. For instance, as 

shown in Figure 7, the probability of “an uncontrolled fire with no alarm” is 

determined by multiplying the probability of the initiating event and the probabilities 

of all events in the sequence: 

𝑃 = 0.01 × 0.8 × 0.01 × 0.001 

𝑃 = 8 × 10−8 

In safety risk management, the initiating event is usually a hazard or hazardous 

situation. Therefore, the probability of occurrence of the consequence event e.g., 

injury, calculated using the event tree can then be combined with the severity of the 

consequence event to estimate the risk associated with the hazard, i.e., Risk = P × S. 

The severity of the event can be determined based on the economic cost or medical 

intervention required or any other suitable measure or method.  
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In summary, the ETA method includes the following steps: 

1. Identify an initiating event (hazard or hazardous situation). 

2. Identify intermediate events, safety measures, risk controls and mitigants. 

3. Identify potential outcomes or consequences of the initiating event. 

4. Construct the event tree. 

5. Calculate the probabilities for each potential outcome or consequence if 

quantitative data is available. 

Additional information on performing ETA can be found in the standard IEC 62502 

[69]. A limitation of the ETA method is the inability to handle second-order 

uncertainty in the assigned probability values since single-point values are used rather 

than distributions. Risk assessors and manufacturers will find the ETA useful for 

estimating the probability of occurrence of harm associated with identified hazards. 

Also, ETA complements other risk analysis methods such as PHA and FTA and can 

be applied at different phases during the life cycle of a system. 

3.5 Bow-tie Model  

A bow-tie model is a graphical tool used to describe and analyse the causes of an event, 

e.g., hazard, its consequences and the safety barriers or controls required to prevent 

the event or mitigate its consequences [70], [71]. It is often considered to be a 

combination of a fault tree (FT) and an event tree (ET). However, the principal merit 

of the bow-tie model is identifying and describing the safety barriers or controls to 

prevent the event or mitigate its consequences. An example of a generic bow-tie model 

adapted from [71] is shown in Figure 8.  
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Figure 8 Generic Bow-tie Model 

3.6 Risk Matrices 

A risk matrix is a tool that is used to determine the level of risk associated with a 

particular hazard. It combines the probability of the harm occurring and the severity 

of the harm using a matrix or table to estimate the risk, i.e., Risk = P × S. The estimated 

risk is usually classified qualitatively using a ranking scale such as ‘low’, ‘medium’ 

‘high’, quantitatively using a number (obtained by multiplying the rankings for 

likelihood and the severity of the risk) or a combination of both. Risk matrices can be 

used in conjunction with other risk analysis methods, such as FTA, or independently 

using qualitative or quantitative data or both to estimate risk. An example of a risk 

matrix adapted from [6] is shown in Table 2, and the definitions of the severity levels 

and probability occurrence levels used in the risk matrix are shown in Table 3 and 

Table 4 respectively.  
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Table 2 Example of a risk matrix 

  Severity Levels 

  Negligible 

(1) 

Minor 

(2) 

Serious 

(3) 

Critical 

(4) 

Fatal 

(5) 

Likelihood / 

Probability 

Levels 

Frequent (5) 5 10 15 20 25 

Probable (4) 4 8 12 16 20 

Occasional (3) 3 6 9 12 15 

Remote (2) 2 4 6 8 10 

Improbable (1) 1 2 3 4 5 

Risk classification: Green = Low (1-8), Yellow = Medium (9-15), Red = High (16-25) 

Table 3 Definition of severity levels for harm 

Rank Terms Description 

5 Fatal Result in death 

4 Critical Result in irreversible injury 

3 Major Results in injury requiring medical intervention 

2 Minor Results in temporary injury 

1 Negligible Results in temporary discomfort 

 

Table 4 Definition of probability levels for the occurrence of harm 

Rank Terms Probability range 

5 Frequent ≥ 10-3 

4 Probable <10-3 and ≥ 10-4 

3 Occasional <10-4 and ≥ 10-5 

2 Remote <10-5 and ≥ 10-6 

1 Improbable <10-6 

 

In summary, the risk matrix method includes the following steps: 

1. Identify the hazard. 

2. Assign the probability of occurrence of harm and severity of harm ratings. 

3. Look up the risk matrix to determine the overall risk of the hazard. 

The risk matrix method is used in several industries, including product safety. It offers 

advantages such as quick risk estimation of hazards; however, it does not consider the 

causal context in which hazards or risks occur. Hence, risk estimates may be overly 

subjective or ill-defined resulting in flawed risk estimates. For these reasons, risk 
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matrices are usually used to quickly identify hazards posing the highest risks or in 

conjunction with other robust analysis methods such as FTA discussed previously. 

3.7 Monte Carlo Simulation 

The Monte Carlo simulation is a mathematical technique used to model the probability 

of potential outcomes of an uncertain event [72], [73]. It is used in several industries 

for risk assessment and making decisions under uncertainty. For instance, in reliability 

engineering, it is used to predict the failure rate of a system using available information 

such as historical testing and operational data.  

Monte Carlo simulation consists of input variables (i.e., random variables that 

influence the results of the analysis), output variables (i.e., the results of the analysis) 

and the mathematical model (i.e., the mathematical function used to describe or 

simulate the relationship between the input and output variables). A schematic of 

Monte Carlo simulation is shown in Figure 9.   

 

Figure 9 Schematic of Monte Carlo Simulation 

In Monte Carlo simulation, the values of the variables are represented using 

probability distributions such as a Normal distribution; hence it is suitable for 

modelling uncertainty. In fact, Monte Carlo simulation is used in conjunction with 

other risk analysis methods, such as FTA [16] or as a standalone method to handle 

uncertainty. However, it is important to note that it is time-consuming and 

computationally expensive for complex systems. 

3.8 Beta Factor Method 

The Beta (β) factor method is used to model common cause failures of a system [67], 

[68]. A common cause failure is the failure of multiple components of a system due to 

a shared or common cause. The underlying assumption of the β-factor method is that 

the failure 𝜆 of a component is dependent on independent failures 𝜆1 (failures 

impacting only the component) and common cause failures 𝜆2 (failures impacting all 

components sharing the common cause) i.e., 𝜆 =  𝜆1 + 𝜆2.  
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The β-factor parameter is the probability that a failure of a component is due to 

common cause failures, i.e., 𝛽 =  
𝜆2

𝜆
 . Hence 𝜆2 =  𝛽𝜆 and 𝜆1 = (1 −  𝛽)𝜆.  

When applied to FTA (see Section 3.3), the β-factor method allows the modelling of 

common cause failures within FTA. An example of a fault tree model with common 

cause failures is shown in Figure 10. In this example, we estimate the probability of a 

power failure for a system. We assume that the probability of failure for each power 

supply in the system is 0.001, and the β-factor is 0.1. Hence, using Boolean algebra, 

probability rules and the β-factor, the probability that the power supplies fail due to 

common cause failures is 0.0001 (i.e., 0.1 × 0.001), and the probability that the power 

supplies fail independently is 8.1E-7 (i.e., (0.9 × 0.001) × (0.9 × 0.001)). Hence the 

probability of a power failure for the system is 1.0081E-4 (i.e., 0.0001 + 8.1E-7). 

 

Figure 10 Fault Tree Analysis with CCF 
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3.9 Parts Count and Parts Stress Methods 

The parts count method and the parts stress method defined in MIL-HDBK-217F [74] 

are used to estimate the reliability of systems. The parts count method is used to 

estimate the reliability of a system in the early design stage when insufficient 

information is available [74]. This method uses the generic failure rates of the parts 

given an operating or use environment. These failure rates are multiplied by a quality 

factor and summed up to estimate the failure rate of the system. 

Though the parts count technique may be used in conjunction with other methods or 

as a standalone method to estimate the risk of a novel system, it is time-consuming 

and expensive for complex systems. Furthermore, the parts count technique can give 

inaccurate results if the system is redundant [17]. Other limitations of the method 

include limited approach to handling uncertainty. 

The parts stress method is used to estimate the reliability of a system later in the 

development stage when sufficient operating information is available [74]. This 

method is more accurate than the parts count method since it incorporates operating 

stresses when estimating the failure rates of the parts. The failure rates are then 

summed to estimate the failure rate of the system. The accuracy of the failure rate 

estimates increases as more operating information becomes available.  

3.10 Chapter Summary 

In this chapter, we described the commonly used risk analysis methods and techniques 

in the product safety industry. We also discussed some of the limitations associated 

with these methods previously discussed in Section 1.3. In the next chapter, Bayesian 

Networks (BNs) are reviewed as a method for risk analysis and assessment which 

resolves the limitations associated with existing risk analysis methods. 

 

 

 

 

 



47 

 

Chapter 4 Bayesian Networks  

In this chapter, Bayes’ Theorem and Bayesian Networks (BNs) are introduced. Then, 

the concepts of conditional independence and types of reasoning done using BNs are 

presented. The material presented in this chapter is essential to understand the novel 

work presented in Chapter 6 and applied in Chapters 7 and 8. Some of the material 

presented in this chapter has previously been presented in the following publications: 

Publication 1 [23], Publication 2 [15], Publication 3 [24], Publication 4 [25], 

Publication 5 and Publication 6.  

4.1 Conditional Probability and Bayes’ Theorem 

“The basic expressions in the Bayesian formalism are statements about conditional 

probabilities” [75]. Given two events, A and B, a conditional probability is the 

probability that event A occurs, given that event B has already occurred. This 

relationship between events A and B is expressed as P(A|B), i.e., the probability of A 

given B or the probability of A in the context of event B.  

If we assume that events A and B are independent (𝐴 ⊥ 𝐵), then our belief in event A 

is unchanged given event B (vice-versa for our belief in event B). This relationship is 

expressed as follows:  

Equation 2: 

𝑃(𝐴|𝐵) = 𝑃 (𝐴) 

𝑃(𝐵|𝐴) = 𝑃 (𝐵) 

If we assume the joint event (A, B), then the relationship between the joint event and 

conditional probabilities is expressed as follows: 

Equation 3: 

𝑃(𝐴, 𝐵) = 𝑃 (𝐴|𝐵)𝑃(𝐵) = (𝐵|𝐴) 𝑃(𝐴) 

Equation 3 can be re-written as follows: 

Equation 4: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
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Equation 4 is called Bayes’ Theorem, developed in the 1750s by Reverend Thomas 

Bayes [76], [77]. Bayes Theorem provides a formula for updating our prior belief 

about an event given new evidence. Our prior belief is called the prior probability (or 

prior), and our revised belief is called the posterior probability (or posterior). Bayes 

Theorem is essential since it expresses a probability (posterior probability) which 

people generally find difficult to evaluate in terms of probabilities that can be obtained 

directly from our experience, knowledge or observations [75]. For instance, in the 

safety domain, a manufacturer can estimate the probability of an injury given a hazard 

using injury reports but may find it difficult to estimate the probability of a type of 

hazard given a particular injury. The latter information is important since an injury can 

be caused by one or more different hazards, e.g., burns can be caused by hot surfaces 

or electric shock. Suppose that we assume for a domestic iron that the probability of 

burns (injury) is 0.75. The probability of a hot surface (hazard) is 1, and based on 

injury reports, the probability of a burn due to a hot surface and electric shock is 0.6 

and 0.4, respectively. We can calculate the probability that the hazard is a ‘hot surface’ 

given the injury (burns) using Bayes’ Theorem (see Equation 4) as follows:  

𝑃(𝐻𝑜𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒|𝐵𝑢𝑟𝑛𝑠) =
𝑃(𝐵𝑢𝑟𝑛𝑠|𝐻𝑜𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒)𝑃(𝐻𝑜𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

𝑃(𝐵𝑢𝑟𝑛𝑠)
 

=
0.6 × 1

0.75
= 0.80 

It is important to note that at the core of the Bayesian approach is the belief that all 

probabilities are conditional on a context K, where K is background knowledge and 

assumptions [13], [75]. Therefore, the probability assigned to an uncertain event A is 

always conditional on the context K, i.e., P(A|K). In practice, when we assign a 

probability to an (uncertain) event A, we often write P(A), excluding the symbol for 

K. This is appropriate when the context K does not change during a given analysis. In 

situations where the context K changes, we have to explicitly specify K. Hence Bayes 

Theorem can also be expressed as follows: 

Equation 5: 

𝑃(𝐴|𝐵, 𝐾) =
𝑃(𝐵|𝐴, 𝐾)𝑃(𝐴|𝐾)

𝑃(𝐵|𝐾)
 

Where K is background knowledge or assumptions. 
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Equation 3 computes the joint probability distribution for two events; however, in 

practice, we may need to compute the joint probability distribution for three or more 

events. In these situations, Equation 3 can be extended as required using the chain rule 

formula [75]. For instance, given a set of n events, E1,…En, the joint probability 

distribution is computed as the product of n conditional probabilities: 

Equation 6: 

𝑃(𝐸1 … . 𝐸𝑛) = 𝑃 (𝐸𝑛 |𝐸𝑛−1, … . 𝐸1) … . 𝑃(𝐸2|𝐸1)𝑃(𝐸1) 

Finally, Bayes’ Theorem is easy to compute when a problem consists of one or a few 

variables. However, for complex problems with a large number of variables, 

computing the joint probability distributions and posterior probabilities becomes a 

complex and time-consuming task. In these situations, we recommend using Bayesian 

networks (BNs) since it efficiently computes Bayes’ Theorem and the joint probability 

distribution for a large number of variables. In the following section, we discuss BNs 

and their features.  

4.2 Bayesian Networks 

A Bayesian network (BN) (also known as a Bayesian belief network (BBN) or causal 

Bayesian network (CBN)) is a directed acyclic graph (DAG) that encodes the joint 

probability distribution for a large set of random variables. It consists of qualitative 

and quantitative components [13], [75], [76], [78]–[81]. The qualitative component of 

the BN is a DAG with nodes representing a set of random variables and directed edges 

(arcs) representing the causal relationship or dependencies between the connected 

variables (nodes). For instance, given two variables 𝑋1 and 𝑋2, a directed edge from 

𝑋1 to 𝑋2 (𝑋1 →  𝑋2) indicates that 𝑋1 causally influences 𝑋2 or 𝑋2 is dependent on 𝑋1; 

thus, 𝑋1 is called the parent of 𝑋2 and 𝑋2 is called the child of 𝑋1.  

The quantitative component of the BN consists of node probability tables (NPTs), also 

called conditional probability tables (CPTs). NPTs specify the strength of the 

relationship or conditional dependency between the connected variables by defining 

the conditional probability distribution for each variable given its parents. For 

instance, given set 𝑋 =  {𝑋1, … 𝑋𝑛} of random variables, the NPT for each variable 𝑋𝑖 

given its parents 𝑃𝐴 (𝑋𝑖) can be represented as 𝑃 (𝑋𝑖| 𝑃𝐴 (𝑋𝑖)). Any variable 𝑋𝑖 
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without parents is called a root node, and its NPT is its prior or marginal probability 

distribution, i.e., 𝑃(𝑋𝑖).  

The conditional independence assumptions for the variables in the BN, represented by 

the directed edges and NPTs, facilitate decomposition of the underlying joint 

probability distribution as a product of conditional probability distributions. Hence, 

the joint probability distribution for set 𝑋 = {𝑋1, … 𝑋𝑛} of random variables for any 

BN can be computed as follows (using the chain rule formula [75]): 

Equation 7: 

𝑃 (𝑋1, … 𝑋𝑛) = ∏ 𝑃(𝑋𝑖

𝑛

𝑖=1

| 𝑃𝐴 (𝑋𝑖)) 

Equation 7 is useful since it reduces the complexity of inferences performed in a BN 

[82]. 

NPTs in a BN can also be defined using other methods instead of manually specifying 

the conditional probabilities. For instance, NPTs for discrete variables can be defined 

using comparative expressions such as IF statements. The NPTs for continuous or 

numeric variables can be defined using mathematical functions such as A = B + C and 

statistical distributions such as an Exponential distribution [13]. Some of these 

methods are illustrated in Table 5. 

Bayesian networks consisting of discrete and continuous variables are called hybrid 

Bayesian networks [13] [79]. An example of a hybrid BN is shown in Figure 11. In 

this example, the probability of a patient being burnt by a defibrillator due to its surface 

being too hot is estimated. The graphical structure of this BN was previously presented 

in Chapter 2 (see Figure 2); in this section, we assign probabilities to the variables. In 

Figure 11, the probability that the patient is burnt depends on the probability of the 

node ‘Surface Too Hot’ and the probability of the node ‘Controller Intervention’. The 

probability of the node ‘Surface Too Hot’ depends on the probability of the node 

‘Wrong Setting Chosen’ and the probability of the node ‘Automatic Switch-Off’. In 

this example, the probability that the patient is burnt is 0.0016 if we assume that the 

mean probability of the node ‘Surface Too Hot’ is 0.004, the mean probability of the 

node ‘Wrong Setting Chosen’ is 0.1, the probability of the node ‘Automatic Switch 

Off’ is 0.80 and the probability of the node ‘Controller Intervention’ is 0.30. The NPTs 
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for the variables in the BN are shown in Table 5. Ultimately, this simple example 

demonstrates the flexibility and power of using hybrid BNs to model complex 

problems involving discrete and continuous variables, such as risks associated with 

products. 

 

Figure 11 Hybrid BN – Defibrillator Example 

Table 5 NPT for nodes in the hybrid BN - Defibrillator Example 

Node Name NPT 

Wrong Setting Chosen Exponential (10) 

Automatic Switch Off False: 0.2, True: 0.8  

Controller Intervention False: 0.7, True: 0.3 

Surface Too Hot Partitioned expression (False: 0.2 × wrong_setting, True: wrong_setting × 

0.001) 

Patient Burnt Partitioned expression (False: Triangle (0.2 × hot_surface, hot_surface, 0.5 × 

hot_surface), True: 1.0E-4 × hot_surface) 

 

For additional information on the theory of BNs, see [13], [75], [76], [78]–[81]. In the 

following section, we discuss the process and methods used to build BNs. 
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4.3 Building Complex Bayesian Networks 

The process of building a Bayesian network consists of two main activities: 

1. Determine the structure of the BN: The first part of this phase entails 

identifying the set of variables relevant to the problem and specifying their 

states. The last part of this phase entails building the DAG. This can be done 

by linking relevant variables using directed edges based on the causal (cause-

effect) relationships among the variables [81]. 

 

2. Specify the parameters (or NPT) of the BN variables: Once the structure of the 

BN is defined, the next step is to specify the parameters (or NPT) for the 

variables. The parameters (or NPTs) describe the strength of the relationship 

or conditional dependency between the variables in the structure.  

The BN structure and parameters can be learnt from data (data-driven approach), 

elicited knowledge from domain experts (knowledge-based approach) or a hybrid 

approach that combines both methods. In practice, most BNs are built using the 

knowledge-based approach due to potential issues with automated learning from data, 

such as requiring a large amount of data and poor data quality [83]. For this reason, 

several knowledge engineering approaches have been proposed to facilitate the easy 

development of BNs using expert knowledge. In the following section, we review 

these knowledge engineering approaches. Automated methods for learning BN 

structure and parameters using data such as score-based algorithms and maximum 

likelihood expectation are briefly discussed.  

4.3.1 Knowledge Engineering Methods: BN Structure 

Several knowledge engineering approaches have been proposed for developing 

Bayesian networks (BNs) [19], [84]–[87]. For instance, Laskey and Mahoney [84], 

[85] proposed a method for specifying knowledge in larger semantically meaningful 

units or modules called network fragments. A network fragment is a set of related 

random variables together with knowledge about their probabilistic relationships. 

Network fragments should be practical, explainable and adhere to the semantics and 

syntax of BNs. Koller and Pfeffer [86] proposed the object-oriented Bayesian 

networks (OOBNs) approach. In this approach, network fragments are called classes 
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and variables, and instantiated fragments are called objects. Helsper & Van der Gaag 

[87] proposed using ontologies to develop BNs. An ontology is an explicit 

specification of the elicited domain knowledge, including meta-level and background 

knowledge. The information contained in the ontology is then used to develop the 

required BN structure [87]. 

Neil et al. [19] proposed using idioms to develop large complex BNs. Idioms are small 

BN structures or fragments that represent generic types of uncertain reasoning. Using 

this approach, researchers have developed idioms specifically for legal and medical 

domains [88], [89]. For instance, Lagnado et al. [89] proposed idioms for legal BN 

development and Kyrimi et al. [88] proposed idioms for medical BN development.  

In this thesis, we used the idiom-based approach to develop idioms specifically for 

building BNs for product safety risk management called product safety idioms (see 

Chapter 6). The proposed product safety idioms are sufficiently generic that they can 

be applied to many different product safety cases. In the following section, we review 

the idiom-based approach proposed by Neil et al. [19]. 

4.3.1.1 Idiom-based Approach 

Neil et al. [13], [19] proposed the following four idioms as part of the idiom-based 

approach for building BNs: 

1. Cause-consequence idiom: This idiom models the causal relationship between 

causes and consequences. It uses chronological order where the cause always 

precedes the consequence, or the consequence always follow the cause. For 

example, as shown in Figure 12, Rain causes Flooding. 
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Figure 12 Cause-consequence idiom (a) with instantiation (b) 

2. Risk/Opportunity event idiom: This idiom is an instance of the cause-

consequence idiom that models a risk/opportunity event. Its structure includes 

a cause (trigger), risk/opportunity event, consequence, control and mitigant. 

For example, consider the risk of a car crash shown in Figure 13. In this 

example, driving fast (cause) can cause a crash (risk event), resulting in injury 

(consequence). However, speed bumps (control) help avoid the crash, and the 

seat belt (mitigant) helps avoid injury if there is a crash. 

 

Figure 13 Risk event idiom (a) with instantiation (b) 
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3. Measurement idiom: This idiom models the uncertainty concerning the 

measurement of a variable. It assumes – as is generally the case – that the actual 

value of the variable is not directly observed but is rather assessed by a 

‘measured’ value. The extent to which the measured value ‘matches’ the actual 

value is determined by the accuracy of the measurement instrument used to 

measure the variable. For example, as shown in Figure 14, we generally cannot 

observe the ‘true’ number of product defects. Instead, we use a measured value, 

namely the number of product defects found in testing. The extent to which 

this accurately captures the true number of defects depends on the accuracy of 

testing. If testing is extensive, we might expect to find most or even all defects, 

and so the number found would be a very accurate ‘measure’ of the true 

number of defects. However, if we did very little testing, then the number 

found would not be an accurate measure of the true number of defects.  

 

Figure 14 Measurement idiom (a) with instantiation (b) 

4. Definitional/synthesis idiom: This idiom (see Figure 15) models the 

combination of nodes into one synthetic node. This is done in one of the 

following ways:  

a. Definitional relationship between variables: This entails defining the 

synthetic node in terms of its parents. 

b. Hierarchical definitions: This entails combining nodes into 

definitional idioms and linking them together to establish a hierarchical 

structure.  
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c. Combining parent nodes to reduce the size of child nodes NPTs: This 

entails combining parent nodes into synthetic nodes to reduce the 

number of parents and the NPT parameters of child nodes. 

 

Figure 15 Definitional idiom (a) with instantiation (b) 

5. Induction idiom: This idiom models statistical induction to learn an unknown 

or partially known parameter about some population of interest from data. The 

idiom structure is shown in Figure 16. The induction idiom is the general 

model for any type of statistical inference done using a BN. 

 

Figure 16 Induction idiom 

The idiom-based approach is useful since it allows modellers to organise variables into 

meaningful BN fragments that can be combined into larger BNs. Also, it can be 

applied to many different problems. 

Experts also use automated methods to learn the BN structure. The two main 

algorithms for learning BN structures are constraint-based and score-based. 

Constraint-based algorithms learn the structure of the BN by identifying causal 
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relationships or dependencies among variables using conditional independence tests 

and linking variables with dependencies [90]–[92]. Score-based algorithms apply 

general optimisation techniques to learn the BN structure. It involves identifying 

candidate structures and assigning them a network score based on their goodness of 

fit; the structure with the highest score is selected [92]–[94]. 

4.3.2 Knowledge Engineering Methods: BN Parameters 

There are several methods proposed to ease the burden and reduce the time taken to 

populate NPTs for variables in a BN [13]. Comparative expressions such as IF 

statements and logic functions such as OR, AND, and NoisyOR can be used to 

populate the NPTs for discrete variables. For instance, given three binary variables A, 

B, and C, if C is true when A or B is true, then the NPT for variable C can be easily 

populated using the following expression:  

IF (A == "True" || B == "True", "True", "False") 

Where || represents OR.  

Ranked nodes have been proposed to represent variables with states measurable on a 

subjective ranked scale like {“low”, “medium”, “high”}. A ranked node assumes that 

the states of a variable are mapped to an underlying numerical scale interval [0,1]. For 

this reason, the NPTs of these nodes can be defined using statistical distributions, 

specifically a TNormal distribution. Ranked nodes are useful for defining the NPTs 

for nodes with parents. In these situations, the NPT of the child node is defined simply 

as a TNormal distribution with mean μ (weighted average of its parents) and variance 

σ2. Other methods for defining NPTs include using mathematical expressions such as 

X = Y + Z and statistical distributions such as Normal distribution [13], [95]. 

Experts also use automated methods such as maximum likelihood estimation and 

expectation maximisation algorithms to learn parameters. Maximum likelihood 

estimation is a method of inferring or estimating the parameters of a probability 

distribution using observed data [13], [96]. It entails maximising the likelihood 

function to determine the parameters that best describe the observed data. Expectation 

maximisation is a method for performing maximum likelihood estimation using 

incomplete data or data with latent variables [13], [96]. 
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It is important to note that applying the above methods accurately to different risk 

problems requires the modeller to understand the subject matter sufficiently. However, 

due to many different risk problems, modellers often require input from domain 

experts. Several processes have been proposed to elicit knowledge from experts. These 

processes include determining what information to elicit, designing the process for 

elicitation and performing the elicitation [13], [97]–[99]. 

The proposed methods for populating BN parameters discussed in this section have 

been used in this thesis to define the NPTs for the BNs presented in the case studies. 

4.3.3 Conditional Independence in Bayesian Networks 

Building any BN requires understanding the three types of dependency connections 

(d-connections). D-connections encode assumptions about conditional independence 

(see Equation 2 and Equation 7) among variables based on d-separation (a criterion 

for deciding whether two variables in a BN are independent given a third variable). 

The underlying assumption for conditional independence in a BN is that each variable 

is conditionally independent of its non-descendants, given its parents. The three types 

of d-connections are shown in Figure 17 and described using variables X, Y and Z [13], 

[75], [76]:  

1. Serial d-connection: In this structure (Figure 17a), information from X is 

transmitted to Y via Z. As a result, Z is called the mediator that transfers the 

effect of X to Y. Information is only transmitted from X to Y via Z when Z is 

unknown. When Z is known, X has no effect on Y since Z blocks any 

information about X from Y. For this reason, X and Y are conditionally 

independent (or d-separated) given Z, i.e., (𝑋 ⊥ 𝑌) | 𝑍 = 𝑧. 

 

2. Diverging d-connection: In this structure (Figure 17b), information is 

transmitted from Z to X and Y, respectively. Information is only transmitted 

from X to Y via Z when Z is unknown. When Z is known, then X has no effect 

on Y since Z blocks any information about X from Y. For this reason, X and Y 

are conditionally independent (or d-separated) given Z, i.e., (𝑋 ⊥ 𝑌) | 𝑍 = 𝑧. 

 

3. Converging d-connection: In this structure (Figure 17c), information is 

transmitted to Z from both X and Y, respectively. Information is only 
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transmitted from X to Y via Z when Z is known. When Z is unknown, X and Y 

are considered independent (or d-separated), i.e., (𝑋 ⊥ 𝑌) | 𝑍, and no 

information is transmitted between them. For this reason, X and Y are 

conditionally dependent given Z. 

 

Figure 17 Types of d-connections (a) Serial (b) Diverging (c) Converging 

 

4.4 Inference in Bayesian Networks 

Since performing Bayes’ Theorem computations in large BNs can be challenging, 

several inference algorithms have been proposed to perform computations efficiently 

[13], [75], [100]–[102]. The most popular inference algorithm used in BNs is the 

junction tree algorithm [13], [100], [102]. This algorithm transforms a Bayesian 

network into a tree structure with clusters (groups consisting of one or more variables) 

known as a junction tree. In a junction tree (see Figure 18), the clusters (represented 

by nodes) are connected via edges (represented by lines) and separators (represented 

by square nodes). The separators must be a common subset of the nodes in the clusters 

they link. Computations are done locally on parts of the tree and propagated to other 

parts of the tree structure as ‘messages’ (known as message passing). This allows the 

BN to provide global answers based on local computations. 
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Figure 18 (a) A BN and (b) associated junction tree 

Another useful algorithm supporting inference in BNs, especially hybrid BNs, is 

dynamic discretization [13], [103], [104]. Discretization is the process of transforming 

a continuous variable into a discrete variable. In the past, BN methods and tools used 

static discretization (i.e., discretization done using a predefined interval) to handle 

continuous variables. However, this approach has several limitations, including loss 

of accuracy, slow execution and high memory demands [13], [103], [104]. These 

limitations are resolved using dynamic discretization (i.e., discretization based on the 

distribution of the data). 

The dynamic discretization algorithm proposed by Marquez et al. [104], [105] based 

on work by Kozlov and Koller [106] entails “a process of dynamic discretization of 

the domain of all continuous variables in the BN and using entropy error as the basis 

for approximation”. It improves the accuracy of inference in hybrid BNs and has fewer 

memory demands than static discretization. In this thesis, the dynamic discretization 

and junction tree algorithms are used for inference in the hybrid BNs discussed in the 

case studies. Both algorithms are implemented using AgenaRisk Desktop software 

[22]. 
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4.5 Reasoning with Bayesian Networks 

In this section, we describe the three types of reasoning done using BNs, i.e., 

observation, intervention and counterfactual. These types of reasoning vary in terms 

of the queries they can answer and are organised into a three-level causal hierarchy 

called the ladder of causation. The ladder of causation shown in Table 6, proposed by 

Pearl [76], provides a framework to understand the different levels of reasoning and 

how they relate to each other. The three levels correspond to the complexity of the 

causal queries ranging from observation (Level 1) to counterfactual (Level 3). The 

underlying concept of the ladder of causation is that queries at level n can only be 

answered if the information at level n-1 is available.  

Table 6 Pearl’s Ladder of Causation 

Level Reasoning Activity Questions 

1 Observation or 

Association 

Seeing, 

Observing 

What if I see? How would seeing X change my 

belief in Y? 

2 Intervention Doing, 

Intervening 

What if I do? What would Y be if I do X? 

3 Counterfactual Imagining, 

Retrospective 

What if I had done? Was it X that caused Y? 

 

In the following sections, we illustrate the three types of reasoning using the Garden 

BN shown in Figure 19 adapted from [75]. The Garden BN describes the relationships 

between the variables season, rain, sprinkler and garden wet using the following 

assumptions:  

1. P(Rain season) = P (Dry season) = 0.5  

2. P(Sprinkler = On | Rain season) = 0.20  

3. P(Rain = Yes | Rain Season) = 0.80 

4. P(Garden wet = Yes | Sprinkler = On, Rain = Yes) = 0.99 

5. P(Garden wet = Yes | Sprinkler = On, Rain = No) = 0.9 

6. P(Garden wet = Yes | Rain = Yes, Sprinkler = Off) = 0.9 

7. P(Garden wet = Yes | Sprinkler = Off, Rain = No) = 0.01 
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Figure 19 Garden BN with marginal probabilities 

4.5.1 Observation Reasoning 

The first level of the ladder of causation entails making predictions or inferences using 

passive observations. Observation or association reasoning is based on statistical 

relationships informed by the data [75], [76], [107]. For instance, as shown in Figure 

20, observing that the sprinkler is on, we can infer that it is most likely the dry season. 

This type of association can be informed directly from the data without any 

information on the causal relationship among the variables. In fact, we are simply 

computing the probability of the dry season given that the sprinkler is “On”, i.e., 

P (Dry season | Sprinkler =  On). Hence methods such as regression, machine 

learning and conditional probabilities are examples of observation reasoning since 

they measure the degree of associations between variables [76]. 
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Figure 20 Garden BN after observing the sprinkler is on 

In a BN, we can perform two types of reasoning using observations, i.e., diagnostic 

(backward) reasoning and predictive (forward) reasoning. 

1. Diagnostic reasoning: This type of reasoning entails discovering the cause of 

an observation. For instance, observing the sprinkler is “On”, we can infer that 

it is most likely the dry season, as shown in Figure 20. In Figure 20, when we 

observe that the sprinkler is “On”, the probability of dry season increases to 

0.8 (the prior was 0.5, as shown in Figure 19). There is a special type of 

diagnostic inference known as explaining away [13], [75], [108]. Explaining 

away can be done when a child variable has at least two independent parent 

variables. If the child variable is observed, then the likelihood of the parent 

variables increases. However, suppose only one of the parent variables occurs. 

In that case, it becomes the most likely explanation of the child variable, hence 

explaining away the other possible causes—the likelihood of the other parent 

variables decreases. For instance, if sprinkler and rain were independent 

variables, if we observe that the sprinkler is “On”, we can infer it is the most 

likely cause of the garden being wet. 

 

2. Predictive reasoning: This type of reasoning entails discovering the effect of 

an observation. For instance, observing that the sprinkler is “On”, we can infer 

that the garden is most likely wet, as shown in Figure 20. In Figure 20, when 
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we observe that the sprinkler is “On”, the probability that the garden is wet 

increases to 0.93 (the prior was 0.77, as shown in Figure 19). 

4.5.2 Intervention Reasoning 

The second level of the ladder of causation entails predicting the effects of 

interventions [75], [76], [107]. Intervention reasoning differs from observation 

reasoning since it evaluates the effects of an intended action, whereas observation 

reasoning observes the effect of an action. The former is done by intervening on a 

variable (see  Figure 21), and the latter is done by conditioning on a variable (see 

Figure 20). Intervening on a variable entails fixing its value by making the variable 

independent of its causes via graph surgery, i.e., removing all arcs entering the 

intervened variable. For instance, as shown in Figure 21, the intervened variable 

sprinkler is made independent of the variable season by removing the arcs from season 

to sprinkler. The do operator proposed by Pearl [75] is used in probability expressions 

to specify intervention reasoning. For instance, the probability that the garden is wet 

after seeing the sprinkler “On” is expressed as P(Garden wet | Sprinkler =  On) 

whereas the probability that the garden is wet after turning on the sprinkler (i.e., 

performing an action) is expressed as P(Garden wet | do (Sprinkler =  On)).  

Contrary to observation reasoning, intervention reasoning depends on the causal 

relationship among the variables. Without knowledge of causal relationships, the data 

used in observation reasoning cannot be used to answer intervention queries [76]. 

Also, intervention reasoning does not support diagnostic reasoning since the 

intervened variable is made independent of its causes.  
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Figure 21 Garden BN after turning the sprinkler on 

4.5.3 Counterfactual Reasoning 

The third level of the ladder of causation entails imagining what would have happened 

if the observed events were different. Counterfactual reasoning is essential since “it 

allows us to learn from history and the experience of others” [75], [76], [107]. For 

instance, determining why some risk controls are effective on some systems can 

inform better risk controls for other systems.  

Counterfactual reasoning combines observation and intervention reasoning; hence, it 

is at the top of the ladder of causation. It is implemented in BNs using the twin network 

method proposed by Balke and Pearl [109]. The twin network method uses two 

identical networks, one network represents the real world, and the other represents the 

counterfactual world. The two networks are connected by shared background variables 

u. The real world is modelled using observations, and the counterfactual world is 

modelled using interventions. The background variables are essential in the network 

since they share information learnt from the real world with the counterfactual world. 

As a result, predictions using the counterfactual world are performed under the same 

conditions as the real world, allowing us to compare the outcomes of both worlds 

accurately. Pearl suggests the following three steps for computing counterfactuals 

which are encoded in the twin network model [75], [76]: 

1. Abduction: Use the evidence e in the real world to update the information of 

the background variables, i.e., 𝑃 (𝑢 | 𝑒) 
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2. Action: Apply the do-operator to modify the model based on the counterfactual 

assumptions made. 

3. Prediction: Make predictions using the modified model and revised 

background information. 

For example, suppose we observe that the sprinkler is on, and the garden is wet. In this 

case, we might wonder whether the garden would be wet if the sprinkler is off. We 

can answer this counterfactual question using the BN shown in Figure 22. In the real 

world, we enter our observations, and the BN uses this information to update the 

information about the season (background variable), which is shared with the 

counterfactual world. In the counterfactual world, we intervene on the sprinkler setting 

its value to “Off” to compute whether the garden will be wet. According to the BN 

shown in Figure 22, there is a 30% chance that the garden will be wet if the sprinkler 

is off.  

