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Abstract

A new method for safety risk management and assessment using Bayesian networks
is proposed to resolve limitations of existing methods and to ensure that products and
systems available on the market are acceptably safe for use. The method is applicable
to a wide range of products and systems, ranging from consumer goods through to

medical devices, and even complex systems such as aircraft.

While methods such as Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA) have been used quite effectively in safety assessment for certain
classes of critical systems, they have several limitations which are addressed by the
proposed Bayesian network (BN) method. In particular, the BN approach enables us
to combine multiple sources of knowledge and data to provide quantified, auditable
risk estimates at all stages of a product’s life cycle, including especially when there
are limited or no testing or operational safety data available. The BN approach also
enables us to incorporate different perceptions of risk, including taking account of

personal differences in the perceived benefits of the product under assessment.

The proposed BN approach provides a means for safety regulators, manufacturers, risk
professionals, and even individuals to better assess safety and risk. It is powerful and
flexible, can complement traditional safety and risk assessment methods, and is
applicable to a far greater range of products and systems. The method can also be used
to validate the results of traditional safety and risk assessment methods when relevant
data become available. It is demonstrated and validated using case studies from

consumer product safety risk assessment and medical device risk management.
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Chapter 1 Introduction

1.1 Safety of Products and Systems

Every day we interact with many different products and systems to complete various
tasks and activities. For instance, we use mobile phones for communication, washing
machines for laundry, and airplanes for travelling for work or vacation. Despite the
many benefits offered by products and systems, their use also poses a potential risk to
our health and safety. For example, the devastating Grenfell Tower fire in the UK on
14 June 2017 was caused by a fridge freezer. In this disaster, 72 people died, and the
UK public costs since the disaster have exceeded £500 million, including £221 million
for rehousing survivors [1], [2]. Two Boeing 737 Max planes crashed due to flaws in
the plane flight control system in 2018 and 2019, killing a total of 346 people [3]. Less
well-known examples, but equally relevant to this thesis include the recall of more
than 500,000 Whirlpool washing machines in the UK due to a fire risk in 2020 [4].
Since the consequences of risks associated with products and systems range from
negligible injuries to fatal injuries or damage to property [2]-[6], it is mandatory that
all of these kinds of products and systems are assessed to be acceptably safe before

use.

To ensure our safety, manufacturers, safety and risk professionals and safety
regulators (both national and independent bodies) perform safety risk management
and assessment for products and systems at all stages of their life cycle, from concept
to decommissioning and disposal. These assessments include identifying potential
risks and associated injuries, their likelihoods and severities, and implementing
appropriate risk control measures to reduce risk to acceptable levels. Hence, risk
assessment is essential for informing safety and risk management decisions during
production and post-production, ensuring that the products and systems we use or

available on the market comply with safety standards (both mandatory and voluntary).
1.2 Risk Management for Product and System Safety

Many different standards and legislation address the safety and risk management of
products and systems in different industries and jurisdictions [6]-[9]. For instance,

ISO 14971 [7] is the main standard used for medical device risk management, and the
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European Union (EU) Rapid Information System (RAPEX) Risk Assessment
Guidelines [8] is the primary method or guidelines used to assess the safety and risk
for a wide range of consumer products in the EU, including toys, household appliances
and automobiles. In general, safety standards and legislation require that product
manufacturers establish a method for risk management throughout the entire life cycle
of the product (from concept to decommissioning and disposal). Risk management is
the “systematic application of management policies, procedures and practices to the
task of analysing, evaluating, controlling and monitoring risks” [10]. It is iterative and
dynamic and should be tailored to the culture and needs of an organisation or industry.
Figure 1 illustrates the generic risk management process provided by 1ISO 31000 [11],
which is adapted and applied in many domains and industries, including product
safety.

Risk Management Process

Scope, Context, Criteria

‘ Risk Identification H

‘ Risk Analysis H
‘ Risk Evaluation H
e——

Risk Treatment

Recording & Reporting

Monitoring & Review

UOoI3e3|NSUO) g UOIIEIIUNWIWIOD)

Figure 1 Risk Management Process
An essential part of the risk management process is risk assessment, which consists of
three activities: risk identification, risk analysis, and risk evaluation. In product safety,
risk identification involves identifying known and foreseeable hazards, hazardous
situations, and related harms associated with the product or system. For example,
given a domestic iron, a hazard is ‘hot surface’, a hazardous situation is ‘“user touches

the hot surface’, and the associated harm is ‘burn’. Risk analysis involves estimating
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the risk associated with the hazard or hazardous situation. Risk is the combination of
the probability of occurrence of harm P and the severity of that harm S, i.e., Risk =
P x S. The probability of occurrence of harm is the combination of the probability
of a hazard or hazardous situation occurring P; and the probability that a hazard or
hazardous situation causes harm P,, i.e., P = P, X P,. For instance, given the
domestic iron example, the risk depends on the probability of the burn and its severity.
Finally, risk evaluation involves determining risk acceptability by comparing the
estimated risk of the product or system with the criteria for risk acceptance. In
situations where the risk is judged not acceptable, appropriate risk treatment or risk
control measures are implemented to reduce risks to acceptable levels. Risk control
measures for products and systems include inherently safe design and manufacture

and information for safety.

1.3 Limitations of commonly used risk assessment and

analysis techniques

There are many techniques and approaches used in the industry to assess and model
the risks of products and systems, including the commonly used Failure Mode and
Effects Analysis (FMEA) and static Fault Tree Analysis (FTA) (see Chapter 3).
However, these traditional risk analysis techniques have the following limitations [6],
[12]-[15], which can lead to inaccurate or ill-defined risk estimates when applied to
products and systems:

1. Limited approach to handling uncertainty: In situations where quantitative
data are available for risk analysis, we find that most techniques and
approaches use single-point values, e.g., 0.5, to describe the probability of
events (hazards, failures, and hazardous situations) rather than probability
distributions, e.g., Normal (0.5, 0.001). Hence, they cannot fully handle
second-order uncertainty (i.e., the uncertainty in the probability values) during
risk estimation. In addition, they are unable to provide a reasonable method for
identifying and handling unidentified risks or hazards (i.e., unknown
unknowns) for products and systems. Though Monte Carlo simulation
(discussed in Chapter 3) may be used in conjunction with other risk analysis
methods such as FTA [16] or as a standalone method to handle uncertainty, it

Is time-consuming and computationally expensive for complex systems.
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2. Does not consider the causal nature of risk: Many risk analysis techniques
compute risk as the product of the probability of occurrence of harm P and the
severity of the harm S, i.e., Risk = P x S. However, this method of risk
estimation does not consider the causal context in which the risk occurs. In the
causal perspective, the risk depends on a set of events, including triggers (i.e.,
initiating events that cause the risk event), controls and mitigants (i.e., events
that can stop the occurrence of the risk event or mitigate the consequence of
the risk event) [13]. Moreover, since the assumptions that the risk is
conditioned on may not be explicit or clearly defined, the values for P and S
may be inaccurate and overly subjective. Finally, we find that ‘risk register’
approaches using the P x S metric, where P and S are measured on a scale of
1 to 5, where the resulting number represents the size of the risk, are generally

insufficient for decision making.

3. Limited approach to computing risk for novel products with limited or no
historical data: Many risk analysis techniques are unable to provide
reasonable risk estimates for novel products or products with limited or no
available data since the probability of the occurrence of harm P may be
unknown. Though the parts count technique (discussed in Chapter 3) may be
used in conjunction with other methods or as a standalone method to estimate
the risk of a novel system, it is time-consuming and expensive for complex
systems. Furthermore, the parts count technique can give inaccurate results if

the system is redundant [17].

4. Limited approach to handling multi-state variables: Some risk analysis
methods, such as FTA, can only support binary state variables (i.e., variables
with only two states); hence they are not suitable for performing analysis for
products and systems with multi-state variables (i.e., variables with three or

more states).

5. Limited approach to handling sequence-dependent variables: Some risk
analysis methods, such as FMEA, cannot estimate the risk of products and
systems where component failures and hazards are causally dependent. In

these situations, extensions of FTA such as Dynamic Fault Tree and Beta
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factors (discussed in Chapter 3) can be used in conjunction with other methods
or as a standalone method to address this limitation, however these extensions
require expert knowledge and are time-consuming and computationally

expensive for complex systems.

6. Limited approach to updating risk estimates given new data (or evidence):
For most risk analysis methods, revising the risk estimates for a product or
system given new data (or evidence) entails repeating the risk analysis using
the new data. For some methods, this approach to revising risk may be

impractical since it is usually time-consuming and expensive.

7. Limited approach to combining subjective and objective evidence: Most risk
analysis methods cannot combine subjective (expert judgement) and objective

evidence to estimate risk.

Although some extensions to the commonly used risk analysis methods, such as
Dynamic Fault Trees (DFTs), have resolved some of these limitations, Bayesian

networks (BNs) can resolve all of these limitations [13].
1.4 Research Hypotheses

Despite the many benefits of using BNs for safety risk management, such as handling
uncertainty, their widespread acceptance and use as a standard systematic method for
product safety risk management in industry may be restricted due to limited or no
standard method or guidelines for building BNs for the many different product safety
cases. For instance, some of the published BNs are presented with little information
on how the BN was developed and why it is suitable for a specific application. In other
cases, the BN development process may be ad hoc and presents little or no opportunity
for repeatability and standardisation. Although there are some established automated,
mapping, and knowledge representation methods [18]-[21] for defining BN structure
and parameters, for many product safety cases, some of these methods may not be
feasible due to adoption barriers e.g., lack of knowledge, and the complexity of the
safety risk (i.e., it is dependent on the interaction between hard factors e.g., systems,
and soft factors e.g., users). In these situations, the BN must be developed using expert

knowledge and literature. However, the literature lacks a systematic, repeatable
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method or guidelines for developing BNs for product safety risk management using
expert knowledge and literature. Therefore, the main objective of this thesis is to
address this research gap. To achieve this objective, the following four hypotheses are
argued in this thesis.

Hypothesis 1: It is possible to develop a generic method to build Bayesian networks
for product safety risk management.

Hypothesis 2: It is possible to use Bayesian networks for safety risk management for
many different types of products, including novel products or products with limited or
no available data.

Hypothesis 3: It is possible to use Bayesian networks to model consumer risk

perception and/or perform benefits-risk analysis for products.

Hypothesis 4: It is possible to deploy BNs for product safety risk management in
production in a practical format for easy access and use by end users, including

manufacturers, consumers and safety regulators.

Hypothesis 1 is explored by applying the idiom-based approach [19] for BN
development to product safety risk management. The underlying concept of the idiom-
based approach is that complex modelling problems can be broken down into smaller
manageable chunks. This thesis presents novel idioms called product safety idioms
which represent generic causal reasoning patterns that are common in product safety
risk management. The aim of this work is to provide a standard, repeatable method or
guidelines for developing BNs specifically for product safety risk management.

Hypotheses 2-4 are explored using two case studies. A case study on medical device
risk management is used to investigate the application of BNs for managing the risk
of medical devices. This case study provides a generic BN for medical device risk
management that can assess the risk of many different types of medical devices during
production and post-production, especially in situations where there is limited or no
testing data available. The proposed BN also performs a benefit-risk analysis which is
useful when the risk is judged not acceptable and additional risk control measures are
not applicable. This case study is also used to demonstrate the deployment of BNs to

end users using the Agena.ai cloud service. Therefore, this case study is a good
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example of how manufacturers can use BNs for product safety risk management in

production.

The second case study on consumer product risk assessment is used to investigate the
application of BNs for assessing the risk of consumer products as an alternative to the
RAPEX risk assessment method [8] used by safety regulators in UK and EU. The
proposed generic BN resolves the limitations of the RAPEX methodology and can
assess the risk of many different types of consumer products, especially in situations
where there is limited or no testing data available. The generic BN also models
consumer risk perception and risk tolerability (acceptability). This case study includes
empirical work examining the effect of risk communication on consumer risk
perception done in collaboration with the UK Government Office for Product Safety
and Standards (OPSS). Further collaboration was with the Royal Holloway University
of London (RHUL). Since the proposed BN is tailored to the needs of safety
regulators, this case study is a good example of how safety regulators can use BNs for
product safety risk management in production. The case study results supported the
development of the new product safety risk assessment method introduced by OPSS
to replace the RAPEX methodology. It also informed and improved OPSS risk
management decisions and strategies concerning non-compliant products by providing
novel insights on consumer risk perception and how they are affected by risk

communication.

The BNs presented in this thesis were developed using AgenaRisk Desktop and

deployed in production using the Agena.ai cloud service [22].
1.5 Publications and Awards
The work in this thesis has led to the following list of publications and awards.
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1. Hunte, J., Neil, M., & Fenton, N. E. (2021). A causal Bayesian network
approach for consumer product safety and risk assessment: Research and
Summary Report 2021/035. Office for Product Safety & Standards [23],

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a

ttachment data/file/1018546/bayesian-networks-research-summary-report.pdf
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3. Hunte, J., Neil, M., & Fenton, N. (2022). Product safety idioms: a method for
building causal Bayesian networks for product safety and risk assessment [24].
arXiv preprint arXiv:2206.02144. https://arxiv.org/abs/2206.02144

4. Hunte, J., Neil, M., & Fenton, N. (2022). A hybrid Bayesian network for
medical device risk assessment and management [25]. arXiv preprint
arXiv:2209.03352. https://arxiv.org/abs/2209.03352, Revision submitted to

Reliability Engineering and System Safety Journal

5. Hunte, J., Neil, M., Fenton, N. E., Osman, M., & Bechlivanidis, C., (2022). The
effect of risk communication on consumers’ risk perception, risk tolerance and
utility of smart and non-smart home appliances, Revision submitted to Safety

Science Journal

6. Hunte, J., Jenkins, S., Fenton, N. E. (2022). The effect of product compliance
and credibility of the risk communicator on willingness to pay and risk
perception of consumer products, Research Report submitted to UK
Government Office for Product Safety and Standards (OPSS)

Other Related Publications

The terms, concepts, and principles presented in Chapter 2 contributed to the
development of the UK Government Office for Product Safety and Standards (OPSS)
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The work presented in Publications 1, 2, 5, and 6 received funding from the UK
Government Office for Product Safety and Standards (OPSS).
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1.6 Thesis Structure

To investigate our hypotheses, this thesis is structured as follows.

Chapter 1 provides an overview of risk management for products and systems. It also
summarises the limitations of commonly used risk assessment methods and defines

the hypotheses examined in this thesis.

Chapter 2 provides the essential context required to understand the remainder of this
thesis. We describe concepts, principles, and terms related to risk management, risk
assessment, risk analysis and risk perception and their general application in the
product safety industry. Since many risk management terms and concepts are
application-specific (i.e., dependent on context, domain or industry), we define the
risk management terms used in this thesis. The concepts and terms presented here were

first presented in Publications 1-6.

Chapter 3 describes the commonly used risk analysis methods and techniques in the
product safety industry. Risk analysis methods such as Fault Tree Analysis (FTA) and
Failure Mode and Effects Analysis (FMEA) are reviewed.

Chapter 4 introduces Bayesian networks (BNs) and their underlying theory. This
introduction is followed by a review of the approaches used to build BNs, and a review
of the inferences and reasonings done using BNs. This background knowledge is

necessary to understand the contributions made in the following chapters.

Chapter 5 provides a review of the BNs used in the safety domain. This background
knowledge is necessary to understand the contributions made in Chapter 6 since none
of the BNs reviewed provides a standard method for building BNs specifically for
product safety risk management. However, each provides some insight into the use of

BNs for the safety risk management of products and systems.

Chapter 6 presents a generic method for building BNs for product safety risk
management. The proposed method is based on the idiom-based approach [19] for
building BNs described in Chapter 4. This chapter supports Hypothesis 1 and was first
presented in Publication 3.

21



The ideas explored in Chapter 6 are applied in Chapters 7 and 8, where two case
studies are presented, which illustrate the new approach to building BNs for many

different product safety cases.

Chapter 7 introduces the medical device risk management case study. This chapter
describes the medical device risk management process as presented in ISO
14971:2019 [7] and its supporting documentation ISO/TR 24971:2020 [6]. We
introduce a novel method for manufacturers to manage the risk of medical devices
using hybrid BNs. The proposed hybrid BN resolves the limitations of traditional risk
analysis methods discussed in Chapter 1 and provides a systematic method for medical
device risk management, especially when there is little or no relevant testing or
operational data available. It also performs a benefit-risk analysis of medical devices,
which is useful for making risk management decisions such as product recall. The BN
for medical device risk management was developed using the method proposed in
Chapter 6. Therefore, this chapter supports Hypotheses 2 and 3 and was first presented
in Publication 4.

Chapter 8 introduces the consumer product risk assessment case study. This chapter
describes safety risk management for consumer products based on the RAPEX risk
assessment guidelines [8]. We introduce a novel method for managing the risk of many
different consumer products using hybrid BNs. The proposed BN for consumer
product risk assessment developed using the method presented in Chapter 6 resolves
the limitations of traditional risk assessment methods such as RAPEX and can provide
reasonable risk estimates for products, especially when there is little or no relevant
testing or operational data available. It also examines consumer risk perception of
products and systems, useful for making risk management decisions such as product
recall. This chapter supports Hypotheses 2 and 3 and was first presented in
Publications 1 and 2.

Chapter 9 presents the results of empirical work that examines how risk perception of
consumer products is affected by sources of risk communication. The principal merit
of this work is to inform and validate the predictions of the consumer risk perception
component of the BN presented in Chapter 8. This chapter supports Hypothesis 3 and
was first presented in Publications 5 and 6.
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Chapter 10 describes the process for deploying Bayesian networks in production. This
is demonstrated by deploying the BN for medical device risk management (see
Chapter 7) to end users as a web-based application using Agena.ai cloud service [22].

This chapter supports Hypothesis 4.

Chapter 11 revisits the research hypotheses of this thesis and summarises the related

contributions. This chapter also discusses future directions of research.
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Chapter 2 Risk Management Concepts and Terms

This chapter provides the essential context required to understand the remainder of the
thesis. The concepts, principles, and terms relating to risk management, risk
assessment, risk analysis, risk modelling, risk perception, safety management and their
general application in the product safety industry are described. We defined the risk
management terms and concepts used in this thesis since many risk management terms
and concepts are application-specific (i.e., dependent on context, domain or industry).
Most of the terms and concepts presented in this chapter have been presented as part
of the following publications: Publication 1 [23], Publication 2 [15], Publication 3
[24], Publication 4 [25], Publication 5 and Publication 6.

2.1 Fundamental risk terms, concepts, and principles

In this section, we describe key risk concepts and terms used in this thesis.
2.1.1 Risk

In general, the term risk is often expressed in terms of a combination of the
consequences of an event and the likelihood of occurrence of that event [27]. In this
context, the consequences of an event will be something negative or an adverse effect.
In product safety, risk is defined as “the combination of the probability of occurrence
of harm (to the consumer) and the severity of that harm” [5], [7]. It is often expressed

using the following equation:

Equation 1

Risk =P XS
Where P refers to the probability of occurrence of harm and S refers to the severity of
the harm.

Risk is estimated using subjective evidence (i.e., expert judgement), objective
evidence (i.e., available quantitative data) or both subjective and objective evidence.
Qualitative methods, such as matrices and gquantitative methods, such as Fault Tree
Analysis (FTA), discussed in Chapter 3, can be used to estimate risk. Hence, the
magnitude or level of the risk can be expressed qualitatively using a ranked scale
ranging from ‘low’ to ‘serious’ or quantitatively, such as ‘probability of injury per

demand’ or in similar units considering the frequency of the risk event.
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2.1.2 Causal Perspective of Risk

As mentioned in Section 1.3, traditional risk analysis techniques compute risk using
Equation 1; however, this method of risk estimation does not consider the causal
context in which risk occurs. In the causal perspective of risk, the risk is characterised
by a causal chain of events, including the risk event itself, consequences (i.e., negative
or adverse events caused by the risk event), triggers (i.e., events causing the risk
event), controls (i.e., events that help avoid the risk event) and mitigating events (i.e.,
events that help avoid the negative consequence event) [13]. In the product safety
context, we are interested in the causal view of risk since the level of risk for a product
or system depends on a causal chain of events, including triggers, controls and
mitigating events. An example of the causal view of risk applied in product safety is
shown in Figure 2. Figure 2 shows a causal diagram that describes the sequence of
events that leads to a patient being burnt by a defibrillator (in Chapter 4, probabilities

are assigned to these events).

Trigger / Wrong Setting

Chosen Control

Risk Event Surface Too Hot

Mitigant

Controller
Intervention

Consequence

Patient Burnt

Figure 2 Causal view of risk in product safety — Defibrillator Example

The causal view of risk in product safety supports comprehensive and practical risk
estimates since the uncertainty associated with the risk for a product or system is not
a separate notion (as assumed in traditional risk analysis approaches). Every event
associated with the risk has uncertainty expressed by the event’s probability
distribution (this is covered in depth in Chapter 4). Also, since the risk problem is

decomposed into a causal chain of events and the risk event is identified from a
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particular perspective, e.g., regulator, consumer or manufacturer, there is little
ambiguity about the risk event, triggers, controls, mitigants and consequences.
Therefore, factors affecting risk are easily identified and described. In Chapters 6, 7
and 8 we show how the causal perspective of risk is used to assess the risk of products
and systems using Bayesian networks (BNs). The underlying theory of BNs is

presented in Chapter 4.
2.2 Risk Assessment Terms and Concepts

In this section, we describe the key concepts and terms used for risk assessment and

the intended use of these terms in this thesis.
2.2.1 Product and System

In this thesis, we use the terms product and system interchangeably. A system is
defined as “a combination of interacting elements or components organised to achieve
one or more stated purposes” [9]. Elements of a system include hardware, software,
material, facilities, personnel, data and services. A product is “any artefact offered in
a market to satisfy consumer needs”. Since the general definition of a system
encompasses all products, then all products are systems, and a system can be described

as a product or as the services it provides [24].
2.2.2 Defect, Fault and Failure

In this thesis, we define a defect as a generic term for a fault. We use the definitions
for fault, error and failure associated with a system as defined by Laprie [28]. A fault
“is a hypothesised cause of an error”. An error is “that part of the system state that
can lead to subsequent failure”. A failure is an event that “occurs when the delivered
service deviates from fulfilling the system function”. Please note that faults, errors and
failures are recursive notions that depend on the perspective of the user or system [24].
For instance, given a system with an embedded software component, if the failure of
the software does not result in system failure, it will be considered a fault from the
overall system perspective. In Figure 3, we show the relationship between a fault, error

and failure. According to Laprie [28], [29], the three main classes of faults that can
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affect a system leading to failure are physical faults, design faults and interaction

faults.

Interaction
Faults

Design Faults Errors Failures Hazards Harm

Physical
Faults

Figure 3 Relationship between system fault, error, failure and hazard

Physical faults are faults in the hardware of a system or faults that affect the hardware
of a system [28], [29]. They are caused by physical deterioration of system hardware,
interaction faults or physical interference by external events in the use environment.
As illustrated in Figure 3, physical faults can cause an error, a failure in the absence
of an error, and hazards in the absence of a failure.

Design faults are faults in the design of a system [28]. They are caused by interaction
faults and development faults, e.g., errors in software code, incorrect or incomplete
requirements. As illustrated in Figure 3, design faults can cause an error leading to

failure and potential hazards.

Interaction faults are faults occurring during the use of a system [28], [29]. These are
external faults since they are caused by elements in the use environment. For instance,
most interaction faults are caused by some human action in the use environment, such
as device misuse, and others are due to physical interference caused by external events
in the use environment, e.g., weather conditions. As illustrated in Figure 3, interaction
faults can cause an error, a failure in the absence of an error, and hazards in the absence

of a failure.
2.2.3 Harm, Hazard and Hazardous Situation

In product safety, the term harm is defined as “injury or damage to the health of people

or damage to the property or the environment” [7]. In some risk assessment methods,
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for example, RAPEX, the severity or level of the harm is usually defined using a four-
point or five-point scale ranging from ‘negligible’ to ‘fatal’. The level of harm is
dependent on factors such as the type of medical intervention required, or the
economic costs associated with the harm. For instance, any harm resulting in injuries
that cause minor discomfort is considered ‘negligible’, while harm resulting in death

is considered ‘fatal’. As shown in Figure 3, harm is caused by a hazard.

A hazard is “a potential source of harm” [7], [8] usually caused by faults (i.e., physical,
design and interaction) and failures (see Figure 3). According to the EU RAPEX
guidelines, a hazard is “the intrinsic property of a product that may cause an injury to
the consumer who uses the product”. In this thesis, both definitions of a hazard are
considered when describing hazards associated with a system. A system can have one
or more hazards that can cause harm. Where a system has several hazards, the risk
associated with each hazard is assessed separately during the risk assessment. For
instance, given a defibrillator with electrical and thermal hazards, the risk associated
with each hazard is assessed to determine the overall risk of the product. Some risk
assessment methods, such as RAPEX, usually chooses the highest level of risk

estimated as the overall risk of the product [5].

Hazard identification is a key part of the risk management process, it entails
identifying and documenting hazards associated with a system based on the intended
use, foreseeable misuse and characteristics of the system. Any hazards for a system
that are not identified during this phase would not be assessed, resulting in unknown
harms and potential injuries to consumers. Risk analysis techniques such as
Preliminary Hazard Analysis and Failure Mode and Effects Analysis (see Chapter 3)
are used to identify hazards associated with a system. Other techniques for hazard
identification include reviewing hazards reported in injury databases, publications,

and scientific literature.

In this thesis, we used a combination of risk analysis methods, injury databases and
scientific literature to identify hazards for our case study examples discussed in
Chapters 7 and 8. Once the hazards of a system are identified, the hazardous situation
is described. A hazardous situation is “any circumstance in which people, property or
environment are exposed to one or more hazards” [7]. Hence a hazard can only cause

harm if a hazardous situation occurs. Please note that some risk assessment and
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analysis methods may describe an injury scenario (i.e., steps leading to injuries)
instead of a hazardous situation, given identified hazards. Therefore, in this thesis, we

use the terms injury scenario and hazardous situation interchangeably.
2.2.4 Risk Criteria

This thesis also uses the term risk criteria when discussing risk management,
especially risk evaluation. According to ISO Guide 73 [27], risk criteria are the “terms
of reference against which significance of a risk is evaluated”. It can include
qualitative and quantitative requirements based on standards, policies and laws. The
risk criteria are defined at the start of the risk management process and used during
the risk evaluation phase to determine whether the risk is acceptable. In summary, the
risk criteria determine whether the estimated risk for a system is acceptable or not and

inform additional risk control measures.
2.2.5 Risk Control, Risk Treatment and Residual Risk

In this thesis, we use the terms risk control and risk treatment interchangeably. Risk
control is any process, policy or action taken to reduce or eliminate a risk [27]. It can
include removing the source of the risk and changing the likelihood of occurrence of

harm. The risk remaining after risk treatment is called residual risk.
2.3 Risk Perception Terms and Concepts

In this section, we describe key terms and concepts for risk perception.
2.3.1 Risk Perception

According to ISO Guide 73 [27], risk perception is the “stakeholder’s view on a risk”.
A stakeholder is “any person or organisation that can affect or be affected by a decision

or activity”. These include consumers, regulators and manufacturers.

In this thesis, we investigate consumer risk perception and how it is influenced by risk
communication sources (see Chapter 9). We define consumer risk perception or
perceived risk as consumers’ subjective judgement of risk when purchasing or using
a product or service [30], [31]. Previous research suggests that risk perception consists
of two dimensions: dread and unknown [32]. Dread risk refers to the lay-person

feelings about risks or hazards. It is defined in terms of the likelihood of consequence
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(harm) and its severity, lack of control and feelings of fear. Unknown risk refers to
risks considered new, unobservable, unknown, and delayed in their manifestation and

consequences.

2.3.2 Utility or Benefit

In this thesis, we use the terms utility and benefit interchangeably. Utility is the
(perceived) benefits consumers receive from using a product. Since each consumer is
unique, utility is personal and situational. For example, a consumer will assign utility
to a product based on their personality, situation and experience [33]-[35]. In general,
perceived benefit (or utility) has an inverse relationship with perceived risk [36]-[38].
For instance, Alhakami and Slovic [36] found that when people perceive an item as

having high benefits, they perceive it as low risk (and vice versa).
2.3.3 Risk Tolerance (Acceptance)

In this thesis, we defined risk tolerance (acceptance) as the amount of (perceived) risk
consumers are willing to accept or tolerate to obtain the benefits (value or utility) of a
product [39]. It is influenced by individual characteristics, knowledge (or experience)
of the product, risks, risk controls and benefits. For instance, some research suggests
that risk tolerance is a personality trait [40]-[42]. For example, consumers with a high
propensity to take risks are more tolerant of risks. On the other hand, other research
suggests that risk tolerance is based on experience and knowledge [43]-[45]. For
example, consumers that are more familiar with a particular product via experience or

knowledge will be more tolerant of its risks.
2.3.4 Risk Communication

Risk communication is the exchange of information between different stakeholders
about the risks associated with products [46]. The most common and familiar sources
of risk communication are the government, manufacturers and the media [47].
Previous research shows that the risk communication source can affect risk perception.
For example, if consumers perceive the risk communication source as reliable and
trustworthy, e.g., the government, they will most likely adhere to the risk message.
However, they may ignore or reject the risk message if they perceive the risk

communication source as unreliable and untrustworthy, e.g., non-experts [48], [49].
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These observations are essential when deciding on the best media for informing

consumers about risk and will be covered in Chapter 9.
2.4 Chapter Summary

In this chapter, the concepts, terms and principles that underpin risk management and
assessment in the product safety industry were defined. Definitions were provided for
key terms that will be used throughout the thesis.

In the next chapter, we review the commonly used methods for risk analysis and

assessment in the safety domain.
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Chapter 3 Review of commonly used risk assessment

and analysis techniques

This chapter describes commonly used techniques for risk analysis in the product
safety domain. The following risk analysis techniques are discussed: Preliminary
Hazard Analysis (PHA), Failure Mode and Effects Analysis (FMEA), Fault Tree
Analysis (FTA), Event Tree Analysis (ETA), Bow-tie models, Risk Matrices, Monte
Carlo Simulation, Beta Factor Method and Parts Count Method. These techniques are
complementary and can be used as required to facilitate a comprehensive risk analysis.
This chapter is adapted from Publication 4 [19], previously published by Arxiv.org.

3.1 Preliminary Hazard Analysis

Preliminary Hazard Analysis (PHA) is an inductive analysis method that is performed
early in the development of a product when there is little information about its design
or operating procedures [6], [12]. It is used to identify hazards, hazardous situations
and events that can cause harm for a product. Hazards and hazardous situations are
identified by considering product characteristics such as the use environment and
interfaces among system components. PHA is often done using brainstorming
techniques and is a precursor to more elaborate risk analysis methods such as FTA.

The PHA method includes the following steps:

1. Describe the product and scope of the analysis.

2. ldentify applicable hazards and hazardous situations for the product.

3. Identify the probability of occurrence of harm P. Please note that since PHA
is done early in the development process, there would be insufficient
information about the product to estimate probabilities accurately. However,
the reported injury information from previous similar products can be used to
provide reasonable estimates for the probability of occurrence of harm P.

4. ldentify the severity of the harm S.

5. Estimate the risk of the product, i.e., P X S, using a risk matrix (see Section
3.6).

6. Identify potential risk controls.
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The results of a PHA may be presented in a tabular format, as shown in Table 1. A

PHA is essential for informing risk management decisions such as risk controls.

Table 1 Example of preliminary hazard analysis for a defibrillator

Preliminary Hazard Analysis (PHA)
Product: Defibrillator
ID# | Hazard Harm Potential Probability | Severity | Risk Risk
Causes of harm of harm | Score | controls
(1-5) (1-5) | PxS
1 Hot The patient | Device 1 2 2 Automatic
surface | is burnt malfunction switch off
during use

Several studies have used PHA to identify potential hazards and hazardous situations
for systems [12], [50]-[53]. For instance, Zhang et al. [50] used a PHA to identify
hazards and hazardous situations for an insulin infusion pump. Masci et al. [51] used
a PHA to identify hazards for the number entry part of an infusion pump interface.
Alogaily [53] used it to identify hazards associated with pipelines. Elahi [12] used it

to identify hazards and hazardous situations associated with medical devices.

3.2 Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) is an inductive, bottom-up analysis
method that explores the failure modes of a system and how each failure mode affects
the system [54], [55]. The causes, consequences, risks, and risk controls for each
failure mode are recorded in an FMEA worksheet. An example of an FMEA worksheet
is shown in Figure 4. FMEA is useful for analysing systems containing many
components, e.g., medical devices. However, since device components are analysed
one at a time, FMEA is usually a time-consuming activity and is not suitable for
analysing systems with common cause failures or systems with a high degree of

redundancy. The FMEA method includes the following steps:

1. Describe the product and scope of the analysis.
2. ldentify the failure modes of the system.
3. ldentify the cause and effect of each failure mode.
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4. For each failure mode, determine and assign ratings for the severity of the
effect S (using a 5-point ranking scale ranging from negligible to fatal), the
probability of occurrence O (using a 5-point ranking scale ranging from
improbable to frequent), and the detectability D (using a 5-point ranking scale
ranging from almost certain to undetectable).

5. For each failure mode, compute the Risk Priority Number (RPN) and estimate
the risk. The RPN is the product of severity, occurrence and detection ratings,
I.e.,, Sx O x D, and it is used to determine the criticality ranking of the failure
modes. Failure modes with a high RPN are the most critical for the system.
The risk is computed using a risk matrix that combines severity and occurrence
ratings (see Section 3.6).

6. ldentify potential risk controls for each failure mode.

Additional information on performing an FMEA can be found in the standard IEC
60812:2018 [55]. Although several studies have used FMEA to assess failures of
system components [12], [56]-[58], it can also be used to assess failures in the
manufacturing process (process FMEA) and the use and misuse of a system (use
FMEA). In the product safety domain, FMEA is used to identify failure modes of a
system that can cause a hazard or hazardous situation. Since FMEA is usually
performed during the design phase of a system, the results from the FMEA are useful
for informing risk management decisions such as risk controls and providing the basis

for further analysis methods such as FTA.
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Figure 4 Example of an FMEA worksheet
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3.3 Fault Tree Analysis

A Fault Tree Analysis (FTA) is a deductive, top-down analysis method that is usually
used in the safety domain to analyse hazards identified by other methods such as PHA
[54], [59]. FTA starts with an assumed undesired consequence or event, e.g., harm,
followed by the identification of its causes or contributing events. The assumed
undesired event is called the top event, and the independent events contributing to the
top event are called basic events. Hence, a fault tree (FT) can be described as a
graphical representation of the (basic) events or contributing factors causing the top
event. An example of a fault tree to determine the likelihood of an engine fire (adapted
from [12]) is shown in Figure 5. In a fault tree (see Figure 5), the top event is connected
to the basic events using logic gates such as OR and AND gates. The symbols for OR
gates, AND gates, and top and basic events are shown in Figure 6. In this thesis, when

discussing FTA, we are referring to static FTA unless specified otherwise.