 

 Figure 22 Garden BN counterfactual reasoning  

4.6 Chapter Summary 

In this chapter, we introduced Bayesian networks. We described the methods used to 

build complex BNs and to perform inferences in BNs. Finally, we described the types 

of reasoning done using BNs. In the next chapter, we review the use of BNs in the 

safety domain.    
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Chapter 5 Review of the use of Bayesian Networks in 

the Safety Domain 

In this chapter, a review of the use of BNs in the safety domain is presented. We review 

their applications in two areas relevant to the work presented in this thesis: 

1. Safety, reliability and risk assessments 

2. Model-to-model transformation/mapping approaches 

The material presented in this chapter informs the BN development method presented 

in Chapter 6 and applied in Chapters 7 and 8.   

5.1 Safety, Reliability and Risk Assessments  

Safety-critical systems are used in many products and industries, such as maritime, 

railway and aviation industries. Despite the benefits these systems offer, they pose a 

serious risk to our health and safety when they fail. As a result, during production and 

post-production, the safety, reliability, and risk of these systems must be continuously 

assessed and judged acceptable by manufacturers and safety regulators. Commonly 

used approaches for assessing the safety, reliability, and risk of systems include Fault 

Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA) and Bow-tie models 

(see Chapter 3 for a review of these risk analysis methods). However, these approaches 

have several limitations, such as the inability to handle multi-state variables, 

uncertainties in system behaviour and failure data, and dependencies among system 

components (as discussed in Chapter 1). These limitations are resolved using Bayesian 

networks. BNs are suitable for this task since they are a robust, rigorous, normative 

method for modelling uncertainty and causality. They have been used in several 

industries to assess the safety, reliability, and risk of systems [110], [111]. A review 

of their applications in energy, defence, railway, aviation, maritime, medical, software 

and product safety industries relevant to the work described in this thesis is 

undertaken. 

5.1.1 Energy Industry 

Lee et al. [112] used BNs for the probabilistic risk assessment of nuclear waste 

disposal. They noted that for events in a controlled environment such as a nuclear 
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power station, risk could be easily assessed using traditional risk analysis methods 

since relevant data is available. However, traditional risk analysis methods are not 

applicable to rare events such as nuclear waste disposal, whose data is limited and 

often uncertain. Therefore, the authors proposed using BNs to assess the risk 

associated with nuclear waste disposal. Since Bayesian networks are a rigorous 

normative method for modelling uncertainty and causality, it is clear why the authors 

used this approach for assessing the risk associated with nuclear waste disposal. This 

research demonstrates the use of BNs for performing risk assessment with uncertain 

data, which is relevant to the work done in this thesis. 

Wu et al. [113] used BNs for fault detection and diagnosis (FDD) in nuclear power 

plants. Their experiments show that BNs can perform FDD with incomplete data and 

multi-sensor information at a nuclear power plant. Ur et al. [114] used BNs for 

reliability analysis of nuclear instrumentation and control systems. Chojnacki and 

Audouin [115] developed an expert system based on BNs for fire safety analysis in 

the nuclear area.  

Bayesian networks have also been used for the reliability assessment of power 

systems. Yu et al. [116] used BNs for the reliability assessment of power systems. 

They conclude that BNs enhance reliability assessment since they can compute 

posterior probabilities, handle uncertainty and manage dependency among relevant 

variables. Daemi et al. [117] developed a BN for the reliability assessment of 

composite power systems. The authors used the BN to perform probabilistic 

assessments, such as the criticality ranking of system components. Other applications 

and review of BNs for the reliability and risk assessment of power systems include 

Yongli et al.[118], Jie et al. [119], Weber et al. [110], Kabir et al. [111] and Sykora et 

al. [120]. 

5.1.2 Defence Industry 

Neil et al. [121] used BNs to predict the reliability of military vehicles. They noted 

that the reliability of military vehicles is dependent on both objective and subjective 

information. Objective information includes statistical data such as failure rate 

obtained from trials and use. Subjective information includes information about the 

manufacturer’s reputation, design and process information. However, traditional 

methods used for reliability evaluations of military vehicles cannot incorporate 
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subjective information; hence the authors proposed using BNs. The authors noted that 

BNs could improve reliability predictions of military vehicles since it can be done 

earlier in the life cycle using design and process information.  

In their proposed method, historical data about similar systems are used to learn the 

failure rate distribution of the system. The failure rate distribution is then revised using 

operational data obtained from tests and design and process information. An example 

of a BN used to estimate the quality of the design process and revise the reliability 

estimation of a military vehicle is shown in Figure 23.  

 

Figure 23 Example of BN used to predict the design process quality and revise the 

failure rate of military vehicles 

In this BN example, the quality of the design process is dependent on measurable 

factors and indicators such as design staff quality and design document quality. Once 

the quality of the design process is determined, it is then used to revise the prior failure 

rate distribution λpre. The revised failure rate distribution is λpost. One key finding of 

this work is the use of historical data from similar systems, manufacturer’s reputation, 

and design and process information to estimate the reliability of military vehicles. This 

is very valuable and is applicable to the work presented in this thesis.  

Banghart et al. [122] used BNs to assess the risk of an EA-6B aircraft. Their research 

concluded that BNs are suitable for assessing the risk of potential degraders to 

readiness, such as high failure systems and excessive repair times. Crispim et al. [123] 
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used BNs to assess the risk associated with military shipbuilding projects. They 

concluded that BNs are suitable for this task since they can assess risk with limited 

data, especially in the early stages of the project, handle the interdependencies among 

risk events and simulate the effect of risk mitigation methods. Other applications and 

review of BNs for reliability and risk assessment in the defence industry include 

Weber et al. [110], Kabir et al. [111] and Hudson et al. [124]. 

5.1.3 Railway Industry 

Marsh and Bearfield [125] used BNs to model accident causation in the UK railway 

industry. They noted that events such as Signals Passed at Danger (SPADs), usually 

attributed to human error, have other causes, such as organisational factors. However, 

traditional risk analysis methods such as event trees do not include organisational 

factors as part of the sequence of events leading to the accident (since they influence 

accidents indirectly). As a result, the scope of the accident investigation is limited. 

Given the limitations of traditional risk analysis methods, the authors proposed using 

BNs to model operational accidents. Figure 24 shows an example of a proposed BN 

model incorporating organisational factors to estimate the risk levels of SPAD 

accidents. In this BN example, the event nodes are shaded, and the factors that 

influence the event nodes and the occurrence of the SPAD scenario are unshaded. 

 

Figure 24 BN for SPAD Scenario: Read Across an Adjacent Signal 

The key aspect of the work that is applicable to the work described in this thesis is the 

use of organisational factors to produce more reliable risk estimates.  

Complementing their previous work in the railway industry, Marsh and Bearfield [20] 

proposed a systematic method of translating event trees into BNs described in Section 

5.2.2. In [63] the authors also translated fault trees to BNs based on the work by 
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Bobbio et al. [18] described in Section 5.2.1. The resulting BN was used to model the 

risk at different locations on a railway network for derailment accidents. 

One key finding of the work is that event and fault trees can be easily translated to 

BNs to produce more accurate risk estimates. Though translating event and fault trees 

to BNs for risk analysis is not the focus of this thesis, the work provides useful insights 

on integrating and extending traditional methods using BNs. Other applications and 

review of BNs for risk assessment in the railway industry include Castillo et al. [126], 

Leśniak et al. [127], Kabir et al. [111] and Huang et al. [128].  

5.1.4 Aviation Industry 

In the early 2000s, the Federal Aviation Administration (FAA),  National Aeronautics 

and Space Administration (NASA) and Luxhoj and Coit [129] adopted BNs as the 

basis for their aviation system risk model (ASRM). ASRM uses BN modelling to 

identify and understand the causal relationships among the factors that cause aviation 

accidents and to assess the risk of new aviation safety products and system failures 

[129][130]. For instance, Luxhoj and Coit [129] used the ASRM method to model 

aircraft accidents. The authors developed BNs using case studies and expert 

knowledge. For example, relevant variables and their causal interactions were 

identified using expert knowledge and case study data such as accident reports. 

Conditional probability tables (CPTs) were defined using available data and expert 

knowledge. Expert knowledge was essential for BN development since aviation 

accidents are rare events. The authors' study results indicate that BNs are a suitable 

method for probability risk modelling of aviation accidents. A key aspect of the work 

related to the work described in this thesis is identifying relevant variables and their 

causal interactions using expert knowledge and data such as accident reports.   

Neil et al. [131] used BNs to model an air traffic control environment to estimate safety 

and operational risks. The authors used a barrier model describing the sequence of 

events that led to an aircraft collision to identify the relevant variables and causal 

interactions for the BN. Once all relevant variables were identified, the authors used 

the idiom-based approach to build the BN. This approach entails organising variables 

into small BN fragments and connecting these fragments to build the BN (see Section 

4.3.1.1). Their results show that BNs can be used to model safety and operational risks. 
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A key aspect of the work related to the work described in this thesis is organising 

relevant variables into small BN fragments to build BNs.   

Washington et al. [132] used BNs for system safety assessment of remote pilot aircraft 

systems. The authors' interest in using BNs stems from the ability of BNs to handle 

uncertainties in the system safety assessment process. Their results show that BNs can 

be used for safety assessments of novel or complex systems with uncertainty in system 

behaviour or available data. 

Other applications of BNs for safety and risk assessment in the aviation industry 

include Shih et al. [133], Zhang et al. [134], Wang et al. [135], Chen and Huang [136], 

and Ale et al. [137]. 

5.1.5 Maritime Industry 

Hanninen and Kujala [138] and Fan et al. [139] used BNs to investigate the impact of 

human factors on the risk of ship collisions. Their research shows that BNs can inform 

appropriate risk mitigation measures, as they provide valuable information on factors 

that contribute to ship collisions. Trucco et al. [140] used BNs to assess the risk of the 

maritime transport system taking into account human and organisational factors. 

Montewka et al. [141] also used a BN to assess the risk of maritime transportation 

systems.  

Zhang et al. [142] used a BN and a formal safety assessment to assess the navigational 

risk of the Yangtze River. In their proposed BN shown in Figure 25, they combined 

the consequence of the accident and the probability of the accident to estimate the 

navigational risk. They concluded that using BNs allowed them to identify the factors 

that have the largest influence on navigational risk.  

A key aspect of the work discussed in this section relevant to the work described in 

this thesis is incorporating organisational and human factors in risk estimation. Other 

applications and review of BNs in the maritime industry include Weber et al. [110] 

and Kabir et al. [111]. 
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Figure 25 Navigational Risk BN 

5.1.6 Medical Industry 

This section is adapted from Publication 4 [25], previously published by Arxiv.org.  

Haddad et al. [143] developed a BN to predict fatigue fracture of a cardiac lead. They 

validated the results of the BN by comparing it to the field performance data for 

cardiac leads available on the market. Medina et al. [144] developed a BN to identify 

the critical factors that affect the decision time for the Food and Drug Administration 

(FDA) to approve a medical device for market release. Zhang et al. [145] developed a 

BN to detect faults associated with medical body sensors network that collects and 

uses physiological signs for patient health monitoring. Rieger et al. [146] proposed a 

Bayesian risk identification model (BRIM) to predict and reduce use error risk during 

the development of medical devices. Li et al. [147] used a dynamic BN to assess the 

risk of device failures and human errors in healthcare. Other applications and review 

of BNs in the medical industry include Kabir et al. [111], Kyrimi et al. [148], Lucas et 

al. [149] and McLachlan et al. [150].  

A key aspect of the research discussed in this section relevant to the work in this thesis 

is the use of BNs to assess the risk of failures and injuries associated with medical 

devices. However, all the proposed BNs are tailored and are not generalisable. Hence, 

a generic BN for medical device risk assessment is needed to assess the risk of 

different types of medical devices. In Chapter 7, we present a generic BN for medical 

device risk management. 
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5.1.7 Software Industry 

Fenton et al. [151]–[154] used BNs to predict defects and estimate the reliability of 

complex software systems. For instance, they created the AID tool (powered by BNs) 

to predict software defects in consumer products for Philips. The authors built software 

reliability models using object-oriented Bayesian networks (OOBNs), empirical data 

and expert knowledge. The OOBNs approach [155] entails creating predefined BN 

fragments called classes and using instances of these classes called risk objects to 

build the BN. The authors created classes for activities done during each life cycle 

phase. For instance, the Rework class shown in Figure 26 was created to model rework 

activities. Instances of the different classes were then linked to create a full lifecycle 

BN model. 

 

Figure 26 Rework BN Fragment 

Other applications and review of BNs in the software industry include Weber et al. 

[110], Kabir et al. [111], Helminen et al.[156], [157], Bai [158] and Roshandel et al. 

[159]. For instance, Bai [158] used BNs to predict software reliability with an 

operational profile. Roshandel et al. [159] used BNs to predict software reliability at 

the architectural level.  

5.1.8 Product Safety Industry 

This section is adapted from Publication 2 [15], previously published by the Journal 

of Safety Research. 

Suh [160] developed a product risk assessment system using a BN to assess product 

risk based on injury information from the Korea Consumer Agency. They evaluated 

33 children’s products and compared the results with RAPEX. Berchialla et al. [161] 

used a BN to estimate the risk of ingestion, inhalation, and insertion of consumer 
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products in children aged 0–14. Their proposed BN, shown in Figure 27, was used to 

identify potential injury scenarios that can lead to hospitalisation. The BN structure 

was learnt using the K2 algorithm with data from 672 cases and validated using 10-

fold cross-validation. Their results show that the removal technique for ingested 

foreign bodies had the greatest impact on the risk of hospitalisation. Also, the risk of 

hospitalisation is reduced with adult supervision. The authors noted that BNs are 

suitable for quantitative risk assessment since the causal relationships among the 

variables are explicit. Also, the ability to perform diagnostic and predictive reasoning 

in BNs allows factors affecting the risk of hospitalisation to be easily identified.   

 

Figure 27 BN for quantitative risk assessment of foreign body injuries in children 

Berchialla et al. [162] also compared the BN approach to other quantitative risk 

assessment methods, such as neural networks, classification trees, and logistic models. 

Their results indicate that BNs are the best method for assessing safety risk because 

they are easier to interpret and provide accurate predictions.  

A key observation of the work reviewed in this section relevant to the work in this 

thesis is the limited use of BNs for product safety risk assessment. This may be due to 

the lack of a systematic approach for building BNs for different product safety cases. 

For instance, the process used for building the two published BNs in this domain is ad 

hoc and presents little or no opportunity for repeatability and standardisation. 

Berchialla et al. [161] used automated techniques to learn BN structure and 

parameters, and Suh [160] did not provide any details on how the structure of the BN 
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was determined. For many product safety cases, automated learning may not be 

feasible or practical, and the structure and parameters must be elicited from experts 

and literature. Also, Berchialla et al. [161] BN cannot be used to assess the risk of a 

wide range of consumer products since its structure and parameters are not applicable. 

Though Suh [160] used a BN to assess the risk of different children's products, it is 

unclear if this BN is generalizable since the authors did not provide a causal diagram 

that explicitly describes the structure of the BN. For this reason, a generic BN is 

needed for product safety risk assessment and a standard method for building such a 

BN that is applicable to a wide range of products and safety cases. In Chapter 6, we 

present a generic method for building BNs for product safety risk management  and in 

Chapter 8 we present a generic BN for consumer product risk assessment. 

An overview of BN applications in the safety domain is shown in Table 7. 

Table 7 Overview of BN applications in the safety domain 

Industries Contributions 

Energy Lee et al. [112], Wu et al. [113], Ur et al. [114], Chojnacki and Audouin [115], Yu 

et al. [116], Daemi et al. [117], Yongli et al.[118], Jie et al. [119], Sykora et al. 

[120], Weber et al. [110], Kabir et al. [111] 

Defence Neil et al. [121], Banghart et al. [122], Crispim et al. [123], Weber et al. [110], 

Kabir et al. [111], Hudson et al., [124] 

Railway Marsh and Bearfield [20], [63], [125] Castillo et al. [126], Leśniak et al. [127], 

Huang et al. [128], Kabir et al. [111] 

Aviation Netjasov et al. [130], Luxhoj and Coit [129], Neil et al. [131], Washington et al. 

[132], Chen and Huang [136], Ale et al. [137], Shih et al. [133], Zhang et al. [134] 

Wang et al. [135] 

Maritime Hanninen and Kujala [138], Fan et al. [139], Trucco et al. [140], Montewka et al. 

[141], Zhang et al. [142], Weber et al. [110], Kabir et al. [111] 

Medical Haddad et al. [143], Medina et al. [144], Zhang et al. [145], Rieger et al. [146], Li 

et al. [147], Kyrimi et al. [148], Lucas et al. [149], McLachlan et al. [150], Kabir et 

al. [111] 

Software Fenton et al. [151]–[154], Bai [158], Roshandel et al. [159] Weber et al. [110], 

Kabir et al. [111], Helminen et al.[156], [157] 

Product Safety Suh [160], Berchialla et al. [161], Berchialla et al. [162] 
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5.2 Model-to-model Transformation / Mapping Approaches 

BNs have been used extensively as a model-to-model transformation/mapping 

approach in the safety domain. Several mapping approaches have been proposed to 

extend the functionality of commonly used risk analysis tools such as fault trees. In 

the following subsections, we review these approaches since they complement the 

work described in this thesis.  

5.2.1 Translating Fault Trees into BNs 

Fault Trees (FTs) (see Section 3.3) have been used extensively in the safety domain 

for modelling the reliability of systems [64]. However, despite their widespread use, 

they have limitations, such as handling multi-state variables (see Section 1.3). Given 

the limitations of FTs, Bobbio et al. [18] proposed a pioneering method for translating 

any fault tree into a BN. The authors noted that BNs resolve the limitations associated 

with FTs and extend their functionality by handling multi-state variables, sequence-

dependent failures and common cause failures. The proposed method for translating 

FTs to BNs consists of the following steps: 

1. Create a root node in the BN for each basic event in the FT. 

2. Assign the probabilities of the basic events in the FT to the equivalent root 

nodes in the BN. 

3. For each logic gate in the FT, create a logic gate node in the BN. 

4. Connect the logic gate nodes in the BN as they are connected in the FT. 

5. Assign the equivalent conditional probabilities of the logic gates in FT to the 

logic gate nodes in BN.  

Figure 28 and  Figure 29 show the proposed method applied to fault trees AND and 

OR gates, respectively.  
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Figure 28 Fault Tree AND Gate and BN Equivalent 

 

 

Figure 29 Fault Tree OR Gate and BN Equivalent 

This research shows the ease with which fault trees can be translated into BNs. It also 

illustrates how BNs can be used to complement and extend the functionality of 

commonly used risk analysis methods. Other research illustrating the conversion of 

FT to BNs includes Abimola et al. [163] Castillo et al. [164] and Mahadevan et al. 

[165]. 

5.2.2 Translating Event Trees into BNs 

In the safety domain, event trees (ET) (see Section 3.4) are used to analyse the 

sequence of events that can lead to accidents in a system [13], [20]. However, ET 

cannot explicitly represent the state of the system and its environment and how these 

affect the sequence of events [20]. Also, ET cannot model events that are not 
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dependent on the hazard but influenced by other factors [13]. Given these limitations, 

Bearfield and Marsh [20] proposed using BNs to extend the functionality of ET. They 

proposed a pioneering method to translate any ET to a BN. Their model to model 

transformation approach is described using a generic BN representation of an event 

tree shown in Figure 30, accompanied by rules for linking event nodes to event nodes 

and event nodes to the consequence node.  

 

Figure 30 Generic BN representation of an event tree 

In Figure 30, nodes e1, e2, and e3 represent the events. Events are connected to the 

consequence node using consequence arcs (represented by the dotted lines). Events 

are connected to other events using causal arcs (represented by the solid lines). The 

number of nodes used in the BN is dependent on the number of events in the ET. The 

following rules are used for linking event nodes to event nodes and event nodes to a 

consequence node: 

1. An event node is connected to the consequence node only if the event node 

influences the probabilities of the states of the consequence node. For example, 

in the event tree A shown in Figure 31, the consequences C1 and C2 are 

determined by the combination of events e1 and e2 that have occurred; hence 

in the equivalent BN shown in Figure 32, these event nodes are the parents of 

the consequence node.  
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Figure 31 Event Tree A 

 

Figure 32 BN equivalent for Event Tree A 

2. An event node B is connected to a previous event node A only if event node B 

is conditionally dependent on event node A. For example, in the event tree B 

shown in Figure 33, the outcome of event e2 is not dependent on event e1; hence 

the two events are conditionally independent. In the equivalent BN shown in 

Figure 34, there is no arc linking event e1 and event e2. 
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Figure 33 Event Tree B 

 

Figure 34 BN equivalent for Event Tree B 

Using a train derailment case study, the authors translate event trees used to analyse 

the consequences of a derailment into BNs. The BNs were used to calculate accident 

probabilities in different scenarios. This research shows the ease with which event 

trees can be translated into BNs. Similar to Bobbio et al. [18] work discussed in the 

previous section, it shows how BNs can be used to complement and extend the 

functionality of commonly used risk analysis methods. 

 

 



82 

 

5.2.3 Translating Bow-tie Models into BNs 

Khakzad et al. [166] translate a bow-tie (BT) model into a BN for the safety analysis 

of process systems. Since a bow-tie model composes a fault tree and an event tree, the 

authors used the methods proposed by Bobbio et al. [18] and Bearfield and Marsh [20] 

to translate the fault tree and event tree components, respectively, to a BN. They tested 

these approaches by translating a simple bow-tie model for a gasoline release accident 

shown in Figure 35a into a BN model shown in Figure 35b. Given the results of their 

experiment, they proposed an algorithm for mapping BT into BN, summarised in 

Figure 36. The authors then applied their proposed algorithm to a vapour ignition case 

study for verification. Their results indicate that a BT model can easily be translated 

to a BN for safety analysis.  

 

Figure 35(a) Bow-tie model example (b) BN Equivalent 
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Figure 36 Bow-tie to BN mapping algorithm 

An overview of BN mapping approaches in the safety domain is shown in Table 8. 

Table 8 Overview of BN mapping approaches  

Models BN Mapping Contributions 

Fault Tree Bobbio et al. [18], Abimola et al. [163] Castillo et al. [164] and Mahadevan et 

al. [165] 

Event Tree Marsh and Bearfield [20] 

Bow-tie Khakzad et al. [166] 

 

5.3 Promoting the use of BNs in the Product Safety domain  

The literature review provides evidence that BNs are used to model many complex 

problems in the safety domain. However, despite their widespread use in this domain, 

their application in the product safety domain is limited (see Table 7). Their limited 

use may be due to the lack of explicit principled guidelines for building BNs for the 

many different product safety cases. For instance, the process used for building the 

two published BNs in this domain is ad hoc and presents little or no opportunity for 

repeatability and standardisation. Berchialla et al. [161] used automated techniques to 

learn BN structure and parameters, and Suh [160] did not provide any details on how 

the structure of the BN was determined. For many product safety cases, automated 

learning may not be feasible or practical, and the structure and parameters must be 

elicited from experts and literature. Although there are some established mapping and 

knowledge representation methods [18]–[20] to define BN structure and parameters, 

for many product safety cases, these methods may not be feasible since the safety risk 

is based on the interaction of hard factors (e.g., systems) and soft factors (e.g., users). 

In these situations, the BN must be developed using expert knowledge and literature. 

However, the literature lacks a systematic, repeatable method or guidelines for 



84 

 

developing BNs for product safety risk management using expert knowledge and 

literature. This problem is tackled in the next chapter using the idiom-based approach 

proposed by Neil et al. [19].  

Other challenges to the widespread use of BNs in the product safety domain include: 

1. The lack of significant competence and understanding in Bayesian networks: 

Developing, validating, and using BNs can be challenging for non-experts.   

 

2. The need for BN models to be able to stand up to scrutiny, such as civil or legal 

challenges in a post-accident scenario: To stand up to scrutiny, a BN model 

should be robust, transparent, based on accurate and reliable data, validated, 

and comply with relevant standards and laws.  

 

3. Encouraging the use of the BNs, given that, unlike traditional methods, 

Bayesian approaches may not be explicitly referenced in safety risk and 

reliability standards. 

 

4. Lack of methods for easy deployment to end users (discussed in Chapter 10). 

5.4 Chapter Summary 

In this chapter, the application of BNs in the safety domain is reviewed. The literature 

review revealed that despite the widespread use of BNs in the safety domain, their 

application is limited in the product safety area. Their limited use in this area may be 

due to several factors including the lack of explicit principled guidelines for modelling 

different product safety cases. Although there are some established methods for 

defining BN structure and parameters, some of these methods may not be feasible for 

many product safety cases, and the BN must be developed using expert knowledge 

and literature. Therefore, a systematic method or principled guidelines are needed to 

develop BNs specifically for the product safety domain.  

In the next chapter, we present a novel approach for developing BNs for many 

different product safety cases based on causal idioms. We believe that these special 

types of idioms, called product safety idioms, can help promote the use of BNs in the 

product safety domain by simplifying the knowledge elicitation task. They also 

complement existing methods of BN development described in previous research.  
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Chapter 6 An idiom-based approach for Product 

Safety Risk Management 

In this chapter, the product safety idioms for building product safety BNs are 

presented. These novel idioms are illustrated using product safety case examples. 

Hence this chapter supports Hypothesis 1 (it is possible to develop a generic method 

to build BNs for product safety risk management).  

In Section 6.1, an overview of the product safety idioms is presented. In Section 6.2, 

idioms for risk analysis are presented, and idioms for risk evaluation are presented in 

Section 6.3. In Section 6.4, the process for building BNs using the idioms is described 

and in Section 6.5 the benefits of the idioms are discussed. The proposed idioms are 

applied and validated in the case study examples presented in Chapters 7 and 8. The 

material presented in this chapter has previously been presented in Publication 3 [24] 

published by Arxiv.org.  

6.1 Product Safety Idioms Overview 

In the safety risk domain, people make risk management decisions based on complex 

interrelated factors such as users, processes, and systems. The literature review (see 

Chapter 5) provides evidence that the application of BNs to safety risk management is 

not novel, but there is limited or no principled guidelines for developing BNs for 

product safety risk management using expert knowledge and literature.  

A BN for product safety risk management should include all relevant variables 

affecting risk and follow the logical causal process of how systems lead to hazards and 

harm. When building BNs using knowledge elicitation techniques, the risk modeller 

recognises and uses logical causal patterns to connect elicited variables. Idioms 

represent generic logical causal patterns of uncertain reasoning that can be combined 

and reused to model complex problems [19], [88]. Since idioms follow the human 

reasoning process, they are the basis of our proposed method to build BNs for product 

safety risk management.  

The underlying assumption of the idiom-based approach is that large complex 

problems can be decomposed into smaller manageable components or modules called 

idioms. Though Neil et al. [19] generic idioms (discussed in Section 4.3.1.1) are 
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applicable in many domains, including safety, this chapter proposes new types of 

idioms called product safety idioms, specifically for building product safety BNs. 

These idioms are tailored to the requirements of the different phases of the risk 

assessment process, specifically risk analysis and risk evaluation. They are based on 

the logical causal relationship among the relevant variables used to estimate and 

evaluate risks associated with products (systems), such as hazards, injuries, risk 

controls, manufacturer’s reputation and use information.  

We believe that the product safety idioms can help promote the use of BNs in the 

product safety domain by simplifying the knowledge elicitation task. They provide a 

library of BN patterns for product safety risk management. The risk modeller maps 

elicited knowledge to suitable idioms to build practical BNs. While the proposed 

idioms are sufficiently generic to be applied to a wide range of product safety cases, 

they are not prescriptive or complete and should be considered as a guide for 

developing suitable idioms for product safety risk management using data and 

knowledge.  

In this chapter, we base our discussion on the product safety idioms using two real-

life product examples: a hammer (Brand: Chetak Tools, Model: 1402CKA01) [167] 

and a car engine (Brand: Ferrari, Model: F142, F149) [168]. These products were 

previously identified by national safety regulators in the EU as posing a risk of injury 

to users and were reported to Safety Gate. Safety Gate [169] is a system used to share 

information about dangerous non-food products among the national safety regulators 

in the EU. The real-life product examples and related injury scenarios are as follows: 

1. Hammer (Brand: Chetak Tools, Model: 1402CKA01) [167]: “The hammer 

head has been made from unsuitable material, and the metal parts may detach 

and injure the person using the hammer or people nearby. The product does 

not comply with relevant European standard EN10083.”  

 

2. Car Engine (Brand: Ferrari, Model: F142, F149) [168]: “A possible crack in 

the crankshaft may lead to engine failure and might cause the engine to seize, 

which may lead to a road accident.” 

For additional information about the product examples, please see the risk reports in 

Appendix A. It is important to note that testing and injury information, such as the 
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number of failures, are not included in the safety reports; thus, the product safety 

idioms are illustrated using hypothetical data.  

There are no product safety idioms associated with the risk/hazard identification phase 

of the risk assessment process. The risk identification phase entails identifying the 

system, risks, hazards, hazardous situations and associated harm. Hence the 

information presented for the product safety examples is documented in the risk 

identification phase. This information is then used to identify variables that affect risk. 

The identified variables are then organised into idioms for risk analysis and evaluation.  

6.2 Product Safety Idioms for Risk Analysis 

The second stage of the risk assessment process is risk analysis (see Figure 1). 

Traditionally, given the information presented in the injury scenario during the 

risk/hazard identification stage for a particular system, the risk is computed as 𝑃 × 𝑆, 

where 𝑃 is the probability of injury and 𝑆 is the severity of the injury. However, this 

method of estimating risk has several limitations discussed in Section 1.3, which are 

resolved using BNs. In this section, we show how the information gathered during the 

risk/hazard identification stage can be organised into novel idioms to estimate the 

overall risk of a system. Estimating the risk of a system includes considering factors 

such as reliability, rework and reported injuries; hence the proposed idioms are 

classified based on their scope as follows:  

1. Reliability: These idioms model the reliability of a system in terms of failure 

rate (i.e., probability of failure on demand and time to failure) using data 

collected during testing or operational field use.  

2. Rework or Maintenance: These idioms model the probability of repairing 

identified faults of a system. 

3. Requirement: These idioms predict whether the system complies with defined 

operational and safety requirements. 

4. Quality: These idioms estimate the quality of a particular entity or process, 

such as manufacturing process quality, that may affect the overall reliability 

of a system. 
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5. Failure, Hazard and Injury Occurrence: These idioms model hazard or failure 

occurrence and related injuries for a system given relevant factors such as 

device use. 

6. Risk: These idioms estimate the overall risk of a system. 

6.2.1 Reliability Idioms 

Assessing the reliability of a system is essential for estimating risk and informing risk 

control measures since failures and hazards pose a potential risk to our health and 

safety. The two primary reliability metrics for systems are the probability of failure 

on demand (PFD) and time to failure (TTF) [54]. The probability of failure on demand 

(PFD) relates to the reliability associated with a finite set of uses of the system. For 

instance, if the system is a car, we might be interested in the probability of failure for 

a given journey. In contrast, time to failure (TTF) relates to the reliability associated 

with a system operating in continuous time. For instance, for a car, we may also be 

interested in the number of miles it could drive before a failure occurs. For complex 

systems such as an aircraft, it is inevitable that we will need to consider both TTF and 

PFD measures to determine its overall reliability because some of its sub-systems, like 

the engine, require the TTF measure while others, like the landing gear system, require 

the PFD measure.  

In Subsection 6.2.1.1, we describe idioms for modelling PFD, and in Subsection 

6.2.1.2, we describe idioms for modelling TTF.   

6.2.1.1 Idioms for Modelling Probability of Failure on Demand (PFD) 

There are three idioms in this category:  

1. Hazard or failure per demand idiom (generic) 

2. Hazard or failure per demand with limited data idiom 

3. Probability of an event with uncertain accuracy idiom 

Please note that the proposed idioms for handling limited data and uncertain accuracy 

are situational; model experts may develop other idioms based on the type of censored 

data. 
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Hazard or Failure per Demand Idiom (Generic) 

Once hazards and failures are identified during the risk/hazard identification stage, 

product testing (physical or simulation) is done to quantify and learn the ‘true’ 

reliability or safety of the product. During product testing, the product is used many 

times, and each observed failure or hazard is recorded, respectively. In this thesis, we 

define a demand as a measure of usage; for example, a washing machine is typically 

used on average 270 times per household per year in the UK. Some products, such as 

certain medical devices, e.g., syringes, are intended to be only used once, i.e., single-

use devices. Given sufficient failure data for a system collected during testing (or 

operational use), we can learn an estimate of the ‘true’ probability of hazard or failure 

per demand as a probability distribution. The more demands we observe, the smaller 

the variance (uncertainty) we have about this distribution.  

The generic hazard or failure per demand idiom (see Figure 37) models the probability 

distribution of the hazard or failure per demand based on the number of hazards or 

failures observed during a set of demands (trials). This idiom uses a Binomial 

distribution for the number of observed hazards or failures since each demand can be 

considered a Bernoulli trial, with either success or failure as a result (see Table 9). In 

situations where there are no prior data for the ‘probability of the hazard or failure per 

demand’ node, we use an ‘ignorant’ uniform prior. For instance, assuming a uniform 

prior for the hammer example (see Section 6.1), if we observe the hammer head 

detaching (hazard) 10 times in 1000 demands during testing, we can use the idiom to 

estimate the reliability of the hammer as a probability distribution. In Figure 38, the 

idiom estimates that the mean probability of the hammer head detaching per demand 

is 0.01 with a variance of 1.11E-5. 
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Figure 37 Hazard or failure per demand idiom (generic) 

 

Table 9 NPTs for nodes in the Hazard or failure per demand idiom 

Node Name NPT 

Observed hazards or failures Binomial (n, p), where n = demands and p = 

probability of hazard or failure per demand 

Demands Uniform (0, 1E9) 

Probability of hazard or failure per 

demand 

Uniform (0,1) 

  

 

Figure 38 Hazard or failure per demand idiom instance 
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Hazard or Failure per Demand with Limited Data Idiom 

For some systems, it will neither be feasible nor possible to obtain sufficient data from 

testing to estimate their ‘true’ reliability. In these situations, the hazard or failure per 

demand idiom can be extended to incorporate testing data from previous similar 

systems (if available) to estimate the ‘true’ reliability or safety of the system.  

The hazard or failure per demand with limited data idiom is shown in Figure 39, and 

instances are shown in Figure 40  and Figure 41, respectively. This idiom consists of 

two components: the first component models the PFD of the current system, and the 

second component models the PFD of the previous system. The results of both 

components are combined using a weighted formula shown in Equation 8 to determine 

the overall PFD for the current system: 

Equation 8:  

𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑟 ×  𝜃𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑦𝑠𝑡𝑒𝑚 + (1 − 𝑟) × 𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 

Where 𝜃𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑦𝑠𝑡𝑒𝑚 represents the PFD learned from the previous system, 

𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 represents the PFD learned from the current system, 

𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 represents overall PFD for the current system, and 𝑟 is a 

probability that represents the relative weight given to PFD from the previous system 

versus the current system.  

Imagine that no testing data is available for the current system. In that case, the idiom 

can estimate the reliability using only testing data from a previous similar system, as 

shown in Figure 40. In this example, the idiom estimates the reliability of the hammer 

(mean PFD is 0.125 with a variance of 8.7E-5) using testing data from a previous 

similar hammer (200 failures in 2000 demands); hence 𝑟 = 1 𝑜𝑟 100%. Also in this 

example, we assume there were “minor differences” between the hammers and their 

testing. In situations with limited testing data for the hammer, as shown in Figure 41, 

the idiom can combine limited testing data for the hammer (0 hazards or failures in 

500 demands in this example) with testing data from the previous similar hammer to 

provide a reasonable estimate for the PFD of the hammer. In this example, we assume 

that we rely on 70% of the previous similar hammer data to estimate the overall PFD 

of the hammer. The idiom estimates that the mean probability of hammer head 

detaching (hazard) per demand is 0.09 with a variance of 8.7E-5. Please note that the 
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NPT values for the node ‘PFD adjusted for similarity’ (see Table 10) can be adapted 

given the product. 

 

Figure 39 Hazard or failure per demand with limited data idiom 

 

Table 10 NPT for the node PFD adjusted for similarity 

Parent (Similarity of previous system) 

states 

Probability of hazard per demand 

Similar Normal (pfd, 1E-4), where pfd = 

probability of hazard per demand for the 

previous system 

Minor differences Normal (pfd × 1.25, 1E-4) 

Major differences Normal (pfd × 2, 1E-4) 
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Figure 40 Hazard or failure per demand with limited data idiom instance 1 
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Figure 41 Hazard or failure per demand with limited data idiom instance 2 

Probability of an Event with Uncertain Accuracy Idiom 

For some products, there may be some uncertainty concerning the number of observed 

hazards or failures and, subsequently, their ‘true’ reliability or safety. In these 

situations, we need to consider the accuracy of the number of observed hazards or 

failures and the true number of observed hazards or failures, given our knowledge 

about the former, when estimating the ‘true’ reliability of the product.  

The probability of an event with uncertain accuracy idiom shown in Figure 42 models 

the uncertainty concerning the number of observed events, e.g., hazards, failures or 

injuries for a specified number of demands (trials). The NPT values for the node 

‘Number of observed events’ (see Table 11) can easily be adapted given the product.  

In Figure 43, for the hammer example (see Section 6.1), suppose we assume that the 

number of times we observe the hammer head detaching (100 in 1000 demands in this 
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example) is underestimated; then the true number of times the hammer head detaches 

will be greater than our observations (in this example the true number of times the 

hammer head detaches is greater than 100, with a mean count of 125). Please note that 

this idiom can also be adapted to model the uncertainty concerning the number of trials 

or demands. 

 

Figure 42 Probability of an event with uncertain accuracy idiom 

Table 11 NPT for the node Number of observed events 

Parent (Accuracy of reporting events) states Probability of hazard per demand 

Overestimated Normal (tne × 1.2, 1E-4 × tne), where tne 

= true number of events 

Accurate Arithmetic(tne) 

Underestimated Normal (max (0, tne × 0.8), 1E-4 × tne) 
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Figure 43 Probability of an event with uncertain accuracy idiom instance 

6.2.1.2   Idioms for Modelling Time to Failure (TTF) 

There are three idioms in this category: 

1. Time to failure (or hazard) idiom (generic) 

2. Time to failure (or hazard) idiom with summary statistics 

3. Probability of failure within a specified time idiom 

Time to Failure (or Hazard) Idiom (Generic) 

For some products, we are interested in the reliability associated with the product 

operating in continuous time. In these situations, we can estimate the mean time to 

(next) failure by learning the time to failure (TTF) distribution of the product using 

failure data from testing or operational field use. The mean time to (next) failure is the 

summary statistic of the time to failure (TTF) distribution. The failure data will be a 

unit of time, such as hours, and may come from previous similar products. However, 

please note that model experts may develop other TTF idioms to estimate reliability 

given available TTF data and other related issues such as censoring. 

The time to failure idiom shown in Figure 44 estimates the mean time to (next) failure 

for a product when there is a small number n of observed failure times. This idiom has 
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n observed failure time nodes, which are used to estimate the failure rate of the 

product. The ‘Observed failure time’ and ‘Time to next failure’ nodes are (normally) 

defined as an Exponential distribution with the rate parameter as the value of the 

‘Assessed failure rate’ node. Other distributions, such as Weibull and Gamma, can be 

used to define the nodes since the failure rate for many products is not usually constant 

but increases with time due to system use. However, please note that for the TTF 

idioms discussed in this chapter, we assume neither system improvement nor 

degradation; hence, the time to (next) failure is constant. Imagine that we observe 

failure times of 80, 90, 110 and 120 for the car engine example described in Section 

6.1. As shown in  Figure 45, the TTF idiom estimates that the mean time to (next) 

failure for the car engine is 100, and the failure rate is 0.01, given the observed failure 

times.   

 

Figure 44 Time to failure (or hazard) idiom 
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Figure 45 Time to failure (or hazard) idiom instance 

Time to Failure (or Hazard) Idiom with Summary Statistics 

For some products, there may be a large number of observed failure times. In these 

situations, it is more convenient to summarise the observed failure times in terms of 

their mean µ and variance σ2 and use these as parameters to determine the rate value 

(i.e., 
1

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
 ) of an Exponential distribution. However, please note that 

this approach for handling a large number of observed failure times is situational, and 

the results are less accurate than using the generic TTF idiom; model experts may 

develop other TTF idioms to estimate reliability given available TTF data and other 

related issues such as censoring. 

The time to failure idiom with summary statistics is shown in Figure 46, and an 

instance is shown in Figure 47. In Figure 47, for the car engine example, imagine that 

the mean µ observed failure time for the engine is 100 and the variance σ2 is 250; the 

TTF idiom estimates that the mean time to (next) failure for the car engine is 100.   
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Figure 46 Time to failure (or hazard) idiom with summary statistics 

 

Figure 47 Time to failure (or hazard) idiom with summary statistics instance 

Probability of Failure within a Specified Time Idiom   

For some products, we are interested in the reliability of the product operating within 

a specified time 𝑡. In these situations, we can estimate the probability of failure (or 

hazard) for a product within a specified time 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒 | 𝑡) by computing the 

probability that the TTF distribution 𝑇 is less than or equal to the specified time 𝑡, i.e., 

𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒 | 𝑡) = 𝑃(𝑇 ≤ 𝑡).  

The probability of failure within a specified time idiom shown in Figure 48 uses a 

discrete node called ‘Assessed probability of failure’ to compute 𝑃(𝑇 ≤ 𝑡). The TTF 

distribution 𝑇 will be derived from the previous TTF idioms. An instance of this idiom 

is shown in Figure 49. In Figure 49, for the car engine example, imagine that the car 

is used continuously for 10 hours, e.g., a road trip; the idiom estimates the probability 
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that the engine will fail is 0.1 or 10% given that the estimated mean time to next failure 

is 100. 

 

Figure 48 Probability of failure within specified time idiom 

 

 

Figure 49 Probability of failure within a specified time idiom instance 

6.2.2 Rework Idiom  

For some products, faults identified during the hazard identification phase are 

repairable; however, the success of the repair will depend on the probability of fixing 

the fault. The rework idiom [151] shown in Figure 50 incorporates knowledge of the 

manufacturer’s rework process quality and rework effort to estimate the probability of 

fixing the fault (i.e., design and physical faults). This idiom uses ranked nodes [95] to 

define ‘rework process quality’ and ‘rework effort’ since their values can be measured 

using a subjective ranked scale such as {‘low’, ‘medium’, ‘high’}. These nodes are 

then combined to determine ‘rework process overall effectiveness’ (also a ranked 

node) and the ‘probability of fixing the fault’ (defined as a continuous node ranging 
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from 0 to 1). The NPTs for the nodes in the idiom (see Table 12) can easily be adapted 

given the product or system. An instance of this idiom is shown in Figure 51. In Figure 

51, for the hammer example (see Section 6.1), suppose that the manufacturer’s rework 

process quality and effort are ‘very low’; the idiom predicts that the overall rework 

process effectiveness would be ‘very low’ or ‘low’. As a result, the mean probability 

of fixing the hammer is very low (i.e., 0.03). Product manufacturers, safety regulators 

and model experts may use or adapt this idiom to revise the estimated reliability of the 

product given rework and to inform risk management decisions such as product recall. 

 

Figure 50 Rework idiom 

Table 12 NPTs for the nodes of the Rework idiom 

Node Name NPT 

Rework process quality States (‘very low’, ‘low’, ‘medium’, ‘high’, ‘very 

high’) = 0.2 

Rework effort States (‘very low’, ‘low’, ‘medium’, ‘high’, ‘very 

high’) = 0.2 

Rework process overall effectiveness TNormal 

(wmean(1.0,rework_process,1.0,rework_effort), 0.001, 

0, 1) 

Probability of fixing fault Partitioned expression (Very low:   

TNormal(0.01,0.001,0.0,1.0), Low:  

TNormal(0.15,0.001,0.0,1.0), Medium:  

TNormal(0.4,0.001,0.0,1.0), High:  

TNormal(0.6,0.001,0.0,1.0), Very High:  

TNormal(0.8,0.001,0.0,1.0)) 
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Figure 51 Rework idiom instance 

6.2.3 Requirement Idiom 

For any product, we will be interested in whether the safety and reliability of the 

product satisfy safety and reliability requirements defined by standards or safety 

regulators. Defined safety and reliability requirements ensure that a system operates 

as intended and is acceptably safe for use. For instance, as an extreme example, a 

commercial aircraft must satisfy a defined safety and reliability requirement of MTTF 

> 109 flying hours to be approved for commercial use. Hence to determine if a product 

is compliant, we need to consider the defined safety and reliability value and the actual 

safety and reliability value of the product. However, testing alone may not be sufficient 

to determine the actual safety and reliability value of products, especially those with 

very high reliability requirements, e.g., commercial aircraft, or with limited testing 

data, e.g., novel products. In these situations, we need to combine testing information 

with other factors, such as information about the quality of the processes and people 

involved in product development, to determine the actual safety and reliability value 

of a product. The quality of processes or people can be estimated using the Quality 

idiom (see Section 6.2.4).   

The requirement idiom shown in Figure 52 models whether the actual value of an 

attribute 𝐴  satisfies the defined requirement value of the attribute 𝑅 by computing the 

probability 𝐴 is less than or equal to 𝑅, i.e., 𝑃(𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡) =  𝑃(𝐴 ≤ 𝑅). This idiom 

uses a discrete node called ‘Assessed value of attribute’ to compute 𝑃(𝐴 ≤ 𝑅). An 

instance of this idiom is shown in Figure 53. In  Figure 53, for the hammer example 
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(see Section 6.1), the idiom estimates that there is a 15% chance that the defined safety 

requirement (0.01 in this example) is satisfied given the probability distribution of the 

hammer head detaching (hazard) per demand (mean 0.03 in this example). Please note 

that the requirement idiom can be implemented by encoding the requirement value 

into the ‘Assessed value or attribute’ node, as shown in Figure 54. Product 

manufacturers, model experts and safety regulators may use or adapt the requirement 

idiom to inform risk management decisions such as rework. 

 

Figure 52 Requirement idiom 

 

 

Figure 53 Requirement idiom instance 
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Figure 54 Implicit Requirement idiom (a) and instance (b) 

 

6.2.4 Quality Idiom 

For novel products, products with limited testing data and products with very high 

reliability requirements, other product-related information, such as the quality of the 

processes and people involved in its development, can be considered when estimating 

the reliability of the product. For instance, for the hammer example, if the 

manufacturing process quality is poor, this can increase the likelihood of the hammer 

head detaching. However, the quality of a particular process or activity, such as the 

manufacturing process, may be latent, difficult to measure or observe. In these 

situations, we can use measurable indicators and causal factors to measure the quality 

of a particular process or activity. 

The quality idiom (shown in Figure 55) models the quality of an activity, process or 

variable using indicators and causal factors. This idiom uses ranked nodes [95] to 

define variables since their values can be measured using a subjective ranked scale 

such as {‘low’, ‘medium’, ‘high’}. Please note that the NPT values for the node 

‘Latent quality value’ (see Figure 55) can easily be adapted given the process or 

activity.  Instances of this idiom are shown in Figure 56 for the hammer example. In 

Figure 56a, the idiom measures the quality of the manufacturing process, using 

knowledge about product defects and process drifts. In Figure 56b, the idiom measures 
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the quality of the organisation using knowledge about customer satisfaction and years 

in operation.  

 

Figure 55 Quality idiom 

 

 

Figure 56 (a) Manufacturer process quality instance (b) Organisation quality instance 
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6.2.5 Idioms for Modelling Product Failures, Hazards and Injury 

Occurrences 

Determining the occurrence of failures or hazards and related injuries for a product 

(system) is essential for informing appropriate risk control measures to prevent harm 

to users and damage to the environment. In this section, we describe the idioms 

associated with determining the occurrence of failures or hazards and related injuries 

for a product. These idioms address interaction faults and system degradation that can 

result in failures or hazards and harm to the user. There are three idioms in this 

category: 

1. Hazard or failure occurrence idiom 

2. Injury event (occurrence) idiom 

3. Product injury idiom 

6.2.5.1 Hazard or Failure Occurrence Idiom 

System degradation and consumer behaviour when using a product, e.g., misuse and 

frequency of use, can greatly influence the occurrence of failures or hazards for a 

product. Therefore, it is essential to understand how these factors impact the 

occurrence of failures or hazards for a product to reduce potential harm to consumers.  

The hazard or failure occurrence idiom shown in Figure 57 is an instance of the cause-

consequence idiom [19] (see Section 4.3.1.1) that models the relationship between a 

hazard(s) or failure(s) and its causal factors. A factor can be any observable attribute 

or situation that increases or decreases the likelihood or uncertainty of a hazard or 

failure occurring, such as consumer behaviour. An instance of this idiom is shown in 

Figure 58. In Figure 58, for the hammer example, suppose that the consumer does not 

use the hammer as intended (minor deviations from intended use), then we expect that 

the probability of the hammer head detaching per demand (use) will increase. In this 

example, the idiom shows that the mean probability of the hammer head detaching per 

demand increases from 0.15 to 0.18. Product manufacturers and safety regulators may 

find this idiom useful since it can incorporate all causal factors that affect the 

occurrence of failures and hazards for a product. 
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Figure 57 Hazard or failure occurrence idiom 

 

 

Figure 58 Hazard or failure occurrence idiom instance 

 

6.2.5.2 Injury Event (occurrence) Idiom 

Given the injury scenario for a product, we will be interested in the probability of 

injury given a failure or hazard. We can estimate the probability of an injury given a 

failure or hazard by considering the probability of the failure or hazard occurring and 

the probability of the failure or hazard causing an injury. The probability of the failure 

or hazard occurring can be estimated using reliability idioms (see Section 6.2.1) and 

the hazard or failure occurrence idiom (see Section 6.2.5.1); the probability of the 

failure or hazard causing an injury can be estimated from injury data obtained from 

reputable sources such as hospitals and injury databases.  
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The injury event (occurrence) idiom shown in Figure 59 models the probability of an 

injury event (i.e., an occurrence of injury) during product use. It estimates the 

probability of an injury event 𝑃(𝐼) by combining the probability of the failure or 

hazard occurring 𝑃(𝐻), and the probability of the failure or hazard causing an injury 

𝑃(𝐼|𝐻) i.e., 𝑃(𝐼) = 𝑃(𝐻) × (𝐼|𝐻). An instance of this idiom is shown in Figure 60. 

In Figure 60, for the hammer example, if the mean probability of the hammer head 

detaching and causing a head injury is 0.08 and the mean probability of the hammer 

head detaching is 0.18, then the estimated mean probability of a head injury occurring 

while using the hammer is 0.015. 

Please note that for the injury event idiom, we are assuming a single known type of 

hazard; however, a product (system) usually has multiple potential hazards. In 

situations where a product has multiple potential different hazards that are unique in 

terms of properties they possess, e.g., small parts, electric shock and toxicity, we can 

add other nodes to the idiom representing different hazards. However, in situations 

where the hazards, though unique, are similar in terms of properties they possess, e.g., 

hot surfaces, open flames and hot gases, we can identify and define hazard groups or 

classes, e.g., ‘extreme temperature’. The idiom can use the defined hazard groups to 

consider multiple similar hazards rather than a single hazard.  

 

Figure 59 Injury event idiom 
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Figure 60 Injury event idiom instance 

6.2.5.3 Product Injury Idiom 

For some products, we may be interested in estimating the number of injuries due to 

product failures, hazards or hazardous situations. In these situations, we have to 

consider the probability of the injury event and the number of product instances (i.e., 

the total number of products manufactured or available on the market). The probability 

of the injury event can be obtained using the injury event idiom (see Section 6.2.5.2), 

and the number of product instances can be obtained using manufacturing or sales 

data.  

The product injury idiom shown in Figure 61 models the number of injury events for 

a set of product instances. This idiom uses a Binomial distribution for the number of 

injury events. An instance of this idiom is shown in Figure 62. In Figure 62, for the 

hammer example, suppose there are 100000 hammer instances, and the mean 

probability of a head injury is 0.015; the idiom estimates that the mean number of head 

injuries is 1500.  
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Figure 61 Product injury idiom 

 

 

Figure 62 Product injury idiom instance 

  

6.2.6 Idioms for Modelling Risk 

Determining the overall risk of a product (system) is essential for informing risk 

management decisions such as product recall and risk controls. In this section, we 

describe idioms associated with determining the risk of a product. These idioms satisfy 
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the final task of the risk analysis phase, i.e., the risk estimation phase, which 

determines the overall risk of the product. There are two idioms in this category: 

1. Risk control idiom 

2. Risk idiom 

6.2.6.1 Risk Control Idiom 

For most products, we may be interested in estimating the effect of risk controls on 

the occurrence of failures, hazards and related injuries. In these situations, we need to 

consider the probability of the risk control to mitigate the event (i.e., failures, hazards 

and injuries) and the probability of the event occurring in the absence of risk controls. 

Risk control is any measure or action taken to mitigate the consequence of an event.  

The risk control idiom shown in Figure 63 models the effect of risk controls on an 

event, e.g., hazard, failure or injury. It uses the probability of the risk control to 

mitigate the event 𝐶, and the probability of the event 𝐸, to compute the residual 

probability of the event consequence 𝑅𝐸, i.e., 𝑅𝐸 =  (1 − 𝐶) × 𝐸. The risk control 

idiom can be adapted to model the occurrence of hazards and harm (injury). An 

instance of this idiom is shown in Figure 64. In Figure 64, for the hammer example, 

suppose the probability of the risk control mitigating the head injury is 0.5, and the 

mean probability of a head injury in the absence of the risk control is 0.08; the idiom 

computes that the mean probability of a head injury is 0.04 after the risk control is 

implemented.   

 

Figure 63 Risk control idiom (generic) 
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Figure 64 Risk control idiom instance 

6.2.6.2 Risk Idiom 

Previous product safety idioms provide the probability distributions for events, 

including failures, hazards and injuries associated with a product and its use. We can 

use this information to estimate the risk of a product using the risk idiom. The risk 

idiom shown in Figure 65 is used to generate a discrete risk score (e.g., a 5-point scale 

for regulatory purposes) that is a combination of a set of complex measures. This idiom 

model risk in terms of its factors and is a special case of the generic definitional idiom 

[19]; however, the specific mapping from the continuous function into a discrete set 

will be specific to the context. For example, in the RAPEX method for product risk 

assessment (discussed in Chapter 8), the risk level for a consumer product is defined 

based on specific injury probability bounds and injury severity levels. For instance, a 

product is judged as ‘low risk’ given any injury severity level if the probability of the 

product causing an injury is less than 0.000001. An instance of the risk idiom is shown 

in Figure 66. In Figure 66, for the hammer example, the idiom estimates the risk of 

the hammer using a ranked node [95] with a 5-point scale ranging from ‘very low’ to 

‘very high’, considering the probabilities of the hammer causing a head injury and 

minor injuries, respectively. In this example, there is a 98% chance that the risk of the 

hammer is ‘very high’. 
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Figure 65 Risk idiom 

 

 

Figure 66 Risk idiom instance 

6.3 Product Safety Idioms for Risk Evaluation  

The last phase of the risk assessment process is risk evaluation (see Figure 1). Risk 

evaluation “is the process by which the outcome of the risk analysis is combined with 

policy considerations to characterise the risk and inform decisions on risk 

management” [15], [26]. It entails determining whether the estimated risk of the 

product is acceptable or tolerable given its benefits. In this section, we describe two 

idioms for risk evaluation: 

1. Risk tolerability (acceptability) idiom 

2. Consumer risk perception idiom 
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6.3.1 Risk Tolerability (Acceptability) Idiom 

In situations where the overall risk of a product is judged unacceptable and additional 

risk controls are not practical, the product manufacturer or safety regulator may need 

to determine if the benefit of the product outweighs its risks. The risk tolerability 

(acceptability) idiom shown in Figure 67 models the trade-off between risk and benefit 

(or utility) for a product. It evaluates whether the estimated risk score (level) of a 

product is acceptable or tolerable given the benefit (or utility). The benefits of a 

product may be determined from literature or consumer surveys. An instance of this 

idiom is shown in Figure 68. In Figure 68, for the hammer example, we define the 

benefit and risk values using ranked nodes [95]. In this example, we assume that the 

benefit of the hammer is average (‘medium’) and the risk of the hammer is ‘very high’; 

the idiom estimates that the risk tolerability for the hammer is ‘low’ (or 95% chance 

the risk tolerability is ‘low’ or ‘very low’). 

 

Figure 67 Risk tolerability idiom 
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Figure 68 Risk tolerability idiom instance 

 

6.3.2 Consumer Risk Perception Idiom 

Consumers may judge the risk and benefits of products differently from experts. For 

instance, experts tend to judge the risk of a product using quantitative risk assessments, 

whereas consumers judge risk using a combination of subjective measures such as risk 

propensity. Therefore, it is essential to understand consumers’ perceived risk and 

benefits of a product to inform risk management decisions. Since the actual value of 

consumers’ perceived risk or benefits may be latent or difficult to measure, we have 

to use measurable indicators and causal factors to estimate their perceived risk and 

benefits.  

The consumer risk perception idiom shown in  Figure 69 estimates consumer risk 

perception of a product using causal factors (or interventions) and indicators. Please 

note that this idiom does not incorporate different user profiles. Instances of this idiom 

are shown in Figure 70 and Figure 71. In Figure 70 and Figure 71, for the hammer 

example, we define the variables using ranked nodes [95]. In Figure 70, the idiom 

shows that consumers may perceive the risk of the hammer as ‘high’ since they judge 

the likelihood of injury and the severity of the injury as ‘high’. In Figure 71, the idiom 
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shows the impact of a product recall, negative media stories and consumer feedback 

on consumer risk perception of the hammer.  

 

Figure 69 Consumer risk perception idiom 

 

 

Figure 70 Consumer risk perception idiom instance 1 
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Figure 71 Consumer risk perception idiom instance 2 

 

6.4 Building a BN using the Product Safety Idioms 

In this section, the process for building BNs using product safety idioms is described 

(see Section 6.4.1). We also show examples of BNs created using the product safety 

idioms (see Section 6.4.2 for the hammer example and Section 6.4.3 for the aircraft 

example).  

6.4.1 BN Development Process 

The process of building a BN for product safety risk management using the product 

safety idioms can be illustrated using the BN development process model shown in 

Figure 72, proposed by Neil et al. [19].   
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Figure 72 BN Development Process Model taken from [19]  

As shown in Figure 72, the BN development process consists of six stages ranging 

from problem definition to BN validation. The first stage is problem definition and 

decomposition. During this stage, the scope and objectives of the BN and other 

relevant information, such as model variables, are elicited from experts and literature. 

In the second stage, the elicited knowledge is organised into groups of related random 

variables (called ‘fragments’), which are matched against the idioms. During this 

stage, the groups of related variables are implemented as instances of suitable idioms. 

In the third stage, the idiom instances are integrated into objects. In the fourth stage, 

the NPTs for the variables in the objects are defined, and in the fifth stage, the objects 

are linked to build the complete BN. In the last stage, the BN is used to perform 

inferences, and its results are validated. Verification is done at each stage of the 

process to ensure that the output of each stage is accurate and satisfies the requirements 

of the problem definition. 
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6.4.2 Example 1: Hammer Reliability BN 

In Figure 73, for the hammer example, we show how the product safety idioms may 

be combined to determine the overall reliability of the hammer. In this example, using 

testing data only (i.e., hammer head detaches 20 times in 400 demands), the BN model 

estimates the mean probability of the hazard per demand is 0.05 (modelled using the 

hazard per demand idiom). However, given information about the manufacturing 

process quality (modelled using the quality idiom), the mean probability of the hazard 

per demand is revised. In this example, the mean probability of the hazard per demand 

increased to 0.08 due to a poor manufacturing process. Finally, the BN model shows 

that the reliability of the hammer did not satisfy the defined safety and operational 

requirements (modelled using the requirement idiom). 

 

Figure 73 Hammer reliability BN with visible product safety idioms 
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6.4.3 Example 2: Aircraft Reliability BN 

In the previous section, the hammer example was chosen as a particularly simple 

product to illustrate the basic idioms approach. In this section, we now go to the other 

extreme of complexity and consider an aircraft. The aircraft reliability BN shown in 

Figure 74 shows a fragment of the safety assessment for a new military aircraft that 

focuses on estimating the probability of failure during a mission due to engine and/or 

braking system failure. It incorporates both TTF and PFD measures to determine the 

overall reliability since the reliability measure for the engine is TTF, and the braking 

system is PFD. The product safety idioms connected causally to estimate the reliability 

of a military aircraft during a mission are highlighted in Figure 74. 

 

Figure 74 Aircraft reliability BN with visible product safety idioms 

In Figure 75, the BN model estimates the probability of failure for a military aircraft 

during a mission due to engine failure and braking system failure is 0.0008 (0.08%). 

In this example, we assume that for the engine, we observed failure times of 6000, 

5000 and 4000 hours, respectively, and the engine is used for 6 hours during the 
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mission. We assume that there is a 50% chance that the engine can cause a system 

failure. For the braking system, we assume that we observed 10 failures in 1000000 

demands and that the braking system was used once during the mission. We also 

assume that there is a 50% chance that the braking system can fail. Please note that 

this BN model can be extended to incorporate other aircraft systems, such as flight 

control systems, to determine the overall reliability of an aircraft. 

 

 

Figure 75 Aircraft reliability BN with observations 

6.5 Benefits of Product Safety Idioms 

The principal merit of the product safety idioms is to provide a robust systematic 

method and guide for building BNs for product safety risk management. The product 

safety idioms improve BN development in the following ways: 

1. Integration of different types of knowledge sources: As demonstrated in 

Section 6.4.2, the idioms can combine objective evidence, e.g., PFD, and 

subjective evidence, e.g., manufacturing process quality, to provide 
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reasonable risk estimates for products. Combining objective and subjective 

evidence is especially useful for handling uncertainty in situations when there 

is limited or no historical testing and operational data for products, but expert 

knowledge is available. 

 

2. Handle uncertainty in data: Some risks associated with products can be 

characterised by high levels of uncertainty and ambiguity. Uncertainty can be 

caused by limited or lack of relevant data. Product safety idioms can handle 

and communicate uncertainties in the data explicitly since they express 

uncertainty in terms of probability distributions. 

 

3. Standardise and assist product safety BN development: To the best of our 

knowledge, there is no standard method for developing BNs specifically for 

product safety risk management. The product safety idioms improve BN 

development by simplifying the knowledge elicitation task. They provide a 

library of reusable BN patterns for product safety that facilitates the easy 

development of practical product safety BNs. They also guide the knowledge 

elicitation process by allowing model experts and safety risk professionals to 

identify relevant information (known or unknown) required to build custom 

idioms and BNs for product safety assessments. 

 

4. Enhance the communication, interpretability and explainability of 

complex BNs: The graphical structure and results of the BNs developed using 

the idioms can be easily interpreted, explained, and reviewed by model experts 

and safety risk professionals. For example, the graphical structure of BNs 

facilitates easy communication of uncertainty and risks. Stakeholders can 

easily identify sources of uncertainty in the model.  In addition, product safety 

idioms can serve as a validation method for future product safety risk BNs, 

ensuring that their structure is practical and logical. 
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6.6 BN Development and Validation Challenges  

Despite the benefits of using the product safety idioms for BN development, it is 

important to note the challenges of accurately quantifying and validating the accuracy 

of the BN models. These challenges include: 

1. Determining the number and meaning of node states, particularly where they 

relate to abstract attributes like, for example, ‘Rework process Quality’ being 

‘High’, ‘Medium, or ‘Low.’  

 

2. Quantifying and validating the strength of causal relationships.  

 

3. Being confident that the aggregated results of the model are valid, in particular 

where independent data to validate against does not exist.  

6.7 Chapter Summary 

In this chapter, a novel set of idioms, called product safety idioms, for developing BNs 

specifically for product safety risk management are presented. The product safety 

idioms complement and extend the idiom-based approach proposed by Neil et al. [19] 

and other established methods of BN development discussed in previous research (see 

Section 4.3 and Section 5.2). While the proposed idioms are sufficiently generic to be 

applied to a wide range of product safety cases, they are not prescriptive or complete 

and should be considered as a guide for developing suitable idioms for product safety 

risk management (given available product-related information). As discussed in 

Section 6.5, the idioms offer the following benefits: handle uncertainty in data; 

standardise and assist product safety BN development; enhance communication, 

interpretability and explainability of complex BNs. 

We believe that the product safety idioms discussed in this chapter are meaningful 

reasoning patterns that guide the development of complex BNs for product safety risk 

management. In the next chapter, we show how they are used to develop a generic BN 

for medical device risk management. 
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Chapter 7 Case Study 1: Medical Device Risk 

Management 

In this chapter, a case study on medical device risk management is presented. This 

work was supported by medical device safety risk experts affiliated with Medtronic (a 

leading medical device company). The safety risk experts provided invaluable insights 

on medical device risk management and feedback on the proposed BN for medical 

device risk management. The BN approach complements and enhances existing 

medical device risk management approaches used in the industry.   

In Section 7.1, medical device risk management is introduced. In Section 7.2, a brief 

overview of existing methods and their limitations for medical device risk 

management (previously discussed in Chapters 1 and 3) is presented. In Section 7.3, 

to address the limitations of existing risk analysis methods, we developed a generic 

BN for medical device risk management using the product safety idioms discussed in 

Chapter 6. In Section 7.4, we evaluate the proposed BN using different risk 

management scenarios, and the results are validated using real-world data. Finally, the 

results of the risk management scenarios and benefits of the proposed BN are 

discussed in Section 7.5.  

This chapter supports Hypothesis 2 (it is possible to use Bayesian networks for safety 

risk management for many different types of products, including novel products or 

products with limited or no available data) and Hypothesis 3 (it is possible to use 

Bayesian networks to model consumer risk perception and/or perform benefits-risk 

analysis for products). Please note that the material presented in this chapter was 

previously presented in Publication 4 [24] published by Arxiv.org. 

7.1 Overview of Medical Device Risk Management 

Approximately 2 million medical devices are available on the world market [170]. 

They range from non-invasive devices, such as wheelchairs, to implantable devices, 

such as pacemakers. Despite the many benefits these devices offer, they can pose a 

serious risk to our health and safety when they fail. For example, failure of an AED 

defibrillator, such as LIFEPAK 1000, during patient treatment can expose patients to 

serious harm or death [171]. Therefore, the medical device industry requires that 
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devices used by patients and healthcare professionals are acceptably safe. There are 

several standards for medical device safety, such as IEC 60601-1 [172], but ISO 14971 

[7] is the primary standard used by medical device manufacturers. In fact, other 

standards for medical device safety make normative references to ISO 14971. This 

standard provides a framework for medical device manufacturers to manage the risks 

associated with medical devices throughout their life cycle (i.e., from initial 

conception to final decommissioning and disposal). It specifies a set of requirements 

and expectations for medical device risk management. For instance, ISO 14971 

includes requirements for risk analysis (i.e., hazard identification and risk estimation), 

risk evaluation, risk control and evaluation of overall residual risk. However, ISO 

14971 does not specify a particular method or process for medical device risk 

management. Hence, the methods used for medical device risk management by 

medical device manufacturers may vary due to the type of medical device and 

available information (e.g., testing data) and may require validation. In particular, 

there are several risk analysis methods for medical devices (discussed in Chapter 3), 

including the commonly used Fault Tree Analysis (FTA) and Failure Mode and 

Effects Analysis (FMEA). However, these classical risk analysis methods have 

limitations such as: unable to handle dependencies among system components; limited 

approach to handling uncertainty in data; limited approach to assessing the risk for 

novel products or products with limited or no historical data. These limitations are 

resolved using Bayesian networks (BNs) [13], [15], [18], [54], [110].  

In this chapter, we propose a novel systematic method for medical device risk 

management using Bayesian networks (BNs) that: improves the handling of 

uncertainty; uses causal knowledge of the risk management process; incorporates 

relevant factors affecting the safety and risk of medical devices; complements existing 

medical device risk management tools and methods; uses quantitative data and expert 

judgement. Bayesian networks (BNs) are suitable for medical device risk management 

due to their ability to handle uncertainty and produce results using objective and 

subjective evidence [13], [76]. Also, they are used for safety risk assessment in several 

domains, including systems reliability, health, railway, finance and consumer product 

safety (see Chapter 5 for a review of BN applications in the safety domain). The 

proposed generic BN for medical device risk management provides a robust 
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systematic method for medical device manufacturers to meet the requirements of ISO 

14971.  

Please note that the main standard referred to throughout this chapter is ISO 14971 [7] 

and its accompanying guidelines for application i.e., ISO/TR 24971 [6]. Unless other 

references are provided, all definitions in this chapter refer to this standard and its 

guidelines. 

In the following subsections, we define medical devices and medical device risk 

management. 

7.1.1 What is a medical device?  

A medical device is “any instrument, apparatus, implement, machine, appliance, 

implant, reagent for in vitro use, software, material or other similar or related article, 

intended by the manufacturer to be used, alone or in combination for a medical 

purpose” [7]. There are two main types of medical devices based on use, i.e., single-

use and multiple-use. A single-use medical device is a medical device “intended to be 

used on an individual patient during a single procedure and then discarded” [173]. A 

multiple-use (reusable) medical device is a medical device “that health care providers 

can reprocess and reuse on multiple patients” [174]. Though single-use and multiple-

use medical devices may contain software, the software can be considered a medical 

device on its own (Software as a medical device). Software as a medical device 

(SaMD) is “software intended to be used for one or more medical purposes that 

perform these purposes without being part of a hardware” [175]. Other classifications 

of medical devices include by purpose and by inherent risk [167] (see Table B1 and 

Table B2 in Appendix B for further information). 

7.1.2 Medical Device Risk Management 

Medical device risk management is the “systematic application of management 

policies, procedures and practices to the tasks of analysing, evaluating, controlling and 

monitoring risk” of medical devices [7]. Manufacturers of medical devices perform 

risk management for several reasons, including making safer products, legal and 

regulatory requirements, and cost savings [12]. The international standard for medical 

device risk management is ISO 14971[7]. This standard requires that medical device 

manufacturers have a documented process for managing the risks associated with 
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medical devices. It specifies a set of requirements and expectations for the documented 

risk management process (see Figure 76) applicable to the complete life cycle of the 

medical device (i.e., from initial conception to decommissioning and disposal).  

 

Figure 76 ISO 14971 Risk Management Process 

As shown in Figure 76, the ISO 14971 risk management process consists of the 

following activities: 

1. Risk Management Plan: ISO 14971 requires that all risk management 

activities are planned. The risk management plan includes the scope of risk 

management activities (medical device and life cycle phases), responsibilities 

and authorities for risk management activities, criteria for risk acceptability 

(i.e., the amount of risk judged acceptable) and verification and review 

activities. 
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2. Risk Analysis: This phase consists of the following activities: 

a. Identify the intended use of the medical device: The intended use, 

foreseeable misuse, intended users and intended use environment for 

the medical device are identified and documented.  

 

b. Identify the safety characteristics of the medical device: The 

characteristics (quantitative and qualitative) of the medical device that 

can affect its safety are identified and documented.  

 

c. Identify hazards associated with the medical device: All hazards 

associated with the use of the medical device are identified and 

documented. Techniques such as Preliminary Hazard Analysis (PHA) 

and FMEA (discussed in Chapter 3) are used to identify hazards 

associated with medical devices [6]. 

 

d. Estimate the risk for each identified hazard: In this phase, the risk 

associated with each hazard or hazardous situation is determined. The 

schematic shown in Figure 77 provides an overview of ISO 14971 risk 

estimation [7]. As shown in Figure 77, the risk is “the combination of 

the probability of occurrence of harm 𝑃 and the severity of the harm 𝑆” 

i.e., 𝑅𝑖𝑠𝑘 = 𝑃 × 𝑆. The probability of occurrence of harm 𝑃 is the 

product of the probability of the hazardous situation occurring 𝑃1 and 

the probability of the hazardous situation causing harm 𝑃2, i.e., 𝑃 =

𝑃1 × 𝑃2. A hazardous situation is a “circumstance in which people, 

property, or the environment are exposed to one or more hazards”, such 

as normal device use [7]. The severity of the harm is defined 

qualitatively using five (5) severity levels ranging from negligible 

injury to fatal injury (see Table B4 in Appendix B). Methods used to 

estimate risk include qualitative and semi-quantitative methods, such 

as a risk matrix and quantitative methods, such as the FTA (previously 

discussed in Chapter 3[12]). 
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Figure 77 ISO 14971 Risk Estimation 

3. Risk Evaluation: The estimated risk for each hazard or hazardous situation is 

evaluated to determine risk acceptability using the criteria for risk acceptability 

(defined in the risk management plan). In situations where the estimated risk 

is judged not acceptable, risk control measures are implemented to reduce the 

risk to an acceptable level. However, when the estimated risk is judged 

acceptable, it is viewed as the residual risk (i.e., the risk remaining after risk 

control measures are applied). 