Engine Fire

Fuel leaks Fuel drips on_ hot

exhaust manifold
I ]

Fuel line Fuel line clamps Fuel line runs
Fuel line is cut develops a pin P over the exhaust
are loose .
hole manifold

<> O <> O

Figure 5 Example of a fault tree for an engine fire
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Symbol Name Description

Q OR Gate Output event occurs when one or more input events

occur.

AND Gate Output event occurs when all input events occur.

Top/ Intermediate event ~ An event that is further examined.

Underdeveloped event An event that is not further examined.

O Basic event A basic initiating event or cause for the top event.

Figure 6 Common symbols used in a fault tree
FTA can be used to perform quantitative and qualitative analyses. Quantitative
analysis is done when the probabilities of the basic events are known. These
probabilities are combined using probability rules based on the structure of the FT to
determine the probabilities of occurrence for the top event. In situations where the
probabilities of the basic events are unknown, qualitative analysis is done using
descriptive probabilities of occurrence such as ‘frequent’ or ‘remote’. The primary
output of an FTA is the identification of the set of basic events that can cause the top
event to occur, referred to as a cut set. The smallest set of basic events that can cause
the top event to occur is called a minimal cut set. Identifying the minimal cut set is
important for informing appropriate risk controls. In summary, the FTA method

includes the following steps:

1. Identify and define the system or system component and scope of the analysis.

2. Define the top event.

3. ldentify basic and intermediate events.

4. Construct the FT: Link the top event to basic events using logic gates and
intermediate events.

5. Perform the analysis:
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a. ldentify the minimal cut set
b. Calculate the probability of occurrence of the top event if quantitative
data is available.
6. Estimate the risk using a risk matrix given the severity of the top event and the

probability of occurrence of the top event (see Section 3.6).

Additional information on performing FTA can be found in the standard IEC
61025:2006 [59]. FTA has been used in many domains, including safety and
reliability. In the safety domain, the top event is usually a hazard or hazardous
situation; in the reliability domain, it is usually a failure. In the safety domain, FTA
can be used to analyse the entire system or components of the system that may pose a
risk to operational safety. This is useful since the interaction between the system
components causing the top event can be incorporated into the analysis, unlike in an
FMEA (see Section 3.2). Since FTA is a useful tool for assessing the safety of systems,
it should be performed at all stages of the life cycle of a system. At each stage of the
life cycle, the FT will increase understanding of existing and potential failures, hazards
and hazardous situations of the system. It is important to note that FTA is not limited
to a system or its components but is sufficiently flexible also to incorporate factors
such as human errors when estimating the occurrence of the top event. This is essential
since a hazardous situation can only occur when users are exposed to a hazard or
interact with a system. However, estimating probabilities for human errors may be
challenging since it is time-consuming and context-specific (i.e., requiring many
observations for a particular system). Despite the popularity of FTA in the safety
domain [60]-[64] and benefits such as informing and complementing other risk
analysis methods such as FMEA and PHA, it is important to note the following

limitations of the method:

1. Limited approach to handling uncertainty: In a FT, the probabilities for basic
events are usually assigned using single-point values rather than probability
distributions. As a result, uncertainty cannot be incorporated in the

probabilities for basic events when estimating the probability of the top event.

2. Limited approach to handling multi-state variables: Ina FT, events are usually
binary state, e.g., working or fail; however, it is possible to have scenarios with
events that are multi-state, e.g., working, fail-open or fail-closed. In these
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situations, the multi-state events are represented using one or more events. For
instance, given an event with three states, e.g., working, fail-open or fail-
closed, in a FT, this will be represented as two independent binary events, e.g.,
working/fail-open and working/fail-closed. This approach to handling multi-

state variables is usually time-consuming and expensive.

3. Unable to model sequence-dependent failures: In situations where component
failures are dependent, a FT is not suitable for modelling these types of failures.

There are several extensions to the static FT that resolve the above mentioned
limitations. For instance, dynamic fault trees (DFTs) [65] have been proposed to
handle sequence-dependent failures, fuzzy fault trees [66] have been proposed to
handle uncertainty in data and the beta factor method have been proposed to improve
modelling of common cause failures [67], [68]. In this thesis, we propose that BNs
can resolve all these limitations. We discuss BNs and their underlying theory in
Chapter 4.

3.4 Event Tree Analysis

An Event Tree Analysis (ETA) is an inductive method of analysis that shows all
potential outcomes or consequences of an initiating event [6], [54]. An event tree (ET)
is a logic tree diagram used to analyse “the occurrence of accidents as consequences
of hazard events in a system” [20] [13]. In general, systems usually have risk controls
or mitigants to avoid or mitigate the consequences of potential initiating events. Hence
the potential outcomes or consequences of an initiating event are affected by the
success or failure of the risk control measures. An example of an ETA for an explosion
(presented in [54]) is shown in Figure 7. In this example, given an explosion (initiating
event), the probability of a fire occurring (outcome/consequence) depends on the

operation or failure of the sprinkler and the alarm system.
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Sprinkler

Initiating Start of fire |system does Fire ala.lrm is not Outcomes Frequency
Event - activated (per year)
not function
True Uncontrolled
fire with no 8x 108
0.001 alarm
True
0.01 Fal
aise Uncontrolled 6
fire with alarm 7.9x10
0.999
True
0.80
True Controlled fire 5
with no alarm 8x10
0.001
Explosion False
-2 0.99
10" per year False _
Controlled fire 3
with alarm 7.9x10
0.999
False
No Fire 2x 107
0.20

Figure 7 Example of an event tree for an explosion

In general, the outcome of events in the tree are assumed to be binary, e.g., true or

false; however, some events may include multiple outcomes, e.g., true, false or open.

ETA can be used to perform quantitative and qualitative analyses. Quantitative

analysis is done when probabilities are assigned to events in the tree. For instance, as

shown in Figure 7, the probability of “an uncontrolled fire with no alarm” is

determined by multiplying the probability of the initiating event and the probabilities

of all events in the sequence:

P =0.01x0.8 x0.01 x0.001

P=8x10"8

In safety risk management, the initiating event is usually a hazard or hazardous

situation. Therefore, the probability of occurrence of the consequence event e.g.,

injury, calculated using the event tree can then be combined with the severity of the

consequence event to estimate the risk associated with the hazard, i.e., Risk = P x S,

The severity of the event can be determined based on the economic cost or medical

intervention required or any other suitable measure or method.




In summary, the ETA method includes the following steps:

Identify an initiating event (hazard or hazardous situation).
Identify intermediate events, safety measures, risk controls and mitigants.
Identify potential outcomes or consequences of the initiating event.

Construct the event tree.

o ~ w D P

Calculate the probabilities for each potential outcome or consequence if

quantitative data is available.

Additional information on performing ETA can be found in the standard IEC 62502
[69]. A limitation of the ETA method is the inability to handle second-order
uncertainty in the assigned probability values since single-point values are used rather
than distributions. Risk assessors and manufacturers will find the ETA useful for
estimating the probability of occurrence of harm associated with identified hazards.
Also, ETA complements other risk analysis methods such as PHA and FTA and can

be applied at different phases during the life cycle of a system.
3.5 Bow-tie Model

A bow-tie model is a graphical tool used to describe and analyse the causes of an event,
e.g., hazard, its consequences and the safety barriers or controls required to prevent
the event or mitigate its consequences [70], [71]. It is often considered to be a
combination of a fault tree (FT) and an event tree (ET). However, the principal merit
of the bow-tie model is identifying and describing the safety barriers or controls to
prevent the event or mitigate its consequences. An example of a generic bow-tie model

adapted from [71] is shown in Figure 8.
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Figure 8 Generic Bow-tie Model

3.6 Risk Matrices

A risk matrix is a tool that is used to determine the level of risk associated with a
particular hazard. It combines the probability of the harm occurring and the severity
of the harm using a matrix or table to estimate the risk, i.e., Risk = P x S. The estimated
risk is usually classified qualitatively using a ranking scale such as ‘low’, ‘medium’
‘high’, quantitatively using a number (obtained by multiplying the rankings for
likelihood and the severity of the risk) or a combination of both. Risk matrices can be
used in conjunction with other risk analysis methods, such as FTA, or independently
using qualitative or quantitative data or both to estimate risk. An example of a risk
matrix adapted from [6] is shown in Table 2, and the definitions of the severity levels
and probability occurrence levels used in the risk matrix are shown in Table 3 and

Table 4 respectively.
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Table 2 Example of a risk matrix

Severity Levels

Negligible Minor Serious Critical Fatal
1) ) ®) (4) ®)
Likelihood / Frequent (5) 5 10 15
Probability Probable (4) 4 8 12
Levels Occasional (3) 3 6 9
Remote (2) 2 4 6 8 10
Improbable (1) 1 2 3 4 5

Risk classification: Green = Low (1-8), Yellow = Medium (9-15), Red = High (16-25)

Table 3 Definition of severity levels for harm

Rank Terms Description

5 Fatal Result in death

4 Critical Result in irreversible injury

3 Major Results in injury requiring medical intervention
2 Minor Results in temporary injury

1 Negligible Results in temporary discomfort

Table 4 Definition of probability levels for the occurrence of harm

Rank Terms Probability range

5 Frequent >103

4 Probable <10%and > 10*
3 Occasional <10*and > 10
2 Remote <10®and > 10
1 Improbable <10

In summary, the risk matrix method includes the following steps:

1. Identify the hazard.

2. Assign the probability of occurrence of harm and severity of harm ratings.

3. Look up the risk matrix to determine the overall risk of the hazard.

The risk matrix method is used in several industries, including product safety. It offers

advantages such as quick risk estimation of hazards; however, it does not consider the

causal context in which hazards or risks occur. Hence, risk estimates may be overly

subjective or ill-defined resulting in flawed risk estimates. For these reasons, risk
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matrices are usually used to quickly identify hazards posing the highest risks or in

conjunction with other robust analysis methods such as FTA discussed previously.
3.7 Monte Carlo Simulation

The Monte Carlo simulation is a mathematical technique used to model the probability
of potential outcomes of an uncertain event [72], [73]. It is used in several industries
for risk assessment and making decisions under uncertainty. For instance, in reliability
engineering, it is used to predict the failure rate of a system using available information

such as historical testing and operational data.

Monte Carlo simulation consists of input variables (i.e., random variables that
influence the results of the analysis), output variables (i.e., the results of the analysis)
and the mathematical model (i.e., the mathematical function used to describe or
simulate the relationship between the input and output variables). A schematic of

Monte Carlo simulation is shown in Figure 9.

Output
Variables

Input 3 Mathematical 3
Variables Model

Figure 9 Schematic of Monte Carlo Simulation

In Monte Carlo simulation, the values of the variables are represented using
probability distributions such as a Normal distribution; hence it is suitable for
modelling uncertainty. In fact, Monte Carlo simulation is used in conjunction with
other risk analysis methods, such as FTA [16] or as a standalone method to handle
uncertainty. However, it is important to note that it is time-consuming and

computationally expensive for complex systems.
3.8 Beta Factor Method

The Beta (/) factor method is used to model common cause failures of a system [67],
[68]. A common cause failure is the failure of multiple components of a system due to
a shared or common cause. The underlying assumption of the g-factor method is that
the failure 2 of a component is dependent on independent failures A, (failures
impacting only the component) and common cause failures A, (failures impacting all

components sharing the common cause) i.e., A = A; + 4,.
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The p-factor parameter is the probability that a failure of a component is due to

common cause failures, i.e., § = % Hence 4, = Bland 4; = (1 — p)A.

When applied to FTA (see Section 3.3), the p-factor method allows the modelling of
common cause failures within FTA. An example of a fault tree model with common
cause failures is shown in Figure 10. In this example, we estimate the probability of a
power failure for a system. We assume that the probability of failure for each power
supply in the system is 0.001, and the S-factor is 0.1. Hence, using Boolean algebra,
probability rules and the p-factor, the probability that the power supplies fail due to
common cause failures is 0.0001 (i.e., 0.1 x 0.001), and the probability that the power
supplies fail independently is 8.1E-7 (i.e., (0.9 x 0.001) x (0.9 x 0.001)). Hence the
probability of a power failure for the system is 1.0081E-4 (i.e., 0.0001 + 8.1E-7).

1.0081E-4 Power Failure

Power Supplies Fail Power Supplies Fail

BB - Independently - Common Cause

0.0001

Power Supply 1 Power Supply 2
Fails Fails

0.0009 0.0009

Figure 10 Fault Tree Analysis with CCF
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3.9 Parts Count and Parts Stress Methods

The parts count method and the parts stress method defined in MIL-HDBK-217F [74]
are used to estimate the reliability of systems. The parts count method is used to
estimate the reliability of a system in the early design stage when insufficient
information is available [74]. This method uses the generic failure rates of the parts
given an operating or use environment. These failure rates are multiplied by a quality
factor and summed up to estimate the failure rate of the system.

Though the parts count technique may be used in conjunction with other methods or
as a standalone method to estimate the risk of a novel system, it is time-consuming
and expensive for complex systems. Furthermore, the parts count technique can give
inaccurate results if the system is redundant [17]. Other limitations of the method

include limited approach to handling uncertainty.

The parts stress method is used to estimate the reliability of a system later in the
development stage when sufficient operating information is available [74]. This
method is more accurate than the parts count method since it incorporates operating
stresses when estimating the failure rates of the parts. The failure rates are then
summed to estimate the failure rate of the system. The accuracy of the failure rate

estimates increases as more operating information becomes available.
3.10 Chapter Summary

In this chapter, we described the commonly used risk analysis methods and techniques
in the product safety industry. We also discussed some of the limitations associated
with these methods previously discussed in Section 1.3. In the next chapter, Bayesian
Networks (BNs) are reviewed as a method for risk analysis and assessment which
resolves the limitations associated with existing risk analysis methods.
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Chapter 4 Bayesian Networks

In this chapter, Bayes’ Theorem and Bayesian Networks (BNs) are introduced. Then,
the concepts of conditional independence and types of reasoning done using BNs are
presented. The material presented in this chapter is essential to understand the novel
work presented in Chapter 6 and applied in Chapters 7 and 8. Some of the material
presented in this chapter has previously been presented in the following publications:
Publication 1 [23], Publication 2 [15], Publication 3 [24], Publication 4 [25],

Publication 5 and Publication 6.
4.1 Conditional Probability and Bayes’ Theorem

“The basic expressions in the Bayesian formalism are statements about conditional
probabilities” [75]. Given two events, A and B, a conditional probability is the
probability that event A occurs, given that event B has already occurred. This
relationship between events A and B is expressed as P(A|B), i.e., the probability of A

given B or the probability of A in the context of event B.

If we assume that events A and B are independent (A L B), then our belief in event A
is unchanged given event B (vice-versa for our belief in event B). This relationship is

expressed as follows:

Equation 2:
P(A|B) =P (4)
P(B|A) = P (B)

If we assume the joint event (A, B), then the relationship between the joint event and
conditional probabilities is expressed as follows:

Equation 3:

P(A,B) = P (A|B)P(B) = (B|4) P(A)
Equation 3 can be re-written as follows:
Equation 4:

P(B|A)P(A)
P(B)
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Equation 4 is called Bayes’ Theorem, developed in the 1750s by Reverend Thomas
Bayes [76], [77]. Bayes Theorem provides a formula for updating our prior belief
about an event given new evidence. Our prior belief is called the prior probability (or
prior), and our revised belief is called the posterior probability (or posterior). Bayes
Theorem is essential since it expresses a probability (posterior probability) which
people generally find difficult to evaluate in terms of probabilities that can be obtained
directly from our experience, knowledge or observations [75]. For instance, in the
safety domain, a manufacturer can estimate the probability of an injury given a hazard
using injury reports but may find it difficult to estimate the probability of a type of
hazard given a particular injury. The latter information is important since an injury can
be caused by one or more different hazards, e.g., burns can be caused by hot surfaces
or electric shock. Suppose that we assume for a domestic iron that the probability of
burns (injury) is 0.75. The probability of a hot surface (hazard) is 1, and based on
injury reports, the probability of a burn due to a hot surface and electric shock is 0.6
and 0.4, respectively. We can calculate the probability that the hazard is a ‘hot surface’

given the injury (burns) using Bayes’ Theorem (see Equation 4) as follows:

P(Burns|Hot surface)P(Hot surface)
P(Burns)

P(Hot surface|Burns) =

_0.6><1_080
075

It is important to note that at the core of the Bayesian approach is the belief that all
probabilities are conditional on a context K, where K is background knowledge and
assumptions [13], [75]. Therefore, the probability assigned to an uncertain event A is
always conditional on the context K, i.e., P(A|K). In practice, when we assign a
probability to an (uncertain) event A, we often write P(A), excluding the symbol for
K. This is appropriate when the context K does not change during a given analysis. In
situations where the context K changes, we have to explicitly specify K. Hence Bayes

Theorem can also be expressed as follows:
Equation 5:

P(B|A, K)P(A|K)
P(B|K)

P(A|B,K) =

Where K is background knowledge or assumptions.
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Equation 3 computes the joint probability distribution for two events; however, in
practice, we may need to compute the joint probability distribution for three or more
events. In these situations, Equation 3 can be extended as required using the chain rule
formula [75]. For instance, given a set of n events, Ei,...En, the joint probability

distribution is computed as the product of n conditional probabilities:

Equation 6:
P(El ""ETL) =P (En |En_1' ""El) ""P(E2|E1)P(E1)

Finally, Bayes’ Theorem is easy to compute when a problem consists of one or a few
variables. However, for complex problems with a large number of variables,
computing the joint probability distributions and posterior probabilities becomes a
complex and time-consuming task. In these situations, we recommend using Bayesian
networks (BNs) since it efficiently computes Bayes’ Theorem and the joint probability
distribution for a large number of variables. In the following section, we discuss BNs

and their features.
4.2 Bayesian Networks

A Bayesian network (BN) (also known as a Bayesian belief network (BBN) or causal
Bayesian network (CBN)) is a directed acyclic graph (DAG) that encodes the joint
probability distribution for a large set of random variables. It consists of qualitative
and quantitative components [13], [75], [76], [78]-[81]. The qualitative component of
the BN is a DAG with nodes representing a set of random variables and directed edges
(arcs) representing the causal relationship or dependencies between the connected
variables (nodes). For instance, given two variables X; and X,, a directed edge from
X, to X, (X; —» X,) indicates that X; causally influences X, or X, is dependent on X;;

thus, X; is called the parent of X, and X, is called the child of X;.

The quantitative component of the BN consists of node probability tables (NPTs), also
called conditional probability tables (CPTs). NPTs specify the strength of the
relationship or conditional dependency between the connected variables by defining
the conditional probability distribution for each variable given its parents. For
instance, given set X = {X;,...X,,} of random variables, the NPT for each variable X;

given its parents PA (X;) can be represented as P (X;| PA (X;)). Any variable X;
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without parents is called a root node, and its NPT is its prior or marginal probability
distribution, i.e., P(X;).

The conditional independence assumptions for the variables in the BN, represented by
the directed edges and NPTSs, facilitate decomposition of the underlying joint
probability distribution as a product of conditional probability distributions. Hence,
the joint probability distribution for set X = {X;, ... X,,} of random variables for any

BN can be computed as follows (using the chain rule formula [75]):

Equation 7:

P (Xy, .. X,) = ﬂP(Xi | PA (X))

Equation 7 is useful since it reduces the complexity of inferences performed in a BN
[82].

NPTs in a BN can also be defined using other methods instead of manually specifying
the conditional probabilities. For instance, NPTs for discrete variables can be defined
using comparative expressions such as IF statements. The NPTs for continuous or
numeric variables can be defined using mathematical functions such as A =B + C and
statistical distributions such as an Exponential distribution [13]. Some of these
methods are illustrated in Table 5.

Bayesian networks consisting of discrete and continuous variables are called hybrid
Bayesian networks [13] [79]. An example of a hybrid BN is shown in Figure 11. In
this example, the probability of a patient being burnt by a defibrillator due to its surface
being too hot is estimated. The graphical structure of this BN was previously presented
in Chapter 2 (see Figure 2); in this section, we assign probabilities to the variables. In
Figure 11, the probability that the patient is burnt depends on the probability of the
node ‘Surface Too Hot’ and the probability of the node ‘Controller Intervention’. The
probability of the node ‘Surface Too Hot” depends on the probability of the node
‘Wrong Setting Chosen’ and the probability of the node ‘Automatic Switch-Off’. In
this example, the probability that the patient is burnt is 0.0016 if we assume that the
mean probability of the node ‘Surface Too Hot’ is 0.004, the mean probability of the
node ‘Wrong Setting Chosen’ is 0.1, the probability of the node ‘Automatic Switch
Off is 0.80 and the probability of the node ‘Controller Intervention’ is 0.30. The NPTs
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for the variables in the BN are shown in Table 5. Ultimately, this simple example

demonstrates the flexibility and power of using hybrid BNs to model complex

problems involving discrete and continuous variables, such as risks associated with

products.
Trigger [ Wrong Setting Control
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Automatic Switch
Off
Risk Event

Mitigant

Controller
Intervention

Consequence
Patient Burnt

Probability wrong setting
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Figure 11 Hybrid BN — Defibrillator Example

Table 5 NPT for nodes in the hybrid BN - Defibrillator Example

Node Name NPT

Wrong Setting Chosen Exponential (10)

Automatic Switch Off False: 0.2, True: 0.8

Controller Intervention False: 0.7, True: 0.3

Surface Too Hot
0.001)

Partitioned expression (False: 0.2 x wrong_setting, True: wrong_setting x

Patient Burnt

Partitioned expression (False: Triangle (0.2 x hot_surface, hot_surface, 0.5 x

hot_surface), True: 1.0E-4 x hot_surface)

For additional information on the theory of BNs, see [13], [75], [76], [78]-[81]. In the

following section, we discuss the process and methods used to build BNs.
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4.3 Building Complex Bayesian Networks

The process of building a Bayesian network consists of two main activities:

1. Determine the structure of the BN: The first part of this phase entails
identifying the set of variables relevant to the problem and specifying their
states. The last part of this phase entails building the DAG. This can be done
by linking relevant variables using directed edges based on the causal (cause-

effect) relationships among the variables [81].

2. Specify the parameters (or NPT) of the BN variables: Once the structure of the
BN is defined, the next step is to specify the parameters (or NPT) for the
variables. The parameters (or NPTs) describe the strength of the relationship

or conditional dependency between the variables in the structure.

The BN structure and parameters can be learnt from data (data-driven approach),
elicited knowledge from domain experts (knowledge-based approach) or a hybrid
approach that combines both methods. In practice, most BNs are built using the
knowledge-based approach due to potential issues with automated learning from data,
such as requiring a large amount of data and poor data quality [83]. For this reason,
several knowledge engineering approaches have been proposed to facilitate the easy
development of BNs using expert knowledge. In the following section, we review
these knowledge engineering approaches. Automated methods for learning BN
structure and parameters using data such as score-based algorithms and maximum

likelihood expectation are briefly discussed.
4.3.1 Knowledge Engineering Methods: BN Structure

Several knowledge engineering approaches have been proposed for developing
Bayesian networks (BNs) [19], [84]-[87]. For instance, Laskey and Mahoney [84],
[85] proposed a method for specifying knowledge in larger semantically meaningful
units or modules called network fragments. A network fragment is a set of related
random variables together with knowledge about their probabilistic relationships.
Network fragments should be practical, explainable and adhere to the semantics and
syntax of BNs. Koller and Pfeffer [86] proposed the object-oriented Bayesian

networks (OOBNS) approach. In this approach, network fragments are called classes
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and variables, and instantiated fragments are called objects. Helsper & Van der Gaag
[87] proposed using ontologies to develop BNs. An ontology is an explicit
specification of the elicited domain knowledge, including meta-level and background
knowledge. The information contained in the ontology is then used to develop the

required BN structure [87].

Neil et al. [19] proposed using idioms to develop large complex BNs. Idioms are small
BN structures or fragments that represent generic types of uncertain reasoning. Using
this approach, researchers have developed idioms specifically for legal and medical
domains [88], [89]. For instance, Lagnado et al. [89] proposed idioms for legal BN
development and Kyrimi et al. [88] proposed idioms for medical BN development.

In this thesis, we used the idiom-based approach to develop idioms specifically for
building BNs for product safety risk management called product safety idioms (see
Chapter 6). The proposed product safety idioms are sufficiently generic that they can
be applied to many different product safety cases. In the following section, we review

the idiom-based approach proposed by Neil et al. [19].
4.3.1.1 Idiom-based Approach

Neil et al. [13], [19] proposed the following four idioms as part of the idiom-based
approach for building BNs:

1. Cause-consequence idiom: This idiom models the causal relationship between
causes and consequences. It uses chronological order where the cause always
precedes the consequence, or the consequence always follow the cause. For

example, as shown in Figure 12, Rain causes Flooding.
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Cause Rain

Consequence Flooding

(a) (b)

Figure 12 Cause-consequence idiom (a) with instantiation (b)
Risk/Opportunity event idiom: This idiom is an instance of the cause-
consequence idiom that models a risk/opportunity event. Its structure includes
a cause (trigger), risk/opportunity event, consequence, control and mitigant.
For example, consider the risk of a car crash shown in Figure 13. In this
example, driving fast (cause) can cause a crash (risk event), resulting in injury
(consequence). However, speed bumps (control) help avoid the crash, and the

seat belt (mitigant) helps avoid injury if there is a crash.

Trigger

Driving Fast

Speed Bumps

Risk Event

Seat Belts

Consequence

(@) (b)

Figure 13 Risk event idiom (a) with instantiation (b)
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3. Measurement idiom: This idiom models the uncertainty concerning the
measurement of a variable. It assumes — as is generally the case — that the actual
value of the variable is not directly observed but is rather assessed by a
‘measured’ value. The extent to which the measured value ‘matches’ the actual
value is determined by the accuracy of the measurement instrument used to
measure the variable. For example, as shown in Figure 14, we generally cannot
observe the ‘true’ number of product defects. Instead, we use a measured value,
namely the number of product defects found in testing. The extent to which
this accurately captures the true number of defects depends on the accuracy of
testing. If testing is extensive, we might expect to find most or even all defects,
and so the number found would be a very accurate ‘measure’ of the true
number of defects. However, if we did very little testing, then the number

found would not be an accurate measure of the true number of defects.

True number of
product defects

Actual value of
attribute

Assessment
accuracy

Product testing
accuracy

Assessed value or
attribute

Number of product
defects found

(a) (b)

Figure 14 Measurement idiom (a) with instantiation (b)

4. Definitional/synthesis idiom: This idiom (see Figure 15) models the
combination of nodes into one synthetic node. This is done in one of the
following ways:

a. Definitional relationship between variables: This entails defining the
synthetic node in terms of its parents.

b. Hierarchical definitions: This entails combining nodes into
definitional idioms and linking them together to establish a hierarchical

structure.
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c. Combining parent nodes to reduce the size of child nodes NPTs: This
entails combining parent nodes into synthetic nodes to reduce the

number of parents and the NPT parameters of child nodes.

Distance

Synthetic factor

(a) (b)

Figure 15 Definitional idiom (a) with instantiation (b)
5. Induction idiom: This idiom models statistical induction to learn an unknown
or partially known parameter about some population of interest from data. The
idiom structure is shown in Figure 16. The induction idiom is the general

model for any type of statistical inference done using a BN.

Population
parameter

Context differences

Forecast

Observation 1 Observation n

Figure 16 Induction idiom

The idiom-based approach is useful since it allows modellers to organise variables into
meaningful BN fragments that can be combined into larger BNs. Also, it can be

applied to many different problems.

Experts also use automated methods to learn the BN structure. The two main
algorithms for learning BN structures are constraint-based and score-based.
Constraint-based algorithms learn the structure of the BN by identifying causal
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relationships or dependencies among variables using conditional independence tests
and linking variables with dependencies [90]-[92]. Score-based algorithms apply
general optimisation techniques to learn the BN structure. It involves identifying
candidate structures and assigning them a network score based on their goodness of
fit; the structure with the highest score is selected [92]-[94].

4.3.2 Knowledge Engineering Methods: BN Parameters

There are several methods proposed to ease the burden and reduce the time taken to
populate NPTs for variables in a BN [13]. Comparative expressions such as IF
statements and logic functions such as OR, AND, and NoisyOR can be used to
populate the NPTs for discrete variables. For instance, given three binary variables A,
B, and C, if C is true when A or B is true, then the NPT for variable C can be easily

populated using the following expression:
IF (A == "True" || B== "True", "True", "False")
Where || represents OR.

Ranked nodes have been proposed to represent variables with states measurable on a
subjective ranked scale like {“low”, “medium”, “high”}. A ranked node assumes that
the states of a variable are mapped to an underlying numerical scale interval [0,1]. For
this reason, the NPTs of these nodes can be defined using statistical distributions,
specifically a TNormal distribution. Ranked nodes are useful for defining the NPTs
for nodes with parents. In these situations, the NPT of the child node is defined simply
as a TNormal distribution with mean p (weighted average of its parents) and variance
2. Other methods for defining NPTs include using mathematical expressions such as
X =Y + Z and statistical distributions such as Normal distribution [13], [95].

Experts also use automated methods such as maximum likelihood estimation and
expectation maximisation algorithms to learn parameters. Maximum likelihood
estimation is a method of inferring or estimating the parameters of a probability
distribution using observed data [13], [96]. It entails maximising the likelihood
function to determine the parameters that best describe the observed data. Expectation
maximisation is a method for performing maximum likelihood estimation using

incomplete data or data with latent variables [13], [96].
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It is important to note that applying the above methods accurately to different risk
problems requires the modeller to understand the subject matter sufficiently. However,
due to many different risk problems, modellers often require input from domain
experts. Several processes have been proposed to elicit knowledge from experts. These
processes include determining what information to elicit, designing the process for

elicitation and performing the elicitation [13], [97]-[99].

The proposed methods for populating BN parameters discussed in this section have

been used in this thesis to define the NPTs for the BNs presented in the case studies.
4.3.3 Conditional Independence in Bayesian Networks

Building any BN requires understanding the three types of dependency connections
(d-connections). D-connections encode assumptions about conditional independence
(see Equation 2 and Equation 7) among variables based on d-separation (a criterion
for deciding whether two variables in a BN are independent given a third variable).
The underlying assumption for conditional independence in a BN is that each variable
is conditionally independent of its non-descendants, given its parents. The three types
of d-connections are shown in Figure 17 and described using variables X, Y and Z [13],
[75], [76]:

1. Serial d-connection: In this structure (Figure 17a), information from X is
transmitted to Y via Z. As a result, Z is called the mediator that transfers the
effect of X to Y. Information is only transmitted from X to Y via Z when Z is
unknown. When Z is known, X has no effect on Y since Z blocks any
information about X from Y. For this reason, X and Y are conditionally

independent (or d-separated) given Z, i.e., (X L Y) | Z = z.

2. Diverging d-connection: In this structure (Figure 17b), information is
transmitted from Z to X and Y, respectively. Information is only transmitted
from X to Y via Z when Z is unknown. When Z is known, then X has no effect
on Y since Z blocks any information about X from Y. For this reason, X and Y

are conditionally independent (or d-separated) given Z, i.e., (X L Y) | Z = z.

3. Converging d-connection: In this structure (Figure 17c), information is

transmitted to Z from both X and Y, respectively. Information is only
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transmitted from X to Y via Z when Z is known. When Z is unknown, X and Y
are considered independent (or d-separated), i.e., (X LY)|Z, and no
information is transmitted between them. For this reason, X and Y are

conditionally dependent given Z.

(a)

(b)

(c)

Figure 17 Types of d-connections (a) Serial (b) Diverging (c) Converging

4.4 Inference in Bayesian Networks

Since performing Bayes’ Theorem computations in large BNs can be challenging,
several inference algorithms have been proposed to perform computations efficiently
[13], [75], [100]-[102]. The most popular inference algorithm used in BNs is the
junction tree algorithm [13], [100], [102]. This algorithm transforms a Bayesian
network into a tree structure with clusters (groups consisting of one or more variables)
known as a junction tree. In a junction tree (see Figure 18), the clusters (represented
by nodes) are connected via edges (represented by lines) and separators (represented
by square nodes). The separators must be a common subset of the nodes in the clusters
they link. Computations are done locally on parts of the tree and propagated to other
parts of the tree structure as ‘messages’ (known as message passing). This allows the

BN to provide global answers based on local computations.
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(a) (b)

Figure 18 (a) A BN and (b) associated junction tree

Another useful algorithm supporting inference in BNs, especially hybrid BNs, is
dynamic discretization [13], [103], [104]. Discretization is the process of transforming
a continuous variable into a discrete variable. In the past, BN methods and tools used
static discretization (i.e., discretization done using a predefined interval) to handle
continuous variables. However, this approach has several limitations, including loss
of accuracy, slow execution and high memory demands [13], [103], [104]. These
limitations are resolved using dynamic discretization (i.e., discretization based on the
distribution of the data).

The dynamic discretization algorithm proposed by Marquez et al. [104], [105] based
on work by Kozlov and Koller [106] entails “a process of dynamic discretization of
the domain of all continuous variables in the BN and using entropy error as the basis
for approximation”. It improves the accuracy of inference in hybrid BNs and has fewer
memory demands than static discretization. In this thesis, the dynamic discretization
and junction tree algorithms are used for inference in the hybrid BNs discussed in the
case studies. Both algorithms are implemented using AgenaRisk Desktop software
[22].
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4.5 Reasoning with Bayesian Networks

In this section, we describe the three types of reasoning done using BNs, i.e.,
observation, intervention and counterfactual. These types of reasoning vary in terms
of the queries they can answer and are organised into a three-level causal hierarchy
called the ladder of causation. The ladder of causation shown in Table 6, proposed by
Pearl [76], provides a framework to understand the different levels of reasoning and
how they relate to each other. The three levels correspond to the complexity of the
causal queries ranging from observation (Level 1) to counterfactual (Level 3). The
underlying concept of the ladder of causation is that queries at level n can only be

answered if the information at level n-1 is available.