 

4. Risk Control: Appropriate risk control measures are used to reduce risks 

judged not acceptable to an acceptable level. Risk control measures for medical 

devices (in priority order) are inherently safe design and manufacture, 

protective measures and information for safety. Once risk control measures are 

implemented, the residual risk of the medical device is recalculated and re-

evaluated. In situations where the risk is judged not acceptable, additional risk 
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control measures are implemented. However, when risk reduction is not 

practical, a benefit-risk analysis is done to determine if the benefit of the 

medical device outweighs its residual risk. The benefits of a medical device 

can be determined from several factors, including the patient population and 

the clinical outcome expected from the use of the device.   

 

5. Evaluation of overall residual risk: The overall residual risk is evaluated to 

determine whether it is acceptable given the risk acceptability criteria specified 

in the risk management plan. In situations where the overall residual risk is 

judged acceptable, manufacturers will inform users about significant residual 

risks. However, if the overall residual risk is judged not acceptable, additional 

risk control measures or rework may be implemented. 

 

6. Risk Management Review: The risk management plan is reviewed to ensure 

that it was implemented correctly and that the overall residual risk of the 

medical device is acceptable. The findings of the review are documented in the 

risk management report. 

 

7. Production and Post-Production Activities: Production and post-production 

activities are used to collect and review relevant information about the medical 

device during the production and post-production phases. The information 

obtained about the medical device is used to ensure that the medical device is 

acceptably safe for use and to inform future risk management activities. 

Examples of production and post-production activities include quality control 

testing, customer surveys and reviewing incident reports and databases.  

7.2 Risk Analysis Methods and Limitations 

As mentioned in Section 7.1, though ISO 14971 specifies the requirements for the risk 

management process, it does not specify a particular process or method for performing 

risk assessment and management for medical devices. Therefore, medical device 

manufacturers are free to develop or use appropriate risk management methods and 

processes to satisfy the requirements of ISO 14971. There are several methods for 

assessing the risk of medical devices (as discussed in Chapter 3), such as Preliminary 

Hazard Analysis (PHA), static Fault Tree Analysis (FTA) and Failure Mode and 
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Effects Analysis (FMEA). However, these classical risk analysis methods have the 

following limitations (as discussed in Section 1.3): 

1. Limited approach to assessing the risk for novel products or products with 

limited or no historical data. 

2. Unable to combine objective and subjective evidence to estimate risk.  

3. Unable to handle variables with multiple states. 

4. Does not consider the causal nature of the risk. 

In this thesis, we propose using BNs to address all these limitations. The generic BN 

for medical device risk management is introduced in the next section. 

7.3 Constructing the Medical Device Risk Management BN 

In this section, we describe the process used to construct the Bayesian network for 

medical device risk management. This section is organised as follows. In Section 

7.3.1, we present the scope, requirements and objectives of the BN. In Section 7.3.2, 

the way model variables are identified is described. In Section 7.3.3, we describe how 

the BN structure is developed, and in Section 7.3.4, we describe the process of 

parameter learning and elicitation. 

7.3.1 Scope, requirements, and objectives of the BN 

To determine the scope, requirements, and objectives of the BN for medical device 

risk management, a core team of three (3) domain experts reviewed the literature on 

medical device risk management and held discussions with medical device safety risk 

experts affiliated with Medtronic (a leading medical device company). The literature 

and medical device safety risk experts indicated that manufacturers of medical devices 

are required to perform risk management during production and post-production; 

hence the high-level requirements for the BN model were: 

1. Production Risk Management: This involves predicting and evaluating the 

risk of a medical device before it is launched (i.e., predictive engineering) 

using design and production process information and real data collected from 

trials or previous systems. 
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2. Post-production Risk Management: This involves predicting and evaluating 

the risk of the medical device after it is launched (i.e., post-market risk 

management) using operational field data such as reported injuries and 

failures. 

At the device level, the BN needs to: 

1. Assess the reliability and risk of the device at all stages of development using 

subjective and objective evidence such as design and production process 

information and real data collected from trials or previous systems.   

2. Handle the uncertainty in the data. 

3. Provide quantified, auditable risk estimates for novel products or products 

with limited or no historical data. 

4. Estimate the overall risk of the device considering the different types of injury 

risks and their criteria for risk acceptability. 

5. Estimate the effect of rework or risk controls on the risk of the device. 

6. Perform a benefit-risk analysis considering information about the benefits of 

the device and the estimated risk of the device.  

Given the requirements of the BN model, we used a soft systems approach to risk and 

safety modelling. In this approach, we think of the system as a whole and analyse risks 

and safety at a high level based on soft factors related to the design, manufacture or 

use of the system. A soft systems approach was used since medical device risk 

management includes processes, people, procedures, as well as systems, machines and 

the interaction between all of these. However, we recognise that there are situations 

where a granular analysis that considers the causal interaction of each component of 

the system is required to estimate the overall risk of the system. In this case, the 

granular analysis can be performed using standalone BNs approaches (i.e., developing 

BNs for analysis of a particular system) or mapping approaches (i.e., translating risk 

analysis methods, such as Fault Tree Analysis, described in Chapter 3, using the 

mapping approaches described in Section 5.2 for analysis of a system). The results of 

a granular causal analysis can then be incorporated as priors or factors that affect the 

overall risk of the system (if available) in the proposed BN.  

In the following subsections, we identify the model variables and develop the BN 

structure using the product safety idioms discussed in Chapter 6. Product safety idioms 
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are suitable for BN development since they provide a library of reusable BN patterns 

for developing BNs for product safety risk management. In fact, the product safety 

idioms include BN patterns for modelling soft factors, such as the quality of the 

manufacturing process, and hard factors, such as the failure rate of the system. 

7.3.2 Identifying Model Variables 

Given the requirements of the BN model, the core team of three (3) domain experts 

identified relevant variables using the literature [6], [7], [12], [14], [54], [172], [176] 

and industry experience. The identified variables were organised into specific 

categories based on their purpose as follows:  

1. Reliability: These are variables that are required to estimate the reliability of 

a system.  

2. Rework: These are variables that are required to estimate the probability of 

repairing identified faults in a system. 

3. Requirement: These are variables that are required to predict whether the 

system complies with defined operational and safety requirements. 

4. Manufacturer Process Quality: These are variables that are required to 

estimate the quality of the design and production process for a system. 

5. Injury Occurrence: These are variables that are required to estimate the 

likelihood of injury occurrence during use of the system.  

6. Risk: These are variables that are required to estimate the overall risk of a 

system. 

7. Risk Evaluation: These are variables that are required to evaluate the risk of a 

system. 

8. Benefits: These are variables that are required to estimate the benefits of a 

system. 

9. Benefit-Risk Analysis: These are variables that are required to perform a 

benefit-risk analysis. 
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For instance, in Table 13, we show the variables used in the BN to estimate the quality 

of the production process for a medical device. A complete table of all the variables 

included in the BN is presented in Appendix B.  

Table 13 Variables used to estimate the quality of the production process 

Variable Name Abbrev. NPT Category 

Process quality pq TNormal (pdri, 0.005, 0, 1) Manufacturer Process 

Quality 

Product defects pdef TNormal (pq, 0.05, 0, 1) Manufacturer Process 

Quality 

Process drifts pdri Ranked: (Major: 0.333, Minor: 

0.333, None: 0.333) 

Manufacturer Process 

Quality 

Process additives padd TNormal (pq ,0.05, 0, 1) Manufacturer Process 

Quality 

 

7.3.3 BN Structure 

To construct the BN structure, the groups of variables organised by purpose were 

matched against relevant idioms proposed in Chapter 6 and then implemented as 

instances of these idioms. For example, the variables identified to estimate the quality 

of the production process shown in Table 13 were matched with the quality idiom (see 

Section 6.2.4) and implemented as an instance of this idiom, as shown in Figure 78. 

 

Figure 78 An instance of the quality idiom 

Once each group of variables was implemented as instances of idioms, we combined 

them to construct the BN structure. However, instead of building the complete model 

altogether, we first built BN subnets for the main components, i.e., risk estimation and 

risk evaluation. Once the subnets were built, we then connected them using variables 



135 

 

that were common to each of the subnets. Figure 79 shows schematically the structure 

and prediction process for the medical device risk management BN and Figure 80 

shows the risk evaluation subnet that includes the benefits-risk analysis component. 

The complete BN, the model assumptions, and the instructions for using the BN are 

presented in Appendix B. Once the BN structure was completed, it was reviewed and 

agreed upon by the medical device safety risk experts. 

 

 

Figure 79 Schematic of Medical Device Risk Management BN 
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Figure 80 Risk Evaluation Subnet for Medical Device Risk Management BN 

 

7.3.4 BN Parameters 

The node probability tables (NPTs) for the variables in the BN (see Appendix B) were 

defined by the three (3) domain experts using ranked nodes, mathematical functions, 

statistical distributions, and comparative expressions. Ranked nodes [95] were used to 

define discrete variables whose states represent a ranked ordinal scale, for example, 

the Benefits of device node with states: ‘low’, ‘medium’, ‘high’. A ranked node maps 

the states of a variable to subintervals of a numerical scale [0,1]. Since ranked nodes 

use a numerical scale, their NPTs can be defined using statistical distributions. In the 

BN model, ranked nodes with parents are defined using a TNormal distribution with 

mean µ as a weighted function of its parents and variance σ2, whereas ranked nodes 

without parents are defined using a Uniform distribution.  

Mathematical functions were used to define the NPTs for some continuous (numeric) 

variables given their parents. For example, the NPT for the variable probability of a 

fatal injury per demand is the mathematical function: probability of hazard per 

demand × probability hazard causes a fatal injury.  
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Statistical distributions were used to define the NPTs for some continuous (numeric) 

variables based on their purpose. For instance, continuous variables without parents 

are defined using a Uniform distribution or a TNormal distribution given prior data 

for a medical device. Continuous variables with parents are defined using a TNormal 

distribution with mean µ as a weighted function of its parents and variance σ2 or using 

a Binomial distribution, B(n,p). Comparative expressions were used to define the 

NPTs for discrete variables with binary states. For instance, the NPT for the variable 

Fatal injury risk acceptability is defined using the following IF statement: IF (prob. 

of fatal injury per demand <= acceptable fatal injury probability, “Acceptable”, “Not 

Acceptable”).   

Please note that since this is a generic BN, the NPTs used for some of the variables in 

the BN will be revised, given the data and requirements for a particular medical device. 

In this case study, NPTs with statistical distributions include a sufficiently large 

variance to make them applicable to the different risk management scenarios used for 

model evaluation. 

7.4 Model Validation 

In this section, we evaluate the BN for medical device risk management by assessing 

the risk of a generic Defibrillator during production and post-production. We show 

how the BN can assess the risk of medical devices with available testing data and with 

little or no testing data. In Section 7.4.1, we present the Defibrillator case study, and 

in Section 7.4.2, we evaluate the BN using a range of hypothetical data scenarios for 

the generic Defibrillator. In Section 7.4.3, we validate the BN using publicly available 

real-world data from the LIFEPAK 1000 Defibrillator. 

7.4.1 Case Study: Defibrillator Risk Assessment 

This subsection presents the necessary background information for the Defibrillator 

case study. 

1. Product Description: An automated external defibrillator (AED) that sends an 

electric shock to the heart to treat serious heart arrhythmias, e.g., ventricular 

fibrillation. It is designed to be easy to use by trained users. 

2. Hazard: Incorrect shock advice. 
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3. Hazardous Situation: The defibrillator gave an incorrect shock advice leading 

to asystole. 

4. Injury Information: Injuries range from normal sinus rhythm (negligible) to 

asystole (fatal). 

5. Benefits Information: The patient population is ‘very high’. Furthermore, the 

performance expected during clinical use is ‘high’, and the clinical outcome 

expected from the use of the device is ‘very high’. 

6. Risk Acceptability Criteria: We assume the following risk acceptability 

criteria presented in Table 14. 

Table 14 Risk Acceptability Criteria for Defibrillator 

Injury severity 

class 

Probability of injury per 

demand 

Acceptable value (A) 

Fatal 6.2E-5 

Critical 9.9E-5 

Major 2.5E-4 

Minor 7.6E-3 

Negligible 1.0E-2 

 

7. Product Testing Information: The product was tested ‘typical of normal use’. 

The test report reveals that there were 5 hazard occurrences in 1000 demands.  

8. Rework Information: The manufacturer’s rework process quality and effort 

are ‘very high’. 

9. Manufacturer Information: The manufacturer has been in operation for more 

than 20 years and has a very good safety record for medical devices. The 

manufacturer also has a ‘high’ customer satisfaction rating, and there are no 

product defects, process additives, or process drifts. 

10. Reported Field and Injury Information: Injury statistics for the defibrillator 

are based on data reported in a study that analysed the performance of AEDs 

used in the Netherlands between January 2012 and December 2014 [177]. 

According to the study data, there were “1091 shock advices in 3310 analysis 

periods (demands). 44 of the 1091 shock advices were incorrect. 15 incorrect 

shock advices were caused by device-related errors, and 28 were caused by 

operator-related errors”. Injuries caused by device-related errors include 3 
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asystole, 5 narrow complex tachycardia, 4 bradycardia, 2 normal sinus 

rhythms, and 1 multiple PVCs. Based on the injury severity classes used in the 

BN model (see Appendix B), we assume that asystole is a fatal injury, 

bradycardia, narrow complex tachycardia, and multiple PVCs are major 

injuries, and normal sinus rhythm is a negligible injury. Therefore, we assume 

3 fatal injuries, 0 critical injuries, 10 major injuries,, 0 minor injuries and 2 

negligible injuries given 15 incorrect shock advices. 

7.4.2 Risk Management Scenarios and Results 

In this subsection, we evaluate the model and its results using different risk 

management scenarios. 

Scenario 1 – Production Risk Management (with available testing data) 

In this scenario, we assess the risk of the Defibrillator given the information in Section 

7.4.1. 

Scenario 1 Results  

The BN risk results for the Defibrillator are summarised in Table 15 (see Figure B5 in 

Appendix B for additional information).  

Table 15 Defibrillator (with available testing data) BN risk results 

Injury 

severity 

class 

Probability of injury per 

demand Risk 

Acceptability 

i.e., P (P <= A) 

Overall 

Residual Risk 

(ORR) 

Acceptability 

Probability  

ORR 

Acceptability 

Probability 

given 

Benefits  

Probability 

additional 

risk 

control 

required 

Acceptable 

value (A) 

Predicted 

value (P) 

(median)  

Fatal 6.2E-5 1.1E-3  1.3E-3 

0.14 0.67  0.86 

Critical 9.9E-5 2.07E-4  0.29 

Major 2.5E-4 3.25E-3  7E-4 

Minor 7.6E-3 2.07E-4  1 

Negligible 1.0E-2 8.0E-4  1 

 

According to Table 15, the BN model predicted that the median value of the 

probability distribution for fatal, critical, and major injuries per demand exceeded the 

risk acceptability criteria. When the median value of the risk distribution exceeds the 

acceptable value, this means that less than 50% of the predicted or estimated risk is 
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acceptable. The BN shows the probability that the estimated risk is acceptable is 1.3E-

3, 0.29 and 7E-4 for fatal, critical, and major injuries, respectively. Regarding the 

overall residual risk (ORR) per demand, the BN shows that the probability that it is 

acceptable is 0.14. However, given the benefits of the device, the probability that the 

ORR per demand is acceptable is 0.67. Finally, the BN predicts that the probability 

that additional risk controls are required to reduce risk to an acceptable level is 0.86. 

According to ISO 14971 [6], risk control options include inherent safe design and 

manufacture, protective measures and information for safety. Please note that although 

there is no available data for critical and minor injuries, the BN model provides 

reasonable probabilities estimates based on the number of reported hazards and other 

evidence in the model. 

In Table 16 (see Figure B6 in Appendix B for additional information), we show the 

risk results if additional risk controls are implemented. As stated in Section 7.4.1, the 

manufacturer has a ‘very high’ quality rework process and effort. 

Table 16 Defibrillator (with available testing data) BN risk results – Rework 

Information 

Injury 

severity 

class 

Probability of injury per 

demand Risk 

Acceptability 

i.e., P (P <= A) 

Overall 

Residual Risk 

(ORR) 

Acceptability 

Probability  

ORR 

Acceptability 

Probability 

given 

Benefits  

Probability 

additional 

risk 

control 

required 

Acceptable 

value (A) 

Predicted 

value (P) 

(median) 

Fatal 6.2E-5 2.2E-4  0.045 

0.29 0.72  0.71 

Critical 9.9E-5 4.2E-5 0.78 

Major 2.5E-4 6.6E-4  0.044 

Minor 7.6E-3 4.2E-5  1 

Negligible 1.0E-2 1.6E-4  1 

 

Compared to the results presented in Table 15, the BN model revised the risk estimates 

given additional risk controls. Table 16 shows that the probability that the estimated 

risk is acceptable for fatal, critical, and major injuries per demand would increase to 

0.045, 0.78 and 0.044, respectively. The probability of ORR acceptability would 

increase to 0.29, and given the benefits of the device, it would increase to 0.72. 

Although the probability that additional risk controls are required was reduced to 0.71, 
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this result indicates that further risk controls are required to reduce risk to an 

acceptable level. 

Scenario 2 – Production risk management (with limited or no testing data)  

In this scenario, we assume that the defibrillator is a novel device with no testing data, 

and we have testing data from a previous similar defibrillator (5 hazards in 700 

demands). We also assume that the 𝑃1 estimate (i.e., probability of hazard per demand) 

for the novel device is also dependent on 𝑃1 estimated from field data (ratio 60:40 i.e., 

𝑃1 =  (0.60 × 𝑃1 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎)  +  (0.40 ×  𝑃1 𝑓𝑖𝑒𝑙𝑑 𝑑𝑎𝑡𝑎)). All other information 

used in the model is stated in Section 7.4.1.  

Scenario 2 Results  

The BN risk results for the Defibrillator are summarised in Table 17 (see Figure B7 in 

Appendix B for additional information). According to Table 17, the BN model 

predicted that the median value of the probability distribution for fatal, critical, and 

major injuries per demand exceeded the risk acceptability criteria. The BN shows that 

the probability that the estimated risk is acceptable is 3E-4, 0.23 and 0 for fatal, critical, 

and major injuries, respectively. Regarding the overall residual risk (ORR) per 

demand, the BN shows that the probability that it is acceptable is 0.13. However, given 

the benefits of the device, the probability that the ORR per demand is acceptable is 

0.66. Finally, the BN predicts that the probability that additional risk controls are 

required to reduce risk to an acceptable level is 0.87. 

Table 17 Defibrillator (with limited or no testing data) BN risk results 

Injury 

severity 

class 

Probability of injury per 

demand Risk 

Acceptability 

i.e., P (P <= A) 

Overall 

Residual Risk 

(ORR) 

Acceptability 

Probability  

ORR 

Acceptability 

Probability 

given 

Benefits  

Probability 

additional 

risk 

control 

required 

Acceptable 

value (A) 

Predicted 

value (P) 

(median) 

Fatal 6.2E-5 1.4E-3 3E-4 

0.13 0.66  0.87 

Critical 9.9E-5 2.6E-4 0.23 

Major 2.5E-4 4.0E-3 0 

Minor 7.6E-3 2.6E-4  1 

Negligible 1.0E-2 1.0E-3  1 
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Scenario 3 – Production risk management (generic data) 

In this scenario, we assume that the defibrillator is a completely new device with no 

testing data and there are no relevant testing data from a previous similar device. We 

assume we are using generic probabilities for the hazard occurrence (see Table B5 in 

Appendix B for additional information). We assume that the hazard occurrence is 

probable (i.e., 1E-4 ≤ 𝑃1< 1E-3), and the 𝑃1 estimate for the novel device is also 

dependent on 𝑃1 estimated from field data (ratio 60:40). All other information used in 

the model is stated in Section 7.4.1. 

Scenario 3 Results  

The BN risk results for the Defibrillator are summarised in Table 18 (see Figure B8 in 

Appendix B for additional information). According to Table 18, the BN model 

predicted that the median value of the probability distribution for fatal and major 

injuries per demand exceeded the risk acceptability criteria. The BN shows that the 

probability that the estimated risk is acceptable is 2.4E-3 and 0 for fatal and major 

injuries, respectively. Regarding the overall residual risk (ORR) per demand, the BN 

shows that the probability that it is acceptable is 0.20. However, given the benefits of 

the device, the probability that the ORR per demand is acceptable is 0.69. Finally, the 

BN predicts that the probability that additional risk controls are required to reduce risk 

to an acceptable level is 0.80. 

Table 18 Defibrillator (with generic data) BN risk results 

Injury 

severity 

class 

Probability of injury per 

demand Risk 

Acceptability 

i.e., P (P <= A) 

Overall 

Residual Risk 

(ORR) 

Acceptability 

Probability  

ORR 

Acceptability 

Probability 

given 

Benefits  

Probability 

additional 

risk 

control 

required 

Acceptable 

value (A) 

Predicted 

value (P) 

(median) 

Fatal 6.2E-5 4.8E-4 2.4E-3 

0.20 0.69  0.80 

Critical 9.9E-5 9.2E-5 0.53 

Major 2.5E-4 1.4E-3 0 

Minor 7.6E-3 9.2E-5  1 

Negligible 1.0E-2 3.5E-4  1 
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Scenario 4 – Post-production risk management  

In this scenario, we assume that we are reassessing the risk of a previous model of the 

defibrillator available on the market based on reported hazards and injuries. We 

assume 10,000 demands, 50 reports of incorrect shock advices resulting in 1 major 

injury and 49 negligible injuries. The risk acceptability criteria and benefits 

information used in the model is stated in Section 7.4.1. 

Scenario 4 Results  

The BN risk results for the Defibrillator are summarised in Table 19 (see Figure B9 in 

Appendix B for additional information). According to Table 19, the BN model 

predicted that the median value of the probability distribution for fatal injury per 

demand exceeded the risk acceptability criteria. The BN shows that the probability 

that the estimated risk is acceptable is 0.47. Regarding the overall residual risk (ORR) 

per demand, the BN shows that the probability that it is acceptable is 0.62. However, 

given the benefits of the device, the probability that the ORR per demand is acceptable 

is 0.85. Finally, the BN predicts that the probability that additional risk controls are 

required to reduce risk to an acceptable level is 0.38. 

Table 19 Defibrillator (post-production) BN risk results 

Injury 

severity 

class 

Probability of injury per 

demand Risk 

Acceptability 

i.e., P (P <= A) 

Overall 

Residual Risk 

(ORR) 

Acceptability 

Probability  

ORR 

Acceptability 

Probability 

given 

Benefits  

Probability 

additional 

risk 

control 

required 

Acceptable 

value (A) 

Predicted 

value (P) 

(median) 

Fatal 6.2E-5 6.8E-5 0.47 

0.62 0.85  0.38 

Critical 9.9E-5 6.8E-5 0.63 

Major 2.5E-4 1.6E-4 0.72 

Minor 7.6E-3 6.8E-5  1 

Negligible 1.0E-2 4.3E-3  1 
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7.4.3 LIFEPAK 1000 Defibrillator 

In this subsection, we validate the results of the model obtained in the risk management 

scenarios by assessing the risk of the LIFEPAK 1000 Defibrillator (Product Part 

Numbers: 320371500XX), which Physio-Control recalled in 2017 due to reports of 

the device shutting down unexpectedly during device use [171], [178]. This hazard 

can cause the device not to deliver therapy during use, exposing the patient to serious 

harm or death. A total of 133,330 devices were affected by this hazard. There were 34 

reports of the hazard and 8 adverse events. In this example, we assume the risk 

acceptability criteria and benefits information stated in Section 7.4.1 since this 

information is not publicly available. We also assume that the number of potentially 

fatal injuries is 8 and the number of potentially minor injuries was 26 based on the 

injury reports. The BN model results are shown in Table 20 and Figure B10 in 

Appendix B. 

According to the results of the model shown in Table 20, the BN model predicted that 

the median value of the probability distribution for fatal injuries per demand exceeded 

the risk acceptability criteria. The BN shows that the probability that the estimated risk 

is acceptable is 0.47 for a fatal injury. Therefore, the BN model validates and supports 

Physio-Control product recall decision (on the assumption that the probability of 

meeting the risk acceptability criteria for a fatal injury per demand to be at least 90%). 

Table 20 BN model risk results for LIFEPAK 1000 Defibrillator 

Injury 

severity 

class 

Probability of injury per 

demand Risk 

Acceptability 

i.e., P (P <= A) 

Overall 

Residual Risk 

(ORR) 

Acceptability 

Probability  

ORR 

Acceptability 

Probability 

given 

Benefits  

Probability 

additional 

risk 

control 

required 

Acceptable 

value (A) 

Predicted 

value (P) 

(median) 

Fatal 6.2E-5 6.3E-5 0.47 

0.73 0.90  0.27 

Critical 9.9E-5 5.1E-6 1 

Major 2.5E-4 5.1E-6 1 

Minor 7.6E-3 1.9E-4  1 

Negligible 1.0E-2 5.1E-6  1 
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7.5 Discussion 

The BN for medical device risk management developed with the support of medical 

device safety risk experts affiliated with Medtronic (a leading medical device 

company) can estimate the risk of medical devices during different stages of their life 

cycle. The Defibrillator case study shows that the BN model can estimate the risk of 

medical devices during production and post-production, with available relevant data 

and with limited or no relevant data. In Scenario 1 - Production risk management, the 

BN model estimated the risk and acceptability of the risk for the defibrillator given 

relevant information (see Table 15 and Table 16). In Scenario 2 - Production risk 

management (with limited or no testing data), the BN model estimated the risk and 

acceptability of the risk for the defibrillator given limited product testing data using 

manufacturer information and previous similar device data (see Table 17). In Scenario 

3 - Production risk management (generic data), the BN model estimated the risk and 

acceptability for the defibrillator using generic probabilities of hazard occurrence 

along with manufacturer information and field data from other similar devices (see  

Table 18).  In Scenario 4 - Post-production risk management and model validation 

using LIFEPAK 1000 defibrillator data, the BN model estimated the risk and 

acceptability of the defibrillator based on operational and injury information (see 

Table 19 and Table 20). In all scenarios, the risk estimate is comprehensive since the 

BN incorporates relevant factors that affect the risk of medical devices, such as the 

quality of the manufacturing process. Moreover, these factors are causally linked, 

supporting ease of interpretability and explanation of risk estimates. In fact, the BN 

model incorporates both discrete and continuous variables to estimate risk, illustrating 

the flexibility and power of using (hybrid) BNs to solve complex problems. The BN 

uses continuous variables with conditionally deterministic functions, statistical 

distributions and mixture distributions conditioned on different discrete assumptions. 

Furthermore, the BN can estimate risks using prior assumptions and learn parameters 

from observations (induction). Since the BN can easily revise risk estimates given new 

information, this allows easy risk management of any medical device throughout its 

life cycle.   

The BN model also performs a benefit-risk analysis by estimating the risk 

acceptability given the benefits of the medical device (see Figure 80). The benefit of 
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a medical device is the degree of improvement in a patient’s health and clinical 

management that is expected from the use of that device. As shown in Figure 80, 

information such as device performance and clinical outcomes can help determine the 

benefit of a medical device [6]. A Benefit-Risk analysis is essential for informing risk 

management decisions such as product recalls, especially in situations where 

additional risk control measures are not applicable.  

In situations where there are little or inadequate data to provide reasonable risk 

estimates for medical devices, the BN can incorporate data from previous similar 

devices, expert judgement, and manufacturer information to estimate the risk of the 

medical device. Previous similar device data, expert judgement and manufacturer 

information, can be included as prior distributions or values in the BN, as illustrated 

in Risk Management Scenario 2 and Scenario 3. Therefore, the BN model can estimate 

the risk of novel medical devices (i.e., devices with little or no historical data) with 

known or unknown hazards or faults since it can handle uncertainty and incomplete 

data, combine subjective and objective evidence, and revise risk estimates given new 

evidence. In situations where the BN is used to assess the risk of a continuous use 

medical device, the BN can estimate the failure rate by considering the mean and 

variance of the observed failure times (demands) and the mean and variance of the 

number of observed failures.  

In situations where the BN is used to assess the risk of software, information such as 

development team experience is required to determine the quality of the software 

development process. The BN can be adapted using the Software BN fragment shown 

in Figure 81 to estimate the quality of the software development process. The quality 

of the software development process is then combined with the software failure data 

to provide a more accurate estimate of the probability of software failure. Like novel 

medical devices, the BN can provide reasonable risk estimates for new software with 

little or no testing data by combining previous similar software failure data, expert 

judgement and knowledge about the development process. The estimated risk for the 

new software will be revised, given new evidence throughout its life cycle, such as 

rework information (risk control measure) and injury information. 
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Figure 81 Software developer process quality BN fragment 

In situations where the BN model is used to assess individual risk, the model can be 

extended to include information such as device use to estimate risk for a particular 

user. The BN model revises the 𝑃1  (i.e., probability of hazard or failure) estimated 

from field data (or testing data) using device use information for that particular user. 

The revised 𝑃1  estimate is then combined with 𝑃2 (i.e., probability hazard causes an 

injury) computed from field data to estimate the risk of injury, as shown in Figure 82 

(see Figure B4 in Appendix B for the complete BN subnet).  

 

Figure 82 Individual Device Use Information BN fragment 



148 

 

The BN for medical device risk management provides risk estimates for a single 

hazard; however medical devices usually have multiple hazards. We can combine the 

results of multiple hazards using a matrix or table. In the example shown in Table 21, 

the risk acceptability probability value for each class of injury for a particular hazard 

is obtained from the model, and we compute the combined risk acceptability 

probability values as the mean µ for each class of injury. We assume that all values 

included in the table are satisfactory. The risk acceptability table will allow risk 

assessors to determine the overall risk acceptability for the medical device given all 

its hazards.  

Table 21 Risk Acceptability Table for multiple hazards 

Risk Acceptability Table 

Hazards 

List 

Risk Acceptability Probability Overall 

Residual 

Risk (ORR) 

Acceptability 

Probability 

ORR 

Acceptability 

Probability 

given 

Benefits 
Fatal 

Injury 

Critical 

Injury 

Major 

Injury 

Minor 

Injury  

Negligible 

Injury 

Hazard 1 0.89 0.6 0.8 0.25 0.3 0.67 0.85 

Hazard 2 0.5 0.75 1 0.99 0.75 0.75 0.9 

Combined 

Results 

(Mean) 

0.7 0.68 0.9 0.62 0.53 0.71 0.875 

 

Contributions and Limitations  

The principal merit of the proposed generic BN for medical device risk management 

is to provide a robust systematic method for medical device manufacturers to manage 

the risk of medical devices throughout their life cycle (i.e., initial conception to final 

decommissioning and disposal). The generic BN for medical device risk management 

proposed in this thesis improves the risk assessment of medical devices in the 

following ways: 

1. It provides a robust method for managing the risk of medical devices 

throughout their life cycle. The proposed BN incorporates different types of 

data (subjective and objective) to estimate the risk of a medical device at any 
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stage of the life cycle. It also explicitly shows the risk distribution for each 

type of injury and the overall combined risk. 

2. It informs risk control measures/ risk treatment given the risk acceptability 

criteria. The BN predicts the need for additional risk control measures based 

on the defined risk criteria. It also supports iterative risk treatment. 

3. It improves the interpretability and explanation of risk estimates. The graphical 

structure of the BN allows for easy communication and interpretation of 

uncertainty and risk. 

4. It handles uncertainty in the data, especially for novel medical devices and 

software with little or no relevant historical data. 

5. It provides individual risk estimates since it considers device use and device 

age information when estimating risk. 

6. It supports market surveillance and review (post-market activities). The BN 

can easily update risk estimates given new information, such as reported 

injuries. 

7. It complements existing risk management techniques and methods (see 

Chapter 3), such as Fault Tree Analysis (FTA) and Preliminary Hazard 

Analysis (PHA). This enables easy adoption of the proposed BN in the 

industry. 

8. It improves benefit-risk analysis by considering information about the benefits 

of the medical device and the estimated risk. To the best of our knowledge, the 

proposed BN is the only method that automatically combines subjective 

information about benefits together with the estimated risk to determine risk 

acceptability for a medical device.  

The main limitation of the case study is obtaining all relevant information for a 

medical device to perform risk assessment using the BN model. Since the results of 

the manufacturer’s safety and reliability tests are not publicly available, some of the 

data used to assess the risk of the defibrillator were fictitious, such as the risk 

acceptability criteria. Given actual data for medical devices such as LIFEPAK 1000, 

the BN can provide reasonable and auditable risk estimates.  
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In addition, the proposed BN was developed in the context of risk management done 

by manufacturers of medical devices (or product manufacturers in general); hence, its 

variables and structure are somewhat different from the consumer product safety risk 

assessment BN (discussed in Chapter 8) developed in the context of risk management 

done by national safety regulators and market surveillance authorities in the UK and 

EU. 

7.6 Chapter Summary 

This chapter serves as a good example for the practical use and benefits of the product 

safety idioms for BN development discussed in Chapter 6. By developing the BN for 

medical device risk management, we show that product safety idioms can be used to 

construct complex BNs in a modular fashion. In addition, this chapter demonstrates 

how manufacturers can use BNs for product safety risk management. The proposed 

BN for medical device risk management can handle uncertainty and incomplete data, 

estimate risks using prior assumptions, and learn parameters from observations 

(induction). It supports comprehensive and practical risk analysis since it decomposes 

the risk of a medical device into a causal chain of events, including risk controls, unlike 

the classical approach, i.e., Risk = P × S.  The BN also complements existing risk 

analysis methods such as FTA discussed in Chapter 3. The results of existing risk 

analysis methods can be incorporated into the BN to determine the risk of medical 

devices. 

Additionally, the BN model informs risk management decisions by providing 

information on the acceptability of the risk and benefit-risk analysis. Finally, the BN 

resolves the limitations of existing methods, provides a standard systematic method 

for medical device risk management during production and post-production, is 

generalisable, and considers the ISO 14971 risk management process. Future work 

includes investigating the risk perception of medical devices since users may judge 

their risk and benefits differently from experts. For instance, experts tend to judge the 

risk of a product using quantitative risk assessments, whereas consumers judge risk 

using a combination of subjective measures such as risk propensity. The risk 

perception information can then be incorporated in the BN using the risk perception 

idiom discussed in Chapter 6. 
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Chapter 8 Case Study 2: Consumer Product Safety 

and Risk Assessment 

In this chapter, a case study on consumer product risk assessment is presented. This 

work was supported by the UK Government Office for Product Safety and Standards 

(OPSS). In Section 8.1, the topic is introduced, while Section 8.2, provides an 

overview of product risk assessment and presents the RAPEX methodology. In 

Section 8.3, the limitations of the RAPEX methodology are presented. In Section 8.4, 

to address the limitations of the RAPEX methodology, we developed a generic BN for 

consumer product safety risk assessment using the product safety idioms discussed in 

Chapter 6. In Section 8.5, we evaluate the proposed BN by assessing the risk of 

consumer products with relevant data and with no relevant data. Finally, the results 

and benefits of the proposed BN are discussed in Section 8.6.  

This chapter also supports Hypothesis 2 (it is possible to use Bayesian networks for 

safety risk management for many different types of products, including novel products 

or products with limited or no available data) and Hypothesis 3 (it is possible to use 

Bayesian networks to model consumer risk perception and/or perform benefits-risk 

analysis for products). Please note that the material presented in this chapter was 

previously presented in Publication 2 [15] published by the Journal of Safety 

Research. 

8.1 Introduction  

It is essential that the products we use in our homes are acceptably safe. To ensure our 

safety, national regulators perform product risk assessments to limit consumer harm 

[5], [8], [179], [180]. There are several different methods used for product risk 

assessment, including Nomograph [179] and Matrix [179], but RAPEX [5], [8], [179] 

is the primary method used by national safety regulators and market surveillance 

authorities (MSA) in the UK and EU.  

While the RAPEX methodology is valid and useful, in this chapter, we identify a 

number of limitations of this methodology and explain the need for a systematic 

method for product risk assessment that: improves the management of uncertainty; 

uses causal knowledge of both the testing and operational environment and the process 
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by which data are generated; is able to produce auditable quantified risk assessments 

even where there is limited product testing and instance data; considers the user 

population at risk and the product risk tolerability (acceptability).  

We propose that Bayesian networks (BNs) can provide such a systematic method as 

they are a rigorous, normative method for modelling uncertainty and causality [13], 

[181]–[184]. We present a generic BN that significantly extends the previous work on 

BNs for product risk assessment. It incorporates hazard and injury data, product 

instances, manufacturer process information, product usage data, consumer benefits 

and risk perception to estimate product risk. The proposed generic BN also 

complements traditional risk assessment methods such as RAPEX. In the next section, 

we provide an overview of product risk assessment and the RAPEX methodology.  

8.2 Overview of Product Risk Assessment and the RAPEX 

Methodology  

A product is any physical non-food item offered in a market to meet consumer needs; 

it could be anything from a kitchen appliance to a toy (see Section 2.2.1). Product risk 

assessment is the overall process of determining whether a product is safe for 

consumers to use. Specifically, it is the process by which the level of risk associated 

with a particular (product) hazard is identified and categorised. The risk assessment 

process includes risk analysis and risk evaluation (see Figure 1) [8], [185]:  

1. Risk Analysis: This phase involves hazard identification and risk estimation 

[185]. Hazard identification is the process of finding, recognising, and 

describing the hazards of the product. Hazards are potential sources of harm 

or injury and are intrinsic to the product [5], [8], [185]. Risk Estimation is the 

process of determining the risk level of the product. Risk is the combination of 

the likelihood of a hazard causing injury to a consumer and the severity of that 

injury. The risk level is the degree of the product risk on a scale from ‘low’ to 

‘serious’ [5], [8]. 

2. Risk Evaluation: The process by which the outcome of the risk analysis is 

combined with policy considerations to characterise the risk and inform 

decisions on risk management. It includes determining whether the risk is 

acceptable [8], [185]. 
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As RAPEX is the most widely used method for evaluating the risk of consumer 

products by national safety regulators in the EU and the UK [5], [8], [185], this thesis 

will review the RAPEX methodology and its limitations.  

8.2.1 The RAPEX Methodology   

The EU Rapid Information System (RAPEX) risk assessment guidelines were 

developed for the rapid exchange of information between the Member States of the 

EU on measures and actions relating to products that pose a serious risk to the safety 

and health of consumers [5], [8]. An essential component of RAPEX is product risk 

assessment which determines the risk of a product and informs risk management 

response [5], [8]. The following steps or guidelines and schematic shown in Figure 83 

describe the RAPEX methodology for assessing product risk: 

 

Figure 83 Schematic flow of RAPEX risk assessment 

1. Describe the product and its hazards: Product details such as name, brand and 

model are documented during this stage. Hazards associated with products are 

identified by tests and standards or by the manufacturer’s product labelling and 

instructions. Identified hazards are classified using RAPEX’s hazard 

taxonomy, e.g., electrical energy, extreme temperatures and toxicity. 
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2. Identify consumers: In this step, the consumers at risk are identified. 

Consumer types include intended users, non-intended users and vulnerable 

users. 

3. Describe the injury scenario: Injury scenarios that causally describe how the 

product hazard may harm the consumer via a series of steps are developed. 

Suppose we imagine that the product is an axe, an example of an injury 

scenario is “the axe breaks, and the ejected part strikes the user’s head”. 

4. Determine the probability of injury: Probabilities are assigned to each step of 

the injury scenario to determine the probability of injury. For example, to 

determine the probability of injury while using an axe, we combine the 

following probabilities:  

a. Probability of axe breaking = 1/100 

b. Probability of a broken part hitting the body = 1/10  

c. Probability of the broken part hitting the head = 1/10 

Total probability of injury = 0.01 × 0.1× 0.1 = 0.0001  

The probabilities used in this step are assumed to be independent and are 

obtained from what are assumed to be reliable sources, such as the European 

Injury Database and hospital injury databases.  

5. Determine the severity of the injury: The severity of the injury is determined 

by the type of medical intervention required for the injury scenario. The injury 

severity level and associated medical intervention are shown in Table 22. 

Table 22 Injury severity level and associated medical intervention 

Injury Severity Level Medical Intervention 

1 First Aid 

2 Visit Accident and Emergency Department 

(A&E) 

3 Hospitalisation 

4 Fatal or loss of a limb(s) 

 

For example, we assign a severity level of 2 for the injury scenario “an axe 
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breaks and the ejected part strikes the user’s head”, since it may require a visit 

to A&E. 

6. Determine the risk: The risk of the product is determined using a risk matrix 

that combines the severity of the injury and the probability of the injury 

described in the injury scenario (see Table C1 in Appendix C for RAPEX’s 

risk matrix). The estimated risk of the product will contain some level of 

uncertainty, since the probability of injury and severity of injury are estimated 

parameters. RAPEX handles uncertainty in the estimated risk using a 

sensitivity analysis which determines how variations in the estimated 

parameters (i.e., probability of injury and severity of injury) affect the overall 

risk result. It entails repeating the risk assessment process using different 

probabilities for the steps in the injury scenario and different injury severity 

levels. If the sensitivity analysis shows that there is no significant change in 

the risk, then there is increased confidence in the initial estimated risk. On the 

contrary, a significant change will reduce confidence and require a review of 

the estimated parameters. For example, if the risk of the axe is ‘low’ and the 

sensitivity analysis also shows that there is no significant change in the risk, 

then the risk of the axe is confidently considered as ‘low’. However, a product 

can have many different risk levels due to many hazards, many injury scenarios 

or varying probabilities or severities of injuries. In these situations, the risk of 

the product is the highest risk level identified for that product. 

8.3 Limitations of the RAPEX Methodology   

Despite the widespread use of the RAPEX methodology, it has the following 

limitations: 

1. Limited approach to handling uncertainty: In RAPEX, probabilities are 

assigned using point values instead of distributions (i.e., the assignment of 

probability values to each of the possible states of a random variable). RAPEX 

attempts to handle second-order uncertainty (i.e., the uncertainty in the 

estimation of the parameters of interest [186]) using a sensitivity analysis 

which entails repeating the risk assessment process using different 

probabilities for the steps in the injury scenario and different injury severity 
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levels. This method of handling uncertainty is not practical for probabilities 

that are not directly observable, nor where there is uncertainty about the data.  

 

2. Cannot be applied where there is little or no product data: RAPEX cannot 

produce risk assessments for genuinely novel products (i.e., those for which 

little or no relevant historical data exist) or products for which limited testing 

data are available.  

 

3. Does not incorporate causal explanations for using and interpreting the data: 

RAPEX provides no systematic or rigorous method for taking account of 

causal knowledge and explanations of the statistical data it uses, which may 

lead to inaccurate results. Also, RAPEX does not consider the causal factors 

that generate the data it uses since it assumes that the data is reliable because 

it is obtained from credible sources. The most general example is that lack of 

incident data for a product may be due to lack of reporting on the product rather 

than a lack of incidents, while, at the other extreme, multiple incidents 

associated with a product may be the result of testing the product beyond its 

intended scope. 

 

4. Does not differentiate between different types of users – i.e., their usage profile 

and risk tolerability (acceptability): In the RAPEX methodology, product risk 

is based on the likelihood of a product causing injury to a ‘generic’ user and 

the severity of that injury without any consideration of the context of use [5], 

[8], [179].  Hence, a product formally classified as ‘high risk’ may actually be 

‘low risk’ or ‘tolerable’ for different classes of users, taking into account the 

way they use the product, the benefits they receive from it and risk controls 

and mitigants. Risk controls and mitigants vary for different types of users due 

to their knowledge of the hazard and the environment in which they use the 

product. For instance, users that are aware of a fire hazard from a device are 

likely to have a smoke alarm installed nearby, thus reducing the likelihood of 

injury, e.g., burn, even if the hazard occurs. 

 

5. Does not consider different product combinations and interactions with 

different classes of users when estimating product risk: RAPEX’s injury 
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scenario assumes that the events leading to an injury are independent and that 

the product is used by a user independent of other classes of products and users. 

Hence RAPEX cannot assess the injury scenarios with different product 

combination interactions with different classes of users—for example, the risk 

of an axe used by a student supervised by a trainer. 

 

6. Does not consider the user exposure to the risk: RAPEX does not include the 

usage frequency when determining the probability of a product causing injury 

to a user. Usage frequency is essential to determining the probability of injury 

since injury can only occur during product use. For instance, a consumer that 

uses a product often will have a higher probability of being injured due to 

repeated exposure to the hazard when compared to a consumer that rarely uses 

the product.  

 

7. Does not include information on risk tolerability (acceptability): Risk 

tolerability (acceptability) is the trade-off between risk and benefits (or utility). 

For instance, a ‘high risk’ product may be considered ‘tolerable’ for some users 

since they value the benefits of the product sufficiently high and are willing to 

tolerate the ‘high risk’ as a trade-off for the benefits. Hence, risk tolerability is 

an essential component of product risk assessment since it informs risk 

management response to a non-compliant product. 

 

8. Does not consider increased risk of hazards over the lifetime of a product: Due 

to wear and tear, the ‘hazard rate’ of a product will generally increase over 

time, with different classes of products having very different increasing hazard 

rates. An estimated hazard rate of a product – based only on testing instances 

of the product when new – will underestimate the true hazard rate of the 

product in operation. 

 

9. Cannot assess the risk of products with unknown hazards or unknown product 

usage information: RAPEX cannot assess the risk of products, especially novel 

products, with unknown hazards or unknown product usage information since 

it requires an injury scenario to estimate product risk. Nor does it provide a 

method for recognising when novelty in hazard or usage arises.  
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Given the limitations of the RAPEX methodology, we propose using BNs for 

consumer product safety risk assessment. The generic BN for consumer product safety 

risk assessment is presented in the next section. 

8.4 Constructing the Consumer Product Safety Risk 

Assessment BN 

In this section, we describe the process used to construct the Bayesian network for 

consumer product safety risk assessment. This section is organised as follows. In 

Section 8.4.1, we present the scope, requirements and objectives of the BN. In Section 

8.4.2, the way model variables are identified is described. In Section 8.4.3, we describe 

how the BN structure is developed, and in Section 8.4.4, we describe the process of 

parameter learning and elicitation. 

8.4.1 Scope, requirements, and objectives of the BN 

To determine the scope, requirements, and objectives of the BN for consumer product 

safety risk assessment, a core team of three (3) domain experts reviewed the literature 

on consumer product safety risk assessment and held discussions with senior 

government safety and risk experts. Given the limitations of the RAPEX methodology, 

the high-level requirements for the BN model were: 

1. Product Safety Risk Assessment: This involves predicting and evaluating the 

risk of a (non-compliant) product using testing and operational data, 

information about the manufacturer, such as reputation, and other relevant 

information about the product, such as product use and age.   

  

2. Risk Perception and Risk Tolerability (Acceptability) Assessment: This 

involves predicting risk perception and risk tolerability of the product using 

information about consumer risk perception (i.e., perceived benefits and risk) 

and risk communication, e.g., product recall.  
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At the product level, the BN needs to: 

1. Assess the risk of the product using subjective and objective evidence such as 

manufacturer process information and real data collected from trials or 

previous systems.   

2. Handle the uncertainty in the data. 

3. Provide quantified, auditable risk estimates for novel products or products 

with limited or no historical data. 

4. Estimate the overall risk of the product considering the different types of 

injury risks. 

5. Estimate the effect of risk controls on the risk of the product. 

6. Perform risk tolerability and risk perception analysis considering information 

about the perceived benefits and risk of the product.  

Given the requirements of the BN model, we used a soft systems approach to risk and 

safety modelling. In this approach, we think of the product as a whole and analyse 

risks and safety at a high level based on soft factors related to the design, manufacture 

or use of the product. A soft systems approach was used since product risk assessment 

includes processes, people, procedures as well as systems, machines and the 

interaction between all of these. However, we recognise that there are situations where 

a granular analysis that considers the causal interaction of each component of the 

product is required to estimate the overall risk of the product. In this case, the granular 

analysis can be performed using standalone BNs approaches (i.e., developing BNs for 

analysis of a particular product) or mapping approaches (i.e., translating risk analysis 

methods, such as Fault Tree Analysis, described in Chapter 3, using the mapping 

approaches described in Section 5.2 for analysis of a product). The results of a granular 

causal analysis can then be incorporated as priors or factors that affect the overall risk 

of the product (if available) in the proposed BN.  

In the following subsections, we identify the model variables and develop the BN 

structure using product safety idioms discussed in Chapter 6. Product safety idioms 

are suitable for BN development since they provide a library of reusable BN patterns 

for modelling soft factors, such as the quality of the manufacturing process, and hard 

factors, such as the failure rate of the product. 
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8.4.2 Identifying Model Variables 

Given the requirements of the BN model, the core team of three (3) domain experts 

identified relevant variables using the literature [5], [8], [185] and industry experience. 

The identified variables were organised into specific categories based on their purpose 

as follows:  

1. Reliability: These are variables that are required to estimate the reliability of 

a product e.g., failure and hazard rates.  

2. Requirement: These are variables that are required to predict whether a 

product complies with defined operational and safety requirements. 

3. Manufacturer Process Quality: These are variables that are required to 

estimate the quality of the design and production process for a product. 

4. Injury Occurrence: These are variables that are required to estimate the 

likelihood of injury occurrence during product use.  

5. Risk: These are variables that are required to estimate the overall risk of a 

product. 

6. Risk Tolerability (Acceptability): These are variables that are required to 

evaluate the risk tolerability for a product. 

7. Benefits: These are variables that are required to estimate the benefits of a 

product. 

8. Risk Perception: These are variables that are required to estimate the 

perceived risk of a product. 

For instance, in Table 23, we show the variables used in the BN to estimate the quality 

of the production process for a product. A complete table of all the variables included 

in the BN is presented in Appendix C. 
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Table 23 Variables used to estimate the quality of the production process 

Variable 

Name 

Abbrev. NPT Category 

Product design prod_design TNormal (m_quality,0.05, 0, 1) Manufacturer 

Process Quality 

Years in 

operation 

years_operatin

g 

Ranked: (< 1 year: 0.2, 1 - 5 years: 0.2, 5 - 

10 years: 0.2, 10 - 20 years: 0.2, 20+ years: 

0.2) 

Manufacturer 

Process Quality 

Manufacturer 

reputation 

reputation Ranked: (Disreputable: 0.33333334, 

Reputable: 0.33333334, Highly Reputable: 

0.33333334) 

Manufacturer 

Process Quality 

Customer 

satisfaction 

cust_sat TNormal (m_quality,0.05, 0, 1) Manufacturer 

Process Quality 

Manufacturer 

process 

quality 

m_quality TNormal (wmean 

(1.0,years_operating,2.0,reputation),0.001,0,

1)) 

Manufacturer 

Process Quality 

 

8.4.3 BN Structure 

To construct the BN structure, the groups of variables organised by purpose were 

matched against relevant idioms proposed in Chapter 6 and then implemented as 

instances of these idioms. For example, the variables identified to estimate the quality 

of the production process shown in Table 23 were matched with the quality idiom (see 

Section 6.2.4) and implemented as an instance of this idiom as shown in Figure 84. 

 

Figure 84 An instance of the quality idiom 

Once each group of variables was implemented as instances of idioms, we combined 

them to construct the BN structure. However, instead of building the complete model 

altogether, we first built BN subnets for the main components, i.e., risk estimation and 

risk tolerability/risk perception. Once the subnets were built, we then connected them 
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using variables that were common to each of the subnets. The complete BN structure 

was then presented for discussion in a workshop with six (6) senior government safety 

and risk experts and was revised accordingly both at the workshop and in subsequent 

iterations (mainly by email as, due to the Covid-19 crisis, no further in-person 

workshops were conducted). A consensus on the proposed BN model was reached 

when the model included all relevant variables (connected causally) required for 

product risk assessment. Figure 85 shows schematically the structure and prediction 

process for the consumer product safety risk assessment BN. Figure 86 and Figure 87 

show the BN subnet for risk estimation and risk evaluation, respectively. Please see 

Appendix C for larger images of these subnets, the model assumptions, and the 

instructions for using the BN.  

 

 

Figure 85 Schematic of Consumer Product Safety Risk Assessment BN 

 



163 

 

 

Figure 86 Consumer Product Risk Assessment BN - Risk Estimation Subnet 

 

 

Figure 87 Consumer Product Safety Risk Assessment BN - Risk Evaluation Subnet 

8.4.4 BN Parameters 

The node probability tables (NPTs) for the variables in the BN (see Appendix C) were 

defined by the three (3) domain experts using ranked nodes, mathematical functions, 

statistical distributions, and comparative expressions. Ranked nodes [95] were used in 
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the BN model to represent discrete variables with states expressed on an ordinal scale, 

e.g., Customer satisfaction node with states (very low, low, medium, high, very high). 

A ranked node maps the variable states to an underlying numerical scale ranging from 

0 to 1 in equal intervals. Given the underlying numerical scale, the NPT for a ranked 

node can be defined as a statistical distribution such as a truncated normal distribution 

(TNormal) with mean μ and variance σ2, i.e., TNormal (μ, σ2). In the BN model, the 

NPT for a ranked node without parents is a uniform distribution (i.e., the probability 

of each state is the same). The NPT for a ranked node with parents is a TNormal 

distribution with mean μ defined as the weighted average of its parents and variance 

σ2.   

Standard mathematical or statistical assumptions and distributions were used to define 

the NPT for numeric variables (nodes) in the BN model. For example, the NPT for 

Number of times hazard observed node is a Binomial(n,p) distribution where n is the 

number of demands made during testing and p is the probability of observing a hazard 

per demand. The NPT for some numeric nodes is deterministic and self-explanatory; 

for instance, the NPT for Probability the hazard causes a major injury node is an 

arithmetic expression, i.e., probability of uncontrolled hazard causing a major injury 

x (1 – probability of control stops injury). The NPT for numeric nodes without parents 

is a uniform distribution, and those with parents are a TNormal distribution. The 

mathematical expressions and statistical distributions used to define the NPT for each 

numeric node are dependent on the function of the node, its input, and its output. 

Comparative expressions were used to define the NPT for discrete variables with 

binary states and parents. For instance, the NPT for Government intervention required 

given risk level node with states (True, False) and parent Risk level is an IF statement 

i.e., if (risk_level > 0.5,"True","False").  

Although the proposed BN structure and variables are relevant for assessing the risk 

of any consumer product, it is important to note that the NPT for some of these 

variables will be revised given specific data about a particular product or class of 

product. However, NPTs with prior statistical distributions are defined with a 

sufficiently large variance to enable them to be applied to the very different product 

examples used to evaluate and validate the model in Section 8.5. 
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8.5 Model Validation 

In this section, we evaluate the BN for consumer product safety risk assessment by 

comparing the process and results of the BN and the RAPEX methodology in terms 

of their ability to assess the risk of products with relevant data, e.g., Teddy Bear 

(Section 8.5.1) and products with limited or no relevant data, e.g., a new uncertified 

kettle (Section 8.5.2). 

8.5.1 Case Study 1: Teddy Bear 

In the UK and the EU, the RAPEX methodology is used by safety regulators and 

market surveillance authorities to assess the risk associated with toys identified as non-

compliant to prevent harm to children. In this case study, we evaluated the BN by 

assessing the risk of a teddy bear using two hypothetical scenarios and compared the 

results with the RAPEX methodology. 

8.5.1.1 Background Information 

This subsection presents the necessary background information and assumptions for 

the teddy bear risk scenarios. 

1. Product Description: Brown teddy bear with a bow 

2. Hazard and Injury Scenario: The eyes and suction cup can easily detach from 

the toy, generating small parts; the detached part is swallowed by a child 

resulting in an injury. 

3. Benefits Information: The likelihood of use and benefits of the teddy bear is 

moderate.  

4. Reported Field and Injury Information: We assume that injury reports for the 

teddy bear indicate that there were 10 hazard occurrences with 1 major injury 

and 2 minor injuries. 

5. Consumer risk perception: Consumers perceive the severity of the injury and 

hazardousness of the teddy bear as ‘high’ and are very worried about the risk 

of injury. There is no risk communication such as a product recall. 

6. Product Testing Information: The product was tested ‘typical of normal use’. 

The test report reveals that there was one hazard occurrence (the eye detached) 

in 5000 demands. 



166 

 

7. Product Instances Information: There are 20,000 teddy bears available on the 

market. 

8. Manufacturer Information: The manufacturer has been in operation for 5-10 

years and is from a country with a good safety record for toys. The 

manufacturer also has a ‘high’ customer satisfaction rating, and there are no 

changes in product design (i.e., product design is the same as previous similar 

products). 

8.5.1.2 Risk Scenarios and Results 

In this subsection, we evaluate the BN model and the RAPEX methodology using 

different risk scenarios for the teddy bear. 

Scenario 1 Description 

In this scenario, we assume that the teddy bear is used by a child aged 0-36 months as 

intended for one year with a high number of demands (i.e., 4000) and no carer 

intervention (i.e., the child is not sufficiently supervised so the carer cannot take away 

the small detached part, e.g. teddy bear eye, before it is ingested by the child). All 

other information used in the BN is the same as presented in the background 

information. 

Scenario 1 - BN Results 

The BN model (see Figure C4 in Appendix C) learns that the risk level for the teddy 

bear is ‘very high’ with little uncertainty. The BN model calculates that the mean 

probability of a major injury (per demand) for this scenario is 0.11 and for a minor 

injury (per demand) it is 0.17. It also calculates that the mean number of potential 

major and minor injuries for 20,000 product instances is 2325 and 3478, respectively. 

Regarding risk tolerability and consumer risk perception, the BN model shows that 

the risk tolerability for the teddy bear is ‘low’ or ‘very low’ given the benefits and 

consumers perceive the risk of the teddy bear as ‘high’. Finally, the BN predicts that 

a government intervention, such as a product recall, is required.  

Scenario 1 - RAPEX Results 

One of the limitations of the RAPEX methodology is that it does not consider the 

number of demands for a particular product when determining risk. So, although we 
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are unable to make a direct comparison to the BN model, we can compare the product 

risk result of the BN model to the RAPEX methodology by using the mean probability 

of a major injury (per demand) learnt by the BN model as the probability of injury for 

the RAPEX method. In the RAPEX method, we set the injury severity level to ‘3’ as 

this corresponds to a major injury such as internal airway obstruction. The RAPEX 

method assesses the risk level of the teddy bear as ‘serious’, as shown in Figure 88. 

This result is the same as the BN model, even though the BN model also uses the 

probability of a minor injury and product instances to compute the risk of the product. 

 

Figure 88 RAPEX results for Teddy Bear Scenario 1 

Scenario 2 Description  

In this scenario, we assume that the teddy bear is used by a child aged 0-36 months as 

intended for one year with a low number of demands (i.e. 200) and an 85% chance of 

carer intervention (i.e. the child is sufficiently supervised so that the carer can take 

away the small detached part, e.g. teddy bear eye, before it is ingested by the child). 

All other information used in the BN is the same as presented in the background 

information. 
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Scenario 2 – BN Results 

The BN model (see Figure C5 in Appendix C) learns that there is a 70% chance that 

the risk level for the teddy bear is ‘low’ or ‘very low’ with some uncertainty (15% 

chance it is ‘medium’ and 15% chance it is ‘high’ or ‘very high’). The BN model also 

calculates the mean probability of a major injury (per demand), which for this scenario 

is 0.002, and for a minor injury (per demand) it is 0.003. The BN model calculates that 

the mean number of potential major and minor injuries for 20,000 product instances 

is 38 and 57, respectively. Finally, the BN model shows that there is a 60% chance 

that the risk tolerability (acceptability) will be ‘high’ or ‘very high’ for the teddy bear 

given the benefits and recommends no government intervention such as a recall with 

some uncertainty. Regarding consumer risk perception, the BN model shows that the 

risk of the teddy bear is perceived as ‘high’, risk tolerability is mostly ‘low’ or ‘very 

low’ (88% chance) and government intervention is required (94% chance).  

Scenario 2 – RAPEX Results 

 

Figure 89 RAPEX results for Teddy Bear Scenario 2 

The RAPEX method assesses the risk level of the teddy bear as ‘serious’, as shown in 

Figure 89. This result is not the same as the BN model for the given probability of a 
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major injury since the BN model also uses the probability of a minor injury and the 

number of product instances to compute the risk of the product. 

8.5.2 Case Study 2: A new uncertified electric kettle 

Every year, new uncertified products are available on the market that pose a serious 

risk to the health and safety of consumers. However, regulators may find it difficult to 

assess the risk for these products using RAPEX since they may not have access to the 

manufacturer testing data generated during product development (even if such data 

was collected) and the number of product instances is unknown. In this section, we 

demonstrate risk assessment of products with limited or no available data using the 

proposed BN by assessing the risk of a new uncertified kettle on the market for which 

there are no testing data, and the number of product instances is unknown. We also 

demonstrate the model’s ability to predict the effect of risk communication on risk 

perception. 

8.5.2.1 Background Information 

This subsection presents the necessary background information and assumptions for 

the electric kettle risk scenarios. 

1. Product Description: Stainless steel electric kettle. Capacity 2.3L, 2000W 

2. Hazard and Injury Scenario: The electric kettle may overheat and cause 

burns or fire.  

3. Benefits Information: The likelihood of use is ‘high’, and the benefits are 

moderate for the electric kettle.  

4. Reported Field and Injury Information: We assume that injury reports for 

similar kettles indicate that for 7000 demands, there were 200 hazard 

occurrences with 0 major injuries and 1 minor injury. 

5. Consumer risk perception: Consumers perceive the severity of the injury as 

‘high’, and product hazardousness and worry (their concern about the hazard) 

as ‘moderate’.  

6. Product Testing Information: Three (3) previous similar products were tested 

‘typical of normal use’ for a number of demands ranging from 7500-10000. 

The test report reveals that there was one hazard occurrence during testing. 
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7. Product Instances Information:  Product instances on the market range from 

50000-100000 based on data from similar kettles. 

8. Manufacturer Information: The manufacturer has been in operation for 4 

years and is from a country with a poor safety record for consumer electrical 

appliances. The manufacturer also has a ‘low’ customer satisfaction rating, and 

there are no changes in product design (i.e., product appearance is the same as 

previous similar products). 

9. Product Use Information: Since we are uncertain about consumer behaviour 

during use, we assume that the kettle is used as intended 90% of the time, with 

major and minor deviations of 7% and 3%, respectively, based on the data for 

similar kettles. Also, we assume that the kettle will be used on average 3000 

times.  

10. External Risk Control Information: We assume that the probability of 

external risk controls in the environment preventing or mitigating the hazard 

is 0.5. 

8.5.2.2 Risk Scenarios and Results 

In this subsection, we evaluate the BN model using different risk scenarios for the new 

uncertified electric kettle for which there are no testing data, and the number of product 

instances is unknown. 

Scenario 1 Description 

In this scenario, we assess the risk and risk tolerability of the electric kettle using data 

from previous similar kettles as presented in the background information. We also 

assume that there is no risk communication, e.g., product recall.   

Scenario 1 Method 

Given the background information, we are uncertain about the ‘true’ number of 

demands at which the hazard will appear for this particular kettle. We are also 

uncertain about the number of demands in product lifetime, product use information 

and the number of product instances. Therefore, we use the data from previous similar 

kettles (presented in the background information) as priors in the model to estimate 

the risk of the new uncertified electric kettle. For example, in the BN model, we use a 

uniform distribution (i.e., Uniform [7500,10000]) to define the NPT for the node 
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‘number of demands tested’. The node ‘number of demands in product lifetime’ was 

defined using a TNormal distribution with a mean of 3000. The ‘number of product 

instances’ node was defined using a uniform distribution (i.e., Uniform [50000, 

100000]). All other information used in the BN is the same as presented in the 

background information. 

Scenario 1 – BN Results 

The BN model (see Figure C6 in Appendix C) learns that there is an 80% chance that 

the risk level of the kettle is ‘low’ or ‘very low’. The BN model also calculates the 

mean probability of a major injury (per demand), which for this scenario is 0.001 and 

for a minor injury (per demand) it is 0.002. The BN model predicts that the mean 

number of potential major and minor injuries for all product instances is 93 and 185, 

respectively. Finally, the BN model shows there is an 80% chance that the risk 

tolerability (acceptability) will be ‘high’ or ‘very high’ for the kettle given the benefits 

and recommends no government intervention, such as a recall with some uncertainty. 

Regarding consumer risk perception, the BN shows that the risk of the kettle is 

perceived as mostly ‘moderate’ (24% chance it will be considered ‘high’), there is 

50% chance that the overall benefits is ‘high’ and there is a 76% chance that risk will 

be acceptable or tolerable. Given no risk communication, there is no change in the 

perceived risk, benefits and risk tolerability (acceptability); however, the BN indicates 

that government intervention may be required (48% chance).  

Scenario 2 Description 

In this scenario, we assume that we have reported injury data for the electric kettle. 

We assume that the reported injury data for this particular kettle indicate that there 

were 50 hazard occurrences in 7000 demands. 10 of the 50 hazards resulted in major 

injuries, and 30 resulted in minor injuries. We also assume that there is a product recall 

(risk communication) for the kettle. All other information used in the BN is the same 

as presented in the background information. 

Scenario 2 – BN Results 

The BN model (see Figure C7 in Appendix C) learns that there is a 99% chance that 

the risk level of the kettle is ‘very high’ with little uncertainty. The BN model also 

calculates the mean probability of a major injury (per demand), which for this scenario 
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is 0.05 and for a minor injury (per demand), it is 0.14. The BN model predicts that the 

mean number of potential major and minor injuries for all product instances are 3859 

and 10832, respectively. Finally, the BN model shows that there is an 88% chance that 

the risk tolerability (acceptability) will be ‘very low’ or ‘low’ for the kettle given the 

benefits and recommends a government intervention such as a recall with some 

uncertainty. Regarding consumer risk perception, the BN shows that the risk of the 

kettle is perceived as mostly ‘moderate’ (24% chance it will be considered ‘high’) and 

a 76% chance that risk will be acceptable or tolerable. However, given risk 

communication, in this example a product recall, the perceived risk of the kettle 

increased (i.e., 62% chance it is ‘high’ compared to 24% chance before the product 

recall). Additionally, consumer perceived benefits decreased (i.e., 10% chance that it 

is ‘high’ compared to 50% chance before the product recall) and risk tolerability 

(acceptability) decreased (i.e., 35% chance the risk is ‘tolerable or ‘acceptable’ 

compared to 77% chance before the product recall). 

8.6 Discussion 

The case study results for the teddy bear presented in Section 8.5.1.2 show that the BN 

model and the RAPEX method may estimate different product risk levels for a 

particular product. In Teddy Bear Scenario 1, the BN model and the RAPEX method 

estimated the risk level as ‘very high’ or ‘serious’ (see Figure C4 in Appendix C and 

Figure 88). However, in Teddy Bear Scenario 2, the BN model shows that there is a 

70% chance that the risk level is ‘low’ or ‘very low’ (see Figure C5 in Appendix C), 

whereas the RAPEX method predicted the risk level as ‘serious’ (see Figure 89). This 

difference in risk level estimates is due to the method used by the BN model to estimate 

product risk. The BN model includes additional information, such as manufacturer 

process information, risk control information and product usage information (such as 

the number of demands and product wear) when estimating product risk. This allows 

the BN model risk estimates to be comprehensive as it incorporates all relevant factors 

that affect product risk. Also, since these factors are causally linked, they support ease 

of interpretation and explanation of risk level estimates.  

The BN results for Teddy Bear Scenario 2 also illustrate how consumers may judge 

the risk and benefits of products differently from experts. For instance, experts tend to 

judge the risk of a product using quantitative risk assessments, whereas consumers 
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judge risk using a combination of subjective measures such as hazardousness. In this 

example, though the BN assessed the risk of the teddy bear as ‘low’ or ‘very low’, it 

predicts that consumers would perceive the risk as ‘high’. Hence, regardless of the 

results of the quantitative risk assessment, consumer risk perception should not be 

overlooked and must be considered when evaluating risk. 

The results of the case study for the new uncertified kettle in Section 8.5.2.2 show that, 

while RAPEX is unable to assess the risk of novel products or products for which there 

are little or no available data, the BN model can provide auditable and quantified risk 

assessments. For these scenarios, the BN model estimates the risk of the product by 

combining manufacturer process information with testing information from previous 

similar products. This estimated product risk is also revised, given new data, e.g., 

reported injuries. This ability of the BN model to revise the risk given new data is 

essential for regulators to adequately assess and monitor the risk of novel products 

over time. In fact, the BN model will also perform better than RAPEX for novel 

products given new data since it incorporates all the factors that causally affect product 

risk and takes full account of uncertainty when estimating product risk. This case study 

example also illustrates the BN ability to analyse consumer risk perception, including 

the impact of risk communication, such as product recall. For example, as illustrated 

in Scenario 1 for the electric kettle, if there is no risk communication, the BN model 

predicts no change in consumer risk perception (see Figure C6 in Appendix C). 

However, as illustrated in Scenario 2 for the electric kettle, if there is risk 

communication such as a product recall, the BN model predicts that the perceived risk 

will increase, and the perceived benefit and risk tolerability (acceptability) will 

decrease. 

The BN for consumer product safety risk assessment provides risk estimates for a 

single known type of hazard; however, products usually have multiple hazards. In 

situations where the hazards though possibly unique, are similar in terms of properties 

they possess, e.g., hot surfaces and open flames, we can identify and define hazard 

groups or classes, e.g., ‘extreme temperature’. The BN can use the defined hazard 

groups to consider multiple similar hazards rather than a single hazard. Another 

solution is to use a risk matrix or table to combine the risk results of multiple hazards. 

In Section 7.5, we proposed a risk table to combine the risk results of multiple hazards 

for medical devices that can be adapted for consumer products.  
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Contributions and Limitations  

The principal merit of the proposed generic BN for consumer product safety risk 

assessment is to provide a robust systematic method for safety regulators, market 

surveillance authorities (MSA) and manufacturers to assess the risk of consumer 

products. The case study results show that the BN model resolves the issues with 

RAPEX discussed in Section 8.3 and meets the model requirements specified in 

Section 8.4.1. We believe that the BN model provides the following improvements to 

consumer product risk assessment: 

1. Properly handles uncertainty about probabilities assigned during risk 

assessment: The BN model handles second-order uncertainty by incorporating 

distributions rather than point values for probabilities that are not directly 

observable. 

 

2. Can assess the risk of novel products or products with little or no historical 

data: In situations where it will neither be feasible nor possible to get any 

extensive data from testing or details on product instances, the BN model can 

incorporate expert judgement and/or data from previous similar products to 

provide quantified and auditable risk estimates. 

   

3. Incorporates causal explanations for using and interpreting the data: The BN 

model explicitly describes the risk assessment process and the causal 

relationship between the data used. 

  

4. Considers the usage behaviour for different types of users and the number of 

product instances when determining product risk: The BN model can take full 

account of the distributions of different types of users when estimating product 

risk by simply assigning priors to the ‘particular product usage’ node that 

capture the population distribution. For instance, if for a particular product we 

estimate that only 30% of the population will ‘use it as intended’ then we set 

the prior probability of that node state at 30%. In addition, the BN model 

explicitly includes ‘controls’ that can prevent a hazard from causing an injury. 

For example, in households with a smoke alarm and fire extinguisher, the 

probability that a fire from a washing machine leads to injury is greatly 



175 

 

reduced. In households where young children are under close supervision, 

there is a much lower probability that a hazard from a toy (such as an eye pulled 

off a teddy bear) will lead to injury compared to households where children 

are left unsupervised. Lastly, the BN model can provide individualised risk 

assessments. For instance, for a particular user, the model can estimate the 

probability that this user will suffer an injury during the product lifetime. 

    

5. Considers the user exposure to risk: The BN model uses the usage frequency 

of the product (i.e. the number of demands) to determine the probability of 

injury for a particular user or class of user. 

 

6. Models consumer risk perception and  risk tolerability (acceptability): The BN 

predicts consumer risk perception and risk tolerability for a particular user or 

class of users. This is essential since consumer risk perception and risk 

tolerance must be considered when evaluating risk. 

 

7. Considers the increased risk of hazards over the lifetime of a product: The BN 

model considers the effect of wear and tear on the ‘hazard rate’ of the product 

when estimating product risk. 