Table 6 Pearl’s Ladder of Causation

Level Reasoning Activity Questions
1 Observation or Seeing, What if | see? How would seeing X change my
Association Observing belief in Y?
2 Intervention Doing, What if I do? What would Y be if | do X?
Intervening
3 Counterfactual Imagining, What if | had done? Was it X that caused Y?
Retrospective

In the following sections, we illustrate the three types of reasoning using the Garden
BN shown in Figure 19 adapted from [75]. The Garden BN describes the relationships
between the variables season, rain, sprinkler and garden wet using the following

assumptions:

P(Rain season) = P (Dry season) = 0.5

P(Sprinkler = On | Rain season) = 0.20

P(Rain = Yes | Rain Season) = 0.80

P(Garden wet = Yes | Sprinkler = On, Rain = Yes) = 0.99
P(Garden wet = Yes | Sprinkler = On, Rain = No) = 0.9
P(Garden wet = Yes | Rain = Yes, Sprinkler = Off) =0.9
P(Garden wet = Yes | Sprinkler = Off, Rain = No) = 0.01

N oo g b~ wDd e
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Season

Dry Season 50%

50%

Rain Season 4

VAN

Sprinkler Rain
Off - 50% Mo A 50%
on 4 50% Yes o 50%

N/

Garden Wet

ND—:| 22.8%

NCER T7.2%

Figure 19 Garden BN with marginal probabilities
4.5.1 Observation Reasoning

The first level of the ladder of causation entails making predictions or inferences using
passive observations. Observation or association reasoning is based on statistical
relationships informed by the data [75], [76], [107]. For instance, as shown in Figure
20, observing that the sprinkler is on, we can infer that it is most likely the dry season.
This type of association can be informed directly from the data without any
information on the causal relationship among the variables. In fact, we are simply
computing the probability of the dry season given that the sprinkler is “On”, i.e.,
P (Dry season | Sprinkler = On). Hence methods such as regression, machine
learning and conditional probabilities are examples of observation reasoning since

they measure the degree of associations between variables [76].
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 E—
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Figure 20 Garden BN after observing the sprinkler is on
In a BN, we can perform two types of reasoning using observations, i.e., diagnostic

(backward) reasoning and predictive (forward) reasoning.

1. Diagnostic reasoning: This type of reasoning entails discovering the cause of
an observation. For instance, observing the sprinkler is “On”, we can infer that
it is most likely the dry season, as shown in Figure 20. In Figure 20, when we
observe that the sprinkler is “On”, the probability of dry season increases to
0.8 (the prior was 0.5, as shown in Figure 19). There is a special type of
diagnostic inference known as explaining away [13], [75], [108]. Explaining
away can be done when a child variable has at least two independent parent
variables. If the child variable is observed, then the likelihood of the parent
variables increases. However, suppose only one of the parent variables occurs.
In that case, it becomes the most likely explanation of the child variable, hence
explaining away the other possible causes—the likelihood of the other parent
variables decreases. For instance, if sprinkler and rain were independent
variables, if we observe that the sprinkler is “On”, we can infer it is the most

likely cause of the garden being wet.

2. Predictive reasoning: This type of reasoning entails discovering the effect of
an observation. For instance, observing that the sprinkler is “On”, we can infer

that the garden is most likely wet, as shown in Figure 20. In Figure 20, when
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we observe that the sprinkler is “On”, the probability that the garden is wet

increases to 0.93 (the prior was 0.77, as shown in Figure 19).
4.5.2 Intervention Reasoning

The second level of the ladder of causation entails predicting the effects of
interventions [75], [76], [107]. Intervention reasoning differs from observation
reasoning since it evaluates the effects of an intended action, whereas observation
reasoning observes the effect of an action. The former is done by intervening on a
variable (see Figure 21), and the latter is done by conditioning on a variable (see
Figure 20). Intervening on a variable entails fixing its value by making the variable
independent of its causes via graph surgery, i.e., removing all arcs entering the
intervened variable. For instance, as shown in Figure 21, the intervened variable
sprinkler is made independent of the variable season by removing the arcs from season
to sprinkler. The do operator proposed by Pearl [75] is used in probability expressions
to specify intervention reasoning. For instance, the probability that the garden is wet
after seeing the sprinkler “On” is expressed as P(Garden wet | Sprinkler = On)
whereas the probability that the garden is wet after turning on the sprinkler (i.e.,

performing an action) is expressed as P(Garden wet | do (Sprinkler = On)).

Contrary to observation reasoning, intervention reasoning depends on the causal
relationship among the variables. Without knowledge of causal relationships, the data
used in observation reasoning cannot be used to answer intervention queries [76].
Also, intervention reasoning does not support diagnostic reasoning since the

intervened variable is made independent of its causes.
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Figure 21 Garden BN after turning the sprinkler on

4.5.3 Counterfactual Reasoning

The third level of the ladder of causation entails imagining what would have happened
if the observed events were different. Counterfactual reasoning is essential since “it
allows us to learn from history and the experience of others” [75], [76], [107]. For
instance, determining why some risk controls are effective on some systems can

inform better risk controls for other systems.

Counterfactual reasoning combines observation and intervention reasoning; hence, it
is at the top of the ladder of causation. It is implemented in BNs using the twin network
method proposed by Balke and Pearl [109]. The twin network method uses two
identical networks, one network represents the real world, and the other represents the
counterfactual world. The two networks are connected by shared background variables
u. The real world is modelled using observations, and the counterfactual world is
modelled using interventions. The background variables are essential in the network
since they share information learnt from the real world with the counterfactual world.
As a result, predictions using the counterfactual world are performed under the same
conditions as the real world, allowing us to compare the outcomes of both worlds
accurately. Pearl suggests the following three steps for computing counterfactuals
which are encoded in the twin network model [75], [76]:

1. Abduction: Use the evidence e in the real world to update the information of

the background variables, i.e., P (u | e)
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2. Action: Apply the do-operator to modify the model based on the counterfactual
assumptions made.

3. Prediction: Make predictions using the modified model and revised
background information.

For example, suppose we observe that the sprinkler is on, and the garden is wet. In this
case, we might wonder whether the garden would be wet if the sprinkler is off. We
can answer this counterfactual question using the BN shown in Figure 22. In the real
world, we enter our observations, and the BN uses this information to update the
information about the season (background variable), which is shared with the
counterfactual world. In the counterfactual world, we intervene on the sprinkler setting
its value to “Off” to compute whether the garden will be wet. According to the BN
shown in Figure 22, there is a 30% chance that the garden will be wet if the sprinkler

is off.

Season

Dry Season 4 T9.07%

20.93%

Rain Season 4

Real World / / \ Counterfactual World
i Rain Rain Sprinkler

Sprinkler

Off 4 65.891% Mo 67.442% Off 100%

[

on A 100% Yes 34.109% Yes 32.558% an
4@%‘ D/ \ / [Scenario 1 : Off
Garden Wet Garden Wet

Mo Mo 4 70.023%
Yes 100% Yes 29.977%

Figure 22 Garden BN counterfactual reasoning
4.6 Chapter Summary
In this chapter, we introduced Bayesian networks. We described the methods used to
build complex BNs and to perform inferences in BNs. Finally, we described the types

of reasoning done using BNSs. In the next chapter, we review the use of BNs in the

safety domain.
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Chapter 5 Review of the use of Bayesian Networks in

the Safety Domain

In this chapter, a review of the use of BNs in the safety domain is presented. We review

their applications in two areas relevant to the work presented in this thesis:

1. Safety, reliability and risk assessments

2. Model-to-model transformation/mapping approaches

The material presented in this chapter informs the BN development method presented

in Chapter 6 and applied in Chapters 7 and 8.
5.1 Safety, Reliability and Risk Assessments

Safety-critical systems are used in many products and industries, such as maritime,
railway and aviation industries. Despite the benefits these systems offer, they pose a
serious risk to our health and safety when they fail. As a result, during production and
post-production, the safety, reliability, and risk of these systems must be continuously
assessed and judged acceptable by manufacturers and safety regulators. Commonly
used approaches for assessing the safety, reliability, and risk of systems include Fault
Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA) and Bow-tie models
(see Chapter 3 for a review of these risk analysis methods). However, these approaches
have several limitations, such as the inability to handle multi-state variables,
uncertainties in system behaviour and failure data, and dependencies among system
components (as discussed in Chapter 1). These limitations are resolved using Bayesian
networks. BNs are suitable for this task since they are a robust, rigorous, normative
method for modelling uncertainty and causality. They have been used in several
industries to assess the safety, reliability, and risk of systems [110], [111]. A review
of their applications in energy, defence, railway, aviation, maritime, medical, software
and product safety industries relevant to the work described in this thesis is
undertaken.

5.1.1 Energy Industry

Lee et al. [112] used BNs for the probabilistic risk assessment of nuclear waste

disposal. They noted that for events in a controlled environment such as a nuclear
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power station, risk could be easily assessed using traditional risk analysis methods
since relevant data is available. However, traditional risk analysis methods are not
applicable to rare events such as nuclear waste disposal, whose data is limited and
often uncertain. Therefore, the authors proposed using BNs to assess the risk
associated with nuclear waste disposal. Since Bayesian networks are a rigorous
normative method for modelling uncertainty and causality, it is clear why the authors
used this approach for assessing the risk associated with nuclear waste disposal. This
research demonstrates the use of BNs for performing risk assessment with uncertain

data, which is relevant to the work done in this thesis.

Wu et al. [113] used BNs for fault detection and diagnosis (FDD) in nuclear power
plants. Their experiments show that BNs can perform FDD with incomplete data and
multi-sensor information at a nuclear power plant. Ur et al. [114] used BNs for
reliability analysis of nuclear instrumentation and control systems. Chojnacki and
Audouin [115] developed an expert system based on BNs for fire safety analysis in

the nuclear area.

Bayesian networks have also been used for the reliability assessment of power
systems. Yu et al. [116] used BNs for the reliability assessment of power systems.
They conclude that BNs enhance reliability assessment since they can compute
posterior probabilities, handle uncertainty and manage dependency among relevant
variables. Daemi et al. [117] developed a BN for the reliability assessment of
composite power systems. The authors used the BN to perform probabilistic
assessments, such as the criticality ranking of system components. Other applications
and review of BNs for the reliability and risk assessment of power systems include
Yongli et al.[118], Jie et al. [119], Weber et al. [110], Kabir et al. [111] and Sykora et
al. [120].

5.1.2 Defence Industry

Neil et al. [121] used BNs to predict the reliability of military vehicles. They noted

that the reliability of military vehicles is dependent on both objective and subjective

information. Objective information includes statistical data such as failure rate

obtained from trials and use. Subjective information includes information about the

manufacturer’s reputation, design and process information. However, traditional

methods used for reliability evaluations of military vehicles cannot incorporate
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subjective information; hence the authors proposed using BNs. The authors noted that
BNs could improve reliability predictions of military vehicles since it can be done

earlier in the life cycle using design and process information.

In their proposed method, historical data about similar systems are used to learn the
failure rate distribution of the system. The failure rate distribution is then revised using
operational data obtained from tests and design and process information. An example

of a BN used to estimate the quality of the design process and revise the reliability

design phase
contraints

estimation of a military vehicle is shown in Figure 23.
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Figure 23 Example of BN used to predict the design process quality and revise the
failure rate of military vehicles

In this BN example, the quality of the design process is dependent on measurable
factors and indicators such as design staff quality and design document quality. Once
the quality of the design process is determined, it is then used to revise the prior failure
rate distribution Apre. The revised failure rate distribution is Apest. One key finding of
this work is the use of historical data from similar systems, manufacturer’s reputation,
and design and process information to estimate the reliability of military vehicles. This

is very valuable and is applicable to the work presented in this thesis.

Banghart et al. [122] used BNs to assess the risk of an EA-6B aircraft. Their research
concluded that BNs are suitable for assessing the risk of potential degraders to

readiness, such as high failure systems and excessive repair times. Crispim et al. [123]
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used BNs to assess the risk associated with military shipbuilding projects. They
concluded that BNs are suitable for this task since they can assess risk with limited
data, especially in the early stages of the project, handle the interdependencies among
risk events and simulate the effect of risk mitigation methods. Other applications and
review of BNs for reliability and risk assessment in the defence industry include
Weber et al. [110], Kabir et al. [111] and Hudson et al. [124].

5.1.3 Railway Industry

Marsh and Bearfield [125] used BNs to model accident causation in the UK railway
industry. They noted that events such as Signals Passed at Danger (SPADSs), usually
attributed to human error, have other causes, such as organisational factors. However,
traditional risk analysis methods such as event trees do not include organisational
factors as part of the sequence of events leading to the accident (since they influence
accidents indirectly). As a result, the scope of the accident investigation is limited.
Given the limitations of traditional risk analysis methods, the authors proposed using
BNs to model operational accidents. Figure 24 shows an example of a proposed BN
model incorporating organisational factors to estimate the risk levels of SPAD
accidents. In this BN example, the event nodes are shaded, and the factors that

influence the event nodes and the occurrence of the SPAD scenario are unshaded.

Driver route
knowledge

Infrastructure
factors

Pressure on driver Driver alertness

Late brake
application

Read across at
proceed

Read across Brakes not applied

Figure 24 BN for SPAD Scenario: Read Across an Adjacent Signal
The key aspect of the work that is applicable to the work described in this thesis is the

use of organisational factors to produce more reliable risk estimates.

Complementing their previous work in the railway industry, Marsh and Bearfield [20]
proposed a systematic method of translating event trees into BNs described in Section
5.2.2. In [63] the authors also translated fault trees to BNs based on the work by
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Bobbio et al. [18] described in Section 5.2.1. The resulting BN was used to model the

risk at different locations on a railway network for derailment accidents.

One key finding of the work is that event and fault trees can be easily translated to
BNs to produce more accurate risk estimates. Though translating event and fault trees
to BNs for risk analysis is not the focus of this thesis, the work provides useful insights
on integrating and extending traditional methods using BNs. Other applications and
review of BNs for risk assessment in the railway industry include Castillo et al. [126],
Lesniak et al. [127], Kabir et al. [111] and Huang et al. [128].

5.1.4 Aviation Industry

In the early 2000s, the Federal Aviation Administration (FAA), National Aeronautics
and Space Administration (NASA) and Luxhoj and Coit [129] adopted BNs as the
basis for their aviation system risk model (ASRM). ASRM uses BN modelling to
identify and understand the causal relationships among the factors that cause aviation
accidents and to assess the risk of new aviation safety products and system failures
[129][130]. For instance, Luxhoj and Coit [129] used the ASRM method to model
aircraft accidents. The authors developed BNs using case studies and expert
knowledge. For example, relevant variables and their causal interactions were
identified using expert knowledge and case study data such as accident reports.
Conditional probability tables (CPTs) were defined using available data and expert
knowledge. Expert knowledge was essential for BN development since aviation
accidents are rare events. The authors' study results indicate that BNs are a suitable
method for probability risk modelling of aviation accidents. A key aspect of the work
related to the work described in this thesis is identifying relevant variables and their

causal interactions using expert knowledge and data such as accident reports.

Neil etal. [131] used BNs to model an air traffic control environment to estimate safety
and operational risks. The authors used a barrier model describing the sequence of
events that led to an aircraft collision to identify the relevant variables and causal
interactions for the BN. Once all relevant variables were identified, the authors used
the idiom-based approach to build the BN. This approach entails organising variables
into small BN fragments and connecting these fragments to build the BN (see Section

4.3.1.1). Their results show that BNs can be used to model safety and operational risks.
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A key aspect of the work related to the work described in this thesis is organising

relevant variables into small BN fragments to build BNs.

Washington et al. [132] used BNs for system safety assessment of remote pilot aircraft
systems. The authors' interest in using BNs stems from the ability of BNs to handle
uncertainties in the system safety assessment process. Their results show that BNs can
be used for safety assessments of novel or complex systems with uncertainty in system

behaviour or available data.

Other applications of BNs for safety and risk assessment in the aviation industry
include Shih et al. [133], Zhang et al. [134], Wang et al. [135], Chen and Huang [136],
and Ale et al. [137].

5.1.5 Maritime Industry

Hanninen and Kujala [138] and Fan et al. [139] used BNs to investigate the impact of
human factors on the risk of ship collisions. Their research shows that BNs can inform
appropriate risk mitigation measures, as they provide valuable information on factors
that contribute to ship collisions. Trucco et al. [140] used BNs to assess the risk of the
maritime transport system taking into account human and organisational factors.
Montewka et al. [141] also used a BN to assess the risk of maritime transportation

systems.

Zhang et al. [142] used a BN and a formal safety assessment to assess the navigational
risk of the Yangtze River. In their proposed BN shown in Figure 25, they combined
the consequence of the accident and the probability of the accident to estimate the
navigational risk. They concluded that using BNs allowed them to identify the factors

that have the largest influence on navigational risk.

A key aspect of the work discussed in this section relevant to the work described in
this thesis is incorporating organisational and human factors in risk estimation. Other
applications and review of BNs in the maritime industry include Weber et al. [110]
and Kabir et al. [111].
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Figure 25 Navigational Risk BN
5.1.6 Medical Industry
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This section is adapted from Publication 4 [25], previously published by Arxiv.org.

Haddad et al. [143] developed a BN to predict fatigue fracture of a cardiac lead. They
validated the results of the BN by comparing it to the field performance data for
cardiac leads available on the market. Medina et al. [144] developed a BN to identify
the critical factors that affect the decision time for the Food and Drug Administration
(FDA) to approve a medical device for market release. Zhang et al. [145] developed a
BN to detect faults associated with medical body sensors network that collects and
uses physiological signs for patient health monitoring. Rieger et al. [146] proposed a
Bayesian risk identification model (BRIM) to predict and reduce use error risk during
the development of medical devices. Li et al. [147] used a dynamic BN to assess the
risk of device failures and human errors in healthcare. Other applications and review
of BNs in the medical industry include Kabir et al. [111], Kyrimi et al. [148], Lucas et
al. [149] and McLachlan et al. [150].

A key aspect of the research discussed in this section relevant to the work in this thesis
is the use of BNs to assess the risk of failures and injuries associated with medical
devices. However, all the proposed BNs are tailored and are not generalisable. Hence,
a generic BN for medical device risk assessment is needed to assess the risk of
different types of medical devices. In Chapter 7, we present a generic BN for medical

device risk management.
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5.1.7 Software Industry

Fenton et al. [151]-[154] used BNs to predict defects and estimate the reliability of
complex software systems. For instance, they created the AID tool (powered by BNs)
to predict software defects in consumer products for Philips. The authors built software
reliability models using object-oriented Bayesian networks (OOBNs), empirical data
and expert knowledge. The OOBNs approach [155] entails creating predefined BN
fragments called classes and using instances of these classes called risk objects to
build the BN. The authors created classes for activities done during each life cycle
phase. For instance, the Rework class shown in Figure 26 was created to model rework
activities. Instances of the different classes were then linked to create a full lifecycle
BN model.

Rework process
quality

Hework process
overall
effectiveness

Prob of fixing
defect

Rework effort

Figure 26 Rework BN Fragment

Other applications and review of BNs in the software industry include Weber et al.
[110], Kabir et al. [111], Helminen et al.[156], [157], Bai [158] and Roshandel et al.
[159]. For instance, Bai [158] used BNs to predict software reliability with an
operational profile. Roshandel et al. [159] used BNs to predict software reliability at

the architectural level.
5.1.8 Product Safety Industry

This section is adapted from Publication 2 [15], previously published by the Journal
of Safety Research.

Suh [160] developed a product risk assessment system using a BN to assess product
risk based on injury information from the Korea Consumer Agency. They evaluated
33 children’s products and compared the results with RAPEX. Berchialla et al. [161]

used a BN to estimate the risk of ingestion, inhalation, and insertion of consumer
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products in children aged 0-14. Their proposed BN, shown in Figure 27, was used to
identify potential injury scenarios that can lead to hospitalisation. The BN structure
was learnt using the K2 algorithm with data from 672 cases and validated using 10-
fold cross-validation. Their results show that the removal technique for ingested
foreign bodies had the greatest impact on the risk of hospitalisation. Also, the risk of
hospitalisation is reduced with adult supervision. The authors noted that BNs are
suitable for quantitative risk assessment since the causal relationships among the
variables are explicit. Also, the ability to perform diagnostic and predictive reasoning

in BNs allows factors affecting the risk of hospitalisation to be easily identified.

Removal
‘ Hospitalization I‘ technique .

-
Q
[x]
=]
=]
[=]
=

Foreign Body
Adult Presence

Complications

Figure 27 BN for quantitative risk assessment of foreign body injuries in children
Berchialla et al. [162] also compared the BN approach to other quantitative risk
assessment methods, such as neural networks, classification trees, and logistic models.
Their results indicate that BNs are the best method for assessing safety risk because

they are easier to interpret and provide accurate predictions.

A key observation of the work reviewed in this section relevant to the work in this
thesis is the limited use of BNs for product safety risk assessment. This may be due to
the lack of a systematic approach for building BNs for different product safety cases.
For instance, the process used for building the two published BNs in this domain is ad
hoc and presents little or no opportunity for repeatability and standardisation.
Berchialla et al. [161] used automated techniques to learn BN structure and

parameters, and Suh [160] did not provide any details on how the structure of the BN
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was determined. For many product safety cases, automated learning may not be
feasible or practical, and the structure and parameters must be elicited from experts
and literature. Also, Berchialla et al. [161] BN cannot be used to assess the risk of a
wide range of consumer products since its structure and parameters are not applicable.
Though Suh [160] used a BN to assess the risk of different children's products, it is
unclear if this BN is generalizable since the authors did not provide a causal diagram
that explicitly describes the structure of the BN. For this reason, a generic BN is
needed for product safety risk assessment and a standard method for building such a
BN that is applicable to a wide range of products and safety cases. In Chapter 6, we
present a generic method for building BNs for product safety risk management and in

Chapter 8 we present a generic BN for consumer product risk assessment.
An overview of BN applications in the safety domain is shown in Table 7.

Table 7 Overview of BN applications in the safety domain

Industries Contributions

Energy Lee etal. [112], Wu et al. [113], Ur et al. [114], Chojnacki and Audouin [115], Yu
et al. [116], Daemi et al. [117], Yongli et al.[118], Jie et al. [119], Sykora et al.
[120], Weber et al. [110], Kabir et al. [111]

Defence Neil et al. [121], Banghart et al. [122], Crispim et al. [123], Weber et al. [110],
Kabir et al. [111], Hudson et al., [124]

Railway Marsh and Bearfield [20], [63], [125] Castillo et al. [126], Les$niak et al. [127],
Huang et al. [128], Kabir et al. [111]

Aviation Netjasov et al. [130], Luxhoj and Coit [129], Neil et al. [131], Washington et al.

[132], Chen and Huang [136], Ale et al. [137], Shih et al. [133], Zhang et al. [134]
Wang et al. [135]

Maritime Hanninen and Kujala [138], Fan et al. [139], Trucco et al. [140], Montewka et al.
[141], Zhang et al. [142], Weber et al. [110], Kabir et al. [111]

Medical Haddad et al. [143], Medina et al. [144], Zhang et al. [145], Rieger et al. [146], Li
etal. [147], Kyrimi et al. [148], Lucas et al. [149], McLachlan et al. [150], Kabir et
al. [111]

Software Fenton et al. [151]-[154], Bai [158], Roshandel et al. [159] Weber et al. [110],

Kabir et al. [111], Helminen et al.[156], [157]

Product Safety | Suh [160], Berchialla et al. [161], Berchialla et al. [162]
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5.2 Model-to-model Transformation / Mapping Approaches

BNs have been used extensively as a model-to-model transformation/mapping
approach in the safety domain. Several mapping approaches have been proposed to
extend the functionality of commonly used risk analysis tools such as fault trees. In
the following subsections, we review these approaches since they complement the

work described in this thesis.
5.2.1 Translating Fault Trees into BNs

Fault Trees (FTs) (see Section 3.3) have been used extensively in the safety domain
for modelling the reliability of systems [64]. However, despite their widespread use,
they have limitations, such as handling multi-state variables (see Section 1.3). Given
the limitations of FTs, Bobbio et al. [18] proposed a pioneering method for translating
any fault tree into a BN. The authors noted that BNs resolve the limitations associated
with FTs and extend their functionality by handling multi-state variables, sequence-
dependent failures and common cause failures. The proposed method for translating
FTs to BNs consists of the following steps:

1. Create a root node in the BN for each basic event in the FT.

2. Assign the probabilities of the basic events in the FT to the equivalent root
nodes in the BN.

3. For each logic gate in the FT, create a logic gate node in the BN.

4. Connect the logic gate nodes in the BN as they are connected in the FT.

5. Assign the equivalent conditional probabilities of the logic gates in FT to the
logic gate nodes in BN.

Figure 28 and Figure 29 show the proposed method applied to fault trees AND and
OR gates, respectively.
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C=AANDB

Fault Tree: AND Bayesian Network:
Gate AND Gate

Figure 28 Fault Tree AND Gate and BN Equivalent

C=AORB .

. : ‘ CPT for Node C (AND Gate)
A True False
B True | False | True | False
: C=True e
‘ ° ‘ ° C = False 0 1 1 1

Fault Tree: OR Bayesian Network:
Gate OR Gate

Figure 29 Fault Tree OR Gate and BN Equivalent
This research shows the ease with which fault trees can be translated into BNSs. It also
illustrates how BNs can be used to complement and extend the functionality of
commonly used risk analysis methods. Other research illustrating the conversion of
FT to BNs includes Abimola et al. [163] Castillo et al. [164] and Mahadevan et al.
[165].

5.2.2 Translating Event Trees into BNs

In the safety domain, event trees (ET) (see Section 3.4) are used to analyse the

sequence of events that can lead to accidents in a system [13], [20]. However, ET

cannot explicitly represent the state of the system and its environment and how these

affect the sequence of events [20]. Also, ET cannot model events that are not
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dependent on the hazard but influenced by other factors [13]. Given these limitations,
Bearfield and Marsh [20] proposed using BNs to extend the functionality of ET. They
proposed a pioneering method to translate any ET to a BN. Their model to model
transformation approach is described using a generic BN representation of an event
tree shown in Figure 30, accompanied by rules for linking event nodes to event nodes

and event nodes to the consequence node.

k ) .’"
. i -
. | .
s H .
. ! K
. ' ‘
\ | .
caonsequence

Figure 30 Generic BN representation of an event tree
In Figure 30, nodes e, ez, and es represent the events. Events are connected to the
consequence node using consequence arcs (represented by the dotted lines). Events
are connected to other events using causal arcs (represented by the solid lines). The
number of nodes used in the BN is dependent on the number of events in the ET. The
following rules are used for linking event nodes to event nodes and event nodes to a

consequence node:

1. An event node is connected to the consequence node only if the event node
influences the probabilities of the states of the consequence node. For example,
in the event tree A shown in Figure 31, the consequences C1 and C2 are
determined by the combination of events e; and e, that have occurred; hence
in the equivalent BN shown in Figure 32, these event nodes are the parents of

the consequence node.
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Figure 32 BN equivalent for Event Tree A

2. Anevent node B is connected to a previous event node A only if event node B
is conditionally dependent on event node A. For example, in the event tree B
shown in Figure 33, the outcome of event ez is not dependent on event e1; hence

the two events are conditionally independent. In the equivalent BN shown in

Figure 34, there is no arc linking event e; and event e.
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Figure 34 BN equivalent for Event Tree B
Using a train derailment case study, the authors translate event trees used to analyse
the consequences of a derailment into BNs. The BNs were used to calculate accident
probabilities in different scenarios. This research shows the ease with which event
trees can be translated into BNs. Similar to Bobbio et al. [18] work discussed in the
previous section, it shows how BNs can be used to complement and extend the

functionality of commonly used risk analysis methods.
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5.2.3 Translating Bow-tie Models into BNs

Khakzad et al. [166] translate a bow-tie (BT) model into a BN for the safety analysis
of process systems. Since a bow-tie model composes a fault tree and an event tree, the
authors used the methods proposed by Bobbio et al. [18] and Bearfield and Marsh [20]
to translate the fault tree and event tree components, respectively, to a BN. They tested
these approaches by translating a simple bow-tie model for a gasoline release accident
shown in Figure 35a into a BN model shown in Figure 35b. Given the results of their
experiment, they proposed an algorithm for mapping BT into BN, summarised in
Figure 36. The authors then applied their proposed algorithm to a vapour ignition case
study for verification. Their results indicate that a BT model can easily be translated

to a BN for safety analysis.
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Figure 35(a) Bow-tie model example (b) BN Equivalent
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Figure 36 Bow-tie to BN mapping algorithm

An overview of BN mapping approaches in the safety domain is shown in Table 8.

Table 8 Overview of BN mapping approaches

Models BN Mapping Contributions

Fault Tree Bobbio et al. [18], Abimola et al. [163] Castillo et al. [164] and Mahadevan et
al. [165]

Event Tree Marsh and Bearfield [20]

Bow-tie Khakzad et al. [166]

5.3 Promoting the use of BNs in the Product Safety domain

The literature review provides evidence that BNs are used to model many complex
problems in the safety domain. However, despite their widespread use in this domain,
their application in the product safety domain is limited (see Table 7). Their limited
use may be due to the lack of explicit principled guidelines for building BNs for the
many different product safety cases. For instance, the process used for building the
two published BNs in this domain is ad hoc and presents little or no opportunity for
repeatability and standardisation. Berchialla et al. [161] used automated techniques to
learn BN structure and parameters, and Suh [160] did not provide any details on how
the structure of the BN was determined. For many product safety cases, automated
learning may not be feasible or practical, and the structure and parameters must be
elicited from experts and literature. Although there are some established mapping and
knowledge representation methods [18]-[20] to define BN structure and parameters,
for many product safety cases, these methods may not be feasible since the safety risk
is based on the interaction of hard factors (e.g., systems) and soft factors (e.g., users).
In these situations, the BN must be developed using expert knowledge and literature.
However, the literature lacks a systematic, repeatable method or guidelines for
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developing BNs for product safety risk management using expert knowledge and
literature. This problem is tackled in the next chapter using the idiom-based approach

proposed by Neil et al. [19].
Other challenges to the widespread use of BNs in the product safety domain include:

1. The lack of significant competence and understanding in Bayesian networks:

Developing, validating, and using BNs can be challenging for non-experts.

2. The need for BN models to be able to stand up to scrutiny, such as civil or legal
challenges in a post-accident scenario: To stand up to scrutiny, a BN model
should be robust, transparent, based on accurate and reliable data, validated,

and comply with relevant standards and laws.

3. Encouraging the use of the BNSs, given that, unlike traditional methods,
Bayesian approaches may not be explicitly referenced in safety risk and
reliability standards.

4. Lack of methods for easy deployment to end users (discussed in Chapter 10).
5.4 Chapter Summary

In this chapter, the application of BNs in the safety domain is reviewed. The literature
review revealed that despite the widespread use of BNs in the safety domain, their
application is limited in the product safety area. Their limited use in this area may be
due to several factors including the lack of explicit principled guidelines for modelling
different product safety cases. Although there are some established methods for
defining BN structure and parameters, some of these methods may not be feasible for
many product safety cases, and the BN must be developed using expert knowledge
and literature. Therefore, a systematic method or principled guidelines are needed to
develop BNs specifically for the product safety domain.

In the next chapter, we present a novel approach for developing BNs for many
different product safety cases based on causal idioms. We believe that these special
types of idioms, called product safety idioms, can help promote the use of BNs in the
product safety domain by simplifying the knowledge elicitation task. They also

complement existing methods of BN development described in previous research.
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Chapter 6 An idiom-based approach for Product
Safety Risk Management

In this chapter, the product safety idioms for building product safety BNs are
presented. These novel idioms are illustrated using product safety case examples.
Hence this chapter supports Hypothesis 1 (it is possible to develop a generic method

to build BNs for product safety risk management).

In Section 6.1, an overview of the product safety idioms is presented. In Section 6.2,
idioms for risk analysis are presented, and idioms for risk evaluation are presented in
Section 6.3. In Section 6.4, the process for building BNs using the idioms is described
and in Section 6.5 the benefits of the idioms are discussed. The proposed idioms are
applied and validated in the case study examples presented in Chapters 7 and 8. The
material presented in this chapter has previously been presented in Publication 3 [24]

published by Arxiv.org.
6.1 Product Safety Idioms Overview

In the safety risk domain, people make risk management decisions based on complex
interrelated factors such as users, processes, and systems. The literature review (see
Chapter 5) provides evidence that the application of BNs to safety risk management is
not novel, but there is limited or no principled guidelines for developing BNs for

product safety risk management using expert knowledge and literature.

A BN for product safety risk management should include all relevant variables
affecting risk and follow the logical causal process of how systems lead to hazards and
harm. When building BNs using knowledge elicitation techniques, the risk modeller
recognises and uses logical causal patterns to connect elicited variables. ldioms
represent generic logical causal patterns of uncertain reasoning that can be combined
and reused to model complex problems [19], [88]. Since idioms follow the human
reasoning process, they are the basis of our proposed method to build BNs for product

safety risk management.

The underlying assumption of the idiom-based approach is that large complex
problems can be decomposed into smaller manageable components or modules called
idioms. Though Neil et al. [19] generic idioms (discussed in Section 4.3.1.1) are
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applicable in many domains, including safety, this chapter proposes new types of
idioms called product safety idioms, specifically for building product safety BNs.
These idioms are tailored to the requirements of the different phases of the risk
assessment process, specifically risk analysis and risk evaluation. They are based on
the logical causal relationship among the relevant variables used to estimate and
evaluate risks associated with products (systems), such as hazards, injuries, risk

controls, manufacturer’s reputation and use information.

We believe that the product safety idioms can help promote the use of BNs in the
product safety domain by simplifying the knowledge elicitation task. They provide a
library of BN patterns for product safety risk management. The risk modeller maps
elicited knowledge to suitable idioms to build practical BNs. While the proposed
idioms are sufficiently generic to be applied to a wide range of product safety cases,
they are not prescriptive or complete and should be considered as a guide for
developing suitable idioms for product safety risk management using data and
knowledge.

In this chapter, we base our discussion on the product safety idioms using two real-
life product examples: a hammer (Brand: Chetak Tools, Model: 1402CKAO01) [167]
and a car engine (Brand: Ferrari, Model: F142, F149) [168]. These products were
previously identified by national safety regulators in the EU as posing a risk of injury
to users and were reported to Safety Gate. Safety Gate [169] is a system used to share
information about dangerous non-food products among the national safety regulators

in the EU. The real-life product examples and related injury scenarios are as follows:

1. Hammer (Brand: Chetak Tools, Model: 1402CKAO01) [167]: “The hammer
head has been made from unsuitable material, and the metal parts may detach
and injure the person using the hammer or people nearby. The product does

not comply with relevant European standard EN10083.”

2. Car Engine (Brand: Ferrari, Model: F142, F149) [168]: “A possible crack in
the crankshaft may lead to engine failure and might cause the engine to seize,

which may lead to a road accident.”

For additional information about the product examples, please see the risk reports in

Appendix A. It is important to note that testing and injury information, such as the
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number of failures, are not included in the safety reports; thus, the product safety

idioms are illustrated using hypothetical data.