The BN model also improves product risk assessment by modelling: 

1. The effect of risk communication, such as product recall, on the consumer 

perception of the risk: For example, as illustrated in Scenario 1 for the electric 

kettle, if there is no risk communication, the BN model predicts no change in 

consumer risk perception (see Figure C6 in Appendix C). However, as 

illustrated in Scenario 2 for the electric kettle, if there is risk communication 

such as a product recall, the BN model predicts that the perceived risk will 

increase, and the perceived benefit and risk tolerability (acceptability) will 

decrease (see Figure C7 in Appendix C). However, these results need to be 

validated. In Chapter 9, we discuss two studies and their results used to validate 

the risk perception predictions of the BN model. 

  

2. The mean number of major and minor injuries, respectively: The BN model 

can estimate the mean number of major and minor injuries for a particular 
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product based on the total number of product instances and the probability 

distribution of major and minor injuries, respectively.  

The proposed BN for consumer product safety risk assessment is a more powerful and 

flexible approach for systematic product risk assessment than traditional methods like 

RAPEX. However, it is important to note that it can also complement traditional 

methods like RAPEX. For instance, since the BN approach estimates product risk 

using additional parameters such as product usage data and manufacturer process 

information, it can be used in the interim to validate RAPEX risk assessments.   

The main limitation of this case study is obtaining all the relevant information for a 

consumer product to perform a risk assessment using the BN model. Since the results 

of the safety and reliability tests conducted by the product manufacturers are not 

publicly available, the data used to evaluate the BN model were fictitious. However, 

given actual data for a particular product, the NPTs for the BN can be revised, and the 

BN can provide reasonable and auditable risk estimates. In addition, the proposed BN 

was developed in the context of risk management carried out by national safety 

regulators and market surveillance authorities in the UK and EU; hence its variables 

and structure are somewhat different from the medical device risk management BN 

(discussed in Chapter 7). 

8.7 Chapter Summary 

This chapter serves as another good example for the practical use and benefits of the 

product safety idioms for BN development discussed in Chapter 6. By developing the 

BN for consumer product safety risk assessment, we show that product safety idioms 

can be used to construct complex BNs in a modular fashion. In addition, this chapter 

demonstrates how national safety regulators and market surveillance authorities can 

use BNs for consumer product safety risk assessment. The proposed BN for consumer 

product safety risk assessment is a more powerful and flexible approach for systematic 

product risk assessment than traditional methods like RAPEX. In particular, it can: 

produce quantified, auditable assessments with limited or no data; properly handle 

second-order uncertainty; incorporate causal explanations for using and interpreting 

data; allow for different types of users, including different exposure to risk and risk 

tolerability; incorporate increased risk of hazards over the lifetime of a product; 
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complement traditional risk analysis methods; handle incomplete data; combine 

objective and subjective evidence; revise risk estimates given new data.  

In addition, it informs risk management decisions and predicts the effect of risk 

communication, such as product recall, on consumer risk perception. However, the 

BN predictions for the latter require validation; hence in the next chapter, we present 

two empirical studies to validate the BN predictions. 
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Chapter 9 The effect of risk communication on 

consumer risk perception of consumer products 

In this chapter, the results of two empirical studies used to investigate the effect of risk 

communication on consumer risk perception of consumer products (non-food) are 

presented. These empirical studies, done in collaboration with the UK Government 

Office for Product Safety and Standards (OPSS) were used to validate the results of 

the risk perception component of the consumer product risk assessment BN presented 

in Chapter 8. In addition, they provided OPSS with novel insights on the risk 

perception of consumer products (smart and non-smart) and how it is influenced by 

risk communication from different actors in the network, such as government and the 

media. They also contribute to the existing body of literature in this domain. 

Section 9.1 introduces the topic while Section 9.2 presents the required background 

information. In Section 9.3, Study 1 is presented. This study advances our 

understanding of consumer risk perception, risk tolerance and benefits (or utility) of 

novel technologies (e.g., smart functionality) in home appliances. It also investigates 

how these perceptions are affected by risk communication from various sources such 

as the government, manufacturer and media. In Section 9.4, Study 2 is presented. This 

study validates Study 1 and advances our understanding of how the reliability of the 

source of the risk communication (reliable versus unreliable) and product compliance 

information (compliant versus non-compliant) can influence willingness to pay (WTP) 

and risk perception of consumer products. The material presented in this chapter was 

previously presented in Publications 5 and 6.  

9.1 Introduction 

Home appliances can present serious risks such as fire and electric shock [187], [188]. 

Moreover, risk perception, risk tolerance and benefits (utility) of home appliances may 

differ due to demographic variables such as gender and education [48], [189]–[193]. 

Despite the differences in the perceived risk of home appliances, it is essential that 

consumers are informed about the risks associated with these devices to protect them 

from potential harm or damage to their environment [46]. Consumers are informed 

about product risks by manufacturers, safety regulators (both government and 
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independent bodies) and consumers via several media vehicles such as traditional 

media (e.g., television), social media platforms (e.g., Twitter), events (e.g., community 

meetings) and product-related material (e.g., product labels) [46], [47]. The method 

used for risk communication by different actors in the network (i.e., manufacturers, 

government and media) depends on the target audience and the purpose and objectives 

of the risk communication [46]. Since sources of risk communication can influence 

consumer risk perception, risk tolerance, and utility or benefits of products, including 

home appliances [194], [195], it is essential to understand their impact for better risk 

communication management and to protect consumers from potential harm associated 

with products’ risks. However, there is little or no previous research on the impact of 

risk communication sources, such as manufacturers, on consumer risk perception, risk 

tolerance and benefits (utility) of home appliances. In fact, risk tolerance is rarely 

studied in this domain. 

Furthermore, advances in information technology, such as the internet of things (IoT) 

and artificial intelligence, have transformed traditional home appliances into “smart” 

devices. These smart home appliances can collect, process and store information and 

interact with their operating environment [196]. Since smart home appliances may 

pose novel and unknown risks to consumers, it is essential to understand how 

consumers perceive these devices’ risks and whether there are unique differences (or 

not) when compared to non-smart versions before and after risk communication. 

In this chapter, we provide novel insights on consumers’ perception of home 

appliances. In Study 1, we investigate differences in risk perception between smart 

and non-smart versions of such appliances. We evaluate how communication from 

various sources e.g., manufacturers, about risks and hazards associated with home 

appliances influence consumers’ perceived risk, utility (benefit) and risk tolerance of 

these devices. This study is the first of its kind to have directly contrasted smart with 

non-smart equivalent products to examine the relative impact of smartness on judged 

risk, utility (benefit) and risk tolerance. In Study 2, we investigate whether consumer 

risk perceptions and willingness to pay (WTP) for a product differ based on the 

reliability of the source of the risk communication (reliable versus unreliable) and 

product compliance information (compliant versus non-compliant). This study is the 

first of its kind to examine the relative impact of source reliability and product 

compliance information on risk perception and WTP. 
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These empirical studies complement our previous work on using causal Bayesian 

networks (BNs) for product safety risk assessment [15] discussed in Chapter 8. The 

proposed BN for consumer product risk assessment estimates the risk of consumer 

products by considering factors such as device use and manufacturer process 

information. The BN model resolves the limitations with traditional risk assessment 

methods such as the RAPEX methodology and provides reasonable risk estimates for 

products, including novel products or products with little or no relevant historical data. 

A key feature of the BN model is modelling consumer risk perception and risk 

tolerance. The BN fragment (i.e., a component of the BN model) shown in Figure 90 

models the impact of risk communication from the media, manufacturer and 

government about potential risks associated with products on consumer risk 

perception, perceived benefits (utility) and risk tolerance. The risk communication 

sources included in the BN model (i.e., media, manufacturer and government) were 

selected since they are the most common and familiar sources of risk communication 

about products’ risks for the general public [47]. However, due to the lack of research 

on the impact of these different sources of risk communication on consumers’ risk 

perception, benefits (or utility) and risk tolerance of products, the model structure, 

variables and results require validation. Therefore, the findings obtained from these 

studies can inform and validate the results of the BN model. 

 

Figure 90 Consumer risk perception and risk tolerability BN fragment 
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9.2 Background 
9.2.1 Home appliances: Smart and Non-smart 

Modern home appliances can now operate autonomously, interact with their 

environment and communicate with other devices [196]. These “smart” products use 

artificial intelligence (AI), IoT technology (e.g., Wi-Fi), and embedded technology 

(e.g., sensors) to collect, process and store information and to communicate and 

interact with their operating environment, users, and other products. Examples of such 

smart products are robot vacuum cleaners, smart microwaves, smart refrigerators and 

smart TVs [196]–[199]. Products that are not dependent on information technology 

are described as “non-smart”. However, to a limited extent, non-smart products may 

possess some of the characteristics of smart products [196]. For instance, modern 

washing machines have some level of autonomy. 

9.2.2 Consumers’ perception of risk, benefit, risk tolerance and 

willingness to pay (WTP) 

Perceived risk is consumers’ subjective judgement of risk when purchasing or using a 

product or service [30], [31]. Previous research suggests that risk perception consists 

of two dimensions: dread and unknown [32]. Dread risk refers to the lay-person 

feelings about risks or hazards. It is defined in terms of the likelihood of consequence 

(harm) and its severity, lack of control and feelings of fear. Unknown risk refers to 

risks considered new, unobservable, unknown, and delayed in their manifestation and 

consequences.  

The risks associated with products, including home appliances, consists of two 

components: the probability of harm P and the severity of that harm S [8], [185]. 

Previous research shows that both components can influence the risk perception of 

products [200], [201].  For instance, Vaubel et al. [200] show that risk perception is 

multidimensional and is influenced by both risk components and product familiarity.  

The perceived risk of a product may depend on a single attribute (feature) of the 

product or the product as a whole [193]. In situations where the perceived risk is 

dependent on a single attribute of the product, if that particular attribute is perceived 

as risky, then the whole product is perceived as risky. This is usually the case with 

novel technology, such as autonomous products, which are generally considered high 
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risk and more complex compared to other products [193], [202]–[204]. In situations 

where the perceived risk of the product is based on the product as a whole, the 

perceived risk may depend on the trade-off between risk and benefit (utility) [193], 

[205]. For example, the risk of using a mobile phone, such as electromagnetic 

radiation, is perceived as low due to the benefits, such as instant communication with 

family and friends [193], [206].  

The effect of consumer characteristics on risk perception is usually investigated using 

the psychometric risk perception model [193]. This risk perception model assumes 

that risk is subjective and is influenced by socio-demographic factors such as gender. 

It measures risk perception of different hazards by asking questions directly about 

them and using psychometric scaling methods such as numerical rating scales to 

capture responses [32], [207]. When applied to products, consumers perceive risks as 

high if they lead to serious harm or damages, e.g., death or if they are unknown and 

novel [32], [193], [207]. Additionally, men perceived risks are lower than women, and 

higher education is associated with lower perceived risk [48], [189]–[192].  

Benefit or Utility is the (perceived) benefits (or advantages) consumers receive from 

using a product. Since each consumer is unique, benefit (or utility) is personal and 

situational. For example, a consumer will assign utility to a product based on their 

personality, situation and experience [33]–[35]. In general, the perceived benefit has 

an inverse relationship with perceived risk [36]–[38]. For instance, Alhakami and 

Slovic (1994) found that when persons perceive an item as having high benefit or 

utility, they perceive it as low risk (and vice-versa). In this thesis, we use the terms 

utility and benefit interchangeably. 

Risk tolerance (acceptance) is the amount of (perceived) risk consumers are willing 

to accept or tolerate to obtain the benefits (value or utility) of a product [39]. It is 

influenced by individual characteristics, knowledge (or experience) of the product, 

product risks, risk controls and benefits. For instance, some research suggests that risk 

tolerance is a personality trait [40]–[42]. For example, consumers with a high 

propensity to take risks are more tolerant of risks. On the other hand, other research 

suggests that risk tolerance is based on experience and knowledge [43]–[45]. For 

example, consumers that are more familiar with a particular product via experience or 

knowledge will be more tolerant of its risks. 
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Willingness to pay (WTP) “is the maximum price a customer is willing to pay for a 

product or service” [208]. Based on the results of previous research [209]–[211], it 

can be implied that when a product is perceived as risky and risk reduction measures 

are not applicable, the WTP will decrease. However, there is little or no research 

investigating this assumption. Understanding the relationship between WTP and 

perceived risk is important since WTP taps into perceived risk more subtly.  

9.2.3 Risk communication and risk perception 

Risk communication is the exchange of information between different stakeholders 

(such as consumers and the government) about the risks associated with products [46]. 

The most common and familiar sources of risk communication about risks associated 

with products are the government, manufacturers and the media [47]. Overall, the 

success of risk communication depends on the risk information (message) and the 

media vehicle. For instance, the risk message should be accurate and understandable, 

and the chosen media vehicle should be suitable for the risk message [46].  

Additionally, the source of the risk communication can influence risk perception 

[194], [195]. For instance, media coverage and its availability (i.e. the amount of 

coverage) can influence risk perception since consumers become more concerned 

about potential risks when exposed to several news and reports about the risk [212]–

[216]. However, the effect of media coverage on risk perception is not permanent and 

usually fades when the media coverage fades [212]. Likewise, trust in the risk 

communication source can affect risk perception. For example, if consumers perceive 

the risk communication source as reliable and trustworthy, e.g., the government, they 

will most likely adhere to the risk message. However, they may ignore or reject the 

risk message if they perceive the risk communication source as unreliable and 

untrustworthy, e.g., non-experts. Hence, a lack of trust in the risk communication 

source will limit the effect of the risk communication [48], [49]  

Since consumers are usually informed about potential risks associated with home 

appliances by safety regulators, manufacturers, and media coverage, it is essential to 

understand the impact of the safety information from these sources on consumers’ risk 

perception, benefit (or utility) and risk tolerance of home appliances (smart and non-

smart). However, there is little or no previous research in this domain. 
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9.3 Study 1 

In this study, we investigate how different sources of risk communication affect 

consumers’ risk perception, utility (or benefit) and risk tolerance of smart and non-

smart home appliances to explore whether changes in risk perception, utility and risk 

tolerance conform to the BN model predictions. This study also investigates the 

difference in risk perception, utility and risk tolerance of smart and non-smart home 

appliances and whether it varies by gender and education. In this study, we used the 

following hypotheses to investigate these questions: 

• Hypothesis 1: The perceived risk is greater for smart home appliances when 

compared to non-smart home appliances. 

• Hypothesis 2: The perceived utility is greater for smart home appliances when 

compared to non-smart home appliances. 

• Hypothesis 3: The perceived risk tolerance is less for smart home appliances 

when compared to non-smart home appliances. 

• Hypothesis 4: Risk communication from the government, manufacturer and 

media will increase perceived risk, decrease utility and decrease risk tolerance 

of smart and non-smart products. 

• Hypothesis 5: The perceived risk of smart and non-smart home appliances is 

less for men when compared to women. 

• Hypothesis 6: The perceived risk of smart and non-smart home appliances is 

less for consumers with higher education. 

See Figure D1 in Appendix D for the conceptual framework that guided this study. In 

this study, the terms utility and benefit were used interchangeably. 

9.3.1 Method 

Design and Material 

We conducted two experiments to test the study hypotheses. In each experiment, 

consumers were given information about a home appliance (i.e., its type and features) 

and a risk communication scenario and were asked questions on risk perception, utility 

(benefit) and risk tolerance. In Experiment 1, the microwave oven was investigated, 

and in Experiment 2, the vacuum cleaner was investigated. These home appliances 
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were chosen because they are familiar products and are available on the market as 

smart and non-smart (traditional) versions (see Figure 91). The following between-

subject independent variables were manipulated in each experiment: 

• Product type: (1) Smart (2) Non-smart  

Risk communication scenarios (see Table 24): 

• Risk information: (1) Government recall (2) Manufacturer recall.  

• Media coverage: (1) Large media coverage/story (2) Small media 

coverage/story. 

These independent variables were chosen based on the study’s aims and hypotheses. 

 

Figure 91 Types of home appliances used in Experiments 

Table 24 Description of risk communication scenarios used in Experiments 

Scenario Name Scenario Description 

Government recall  Imagine you have bought the [product name] and the government announces a 

product recall due to a fire risk as follows: 

“The manufacturer has identified the [product name] to be recalled or replaced due 

to a potential risk of fire. If you have this [product type], please immediately stop 

using it and contact the manufacturer’s hotline for a full refund or replacement”. 

Manufacturer 

recall/warning 

Imagine you have bought the [product name] and the manufacturer issues the 

following warning about a fire risk: 

“The [product name] has a potential risk of fire during use. If you have this 

[product name], please immediately stop using it and contact our hotline for a full 

refund or replacement.” 

Large media 

coverage/story 

Imagine you have bought the [product name] and there are media stories on several 

news outlets for many months about a fire risk including the following headline. 

“My [product name] catches on fire: Consumers fear for their safety as there are 

multiple reports of the [product name] catching fire”. 
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Small media 

coverage/story 

Imagine you have bought the [product name] and there is one media story that 

appeared online about a fire risk with the following headline. 

“My [product name] catches on fire: Consumer warns of fire risk while using 

[product name]”. 

 

Each experiment had a 2 x 2 x 2 design, and the dependent variables, i.e., risk, utility 

(benefit) and risk tolerance, were assessed using the following questions: 

1. Risk: To what extent do you consider the [product name] as posing a risk? 

Scale 1 to 100 (low risk to high risk) 

2. Utility or Benefit: How useful do you think the [product name] is? 

Scale 1 to 100 (not useful to very useful) 

3. Risk tolerance: Please rate your ability to tolerate the risk associated with the 

[product name]. 

Scale 1 to 100 (low tolerance to high tolerance) 

Participants 

British consumers were recruited for each experiment using Prolific 

(www.prolific.co). The inclusion criteria were that they were UK residents, born in 

the UK, their first language is English and a pre-specified age range of 18 to 65.  

400 participants (263 women) were recruited for Experiment 1 (Microwave oven) and 

for Experiment 2 (Vacuum cleaner), 400 participants (254 women) were recruited.   

In each experiment, the participants were randomly assigned to one of the eight 

experimental groups (2 product types x 2 risk information scenarios x 2 media 

coverage scenarios); group sizes varied between n = 49 and n = 51. 

Data Analysis 

This study used the Bayesian approach to hypothesis testing [13] to investigate the 

study hypotheses (see Appendix D for additional details).  
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9.3.2 Results 

Risk perception, utility and risk tolerance for smart and non-smart home 

appliances 

A summary of the mean perceived risk, mean utility and mean risk tolerance for smart 

and non-smart microwave ovens and vacuum cleaners is shown in Figure 92, and the 

patterns indicated here were statistically examined to assess support for our 

hypotheses.  

 

Figure 92 Mean perceived risk, utility and risk tolerance for non-smart and smart 

microwave ovens and vacuum cleaners 

Experiment 1 Results 

For the microwave oven, Figure 92 and the results of the Bayesian analysis revealed 

that, in support of Hypothesis 1, consumers judged the smart microwave oven as 

riskier (M = 33.86, 95% CI [30.28, 37.48]) compared to the non-smart version (M = 

24.75, 95% CI [21.71, 27.73]). The mean difference was 9.13, 95% CI [4.42, 13.92]. 

However, contrary to Hypothesis 2, consumers judged the smart microwave oven as 

having less utility (M = 60.10, 95% CI [56.12, 64.09]) compared to the non-smart 

version (M = 76.99, 95% CI [74.36, 79.60]). The mean difference was -16.88, 95% CI 

[-21.68, -12.07]. In support of Hypothesis 3, consumers were less tolerant of the risks 
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associated with the smart microwave oven (M = 63.66, 95% CI [59.51, 67.82]) 

compared to the non-smart version (M = 75.99, 95% CI [72.55, 79.47]). The mean 

difference was -12.34, 95% CI [-17.80, -6.63].  

Experiment 2 Results 

For the vacuum cleaner, contrary to Hypothesis 1, the results revealed that there was 

little or no difference in the way consumers judged the risk of the smart vacuum 

cleaner (M = 24.12, 95% CI [21.05, 27.16]) and the non-smart version (M = 21.09, 

95% CI [18.28, 23.87]). The mean difference was 3.03, 95% CI [-1.1, 7.18]. Like the 

smart microwave oven, and contrary to Hypothesis 2, consumers judged the smart 

vacuum cleaner as having less utility (M = 67.18, 95% CI [63.73, 70.64]) compared 

to the non-smart version (M = 77.45, 95% CI [74.83, 80.09]). The mean difference 

was -10.27, 95% CI [-14.68, -5.89]. Similar to the perceived risk, and contrary to 

Hypothesis 3, there was little or no difference in the way consumers judged the risk 

tolerance of the smart vacuum cleaner (M = 73.50, 95% CI [69.69, 77.32]) and the 

non-smart version (M = 77.56, 95% CI [74.02, 81.09]). The mean difference was -

4.05, 95% CI [-9.29, 1.27].  

The effect of different sources of risk communication on consumers’ risk 

perception, utility and risk tolerance of smart and non-smart home appliances 

Experiment 1 Results 

To investigate support for Hypothesis 4, we used Bayesian analysis to examine the 

effect of different sources of risk communication on risk perception, utility and risk 

tolerance of non-smart and smart microwave ovens. We computed the mean difference 

for the perceived risk, utility and risk tolerance for non-smart and smart microwave 

ovens before and after each risk communication scenario. The mean difference was 

computed as y – x, where x is the mean value of the perceived risk, utility and risk 

tolerance for a particular product before the risk communication scenario and y is the 

mean value of perceived risk, utility and risk tolerance for a particular product after 

the risk communication scenario. For instance, as shown in Figure 93, given a 

government recall, the mean increase in the perceived risk is 58.10, the mean decrease 

in perceived utility is 33.58, and the mean decrease in perceived risk tolerance is 51.98. 
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Figure 93 The mean difference in the perceived risk, utility and risk tolerance for 

non-smart and smart microwave ovens for each risk communication scenario 

According to the mean difference plot shown in Figure 93 and the results of the 

Bayesian analysis shown in Table D2 and Table D3 in Appendix D for non-smart and 

smart microwave ovens, respectively, risk communication from the government, 

manufacturer and media stories increased perceived risk, decreased perceived utility 

and decreased perceived risk tolerance. Thus, we find support for Hypothesis 4.  

Experiment 2 Results 

Similar to the results obtained in Experiment 1, Experiment 2 also supports Hypothesis 

4. Risk communication from the government, manufacturer and media stories 

increased perceived risk, decreased perceived utility and decreased perceived risk 

tolerance for non-smart and smart vacuum cleaners (see Figure 94 and Table D4 and 

Table D5 in Appendix D). 
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Figure 94 The mean difference in the perceived risk, utility and risk tolerance for 

non-smart and smart vacuum cleaners for each risk communication scenario 

 

The effect of demographics on risk perception of smart and non-smart home 

appliances 

According to the combined results shown in Figure 95,  and Table D6 in Appendix D, 

we did not find support for Hypothesis 5. There was little difference in the perceived 

risk for smart and non-smart microwave ovens and vacuum cleaners between men and 

women.   

Regarding level of education, in general, for the smart and non-smart microwave 

ovens, the perceived risk decreases as the level of education increases (see Figure 96), 

lending support for Hypothesis 6. This pattern was the same for the smart vacuum 

cleaner; however, for the non-smart vacuum cleaner, there was little difference 

between the perceived risk for lower and higher education levels.  
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Figure 95 Mean perceived risk for microwave oven and vacuum cleaner by gender 

 

Figure 96 Mean perceived risk vs Education level by product and product type 

9.3.3 Discussion 

The present study advances our understanding of consumers’ risk perception, risk 

tolerance and utility of smart and non-smart home appliances and the extent to which 

consumers’ risk perception changes given risk communication from different actors 

in the network (e.g., government, manufacturer and media). Overall, the results show 

that risk perception of home appliances is influenced by product type (smart and non-
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smart), risk communication and demographics. In the following subsections, we will 

discuss the results and their implications, the strengths and limitations of the study and 

recommendations for further research. 

Risk Perception 

As expected, we found that consumers generally judge smart home appliances as 

riskier and were less tolerant of their risks when compared to non-smart home 

appliances. Our results corroborate previous research, suggesting that smart products 

or products with novel technology are perceived as riskier when compared to other 

products [32], [193], [196], [202]–[204], [217]. For instance, Slovic [32] demonstrated 

this through the unknown risk dimension of the psychometric approach. This finding 

suggests that product manufacturers should aim to reduce the perceived risk associated 

with smart products. Product manufacturers could do this by informing consumers 

about product functionality and safety controls, while retail stores could do it through 

product trials and demonstrations which will allow consumers to evaluate the product 

functionality and safety controls before purchase  [196].  

Contrary to our expectations, we found that consumers perceived smart home 

appliances as having less utility than non-smart home appliances. Our results 

contradict previous research suggesting that smart products generally offer better 

utility than non-smart products [196]. However, our results are consistent with 

previous research highlighting the inverse relationship between perceived risk and 

utility, i.e., higher risks are associated with less utility or benefits [36], [37], [218]. 

Since the inverse relationship between risk and utility explains our results, product 

manufacturers should aim to reduce the perceived risk associated with smart products 

since it also impacts the perceived utility or benefit. Our finding also suggests that 

product demonstrations and trials may increase the perceived utility of smart products 

by focusing on the additional functionalities and benefits offered, such as autonomy 

and time-savings. 

Risk Communication 

As expected, our results found that risk communication from different sources 

impacted risk perception. The government, manufacturer, and large media 

coverage/story each contributed to a similar level of increase in perceived risk, and 

they each lowered the level of utility and risk tolerance to a similar degree. On the 
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other hand, small media coverage/story had the least impact on perceived risk, utility 

and risk tolerance. Our findings corroborate the results of the BN model and previous 

research [48], [49], [212], [213], [215], [216]. These results have implications for risk 

communicators – identifying which source of risk communication significantly 

influences risk perception means that risk communication strategies can be tailored to 

increase awareness of risk and hazards associated with products.  

Unsurprisingly, we found that large media coverage had a greater impact on risk 

perception when compared to small media coverage, hence confirming previous 

research [216], [219]–[221]. These results have implications for risk communicators 

– identifying the amount of media coverage that significantly influences risk 

perception means that risk communication strategies can be tailored to increase 

awareness of risks and hazards associated with products. Also, providing the public 

with frequent, accurate and complete information about risks can ensure that the effect 

of risk communication on the public’s risk perception is maintained [219]–[221].   

These results also have implications for the BN model – identifying the impact of 

different sources of risk communication on risk perception can improve predictions. 

For instance, the node risk communication in the BN model was defined as a ranked 

node with states (none, small media story, large media story/product recall) since 

product recall and large media story affected risk perception the same and small media 

story had the least impact. 

Demographics 

Contrary to our expectations, we found no difference in the risk perception of smart 

and non-smart home appliances between men and women. This finding contradicts 

previous research suggesting that men tend to judge risks smaller when compared to 

women [32], [222], [223]. On the other hand, some research suggests that gender 

differences are not evident for all types of risk and are dependent on environment or 

context [222], [224]–[226]. For instance, David and Freudenburg [222] observed that 

gender differences are most evident for technologies that pose a risk of contamination, 

such as nuclear technology. Hence, our results and previous research highlight the 

need to understand the impact of contextual factors such as environment and socio-

demographics on risk perception. This will allow better characterisation of gender 

differences and their impact on risk perception. 
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Regarding level of education, we found that higher educational level was associated 

with less perceived risk and so confirmed previous research  [32], [227], [228]. This 

suggests that risk communication should be tailored for different subpopulations to 

effectively influence risk perception and behaviour. Also, product manufacturers may 

reduce perceived risk via product trials, demonstrations, focus group sessions and 

safety information. 

Strengths, Limitations and Recommendations 

In this study, response bias and demand characteristics were minimised in several 

ways. We performed two experiments with different products and participants. Hence 

the findings in Experiment 1 are validated by Experiment 2. Also, in each experiment, 

we used between-subjects design whereby participants were randomly assigned a 

product type, risk information and media coverage scenario.  

Although our work captured the perceived risk, utility (benefits) and risk tolerance of 

smart and non-smart home appliances, we recognise that the extent to which our 

results can be generalised for all home appliances is limited, especially since only two 

types of home appliances were investigated. Hence the results of this study may vary 

given other types of home appliances since the perception of risk, utility and risk 

tolerance is product dependent [196]. In addition, our study did not include variables 

such as product price, which may well impact the perceived utility of the products. 

Further research should seek to examine the risk perception of other home appliances, 

especially since risk perception is product dependent [32], [196]. Examining other 

types of home appliances would allow for a better understanding of the differences in 

risk perception between different home appliances and their smart and non-smart 

versions.  Also, further research should consider product price and willingness to pay 

(WTP) since they may impact the perceived utility of the products. In Study 2, we 

address some of these limitations.  
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9.4 Study 2  

The principal merit of Study 2 is to complement and corroborate the results of Study 

1 and the BN model. This study done in collaboration with researchers at the Royal 

Holloway University of London aims to advance our understanding on how consumers 

perceive the risks associated with consumer products and whether risk perceptions and 

willingness to pay (WTP) differ based on the reliability of the source of the risk 

communication (reliable versus unreliable) and product compliance information 

(compliant versus non-compliant). The product, product compliance information and 

source reliability were manipulated between participants. Ratings for risk perception 

and WTP for the products were captured before and after product compliance 

information from different sources to assess the effect of source reliability and product 

compliance information on risk perception. Our main study hypotheses are 

summarised in Table 25. This study used the term “dread risk” to denote the perceived 

risk.  

Table 25 Study 2 Hypotheses 

Hypotheses Product Compliance 

Information 

Source 

Reliability 
Dread (Risk) Benefits WTP 

H1a Compliant     

H1b Non-Compliant  + - - 

H2 Compliant Reliable    

H3 Non-Compliant Reliable + - - 

H4 Compliant Unreliable + - - 

H5 Non-Compliant Unreliable + - - 

 

Legend Increase + 
 

Decrease - 

 
No Change  

 

9.4.1 Method 

Participants 

496 participants (251 male) aged 18-65+ were recruited from Prolific Academic 

(www.prolific.co). The inclusion criteria were that they were residents of the UK, born 

http://www.prolific.co/
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in the UK, and their first language is English. The participants received £0.80 for 

participating. 

Design 

In this study, a 2 × 2 × 2 design was used. The product, product compliance 

information and source reliability were manipulated between participants. Two 

products were investigated, namely, a carbon monoxide detector and a microwave 

oven1 (see Appendix D for full product descriptions).  Product compliance information 

had two classifications, i.e., compliant and non-compliant. Source reliability had two 

classifications, i.e., reliable and unreliable.  

Materials and Procedure 

After consenting to participate, participants indicated their age, gender and if they had 

children within specified age groups. The participants then read the instructions for 

the task. On the next screen, participants were presented with one of the two products. 

They provided initial scores for five risk characteristics, i.e., benefits, severity, worry, 

the likelihood of use and hazardousness (see Table 26), using a 7-point Likert scale as 

in [38], [229]. Participants also had to indicate their willingness to pay (WTP). The 

WTP was measured on a scale ranging from £0 to 2 × recommended retail price (RRP).  

Table 26 Risk Characteristics and WTP - Examples for TENCIX Microwave Oven 

Risk 

Characteristics Questions 

Benefits  
How great are the benefits associated with the TENCIX Microwave Oven to you 

personally? (1 = no benefits at all, 7 = very great benefits) 

Severity 

How severely (i.e., degree, extent or magnitude) might you, or anyone else, be 

injured by the TENCIX Microwave Oven? (1 = not at all severe, 7 = extremely 

severe) 

Worry 
How worried are you about potential risks associated with use of the TENCIX 

Microwave Oven? (1 = Not worried at all, 7 = Extremely worried) 

 
1 The products used in this study were identified from a previous study, “Understanding the 

Psychological and Cultural Factors Underpinning Risk Perception of Products”, undertaken by 

researchers at Royal Holloway University of London (RHUL). This study investigated risk 

perceptions of several products. The study results revealed that microwave oven and carbon monoxide 

detector are perceived the same by consumers, i.e., high benefits and moderate dread.  
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Likelihood of use 
If you were to buy the TENCIX Microwave Oven, how likely would you be to 

use it? (1 = not at all likely, 7 = extremely likely) 

Hazardousness 
How hazardous do you consider the TENCIX Microwave Oven to be? (1 = not at 

all hazardous, 7 = extremely hazardous) 

Willingness to pay 

(WTP) 

If you decided to buy the TENCIX Microwave Oven, how much would you be 

willing to pay? (£0 - £180) 

 

On the following screen, participants were informed about product compliance (either 

compliant or non-compliant) by a reliable or unreliable source (see Table 27). They 

were then asked to re-rate the product on the five risk characteristics, i.e., benefits, 

severity, worry, the likelihood of use and hazardousness. 

Table 27 Description of conditions used in the Study 2 

Source Reliability 

Reliable source:  

Imagine you are currently looking to purchase 

[product name] for yourself or a member of your 

household.  

 

Whilst you are browsing online, you see the 

[product] for sale for less than the recommended 

retail price [RRP] on BuyBuyNow.com - a 

popular e-commerce website.  

 

Before buying the [product name], you see a 

media story about the safety of the [product 

name] on SafeProducts101.info – a website 

specialising in product safety information, 

which has a reputation for publishing 

trustworthy product reviews. 

Unreliable source: 

Imagine you are currently looking to purchase 

[product name] for yourself or a member of your 

household.  

 

Whilst you are browsing online, you see the 

[product name] for sale for less than the 

recommended retail price [RRP] on 

BuyBuyNow.com – a popular e-commerce website.  

 

Before buying the [product name], you see a media 

story about the safety of the [product name] on 

TopElectricDevice101.info – a website specialising 

in electrical products, which has a reputation for 

sometimes publishing fake reviews. 

Product Compliance 

Compliance information:  

 

This story reports that the manufacturer has a 

good safety compliance record, and this 

particular model of [product name] complies 

with [safety standard] 

 

Non-compliance information: 

 

This story reports that the manufacturer has a poor 

safety compliance record, and this particular model 

of [product name] does not comply with [safety 

standard]. There is an increased likelihood of the 

product malfunctioning resulting in harm to the user. 
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The participants then completed the General Risk Propensity Scale [230] (an eight-

item risk propensity scale) and a shortened and amended version of the Cultural 

Cognition Worldview Scale [231]. We examined risk propensity and cultural 

worldviews since participants respond differently to the same information [232]. The 

two cultural worldviews are ‘hierarchical individualist’ (i.e., individuals with the view 

that social inequality is fair, and they are responsible for their own wellbeing) and 

‘egalitarian communitarian’ (i.e., individuals with the view that social inequality is 

unfair, and the collective responsibility is responsible for their wellbeing). Therefore, 

the two scales used in this study were ‘individualism-communitarianism’ and 

‘hierarchy-egalitarianism’, labelled GROUP and GRID respectively. Finally, 

participants were thanked, debriefed, and given a code to claim their payment. 

Data Analysis 

Before performing the analysis, we completed the following data pre-processing tasks: 

1. Dimensionality reduction: We reduced the five product characteristics into the 

following two characteristics:  

a. Benefits = benefits + likelihood of use 

b. Dread (perceived risk) = severity + worry + hazardousness 

2. Standardisation: We standardised the values for benefits, dread and 

willingness to pay (WTP). 

We used Bayesian modelling to investigate which factors (i.e. demographics and 

product) predicted benefits, dread, and WTP before and after product compliance 

information (see Appendix D for additional details). 

9.4.2 Results 

The effect of individual characteristics and product on perceived benefits, dread 

and willingness to pay at T1 

The Bayesian analysis results and Figure 97 revealed that consumers judged the 

microwave oven as having lower benefits and greater dread when compared to the 

carbon monoxide detector. As a result, consumers were willing to pay less for the 

microwave oven when compared to the carbon monoxide detector. Regarding the 

other predictors, such as gender and age, there was no strong, robust evidence for 

differences between their groupings. 
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Figure 97 Benefits, Dread and WTP scores at T1 for Products 

 

Interaction effects between product compliance information and source 

reliability on the change in perceived benefits, dread and willingness to pay 

To investigate support for Hypotheses 2-5, we examined the interaction effect between 

product compliance information and source reliability on the change in perceived 

benefits, dread and WTP. The combined results for both products are summarised in 

Table 28. Please note that there are some significant differences in the results between 

the two products (i.e., carbon monoxide detector and microwave oven). For instance, 

the decrease in benefits given non-compliant information from reliable and unreliable 

sources is greater for the carbon monoxide detector when compared to the microwave 

oven. Also, the increase in dread is greater for the carbon monoxide detector when 

compared to the microwave oven, given non-compliant information from an unreliable 

source. For further information on the differences in the results between the two 

products, please see Figure D10 in Appendix D. 
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Table 28 Summary of Study Results (Combined results for both products) 

Product Compliance 

Information 
Source Reliability 

Dread 

(Risk) 
Benefits WTP 

Compliant     

Non-Compliant  +++ - - -  - -  

Compliant Reliable    

Non-Compliant Reliable +++ - - - - - 

Compliant Unreliable +  - 

Non-Compliant Unreliable +++ - - - 

 

Legend 
Increase + 

The symbols +, ++, +++ and -, --, --- represent different levels of 

change based on relative increase or decrease. 

Decrease - 

 
No Change  

 

9.4.3 Discussion 

The present study advances our understanding of how the reliability of the source of 

the risk communication and product compliance information can influence willingness 

to pay (WTP) and risk perception of consumer products. In support of Hypothesis 1, 

non-compliance information decreased benefits, increased dread (perceived risk) and 

decreased WTP when compared to compliance information. Consistent with 

Hypothesis 2, we found that compliance information from a reliable source caused no 

change in the perceived dread, benefits and WTP. In support of Hypothesis 3, we 

found that non-compliance information from a reliable source increased dread and 

decreased the benefits and WTP. We found partial support for Hypothesis 4; 

compliance information from an unreliable source slightly increased dread and 

decreased WTP but caused little or no change in the perceived benefits. Finally, in 

support of Hypothesis 5, we found that non-compliance information from an 

unreliable source increased dread, decreased benefits and WTP.  

The findings of our study are consistent with Study 1 and previous research suggesting 

that when a product is perceived as having high dread (risk), in this instance, non-

compliant, it is generally perceived as having lower benefits [36]–[38]. Furthermore, 

the reliability of the source of the risk information can affect how the information is 

perceived and the perception of risk [32], [48], [49], [212], [233]. For instance, when 
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the source is judged reliable, it will mostly influence risk perception and behaviour 

than if it was judged unreliable. Overall, the study results revealed that product 

compliance information is the main driver of change in risk perception and WTP for 

consumer products when compared to the reliability of the source. In each scenario 

with non-compliance information, whether from a reliable or unreliable source, 

perceived benefits decreased, dread increased, and WTP decreased. This corroborates 

the results of Study 1 and the BN model (on the assumption that risk communication 

primarily concerns non-compliant products).  

Our findings have several implications for risk communicators and national safety 

regulators. Since the reliability of the source can affect the way people react to risk 

information and perceive risk, especially when they lack knowledge, all sources used 

to disseminate information should be perceived by the public as trustworthy and 

credible. This may be achieved by ensuring that all information (past and future) 

disseminated by the source is accurate and complete. Sources with a reputation for 

good and accurate information will gain public trust and influence risk perception and 

behaviour [49], [234]. With regard to the technologies used for risk communication, 

it is important that they are appropriate and trusted by the public. Since different 

technologies have different features that determine the extent to which the public trusts 

them, risk communicators and safety regulators should disseminate information using 

trusted technologies.  

Our present study is the first to investigate how consumers perceive the risks 

associated with consumer products and whether risk perceptions and WTP differ based 

on the reliability of the source of the risk communication and product compliance 

information. The findings of this study have to be seen in light of some limitations. 

This study examined only two products (i.e., carbon monoxide detector and 

microwave oven). Since some of the results differed between the products, this 

suggests that future work should examine other products since risk perception is 

product-dependent [32]. Another limitation of this study is that it only examined risk 

communication from consumer safety websites. Hence future work should examine 

the reliability of other sources of risk communication since different sources have 

inherent factors that differentiate how they are perceived and trusted by the public.  
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9.5 Chapter Summary 

The empirical studies discussed in this chapter provide novel insights on the effect of 

risk communication and its source on the risk perception of consumer products. The 

principal merit of these studies is to inform and validate the results of the consumer 

risk perception component of the BN for consumer product safety risk assessment 

discussed in Chapter 8. This BN component models risk perception and the effect of 

risk communication on risk perception. It predicts that risk communication will 

increase perceived risk and decrease perceived benefits and risk tolerance. In Study 1, 

we found that risk communication from different sources impacted risk perception. 

The government, manufacturer, and large media coverage/story each contributed to a 

similar level of increase in perceived risk, and they each lowered the level of utility 

and risk tolerance to a similar degree. On the other hand, small media coverage/story 

had the least impact on perceived risk, utility and risk tolerance.  In Study 2, we found 

that product compliance information is the main driver of change in risk perception 

and WTP for consumer products when compared to the reliability of the source of the 

risk communication. In each scenario with non-compliance information (i.e., risk 

communication about a non-compliant product), whether from a reliable or unreliable 

source, perceived benefits decreased, dread (perceived risk) increased, and WTP 

decreased. Therefore, the results of Study 1 and Study 2 corroborate the results of the 

BN model. In general, the findings of these studies add to the existing literature in this 

field.  
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Chapter 10 Deployment of Bayesian Networks for 

Safety Risk Management 

In Chapters 7 and 8, we developed BNs for safety risk assessment of medical devices 

and consumer products. Despite the many benefits offered by these BNs, their use is 

limited if they are not deployed to end users in a practical and efficient manner. In this 

chapter, the deployment of BNs as web-based applications (or web applications) using 

the Agena.ai cloud service is discussed. In Section 10.1, the necessary background 

information is provided. In Section 10.2, the method for deploying a BN to end users 

is demonstrated using a case study, and the results are discussed in Section 10.3. 

This chapter supports Hypothesis 4 (it is possible to deploy BNs for product safety 

risk management in production in a practical format for easy access and use by end 

users, including manufacturers, consumers, and safety regulators). 

10.1 Introduction 

Traditionally, BN software such as AgenaRisk [16], Hugin [235] and Netica [236] 

aimed to help model experts develop BNs and perform inferences efficiently. This was 

achieved using a graphical user interface and novel inference algorithms, such as 

dynamic discretization (discussed in Chapter 4) [237]. Despite the many benefits 

offered by the BNs developed using these tools, their widespread use is limited due to 

a lack of methods for easy deployment to end users. However, Agena Ltd [22] (the 

developer of AgenaRisk) recently launched a new product called Agena.ai cloud 

service for easy development and deployment of BNs to end users. This solution helps 

model experts to deploy BNs as web-based applications and consists of the following 

three tools shown in Figure 98: Web App Designer (a tool to create web applications), 

Cloud App Manager (a tool to publish web applications and manage users), and API 

Services (AgenaRisk cloud API for background calculations in your own apps or 

interfaces).  

Given the benefits of BNs for safety risk assessment and management, we demonstrate 

how they can be easily deployed to end users using the Agena.ai cloud service in the 

next section. 
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Figure 98 Agena.ai cloud service portal homepage 

10.2 Case Study: Medical Device Risk Management BN 

In this section, we use the BN for medical device risk management to test and evaluate 

the Agena.ai cloud service. This BN was presented in Chapter 7 (see Figure B2 and 

Figure B3 in Appendix B for the BN structure).  

The following steps were used to construct and deploy a web app using the Agena.ai 

cloud service: 

1. Upload the model file to Agena.ai cloud service: In this step, the BN model 

was exported from AgenaRisk Desktop in JSON format. The AgenaRisk JSON 

file was then uploaded to the Agena.ai cloud service using the Web App 

Designer tool.   

 

2. Configure the app: Once the model file was uploaded, we configured the app 

using the Web App Designer tool. The app configuration includes selecting 

input and output nodes, name, description, and image, as shown in Figure 99. 

In the web app, the input nodes are represented as text boxes or drop-down 

lists, and the output nodes are represented as graphs. 
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Figure 99 Web App Configuration 

3. Preview and Fine Tune: Once we configured the web app, we previewed it 

to see how it looks and works with the current settings (see Figure 100). During 

the preview, we validated the results of the web app by entering observations 

and comparing the results with those obtained using AgenaRisk Desktop. For 

instance, in Figure 101 we compare the results of the web app and AgenaRisk 

Desktop for risk management scenario 1 (see Section 7.4.2). In this example, 

the web app results are the same as AgenaRisk Desktop. 

 

4. Publish App: Once the app is judged acceptable, we then deployed it using 

the Cloud App Manager tool (see Figure 98). App deployment was done via a 

three-step process: (1) save the app to your online account on Agena.ai cloud 

service (2) enter a subdomain in agenaai.app domain (3) mark the app as 

published. 

Finally, once the web app was published (see Appendix E), we used it to make 

predictions. We did this by accessing it via its website address (or URL) and entering 

relevant observations using the input text boxes or drop-down lists. The results of the 

web app were displayed as graphs, as shown in Figure 101. 
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Figure 100 Web App Preview 

 

Figure 101 Web app results validation 
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10.3 Discussion 

The case study results show that the Agena.ai cloud service can easily create and 

deploy a BN model as a web app to end users. Furthermore, the results of the web app 

are identical to the results obtained using AgenaRisk Desktop. These results support 

Hypothesis 4 and have implications for risk modellers – the ability to easily develop 

and deploy BNs as web apps to end users will further promote the use of BNs in 

industry and everyday life. In the context of safety risk management, for example, 

medical device risk management, the web app provides a user-friendly interface for 

end users to assess the risk of medical devices. In fact, end users would not require 

any knowledge of BNs to perform a risk assessment. Therefore, issues such as 

complexity and adoption barriers associated with using BNs for safety risk 

management and other applications are resolved.  

The case study results also have implications for organisations that use BNs in 

production. Novel technologies like Agena.ai cloud service will allow organisations 

to easily deploy new and existing BNs as web apps in production. In addition, 

organisations can manage access to these web-based systems more efficiently. Also, 

since the web app can be accessed anywhere, anytime by end users via the internet, 

this can increase productivity in the workplace.  

The main limitation of this work is that only Agena.ai cloud service was evaluated as 

a method to deploy BNs as web apps in production since the BNs were developed 

using AgenaRisk Desktop. Future work should include evaluating similar BN 

deployment technologies, such as Netica-Web [236].  

10.4 Chapter Summary 

This chapter describes a method for deploying BNs for safety risk management using 

Agena.ai cloud service. In the case study, we developed a web app for the BN for 

medical device risk management. The case study results show that BNs can easily be 

deployed to end users as a web app practically and efficiently. As a web app, end users 

can access the BN anywhere, anytime, via the internet. Furthermore, the user-friendly 

interface of the web app does not require end users to have knowledge of BNs to 

perform a specific task such as risk assessment, hence promoting the use of BNs for 

safety risk management and other applications in industry and everyday life. 
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Chapter 11 Conclusions, Contribution, and Future 

Directions 

This chapter revisits the research hypotheses of this thesis and summarises the related 

contributions. The chapter ends with the future directions of research. 

11.1 Research Hypotheses and Contributions 

Though BNs have been used extensively in the safety domain, their use for product 

safety risk management is limited. In this thesis, we bridged this research gap by 

proposing a novel method for developing robust, accurate BN models for product 

safety risk management. We also investigate how BNs can be deployed to end users 

using recent technological innovations. These research objectives were investigated 

using four hypotheses. In this section, each hypothesis is reviewed, and their 

supporting arguments and contributions are summarised. 

Hypothesis 1: It is possible to develop a generic method to build Bayesian 

networks for product safety risk management. 

There are many techniques and approaches used in the industry to assess and model 

the risks of products and systems, including the commonly used Failure Mode and 

Effects Analysis (FMEA) and Fault Tree Analysis (FTA) (see Chapter 3 for a review 

of risk analysis methods). However, these risk analysis methods have several 

limitations, such as a limited approach to handling uncertainty, which can lead to 

inaccurate or ill-defined risk estimates (see Section 1.3, Section 7.2 and Section 8.3) 

for more details). Although some extensions of these methods, such as Dynamic Fault 

Trees (DFTs), have resolved some of these limitations, BNs can resolve all limitations.  

However, despite the many advantages of using BNs for safety risk management, the 

literature review presented in Chapter 5 revealed that their widespread acceptance and 

use as a standard systematic method for product safety risk management are limited. 

This may be due to limited or no standard method or guidelines for building BNs for 

the many different product safety cases. Furthermore, the few published BNs in this 

area are presented with little information on how the BN was developed and why it is 

suitable for the specific application. In other cases, the BN development process is ad 

hoc and presents little or no opportunity for repeatability and standardisation. In 
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addition, some established methods for BN development (see Section 4.3 and Section 

5.2 for additional details) may not be feasible for many product safety cases due to 

adoption barriers, e.g., lack of knowledge and the complexity of safety risk (dependent 

on the interaction between hard factors, e.g., systems and soft factors, e.g., processes). 

In these situations, the BN must be developed using expert knowledge and literature. 

However, the literature lacks a systematic, repeatable method or guidelines for 

developing BNs for product safety risk management using expert knowledge and 

literature. 

Contribution 

In Chapter 6, we proposed a novel method for developing BNs for product safety risk 

management using causal idioms. This novel set of idioms, called product safety 

idioms, complements and extends the idiom-based approach proposed by Neil et al. 

[19] and other methods for BN development (see Section 4.3 and Section 5.2). Product 

safety idioms are tailored to the requirements of the safety risk management process 

(see Figure 1). They are based on the logical causal relationship among the factors 

used to estimate and evaluate product risk. While the proposed idioms are sufficiently 

generic to be applied to a wide range of product safety cases, they are not prescriptive 

or complete and should be considered as a guide for developing suitable idioms for 

product safety risk management. As discussed in Section 6.5, the benefits offered by 

the product safety idioms include:  

1. Integration of different types of knowledge sources: As demonstrated in 

Section 6.4.2, the idioms can combine objective evidence, e.g., PFD, and 

subjective evidence, e.g., manufacturing process quality, to provide reasonable 

risk estimates for products. Combining objective and subjective evidence is 

especially useful for handling uncertainty in situations when there is limited or 

no historical testing and operational data for products, but expert knowledge is 

available. 

 

2. Handle uncertainty in data: Some risks associated with products can be 

characterised by high levels of uncertainty and ambiguity. Uncertainty can be 

caused by limited or lack of relevant data. Product safety idioms can handle 

and communicate uncertainties in the data explicitly since they express 

uncertainty in terms of probability distributions. 
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3. Standardise and assist product safety BN development: To the best of our 

knowledge, there is no standard method for developing BNs specifically for 

product safety risk management. The product safety idioms improve BN 

development by simplifying the knowledge elicitation task. They provide a 

library of reusable BN patterns for product safety that facilitates the easy 

development of practical product safety BNs. They also guide the knowledge 

elicitation process by allowing model experts and safety risk professionals to 

identify relevant information (known or unknown) required to build custom 

idioms and BNs for product safety assessments. 

 

4. Enhance the communication, interpretability and explainability of complex 

BNs: The graphical structure and results of the BNs developed using the idioms 

can be easily interpreted, explained, and reviewed by model experts and safety 

risk professionals. For example, the graphical structure of BNs facilitates easy 

communication of uncertainty and risks. Stakeholders can easily identify 

sources of uncertainty in the model. In addition, product safety idioms can 

serve as a validation method for future product safety risk BNs, ensuring that 

their structure is practical and logical. 

We believe that the product safety idioms are meaningful reasoning patterns that guide 

the development of complex BNs for product safety risk management and can help 

promote the use of BNs in this domain.  

Hypothesis 2: It is possible to use Bayesian networks for safety risk management 

for many different types of products, including novel products or products with 

limited or no available data. 

Many traditional risk analysis techniques, such as FTA, compute risk as the product 

of the probability of occurrence of harm 𝑃 and the severity of the harm 𝑆, i.e., 𝑅𝑖𝑠𝑘 =

 𝑃 ×  𝑆. As a result, these methods are unable to provide reasonable risk estimates for 

novel products or products with limited or no available data since the probability of 

occurrence of harm 𝑃 may be uncertain or unknown. However, BNs can be used to 

assess the risk of novel products or products with limited or no historical data since it 

is a rigorous normative method for modelling uncertainty and causality. 
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Contribution 

In Chapter 7 and Chapter 8, we developed BNs for medical device risk management 

and consumer product safety risk assessment using product safety idioms, expert 

knowledge and literature. For each BN, we demonstrated risk estimation for products 

with available data and products with limited or no historical data (see Section 7.4 and 

Section 8.5). We show that the risk of products with limited or no historical data can 

be estimated using data from previous similar systems (or generic probabilities) 

together with information about the quality of the processes and people involved in 

their development. Most importantly, we show that risk estimates can be revised once 

relevant data is available, such as reported injury reports.   

The principal merit of the proposed generic BN for medical device risk management 

is to provide a robust systematic method for medical device manufacturers to manage 

the risk of medical devices throughout their life cycle (i.e., initial conception to final 

decommissioning and disposal). We believe that the BN improves the risk 

management of medical devices in the following ways (see Section 7.5 for more 

details): 

1. It provides a robust method for managing the risk of medical devices 

throughout their life cycle (i.e., production and post-production). 

2. It informs risk control measures/ risk treatment given the risk acceptability 

criteria and supports iterative risk treatment. 

3. It improves the interpretability and explanation of risk estimates. 

4. It handles uncertainty in the data, especially for novel medical devices and 

software with little or no relevant historical data. 

5. It provides individual risk estimates since it considers device use and device 

age information when estimating risk. 

6. It supports market surveillance and review (post-market/post-production 

activities). The BN can easily update risk estimates given new information, 

such as reported injuries. 

7. It complements existing risk management methods such as FTA. This enables 

easy adoption of the proposed BN in the industry. 
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8. It performs and improves benefit-risk analysis.  

The principal merit of the proposed generic BN for consumer product safety risk 

assessment is to provide a robust systematic method for safety regulators, 

manufacturers and market surveillance authorities to assess the risk of consumer 

products. We believe that the BN model provides the following improvements to 

consumer product risk assessment (see Section 8.6 for more details): 

1. Properly handles uncertainty about probabilities assigned during risk 

assessment. 

2. Can assess the risk of novel products or products with little or no historical 

data.  

3. Incorporates causal explanations for using and interpreting the data. 

4. Considers the usage behaviour for different types of users and the number of 

product instances when determining product risk. Hence it supports individual 

and population risk assessment. 

5. Models risk tolerability (acceptability), risk perception and the effect of risk 

communication on risk perception. To the best of our knowledge, this is the 

first BN to model risk tolerability, risk perception and the effect of risk 

communication on risk perception. 

6. Considers the increased risk of hazards over the lifetime of a product when 

estimating risk. 

7. It complements and resolves the limitations with existing methods such as 

RAPEX. 

Other significant contributions of our work on consumer product safety risk 

assessment include the development of the UK Government Office for Product Safety 

and Standards (OPSS) risk lexicon [24]. OPSS risk lexicon is the organisational 

definitions of terms concerned with risk and risk-related matters. It was informed by 

the material presented in Chapter 2. Most importantly, our work contributed to the 

development of OPSS new product safety risk assessment methodology ‘PRISM’ 

[238]. PRISM introduced in December 2022, is used by safety regulators in UK to 

assess the risk associated with consumer products (non-food). It improves consumer 
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product risk assessment by resolving some of the limitations of the RAPEX 

methodology identified in our work (in fact, the ‘PRISM’ guide references our work 

presented in Chapter 8). For instance, it considers other relevant factors, such as 

frequency of use and product instances when estimating risk.  

Hypothesis 3: It is possible to use Bayesian networks to model consumer risk 

perception and/or perform benefits-risk analysis for products.  

1. Consumers may judge the risk and benefits of products differently from 

experts. For instance, experts tend to judge the risk of a product using 

quantitative risk assessments, whereas consumers judge risk using a 

combination of subjective measures such as hazardousness. Regardless of the 

results of the quantitative risk assessment, consumer risk perception should not 

be overlooked and must be considered when evaluating risk. In addition, 

previous research and our empirical work show that risk communication can 

influence risk perception (see Chapter 9). For instance, risk communication 

about non-compliant products increased perceived risk and decreased benefits. 

However, there are no automated methods for predicting risk perception of 

products and the effect of risk communication on risk perception. BNs are 

suitable for this task due to their ability to combine objective and subjective 

evidence to make predictions. 

 

2. During medical device risk management, in situations where risk reduction 

measures are not practical, a benefit-risk analysis is done to determine if the 

benefit of a device outweighs its risk. However, there are no automated 

methods for performing this task since it is usually based on subjective 

evidence, such as the clinical outcome expected from using the device and 

objective evidence, such as risk estimates. BNs are suitable for this task due to 

their ability to combine objective and subjective evidence to make predictions. 

Contribution 

1. To the best of our knowledge, the proposed BN for consumer product safety 

risk assessment discussed in Chapter 8 is the only method that models 

consumer risk perception and the effect of risk communication on risk 

perception. The model can predict the perceived risk, benefits and risk 
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tolerance of products and the effect of risk communication on all these 

perceptions. The predictions of the BN model are validated by the empirical 

work presented in Chapter 9 done in collaboration with the UK Government 

Office for Product Safety and Standards (OPSS) and researchers at Royal 

Holloway University of London (RHUL). The empirical studies provided 

OPSS with novel insights on the risk perception of consumer products (smart 

and non-smart) and how it is influenced by risk communication. It improved 

OPSS risk communication strategies concerning non-compliant products and 

reduced potential harm to consumers. In addition, this work extends the 

literature in this domain since there is little or no previous research on the risk 

perception of consumer products (smart and non-smart), and how it is 

influenced by risk communication from different sources such as the 

government, manufacturer and media. 

 

2. To the best of our knowledge, the proposed BN for medical device risk 

management presented in Chapter 7 is the only method that automatically 

combines subjective evidence about the benefits of a medical device together 

with the estimated risk (objective evidence), to determine risk acceptability for 

a medical device. Hence, the BN improves risk management since the benefit-

risk analysis can be performed quickly and more efficiently. Moreover, any 

uncertainty in the subjective evidence can be incorporated before making 

predictions. 

 

Hypothesis 4: It is possible to deploy BNs for product safety risk management in 

production in a practical format for easy access and use by end users, including 

manufacturers, consumers and safety regulators. 

Traditionally, BN software such as AgenaRisk [16], Hugin [235] and Netica [236] 

aimed to help model experts develop BNs and perform inferences efficiently. Despite 

the many benefits offered by the BNs developed using these tools, their widespread 

use is limited due to a lack of methods for easy deployment to end users. 
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Contribution 

In Chapter 10, we described a method for deploying BNs for safety risk management 

using Agena.ai cloud service (a novel technology for deploying BNs as web apps to 

end users). The case study results show that BNs can easily be deployed to end users 

as a web app practically and efficiently. As a web app, end users can access the BN 

for safety risk management anywhere, anytime, via the internet. Furthermore, the user-

friendly interface of the web app does not require end users to have knowledge of BNs 

to perform tasks, such as risk assessment, hence promoting the use of BNs for safety 

risk management and other applications in industry and everyday life. 

11.2 Future Directions 

The novel contributions presented in this thesis provide a guide for developing and 

deploying BNs for product safety risk management. In this section, we present some 

interesting future directions for the work presented in this thesis, considering recent 

advancements in Artificial Intelligence (AI), in particular Generative AI and 

Explainable AI. 

11.2.1 BN Improvements  

The BN for medical device risk management presented in Chapter 7 could be extended 

to model consumer risk perception of medical devices. This will require empirical 

studies to understand how consumers perceive the risk of medical devices and how 

these perceptions change given risk communication. The risk perception information 

can be incorporated in the BN using the consumer risk perception idiom presented in 

Chapter 6.  

A limitation of the product safety idioms and BNs presented in this thesis is that they 

are not aligned to risk acceptance principles like ALARP (as low as reasonably 

practicable), SFAIRP (so far as is reasonably practicable), GAMAB (“globalement au 

moins aussi bon”, generally at least as good) and MEM (minimum endogenous 

mortality).  

The ALARP principle [239]–[242] requires that the risk of a system be reduced to a 

“reasonably practicable” level. Determining whether the risk of a system is ALARP 

entails considering whether risk control measures are “good practice” and whether the 

cost of additional risk control measures is grossly disproportionate to its benefits; the 
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latter is facilitated by a Cost Benefit Analysis (CBA). The BN models presented in 

this thesis can be extended to incorporate a Cost Benefit Analysis (CBA) to support 

ALARP decisions. The CBA component of the BN will include nodes representing 

the cost of the risk control measures, the benefits of the risk control measures (defined 

using the same units as the cost) and the results of the CBA; the latter used for 

assessing ALARP. It is important to note that the risk is only considered ALARP when 

the cost of the risk control measures is judged grossly disproportionate to its benefits. 

In situations where the cost of the risk control measures is not judged grossly 

disproportionate to its benefits, then the risk control measures must be implemented. 

The risk tolerability idiom presented in Chapter 6 can be adapted to model a CBA. In 

this thesis, SFAIRP is considered the same as ALARP. 

The GAMAB principle [243] requires that the risk of new systems should not exceed 

the risks of previous similar systems. The MEM principle [243] requires that a new 

system does not significantly increase the minimum endogenous mortality (i.e., lowest 

natural mortality rate). The BN models can be extended to support GAMAB and MEM 

decisions using the requirement idiom presented in Chapter 6.  

Other future work includes applying the product safety idioms to other industries in 

the safety domain, such as aviation and conducting additional empirical studies to gain 

a comprehensive understanding of the risk perception of products since it is product 

dependent. 

11.2.2 Generative AI for BN Development 

The novel method for developing BNs using causal idioms presented in Chapter 6 can 

provide the basis for the use of Generative AI for the development of BNs. Generative 

AI is an artificial intelligence technology that can generate different types of content, 

such as text and imagery given instructions, e.g., questions or text [244]. For example, 

the AI tool “DALL-E2” developed by OpenAI can create realistic images and art from 

a text description [245]. Regarding BN development, a generative model can be 

trained on the product safety idioms since they represent the generic logical causal 

patterns of reasoning for safety risk management. Once trained, end users can enter 

text describing a desired model for safety risk management, and the system would 

generate reasonable model structures based on the structure of the pre-defined idioms. 

In addition, the generative model can also create new idioms or structures as required 
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by combining and mixing different idioms. Using generative models for BN 

development would further increase the use of BNs in industry and everyday life. 

11.2.3 Generative AI for explaining BN Model and Results 

Although the product safety idioms support the explainability of the BN model results, 

this can be further improved by using Generative AI tools like ChatGPT [246], also 

developed by OpenAI. ChatGPT is an AI tool that supports human-like conversations 

with a chatbot. When applied to BNs, ChatGPT can provide a creative description of 

the structure and results of the model for end users, as requested. In addition, it can 

explain the reason for the results since the processes by which BNs make predictions 

are causal and explicit. Explainability can help model experts ensure that the model 

predictions are accurate and help end users understand the model results, further 

promoting the use of BNs in industry and everyday life.  
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Appendix A Chapter 6 Supplemental Material 

This section of the Appendix presents the safety risk reports for the hammer and car 

engine examples discussed in Chapter 6. 

Hammer Risk Report [167] 

 

 

 

 

01/12/2022 Page 1  

 

 

Safety Gate Alerts 
 
 

 

Alert number A12/1765/12 

Product Hammer 
 
 

 

 

 

Risk type Injuries 

 
The hammer head has been made from unsuitable material 

and metal parts may detach and injure the person using the 

hammer or people nearby. The product does not comply with 

the relevant European standard EN10083. 
 

Category Hand tools 

Type Consumer 

Description Hammer with a wooden handle. 

 
Brand Chetak Tools 

Name Unknown 

Type / number of model 1402СКА01  

Batch number 8 694461 118002 

Weekly report number Report-2012-047 

Alert submitted by Bulgaria 

Is the product counterfeit? Unknown 

 
Country of origin People's Republic of China 
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Car Engine Risk Report [168] 

 

 

 

 

 

Safety Gate Alerts 
 
 
 
 

Alert number A12/1733/12 

Product Passenger cars 
 

 
Risk type Injuries 

 
A possible crack in the crankshaft may lead to engine failure 

and might cause the engine to seize which may lead to a road 

accident. 
 

Category Motor vehicles 

Type Consumer 

Description Passenger car. 

 
Brand Ferrari 

 

Name 458 Italia, California 

 
EC-type approval/model Types: F142, F149 Models: EC-type approvals: 

e3*2007/46*0040*00-*03, e3*2001/116*0285*00; 
 

Production dates Vehicles from the production period July 2011 to August 2011 

are affected. 
 

Weekly report number Report-2012-047 

Alert submitted by Germany 

Is the product counterfeit? No 

Country of origin Italy 

Measures taken by 

economic operators 

Recall of the product from end users 

Other 

 

Products were found and 

measures were taken also 

in 

Italy 
The Netherlands 
Portugal 
Sweden 
United Kingdom 

 
 

 
 

01/12/2022 Page 1 
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Appendix B Chapter 7 Supplemental Material 

 

B1 Classes of Medical Devices 

This section of Appendix B presents the different categories and classes of medical 

devices. 

Table B1 Categories of medical devices by purpose 

Category Definition Example 

Non-invasive Devices which do not enter the body Wheelchairs 

Invasive Devices inserted into the body’s orifices Examination gloves 

Surgically 

invasive  

Devices used or inserted in surgery Needles 

Active Devices requiring an external source of power ultrasound 

Implantable Devices implanted into the body Breast implants 

 

Table B2 Classes of medical devices by inherent risk 

Class Inherent Risk Level Example 

Class I Low Wheelchairs 

Class II Medium Dental fillings 

Class III High Pacemakers 

 

B2 Model Variables and NPT 

This section of Appendix B presents the variables and NPTs used in the BN for 

medical device risk management. 

Table B3. Variables and NPTs for Medical Device Risk Management BN 

Variable 

/Name 

Abbrev Node Probability Tables (NPT) Category 

Number of 

demands (test) 

nd Uniform (0, 1000000) Reliability 

Number of 

observed 

hazards (test) 

no Binomial (nd, phd) Reliability 

Prob. of hazard 

per demand 

(test) 

phd Uniform (0, 1) Reliability 
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Current or 

previous 

device? 

device States: (Current device: 0.985, Previous 

device similar: 0.005, Previous device Minor 

Difference:0.005, Previous device Major 

Difference: 0.005) 

Reliability 

Prob. hazard per 

demand given 

device 

phd_device Partitioned Expression (Current device: phd, 

Previous device similar: phd, Previous device 

Minor Difference: phd×1.25, Previous device 

Major Difference: phd×2) 

Reliability 

Generic or Test 

Data? 

genswitch States: (Testing: 0.99, Generic: 0.01) Reliability 

Generic prob. 

levels 

levels States: (Frequent: 0.2, Probable: 0.2, 

Occasional: 0.2, Remote: 0.2, Improbable: 

0.2) 

Reliability 

Generic prob. 

hazard per 

demand 

genprob Partitioned Expression (Frequent: Uniform 

(0.001, 1), Probable: Uniform (1E-4, 0.99E-3), 

Occasional: Uniform (1E-5, 0.99E-4), 

Remote: Uniform (1E-6, 0.99E-5), 

Improbable: Uniform (0, 0.99E-6)) 

Reliability 

Prob. of hazard 

per demand 

(generic or test) 

phdtest Partitioned Expression (Testing: phd_device, 

Generic: genprob) 

Reliability 

Prob. of hazard 

given testing 

strategy 

phd_ts Partitioned Expression (Less strenuous: 

(phd_test+0.5×phd_test), Typical of normal 

use: (phd_ts), More strenuous: 

(phd_ts−0.5×phd_test)) 

Reliability 

Test strategy ts States: (Less strenuous: 0.333, Typical of 

normal use: 0.333, More strenuous: 0.333) 

Reliability, 

Requirement 

Testing 

requirement met 

treq IF(dreq >= phd_ts,"True","False") Requirement 

Defined safety 

requirement by 

standards 

dreq Uniform(0,1) Requirement 

Intended use 

requirement 

ureq IF(dreq >= phd_df,"True","False") Requirement 

Prob. of hazard 

per demand 

given process 

information 

phd_pc Partitioned Expression (Yes: (Low: 

(phd_ts×1.1), Normal: (phd_ts, 

high:phd_ts×0.9)), No: (phd_ts) 

Reliability 

Years in 

operation 

yo Ranked: (<1 year: 0.2, 1-5 years: 0.2, 5-10 

years: 0.2, 10-20 years: 0.2, 20+ years: 0.2) 

Manufacturer 

Process Quality  

Manufacturer 

reputation 

mr Ranked: (Highly reputable: 0.333, Reputable: 

0.333, Disreputable: 0.333) 

Manufacturer 

Process Quality 

Customer 

satisfaction 

cs TNormal (oq, 0.05, 0, 1) Manufacturer 

Process Quality 

Organisation 

quality 

oq TNormal (wmean(1, yo, 1, mr), 0.001, 0, 1) Manufacturer 

Process Quality 

Process quality pq TNormal (pdri, 0.005, 0, 1) Manufacturer 

Process Quality 

Product defects pdef TNormal (pq, 0.05, 0, 1) Manufacturer 

Process Quality 
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Process drifts pdri Ranked: (Major: 0.333, Minor: 0.333, None: 

0.333) 

Manufacturer 

Process Quality 

Process 

additives 

padd TNormal (pq ,0.05, 0, 1) Manufacturer 

Process Quality 

Organisation 

and Process 

Quality 

org_pro TNormal (wmean (1, oq, 2, pq), 0.001, 0, 1) Manufacturer 

Process 

Quality, 

Reliability 

Manufacturer 

information 

available? 

man_info States: (Yes: 1E-4, No: 0.9999) Manufacturer 

Process 

Quality, 

Reliability 

Rework effort re States: (Very high: 0.2, High: 0.2, Medium: 

0.2, Low: 0.2, Very low: 0.2) 

Rework 

Rework process 

quality 

rpq Ranked: (Very high: 0.2, High: 0.2, Medium: 

0.2, Low: 0.2, Very low: 0.2) 

Rework 

Rework process 

overall 

effectiveness 

rpo TNormal (wmean(1, re, 1, rpq), 0.001, 0, 1) Rework 

Rework done on 

device 

rd States: (Yes: 0.5, No:0.5) Rework 

Prob. hazard per 

demand after fix 

(P1) 

phd_df phd_pc×(1.0−prob_fix) Reliability, 

Requirement 

Probability of 

fixing defect 

prob_fix See Table B3a Rework, 

Reliability 

Prob. of hazard 

per demand (P1) 

P1 (r/100.0)×p_hazard_field+((100.0-

r)/100.0)×phd_df 

Reliability, 

Risk 

% Dependence 

on field data 

r TNormal(0, 0.001, 0, 100) Reliability 

Actual number 

of demands 

(field) 

ad Uniform (0, 1000000) Reliability 

Accuracy of 

estimated 

demands 

accuracy States: (Very low: 0.2, Low: 0.2, Medium: 

0.2, High: 0.2, Very high: 0.2) 

Reliability 

Number of 

estimated 

demands (field) 

estdemands Partitioned Expression (Very low: TNormal 

(ad, ad×10000, 0, 1E12), Low: TNormal (ad, 

ad×1000, 0, 1E12), Medium: TNormal (ad, 

ad×100, 0, 1E12), High: TNormal (ad, ad×10, 

0, 1E12), Very high: (ad) 

Reliability 

Number of 

reported or 

potential 

hazards (field) 

field_haz Binomial (ad, p_hazard_field) Reliability 

Prob. of hazard 

per demand 

(field) 

p_hazard_fie

ld 

Uniform (0, 1000000) Reliability 

Number of 

reported or 

n_fatal Binomial (field_haz, ph_fatal) Injury 

Occurrence 
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potential fatal 

injuries 

Number of 

reported or 

potential critical 

injuries 

n_critical Binomial (field_haz, ph_critical) Injury 

Occurrence 

Number of 

reported or 

potential major 

injuries 

n_major Binomial (field_haz, ph_major) Injury 

Occurrence 

Number of 

reported or 

potential minor 

injuries 

n_minor Binomial (field_haz, ph_minor) Injury 

Occurrence 

Number of 

reported or 

potential 

negligible 

injuries 

n_negligible Binomial (field_haz, ph_neglibile) Injury 

Occurrence 

Prob. hazard 

causes a fatal 

injury 

ph_fatal Uniform(0,1) Injury 

Occurrence, 

Risk 

Prob. hazard 

causes a critical 

injury 

ph_critical Uniform(0,1) Injury 

Occurrence, 

Risk 

Prob. hazard 

causes a major 

injury 

ph_major Uniform(0,1) Injury 

Occurrence, 

Risk 

Prob. hazard 

causes a minor 

injury 

ph_minor Uniform(0,1) Injury 

Occurrence, 

Risk 

Prob. hazard 

causes a 

negligible injury 

ph_neglibile Uniform(0,1) Injury 

Occurrence, 

Risk 

Prob. risk 

control stops 

fatal injury 

control_f 1−ph_fatal Injury 

Occurrence, 

Risk 

Prob. risk 

control stops 

critical injury 

control_c 1−ph_critical Injury 

Occurrence 

Prob. risk 

control stops 

major injury 

control_ma 1−ph_major Injury 

Occurrence 

Prob. risk 

control stops 

minor injury 

control_mi 1−ph_minor Injury 

Occurrence 

Prob. risk 

control stops 

negligible injury 

control_n 1−ph_negligbile Injury 

Occurrence 

Prob. of fatal 

injury per 

demand 

pfatal P1×ph_fatal Risk 
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Prob. of critical 

injury per 

demand 

pcritical P1×ph_critical Risk 

Prob. of major 

injury per 

demand 

pmajor P1×ph_major Risk 

Prob. of minor 

injury per 

demand 

pminor P1×ph_minor Risk 

Prob. of 

negligbile injury 

per demand 

pnegligible P1×ph_negligible Risk 

Acceptable 

prob. of a fatal 

injury per 

demand 

a_pfatal Uniform(0,1) Risk Evaluation 

Acceptable 

prob. of a 

critical injury 

per demand 

a_pcritical Uniform(0,1) Risk Evaluation 

Acceptable 

prob. of a major 

injury per 

demand 

a_pmajor Uniform(0,1) Risk Evaluation 

Acceptable 

prob. of a minor 

injury per 

demand 

a_pminor Uniform(0,1) Risk Evaluation 

Acceptable 

prob. of a 

negligible injury 

per demand 

a_pnegligble Uniform(0,1) Risk Evaluation 

Fatal injury risk 

acceptability 

accept_fatal IF(pfatal<=a_pfatal,"Acceptable","Not 

Acceptable") 

Risk Evaluation 

Critical injury 

risk 

acceptability 

accept_critic

al 

IF(pcritical<=a_pcritical,"Acceptable","Not 

Acceptable") 

Risk Evaluation 

Major injury 

risk 

acceptability 

accept_majo

r 

IF(pmajor<=a_pmajor,"Acceptable","Not 

Acceptable") 

Risk Evaluation 

Minor injury 

risk 

acceptability 

accept_mino

r 

IF(pminor<=a_pminor,"Acceptable","Not 

Acceptable") 

Risk Evaluation 

Negligible 

injury risk 

acceptability 

accept_negl IF(pnegligible<=a_pnegligble,"Acceptable","

Not Acceptable") 

Risk Evaluation 

Overall residual 

risk (ORR) 

orr TNormal (wmean (10, accept_fatal, 4, 

accept_critical, 3, accept_major, 2, 

accept_minor, 1, accept_negl), 0.001, 0, 1)  

Risk 

Evaluation, 

Benefit-Risk 

Analysis 
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Risk control 

required 

control_req Partitioned Expression: (Acceptable (Yes: 0, 

No: 1), Not Acceptable (Yes: 1, No: 0)) 

Risk Evaluation 

ORR risk 

acceptability 

given benefits 

orr_accept TNormal (wmean (1, orr, 1, benefits), 0.001, 

0, 1) 

Risk 

Evaluation, 

Benefit-Risk 

Analysis 

Benefits of 

device 

benefits TNormal (wmean (2, pop, 1, perf, 1, outcome, 

1), 0.001, 0, 1) 

Benefits, 

Benefit-Risk 

Analysis 

Performance 

during clinical 

use 

perf Ranked: (Very low:0.2, Low:0.2, Medium:0.2, 

High:0.2, Very high:0.2) 

Benefits 

Patient 

population  

pop Ranked: (Very low:0.2, Low:0.2, Medium:0.2, 

High:0.2, Very high:0.2) 

Benefits 

Clinical 

outcome from 

using device 

outcome Ranked: (Very low:0.2, Low:0.2, Medium:0.2, 

High:0.2, Very high:0.2) 

Benefits 

 

Table B3a. NPT for Probability of Fixing Defect 

 

 

B3 The Complete BN for Medical Device Risk Management 

This section of Appendix B presents the schematic and complete BN for medical 

device risk management. 