There are no product safety idioms associated with the risk/hazard identification phase
of the risk assessment process. The risk identification phase entails identifying the
system, risks, hazards, hazardous situations and associated harm. Hence the
information presented for the product safety examples is documented in the risk
identification phase. This information is then used to identify variables that affect risk.

The identified variables are then organised into idioms for risk analysis and evaluation.
6.2 Product Safety Idioms for Risk Analysis

The second stage of the risk assessment process is risk analysis (see Figure 1).
Traditionally, given the information presented in the injury scenario during the
risk/hazard identification stage for a particular system, the risk is computed as P X S,
where P is the probability of injury and S is the severity of the injury. However, this
method of estimating risk has several limitations discussed in Section 1.3, which are
resolved using BNSs. In this section, we show how the information gathered during the
risk/hazard identification stage can be organised into novel idioms to estimate the
overall risk of a system. Estimating the risk of a system includes considering factors
such as reliability, rework and reported injuries; hence the proposed idioms are

classified based on their scope as follows:

1. Reliability: These idioms model the reliability of a system in terms of failure
rate (i.e., probability of failure on demand and time to failure) using data

collected during testing or operational field use.

2. Rework or Maintenance: These idioms model the probability of repairing

identified faults of a system.

3. Requirement: These idioms predict whether the system complies with defined

operational and safety requirements.

4. Quality: These idioms estimate the quality of a particular entity or process,
such as manufacturing process quality, that may affect the overall reliability

of a system.
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5. Failure, Hazard and Injury Occurrence: These idioms model hazard or failure
occurrence and related injuries for a system given relevant factors such as

device use.

6. Risk: These idioms estimate the overall risk of a system.
6.2.1 Reliability Idioms

Assessing the reliability of a system is essential for estimating risk and informing risk
control measures since failures and hazards pose a potential risk to our health and
safety. The two primary reliability metrics for systems are the probability of failure
on demand (PFD) and time to failure (TTF) [54]. The probability of failure on demand
(PFD) relates to the reliability associated with a finite set of uses of the system. For
instance, if the system is a car, we might be interested in the probability of failure for
a given journey. In contrast, time to failure (TTF) relates to the reliability associated
with a system operating in continuous time. For instance, for a car, we may also be
interested in the number of miles it could drive before a failure occurs. For complex
systems such as an aircraft, it is inevitable that we will need to consider both TTF and
PFD measures to determine its overall reliability because some of its sub-systems, like
the engine, require the TTF measure while others, like the landing gear system, require
the PFD measure.

In Subsection 6.2.1.1, we describe idioms for modelling PFD, and in Subsection

6.2.1.2, we describe idioms for modelling TTF.
6.2.1.1 Idioms for Modelling Probability of Failure on Demand (PFD)

There are three idioms in this category:

1. Hazard or failure per demand idiom (generic)

2. Hazard or failure per demand with limited data idiom

3. Probability of an event with uncertain accuracy idiom
Please note that the proposed idioms for handling limited data and uncertain accuracy
are situational; model experts may develop other idioms based on the type of censored
data.
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Hazard or Failure per Demand Idiom (Generic)

Once hazards and failures are identified during the risk/hazard identification stage,
product testing (physical or simulation) is done to quantify and learn the ‘true’
reliability or safety of the product. During product testing, the product is used many
times, and each observed failure or hazard is recorded, respectively. In this thesis, we
define a demand as a measure of usage; for example, a washing machine is typically
used on average 270 times per household per year in the UK. Some products, such as
certain medical devices, e.g., syringes, are intended to be only used once, i.e., single-
use devices. Given sufficient failure data for a system collected during testing (or
operational use), we can learn an estimate of the ‘true’ probability of hazard or failure
per demand as a probability distribution. The more demands we observe, the smaller

the variance (uncertainty) we have about this distribution.

The generic hazard or failure per demand idiom (see Figure 37) models the probability
distribution of the hazard or failure per demand based on the number of hazards or
failures observed during a set of demands (trials). This idiom uses a Binomial
distribution for the number of observed hazards or failures since each demand can be
considered a Bernoulli trial, with either success or failure as a result (see Table 9). In
situations where there are no prior data for the ‘probability of the hazard or failure per
demand’ node, we use an ‘ignorant’ uniform prior. For instance, assuming a uniform
prior for the hammer example (see Section 6.1), if we observe the hammer head
detaching (hazard) 10 times in 1000 demands during testing, we can use the idiom to
estimate the reliability of the hammer as a probability distribution. In Figure 38, the
idiom estimates that the mean probability of the hammer head detaching per demand
is 0.01 with a variance of 1.11E-5.
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Figure 37 Hazard or failure per demand idiom (generic)

Table 9 NPTs for nodes in the Hazard or failure per demand idiom

Node Name NPT

Observed hazards or failures Binomial (n, p), where n = demands and p =
probability of hazard or failure per demand

Demands Uniform (0, 1E9)
Probability of hazard or failure per Uniform (0,1)
demand

Probability hammer head
126
Number of uses of the A3
hammer 1]

[Scenario 101000 |

Looa
G000
2100
20
£E0D

Number of times
hammer head
detaches

Scenario1:10

Figure 38 Hazard or failure per demand idiom instance
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Hazard or Failure per Demand with Limited Data Idiom

For some systems, it will neither be feasible nor possible to obtain sufficient data from
testing to estimate their ‘true’ reliability. In these situations, the hazard or failure per
demand idiom can be extended to incorporate testing data from previous similar

systems (if available) to estimate the ‘true’ reliability or safety of the system.

The hazard or failure per demand with limited data idiom is shown in Figure 39, and
instances are shown in Figure 40 and Figure 41, respectively. This idiom consists of
two components: the first component models the PFD of the current system, and the
second component models the PFD of the previous system. The results of both
components are combined using a weighted formula shown in Equation 8 to determine

the overall PFD for the current system:

Equation 8:

QCurrent system overall = r X HPrevious system + (1 - T) X HCurrent system

Where Op,epious system represents the PFD learned from the previous system,
Ocurrent system  Yepresents the PFD learned from the current system,
Ocurrent system overanr TEPIESENts overall PFD for the current system, and r is a
probability that represents the relative weight given to PFD from the previous system

versus the current system.

Imagine that no testing data is available for the current system. In that case, the idiom
can estimate the reliability using only testing data from a previous similar system, as
shown in Figure 40. In this example, the idiom estimates the reliability of the hammer
(mean PFD is 0.125 with a variance of 8.7E-5) using testing data from a previous
similar hammer (200 failures in 2000 demands); hence r = 1 or 100%. Also in this
example, we assume there were “minor differences” between the hammers and their
testing. In situations with limited testing data for the hammer, as shown in Figure 41,
the idiom can combine limited testing data for the hammer (0 hazards or failures in
500 demands in this example) with testing data from the previous similar hammer to
provide a reasonable estimate for the PFD of the hammer. In this example, we assume
that we rely on 70% of the previous similar hammer data to estimate the overall PFD
of the hammer. The idiom estimates that the mean probability of hammer head

detaching (hazard) per demand is 0.09 with a variance of 8.7E-5. Please note that the
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NPT values for the node ‘PFD adjusted for similarity’ (see Table 10) can be adapted

given the product.

Current System Information
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hazard or failure
per demand for
current system

% dependence on
previous system
data

Demands in

current system

Observed hazards
or failures in
current system

Overall PFD for
current system

Previous System Information

Probability of
hazard or failure
per demand for
previous syste

Demands in
previous system

PFD adjusted for
similarity

Observed hazards
or failures in

previous system

Similarity of

Previous System

Figure 39 Hazard or failure per demand with limited data idiom

Table 10 NPT for the node PFD adjusted for similarity

Parent (Similarity of previous system) Probability of hazard per demand
states
Similar Normal (pfd, 1E-4), where pfd =

probability of hazard per demand for the
previous system

Minor differences Normal (pfd x 1.25, 1E-4)

Major differences Normal (pfd x 2, 1E-4)
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Figure 40 Hazard or failure per demand with limited data idiom instance 1
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Figure 41 Hazard or failure per demand with limited data idiom instance 2

Probability of an Event with Uncertain Accuracy Ildiom

For some products, there may be some uncertainty concerning the number of observed
hazards or failures and, subsequently, their ‘true’ reliability or safety. In these
situations, we need to consider the accuracy of the number of observed hazards or
failures and the true number of observed hazards or failures, given our knowledge

about the former, when estimating the ‘true’ reliability of the product.

The probability of an event with uncertain accuracy idiom shown in Figure 42 models
the uncertainty concerning the number of observed events, e.g., hazards, failures or
injuries for a specified number of demands (trials). The NPT values for the node
‘Number of observed events’ (see Table 11) can easily be adapted given the product.
In Figure 43, for the hammer example (see Section 6.1), suppose we assume that the
number of times we observe the hammer head detaching (100 in 1000 demands in this
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example) is underestimated; then the true number of times the hammer head detaches
will be greater than our observations (in this example the true number of times the
hammer head detaches is greater than 100, with a mean count of 125). Please note that
this idiom can also be adapted to model the uncertainty concerning the number of trials

or demands.

Probability of event

Number of trials

True number of events

Accuracy of reporting
events

Number of ohserved
events

Figure 42 Probability of an event with uncertain accuracy idiom

Table 11 NPT for the node Number of observed events

Parent (Accuracy of reporting events) states Probability of hazard per demand

Overestimated Normal (tne x 1.2, 1E-4 x tne), where tne

= true number of events

Accurate Arithmetic(tne)

Underestimated Normal (max (0, tne x 0.8), 1E-4 x tne)
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Figure 43 Probability of an event with uncertain accuracy idiom instance
6.2.1.2 Idioms for Modelling Time to Failure (TTF)

There are three idioms in this category:

1. Time to failure (or hazard) idiom (generic)
2. Time to failure (or hazard) idiom with summary statistics

3. Probability of failure within a specified time idiom

Time to Failure (or Hazard) Idiom (Generic)

For some products, we are interested in the reliability associated with the product
operating in continuous time. In these situations, we can estimate the mean time to
(next) failure by learning the time to failure (TTF) distribution of the product using
failure data from testing or operational field use. The mean time to (next) failure is the
summary statistic of the time to failure (TTF) distribution. The failure data will be a
unit of time, such as hours, and may come from previous similar products. However,
please note that model experts may develop other TTF idioms to estimate reliability

given available TTF data and other related issues such as censoring.

The time to failure idiom shown in Figure 44 estimates the mean time to (next) failure
for a product when there is a small number n of observed failure times. This idiom has
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n observed failure time nodes, which are used to estimate the failure rate of the
product. The ‘Observed failure time’ and ‘Time to next failure’ nodes are (normally)
defined as an Exponential distribution with the rate parameter as the value of the
‘Assessed failure rate’ node. Other distributions, such as Weibull and Gamma, can be
used to define the nodes since the failure rate for many products is not usually constant
but increases with time due to system use. However, please note that for the TTF
idioms discussed in this chapter, we assume neither system improvement nor
degradation; hence, the time to (next) failure is constant. Imagine that we observe
failure times of 80, 90, 110 and 120 for the car engine example described in Section
6.1. As shown in Figure 45, the TTF idiom estimates that the mean time to (next)
failure for the car engine is 100, and the failure rate is 0.01, given the observed failure

times.

Observed failure
time 1

Assessed failure
rate

Observed failure
time 2

[={ Time to next failure

Observed failure
time n

Figure 44 Time to failure (or hazard) idiom
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Figure 45 Time to failure (or hazard) idiom instance

Time to Failure (or Hazard) Idiom with Summary Statistics

For some products, there may be a large number of observed failure times. In these
situations, it is more convenient to summarise the observed failure times in terms of

their mean p and variance ¢ and use these as parameters to determine the rate value
(i.e !

"' Observed failure time
this approach for handling a large number of observed failure times is situational, and

) of an Exponential distribution. However, please note that

the results are less accurate than using the generic TTF idiom; model experts may
develop other TTF idioms to estimate reliability given available TTF data and other

related issues such as censoring.

The time to failure idiom with summary statistics is shown in Figure 46, and an
instance is shown in Figure 47. In Figure 47, for the car engine example, imagine that
the mean p observed failure time for the engine is 100 and the variance o2 is 250; the
TTF idiom estimates that the mean time to (next) failure for the car engine is 100.
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Figure 46 Time to failure (or hazard) idiom with summary statistics
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Figure 47 Time to failure (or hazard) idiom with summary statistics instance

Probability of Failure within a Specified Time Idiom

99

For some products, we are interested in the reliability of the product operating within
a specified time t. In these situations, we can estimate the probability of failure (or
hazard) for a product within a specified time P(Failure |t) by computing the
probability that the TTF distribution T is less than or equal to the specified time ¢, i.e.,
P(Failure | t) = P(T < t).

The probability of failure within a specified time idiom shown in Figure 48 uses a
discrete node called ‘Assessed probability of failure’ to compute P(T < t). The TTF
distribution T will be derived from the previous TTF idioms. An instance of this idiom
is shown in Figure 49. In Figure 49, for the car engine example, imagine that the car

is used continuously for 10 hours, e.g., a road trip; the idiom estimates the probability



that the engine will fail is 0.1 or 10% given that the estimated mean time to next failure
is 100.

Assessed probability

Time to next failure Usage time

of failure

IF (T ==t, "True", “False™)

Figure 48 Probability of failure within specified time idiom
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Figure 49 Probability of failure within a specified time idiom instance

6.2.2 Rework Idiom

For some products, faults identified during the hazard identification phase are
repairable; however, the success of the repair will depend on the probability of fixing
the fault. The rework idiom [151] shown in Figure 50 incorporates knowledge of the
manufacturer’s rework process quality and rework effort to estimate the probability of
fixing the fault (i.e., design and physical faults). This idiom uses ranked nodes [95] to
define ‘rework process quality’ and ‘rework effort” since their values can be measured
using a subjective ranked scale such as {‘low’, ‘medium’, ‘high’}. These nodes are
then combined to determine ‘rework process overall effectiveness’ (also a ranked

node) and the ‘probability of fixing the fault’ (defined as a continuous node ranging
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from 0 to 1). The NPTs for the nodes in the idiom (see Table 12) can easily be adapted
given the product or system. An instance of this idiom is shown in Figure 51. In Figure
51, for the hammer example (see Section 6.1), suppose that the manufacturer’s rework
process quality and effort are ‘very low’; the idiom predicts that the overall rework
process effectiveness would be ‘very low’ or ‘low’. As a result, the mean probability
of fixing the hammer is very low (i.e., 0.03). Product manufacturers, safety regulators
and model experts may use or adapt this idiom to revise the estimated reliability of the

product given rework and to inform risk management decisions such as product recall.

Rework process
quality

Rework effort

Rework process
overall effectiveness

Probability of fixing
fault

Figure 50 Rework idiom
Table 12 NPTs for the nodes of the Rework idiom

Node Name NPT

Rework process quality States (‘very low’, ‘low’, ‘medium’, ‘high’, ‘very
high’) =0.2

Rework effort States (‘very low’, ‘low’, ‘medium’, ‘high’, ‘very
high’) =0.2

Rework process overall effectiveness TNormal
(wmean(1.0,rework_process,1.0,rework_effort), 0.001,
0,1)

Probability of fixing fault Partitioned expression (Very low:
TNormal(0.01,0.001,0.0,1.0), Low:
TNormal(0.15,0.001,0.0,1.0), Medium:
TNormal(0.4,0.001,0.0,1.0), High:
TNormal(0.6,0.001,0.0,1.0), Very High:
TNormal(0.8,0.001,0.0,1.0))
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Figure 51 Rework idiom instance

6.2.3 Requirement Idiom

For any product, we will be interested in whether the safety and reliability of the
product satisfy safety and reliability requirements defined by standards or safety
regulators. Defined safety and reliability requirements ensure that a system operates
as intended and is acceptably safe for use. For instance, as an extreme example, a
commercial aircraft must satisfy a defined safety and reliability requirement of MTTF
> 10° flying hours to be approved for commercial use. Hence to determine if a product
is compliant, we need to consider the defined safety and reliability value and the actual
safety and reliability value of the product. However, testing alone may not be sufficient
to determine the actual safety and reliability value of products, especially those with
very high reliability requirements, e.g., commercial aircraft, or with limited testing
data, e.g., novel products. In these situations, we need to combine testing information
with other factors, such as information about the quality of the processes and people
involved in product development, to determine the actual safety and reliability value
of a product. The quality of processes or people can be estimated using the Quality

idiom (see Section 6.2.4).

The requirement idiom shown in Figure 52 models whether the actual value of an
attribute A satisfies the defined requirement value of the attribute R by computing the
probability A is less than or equal to R, i.e., P(Compliant) = P(A < R). This idiom
uses a discrete node called ‘Assessed value of attribute’ to compute P(A < R). An

instance of this idiom is shown in Figure 53. In Figure 53, for the hammer example
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(see Section 6.1), the idiom estimates that there is a 15% chance that the defined safety
requirement (0.01 in this example) is satisfied given the probability distribution of the
hammer head detaching (hazard) per demand (mean 0.03 in this example). Please note
that the requirement idiom can be implemented by encoding the requirement value
into the ‘Assessed value or attribute’ node, as shown in Figure 54. Product
manufacturers, model experts and safety regulators may use or adapt the requirement

idiom to inform risk management decisions such as rework.

Actual value of
attribute

Requirement value of
attribute

Assessed value of
attribute

Figure 52 Requirement idiom
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Figure 53 Requirement idiom instance
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Figure 54 Implicit Requirement idiom (a) and instance (b)

6.2.4 Quality Idiom

For novel products, products with limited testing data and products with very high
reliability requirements, other product-related information, such as the quality of the
processes and people involved in its development, can be considered when estimating
the reliability of the product. For instance, for the hammer example, if the
manufacturing process quality is poor, this can increase the likelihood of the hammer
head detaching. However, the quality of a particular process or activity, such as the
manufacturing process, may be latent, difficult to measure or observe. In these
situations, we can use measurable indicators and causal factors to measure the quality

of a particular process or activity.

The quality idiom (shown in Figure 55) models the quality of an activity, process or
variable using indicators and causal factors. This idiom uses ranked nodes [95] to
define variables since their values can be measured using a subjective ranked scale
such as {‘low’, ‘medium’, ‘high’}. Please note that the NPT values for the node
‘Latent quality value’ (see Figure 55) can easily be adapted given the process or
activity. Instances of this idiom are shown in Figure 56 for the hammer example. In
Figure 56a, the idiom measures the quality of the manufacturing process, using

knowledge about product defects and process drifts. In Figure 56b, the idiom measures
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the quality of the organisation using knowledge about customer satisfaction and years

in operation.

NPT for Latent Quality Value node: THormal (wmean
(1.0, Factor 1, 1.0, Factor 2, 1.0, Factor n)), 0.001)

Figure 55 Quality idiom
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Figure 56 (a) Manufacturer process quality instance (b) Organisation quality instance
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6.2.5 Idioms for Modelling Product Failures, Hazards and Injury

Occurrences

Determining the occurrence of failures or hazards and related injuries for a product
(system) is essential for informing appropriate risk control measures to prevent harm
to users and damage to the environment. In this section, we describe the idioms
associated with determining the occurrence of failures or hazards and related injuries
for a product. These idioms address interaction faults and system degradation that can
result in failures or hazards and harm to the user. There are three idioms in this

category:
1. Hazard or failure occurrence idiom
2. Injury event (occurrence) idiom

3. Product injury idiom
6.2.5.1 Hazard or Failure Occurrence Idiom

System degradation and consumer behaviour when using a product, e.g., misuse and
frequency of use, can greatly influence the occurrence of failures or hazards for a
product. Therefore, it is essential to understand how these factors impact the

occurrence of failures or hazards for a product to reduce potential harm to consumers.

The hazard or failure occurrence idiom shown in Figure 57 is an instance of the cause-
consequence idiom [19] (see Section 4.3.1.1) that models the relationship between a
hazard(s) or failure(s) and its causal factors. A factor can be any observable attribute
or situation that increases or decreases the likelihood or uncertainty of a hazard or
failure occurring, such as consumer behaviour. An instance of this idiom is shown in
Figure 58. In Figure 58, for the hammer example, suppose that the consumer does not
use the hammer as intended (minor deviations from intended use), then we expect that
the probability of the hammer head detaching per demand (use) will increase. In this
example, the idiom shows that the mean probability of the hammer head detaching per
demand increases from 0.15 to 0.18. Product manufacturers and safety regulators may
find this idiom useful since it can incorporate all causal factors that affect the

occurrence of failures and hazards for a product.
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Figure 58 Hazard or failure occurrence idiom instance

6.2.5.2 Injury Event (occurrence) Idiom

Given the injury scenario for a product, we will be interested in the probability of
injury given a failure or hazard. We can estimate the probability of an injury given a
failure or hazard by considering the probability of the failure or hazard occurring and
the probability of the failure or hazard causing an injury. The probability of the failure
or hazard occurring can be estimated using reliability idioms (see Section 6.2.1) and
the hazard or failure occurrence idiom (see Section 6.2.5.1); the probability of the
failure or hazard causing an injury can be estimated from injury data obtained from

reputable sources such as hospitals and injury databases.
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The injury event (occurrence) idiom shown in Figure 59 models the probability of an
injury event (i.e., an occurrence of injury) during product use. It estimates the
probability of an injury event P(I) by combining the probability of the failure or
hazard occurring P(H), and the probability of the failure or hazard causing an injury
P(I|H) i.e.,, P(I) = P(H) x (I|H). An instance of this idiom is shown in Figure 60.
In Figure 60, for the hammer example, if the mean probability of the hammer head
detaching and causing a head injury is 0.08 and the mean probability of the hammer
head detaching is 0.18, then the estimated mean probability of a head injury occurring

while using the hammer is 0.015.

Please note that for the injury event idiom, we are assuming a single known type of
hazard; however, a product (system) usually has multiple potential hazards. In
situations where a product has multiple potential different hazards that are unique in
terms of properties they possess, e.g., small parts, electric shock and toxicity, we can
add other nodes to the idiom representing different hazards. However, in situations
where the hazards, though unique, are similar in terms of properties they possess, e.g.,
hot surfaces, open flames and hot gases, we can identify and define hazard groups or
classes, e.g., ‘extreme temperature’. The idiom can use the defined hazard groups to

consider multiple similar hazards rather than a single hazard.

Probability of hazard
or failure causing
injury event

Probability of hazard
or failure occurrence

Probability of injury
event

Figure 59 Injury event idiom
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Figure 60 Injury event idiom instance

6.2.5.3 Product Injury Idiom

For some products, we may be interested in estimating the number of injuries due to
product failures, hazards or hazardous situations. In these situations, we have to
consider the probability of the injury event and the number of product instances (i.e.,
the total number of products manufactured or available on the market). The probability
of the injury event can be obtained using the injury event idiom (see Section 6.2.5.2),
and the number of product instances can be obtained using manufacturing or sales

data.

The product injury idiom shown in Figure 61 models the number of injury events for
a set of product instances. This idiom uses a Binomial distribution for the number of
injury events. An instance of this idiom is shown in Figure 62. In Figure 62, for the
hammer example, suppose there are 100000 hammer instances, and the mean
probability of a head injury is 0.015; the idiom estimates that the mean number of head

injuries is 1500.
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Figure 61 Product injury idiom
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Figure 62 Product injury idiom instance

6.2.6 Idioms for Modelling Risk

Determining the overall risk of a product (system) is essential for informing risk
management decisions such as product recall and risk controls. In this section, we

describe idioms associated with determining the risk of a product. These idioms satisfy
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the final task of the risk analysis phase, i.e., the risk estimation phase, which

determines the overall risk of the product. There are two idioms in this category:

1. Risk control idiom

2. Risk idiom
6.2.6.1 Risk Control Idiom

For most products, we may be interested in estimating the effect of risk controls on
the occurrence of failures, hazards and related injuries. In these situations, we need to
consider the probability of the risk control to mitigate the event (i.e., failures, hazards
and injuries) and the probability of the event occurring in the absence of risk controls.

Risk control is any measure or action taken to mitigate the consequence of an event.

The risk control idiom shown in Figure 63 models the effect of risk controls on an
event, e.g., hazard, failure or injury. It uses the probability of the risk control to
mitigate the event C, and the probability of the event E, to compute the residual
probability of the event consequence RE, i.e., RE = (1 — C) X E. The risk control
idiom can be adapted to model the occurrence of hazards and harm (injury). An
instance of this idiom is shown in Figure 64. In Figure 64, for the hammer example,
suppose the probability of the risk control mitigating the head injury is 0.5, and the
mean probability of a head injury in the absence of the risk control is 0.08; the idiom
computes that the mean probability of a head injury is 0.04 after the risk control is

implemented.

Risk control value or
attribute

Probability of event

Residual probability of event
consequence

Figure 63 Risk control idiom (generic)
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Figure 64 Risk control idiom instance

6.2.6.2 Risk Idiom

Previous product safety idioms provide the probability distributions for events,
including failures, hazards and injuries associated with a product and its use. We can
use this information to estimate the risk of a product using the risk idiom. The risk
idiom shown in Figure 65 is used to generate a discrete risk score (e.g., a 5-point scale
for regulatory purposes) that is a combination of a set of complex measures. This idiom
model risk in terms of its factors and is a special case of the generic definitional idiom
[19]; however, the specific mapping from the continuous function into a discrete set
will be specific to the context. For example, in the RAPEX method for product risk
assessment (discussed in Chapter 8), the risk level for a consumer product is defined
based on specific injury probability bounds and injury severity levels. For instance, a
product is judged as ‘low risk’ given any injury severity level if the probability of the
product causing an injury is less than 0.000001. An instance of the risk idiom is shown
in Figure 66. In Figure 66, for the hammer example, the idiom estimates the risk of
the hammer using a ranked node [95] with a 5-point scale ranging from ‘very low’ to
‘very high’, considering the probabilities of the hammer causing a head injury and
minor injuries, respectively. In this example, there is a 98% chance that the risk of the
hammer is ‘very high’.
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Figure 66 Risk idiom instance

6.3 Product Safety Idioms for Risk Evaluation

The last phase of the risk assessment process is risk evaluation (see Figure 1). Risk
evaluation “is the process by which the outcome of the risk analysis is combined with
policy considerations to characterise the risk and inform decisions on risk
management” [15], [26]. It entails determining whether the estimated risk of the

product is acceptable or tolerable given its benefits. In this section, we describe two

idioms for risk evaluation:

1. Risk tolerability (acceptability) idiom

2. Consumer risk perception idiom
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6.3.1 Risk Tolerability (Acceptability) Idiom

In situations where the overall risk of a product is judged unacceptable and additional
risk controls are not practical, the product manufacturer or safety regulator may need
to determine if the benefit of the product outweighs its risks. The risk tolerability
(acceptability) idiom shown in Figure 67 models the trade-off between risk and benefit
(or utility) for a product. It evaluates whether the estimated risk score (level) of a
product is acceptable or tolerable given the benefit (or utility). The benefits of a
product may be determined from literature or consumer surveys. An instance of this
idiom is shown in Figure 68. In Figure 68, for the hammer example, we define the
benefit and risk values using ranked nodes [95]. In this example, we assume that the
benefit of the hammer is average (‘medium’) and the risk of the hammer is ‘very high’;
the idiom estimates that the risk tolerability for the hammer is ‘low’ (or 95% chance

the risk tolerability is ‘low’ or ‘very low’).

Risk value or attribute Benefit value or attribute

Assessed risk tolerability value or attribute

Figure 67 Risk tolerability idiom
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Figure 68 Risk tolerability idiom instance

6.3.2 Consumer Risk Perception Idiom

Consumers may judge the risk and benefits of products differently from experts. For
instance, experts tend to judge the risk of a product using quantitative risk assessments,
whereas consumers judge risk using a combination of subjective measures such as risk
propensity. Therefore, it is essential to understand consumers’ perceived risk and
benefits of a product to inform risk management decisions. Since the actual value of
consumers’ perceived risk or benefits may be latent or difficult to measure, we have
to use measurable indicators and causal factors to estimate their perceived risk and

benefits.

The consumer risk perception idiom shown in Figure 69 estimates consumer risk
perception of a product using causal factors (or interventions) and indicators. Please
note that this idiom does not incorporate different user profiles. Instances of this idiom
are shown in Figure 70 and Figure 71. In Figure 70 and Figure 71, for the hammer
example, we define the variables using ranked nodes [95]. In Figure 70, the idiom
shows that consumers may perceive the risk of the hammer as ‘high’ since they judge

the likelihood of injury and the severity of the injury as ‘high’. In Figure 71, the idiom
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shows the impact of a product recall, negative media stories and consumer feedback

on consumer risk perception of the hammer.

Consumer risk
perception value or

Figure 69 Consumer risk perception idiom

Likelihood of injury

Severity of injury

|Scenario 1 : High | | Scenario 1 : Hiah |

Consumer perceived risk

Low -

Medium-]lﬂﬂi%

High 97.198%

NPT for consumer perceived risk node:
THormal {wmean (1.0, likelihood, 1.0,
severity), 0.001)

Figure 70 Consumer risk perception idiom instance 1

116



Manufacturer or
Government Warnings
or Recall

Media Stories

Consumer
feedback

Scenario 1 Yes |
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¥
Consumer Risk Perception

Decreased 4

Mo change

Increased 4 99.772%

NPT for consumer risk perception node: TNormal
(wmean (1.0, media stories, 1.0, warnings), 0.001)

Figure 71 Consumer risk perception idiom instance 2

6.4 Building a BN using the Product Safety Idioms

In this section, the process for building BNs using product safety idioms is described
(see Section 6.4.1). We also show examples of BNs created using the product safety
idioms (see Section 6.4.2 for the hammer example and Section 6.4.3 for the aircraft

example).
6.4.1 BN Development Process

The process of building a BN for product safety risk management using the product
safety idioms can be illustrated using the BN development process model shown in

Figure 72, proposed by Neil et al. [19].
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Figure 72 BN Development Process Model taken from [19]

As shown in Figure 72, the BN development process consists of six stages ranging
from problem definition to BN validation. The first stage is problem definition and
decomposition. During this stage, the scope and objectives of the BN and other
relevant information, such as model variables, are elicited from experts and literature.
In the second stage, the elicited knowledge is organised into groups of related random
variables (called ‘fragments’), which are matched against the idioms. During this
stage, the groups of related variables are implemented as instances of suitable idioms.
In the third stage, the idiom instances are integrated into objects. In the fourth stage,
the NPTs for the variables in the objects are defined, and in the fifth stage, the objects
are linked to build the complete BN. In the last stage, the BN is used to perform
inferences, and its results are validated. Verification is done at each stage of the
process to ensure that the output of each stage is accurate and satisfies the requirements

of the problem definition.
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6.4.2 Example 1: Hammer Reliability BN

In Figure 73, for the hammer example, we show how the product safety idioms may
be combined to determine the overall reliability of the hammer. In this example, using
testing data only (i.e., hammer head detaches 20 times in 400 demands), the BN model
estimates the mean probability of the hazard per demand is 0.05 (modelled using the
hazard per demand idiom). However, given information about the manufacturing
process quality (modelled using the quality idiom), the mean probability of the hazard
per demand is revised. In this example, the mean probability of the hazard per demand
increased to 0.08 due to a poor manufacturing process. Finally, the BN model shows
that the reliability of the hammer did not satisfy the defined safety and operational

requirements (modelled using the requirement idiom).

Quality ldiom

Process drifts Product defects

Scenario 1 : High Scenario 1 : High
|

Manufacturing Process Quality
Low] o Jeei%
Hazard per demand Idiom Nnrmal—] 3.9%
High -
Probability hammmer I
Number of uses of ‘4?

the hammer

3T
184 Revised probability hammer
n- hi\i—hﬁb 245
2 2 S 2 2 174 . Mean: 0.08
R "R = TR T= B 0
o oo o O O O OOl

Requirement ldiom

Scenario 1 :400

Number of times
hammer head
detaches Hammer safety

requirement
Scenario 1 ;20

Testing requirement Mormal product use
False - 100% False - 100%
True True

Figure 73 Hammer reliability BN with visible product safety idioms
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6.4.3 Example 2: Aircraft Reliability BN

In the previous section, the hammer example was chosen as a particularly simple

product to illustrate the basic idioms approach. In this section, we now go to the other

extreme of complexity and consider an aircraft. The aircraft reliability BN shown in

Figure 74 shows a fragment of the safety assessment for a new military aircraft that

focuses on estimating the probability of failure during a mission due to engine and/or
braking system failure. It incorporates both TTF and PFD measures to determine the

overall reliability since the reliability measure for the engine is TTF, and the braking

system is PFD. The product safety idioms connected causally to estimate the reliability

of a military aircraft during a mission are highlighted in Figure 74.

Failure per demand Idiom

Observed
failure time

Time to Failure Idiom

Observed
failure time

Engine failure
rate

Engine time to failure
hours

Observed
failure time
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demands
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Probability of brakes
failure per mission

Mission parameters

Number of
demands per
mission

Failure occurencle Idiom

Mission parameters

Failuije occurence ldiom

Probability Engine
failure can cause
system failure

Probability Engine ‘¢
fails during mission

Number of
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mission

Probability brakes fail
during mission

Probability brakes failure

can cause system failure

t+"Probability Engine
failure causes
system failure

Failure occurence ldiom

Probability brakes
failure causes
mission failure

Probability Mission
fails

Figure 74 Aircraft reliability BN with visible product safety idioms

In Figure 75, the BN model estimates the probability of failure for a military aircraft

during a mission due to engine failure and braking system failure is 0.0008 (0.08%).

In this example, we assume that for the engine, we observed failure times of 6000,

5000 and 4000 hours, respectively, and the engine is used for 6 hours during the
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mission. We assume that there is a 50% chance that the engine can cause a system

failure. For the braking system, we assume that we observed 10 failures in 1000000

demands and that the braking system was used once during the mission. We also

assume that there is a 50% chance that the braking system can fail. Please note that

this BN model can be extended to incorporate other aircraft systems, such as flight

control systems, to determine the overall reliability of an aircraft.
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Figure 75 Aircraft reliability BN with observations
6.5 Benefits of Product Safety Idioms

The principal merit of the product safety idioms is to provide a robust systematic

method and guide for building BNs for product safety risk management. The product

safety idioms improve BN development in the following ways:

1. Integration of different types of knowledge sources: As demonstrated in

Section 6.4.2, the idioms can combine objective evidence, e.g., PFD, and

subjective evidence, e.g.,
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reasonable risk estimates for products. Combining objective and subjective
evidence is especially useful for handling uncertainty in situations when there
is limited or no historical testing and operational data for products, but expert
knowledge is available.

Handle uncertainty in data: Some risks associated with products can be
characterised by high levels of uncertainty and ambiguity. Uncertainty can be
caused by limited or lack of relevant data. Product safety idioms can handle
and communicate uncertainties in the data explicitly since they express

uncertainty in terms of probability distributions.

Standardise and assist product safety BN development: To the best of our
knowledge, there is no standard method for developing BNs specifically for
product safety risk management. The product safety idioms improve BN
development by simplifying the knowledge elicitation task. They provide a
library of reusable BN patterns for product safety that facilitates the easy
development of practical product safety BNs. They also guide the knowledge
elicitation process by allowing model experts and safety risk professionals to
identify relevant information (known or unknown) required to build custom

idioms and BNs for product safety assessments.

Enhance the communication, interpretability and explainability of
complex BNs: The graphical structure and results of the BNs developed using
the idioms can be easily interpreted, explained, and reviewed by model experts
and safety risk professionals. For example, the graphical structure of BNs
facilitates easy communication of uncertainty and risks. Stakeholders can
easily identify sources of uncertainty in the model. In addition, product safety
idioms can serve as a validation method for future product safety risk BNs,

ensuring that their structure is practical and logical.
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6.6 BN Development and Validation Challenges

Despite the benefits of using the product safety idioms for BN development, it is
important to note the challenges of accurately quantifying and validating the accuracy

of the BN models. These challenges include:

1. Determining the number and meaning of node states, particularly where they
relate to abstract attributes like, for example, ‘Rework process Quality’ being
‘High’, ‘Medium, or ‘Low.’

2. Quantifying and validating the strength of causal relationships.

3. Being confident that the aggregated results of the model are valid, in particular

where independent data to validate against does not exist.

6.7 Chapter Summary

In this chapter, a novel set of idioms, called product safety idioms, for developing BNs
specifically for product safety risk management are presented. The product safety
idioms complement and extend the idiom-based approach proposed by Neil et al. [19]
and other established methods of BN development discussed in previous research (see
Section 4.3 and Section 5.2). While the proposed idioms are sufficiently generic to be
applied to a wide range of product safety cases, they are not prescriptive or complete
and should be considered as a guide for developing suitable idioms for product safety
risk management (given available product-related information). As discussed in
Section 6.5, the idioms offer the following benefits: handle uncertainty in data;
standardise and assist product safety BN development; enhance communication,

interpretability and explainability of complex BNSs.

We believe that the product safety idioms discussed in this chapter are meaningful
reasoning patterns that guide the development of complex BNs for product safety risk
management. In the next chapter, we show how they are used to develop a generic BN

for medical device risk management.
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Chapter 7 Case Study 1: Medical Device Risk

Management

In this chapter, a case study on medical device risk management is presented. This
work was supported by medical device safety risk experts affiliated with Medtronic (a
leading medical device company). The safety risk experts provided invaluable insights
on medical device risk management and feedback on the proposed BN for medical
device risk management. The BN approach complements and enhances existing

medical device risk management approaches used in the industry.

In Section 7.1, medical device risk management is introduced. In Section 7.2, a brief
overview of existing methods and their limitations for medical device risk
management (previously discussed in Chapters 1 and 3) is presented. In Section 7.3,
to address the limitations of existing risk analysis methods, we developed a generic
BN for medical device risk management using the product safety idioms discussed in
Chapter 6. In Section 7.4, we evaluate the proposed BN using different risk
management scenarios, and the results are validated using real-world data. Finally, the
results of the risk management scenarios and benefits of the proposed BN are

discussed in Section 7.5.

This chapter supports Hypothesis 2 (it is possible to use Bayesian networks for safety
risk management for many different types of products, including novel products or
products with limited or no available data) and Hypothesis 3 (it is possible to use
Bayesian networks to model consumer risk perception and/or perform benefits-risk
analysis for products). Please note that the material presented in this chapter was

previously presented in Publication 4 [24] published by Arxiv.org.
7.1 Overview of Medical Device Risk Management

Approximately 2 million medical devices are available on the world market [170].
They range from non-invasive devices, such as wheelchairs, to implantable devices,
such as pacemakers. Despite the many benefits these devices offer, they can pose a
serious risk to our health and safety when they fail. For example, failure of an AED
defibrillator, such as LIFEPAK 1000, during patient treatment can expose patients to
serious harm or death [171]. Therefore, the medical device industry requires that
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devices used by patients and healthcare professionals are acceptably safe. There are
several standards for medical device safety, such as IEC 60601-1 [172], but ISO 14971
[7] is the primary standard used by medical device manufacturers. In fact, other
standards for medical device safety make normative references to 1SO 14971. This
standard provides a framework for medical device manufacturers to manage the risks
associated with medical devices throughout their life cycle (i.e., from initial
conception to final decommissioning and disposal). It specifies a set of requirements
and expectations for medical device risk management. For instance, 1SO 14971
includes requirements for risk analysis (i.e., hazard identification and risk estimation),
risk evaluation, risk control and evaluation of overall residual risk. However, 1ISO
14971 does not specify a particular method or process for medical device risk
management. Hence, the methods used for medical device risk management by
medical device manufacturers may vary due to the type of medical device and
available information (e.g., testing data) and may require validation. In particular,
there are several risk analysis methods for medical devices (discussed in Chapter 3),
including the commonly used Fault Tree Analysis (FTA) and Failure Mode and
Effects Analysis (FMEA). However, these classical risk analysis methods have
limitations such as: unable to handle dependencies among system components; limited
approach to handling uncertainty in data; limited approach to assessing the risk for
novel products or products with limited or no historical data. These limitations are
resolved using Bayesian networks (BNs) [13], [15], [18], [54], [110].

In this chapter, we propose a novel systematic method for medical device risk
management using Bayesian networks (BNs) that: improves the handling of
uncertainty; uses causal knowledge of the risk management process; incorporates
relevant factors affecting the safety and risk of medical devices; complements existing
medical device risk management tools and methods; uses quantitative data and expert
judgement. Bayesian networks (BNs) are suitable for medical device risk management
due to their ability to handle uncertainty and produce results using objective and
subjective evidence [13], [76]. Also, they are used for safety risk assessment in several
domains, including systems reliability, health, railway, finance and consumer product
safety (see Chapter 5 for a review of BN applications in the safety domain). The

proposed generic BN for medical device risk management provides a robust
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systematic method for medical device manufacturers to meet the requirements of 1ISO
14971.

Please note that the main standard referred to throughout this chapter is ISO 14971 [7]
and its accompanying guidelines for application i.e., ISO/TR 24971 [6]. Unless other
references are provided, all definitions in this chapter refer to this standard and its
guidelines.

In the following subsections, we define medical devices and medical device risk

management.
7.1.1 What is a medical device?

A medical device is “any instrument, apparatus, implement, machine, appliance,
implant, reagent for in vitro use, software, material or other similar or related article,
intended by the manufacturer to be used, alone or in combination for a medical
purpose” [7]. There are two main types of medical devices based on use, i.e., single-
use and multiple-use. A single-use medical device is a medical device “intended to be
used on an individual patient during a single procedure and then discarded” [173]. A
multiple-use (reusable) medical device is a medical device “that health care providers
can reprocess and reuse on multiple patients” [174]. Though single-use and multiple-
use medical devices may contain software, the software can be considered a medical
device on its own (Software as a medical device). Software as a medical device
(SaMD) is “software intended to be used for one or more medical purposes that
perform these purposes without being part of a hardware” [175]. Other classifications
of medical devices include by purpose and by inherent risk [167] (see Table B1 and
Table B2 in Appendix B for further information).

7.1.2 Medical Device Risk Management

Medical device risk management is the “systematic application of management
policies, procedures and practices to the tasks of analysing, evaluating, controlling and
monitoring risk” of medical devices [7]. Manufacturers of medical devices perform
risk management for several reasons, including making safer products, legal and
regulatory requirements, and cost savings [12]. The international standard for medical
device risk management is ISO 14971[7]. This standard requires that medical device

manufacturers have a documented process for managing the risks associated with
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medical devices. It specifies a set of requirements and expectations for the documented
risk management process (see Figure 76) applicable to the complete life cycle of the

medical device (i.e., from initial conception to decommissioning and disposal).

Risk analysis
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Risk management review

,

Production and post-production activities

. General

. Information collection
. Information review
. Actions

Figure 76 I1SO 14971 Risk Management Process

As shown in Figure 76, the 1ISO 14971 risk management process consists of the
following activities:

1. Risk Management Plan: 1SO 14971 requires that all risk management
activities are planned. The risk management plan includes the scope of risk
management activities (medical device and life cycle phases), responsibilities
and authorities for risk management activities, criteria for risk acceptability

(i.e., the amount of risk judged acceptable) and verification and review
activities.
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2. Risk Analysis: This phase consists of the following activities:

a.

Identify the intended use of the medical device: The intended use,
foreseeable misuse, intended users and intended use environment for

the medical device are identified and documented.

Identify the safety characteristics of the medical device: The
characteristics (quantitative and qualitative) of the medical device that
can affect its safety are identified and documented.

Identify hazards associated with the medical device: All hazards
associated with the use of the medical device are identified and
documented. Techniques such as Preliminary Hazard Analysis (PHA)
and FMEA (discussed in Chapter 3) are used to identify hazards

associated with medical devices [6].

Estimate the risk for each identified hazard: In this phase, the risk
associated with each hazard or hazardous situation is determined. The
schematic shown in Figure 77 provides an overview of ISO 14971 risk
estimation [7]. As shown in Figure 77, the risk is “the combination of
the probability of occurrence of harm P and the severity of the harm S”
i.e., Risk = P x S. The probability of occurrence of harm P is the
product of the probability of the hazardous situation occurring P; and
the probability of the hazardous situation causing harm P,, i.e., P =
P; x P,. A hazardous situation is a “circumstance in which people,
property, or the environment are exposed to one or more hazards”, such
as normal device use [7]. The severity of the harm is defined
qualitatively using five (5) severity levels ranging from negligible
injury to fatal injury (see Table B4 in Appendix B). Methods used to
estimate risk include qualitative and semi-quantitative methods, such
as a risk matrix and quantitative methods, such as the FTA (previously
discussed in Chapter 3[12]).
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Figure 77 1SO 14971 Risk Estimation
3. Risk Evaluation: The estimated risk for each hazard or hazardous situation is
evaluated to determine risk acceptability using the criteria for risk acceptability
(defined in the risk management plan). In situations where the estimated risk
is judged not acceptable, risk control measures are implemented to reduce the
risk to an acceptable level. However, when the estimated risk is judged
acceptable, it is viewed as the residual risk (i.e., the risk remaining after risk

control measures are applied).

4. Risk Control: Appropriate risk control measures are used to reduce risks
judged not acceptable to an acceptable level. Risk control measures for medical
devices (in priority order) are inherently safe design and manufacture,
protective measures and information for safety. Once risk control measures are
implemented, the residual risk of the medical device is recalculated and re-
evaluated. In situations where the risk is judged not acceptable, additional risk
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control measures are implemented. However, when risk reduction is not
practical, a benefit-risk analysis is done to determine if the benefit of the
medical device outweighs its residual risk. The benefits of a medical device
can be determined from several factors, including the patient population and

the clinical outcome expected from the use of the device.

Evaluation of overall residual risk: The overall residual risk is evaluated to
determine whether it is acceptable given the risk acceptability criteria specified
in the risk management plan. In situations where the overall residual risk is
judged acceptable, manufacturers will inform users about significant residual
risks. However, if the overall residual risk is judged not acceptable, additional

risk control measures or rework may be implemented.

Risk Management Review: The risk management plan is reviewed to ensure
that it was implemented correctly and that the overall residual risk of the
medical device is acceptable. The findings of the review are documented in the

risk management report.

Production and Post-Production Activities: Production and post-production
activities are used to collect and review relevant information about the medical
device during the production and post-production phases. The information
obtained about the medical device is used to ensure that the medical device is
acceptably safe for use and to inform future risk management activities.
Examples of production and post-production activities include quality control

testing, customer surveys and reviewing incident reports and databases.

7.2 Risk Analysis Methods and Limitations

As mentioned in Section 7.1, though ISO 14971 specifies the requirements for the risk

management process, it does not specify a particular process or method for performing

risk assessment and management for medical devices. Therefore, medical device

manufacturers are free to develop or use appropriate risk management methods and

processes to satisfy the requirements of 1SO 14971. There are several methods for

assessing the risk of medical devices (as discussed in Chapter 3), such as Preliminary
Hazard Analysis (PHA), static Fault Tree Analysis (FTA) and Failure Mode and

130



Effects Analysis (FMEA). However, these classical risk analysis methods have the

following limitations (as discussed in Section 1.3):

1. Limited approach to assessing the risk for novel products or products with
limited or no historical data.

2. Unable to combine objective and subjective evidence to estimate risk.

3. Unable to handle variables with multiple states.

4. Does not consider the causal nature of the risk.

In this thesis, we propose using BNs to address all these limitations. The generic BN

for medical device risk management is introduced in the next section.
7.3 Constructing the Medical Device Risk Management BN

In this section, we describe the process used to construct the Bayesian network for
medical device risk management. This section is organised as follows. In Section
7.3.1, we present the scope, requirements and objectives of the BN. In Section 7.3.2,
the way model variables are identified is described. In Section 7.3.3, we describe how
the BN structure is developed, and in Section 7.3.4, we describe the process of

parameter learning and elicitation.
7.3.1 Scope, requirements, and objectives of the BN

To determine the scope, requirements, and objectives of the BN for medical device
risk management, a core team of three (3) domain experts reviewed the literature on
medical device risk management and held discussions with medical device safety risk
experts affiliated with Medtronic (a leading medical device company). The literature
and medical device safety risk experts indicated that manufacturers of medical devices
are required to perform risk management during production and post-production;
hence the high-level requirements for the BN model were:

1. Production Risk Management: This involves predicting and evaluating the
risk of a medical device before it is launched (i.e., predictive engineering)
using design and production process information and real data collected from

trials or previous systems.
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2. Post-production Risk Management: This involves predicting and evaluating
the risk of the medical device after it is launched (i.e., post-market risk
management) using operational field data such as reported injuries and

failures.
At the device level, the BN needs to:

1. Assess the reliability and risk of the device at all stages of development using
subjective and objective evidence such as design and production process
information and real data collected from trials or previous systems.

2. Handle the uncertainty in the data.

3. Provide quantified, auditable risk estimates for novel products or products
with limited or no historical data.

4. Estimate the overall risk of the device considering the different types of injury
risks and their criteria for risk acceptability.

5. Estimate the effect of rework or risk controls on the risk of the device.

6. Perform a benefit-risk analysis considering information about the benefits of

the device and the estimated risk of the device.

Given the requirements of the BN model, we used a soft systems approach to risk and
safety modelling. In this approach, we think of the system as a whole and analyse risks
and safety at a high level based on soft factors related to the design, manufacture or
use of the system. A soft systems approach was used since medical device risk
management includes processes, people, procedures, as well as systems, machines and
the interaction between all of these. However, we recognise that there are situations
where a granular analysis that considers the causal interaction of each component of
the system is required to estimate the overall risk of the system. In this case, the
granular analysis can be performed using standalone BNs approaches (i.e., developing
BNs for analysis of a particular system) or mapping approaches (i.e., translating risk
analysis methods, such as Fault Tree Analysis, described in Chapter 3, using the
mapping approaches described in Section 5.2 for analysis of a system). The results of
a granular causal analysis can then be incorporated as priors or factors that affect the

overall risk of the system (if available) in the proposed BN.

In the following subsections, we identify the model variables and develop the BN

structure using the product safety idioms discussed in Chapter 6. Product safety idioms
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are suitable for BN development since they provide a library of reusable BN patterns

for developing BNs for product safety risk management. In fact, the product safety

idioms include BN patterns for modelling soft factors, such as the quality of the

manufacturing process, and hard factors, such as the failure rate of the system.

7.3.2 ldentifying Model Variables

Given the requirements of the BN model, the core team of three (3) domain experts
identified relevant variables using the literature [6], [7], [12], [14], [54], [172], [176]
and industry experience. The identified variables were organised into specific

categories based on their purpose as follows:

1.

Reliability: These are variables that are required to estimate the reliability of

a system.

Rework: These are variables that are required to estimate the probability of
repairing identified faults in a system.

Requirement: These are variables that are required to predict whether the

system complies with defined operational and safety requirements.

Manufacturer Process Quality: These are variables that are required to

estimate the quality of the design and production process for a system.

Injury Occurrence: These are variables that are required to estimate the

likelihood of injury occurrence during use of the system.

Risk: These are variables that are required to estimate the overall risk of a

system.

Risk Evaluation: These are variables that are required to evaluate the risk of a
system.

Benefits: These are variables that are required to estimate the benefits of a

system.

Benefit-Risk Analysis: These are variables that are required to perform a

benefit-risk analysis.
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For instance, in Table 13, we show the variables used in the BN to estimate the quality
of the production process for a medical device. A complete table of all the variables

included in the BN is presented in Appendix B.

Table 13 Variables used to estimate the quality of the production process

Variable Name Abbrev. NPT Category
Process quality pq TNormal (pdri, 0.005, 0, 1) Manufacturer Process
Quality
Product defects pdef TNormal (pg, 0.05, 0, 1) Manufacturer Process
Quality
Process drifts pdri Ranked: (Major: 0.333, Minor: Manufacturer Process
0.333, None: 0.333) Quality
Process additives padd TNormal (pq ,0.05, 0, 1) Manufacturer Process
Quality

7.3.3 BN Structure

To construct the BN structure, the groups of variables organised by purpose were
matched against relevant idioms proposed in Chapter 6 and then implemented as
instances of these idioms. For example, the variables identified to estimate the quality
of the production process shown in Table 13 were matched with the quality idiom (see

Section 6.2.4) and implemented as an instance of this idiom, as shown in Figure 78.

Process Product
additives defects

Process
drifts

Process
quality

Figure 78 An instance of the quality idiom
Once each group of variables was implemented as instances of idioms, we combined
them to construct the BN structure. However, instead of building the complete model
altogether, we first built BN subnets for the main components, i.e., risk estimation and

risk evaluation. Once the subnets were built, we then connected them using variables
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that were common to each of the subnets. Figure 79 shows schematically the structure
and prediction process for the medical device risk management BN and Figure 80
shows the risk evaluation subnet that includes the benefits-risk analysis component.
The complete BN, the model assumptions, and the instructions for using the BN are
presented in Appendix B. Once the BN structure was completed, it was reviewed and

agreed upon by the medical device safety risk experts.
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7.3.4 BN Parameters

The node probability tables (NPTs) for the variables in the BN (see Appendix B) were
defined by the three (3) domain experts using ranked nodes, mathematical functions,
statistical distributions, and comparative expressions. Ranked nodes [95] were used to
define discrete variables whose states represent a ranked ordinal scale, for example,
the Benefits of device node with states: ‘low’, ‘medium’, ‘high’. A ranked node maps
the states of a variable to subintervals of a numerical scale [0,1]. Since ranked nodes
use a numerical scale, their NPTs can be defined using statistical distributions. In the
BN model, ranked nodes with parents are defined using a TNormal distribution with
mean W as a weighted function of its parents and variance ¢, whereas ranked nodes

without parents are defined using a Uniform distribution.

Mathematical functions were used to define the NPTs for some continuous (numeric)
variables given their parents. For example, the NPT for the variable probability of a
fatal injury per demand is the mathematical function: probability of hazard per

demand x probability hazard causes a fatal injury.
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Statistical distributions were used to define the NPTs for some continuous (numeric)
variables based on their purpose. For instance, continuous variables without parents
are defined using a Uniform distribution or a TNormal distribution given prior data
for a medical device. Continuous variables with parents are defined using a TNormal
distribution with mean p as a weighted function of its parents and variance ¢ or using
a Binomial distribution, B(n,p). Comparative expressions were used to define the
NPTSs for discrete variables with binary states. For instance, the NPT for the variable
Fatal injury risk acceptability is defined using the following IF statement: IF (prob.
of fatal injury per demand <= acceptable fatal injury probability, “Acceptable”, “Not
Acceptable”).

Please note that since this is a generic BN, the NPTs used for some of the variables in
the BN will be revised, given the data and requirements for a particular medical device.
In this case study, NPTs with statistical distributions include a sufficiently large
variance to make them applicable to the different risk management scenarios used for

model evaluation.
7.4 Model Validation

In this section, we evaluate the BN for medical device risk management by assessing
the risk of a generic Defibrillator during production and post-production. We show
how the BN can assess the risk of medical devices with available testing data and with
little or no testing data. In Section 7.4.1, we present the Defibrillator case study, and
in Section 7.4.2, we evaluate the BN using a range of hypothetical data scenarios for
the generic Defibrillator. In Section 7.4.3, we validate the BN using publicly available
real-world data from the LIFEPAK 1000 Defibrillator.

7.4.1 Case Study: Defibrillator Risk Assessment

This subsection presents the necessary background information for the Defibrillator

case study.

1. Product Description: An automated external defibrillator (AED) that sends an
electric shock to the heart to treat serious heart arrhythmias, e.g., ventricular
fibrillation. It is designed to be easy to use by trained users.

2. Hazard: Incorrect shock advice.
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10.

Hazardous Situation: The defibrillator gave an incorrect shock advice leading
to asystole.

Injury Information: Injuries range from normal sinus rhythm (negligible) to
asystole (fatal).

Benefits Information: The patient population is ‘very high’. Furthermore, the
performance expected during clinical use is ‘high’, and the clinical outcome
expected from the use of the device is ‘very high’.

Risk Acceptability Criteria: We assume the following risk acceptability

criteria presented in Table 14.

Table 14 Risk Acceptability Criteria for Defibrillator

) ] Probability of injury per

Injury severity

demand
class

Acceptable value (A)

Fatal 6.2E-5
Critical 9.9E-5
Major 2.5E-4
Minor 7.6E-3
Negligible 1.0E-2

Product Testing Information: The product was tested ‘typical of normal use’.
The test report reveals that there were 5 hazard occurrences in 1000 demands.
Rework Information: The manufacturer’s rework process quality and effort
are ‘very high’.

Manufacturer Information: The manufacturer has been in operation for more
than 20 years and has a very good safety record for medical devices. The
manufacturer also has a ‘high’ customer satisfaction rating, and there are no
product defects, process additives, or process drifts.

Reported Field and Injury Information: Injury statistics for the defibrillator
are based on data reported in a study that analysed the performance of AEDs
used in the Netherlands between January 2012 and December 2014 [177].
According to the study data, there were “1091 shock advices in 3310 analysis
periods (demands). 44 of the 1091 shock advices were incorrect. 15 incorrect
shock advices were caused by device-related errors, and 28 were caused by

operator-related errors”. Injuries caused by device-related errors include 3
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asystole, 5 narrow complex tachycardia, 4 bradycardia, 2 normal sinus
rhythms, and 1 multiple PVCs. Based on the injury severity classes used in the
BN model (see Appendix B), we assume that asystole is a fatal injury,
bradycardia, narrow complex tachycardia, and multiple PVCs are major
injuries, and normal sinus rhythm is a negligible injury. Therefore, we assume
3 fatal injuries, O critical injuries, 10 major injuries,, 0 minor injuries and 2

negligible injuries given 15 incorrect shock advices.
7.4.2 Risk Management Scenarios and Results

In this subsection, we evaluate the model and its results using different risk

management scenarios.
Scenario 1 — Production Risk Management (with available testing data)

In this scenario, we assess the risk of the Defibrillator given the information in Section
7.4.1.

Scenario 1 Results

The BN risk results for the Defibrillator are summarised in Table 15 (see Figure B5 in

Appendix B for additional information).

Table 15 Defibrillator (with available testing data) BN risk results

Probability of injury per Overall ORR Probability
Injury demand Risk Residual Risk | Acceptability | additional
severity Predicted Acceptability (ORR) Probability risk
class Acceptable | o ) | 1€ P(P<=A) | Acceptability given control
value (A) (median) Probability Benefits required
Fatal 6.2E-5 1.1E-3 1.3E-3
Critical 9.9E-5 2.07E-4 0.29
Major 2.5E-4 3.25E-3 TE-4 0.14 0.67 0.86
Minor 7.6E-3 2.07E-4 1
Negligible 1.0E-2 8.0E-4 1

According to Table 15, the BN model predicted that the median value of the
probability distribution for fatal, critical, and major injuries per demand exceeded the
risk acceptability criteria. When the median value of the risk distribution exceeds the

acceptable value, this means that less than 50% of the predicted or estimated risk is
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acceptable. The BN shows the probability that the estimated risk is acceptable is 1.3E-
3, 0.29 and 7E-4 for fatal, critical, and major injuries, respectively. Regarding the
overall residual risk (ORR) per demand, the BN shows that the probability that it is
acceptable is 0.14. However, given the benefits of the device, the probability that the
ORR per demand is acceptable is 0.67. Finally, the BN predicts that the probability
that additional risk controls are required to reduce risk to an acceptable level is 0.86.
According to 1SO 14971 [6], risk control options include inherent safe design and
manufacture, protective measures and information for safety. Please note that although
there is no available data for critical and minor injuries, the BN model provides
reasonable probabilities estimates based on the number of reported hazards and other

evidence in the model.

In Table 16 (see Figure B6 in Appendix B for additional information), we show the
risk results if additional risk controls are implemented. As stated in Section 7.4.1, the
manufacturer has a ‘very high’ quality rework process and effort.

Table 16 Defibrillator (with available testing data) BN risk results — Rework
Information

Probability of injury per Overall ORR Probability
Injury demand Risk Residual Risk | Acceptability | additional
severity Predicted Acceptability (ORR) Probability risk
class Acceptable | o () | 1€ P(P<=A) | Acceptability given control
value (A) (median) Probability Benefits required
Fatal 6.2E-5 2.2E-4 0.045
Critical 9.9E-5 4.2E-5 0.78
Major 2.5E-4 6.6E-4 0.044 0.29 0.72 0.71
Minor 7.6E-3 4.2E-5 1
Negligible 1.0E-2 1.6E-4 1

Compared to the results presented in Table 15, the BN model revised the risk estimates
given additional risk controls. Table 16 shows that the probability that the estimated
risk is acceptable for fatal, critical, and major injuries per demand would increase to
0.045, 0.78 and 0.044, respectively. The probability of ORR acceptability would
increase to 0.29, and given the benefits of the device, it would increase to 0.72.

Although the probability that additional risk controls are required was reduced to 0.71,
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this result indicates that further risk controls are required to reduce risk to an

acceptable level.
Scenario 2 — Production risk management (with limited or no testing data)

In this scenario, we assume that the defibrillator is a novel device with no testing data,
and we have testing data from a previous similar defibrillator (5 hazards in 700
demands). We also assume that the P; estimate (i.e., probability of hazard per demand)
for the novel device is also dependent on P; estimated from field data (ratio 60:40 i.e.,
P; = (0.60 x P; testdata) + (0.40 X P; field data)). All other information

used in the model is stated in Section 7.4.1.
Scenario 2 Results

The BN risk results for the Defibrillator are summarised in Table 17 (see Figure B7 in
Appendix B for additional information). According to Table 17, the BN model
predicted that the median value of the probability distribution for fatal, critical, and
major injuries per demand exceeded the risk acceptability criteria. The BN shows that
the probability that the estimated risk is acceptable is 3E-4, 0.23 and 0 for fatal, critical,
and major injuries, respectively. Regarding the overall residual risk (ORR) per
demand, the BN shows that the probability that it is acceptable is 0.13. However, given
the benefits of the device, the probability that the ORR per demand is acceptable is
0.66. Finally, the BN predicts that the probability that additional risk controls are

required to reduce risk to an acceptable level is 0.87.

Table 17 Defibrillator (with limited or no testing data) BN risk results

Probability of injury per Overall ORR Probability
Injury demand Risk Residual Risk | Acceptability | additional
severity Predicted Acceptability (ORR) Probability risk
class Acceptable | o ) | 1€ P(P<=A) | Acceptability given control
value (A) (median) Probability Benefits required
Fatal 6.2E-5 1.4E-3 3E-4
Critical 9.9E-5 2.6E-4 0.23
Major 2.5E-4 4.0E-3 0 0.13 0.66 0.87
Minor 7.6E-3 2.6E-4 1
Negligible 1.0E-2 1.0E-3 1
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Scenario 3 — Production risk management (generic data)

In this scenario, we assume that the defibrillator is a completely new device with no
testing data and there are no relevant testing data from a previous similar device. We
assume we are using generic probabilities for the hazard occurrence (see Table B5 in
Appendix B for additional information). We assume that the hazard occurrence is
probable (i.e., 1E-4 < P,;< 1E-3), and the P; estimate for the novel device is also
dependent on P; estimated from field data (ratio 60:40). All other information used in

the model is stated in Section 7.4.1.
Scenario 3 Results

The BN risk results for the Defibrillator are summarised in Table 18 (see Figure B8 in
Appendix B for additional information). According to Table 18, the BN model
predicted that the median value of the probability distribution for fatal and major
injuries per demand exceeded the risk acceptability criteria. The BN shows that the
probability that the estimated risk is acceptable is 2.4E-3 and O for fatal and major
injuries, respectively. Regarding the overall residual risk (ORR) per demand, the BN
shows that the probability that it is acceptable is 0.20. However, given the benefits of
the device, the probability that the ORR per demand is acceptable is 0.69. Finally, the
BN predicts that the probability that additional risk controls are required to reduce risk
to an acceptable level is 0.80.

Table 18 Defibrillator (with generic data) BN risk results

Probability of injury per Overall ORR Probability
Injury demand Risk Residual Risk | Acceptability | additional
severity Predicted Acceptability (ORR) Probability risk
class Acceptable | ) | i€ P(P<=A) | Acceptability given control
value (A) (median) Probability Benefits required
Fatal 6.2E-5 4.8E-4 2.4E-3
Critical 9.9E-5 9.2E-5 0.53
Major 2.5E-4 1.4E-3 0 0.20 0.69 0.80
Minor 7.6E-3 9.2E-5 1
Negligible 1.0E-2 3.5E-4 1
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Scenario 4 — Post-production risk management

In this scenario, we assume that we are reassessing the risk of a previous model of the
defibrillator available on the market based on reported hazards and injuries. We
assume 10,000 demands, 50 reports of incorrect shock advices resulting in 1 major
injury and 49 negligible injuries. The risk acceptability criteria and benefits
information used in the model is stated in Section 7.4.1.

Scenario 4 Results

The BN risk results for the Defibrillator are summarised in Table 19 (see Figure B9 in
Appendix B for additional information). According to Table 19, the BN model
predicted that the median value of the probability distribution for fatal injury per
demand exceeded the risk acceptability criteria. The BN shows that the probability
that the estimated risk is acceptable is 0.47. Regarding the overall residual risk (ORR)
per demand, the BN shows that the probability that it is acceptable is 0.62. However,
given the benefits of the device, the probability that the ORR per demand is acceptable
is 0.85. Finally, the BN predicts that the probability that additional risk controls are
required to reduce risk to an acceptable level is 0.38.

Table 19 Defibrillator (post-production) BN risk results

Probability of injury per Overall ORR Probability
Injury demand Risk Residual Risk | Acceptability | additional
severity Predicted Acceptability (ORR) Probability risk
class Acceptable | ) | e P(P<=A) | Acceptability given control
value (A) (median) Probability Benefits required
Fatal 6.2E-5 6.8E-5 0.47
Critical 9.9E-5 6.8E-5 0.63
Major 2.5E-4 1.6E-4 0.72 0.62 0.85 0.38
Minor 7.6E-3 6.8E-5 1
Negligible 1.0E-2 4.3E-3 1
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7.4.3 LIFEPAK 1000 Defibrillator

In this subsection, we validate the results of the model obtained in the risk management
scenarios by assessing the risk of the LIFEPAK 1000 Defibrillator (Product Part
Numbers: 320371500XX), which Physio-Control recalled in 2017 due to reports of
the device shutting down unexpectedly during device use [171], [178]. This hazard
can cause the device not to deliver therapy during use, exposing the patient to serious
harm or death. A total of 133,330 devices were affected by this hazard. There were 34
reports of the hazard and 8 adverse events. In this example, we assume the risk
acceptability criteria and benefits information stated in Section 7.4.1 since this
information is not publicly available. We also assume that the number of potentially
fatal injuries is 8 and the number of potentially minor injuries was 26 based on the
injury reports. The BN model results are shown in Table 20 and Figure B10 in
Appendix B.

According to the results of the model shown in Table 20, the BN model predicted that
the median value of the probability distribution for fatal injuries per demand exceeded
the risk acceptability criteria. The BN shows that the probability that the estimated risk
is acceptable is 0.47 for a fatal injury. Therefore, the BN model validates and supports
Physio-Control product recall decision (on the assumption that the probability of

meeting the risk acceptability criteria for a fatal injury per demand to be at least 90%).

Table 20 BN model risk results for LIFEPAK 1000 Defibrillator

Probability of injury per Overall ORR Probability
Injury demand Risk Residual Risk | Acceptability | additional
severity Predicted Acceptability (ORR) Probability risk
class Acceptable | ) | i€ P(P<=A) | Acceptability given control
value (A) (median) Probability Benefits required
Fatal 6.2E-5 6.3E-5 0.47
Critical 9.9E-5 5.1E-6 1
Major 2.5E-4 5.1E-6 1 0.73 0.90 0.27
Minor 7.6E-3 1.9E-4 1
Negligible 1.0E-2 5.1E-6 1

144



7.5 Discussion

The BN for medical device risk management developed with the support of medical
device safety risk experts affiliated with Medtronic (a leading medical device
company) can estimate the risk of medical devices during different stages of their life
cycle. The Defibrillator case study shows that the BN model can estimate the risk of
medical devices during production and post-production, with available relevant data
and with limited or no relevant data. In Scenario 1 - Production risk management, the
BN model estimated the risk and acceptability of the risk for the defibrillator given
relevant information (see Table 15 and Table 16). In Scenario 2 - Production risk
management (with limited or no testing data), the BN model estimated the risk and
acceptability of the risk for the defibrillator given limited product testing data using
manufacturer information and previous similar device data (see Table 17). In Scenario
3 - Production risk management (generic data), the BN model estimated the risk and
acceptability for the defibrillator using generic probabilities of hazard occurrence
along with manufacturer information and field data from other similar devices (see
Table 18). In Scenario 4 - Post-production risk management and model validation
using LIFEPAK 1000 defibrillator data, the BN model estimated the risk and
acceptability of the defibrillator based on operational and injury information (see
Table 19 and Table 20). In all scenarios, the risk estimate is comprehensive since the
BN incorporates relevant factors that affect the risk of medical devices, such as the
quality of the manufacturing process. Moreover, these factors are causally linked,
supporting ease of interpretability and explanation of risk estimates. In fact, the BN
model incorporates both discrete and continuous variables to estimate risk, illustrating
the flexibility and power of using (hybrid) BNs to solve complex problems. The BN
uses continuous variables with conditionally deterministic functions, statistical
distributions and mixture distributions conditioned on different discrete assumptions.
Furthermore, the BN can estimate risks using prior assumptions and learn parameters
from observations (induction). Since the BN can easily revise risk estimates given new
information, this allows easy risk management of any medical device throughout its

life cycle.