 

 

Figure B1 Schematic of the Medical Device Risk Management BN 
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B4 Model Assumptions 

This section of Appendix B presents the model assumptions.  

Model Assumptions: 

1. Five injury severity levels i.e., fatal, critical, major, minor and negligible, see 

Table B4. 

2. An injury risk is judged acceptable if it is less than or equal to risk acceptability 

criteria.  

3. There are hidden nodes whose parents are the ‘Injury Risk Acceptability’ 

nodes. These hidden nodes are used to translate the results of the discrete nodes 

used for ‘Injury Risk Acceptability’ to ranked nodes for computing the 

‘Overall Residual Risk Acceptability’ (defined as a ranked node). This 

explains why there are dotted lines in the model.  

4. The NPT for ‘Overall Residual Risk Acceptability’ node is defined as TNormal 

(wmean (10.0, fatal injury acceptability, 4.0, critical injury acceptability, 3.0, 

major injury acceptability, 2.0, minor injury acceptability, 1.0 negligible 

injury acceptability), 0.001, 0,1). We used a weighted mean function to 

combine the respective scores for injury risk acceptability to produce an 

overall residual risk acceptability score. The nodes with higher weights will 

have a greater impact on the overall residual risk acceptability score.  

5. A single known type of hazard is investigated. In Section 7.5, we discuss 

combining the risk results of different hazards for a medical device. 

Table B4 Qualitative severity levels for harm 

Rank Terms Description 

5 Fatal Result in death 

4 Critical Result in irreversible injury 

3 Major Results in injury requiring 

medical intervention 

2 Minor Results in temporary injury 

1 Negligible Results in temporary discomfort 
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Table B5 probability levels for the occurrence of harm 

Rank Terms Probability range 

5 Frequent ≥ 10-3 

4 Probable <10-3 and ≥ 10-4 

3 Occasional <10-4 and ≥ 10-5 

2 Remote <10-5 and ≥ 10-6 

1 Improbable <10-6 

 

B5 Instructions for using Medical Device Risk Management BN 

This section of Appendix B presents the instructions for using the medical device risk 

management BN. 

Instructions: 

1. Define the scope and objectives of the analysis, including the hazards to be 

investigated and the risk acceptability criteria. 

2. Describe the device, including its requirements, functions, users, intended use, 

safety characteristics, benefits, risk controls and life cycle phase. 

3. Collate and organise other relevant information for the analysis: 

a. Product testing information: Information about the number of hazards 

observed in a set of demands during testing will allow the BN to 

estimate the probability of the hazard per demand. We define a demand 

as a measure of usage, e.g., single use, years etc. 

b. Injury information: Information about hazard occurrences and related 

injuries in the field will allow the BN to estimate the probability of the 

hazard or hazardous situation resulting in injury. Injury information can 

be obtained from hospitals and injury databases.  

c. Manufacturer information: Information such as manufacturer 

reputation, customer satisfaction, and product defects will allow the 

BN to estimate the quality of the manufacturing process. Since the 

quality of the manufacturing process can influence the occurrence of 

hazards, it will be used to revise the probability of the hazard per 

demand, especially in situations where there are little or no product 

testing data. 

4. Perform the analysis using the BN: 
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a. Populate product testing information, manufacturer information, injury 

information and risk acceptability criteria. 

b. Compute the risk and overall residual risk acceptability.  

c. Estimate the effect of additional risk controls: In situations where the 

overall residual risk is not acceptable, populate risk control and rework 

information to estimate the residual risk given additional risk controls. 

d. Perform benefit-risk analysis: Populate the benefits information to 

determine whether the risk of the device is acceptable given its benefits. 

This is useful, especially in situations where the overall residual risk is 

not acceptable after additional risk controls are implemented or 

situations where risk control measures are not practicable. 

 

B6 Model Validation Results – AgenaRisk Screenshots 

This section of Appendix B presents the model results for the risk management 

scenarios discussed in Section 7.4. 
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Figure B5 - BN Results for Defibrillator Scenario 1  
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Figure B6 - BN Results for Defibrillator Scenario 1 – Rework Information 
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Figure B7 - BN Results for Defibrillator Scenario 2  
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Figure B8 - BN Results for Defibrillator Scenario 3  
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Figure B9 - BN Results for Defibrillator Scenario 4  
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Figure B10 - BN Results for LIFEPAK Defibrillator 1000 

 

 

 



259 

 

Appendix C Chapter 8 Supplemental Material 

 

C1 RAPEX Risk Matrix 

This section of Appendix C presents the risk matrix used in the RAPEX methodology. 

Table C1 RAPEX Risk Matrix 

Probability of harm 

over life of product 

Severity of harm 

Level 1 Level 2 Level 3 Level 4 

>50%   High Serious Serious Serious 

>1 in 10 Medium Serious Serious Serious 

>1 in 100 Medium Serious Serious Serious 

>1 in 1000 Low High Serious Serious 

>1 in 10,000 Low Medium High Serious 

>1 in 100,000 Low Low Medium High 

>1 in 1,000,000 Low Low Low Medium 

<1 in 1,000,000 Low Low Low Low 

 

C2 Model Variables and NPT 

This section of Appendix C presents the variables and NPTs used in the BN for 

consumer product safety risk assessment. 

Table C2. Variables and NPTs for Consumer Product Safety Risk Assessment BN 

Variable name Abbrev Node type NPT 

Number of demands tested ndt Simulation (integer 

interval) 

Uniform(0, 1000000) 

Number of times hazard 

observed in tests 

nho Simulation (integer 

interval) 

Binomial(ndt, p_h_testcond) 

Testing strategy ts Labelled (Less 

strenuous than 

normal use, Typical 

of normal use, 

More strenuous 

than normal use, 

Generally poor 

testing) 

Less strenuous than normal use: 

0.1, Typical of normal use 0.6, 

More strenuous than normal use 

0.2, Generally poor testing 0.1 

Probability of hazard per 

demand under testing 

conditions 

p_h_testcon

d 

Simulation 

(continuous 

interval) 

Partitioned Expression (Less 

strenuous than normal use: 

p_h_strat-0.5*p_h_strat, Typical 

of normal use: p_h_strat, More 

strenuous than normal use: 
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p_h_strat + 0.5*p_h_strat, 

Generally poor testing: 

TNormal(p_h_strat,0.001,0,1)) 

Probability of hazard per 

demand given testing strategy 

p_h_strat Simulation 

(continuous 

interval) 

TNormal(0.001, 0.01, 0,1) 

Generic or Test Data? genswitch Boolean (Testing, 

Generic) 

Testing: 0.99, Generic: 0.01 

Generic prob. levels levels Labelled (Frequent, 

Probable, 

Occasional, 

Remote, 

Improbable) 

Frequent: 0.2, Probable: 0.2, 

Occasional: 0.2, Remote: 0.2, 

Improbable: 0.2 

Generic prob. hazard per 

demand 

genprob Simulation 

(continuous 

interval) 

Partitioned Expression 

(Frequent: Uniform (0.001, 1), 

Probable: Uniform (1E-4, 

0.99E-3), Occasional: Uniform 

(1E-5, 0.99E-4), Remote: 

Uniform (1E-6, 0.99E-5), 

Improbable: Uniform (0, 0.99E-

6)) 

Prob. of hazard per demand 

(generic or test) 

phdtest Simulation 

(continuous 

interval) 

Partitioned Expression (Testing: 

p_h_strat, Generic: genprob) 

Testing requirement result test_req Boolean (True, 

False) 

if(reg_hpd>=p_h_testcond,"Tru

e","False")  

Regulator hazard per demand 

requirement 

reg_hpd_req Simulation 

(continuous 

interval) 

TNormal(0,0.001,0,1) 

Normal product use 

requirement result 

norm_req Boolean (True, 

False) 

if(reg_hpd>=p_h_normal_use,"

True","False")  

Manufacturer Reputation reputation Ranked 

(Disreputable, 

Reputable, Highly 

Reputable) 

Disreputable: 0.33333334, 

Reputable: 0.33333334, Highly 

Reputable: 0.33333334 

Years in operation years_operat

ing 

Ranked (< 1 year, 1 

- 5 years, 5 - 10 

years, 10 - 20 years, 

20+ years) 

< 1 year: 0.2, 1 - 5 years: 0.2, 5 

- 10 years: 0.2, 10 - 20 years: 

0.2, 20+ years: 0.2 

Customer satisfaction cust_sat Ranked (Very Low, 

Low, Medium, 

High, Very High) 

TNormal(m_quality,0.05, 0, 1) 

Product design prod_design Ranked (No 

change, Minor 

improvements, 

TNormal(m_quality,0.05, 0, 1) 
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Major 

improvements) 

Manufacturer process quality m_quality Ranked (Low, 

Normal, High) 

TNormal(wmean(1.0,years_ope

rating,2.0,reputation),0.001,0,1)  

Probability of hazard per 

demand for normal product 

use given process information 

p_h_normal

_use 

Simulation 

(continuous 

interval) 

Partitioned Expression (Low: 

phdtest *1.1, Normal: phdtest, 

High: 0.9* phdtest) 

 

Product usage informaiton prod_usage Labelled (Used as 

intended, Minor 

deviations, Major 

deviations) 

Used as intended: 0.9, Minor 

deviations: 0.07, Major 

deviations: 0.03 

Probability of hazard per 

demand given product usage 

p_h_usage Simulation 

(continuous 

interval) 

Partitioned Expression (Used as 

intended: p_h_normal_use, 

Minor deviations: 

p_h_normal_use + 

0.1*p_h_normal_use, Major 

deviations: p_h_normal_use + 

0.5*p_h_normal_use) 

Number of demands in 

particular product lifetime 

demands Simulation (integer 

interval)  

TNormal(100, 1000, 0, 1E8) 

Probability of hazard per 

demand adjusted for demands 

in product lifetime 

p_h_demand

s 

Simulation 

(continuous 

interval) 

1.0-(1.0-p_h_usage)^demands 

Years in use years Simulation 

(continuous 

interval) 

TNormal(0, 10, 0, 30) 

Probability of hazard per 

demand adjusted for wear  

p_h_wear Simulation 

(continuous 

interval) 

min(1.0,p_h_demands+p_h_de

mands*years^2.0/1000.0) 

Number of demands in the 

field 

f_demands Simulation 

(continuous 

interval) 

Uniform(0,1E9) 

Number of observed hazards 

in the field 

f_hazards Simulation (integer 

interval)  

Binomial(f_demands, ph_field) 

Probability of hazard per 

demand in field 

ph_field Simulation 

(continuous 

interval) 

Uniform(0,1) 

Number of observed major 

injuries 

num_maj Simulation (integer 

interval) 

Binomial(f_hazards, 

p_uh_major) 

Number of observed minor 

injuries 

num_min Simulation (integer 

interval) 

Binomial(f_hazards, 

p_uh_minor) 
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Probability hazard causes a 

major injury  

p_uh_major Simulation 

(continuous 

interval) 

Uniform(0,1) 

Probability hazard causes a 

minor injury  

p_uh_minor Simulation 

(continuous 

interval) 

Uniform(0,1) 

Probability control stops 

major injury 

pcontrolmaj

or 

Simulation 

(continuous 

interval) 

1.0-p_uh_major 

Probability controls stops 

minor injury 

pcontrolmin

or 

Simulation 

(continuous 

interval) 

1.0-p_uh_minor 

Probability other control stops 

injury  

p_control Simulation 

(continuous 

interval) 

Uniform(0,1) 

Probability hazard causes a 

major injury revised 

p_h_major Simulation 

(continuous 

interval) 

p_uh_major*(1.0-p_control) 

Probability hazard causes a 

minor injury revised 

p_h_minor Simulation 

(continuous 

interval) 

p_uh_minor*(1.0-p_control)  

Probability of hazard per 

demand 

P1 Simulation 

(continuous 

interval) 

(percentage/100.0)*ph_field+((1

00.0-

percentage)/100.0)*p_h_wear 

% Dependence on field data percentage Simulation 

(continuous 

interval) 

TNormal(50, 0.001, 0, 100) 

Probability of major injury per 

demand  

p_major_L Simulation 

(continuous 

interval) 

P1*p_h_major  

Probability of minor injury per 

demand 

p_minor_L Simulation 

(continuous 

interval) 

P1*p_h_minor 

Actual Number of product 

instances 

t_prod Simulation (integer 

interval) 

Uniform(0,1000000000) 

Total number of major injuries  t_major Simulation (integer 

interval) 

P_major_L* t_prod 

 

Total number of minor 

injuries 

t_minor Simulation (integer 

interval) 

t_prod * p_minor_L 

Risk level (one product 

instance) 

risk_level Ranked (Very Low, 

Low, Medium, 

High, Very High) 

TNormal((min(1.0,100.0*(p_ma

jor_L + 0.5*p_minor_L)),0.001, 

0,1)  
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Number of product instances Num_prod Ranked (Very Low: 

<10k, Low: 10k -

100k, Medium: 

100k - 500k, High: 

500k - 1m, Very 

High: > 1m) 

Very Low: <10k: 0.2, Low: 10k 

-100k: 0.2, Medium: 100k - 

500k: 0.2, High: 500k – 1m: 

0.2, Very High: > 1m: 0.2  

Likelihood of use likelihood Ranked (High, 

Medium, Low) 

High: 0.33333334, Medium: 

0.33333334, Low: 0.33333334 

Benefits benefits Ranked (High, 

Medium, Low) 

High: 0.33333334, Medium: 

0.33333334, Low: 0.33333334 

Overall benefits util Ranked (High, 

Medium, Low) 

TNormal((wmean(1.0, 

likelihood, 1.0 benefits)), 0.001, 

0, 1) 

Government intervention 

required given risk level 

gov_int_req Boolean(True, 

False) 

if(risk_level>0.5,"True","False"

)  

Risk tolerability risk_toler Ranked (Very High 

(Acceptable), High 

(Acceptable), 

Medium 

(Tolerable), Low 

(Unacceptable), 

Very Low 

(Unacceptable)) 

TNormal((wmean(2.0,risk_level

,1.0,util)), 0.001, 0, 1) 

Government intervention 

required given risk tolerability 

gov_int_req

2 

Boolean(True, 

False) 

if(risk_toler>0.5,"True","False") 

Severity of injury severity Ranked (Low, 

Medium, High) 

Low: 0.33333334, Medium: 

0.33333334, High: 0.33333334 

Hazardousness hazardousne

ss 

Ranked (Low, 

Medium, High) 

Low: 0.33333334, Medium: 

0.33333334, High: 0.33333334 

Worry worry Ranked (Low, 

Medium, High) 

Low: 0.33333334, Medium: 

0.33333334, High: 0.33333334 

Consumer perceived risk c_risk_per Ranked (Low, 

Medium, High) 

TNormal((wmean(1.0,severity,1

.0, worry,1.0, hazardousness)), 

0.001,0,1) 

Consumer risk tolerability crt Ranked (Very High 

(Acceptable), High 

(Acceptable), 

Medium 

(Tolerable), Low 

(Unacceptable), 

Very Low 

(Unacceptable)) 

TNormal((wmean(1.0,c_risk_pe

r,1.0, util)), 0.001,0,1) 

Risk communication rc Ranked (None, 

Small media story, 

None: 0.33333334 Small media 

story: 0.33333334, large media 
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large media story / 

product recall) 

story / product recall: 

0.33333334 

Revised benefits given risk 

communication 

rev_util  See Table C2a for NPT 

Revised consumer perceived 

risk given risk communication 

rev_c_risk_p

er 

 See Table C2b for NPT 

Government intervention 

announced 

govt_int_ann Ranked (No, Yes) No: 0.5, Yes: 0.5 

Revised consumer risk 

tolerability  

risk_toler2 Ranked (Very High 

(Acceptable), High 

(Acceptable), 

Medium 

(Tolerable), Low 

(Unacceptable), 

Very Low 

(Unacceptable)) 

TNormal((wmean(2.0,rev_c_ris

k_per,1.0,rev_util)),0.001,0,1) 

Government intervention 

required given revised risk 

tolerability 

gov_int_req

3 

Boolean(True, 

False) 

if(risk_toler2>0.5,"True","False

") 

 

Table C2a NPT for the node Revised benefits given risk communication 

 

Table C2b NPT for the node Revised consumer perceived risk given risk 

communication 

 

Table C2c NPT for the node risk level (all products instances) 
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C3 The Complete BN for Consumer Product Risk Assessment 

This section of Appendix C presents the complete BN for consumer product safety 

risk assessment. 
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C4 Model Assumptions 

This section of Appendix C presents the model assumptions. 

Model Assumptions: 

1. Consumer perceived risk is dependent on three factors i.e., severity of injury, 

hazardousness and worry.  

2. Benefits of the product is dependent on two factors i.e., likelihood of use and 

benefits.  

3. Risk communication can influence risk perception of the product.  

4. A single known type of hazard is investigated. In Section 8.6, we discuss 

combining the risk results of different hazards for a product. 

C5 Instructions for using Consumer Product Risk Assessment BN 

This section of Appendix C presents the instructions for using the consumer product 

risk assessment BN. 

Instructions: 

1. Define the scope and objectives of the analysis, including the hazards to be 

investigated. 

2. Describe the device, including its requirements, functions, users, intended use, 

safety characteristics, and benefits. 

3. Collate and organise other relevant information for the analysis: 

a. Product testing information: Information about the number of hazards 

observed in a set of demands during testing will allow the BN to 

estimate the probability of the hazard per demand. We define a demand 

as a measure of usage, e.g., single use, years etc. 

b. Injury information: Information about hazard occurrences and related 

injuries in the field will allow the BN to estimate the probability of the 

hazard or hazardous situation resulting in injury. Injury information can 

be obtained from hospitals and injury databases.  

c. Manufacturer information: Information such as manufacturer 

reputation will allow the BN to estimate the quality of the 

manufacturing process. Since the quality of the manufacturing process 

can influence the occurrence of hazards, it will be used to revise the 
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probability of the hazard per demand, especially in situations where 

there are little or no product testing data. 

d. Product usage information: Information about product usage e.g., 

frequency of use, and product age will allow the BN to revise the 

estimated failure (or hazard) rate and the overall risk as needed. 

e. Product instances information: Information such as the number of 

product instances available on the market will allow the BN to estimate 

the number of injuries and risk associated with the product.  

f. Benefits and risk perception information: Information such as the 

likelihood of use and severity of injury will allow the BN to estimate 

the benefits and perceived risk of the product. 

g. Risk communication information: Information relating to risk 

communication such as product recall, media stories etc. 

4. Perform the analysis using the BN: 

a. Populate product testing information, benefits information, 

manufacturer information, product usage information, product 

instances information and injury information. 

b. Compute the risk and risk tolerability.  

c. Perform a consumer risk perception analysis: Populate risk perception 

information and risk communication information to estimate consumer 

perceived benefits, risk and risk tolerability for the product.  

 

C6 Model Validation Results – AgenaRisk Screenshots 

This section of Appendix C presents the model results for the risk assessment scenarios 

discussed in Section 8.5. 
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Figure C4 - BN Results for Teddy Bear Scenario 1 
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Figure C5 - BN Results for Teddy Bear Scenario 2 
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Figure C6 - BN Results for Kettle Scenario 1 
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Figure C7 - BN Results for Kettle Scenario 2 
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Appendix D Chapter 9 Supplemental Material 

 

D1 Study 1: Conceptual Framework 

This section of Appendix D presents the conceptual framework for Study 1. 

 

Figure D1. Conceptual framework for Study 1 

 

D2 Study 1: BN models for two means hypothesis tests 

This section of Appendix D presents the Bayesian network (BN) model, variables, and 

node probability tables (NPTs) for comparing two population means and distributions. 

The Bayesian approach includes the following steps: 

1. Learn the population mean and variance from the sample mean and sample 

variance for each population using the BN model shown in Figure D2. This 

model uses the following theorem to learn the population distribution:  

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝐶ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒𝑑(𝑛 − 1) 𝑥 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒/(𝑛 − 1) 

Where n is the sample size. See Table D1 for node probability tables (NPTs). 

 

2. Determine the difference between the two populations by estimating the 

difference in the population means and distributions using the nodes pop 

greater than pop1, pm greater than pm1, and population mean difference.  
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Figure D2. BN model used for two means hypothesis test 

Table D1. BN Variables and NPTs for BN model used for two means hypothesis test 

Variables Abbrev. Node Probability Tables 

Sample size n Normal (0, 1000000) 

Sample mean sm Normal (pm, pv/n) 

Sample variance sv chisquared x pv/(n−1.0) 

Population mean pm Normal (0, 1000000) 

Population variance pv Normal (0, 1000000) 

Chisquared chisquared Chi Squared(n−1.0) 

Population pop Normal (pm, pv) 

Population_1 pop1 Normal (pm_1, pv_1) 

Pop greater than pop1 popcomparison If (pop > pop_1, “True”, “False”) 

PM greater than PM1 pmcomparison If (pm > pm_1, “True”, “False”) 

Population mean 

difference 

pm_difference pm−pm_1 

Population variance_1 pv_1 Normal (0, 1000000) 

Population mean_1 pm_1 Normal (0, 1000000) 

Sample size_1 n_1 Normal (0, 1000000) 
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Sample mean_1 sm_1 Normal (pm_1, pv_1/n_1) 

Sample variance_1 sv_1 chisquared1 × pv_1/(n_1−1.0) 

Chisquared_1 chisquared1 Chi Squared(n_1−1.0) 

 

The BN model shown in Figure D3 was used to investigate the interaction effects 

between gender, product, product type and risk communication source on perceived 

risk, utility and risk tolerance. The model NPTs was learnt from the study data. 

   

Figure D3. BN model used to investigate interaction effects between variables 
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D3 Study 1: Correlation Analysis 

This section of Appendix D presents correlation analysis results for Study 1. 

Experiment 1 Results 

A correlation analysis revealed (see Figure D4) a negative correlation between risk 

and utility ratings (r = -0.25, p = 6.9e-7) and risk and risk tolerance ratings (r = -0.51, 

p = 4.9e-28). However, there was a positive correlation between utility and risk 

tolerance ratings (r = 0.31 p = 2.5e-10). 

 

Figure D4. Dependent variables Correlation Heatmap for Experiment 1 

Experiment 2 Results 

Similar to Experiment 1, a correlation analysis revealed (see Figure D5) a negative 

correlation between risk and utility ratings (r = -0.25, p = 4.2e-7) and risk and risk 

tolerance ratings (r = -0.47, p = 5.6e-23). However, there was a positive correlation 

between utility and risk tolerance ratings (r = 0.35 p = 2.7e-13). 

 

Figure D5. Dependent variables correlation Heatmap for Experiment 2 
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D4 Study 1: Effect of risk communication on risk perception 

This section of Appendix D presents the results of the Bayesian two means hypothesis 

test for Study 1. 

Experiment 1 Results 

Table D2. Results of Bayesian two means hypothesis test for non-smart microwave 

oven 

 

  

Table D3. Results of Bayesian two means hypothesis test for smart microwave oven 
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Experiment 2 Results 

Table D4. Results of Bayesian two means hypothesis test for non-smart vacuum 

cleaner 

 

Table D5. Results of Bayesian two means hypothesis test for smart vacuum cleaner 
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D5 Study 1: The effect of demographics on risk perception 

This section of Appendix D presents the supplementary results for the effect of 

demographics on risk perception for Study 1. 

Table D6. Results of Bayesian two means hypothesis test for gender 

 

 

Figure D6. Mean perceived risk for products by Education Level 
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D6 Study 1: Interaction Effects 

This section of Appendix D presents the interaction effects for Study 1. 

Experiment 1 Results 

For the smart microwave oven, before a large media story, the perceived risk for 

women (Median = 34, IQR [17, 50]) was similar to men (Median = 31,  IQR [14, 48]) 

and the perceived utility for women (Median = 62, IQR [43, 81]) was greater compared 

to men (Median = 54, IQR [36, 72]). After the large media story, the perceived risk 

for women was greater (Median = 83, IQR [68, 97]) compared to men (Median = 72,  

IQR [58, 87]). The difference in perceived risk between men and women after the 

large media story though the evidence was not strong, can be explained by the inverse 

relationship between risk and utility since the perceived utility for women (Median = 

28, IQR [8, 47]) was lesser compared to men (Median = 34, IQR [15,52]) after the 

large media story.  

Experiment 2 Results 

For the smart vacuum cleaner, before the government recall, the perceived risk for 

women (Median = 26, IQR [12, 40]) was similar to men (Median = 20, IQR [6, 34]) 

and the perceived utility for women (Median = 67, IQR [50, 84]) was the same as men 

(Median = 67, IQR [54, 79]). After the government recall, the perceived risk for 

women was greater (Median = 82 [72, 92]) compared to men (Median = 74, IQR [61, 

88]). The difference in perceived risk between men and women after the government 

recall though the evidence was not strong, may be due to the inverse relationship 

between risk and utility since the perceived utility after the government recall was 

slightly less for women (Median = 42, IQR [24, 63]) compared to men (Median = 44, 

IQR [24, 65]).  
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D7 Study 2: Study 2 Products 

This section of Appendix D presents the two products investigated in Study 2. Please 

note that TENCIX is a hypothetical brand. 

TENCIX Microwave Oven 

 

Recommended Retail Price (RRP): £90 

Product Specification 

 

• 24L Capacity 

• Touch operated 

• LED Display 

• Modern handle-less design 

• Electronic timer 

• Child lock feature 

• Grill and microwave settings. 

• 5 power levels for a wide range of 

cooking requirements. 

• Power output: 800W 

• Eco-mode 

• Warranty: 2 years 

 

TENCIX Carbon Monoxide Detector  

   

Recommended Retail Price (RRP): £20 

Product Specification 

• Carbon monoxide alarm 

• Continuously monitors carbon 

monoxide levels. 

• Peak carbon monoxide level memory 

feature 

• Suitable for ceiling and wall installation 

• Piercing 85dB alarm 

• Test and reset button:  Allow you to test 

the alarm function and silence the 

alarm 

• Battery-powered 

• Warranty: 2 years 

 



283 

 

D8 Study 2: Interaction Effects Plots 

This section of Appendix D presents the interaction effects for Study 2. 

The interaction plots in Figures D7-D9 showed that overall, non-compliance 

information decreased benefit scores, increased dread scores and decreased WTP 

scores. However, this effect was dependent on the reliability of the source. Non-

compliance information from a reliable source had a greater effect on the change in 

benefit, dread and WTP scores compared to non-compliance information from an 

unreliable source. The interaction plots also showed little or no change in benefit, 

dread and WTP scores, given compliance information from a reliable source. 

However, compliance information from an unreliable source slightly increased dread 

scores and slightly decreased WTP scores. For more detailed information, see Table 

D7. Also, see Figure D10 for differences between products.  

 

  

Figure D7 Mean Benefits Change by Product Compliance Information and Source 

Reliability 
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Figure D8 Mean Dread Change by Product Compliance Information and Source 

Reliability 

 

 

Figure D9 Mean WTP Change by Product Compliance Information and Source 

Reliability 
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Figure D10 Differences in change in benefits, dread and WTP between products 

 

 

 

 

 

 

 

 

 

 

 

 



286 

 

Table D7. Interaction effect between product compliance information and source 

reliability on change in benefits, dread and WTP. 

Variables 

Product 

Compliance 

Information 

Source 

Reliability 
Estimate 

l-95% 

CI 

u-95% 

CI 

Benefits 

Change 

Compliant Reliable 0.14 -0.02 0.3 

Non-Compliant  Reliable -1.58 -1.75 -1.42 

Compliant  Unreliable -0.13 -0.3 0.03 

Non-Compliant Unreliable -1.02 -1.18 -0.86 

Dread 

Change 

Compliant Reliable -0.11 -0.25 0.03 

Non-Compliant  Reliable 1.92 1.78 2.07 

Compliant  Unreliable 0.25 0.1 0.4 

Non-Compliant Unreliable 1.66 1.51 1.8 

WTP 

Change 

Compliant  Reliable 0.02 -0.03 0.07 

Non-Compliant  Reliable -0.52 -0.57 -0.47 

Compliant  Unreliable -0.06 -0.11 -0.01 

Non-Compliant  Unreliable -0.33 -0.38 -0.28 

      
 Increase   

   
 Decrease   

   
 No Change   
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D9 Study 2: Bayesian Regression Modelling 

This section of Appendix D presents the models used for data analysis in Study 2. 

We investigated the study hypotheses using the Bayesian approach to regression 

analysis. We developed four Bayesian regression models using R [247] and the R 

package brms for Bayesian regression modelling [248]: 

Model 1: 𝑏𝑟𝑚(𝑚𝑣𝑏𝑖𝑛𝑑(𝑇1 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠, 𝑇1 𝐷𝑟𝑒𝑎𝑑, 𝑇1 𝑃𝑎𝑦) ~ (𝐺𝑅𝐼𝐷 +  𝐺𝑅𝑂𝑈𝑃 +  𝐺𝑅𝐼𝑃 +

𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐴𝑔𝑒 + 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 +  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 )) 

We used Model 1 to estimate the mean scores for benefits, dread and willingness to 

pay at 𝑇1 (i.e., before manipulations) for predictors and the differences between them.  

Model 2: 𝑏𝑟𝑚(𝑚𝑣𝑏𝑖𝑛𝑑(𝛥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 , 𝛥 𝐷𝑟𝑒𝑎𝑑, 𝛥 𝑃𝑎𝑦) ~ (𝐺𝑅𝐼𝑃 +  𝐺𝑅𝑂𝑈𝑃 +  𝐺𝑅𝐼𝐷 +

 𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐴𝑔𝑒 +  𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)  × (𝑃𝑟𝑜𝑑𝑢𝑐𝑡 +  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 +  𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  +

 ((𝑃𝑟𝑜𝑑𝑢𝑐𝑡 +  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 +  𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)^2)  + (𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ×

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 × 𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)) 

We used Model 2 to estimate the mean change (Δ) in benefits, dread, and willingness 

to pay (WTP) scores for predictors, their interactions and the differences between 

them. The change (Δ) in benefits, dread and willingness to pay scores was computed 

as 𝑇2 –  𝑇1, where 𝑇1 are the scores before manipulations and 𝑇2 are the scores after 

manipulations. This model was used to investigate Hypothesis 1. 

Model 3: 𝑏𝑟𝑚(𝑚𝑣𝑏𝑖𝑛𝑑(𝑅𝑇𝑀𝐼𝑁, 𝑅𝑇𝑆𝑈𝑀) ~ (𝐺𝑅𝐼𝑃 +  𝐺𝑅𝑂𝑈𝑃 +  𝐺𝑅𝐼𝐷 +  𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐴𝑔𝑒 +

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛) ×  (𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡  𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 +  𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  +  ((𝑃𝑟𝑜𝑑𝑢𝑐𝑡 +

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 +  𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)^2) +  (𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ×  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 ×

 𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)) 

We used Model 3 to investigate risk tolerance (RT) by estimating the mean for risk 

tolerance sum (RTSUM) and risk tolerance min (RTMIN) for predictors, their 

interactions and the differences between them. Risk tolerance consists of two 

dimensions, i.e., benefits and dread, which change over time. Hence, RTSUM was 

computed as 𝛥 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 +  𝛥 𝑑𝑟𝑒𝑎𝑑, and RTMIN was computed as 𝛥 𝑑𝑟𝑒𝑎𝑑 −

 𝛥 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠. High scores for RTSUM indicated high risk tolerance, whereas high 

scores for RTMIN indicated the effect of manipulations. This model was also used to 

investigate Hypothesis 1. 
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Model 4: 𝑏𝑟𝑚(𝑚𝑣𝑏𝑖𝑛𝑑(𝛥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 , 𝛥 𝐷𝑟𝑒𝑎𝑑, 𝛥 𝑃𝑎𝑦) ~ 0 +  𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) 

We used Model 4 to estimate the mean for Δ benefits, Δ dread, and Δ willingness to 

pay for the communication scenarios and the differences between them. The 

communication scenarios combined product compliance and source reliability. This 

model was used to investigate Hypotheses 2-5. 

For each model, we used the default priors of the brms package [248]. We ran four 

sampling chains for 10000 iterations with a warm-up period of 5000 iterations, which 

resulted in 20000 samples for each parameter tuple. We reported the expected mean 

values under the posterior distribution and their 95% confidence intervals (CI).  
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Appendix E Chapter 10 Supplemental Material 

In this section of the Appendix, we present screenshots of the web-based application 

for medical device risk management. 

 

Figure E1. Web application with input fields 

 

 

Figure E2. Web application results 
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Figure E3 Complete web application 
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