The BN model also performs a benefit-risk analysis by estimating the risk

acceptability given the benefits of the medical device (see Figure 80). The benefit of
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a medical device is the degree of improvement in a patient’s health and clinical
management that is expected from the use of that device. As shown in Figure 80,
information such as device performance and clinical outcomes can help determine the
benefit of a medical device [6]. A Benefit-Risk analysis is essential for informing risk
management decisions such as product recalls, especially in situations where

additional risk control measures are not applicable.

In situations where there are little or inadequate data to provide reasonable risk
estimates for medical devices, the BN can incorporate data from previous similar
devices, expert judgement, and manufacturer information to estimate the risk of the
medical device. Previous similar device data, expert judgement and manufacturer
information, can be included as prior distributions or values in the BN, as illustrated
in Risk Management Scenario 2 and Scenario 3. Therefore, the BN model can estimate
the risk of novel medical devices (i.e., devices with little or no historical data) with
known or unknown hazards or faults since it can handle uncertainty and incomplete
data, combine subjective and objective evidence, and revise risk estimates given new
evidence. In situations where the BN is used to assess the risk of a continuous use
medical device, the BN can estimate the failure rate by considering the mean and
variance of the observed failure times (demands) and the mean and variance of the

number of observed failures.

In situations where the BN is used to assess the risk of software, information such as
development team experience is required to determine the quality of the software
development process. The BN can be adapted using the Software BN fragment shown
in Figure 81 to estimate the quality of the software development process. The quality
of the software development process is then combined with the software failure data
to provide a more accurate estimate of the probability of software failure. Like novel
medical devices, the BN can provide reasonable risk estimates for new software with
little or no testing data by combining previous similar software failure data, expert
judgement and knowledge about the development process. The estimated risk for the
new software will be revised, given new evidence throughout its life cycle, such as

rework information (risk control measure) and injury information.
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Figure 81 Software developer process quality BN fragment
In situations where the BN model is used to assess individual risk, the model can be
extended to include information such as device use to estimate risk for a particular
user. The BN model revises the P; (i.e., probability of hazard or failure) estimated
from field data (or testing data) using device use information for that particular user.
The revised P; estimate is then combined with P, (i.e., probability hazard causes an
injury) computed from field data to estimate the risk of injury, as shown in Figure 82

(see Figure B4 in Appendix B for the complete BN subnet).
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The BN for medical device risk management provides risk estimates for a single
hazard; however medical devices usually have multiple hazards. We can combine the
results of multiple hazards using a matrix or table. In the example shown in Table 21,
the risk acceptability probability value for each class of injury for a particular hazard
is obtained from the model, and we compute the combined risk acceptability
probability values as the mean p for each class of injury. We assume that all values
included in the table are satisfactory. The risk acceptability table will allow risk
assessors to determine the overall risk acceptability for the medical device given all

its hazards.

Table 21 Risk Acceptability Table for multiple hazards

Risk Acceptability Table
Risk Acceptability Probability Overall ORR
Hazards Residual Acceptability
List Risk (ORR) Probability
Acceptability given

Fatal | Critical | Major | Minor | Negligible Probability Benefits

Injury | Injury | Injury | Injury Injury
Hazard1 | 0.89 | 0.6 0.8 0.25 0.3 0.67 0.85
Hazard2 | 0.5 0.75 1 0.99 0.75 0.75 0.9
Combined
Results 197 o068 |09 |062 |053 0.71 0.875
(Mean)

Contributions and Limitations

The principal merit of the proposed generic BN for medical device risk management
is to provide a robust systematic method for medical device manufacturers to manage
the risk of medical devices throughout their life cycle (i.e., initial conception to final
decommissioning and disposal). The generic BN for medical device risk management
proposed in this thesis improves the risk assessment of medical devices in the

following ways:

1. It provides a robust method for managing the risk of medical devices
throughout their life cycle. The proposed BN incorporates different types of
data (subjective and objective) to estimate the risk of a medical device at any
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stage of the life cycle. It also explicitly shows the risk distribution for each

type of injury and the overall combined risk.

It informs risk control measures/ risk treatment given the risk acceptability
criteria. The BN predicts the need for additional risk control measures based

on the defined risk criteria. It also supports iterative risk treatment.

It improves the interpretability and explanation of risk estimates. The graphical
structure of the BN allows for easy communication and interpretation of

uncertainty and risk.

It handles uncertainty in the data, especially for novel medical devices and

software with little or no relevant historical data.

It provides individual risk estimates since it considers device use and device

age information when estimating risk.

It supports market surveillance and review (post-market activities). The BN
can easily update risk estimates given new information, such as reported
injuries.

It complements existing risk management techniques and methods (see
Chapter 3), such as Fault Tree Analysis (FTA) and Preliminary Hazard

Analysis (PHA). This enables easy adoption of the proposed BN in the
industry.

It improves benefit-risk analysis by considering information about the benefits
of the medical device and the estimated risk. To the best of our knowledge, the
proposed BN is the only method that automatically combines subjective
information about benefits together with the estimated risk to determine risk

acceptability for a medical device.

The main limitation of the case study is obtaining all relevant information for a

medical device to perform risk assessment using the BN model. Since the results of

the manufacturer’s safety and reliability tests are not publicly available, some of the

data used to assess the risk of the defibrillator were fictitious, such as the risk

acceptability criteria. Given actual data for medical devices such as LIFEPAK 1000,

the BN can provide reasonable and auditable risk estimates.
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In addition, the proposed BN was developed in the context of risk management done
by manufacturers of medical devices (or product manufacturers in general); hence, its
variables and structure are somewhat different from the consumer product safety risk
assessment BN (discussed in Chapter 8) developed in the context of risk management
done by national safety regulators and market surveillance authorities in the UK and
EU.

7.6 Chapter Summary

This chapter serves as a good example for the practical use and benefits of the product
safety idioms for BN development discussed in Chapter 6. By developing the BN for
medical device risk management, we show that product safety idioms can be used to
construct complex BNs in a modular fashion. In addition, this chapter demonstrates
how manufacturers can use BNs for product safety risk management. The proposed
BN for medical device risk management can handle uncertainty and incomplete data,
estimate risks using prior assumptions, and learn parameters from observations
(induction). It supports comprehensive and practical risk analysis since it decomposes
the risk of a medical device into a causal chain of events, including risk controls, unlike
the classical approach, i.e., Risk = P x S. The BN also complements existing risk
analysis methods such as FTA discussed in Chapter 3. The results of existing risk
analysis methods can be incorporated into the BN to determine the risk of medical

devices.

Additionally, the BN model informs risk management decisions by providing
information on the acceptability of the risk and benefit-risk analysis. Finally, the BN
resolves the limitations of existing methods, provides a standard systematic method
for medical device risk management during production and post-production, is
generalisable, and considers the 1SO 14971 risk management process. Future work
includes investigating the risk perception of medical devices since users may judge
their risk and benefits differently from experts. For instance, experts tend to judge the
risk of a product using quantitative risk assessments, whereas consumers judge risk
using a combination of subjective measures such as risk propensity. The risk
perception information can then be incorporated in the BN using the risk perception

idiom discussed in Chapter 6.
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Chapter 8 Case Study 2: Consumer Product Safety

and Risk Assessment

In this chapter, a case study on consumer product risk assessment is presented. This
work was supported by the UK Government Office for Product Safety and Standards
(OPSS). In Section 8.1, the topic is introduced, while Section 8.2, provides an
overview of product risk assessment and presents the RAPEX methodology. In
Section 8.3, the limitations of the RAPEX methodology are presented. In Section 8.4,
to address the limitations of the RAPEX methodology, we developed a generic BN for
consumer product safety risk assessment using the product safety idioms discussed in
Chapter 6. In Section 8.5, we evaluate the proposed BN by assessing the risk of
consumer products with relevant data and with no relevant data. Finally, the results

and benefits of the proposed BN are discussed in Section 8.6.

This chapter also supports Hypothesis 2 (it is possible to use Bayesian networks for
safety risk management for many different types of products, including novel products
or products with limited or no available data) and Hypothesis 3 (it is possible to use
Bayesian networks to model consumer risk perception and/or perform benefits-risk
analysis for products). Please note that the material presented in this chapter was
previously presented in Publication 2 [15] published by the Journal of Safety
Research.

8.1 Introduction

It is essential that the products we use in our homes are acceptably safe. To ensure our
safety, national regulators perform product risk assessments to limit consumer harm
[5], [8], [179], [180]. There are several different methods used for product risk
assessment, including Nomograph [179] and Matrix [179], but RAPEX [5], [8], [179]
is the primary method used by national safety regulators and market surveillance
authorities (MSA) in the UK and EU.

While the RAPEX methodology is valid and useful, in this chapter, we identify a
number of limitations of this methodology and explain the need for a systematic
method for product risk assessment that: improves the management of uncertainty;

uses causal knowledge of both the testing and operational environment and the process
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by which data are generated; is able to produce auditable quantified risk assessments
even where there is limited product testing and instance data; considers the user

population at risk and the product risk tolerability (acceptability).

We propose that Bayesian networks (BNs) can provide such a systematic method as
they are a rigorous, normative method for modelling uncertainty and causality [13],
[181]-[184]. We present a generic BN that significantly extends the previous work on
BNs for product risk assessment. It incorporates hazard and injury data, product
instances, manufacturer process information, product usage data, consumer benefits
and risk perception to estimate product risk. The proposed generic BN also
complements traditional risk assessment methods such as RAPEX. In the next section,

we provide an overview of product risk assessment and the RAPEX methodology.

8.2 Overview of Product Risk Assessment and the RAPEX
Methodology

A product is any physical non-food item offered in a market to meet consumer needs;
it could be anything from a kitchen appliance to a toy (see Section 2.2.1). Product risk
assessment is the overall process of determining whether a product is safe for
consumers to use. Specifically, it is the process by which the level of risk associated
with a particular (product) hazard is identified and categorised. The risk assessment

process includes risk analysis and risk evaluation (see Figure 1) [8], [185]:

1. Risk Analysis: This phase involves hazard identification and risk estimation
[185]. Hazard identification is the process of finding, recognising, and
describing the hazards of the product. Hazards are potential sources of harm
or injury and are intrinsic to the product [5], [8], [185]. Risk Estimation is the
process of determining the risk level of the product. Risk is the combination of
the likelihood of a hazard causing injury to a consumer and the severity of that
injury. The risk level is the degree of the product risk on a scale from ‘low’ to
‘serious’ [5], [8].

2. Risk Evaluation: The process by which the outcome of the risk analysis is
combined with policy considerations to characterise the risk and inform
decisions on risk management. It includes determining whether the risk is
acceptable [8], [185].
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As RAPEX is the most widely used method for evaluating the risk of consumer
products by national safety regulators in the EU and the UK [5], [8], [185], this thesis
will review the RAPEX methodology and its limitations.

8.2.1 The RAPEX Methodology

The EU Rapid Information System (RAPEX) risk assessment guidelines were
developed for the rapid exchange of information between the Member States of the
EU on measures and actions relating to products that pose a serious risk to the safety
and health of consumers [5], [8]. An essential component of RAPEX is product risk
assessment which determines the risk of a product and informs risk management
response [5], [8]. The following steps or guidelines and schematic shown in Figure 83

describe the RAPEX methodology for assessing product risk:

1. Describe the
product and its
hazards

2. Identify
Consumers

3. Describe the
injury scenario

4. Determine the 5. Determine the
severity of the probability of the
injury injury

6. Determine the
Risk

Figure 83 Schematic flow of RAPEX risk assessment

1. Describe the product and its hazards: Product details such as name, brand and
model are documented during this stage. Hazards associated with products are
identified by tests and standards or by the manufacturer’s product labelling and
instructions. ldentified hazards are classified using RAPEX’s hazard

taxonomy, e.g., electrical energy, extreme temperatures and toxicity.
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2. ldentify consumers: In this step, the consumers at risk are identified.
Consumer types include intended users, non-intended users and vulnerable

USETS.

3. Describe the injury scenario: Injury scenarios that causally describe how the
product hazard may harm the consumer via a series of steps are developed.
Suppose we imagine that the product is an axe, an example of an injury

scenario is “the axe breaks, and the ejected part strikes the user’s head”.

4. Determine the probability of injury: Probabilities are assigned to each step of
the injury scenario to determine the probability of injury. For example, to
determine the probability of injury while using an axe, we combine the

following probabilities:
a. Probability of axe breaking = 1/100
b. Probability of a broken part hitting the body = 1/10
C. Probability of the broken part hitting the head = 1/10
Total probability of injury =0.01 x 0.1x 0.1 = 0.0001

The probabilities used in this step are assumed to be independent and are
obtained from what are assumed to be reliable sources, such as the European

Injury Database and hospital injury databases.

5. Determine the severity of the injury: The severity of the injury is determined
by the type of medical intervention required for the injury scenario. The injury
severity level and associated medical intervention are shown in Table 22.

Table 22 Injury severity level and associated medical intervention

Injury Severity Level Medical Intervention

1 First Aid

2 Visit Accident and Emergency Department
(A&E)

3 Hospitalisation

4 Fatal or loss of a limb(s)

For example, we assign a severity level of 2 for the injury scenario “an axe
ple, g Yy jury
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breaks and the ejected part strikes the user’s head”, since it may require a visit

to A&E.

6. Determine the risk: The risk of the product is determined using a risk matrix
that combines the severity of the injury and the probability of the injury
described in the injury scenario (see Table C1 in Appendix C for RAPEX’s
risk matrix). The estimated risk of the product will contain some level of
uncertainty, since the probability of injury and severity of injury are estimated
parameters. RAPEX handles uncertainty in the estimated risk using a
sensitivity analysis which determines how variations in the estimated
parameters (i.e., probability of injury and severity of injury) affect the overall
risk result. It entails repeating the risk assessment process using different
probabilities for the steps in the injury scenario and different injury severity
levels. If the sensitivity analysis shows that there is no significant change in
the risk, then there is increased confidence in the initial estimated risk. On the
contrary, a significant change will reduce confidence and require a review of
the estimated parameters. For example, if the risk of the axe is ‘low’ and the
sensitivity analysis also shows that there is no significant change in the risk,
then the risk of the axe is confidently considered as ‘low’. However, a product
can have many different risk levels due to many hazards, many injury scenarios
or varying probabilities or severities of injuries. In these situations, the risk of

the product is the highest risk level identified for that product.
8.3 Limitations of the RAPEX Methodology

Despite the widespread use of the RAPEX methodology, it has the following
limitations:

1. Limited approach to handling uncertainty: In RAPEX, probabilities are
assigned using point values instead of distributions (i.e., the assignment of
probability values to each of the possible states of a random variable). RAPEX
attempts to handle second-order uncertainty (i.e., the uncertainty in the
estimation of the parameters of interest [186]) using a sensitivity analysis
which entails repeating the risk assessment process using different

probabilities for the steps in the injury scenario and different injury severity
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levels. This method of handling uncertainty is not practical for probabilities

that are not directly observable, nor where there is uncertainty about the data.

Cannot be applied where there is little or no product data: RAPEX cannot
produce risk assessments for genuinely novel products (i.e., those for which
little or no relevant historical data exist) or products for which limited testing

data are available.

Does not incorporate causal explanations for using and interpreting the data:
RAPEX provides no systematic or rigorous method for taking account of
causal knowledge and explanations of the statistical data it uses, which may
lead to inaccurate results. Also, RAPEX does not consider the causal factors
that generate the data it uses since it assumes that the data is reliable because
it is obtained from credible sources. The most general example is that lack of
incident data for a product may be due to lack of reporting on the product rather
than a lack of incidents, while, at the other extreme, multiple incidents
associated with a product may be the result of testing the product beyond its

intended scope.

Does not differentiate between different types of users —i.e., their usage profile
and risk tolerability (acceptability): In the RAPEX methodology, product risk
is based on the likelihood of a product causing injury to a ‘generic’ user and
the severity of that injury without any consideration of the context of use [5],
[8], [179]. Hence, a product formally classified as ‘high risk’ may actually be
‘low risk’ or ‘tolerable’ for different classes of users, taking into account the
way they use the product, the benefits they receive from it and risk controls
and mitigants. Risk controls and mitigants vary for different types of users due
to their knowledge of the hazard and the environment in which they use the
product. For instance, users that are aware of a fire hazard from a device are
likely to have a smoke alarm installed nearby, thus reducing the likelihood of

injury, e.g., burn, even if the hazard occurs.

Does not consider different product combinations and interactions with

different classes of users when estimating product risk: RAPEX’s injury
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scenario assumes that the events leading to an injury are independent and that
the product is used by a user independent of other classes of products and users.
Hence RAPEX cannot assess the injury scenarios with different product
combination interactions with different classes of users—for example, the risk

of an axe used by a student supervised by a trainer.

Does not consider the user exposure to the risk: RAPEX does not include the
usage frequency when determining the probability of a product causing injury
to a user. Usage frequency is essential to determining the probability of injury
since injury can only occur during product use. For instance, a consumer that
uses a product often will have a higher probability of being injured due to
repeated exposure to the hazard when compared to a consumer that rarely uses
the product.

Does not include information on risk tolerability (acceptability): Risk
tolerability (acceptability) is the trade-off between risk and benefits (or utility).
For instance, a ‘high risk’ product may be considered ‘tolerable’ for some users
since they value the benefits of the product sufficiently high and are willing to
tolerate the ‘high risk’ as a trade-off for the benefits. Hence, risk tolerability is
an essential component of product risk assessment since it informs risk

management response to a non-compliant product.

Does not consider increased risk of hazards over the lifetime of a product: Due
to wear and tear, the ‘hazard rate’ of a product will generally increase over
time, with different classes of products having very different increasing hazard
rates. An estimated hazard rate of a product — based only on testing instances
of the product when new — will underestimate the true hazard rate of the
product in operation.

Cannot assess the risk of products with unknown hazards or unknown product
usage information: RAPEX cannot assess the risk of products, especially novel
products, with unknown hazards or unknown product usage information since
it requires an injury scenario to estimate product risk. Nor does it provide a

method for recognising when novelty in hazard or usage arises.
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Given the limitations of the RAPEX methodology, we propose using BNs for
consumer product safety risk assessment. The generic BN for consumer product safety

risk assessment is presented in the next section.

8.4 Constructing the Consumer Product Safety Risk

Assessment BN

In this section, we describe the process used to construct the Bayesian network for
consumer product safety risk assessment. This section is organised as follows. In
Section 8.4.1, we present the scope, requirements and objectives of the BN. In Section
8.4.2, the way model variables are identified is described. In Section 8.4.3, we describe
how the BN structure is developed, and in Section 8.4.4, we describe the process of

parameter learning and elicitation.
8.4.1 Scope, requirements, and objectives of the BN

To determine the scope, requirements, and objectives of the BN for consumer product
safety risk assessment, a core team of three (3) domain experts reviewed the literature
on consumer product safety risk assessment and held discussions with senior
government safety and risk experts. Given the limitations of the RAPEX methodology,

the high-level requirements for the BN model were:

1. Product Safety Risk Assessment: This involves predicting and evaluating the
risk of a (non-compliant) product using testing and operational data,
information about the manufacturer, such as reputation, and other relevant

information about the product, such as product use and age.

2. Risk Perception and Risk Tolerability (Acceptability) Assessment: This
involves predicting risk perception and risk tolerability of the product using
information about consumer risk perception (i.e., perceived benefits and risk)

and risk communication, e.g., product recall.
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At the product level, the BN needs to:

1. Assess the risk of the product using subjective and objective evidence such as
manufacturer process information and real data collected from trials or
previous systems.

2. Handle the uncertainty in the data.

3. Provide quantified, auditable risk estimates for novel products or products
with limited or no historical data.

4. Estimate the overall risk of the product considering the different types of
injury risks.

5. Estimate the effect of risk controls on the risk of the product.

6. Perform risk tolerability and risk perception analysis considering information

about the perceived benefits and risk of the product.

Given the requirements of the BN model, we used a soft systems approach to risk and
safety modelling. In this approach, we think of the product as a whole and analyse
risks and safety at a high level based on soft factors related to the design, manufacture
or use of the product. A soft systems approach was used since product risk assessment
includes processes, people, procedures as well as systems, machines and the
interaction between all of these. However, we recognise that there are situations where
a granular analysis that considers the causal interaction of each component of the
product is required to estimate the overall risk of the product. In this case, the granular
analysis can be performed using standalone BNs approaches (i.e., developing BNs for
analysis of a particular product) or mapping approaches (i.e., translating risk analysis
methods, such as Fault Tree Analysis, described in Chapter 3, using the mapping
approaches described in Section 5.2 for analysis of a product). The results of a granular
causal analysis can then be incorporated as priors or factors that affect the overall risk
of the product (if available) in the proposed BN.

In the following subsections, we identify the model variables and develop the BN
structure using product safety idioms discussed in Chapter 6. Product safety idioms
are suitable for BN development since they provide a library of reusable BN patterns
for modelling soft factors, such as the quality of the manufacturing process, and hard

factors, such as the failure rate of the product.
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8.4.2 Identifying Model Variables

Given the requirements of the BN model, the core team of three (3) domain experts

identified relevant variables using the literature [5], [8], [185] and industry experience.

The identified variables were organised into specific categories based on their purpose

as follows:

1.

Reliability: These are variables that are required to estimate the reliability of
a product e.g., failure and hazard rates.

Requirement: These are variables that are required to predict whether a

product complies with defined operational and safety requirements.

Manufacturer Process Quality: These are variables that are required to

estimate the quality of the design and production process for a product.

Injury Occurrence: These are variables that are required to estimate the

likelihood of injury occurrence during product use.

Risk: These are variables that are required to estimate the overall risk of a

product.

Risk Tolerability (Acceptability): These are variables that are required to
evaluate the risk tolerability for a product.

Benefits: These are variables that are required to estimate the benefits of a

product.

Risk Perception: These are variables that are required to estimate the

perceived risk of a product.

For instance, in Table 23, we show the variables used in the BN to estimate the quality

of the production process for a product. A complete table of all the variables included

in the BN is presented in Appendix C.
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Table 23 Variables used to estimate the quality of the production process

Variable Abbrev. NPT Category

Name

Product design | prod_design TNormal (m_quality,0.05, 0, 1) Manufacturer

Process Quality

Years in years_operatin | Ranked: (< 1year:0.2,1-5years: 0.2,5 - Manufacturer

operation g 10 years: 0.2, 10 - 20 years: 0.2, 20+ years: Process Quality
0.2)

Manufacturer | reputation Ranked: (Disreputable: 0.33333334, Manufacturer

reputation Reputable: 0.33333334, Highly Reputable: Process Quality
0.33333334)

Customer cust_sat TNormal (m_quality,0.05, 0, 1) Manufacturer

satisfaction Process Quality

Manufacturer | m_quality TNormal (wmean Manufacturer

process (1.0,years_operating,2.0,reputation),0.001,0, | Process Quality

quality 1))

8.4.3 BN Structure

To construct the BN structure, the groups of variables organised by purpose were
matched against relevant idioms proposed in Chapter 6 and then implemented as
instances of these idioms. For example, the variables identified to estimate the quality
of the production process shown in Table 23 were matched with the quality idiom (see

Section 6.2.4) and implemented as an instance of this idiom as shown in Figure 84.

Customer
satisfaction

Years in
Operation

Manufacturer
Reputation

Manufacturer
Process Quality

Figure 84 An instance of the quality idiom
Once each group of variables was implemented as instances of idioms, we combined
them to construct the BN structure. However, instead of building the complete model
altogether, we first built BN subnets for the main components, i.e., risk estimation and

risk tolerability/risk perception. Once the subnets were built, we then connected them
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using variables that were common to each of the subnets. The complete BN structure

was then presented for discussion in a workshop with six (6) senior government safety

and risk experts and was revised accordingly both at the workshop and in subsequent

iterations (mainly by email as, due to the Covid-19 crisis, no further in-person

workshops were conducted). A consensus on the proposed BN model was reached

when the model included all relevant variables (connected causally) required for

product risk assessment. Figure 85 shows schematically the structure and prediction

process for the consumer product safety risk assessment BN. Figure 86 and Figure 87

show the BN subnet for risk estimation and risk evaluation, respectively. Please see

Appendix C for larger images of these subnets, the model assumptions, and the

instructions for using the BN.

Risk Estimation

Product Te_stlng Product l_.lse Injury Information
Information Information
i ) [ Probability of ) i ) A
Probability of hazard per demand

Risk Tolerability

Communication
e.g. product recall

LN

Consumer risk
perception

hazard per demand given use
L ) \ information | L y y
i T N F T N T ™
Manufacturer
Information Prolc:#g:lwaﬁttig:ces Benefits Information
e.0. process quality
LN o LN o .
il N l '1
Risk

&

Consumer risk
tolerability

Figure 85 Schematic of Consumer Product Safety Risk Assessment BN
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Manufacturer Information Device Use Information

Customer
satisfaction

Product Usage
Information

Years in
Operation

Product
design

Manufacturer
Reputation

Prob. of hazard per demand
for normal product use given
process information

Manufacturer
Process Quality

Prob. of hazard per
demand given
product usage

Number of
demands in
product
lifetime

Product Testing Information Testor
Generic

Switch

Prob. of hazard per
demand (generic or
test)

Generic
probability
levels

Prob. of hazard per
demand adjusted for
demands in product
lifetime

Generic prob. of
hazard per demand

Testing strategy Frob. of hazard per demand

for normal product use given
testing strategy

Prob. of hazard per
demand adjusted for
wear

Prob. of hazard per
demand under test
conditions

% dependence ), Reported Field and Injury Information

on field data

Number of
demands
tested

Regulator hazard per

N Prob. control
demand requirement

stops major
injury

Number of
demands in
the field

Prob. hazard
causes a major

injury

Prob. of hazard
per demand

Testing
requirement
met?

Number of

Normal product
use requirement
met?

observed
hazards

Number of
observed or

potential major

injuries

Number of
observed or
potential hazards
in the field

Product Risk Level

Product Instances Information

Prob. hazard
causes a major
injury revised Az

Actual Number
of product
instances

Prob. other
control stops

injury

Prob. of a major Y

Prob. of
hazard per
demand in
field

Prob. hazard
causes minor
injury revised

Total number of
major injuries

Number of
observed or

[ potential minor
injuries

otal number of
minor injuries

Prob. hazard
causes minor

injury

RISK LEVEL (one product
instance)

Prob. control
stops minor
injury

Figure 86 Consumer Product Risk Assessment BN - Risk Estimation Subnet

Product Risk Level and Risk Tolerability Consumer Risk Perception

Likelihood
of use

Number of Benefits Severity of | ( Hazardousness

Product
Instances

Injury

RISK LEVEL (one
product instance)

Consumer Risk Tolerability

Consumer

Government perceived risk
intervention

required given

risk level

RISK LEVEL (all product
instances)

Risk communication e.g., media
story, government recall

Revised benefits
given risk
communication

" Revised consumer
perceived risk given
risk communication

Government
intervention
required given risk
tolerability

it Risk Tolerability

Government
intervention
required given risk
tolerability

Revised consumer risk
tolerability

Figure 87 Consumer Product Safety Risk Assessment BN - Risk Evaluation Subnet

8.4.4 BN Parameters

The node probability tables (NPTs) for the variables in the BN (see Appendix C) were
defined by the three (3) domain experts using ranked nodes, mathematical functions,

statistical distributions, and comparative expressions. Ranked nodes [95] were used in
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the BN model to represent discrete variables with states expressed on an ordinal scale,
e.g., Customer satisfaction node with states (very low, low, medium, high, very high).
A ranked node maps the variable states to an underlying numerical scale ranging from
0 to 1 in equal intervals. Given the underlying numerical scale, the NPT for a ranked
node can be defined as a statistical distribution such as a truncated normal distribution
(TNormal) with mean x and variance o> i.e., TNormal (u, ¢°). In the BN model, the
NPT for a ranked node without parents is a uniform distribution (i.e., the probability
of each state is the same). The NPT for a ranked node with parents is a TNormal

distribution with mean u defined as the weighted average of its parents and variance

o

Standard mathematical or statistical assumptions and distributions were used to define
the NPT for numeric variables (nodes) in the BN model. For example, the NPT for
Number of times hazard observed node is a Binomial(n,p) distribution where n is the
number of demands made during testing and p is the probability of observing a hazard
per demand. The NPT for some numeric nodes is deterministic and self-explanatory;
for instance, the NPT for Probability the hazard causes a major injury node is an
arithmetic expression, i.e., probability of uncontrolled hazard causing a major injury
X (1 — probability of control stops injury). The NPT for numeric nodes without parents
is a uniform distribution, and those with parents are a TNormal distribution. The
mathematical expressions and statistical distributions used to define the NPT for each
numeric node are dependent on the function of the node, its input, and its output.
Comparative expressions were used to define the NPT for discrete variables with
binary states and parents. For instance, the NPT for Government intervention required
given risk level node with states (True, False) and parent Risk level is an IF statement

i.e., if (risk_level > 0.5,"True","False").

Although the proposed BN structure and variables are relevant for assessing the risk
of any consumer product, it is important to note that the NPT for some of these
variables will be revised given specific data about a particular product or class of
product. However, NPTs with prior statistical distributions are defined with a
sufficiently large variance to enable them to be applied to the very different product

examples used to evaluate and validate the model in Section 8.5.
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8.5 Model Validation

In this section, we evaluate the BN for consumer product safety risk assessment by
comparing the process and results of the BN and the RAPEX methodology in terms
of their ability to assess the risk of products with relevant data, e.g., Teddy Bear
(Section 8.5.1) and products with limited or no relevant data, e.g., a new uncertified
kettle (Section 8.5.2).

8.5.1 Case Study 1: Teddy Bear

In the UK and the EU, the RAPEX methodology is used by safety regulators and
market surveillance authorities to assess the risk associated with toys identified as non-
compliant to prevent harm to children. In this case study, we evaluated the BN by
assessing the risk of a teddy bear using two hypothetical scenarios and compared the
results with the RAPEX methodology.

8.5.1.1 Background Information

This subsection presents the necessary background information and assumptions for

the teddy bear risk scenarios.

1. Product Description: Brown teddy bear with a bow

2. Hazard and Injury Scenario: The eyes and suction cup can easily detach from
the toy, generating small parts; the detached part is swallowed by a child
resulting in an injury.

3. Benefits Information: The likelihood of use and benefits of the teddy bear is
moderate.

4. Reported Field and Injury Information: We assume that injury reports for the
teddy bear indicate that there were 10 hazard occurrences with 1 major injury
and 2 minor injuries.

5. Consumer risk perception: Consumers perceive the severity of the injury and
hazardousness of the teddy bear as ‘high’ and are very worried about the risk
of injury. There is no risk communication such as a product recall.

6. Product Testing Information: The product was tested ‘typical of normal use’.
The test report reveals that there was one hazard occurrence (the eye detached)
in 5000 demands.
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7. Product Instances Information: There are 20,000 teddy bears available on the
market.

8. Manufacturer Information: The manufacturer has been in operation for 5-10
years and is from a country with a good safety record for toys. The
manufacturer also has a ‘high’ customer satisfaction rating, and there are no
changes in product design (i.e., product design is the same as previous similar

products).
8.5.1.2 Risk Scenarios and Results

In this subsection, we evaluate the BN model and the RAPEX methodology using

different risk scenarios for the teddy bear.
Scenario 1 Description

In this scenario, we assume that the teddy bear is used by a child aged 0-36 months as
intended for one year with a high number of demands (i.e., 4000) and no carer
intervention (i.e., the child is not sufficiently supervised so the carer cannot take away
the small detached part, e.g. teddy bear eye, before it is ingested by the child). All
other information used in the BN is the same as presented in the background

information.
Scenario 1 - BN Results

The BN model (see Figure C4 in Appendix C) learns that the risk level for the teddy
bear is ‘very high’ with little uncertainty. The BN model calculates that the mean
probability of a major injury (per demand) for this scenario is 0.11 and for a minor
injury (per demand) it is 0.17. It also calculates that the mean number of potential
major and minor injuries for 20,000 product instances is 2325 and 3478, respectively.
Regarding risk tolerability and consumer risk perception, the BN model shows that
the risk tolerability for the teddy bear is ‘low’ or ‘very low’ given the benefits and
consumers perceive the risk of the teddy bear as ‘high’. Finally, the BN predicts that

a government intervention, such as a product recall, is required.
Scenario 1 - RAPEX Results

One of the limitations of the RAPEX methodology is that it does not consider the

number of demands for a particular product when determining risk. So, although we
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are unable to make a direct comparison to the BN model, we can compare the product
risk result of the BN model to the RAPEX methodology by using the mean probability
of a major injury (per demand) learnt by the BN model as the probability of injury for
the RAPEX method. In the RAPEX method, we set the injury severity level to ‘3’ as
this corresponds to a major injury such as internal airway obstruction. The RAPEX
method assesses the risk level of the teddy bear as ‘serious’, as shown in Figure 88.
This result is the same as the BN model, even though the BN model also uses the
probability of a minor injury and product instances to compute the risk of the product.

E European |
Commission
Scenario 1 : Very young children - Product is or contains small part

1 | Product hazard

Size, shape and surface

Product is or contains small part

2 | Consumer

Very young children - 0 to 36 months (Very vulnerable consumers)

3 | How the hazard causes an injury to the consumer

Person (child) swallows small part; the part gets stuck in larynx and blocks airways

4 | Severity of Injury

Ingestion

3 Oxygen flow to brain blocked without permanent consequences

5 | Probability of the steps to injury

Step Step(s) to Injury Probability
1 Teddy Bear Scenario 1: Mean Probability of a major injury 0.11
Calculated probability Overall probability Risk of this scenario
0.11 >1/10 Serious risk

Figure 88 RAPEX results for Teddy Bear Scenario 1

Scenario 2 Description

In this scenario, we assume that the teddy bear is used by a child aged 0-36 months as
intended for one year with a low number of demands (i.e. 200) and an 85% chance of
carer intervention (i.e. the child is sufficiently supervised so that the carer can take
away the small detached part, e.g. teddy bear eye, before it is ingested by the child).
All other information used in the BN is the same as presented in the background

information.
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Scenario 2 — BN Results

The BN model (see Figure C5 in Appendix C) learns that there is a 70% chance that
the risk level for the teddy bear is ‘low” or ‘very low’ with some uncertainty (15%
chance it is ‘medium’ and 15% chance it is ‘high’ or ‘very high’). The BN model also
calculates the mean probability of a major injury (per demand), which for this scenario
15 0.002, and for a minor injury (per demand) it is 0.003. The BN model calculates that
the mean number of potential major and minor injuries for 20,000 product instances
is 38 and 57, respectively. Finally, the BN model shows that there is a 60% chance
that the risk tolerability (acceptability) will be ‘high’ or ‘very high’ for the teddy bear
given the benefits and recommends no government intervention such as a recall with
some uncertainty. Regarding consumer risk perception, the BN model shows that the
risk of the teddy bear is perceived as ‘high’, risk tolerability is mostly ‘low” or ‘very

low’ (88% chance) and government intervention is required (94% chance).

Scenario 2 - RAPEX Results

m European |
Commission

Scenario 1 : Very young children - Product is or contains small part

1 | Product hazard

Size, shape and surface
Product is or contains small part

2 | Consumer

Very young children - 0 to 36 months (Very vulnerable consumers)

3 | How the hazard causes an injury to the consumer

Person (child) swallows small part; the part gets stuck in larynx and blocks airways

4 | Severity of Injury

Ingestion

3 Oxygen flow to brain blocked without permanent consequences

5 | Probability of the steps to injury

Step Step(s) to Injury Probability
1 Teddy Bear Scenario 1: Mean Probability of a major injury 0.002
Calculated probability Overall probability Risk of this scenario
0.002 >1/1000 Serious risk

Figure 89 RAPEX results for Teddy Bear Scenario 2
The RAPEX method assesses the risk level of the teddy bear as ‘serious’, as shown in

Figure 89. This result is not the same as the BN model for the given probability of a
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major injury since the BN model also uses the probability of a minor injury and the

number of product instances to compute the risk of the product.
8.5.2 Case Study 2: A new uncertified electric kettle

Every year, new uncertified products are available on the market that pose a serious
risk to the health and safety of consumers. However, regulators may find it difficult to
assess the risk for these products using RAPEX since they may not have access to the
manufacturer testing data generated during product development (even if such data
was collected) and the number of product instances is unknown. In this section, we
demonstrate risk assessment of products with limited or no available data using the
proposed BN by assessing the risk of a new uncertified kettle on the market for which
there are no testing data, and the number of product instances is unknown. We also
demonstrate the model’s ability to predict the effect of risk communication on risk

perception.
8.5.2.1 Background Information

This subsection presents the necessary background information and assumptions for
the electric kettle risk scenarios.

1. Product Description: Stainless steel electric kettle. Capacity 2.3L, 2000W

2. Hazard and Injury Scenario: The electric kettle may overheat and cause
burns or fire.

3. Benefits Information: The likelihood of use is ‘high’, and the benefits are
moderate for the electric kettle.

4. Reported Field and Injury Information: We assume that injury reports for
similar kettles indicate that for 7000 demands, there were 200 hazard
occurrences with 0 major injuries and 1 minor injury.

5. Consumer risk perception: Consumers perceive the severity of the injury as
‘high’, and product hazardousness and worry (their concern about the hazard)
as ‘moderate’.

6. Product Testing Information: Three (3) previous similar products were tested
‘typical of normal use’ for a number of demands ranging from 7500-10000.

The test report reveals that there was one hazard occurrence during testing.
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7. Product Instances Information: Product instances on the market range from
50000-100000 based on data from similar kettles.

8. Manufacturer Information: The manufacturer has been in operation for 4
years and is from a country with a poor safety record for consumer electrical
appliances. The manufacturer also has a ‘low’ customer satisfaction rating, and
there are no changes in product design (i.e., product appearance is the same as
previous similar products).

9. Product Use Information: Since we are uncertain about consumer behaviour
during use, we assume that the kettle is used as intended 90% of the time, with
major and minor deviations of 7% and 3%, respectively, based on the data for
similar kettles. Also, we assume that the kettle will be used on average 3000
times.

10. External Risk Control Information: We assume that the probability of
external risk controls in the environment preventing or mitigating the hazard
is 0.5.

8.5.2.2 Risk Scenarios and Results

In this subsection, we evaluate the BN model using different risk scenarios for the new
uncertified electric kettle for which there are no testing data, and the number of product

instances is unknown.
Scenario 1 Description

In this scenario, we assess the risk and risk tolerability of the electric kettle using data
from previous similar kettles as presented in the background information. We also

assume that there is no risk communication, e.g., product recall.
Scenario 1 Method

Given the background information, we are uncertain about the ‘true’ number of
demands at which the hazard will appear for this particular kettle. We are also
uncertain about the number of demands in product lifetime, product use information
and the number of product instances. Therefore, we use the data from previous similar
kettles (presented in the background information) as priors in the model to estimate
the risk of the new uncertified electric kettle. For example, in the BN model, we use a
uniform distribution (i.e., Uniform [7500,10000]) to define the NPT for the node
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‘number of demands tested’. The node ‘number of demands in product lifetime” was
defined using a TNormal distribution with a mean of 3000. The ‘number of product
instances’ node was defined using a uniform distribution (i.e., Uniform [50000,
100000]). All other information used in the BN is the same as presented in the

background information.
Scenario 1 — BN Results

The BN model (see Figure C6 in Appendix C) learns that there is an 80% chance that
the risk level of the kettle is ‘low” or ‘very low’. The BN model also calculates the
mean probability of a major injury (per demand), which for this scenario is 0.001 and
for a minor injury (per demand) it is 0.002. The BN model predicts that the mean
number of potential major and minor injuries for all product instances is 93 and 185,
respectively. Finally, the BN model shows there is an 80% chance that the risk
tolerability (acceptability) will be ‘high’ or “very high’ for the kettle given the benefits
and recommends no government intervention, such as a recall with some uncertainty.
Regarding consumer risk perception, the BN shows that the risk of the kettle is
perceived as mostly ‘moderate’ (24% chance it will be considered ‘high”), there is
50% chance that the overall benefits is ‘high’ and there is a 76% chance that risk will
be acceptable or tolerable. Given no risk communication, there is no change in the
perceived risk, benefits and risk tolerability (acceptability); however, the BN indicates

that government intervention may be required (48% chance).
Scenario 2 Description

In this scenario, we assume that we have reported injury data for the electric kettle.
We assume that the reported injury data for this particular kettle indicate that there
were 50 hazard occurrences in 7000 demands. 10 of the 50 hazards resulted in major
injuries, and 30 resulted in minor injuries. We also assume that there is a product recall
(risk communication) for the kettle. All other information used in the BN is the same
as presented in the background information.

Scenario 2 — BN Results

The BN model (see Figure C7 in Appendix C) learns that there is a 99% chance that
the risk level of the kettle is ‘very high’ with little uncertainty. The BN model also
calculates the mean probability of a major injury (per demand), which for this scenario
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is 0.05 and for a minor injury (per demand), it is 0.14. The BN model predicts that the
mean number of potential major and minor injuries for all product instances are 3859
and 10832, respectively. Finally, the BN model shows that there is an 88% chance that
the risk tolerability (acceptability) will be ‘very low’ or ‘low’ for the kettle given the
benefits and recommends a government intervention such as a recall with some
uncertainty. Regarding consumer risk perception, the BN shows that the risk of the
kettle is perceived as mostly ‘moderate’ (24% chance it will be considered ‘high’) and
a 76% chance that risk will be acceptable or tolerable. However, given risk
communication, in this example a product recall, the perceived risk of the kettle
increased (i.e., 62% chance it is ‘high’ compared to 24% chance before the product
recall). Additionally, consumer perceived benefits decreased (i.e., 10% chance that it
is ‘high’ compared to 50% chance before the product recall) and risk tolerability
(acceptability) decreased (i.e., 35% chance the risk is ‘tolerable or ‘acceptable’

compared to 77% chance before the product recall).
8.6 Discussion

The case study results for the teddy bear presented in Section 8.5.1.2 show that the BN
model and the RAPEX method may estimate different product risk levels for a
particular product. In Teddy Bear Scenario 1, the BN model and the RAPEX method
estimated the risk level as ‘very high’ or ‘serious’ (see Figure C4 in Appendix C and
Figure 88). However, in Teddy Bear Scenario 2, the BN model shows that there is a
70% chance that the risk level is ‘low’ or ‘very low’ (see Figure C5 in Appendix C),
whereas the RAPEX method predicted the risk level as ‘serious’ (see Figure 89). This
difference in risk level estimates is due to the method used by the BN model to estimate
product risk. The BN model includes additional information, such as manufacturer
process information, risk control information and product usage information (such as
the number of demands and product wear) when estimating product risk. This allows
the BN model risk estimates to be comprehensive as it incorporates all relevant factors
that affect product risk. Also, since these factors are causally linked, they support ease

of interpretation and explanation of risk level estimates.

The BN results for Teddy Bear Scenario 2 also illustrate how consumers may judge
the risk and benefits of products differently from experts. For instance, experts tend to

judge the risk of a product using quantitative risk assessments, whereas consumers
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judge risk using a combination of subjective measures such as hazardousness. In this
example, though the BN assessed the risk of the teddy bear as ‘low’ or ‘very low’, it
predicts that consumers would perceive the risk as ‘high’. Hence, regardless of the
results of the quantitative risk assessment, consumer risk perception should not be

overlooked and must be considered when evaluating risk.

The results of the case study for the new uncertified kettle in Section 8.5.2.2 show that,
while RAPEX is unable to assess the risk of novel products or products for which there
are little or no available data, the BN model can provide auditable and quantified risk
assessments. For these scenarios, the BN model estimates the risk of the product by
combining manufacturer process information with testing information from previous
similar products. This estimated product risk is also revised, given new data, e.g.,
reported injuries. This ability of the BN model to revise the risk given new data is
essential for regulators to adequately assess and monitor the risk of novel products
over time. In fact, the BN model will also perform better than RAPEX for novel
products given new data since it incorporates all the factors that causally affect product
risk and takes full account of uncertainty when estimating product risk. This case study
example also illustrates the BN ability to analyse consumer risk perception, including
the impact of risk communication, such as product recall. For example, as illustrated
in Scenario 1 for the electric kettle, if there is no risk communication, the BN model
predicts no change in consumer risk perception (see Figure C6 in Appendix C).
However, as illustrated in Scenario 2 for the electric kettle, if there is risk
communication such as a product recall, the BN model predicts that the perceived risk
will increase, and the perceived benefit and risk tolerability (acceptability) will

decrease.

The BN for consumer product safety risk assessment provides risk estimates for a
single known type of hazard; however, products usually have multiple hazards. In
situations where the hazards though possibly unique, are similar in terms of properties
they possess, e.g., hot surfaces and open flames, we can identify and define hazard
groups or classes, e.g., ‘extreme temperature’. The BN can use the defined hazard
groups to consider multiple similar hazards rather than a single hazard. Another
solution is to use a risk matrix or table to combine the risk results of multiple hazards.
In Section 7.5, we proposed a risk table to combine the risk results of multiple hazards

for medical devices that can be adapted for consumer products.
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Contributions and Limitations

The principal merit of the proposed generic BN for consumer product safety risk
assessment is to provide a robust systematic method for safety regulators, market
surveillance authorities (MSA) and manufacturers to assess the risk of consumer
products. The case study results show that the BN model resolves the issues with
RAPEX discussed in Section 8.3 and meets the model requirements specified in
Section 8.4.1. We believe that the BN model provides the following improvements to

consumer product risk assessment:

1. Properly handles uncertainty about probabilities assigned during risk
assessment: The BN model handles second-order uncertainty by incorporating
distributions rather than point values for probabilities that are not directly

observable.

2. Can assess the risk of novel products or products with little or no historical
data: In situations where it will neither be feasible nor possible to get any
extensive data from testing or details on product instances, the BN model can
incorporate expert judgement and/or data from previous similar products to

provide quantified and auditable risk estimates.

3. Incorporates causal explanations for using and interpreting the data: The BN
model explicitly describes the risk assessment process and the causal

relationship between the data used.

4. Considers the usage behaviour for different types of users and the number of
product instances when determining product risk: The BN model can take full
account of the distributions of different types of users when estimating product
risk by simply assigning priors to the ‘particular product usage’ node that
capture the population distribution. For instance, if for a particular product we
estimate that only 30% of the population will ‘use it as intended’ then we set
the prior probability of that node state at 30%. In addition, the BN model
explicitly includes ‘controls’ that can prevent a hazard from causing an injury.
For example, in households with a smoke alarm and fire extinguisher, the

probability that a fire from a washing machine leads to injury is greatly
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reduced. In households where young children are under close supervision,
there is a much lower probability that a hazard from a toy (such as an eye pulled
off a teddy bear) will lead to injury compared to households where children
are left unsupervised. Lastly, the BN model can provide individualised risk
assessments. For instance, for a particular user, the model can estimate the

probability that this user will suffer an injury during the product lifetime.

5. Considers the user exposure to risk: The BN model uses the usage frequency
of the product (i.e. the number of demands) to determine the probability of

injury for a particular user or class of user.

6. Models consumer risk perception and risk tolerability (acceptability): The BN
predicts consumer risk perception and risk tolerability for a particular user or
class of users. This is essential since consumer risk perception and risk

tolerance must be considered when evaluating risk.

7. Considers the increased risk of hazards over the lifetime of a product: The BN
model considers the effect of wear and tear on the ‘hazard rate’ of the product

when estimating product risk.
The BN model also improves product risk assessment by modelling:

1. The effect of risk communication, such as product recall, on the consumer
perception of the risk: For example, as illustrated in Scenario 1 for the electric
kettle, if there is no risk communication, the BN model predicts no change in
consumer risk perception (see Figure C6 in Appendix C). However, as
illustrated in Scenario 2 for the electric kettle, if there is risk communication
such as a product recall, the BN model predicts that the perceived risk will
increase, and the perceived benefit and risk tolerability (acceptability) will
decrease (see Figure C7 in Appendix C). However, these results need to be
validated. In Chapter 9, we discuss two studies and their results used to validate
the risk perception predictions of the BN model.

2. The mean number of major and minor injuries, respectively: The BN model

can estimate the mean number of major and minor injuries for a particular
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product based on the total number of product instances and the probability

distribution of major and minor injuries, respectively.

The proposed BN for consumer product safety risk assessment is a more powerful and
flexible approach for systematic product risk assessment than traditional methods like
RAPEX. However, it is important to note that it can also complement traditional
methods like RAPEX. For instance, since the BN approach estimates product risk
using additional parameters such as product usage data and manufacturer process

information, it can be used in the interim to validate RAPEX risk assessments.

The main limitation of this case study is obtaining all the relevant information for a
consumer product to perform a risk assessment using the BN model. Since the results
of the safety and reliability tests conducted by the product manufacturers are not
publicly available, the data used to evaluate the BN model were fictitious. However,
given actual data for a particular product, the NPTs for the BN can be revised, and the
BN can provide reasonable and auditable risk estimates. In addition, the proposed BN
was developed in the context of risk management carried out by national safety
regulators and market surveillance authorities in the UK and EU; hence its variables
and structure are somewhat different from the medical device risk management BN

(discussed in Chapter 7).
8.7 Chapter Summary

This chapter serves as another good example for the practical use and benefits of the
product safety idioms for BN development discussed in Chapter 6. By developing the
BN for consumer product safety risk assessment, we show that product safety idioms
can be used to construct complex BNs in a modular fashion. In addition, this chapter
demonstrates how national safety regulators and market surveillance authorities can
use BNs for consumer product safety risk assessment. The proposed BN for consumer
product safety risk assessment is a more powerful and flexible approach for systematic
product risk assessment than traditional methods like RAPEX. In particular, it can:
produce quantified, auditable assessments with limited or no data; properly handle
second-order uncertainty; incorporate causal explanations for using and interpreting
data; allow for different types of users, including different exposure to risk and risk

tolerability; incorporate increased risk of hazards over the lifetime of a product;
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complement traditional risk analysis methods; handle incomplete data; combine

objective and subjective evidence; revise risk estimates given new data.

In addition, it informs risk management decisions and predicts the effect of risk
communication, such as product recall, on consumer risk perception. However, the
BN predictions for the latter require validation; hence in the next chapter, we present
two empirical studies to validate the BN predictions.
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Chapter 9 The effect of risk communication on

consumer risk perception of consumer products

In this chapter, the results of two empirical studies used to investigate the effect of risk
communication on consumer risk perception of consumer products (non-food) are
presented. These empirical studies, done in collaboration with the UK Government
Office for Product Safety and Standards (OPSS) were used to validate the results of
the risk perception component of the consumer product risk assessment BN presented
in Chapter 8. In addition, they provided OPSS with novel insights on the risk
perception of consumer products (smart and non-smart) and how it is influenced by
risk communication from different actors in the network, such as government and the

media. They also contribute to the existing body of literature in this domain.

Section 9.1 introduces the topic while Section 9.2 presents the required background
information. In Section 9.3, Study 1 is presented. This study advances our
understanding of consumer risk perception, risk tolerance and benefits (or utility) of
novel technologies (e.g., smart functionality) in home appliances. It also investigates
how these perceptions are affected by risk communication from various sources such
as the government, manufacturer and media. In Section 9.4, Study 2 is presented. This
study validates Study 1 and advances our understanding of how the reliability of the
source of the risk communication (reliable versus unreliable) and product compliance
information (compliant versus non-compliant) can influence willingness to pay (WTP)
and risk perception of consumer products. The material presented in this chapter was
previously presented in Publications 5 and 6.

9.1 Introduction

Home appliances can present serious risks such as fire and electric shock [187], [188].
Moreover, risk perception, risk tolerance and benefits (utility) of home appliances may
differ due to demographic variables such as gender and education [48], [189]-[193].
Despite the differences in the perceived risk of home appliances, it is essential that
consumers are informed about the risks associated with these devices to protect them
from potential harm or damage to their environment [46]. Consumers are informed

about product risks by manufacturers, safety regulators (both government and
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independent bodies) and consumers via several media vehicles such as traditional
media (e.g., television), social media platforms (e.g., Twitter), events (e.g., community
meetings) and product-related material (e.g., product labels) [46], [47]. The method
used for risk communication by different actors in the network (i.e., manufacturers,
government and media) depends on the target audience and the purpose and objectives
of the risk communication [46]. Since sources of risk communication can influence
consumer risk perception, risk tolerance, and utility or benefits of products, including
home appliances [194], [195], it is essential to understand their impact for better risk
communication management and to protect consumers from potential harm associated
with products’ risks. However, there is little or no previous research on the impact of
risk communication sources, such as manufacturers, on consumer risk perception, risk
tolerance and benefits (utility) of home appliances. In fact, risk tolerance is rarely

studied in this domain.

Furthermore, advances in information technology, such as the internet of things (1oT)
and artificial intelligence, have transformed traditional home appliances into “smart”
devices. These smart home appliances can collect, process and store information and
interact with their operating environment [196]. Since smart home appliances may
pose novel and unknown risks to consumers, it is essential to understand how
consumers perceive these devices’ risks and whether there are unique differences (or

not) when compared to non-smart versions before and after risk communication.

In this chapter, we provide novel insights on consumers’ perception of home
appliances. In Study 1, we investigate differences in risk perception between smart
and non-smart versions of such appliances. We evaluate how communication from
various sources e.g., manufacturers, about risks and hazards associated with home
appliances influence consumers’ perceived risk, utility (benefit) and risk tolerance of
these devices. This study is the first of its kind to have directly contrasted smart with
non-smart equivalent products to examine the relative impact of smartness on judged
risk, utility (benefit) and risk tolerance. In Study 2, we investigate whether consumer
risk perceptions and willingness to pay (WTP) for a product differ based on the
reliability of the source of the risk communication (reliable versus unreliable) and
product compliance information (compliant versus non-compliant). This study is the
first of its kind to examine the relative impact of source reliability and product
compliance information on risk perception and WTP.
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These empirical studies complement our previous work on using causal Bayesian
networks (BNs) for product safety risk assessment [15] discussed in Chapter 8. The
proposed BN for consumer product risk assessment estimates the risk of consumer
products by considering factors such as device use and manufacturer process
information. The BN model resolves the limitations with traditional risk assessment
methods such as the RAPEX methodology and provides reasonable risk estimates for
products, including novel products or products with little or no relevant historical data.
A key feature of the BN model is modelling consumer risk perception and risk
tolerance. The BN fragment (i.e., a component of the BN model) shown in Figure 90
models the impact of risk communication from the media, manufacturer and
government about potential risks associated with products on consumer risk
perception, perceived benefits (utility) and risk tolerance. The risk communication
sources included in the BN model (i.e., media, manufacturer and government) were
selected since they are the most common and familiar sources of risk communication
about products’ risks for the general public [47]. However, due to the lack of research
on the impact of these different sources of risk communication on consumers’ risk
perception, benefits (or utility) and risk tolerance of products, the model structure,
variables and results require validation. Therefore, the findings obtained from these

studies can inform and validate the results of the BN model.

Owverall Benefits or
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Consumer Perceived
Risk

> Consumer Risk Tolerability ]
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[ perceived risk given
risk communication

Risk Communication e.g.,
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risk communication
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Figure 90 Consumer risk perception and risk tolerability BN fragment
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9.2 Background
9.2.1 Home appliances: Smart and Non-smart

Modern home appliances can now operate autonomously, interact with their
environment and communicate with other devices [196]. These “smart” products use
artificial intelligence (Al), 10T technology (e.g., Wi-Fi), and embedded technology
(e.g., sensors) to collect, process and store information and to communicate and
interact with their operating environment, users, and other products. Examples of such
smart products are robot vacuum cleaners, smart microwaves, smart refrigerators and
smart TVs [196]-[199]. Products that are not dependent on information technology
are described as “non-smart”. However, to a limited extent, non-smart products may
possess some of the characteristics of smart products [196]. For instance, modern

washing machines have some level of autonomy.

9.2.2 Consumers’ perception of risk, benefit, risk tolerance and

willingness to pay (WTP)

Perceived risk is consumers’ subjective judgement of risk when purchasing or using a
product or service [30], [31]. Previous research suggests that risk perception consists
of two dimensions: dread and unknown [32]. Dread risk refers to the lay-person
feelings about risks or hazards. It is defined in terms of the likelihood of consequence
(harm) and its severity, lack of control and feelings of fear. Unknown risk refers to
risks considered new, unobservable, unknown, and delayed in their manifestation and

consequences.

The risks associated with products, including home appliances, consists of two
components: the probability of harm P and the severity of that harm S [8], [185].
Previous research shows that both components can influence the risk perception of
products [200], [201]. For instance, Vaubel et al. [200] show that risk perception is

multidimensional and is influenced by both risk components and product familiarity.

The perceived risk of a product may depend on a single attribute (feature) of the
product or the product as a whole [193]. In situations where the perceived risk is
dependent on a single attribute of the product, if that particular attribute is perceived
as risky, then the whole product is perceived as risky. This is usually the case with
novel technology, such as autonomous products, which are generally considered high
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risk and more complex compared to other products [193], [202]-[204]. In situations
where the perceived risk of the product is based on the product as a whole, the
perceived risk may depend on the trade-off between risk and benefit (utility) [193],
[205]. For example, the risk of using a mobile phone, such as electromagnetic
radiation, is perceived as low due to the benefits, such as instant communication with
family and friends [193], [206].

The effect of consumer characteristics on risk perception is usually investigated using
the psychometric risk perception model [193]. This risk perception model assumes
that risk is subjective and is influenced by socio-demographic factors such as gender.
It measures risk perception of different hazards by asking questions directly about
them and using psychometric scaling methods such as numerical rating scales to
capture responses [32], [207]. When applied to products, consumers perceive risks as
high if they lead to serious harm or damages, e.g., death or if they are unknown and
novel [32], [193], [207]. Additionally, men perceived risks are lower than women, and
higher education is associated with lower perceived risk [48], [189]-[192].

Benefit or Utility is the (perceived) benefits (or advantages) consumers receive from
using a product. Since each consumer is unique, benefit (or utility) is personal and
situational. For example, a consumer will assign utility to a product based on their
personality, situation and experience [33]-[35]. In general, the perceived benefit has
an inverse relationship with perceived risk [36]-[38]. For instance, Alhakami and
Slovic (1994) found that when persons perceive an item as having high benefit or
utility, they perceive it as low risk (and vice-versa). In this thesis, we use the terms

utility and benefit interchangeably.

Risk tolerance (acceptance) is the amount of (perceived) risk consumers are willing
to accept or tolerate to obtain the benefits (value or utility) of a product [39]. It is
influenced by individual characteristics, knowledge (or experience) of the product,
product risks, risk controls and benefits. For instance, some research suggests that risk
tolerance is a personality trait [40]-[42]. For example, consumers with a high
propensity to take risks are more tolerant of risks. On the other hand, other research
suggests that risk tolerance is based on experience and knowledge [43]-[45]. For
example, consumers that are more familiar with a particular product via experience or

knowledge will be more tolerant of its risks.
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Willingness to pay (WTP) “is the maximum price a customer is willing to pay for a
product or service” [208]. Based on the results of previous research [209]-[211], it
can be implied that when a product is perceived as risky and risk reduction measures
are not applicable, the WTP will decrease. However, there is little or no research
investigating this assumption. Understanding the relationship between WTP and

perceived risk is important since WTP taps into perceived risk more subtly.
9.2.3 Risk communication and risk perception

Risk communication is the exchange of information between different stakeholders
(such as consumers and the government) about the risks associated with products [46].
The most common and familiar sources of risk communication about risks associated
with products are the government, manufacturers and the media [47]. Overall, the
success of risk communication depends on the risk information (message) and the
media vehicle. For instance, the risk message should be accurate and understandable,

and the chosen media vehicle should be suitable for the risk message [46].

Additionally, the source of the risk communication can influence risk perception
[194], [195]. For instance, media coverage and its availability (i.e. the amount of
coverage) can influence risk perception since consumers become more concerned
about potential risks when exposed to several news and reports about the risk [212]-
[216]. However, the effect of media coverage on risk perception is not permanent and
usually fades when the media coverage fades [212]. Likewise, trust in the risk
communication source can affect risk perception. For example, if consumers perceive
the risk communication source as reliable and trustworthy, e.g., the government, they
will most likely adhere to the risk message. However, they may ignore or reject the
risk message if they perceive the risk communication source as unreliable and
untrustworthy, e.g., non-experts. Hence, a lack of trust in the risk communication

source will limit the effect of the risk communication [48], [49]

Since consumers are usually informed about potential risks associated with home
appliances by safety regulators, manufacturers, and media coverage, it is essential to
understand the impact of the safety information from these sources on consumers’ risk
perception, benefit (or utility) and risk tolerance of home appliances (smart and non-

smart). However, there is little or no previous research in this domain.

183



9.3 Study 1

In this study, we investigate how different sources of risk communication affect
consumers’ risk perception, utility (or benefit) and risk tolerance of smart and non-
smart home appliances to explore whether changes in risk perception, utility and risk
tolerance conform to the BN model predictions. This study also investigates the
difference in risk perception, utility and risk tolerance of smart and non-smart home
appliances and whether it varies by gender and education. In this study, we used the

following hypotheses to investigate these questions:

e Hypothesis 1: The perceived risk is greater for smart home appliances when
compared to non-smart home appliances.

e Hypothesis 2: The perceived utility is greater for smart home appliances when
compared to non-smart home appliances.

e Hypothesis 3: The perceived risk tolerance is less for smart home appliances
when compared to non-smart home appliances.

e Hypothesis 4: Risk communication from the government, manufacturer and
media will increase perceived risk, decrease utility and decrease risk tolerance
of smart and non-smart products.

e Hypothesis 5: The perceived risk of smart and non-smart home appliances is
less for men when compared to women.

e Hypothesis 6: The perceived risk of smart and non-smart home appliances is

less for consumers with higher education.

See Figure D1 in Appendix D for the conceptual framework that guided this study. In
this study, the terms utility and benefit were used interchangeably.

9.3.1 Method

Design and Material

We conducted two experiments to test the study hypotheses. In each experiment,
consumers were given information about a home appliance (i.e., its type and features)
and a risk communication scenario and were asked questions on risk perception, utility
(benefit) and risk tolerance. In Experiment 1, the microwave oven was investigated,

and in Experiment 2, the vacuum cleaner was investigated. These home appliances
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were chosen because they are familiar products and are available on the market as
smart and non-smart (traditional) versions (see Figure 91). The following between-

subject independent variables were manipulated in each experiment:

e Product type: (1) Smart (2) Non-smart

Risk communication scenarios (see Table 24):

¢ Risk information: (1) Government recall (2) Manufacturer recall.

e Media coverage: (1) Large media coverage/story (2) Small media

coverage/story.

These independent variables were chosen based on the study’s aims and hypotheses.

-—— . SN S Y

TENCIX Non-smart
microwave oven

-l
TENCIX Smart TENCIX Smart TENCIX Non-smart
microwave oven vacuum cleaner vacuum cleaner

Figure 91 Types of home appliances used in Experiments

Table 24 Description of risk communication scenarios used in Experiments

Scenario Name

Scenario Description

Government recall

Imagine you have bought the [product name] and the government announces a
product recall due to a fire risk as follows:

“The manufacturer has identified the [product name] to be recalled or replaced due
to a potential risk of fire. If you have this [product type], please immediately stop

using it and contact the manufacturer’s hotline for a full refund or replacement”.

Manufacturer

recall/warning

Imagine you have bought the [product name] and the manufacturer issues the
following warning about a fire risk:

“The [product name] has a potential risk of fire during use. If you have this
[product name], please immediately stop using it and contact our hotline for a full

refund or replacement.”

Large media

coverage/story

Imagine you have bought the [product name] and there are media stories on several
news outlets for many months about a fire risk including the following headline.
“My [product name] catches on fire: Consumers fear for their safety as there are

multiple reports of the [product name] catching fire”.
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Small media Imagine you have bought the [product name] and there is one media story that
coverage/story appeared online about a fire risk with the following headline.
“My [product name] catches on fire: Consumer warns of fire risk while using

[product name]”.

Each experiment had a 2 x 2 x 2 design, and the dependent variables, i.e., risk, utility

(benefit) and risk tolerance, were assessed using the following questions:

1. Risk: To what extent do you consider the [product name] as posing a risk?
Scale 1 to 100 (low risk to high risk)
2. Utility or Benefit: How useful do you think the [product name] is?
Scale 1 to 100 (not useful to very useful)
3. Risk tolerance: Please rate your ability to tolerate the risk associated with the
[product name].
Scale 1 to 100 (low tolerance to high tolerance)

Participants

British consumers were recruited for each experiment using Prolific
(www.prolific.co). The inclusion criteria were that they were UK residents, born in

the UK, their first language is English and a pre-specified age range of 18 to 65.

400 participants (263 women) were recruited for Experiment 1 (Microwave oven) and

for Experiment 2 (Vacuum cleaner), 400 participants (254 women) were recruited.

In each experiment, the participants were randomly assigned to one of the eight
experimental groups (2 product types x 2 risk information scenarios x 2 media

coverage scenarios); group sizes varied between n =49 and n = 51.
Data Analysis

This study used the Bayesian approach to hypothesis testing [13] to investigate the
study hypotheses (see Appendix D for additional details).
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9.3.2 Results

Risk perception, utility and risk tolerance for smart and non-smart home

appliances

A summary of the mean perceived risk, mean utility and mean risk tolerance for smart
and non-smart microwave ovens and vacuum cleaners is shown in Figure 92, and the
patterns indicated here were statistically examined to assess support for our

hypotheses.

Product Type

Mon-smart Smart

Mean

Risk Utility Risk tolerance Risk Utility Risk talerance
Dependent variables Error bars: +- 1 SE

Figure 92 Mean perceived risk, utility and risk tolerance for non-smart and smart
microwave ovens and vacuum cleaners

Experiment 1 Results

For the microwave oven, Figure 92 and the results of the Bayesian analysis revealed
that, in support of Hypothesis 1, consumers judged the smart microwave oven as
riskier (M = 33.86, 95% CI [30.28, 37.48]) compared to the non-smart version (M =
24.75, 95% CI [21.71, 27.73]). The mean difference was 9.13, 95% CI [4.42, 13.92].
However, contrary to Hypothesis 2, consumers judged the smart microwave oven as
having less utility (M = 60.10, 95% CI [56.12, 64.09]) compared to the non-smart
version (M =76.99, 95% CI [74.36, 79.60]). The mean difference was -16.88, 95% ClI

[-21.68, -12.07]. In support of Hypothesis 3, consumers were less tolerant of the risks
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associated with the smart microwave oven (M = 63.66, 95% CI [59.51, 67.82])
compared to the non-smart version (M = 75.99, 95% CI [72.55, 79.47]). The mean
difference was -12.34, 95% CI [-17.80, -6.63].

Experiment 2 Results

For the vacuum cleaner, contrary to Hypothesis 1, the results revealed that there was
little or no difference in the way consumers judged the risk of the smart vacuum
cleaner (M = 24.12, 95% CI [21.05, 27.16]) and the non-smart version (M = 21.09,
95% CI [18.28, 23.87]). The mean difference was 3.03, 95% CI [-1.1, 7.18]. Like the
smart microwave oven, and contrary to Hypothesis 2, consumers judged the smart
vacuum cleaner as having less utility (M = 67.18, 95% CI [63.73, 70.64]) compared
to the non-smart version (M = 77.45, 95% CI [74.83, 80.09]). The mean difference
was -10.27, 95% CI [-14.68, -5.89]. Similar to the perceived risk, and contrary to
Hypothesis 3, there was little or no difference in the way consumers judged the risk
tolerance of the smart vacuum cleaner (M = 73.50, 95% CI [69.69, 77.32]) and the
non-smart version (M = 77.56, 95% CI [74.02, 81.09]). The mean difference was -
4.05, 95% CI [-9.29, 1.27].

The effect of different sources of risk communication on consumers’ risk

perception, utility and risk tolerance of smart and non-smart home appliances
Experiment 1 Results

To investigate support for Hypothesis 4, we used Bayesian analysis to examine the
effect of different sources of risk communication on risk perception, utility and risk
tolerance of non-smart and smart microwave ovens. We computed the mean difference
for the perceived risk, utility and risk tolerance for non-smart and smart microwave
ovens before and after each risk communication scenario. The mean difference was
computed as y - x, where x is the mean value of the perceived risk, utility and risk
tolerance for a particular product before the risk communication scenario and y is the
mean value of perceived risk, utility and risk tolerance for a particular product after
the risk communication scenario. For instance, as shown in Figure 93, given a
government recall, the mean increase in the perceived risk is 58.10, the mean decrease

in perceived utility is 33.58, and the mean decrease in perceived risk tolerance is 51.98.
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Figure 93 The mean difference in the perceived risk, utility and risk tolerance for

non-smart and smart microwave ovens for each risk communication scenario

According to the mean difference plot shown in Figure 93 and the results of the
Bayesian analysis shown in Table D2 and Table D3 in Appendix D for non-smart and
smart microwave ovens, respectively, risk communication from the government,
manufacturer and media stories increased perceived risk, decreased perceived utility

and decreased perceived risk tolerance. Thus, we find support for Hypothesis 4.

Experiment 2 Results

Similar to the results obtained in Experiment 1, Experiment 2 also supports Hypothesis
4. Risk communication from the government, manufacturer and media stories
increased perceived risk, decreased perceived utility and decreased perceived risk

tolerance for non-smart and smart vacuum cleaners (see Figure 94 and Table D4 and

Table D5 in Appendix D).
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Figure 94 The mean difference in the perceived risk, utility and risk tolerance for
non-smart and smart vacuum cleaners for each risk communication scenario

The effect of demographics on risk perception of smart and non-smart home

appliances

According to the combined results shown in Figure 95, and Table D6 in Appendix D,
we did not find support for Hypothesis 5. There was little difference in the perceived

risk for smart and non-smart microwave ovens and vacuum cleaners between men and

women.

Regarding level of education, in general, for the smart and non-smart microwave
ovens, the perceived risk decreases as the level of education increases (see Figure 96),
lending support for Hypothesis 6. This pattern was the same for the smart vacuum
cleaner; however, for the non-smart vacuum cleaner, there was little difference

between the perceived risk for lower and higher education levels.
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Figure 95 Mean perceived risk for microwave oven and vacuum cleaner by gender
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Figure 96 Mean perceived risk vs Education level by product and product type

9.3.3 Discussion

The present study advances our understanding of consumers’ risk perception, risk
tolerance and utility of smart and non-smart home appliances and the extent to which
consumers’ risk perception changes given risk communication from different actors
in the network (e.g., government, manufacturer and media). Overall, the results show

that risk perception of home appliances is influenced by product type (smart and non-
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smart), risk communication and demographics. In the following subsections, we will
discuss the results and their implications, the strengths and limitations of the study and

recommendations for further research.
Risk Perception

As expected, we found that consumers generally judge smart home appliances as
riskier and were less tolerant of their risks when compared to non-smart home
appliances. Our results corroborate previous research, suggesting that smart products
or products with novel technology are perceived as riskier when compared to other
products [32], [193], [196], [202]-[204], [217]. For instance, Slovic [32] demonstrated
this through the unknown risk dimension of the psychometric approach. This finding
suggests that product manufacturers should aim to reduce the perceived risk associated
with smart products. Product manufacturers could do this by informing consumers
about product functionality and safety controls, while retail stores could do it through
product trials and demonstrations which will allow consumers to evaluate the product

functionality and safety controls before purchase [196].

Contrary to our expectations, we found that consumers perceived smart home
appliances as having less utility than non-smart home appliances. Our results
contradict previous research suggesting that smart products generally offer better
utility than non-smart products [196]. However, our results are consistent with
previous research highlighting the inverse relationship between perceived risk and
utility, i.e., higher risks are associated with less utility or benefits [36], [37], [218].
Since the inverse relationship between risk and utility explains our results, product
manufacturers should aim to reduce the perceived risk associated with smart products
since it also impacts the perceived utility or benefit. Our finding also suggests that
product demonstrations and trials may increase the perceived utility of smart products
by focusing on the additional functionalities and benefits offered, such as autonomy

and time-savings.
Risk Communication

As expected, our results found that risk communication from different sources
impacted risk perception. The government, manufacturer, and large media
coverage/story each contributed to a similar level of increase in perceived risk, and

they each lowered the level of utility and risk tolerance to a similar degree. On the
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other hand, small media coverage/story had the least impact on perceived risk, utility
and risk tolerance. Our findings corroborate the results of the BN model and previous
research [48], [49], [212], [213], [215], [216]. These results have implications for risk
communicators — identifying which source of risk communication significantly
influences risk perception means that risk communication strategies can be tailored to

increase awareness of risk and hazards associated with products.

Unsurprisingly, we found that large media coverage had a greater impact on risk
perception when compared to small media coverage, hence confirming previous
research [216], [219]-[221]. These results have implications for risk communicators
— identifying the amount of media coverage that significantly influences risk
perception means that risk communication strategies can be tailored to increase
awareness of risks and hazards associated with products. Also, providing the public
with frequent, accurate and complete information about risks can ensure that the effect

of risk communication on the public’s risk perception is maintained [219]-[221].

These results also have implications for the BN model — identifying the impact of
different sources of risk communication on risk perception can improve predictions.
For instance, the node risk communication in the BN model was defined as a ranked
node with states (none, small media story, large media story/product recall) since
product recall and large media story affected risk perception the same and small media

story had the least impact.
Demographics

Contrary to our expectations, we found no difference in the risk perception of smart
and non-smart home appliances between men and women. This finding contradicts
previous research suggesting that men tend to judge risks smaller when compared to
women [32], [222], [223]. On the other hand, some research suggests that gender
differences are not evident for all types of risk and are dependent on environment or
context [222], [224]-[226]. For instance, David and Freudenburg [222] observed that
gender differences are most evident for technologies that pose a risk of contamination,
such as nuclear technology. Hence, our results and previous research highlight the
need to understand the impact of contextual factors such as environment and socio-
demographics on risk perception. This will allow better characterisation of gender

differences and their impact on risk perception.
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Regarding level of education, we found that higher educational level was associated
with less perceived risk and so confirmed previous research [32], [227], [228]. This
suggests that risk communication should be tailored for different subpopulations to
effectively influence risk perception and behaviour. Also, product manufacturers may
reduce perceived risk via product trials, demonstrations, focus group sessions and

safety information.
Strengths, Limitations and Recommendations

In this study, response bias and demand characteristics were minimised in several
ways. We performed two experiments with different products and participants. Hence
the findings in Experiment 1 are validated by Experiment 2. Also, in each experiment,
we used between-subjects design whereby participants were randomly assigned a

product type, risk information and media coverage scenario.

Although our work captured the perceived risk, utility (benefits) and risk tolerance of
smart and non-smart home appliances, we recognise that the extent to which our
results can be generalised for all home appliances is limited, especially since only two
types of home appliances were investigated. Hence the results of this study may vary
given other types of home appliances since the perception of risk, utility and risk
tolerance is product dependent [196]. In addition, our study did not include variables

such as product price, which may well impact the perceived utility of the products.

Further research should seek to examine the risk perception of other home appliances,
especially since risk perception is product dependent [32], [196]. Examining other
types of home appliances would allow for a better understanding of the differences in
risk perception between different home appliances and their smart and non-smart
versions. Also, further research should consider product price and willingness to pay
(WTP) since they may impact the perceived utility of the products. In Study 2, we

address some of these limitations.
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9.4 Study 2

The principal merit of Study 2 is to complement and corroborate the results of Study
1 and the BN model. This study done in collaboration with researchers at the Royal
Holloway University of London aims to advance our understanding on how consumers
perceive the risks associated with consumer products and whether risk perceptions and
willingness to pay (WTP) differ based on the reliability of the source of the risk
communication (reliable versus unreliable) and product compliance information
(compliant versus non-compliant). The product, product compliance information and
source reliability were manipulated between participants. Ratings for risk perception
and WTP for the products were captured before and after product compliance
information from different sources to assess the effect of source reliability and product
compliance information on risk perception. Our main study hypotheses are
summarised in Table 25. This study used the term “dread risk” to denote the perceived

risk.

Table 25 Study 2 Hypotheses

Hypotheses | Product Compliance | Source ) ]
Information Reliability Dread (Risk) Benefits WP
H1, Compliant
H1p Non-Compliant + - -
H2 Compliant Reliable
H3 Non-Compliant Reliable + - -
H4 Compliant Unreliable + - -
H5 Non-Compliant Unreliable + - -
Legend Increase +
Decrease =
No Change
9.4.1 Method

Participants

496 participants (251 male) aged 18-65+ were recruited from Prolific Academic

(www.prolific.co). The inclusion criteria were that they were residents of the UK, born
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in the UK, and their first language is English. The participants received £0.80 for
participating.

Design

In this study, a 2 x 2 x 2 design was used. The product, product compliance
information and source reliability were manipulated between participants. Two
products were investigated, namely, a carbon monoxide detector and a microwave
oven! (see Appendix D for full product descriptions). Product compliance information
had two classifications, i.e., compliant and non-compliant. Source reliability had two
classifications, i.e., reliable and unreliable.

Materials and Procedure

After consenting to participate, participants indicated their age, gender and if they had
children within specified age groups. The participants then read the instructions for
the task. On the next screen, participants were presented with one of the two products.
They provided initial scores for five risk characteristics, i.e., benefits, severity, worry,
the likelihood of use and hazardousness (see Table 26), using a 7-point Likert scale as
in [38], [229]. Participants also had to indicate their willingness to pay (WTP). The

WTP was measured on a scale ranging from £0 to 2 x recommended retail price (RRP).

Table 26 Risk Characteristics and WTP - Examples for TENCIX Microwave Oven

Risk

Characteristics Questions

Benefits How great are the benefits associated with the TENCIX Microwave Oven to you
personally? (1 = no benefits at all, 7 = very great benefits)
How severely (i.e., degree, extent or magnitude) might you, or anyone else, be

Severity injured by the TENCIX Microwave Oven? (1 = not at all severe, 7 = extremely
severe)

Worry How worried are you about potential risks associated with use of the TENCIX
Microwave Oven? (1 = Not worried at all, 7 = Extremely worried)

! The products used in this study were identified from a previous study, “Understanding the
Psychological and Cultural Factors Underpinning Risk Perception of Products”, undertaken by
researchers at Royal Holloway University of London (RHUL). This study investigated risk
perceptions of several products. The study results revealed that microwave oven and carbon monoxide
detector are perceived the same by consumers, i.e., high benefits and moderate dread.
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Likelihood of use

If you were to buy the TENCIX Microwave Oven, how likely would you be to
use it? (1 = not at all likely, 7 = extremely likely)

Hazardousness

How hazardous do you consider the TENCIX Microwave Oven to be? (1 = not at

all hazardous, 7 = extremely hazardous)

Willingness to pay

(WTP) willing to pay? (£0 - £180)

If you decided to buy the TENCIX Microwave Oven, how much would you be

On the following screen, participants were informed about product compliance (either

compliant or non-compliant) by a reliable

were then asked to re-rate the product on

or unreliable source (see Table 27). They

the five risk characteristics, i.e., benefits,

severity, worry, the likelihood of use and hazardousness.

Table 27 Description of conditions used in

the Study 2

Source

Reliability

Reliable source:
Imagine you are currently looking to purchase
[product name] for yourself or a member of your

household.

Whilst you are browsing online, you see the
[product] for sale for less than the recommended
retail price [RRP] on BuyBuyNow.com - a

popular e-commerce website.

Before buying the [product hame], you see a
media story about the safety of the [product
name] on SafeProducts101.info — a website
specialising in product safety information,
which has a reputation for publishing

trustworthy product reviews.

Unreliable source:
Imagine you are currently looking to purchase
[product name] for yourself or a member of your

household.

Whilst you are browsing online, you see the
[product name] for sale for less than the
recommended retail price [RRP] on

BuyBuyNow.com — a popular e-commerce website.

Before buying the [product name], you see a media
story about the safety of the [product name] on
TopElectricDevicelOl.info — a website specialising
in electrical products, which has a reputation for

sometimes publishing fake reviews.

Product

Compliance

Compliance information:

This story reports that the manufacturer has a

good safety compliance record, and this

particular model of [product name] complies

with [safety standard]

Non-compliance information:

This story reports that the manufacturer has a poor
safety compliance record, and this particular model
of [product name] does not comply with [safety
standard]. There is an increased likelihood of the

product malfunctioning resulting in harm to the user.
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The participants then completed the General Risk Propensity Scale [230] (an eight-
item risk propensity scale) and a shortened and amended version of the Cultural
Cognition Worldview Scale [231]. We examined risk propensity and cultural
worldviews since participants respond differently to the same information [232]. The
two cultural worldviews are ‘hierarchical individualist’ (i.e., individuals with the view
that social inequality is fair, and they are responsible for their own wellbeing) and
‘egalitarian communitarian’ (i.e., individuals with the view that social inequality is
unfair, and the collective responsibility is responsible for their wellbeing). Therefore,
the two scales used in this study were ‘individualism-communitarianism’ and
‘hierarchy-egalitarianism’, labelled GROUP and GRID respectively. Finally,
participants were thanked, debriefed, and given a code to claim their payment.

Data Analysis
Before performing the analysis, we completed the following data pre-processing tasks:

1. Dimensionality reduction: We reduced the five product characteristics into the
following two characteristics:
a. Benefits = benefits + likelihood of use
b. Dread (perceived risk) = severity + worry + hazardousness
2. Standardisation: We standardised the values for benefits, dread and

willingness to pay (WTP).

We used Bayesian modelling to investigate which factors (i.e. demographics and
product) predicted benefits, dread, and WTP before and after product compliance

information (see Appendix D for additional details).
9.4.2 Results

The effect of individual characteristics and product on perceived benefits, dread

and willingness to pay at T1

The Bayesian analysis results and Figure 97 revealed that consumers judged the
microwave oven as having lower benefits and greater dread when compared to the
carbon monoxide detector. As a result, consumers were willing to pay less for the
microwave oven when compared to the carbon monoxide detector. Regarding the
other predictors, such as gender and age, there was no strong, robust evidence for
differences between their groupings.
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Product

B CO_Detector
O Microwave

4.00

3.00

Mean

2.00

1.00

oo

Benefits Dread

Figure 97 Benefits, Dread and WTP scores at T1 for Products

Interaction effects between product compliance information and source
reliability on the change in perceived benefits, dread and willingness to pay

To investigate support for Hypotheses 2-5, we examined the interaction effect between
product compliance information and source reliability on the change in perceived
benefits, dread and WTP. The combined results for both products are summarised in
Table 28. Please note that there are some significant differences in the results between
the two products (i.e., carbon monoxide detector and microwave oven). For instance,
the decrease in benefits given non-compliant information from reliable and unreliable
sources is greater for the carbon monoxide detector when compared to the microwave
oven. Also, the increase in dread is greater for the carbon monoxide detector when
compared to the microwave oven, given non-compliant information from an unreliable
source. For further information on the differences in the results between the two

products, please see Figure D10 in Appendix D.
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Table 28 Summary of Study Results (Combined results for both products)

Product Compliance o Dread ]
. Source Reliability . Benefits WTP
Information (Risk)
Compliant
Non-Compliant +++
Compliant Reliable
Non-Compliant Reliable +++
Compliant Unreliable +
Non-Compliant Unreliable +++
Legend The symbols +, ++, +++ and -, --, --- represent different levels of
Increase T+ o
change based on relative increase or decrease.
Decrease
No Change

9.4.3 Discussion

The present study advances our understanding of how the reliability of the source of
the risk communication and product compliance information can influence willingness
to pay (WTP) and risk perception of consumer products. In support of Hypothesis 1,
non-compliance information decreased benefits, increased dread (perceived risk) and
decreased WTP when compared to compliance information. Consistent with
Hypothesis 2, we found that compliance information from a reliable source caused no
change in the perceived dread, benefits and WTP. In support of Hypothesis 3, we
found that non-compliance information from a reliable source increased dread and
decreased the benefits and WTP. We found partial support for Hypothesis 4;
compliance information from an unreliable source slightly increased dread and
decreased WTP but caused little or no change in the perceived benefits. Finally, in
support of Hypothesis 5, we found that non-compliance information from an

unreliable source increased dread, decreased benefits and WTP.

The findings of our study are consistent with Study 1 and previous research suggesting
that when a product is perceived as having high dread (risk), in this instance, non-
compliant, it is generally perceived as having lower benefits [36]-[38]. Furthermore,
the reliability of the source of the risk information can affect how the information is
perceived and the perception of risk [32], [48], [49], [212], [233]. For instance, when
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the source is judged reliable, it will mostly influence risk perception and behaviour
than if it was judged unreliable. Overall, the study results revealed that product
compliance information is the main driver of change in risk perception and WTP for
consumer products when compared to the reliability of the source. In each scenario
with non-compliance information, whether from a reliable or unreliable source,
perceived benefits decreased, dread increased, and WTP decreased. This corroborates
the results of Study 1 and the BN model (on the assumption that risk communication

primarily concerns non-compliant products).

Our findings have several implications for risk communicators and national safety
regulators. Since the reliability of the source can affect the way people react to risk
information and perceive risk, especially when they lack knowledge, all sources used
to disseminate information should be perceived by the public as trustworthy and
credible. This may be achieved by ensuring that all information (past and future)
disseminated by the source is accurate and complete. Sources with a reputation for
good and accurate information will gain public trust and influence risk perception and
behaviour [49], [234]. With regard to the technologies used for risk communication,
it is important that they are appropriate and trusted by the public. Since different
technologies have different features that determine the extent to which the public trusts
them, risk communicators and safety regulators should disseminate information using

trusted technologies.

Our present study is the first to investigate how consumers perceive the risks
associated with consumer products and whether risk perceptions and WTP differ based
on the reliability of the source of the risk communication and product compliance
information. The findings of this study have to be seen in light of some limitations.
This study examined only two products (i.e., carbon monoxide detector and
microwave oven). Since some of the results differed between the products, this
suggests that future work should examine other products since risk perception is
product-dependent [32]. Another limitation of this study is that it only examined risk
communication from consumer safety websites. Hence future work should examine
the reliability of other sources of risk communication since different sources have

inherent factors that differentiate how they are perceived and trusted by the public.
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9.5 Chapter Summary

The empirical studies discussed in this chapter provide novel insights on the effect of
risk communication and its source on the risk perception of consumer products. The
principal merit of these studies is to inform and validate the results of the consumer
risk perception component of the BN for consumer product safety risk assessment
discussed in Chapter 8. This BN component models risk perception and the effect of
risk communication on risk perception. It predicts that risk communication will
increase perceived risk and decrease perceived benefits and risk tolerance. In Study 1,
we found that risk communication from different sources impacted risk perception.
The government, manufacturer, and large media coverage/story each contributed to a
similar level of increase in perceived risk, and they each lowered the level of utility
and risk tolerance to a similar degree. On the other hand, small media coverage/story
had the least impact on perceived risk, utility and risk tolerance. In Study 2, we found
that product compliance information is the main driver of change in risk perception
and WTP for consumer products when compared to the reliability of the source of the
risk communication. In each scenario with non-compliance information (i.e., risk
communication about a non-compliant product), whether from a reliable or unreliable
source, perceived benefits decreased, dread (perceived risk) increased, and WTP
decreased. Therefore, the results of Study 1 and Study 2 corroborate the results of the
BN model. In general, the findings of these studies add to the existing literature in this
field.
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Chapter 10 Deployment of Bayesian Networks for
Safety Risk Management

In Chapters 7 and 8, we developed BNs for safety risk assessment of medical devices
and consumer products. Despite the many benefits offered by these BNs, their use is
limited if they are not deployed to end users in a practical and efficient manner. In this
chapter, the deployment of BNs as web-based applications (or web applications) using
the Agena.ai cloud service is discussed. In Section 10.1, the necessary background
information is provided. In Section 10.2, the method for deploying a BN to end users
is demonstrated using a case study, and the results are discussed in Section 10.3.

This chapter supports Hypothesis 4 (it is possible to deploy BNs for product safety
risk management in production in a practical format for easy access and use by end

users, including manufacturers, consumers, and safety regulators).

10.1 Introduction

Traditionally, BN software such as AgenaRisk [16], Hugin [235] and Netica [236]
aimed to help model experts develop BNs and perform inferences efficiently. This was
achieved using a graphical user interface and novel inference algorithms, such as
dynamic discretization (discussed in Chapter 4) [237]. Despite the many benefits
offered by the BNs developed using these tools, their widespread use is limited due to
a lack of methods for easy deployment to end users. However, Agena Ltd [22] (the
developer of AgenaRisk) recently launched a new product called Agena.ai cloud
service for easy development and deployment of BNs to end users. This solution helps
model experts to deploy BNs as web-based applications and consists of the following
three tools shown in Figure 98: Web App Designer (a tool to create web applications),
Cloud App Manager (a tool to publish web applications and manage users), and API
Services (AgenaRisk cloud API for background calculations in your own apps or

interfaces).

Given the benefits of BNs for safety risk assessment and management, we demonstrate
how they can be easily deployed to end users using the Agena.ai cloud service in the

next section.
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Figure 98 Agena.ai cloud service portal homepage

10.2 Case Study: Medical Device Risk Management BN

In this section, we use the BN for medical device risk management to test and evaluate

the Agena.ai cloud service. This BN was presented in Chapter 7 (see Figure B2 and

Figure B3 in Appendix B for the BN structure).

The following steps were used to construct and deploy a web app using the Agena.ai

cloud service:

1. Upload the model file to Agena.ai cloud service: In this step, the BN model
was exported from AgenaRisk Desktop in JSON format. The AgenaRisk JSON
file was then uploaded to the Agena.ai cloud service using the Web App

Designer tool.

2. Configure the app: Once the model file was uploaded, we configured the app
using the Web App Designer tool. The app configuration includes selecting
input and output nodes, name, description, and image, as shown in Figure 99.
In the web app, the input nodes are represented as text boxes or drop-down

lists, and the output nodes are represented as graphs.
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Application Properties Select Inputs & Outputs Configure Inputs Configure Outputs

General Inputs Qutputs

The choices you make here determine what will be displayed on the homepage of your app

Application Name

Medical Device Risk Management

Application Description

This app is based on a Bayesian network (BN) model for medical device risk management developed by a
team of computer scientists based at the Queen Mary University of London

Figure 99 Web App Configuration
3. Preview and Fine Tune: Once we configured the web app, we previewed it
to see how it looks and works with the current settings (see Figure 100). During
the preview, we validated the results of the web app by entering observations
and comparing the results with those obtained using AgenaRisk Desktop. For
instance, in Figure 101 we compare the results of the web app and AgenaRisk
Desktop for risk management scenario 1 (see Section 7.4.2). In this example,

the web app results are the same as AgenaRisk Desktop.

4. Publish App: Once the app is judged acceptable, we then deployed it using
the Cloud App Manager tool (see Figure 98). App deployment was done via a
three-step process: (1) save the app to your online account on Agena.ai cloud
service (2) enter a subdomain in agenaai.app domain (3) mark the app as

published.

Finally, once the web app was published (see Appendix E), we used it to make
predictions. We did this by accessing it via its website address (or URL) and entering
relevant observations using the input text boxes or drop-down lists. The results of the

web app were displayed as graphs, as shown in Figure 101.
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10.3 Discussion

The case study results show that the Agena.ai cloud service can easily create and
deploy a BN model as a web app to end users. Furthermore, the results of the web app
are identical to the results obtained using AgenaRisk Desktop. These results support
Hypothesis 4 and have implications for risk modellers — the ability to easily develop
and deploy BNs as web apps to end users will further promote the use of BNs in
industry and everyday life. In the context of safety risk management, for example,
medical device risk management, the web app provides a user-friendly interface for
end users to assess the risk of medical devices. In fact, end users would not require
any knowledge of BNs to perform a risk assessment. Therefore, issues such as
complexity and adoption barriers associated with using BNs for safety risk

management and other applications are resolved.

The case study results also have implications for organisations that use BNs in
production. Novel technologies like Agena.ai cloud service will allow organisations
to easily deploy new and existing BNs as web apps in production. In addition,
organisations can manage access to these web-based systems more efficiently. Also,
since the web app can be accessed anywhere, anytime by end users via the internet,
this can increase productivity in the workplace.

The main limitation of this work is that only Agena.ai cloud service was evaluated as
a method to deploy BNs as web apps in production since the BNs were developed
using AgenaRisk Desktop. Future work should include evaluating similar BN
deployment technologies, such as Netica-Web [236].

10.4 Chapter Summary

This chapter describes a method for deploying BNs for safety risk management using
Agena.ai cloud service. In the case study, we developed a web app for the BN for
medical device risk management. The case study results show that BNs can easily be
deployed to end users as a web app practically and efficiently. As a web app, end users
can access the BN anywhere, anytime, via the internet. Furthermore, the user-friendly
interface of the web app does not require end users to have knowledge of BNs to
perform a specific task such as risk assessment, hence promoting the use of BNs for

safety risk management and other applications in industry and everyday life.
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Chapter 11 Conclusions, Contribution, and Future

Directions

This chapter revisits the research hypotheses of this thesis and summarises the related

contributions. The chapter ends with the future directions of research.
11.1 Research Hypotheses and Contributions

Though BNs have been used extensively in the safety domain, their use for product
safety risk management is limited. In this thesis, we bridged this research gap by
proposing a novel method for developing robust, accurate BN models for product
safety risk management. We also investigate how BNs can be deployed to end users
using recent technological innovations. These research objectives were investigated
using four hypotheses. In this section, each hypothesis is reviewed, and their

supporting arguments and contributions are summarised.

Hypothesis 1: It is possible to develop a generic method to build Bayesian

networks for product safety risk management.

There are many techniques and approaches used in the industry to assess and model
the risks of products and systems, including the commonly used Failure Mode and
Effects Analysis (FMEA) and Fault Tree Analysis (FTA) (see Chapter 3 for a review
of risk analysis methods). However, these risk analysis methods have several
limitations, such as a limited approach to handling uncertainty, which can lead to
inaccurate or ill-defined risk estimates (see Section 1.3, Section 7.2 and Section 8.3)
for more details). Although some extensions of these methods, such as Dynamic Fault

Trees (DFTs), have resolved some of these limitations, BNs can resolve all limitations.

However, despite the many advantages of using BNs for safety risk management, the
literature review presented in Chapter 5 revealed that their widespread acceptance and
use as a standard systematic method for product safety risk management are limited.
This may be due to limited or no standard method or guidelines for building BNs for
the many different product safety cases. Furthermore, the few published BNs in this
area are presented with little information on how the BN was developed and why it is
suitable for the specific application. In other cases, the BN development process is ad
hoc and presents little or no opportunity for repeatability and standardisation. In
208



addition, some established methods for BN development (see Section 4.3 and Section
5.2 for additional details) may not be feasible for many product safety cases due to
adoption barriers, e.g., lack of knowledge and the complexity of safety risk (dependent
on the interaction between hard factors, e.g., systems and soft factors, e.g., processes).
In these situations, the BN must be developed using expert knowledge and literature.
However, the literature lacks a systematic, repeatable method or guidelines for
developing BNs for product safety risk management using expert knowledge and

literature.
Contribution

In Chapter 6, we proposed a novel method for developing BNs for product safety risk
management using causal idioms. This novel set of idioms, called product safety
idioms, complements and extends the idiom-based approach proposed by Neil et al.
[19] and other methods for BN development (see Section 4.3 and Section 5.2). Product
safety idioms are tailored to the requirements of the safety risk management process
(see Figure 1). They are based on the logical causal relationship among the factors
used to estimate and evaluate product risk. While the proposed idioms are sufficiently
generic to be applied to a wide range of product safety cases, they are not prescriptive
or complete and should be considered as a guide for developing suitable idioms for
product safety risk management. As discussed in Section 6.5, the benefits offered by
the product safety idioms include:

1. Integration of different types of knowledge sources: As demonstrated in
Section 6.4.2, the idioms can combine objective evidence, e.g., PFD, and
subjective evidence, e.g., manufacturing process quality, to provide reasonable
risk estimates for products. Combining objective and subjective evidence is
especially useful for handling uncertainty in situations when there is limited or
no historical testing and operational data for products, but expert knowledge is

available.

2. Handle uncertainty in data: Some risks associated with products can be
characterised by high levels of uncertainty and ambiguity. Uncertainty can be
caused by limited or lack of relevant data. Product safety idioms can handle
and communicate uncertainties in the data explicitly since they express
uncertainty in terms of probability distributions.
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3. Standardise and assist product safety BN development: To the best of our
knowledge, there is no standard method for developing BNs specifically for
product safety risk management. The product safety idioms improve BN
development by simplifying the knowledge elicitation task. They provide a
library of reusable BN patterns for product safety that facilitates the easy
development of practical product safety BNs. They also guide the knowledge
elicitation process by allowing model experts and safety risk professionals to
identify relevant information (known or unknown) required to build custom

idioms and BNs for product safety assessments.

4. Enhance the communication, interpretability and explainability of complex
BNs: The graphical structure and results of the BNs developed using the idioms
can be easily interpreted, explained, and reviewed by model experts and safety
risk professionals. For example, the graphical structure of BNs facilitates easy
communication of uncertainty and risks. Stakeholders can easily identify
sources of uncertainty in the model. In addition, product safety idioms can
serve as a validation method for future product safety risk BNs, ensuring that

their structure is practical and logical.

We believe that the product safety idioms are meaningful reasoning patterns that guide
the development of complex BNs for product safety risk management and can help

promote the use of BNs in this domain.

Hypothesis 2: It is possible to use Bayesian networks for safety risk management
for many different types of products, including novel products or products with

limited or no available data.

Many traditional risk analysis techniques, such as FTA, compute risk as the product
of the probability of occurrence of harm P and the severity of the harm S, i.e., Risk =
P x S. Asaresult, these methods are unable to provide reasonable risk estimates for
novel products or products with limited or no available data since the probability of
occurrence of harm P may be uncertain or unknown. However, BNs can be used to
assess the risk of novel products or products with limited or no historical data since it

Is a rigorous normative method for modelling uncertainty and causality.
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Contribution

In Chapter 7 and Chapter 8, we developed BNs for medical device risk management
and consumer product safety risk assessment using product safety idioms, expert
knowledge and literature. For each BN, we demonstrated risk estimation for products
with available data and products with limited or no historical data (see Section 7.4 and
Section 8.5). We show that the risk of products with limited or no historical data can
be estimated using data from previous similar systems (or generic probabilities)
together with information about the quality of the processes and people involved in
their development. Most importantly, we show that risk estimates can be revised once

relevant data is available, such as reported injury reports.

The principal merit of the proposed generic BN for medical device risk management
Is to provide a robust systematic method for medical device manufacturers to manage
the risk of medical devices throughout their life cycle (i.e., initial conception to final
decommissioning and disposal). We believe that the BN improves the risk
management of medical devices in the following ways (see Section 7.5 for more
details):

1. It provides a robust method for managing the risk of medical devices

throughout their life cycle (i.e., production and post-production).

2. It informs risk control measures/ risk treatment given the risk acceptability

criteria and supports iterative risk treatment.
3. It improves the interpretability and explanation of risk estimates.

4. It handles uncertainty in the data, especially for novel medical devices and

software with little or no relevant historical data.

5. It provides individual risk estimates since it considers device use and device

age information when estimating risk.

6. It supports market surveillance and review (post-market/post-production
activities). The BN can easily update risk estimates given new information,

such as reported injuries.

7. 1t complements existing risk management methods such as FTA. This enables

easy adoption of the proposed BN in the industry.
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8. It performs and improves benefit-risk analysis.

The principal merit of the proposed generic BN for consumer product safety risk
assessment is to provide a robust systematic method for safety regulators,
manufacturers and market surveillance authorities to assess the risk of consumer
products. We believe that the BN model provides the following improvements to

consumer product risk assessment (see Section 8.6 for more details):

1. Properly handles uncertainty about probabilities assigned during risk

assessment.

2. Can assess the risk of novel products or products with little or no historical
data.

3. Incorporates causal explanations for using and interpreting the data.

4. Considers the usage behaviour for different types of users and the number of
product instances when determining product risk. Hence it supports individual

and population risk assessment.

5. Models risk tolerability (acceptability), risk perception and the effect of risk
communication on risk perception. To the best of our knowledge, this is the
first BN to model risk tolerability, risk perception and the effect of risk

communication on risk perception.

6. Considers the increased risk of hazards over the lifetime of a product when

estimating risk.

7. It complements and resolves the limitations with existing methods such as
RAPEX.

Other significant contributions of our work on consumer product safety risk
assessment include the development of the UK Government Office for Product Safety
and Standards (OPSS) risk lexicon [24]. OPSS risk lexicon is the organisational
definitions of terms concerned with risk and risk-related matters. It was informed by
the material presented in Chapter 2. Most importantly, our work contributed to the
development of OPSS new product safety risk assessment methodology ‘PRISM’
[238]. PRISM introduced in December 2022, is used by safety regulators in UK to

assess the risk associated with consumer products (non-food). It improves consumer
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product risk assessment by resolving some of the limitations of the RAPEX
methodology identified in our work (in fact, the ‘PRISM’ guide references our work
presented in Chapter 8). For instance, it considers other relevant factors, such as
frequency of use and product instances when estimating risk.

Hypothesis 3: It is possible to use Bayesian networks to model consumer risk
perception and/or perform benefits-risk analysis for products.

1. Consumers may judge the risk and benefits of products differently from
experts. For instance, experts tend to judge the risk of a product using
quantitative risk assessments, whereas consumers judge risk using a
combination of subjective measures such as hazardousness. Regardless of the
results of the quantitative risk assessment, consumer risk perception should not
be overlooked and must be considered when evaluating risk. In addition,
previous research and our empirical work show that risk communication can
influence risk perception (see Chapter 9). For instance, risk communication
about non-compliant products increased perceived risk and decreased benefits.
However, there are no automated methods for predicting risk perception of
products and the effect of risk communication on risk perception. BNs are
suitable for this task due to their ability to combine objective and subjective

evidence to make predictions.

2. During medical device risk management, in situations where risk reduction
measures are not practical, a benefit-risk analysis is done to determine if the
benefit of a device outweighs its risk. However, there are no automated
methods for performing this task since it is usually based on subjective
evidence, such as the clinical outcome expected from using the device and
objective evidence, such as risk estimates. BNs are suitable for this task due to

their ability to combine objective and subjective evidence to make predictions.
Contribution

1. To the best of our knowledge, the proposed BN for consumer product safety
risk assessment discussed in Chapter 8 is the only method that models
consumer risk perception and the effect of risk communication on risk

perception. The model can predict the perceived risk, benefits and risk
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tolerance of products and the effect of risk communication on all these
perceptions. The predictions of the BN model are validated by the empirical
work presented in Chapter 9 done in collaboration with the UK Government
Office for Product Safety and Standards (OPSS) and researchers at Royal
Holloway University of London (RHUL). The empirical studies provided
OPSS with novel insights on the risk perception of consumer products (smart
and non-smart) and how it is influenced by risk communication. It improved
OPSS risk communication strategies concerning non-compliant products and
reduced potential harm to consumers. In addition, this work extends the
literature in this domain since there is little or no previous research on the risk
perception of consumer products (smart and non-smart), and how it is
influenced by risk communication from different sources such as the

government, manufacturer and media.

2. To the best of our knowledge, the proposed BN for medical device risk
management presented in Chapter 7 is the only method that automatically
combines subjective evidence about the benefits of a medical device together
with the estimated risk (objective evidence), to determine risk acceptability for
a medical device. Hence, the BN improves risk management since the benefit-
risk analysis can be performed quickly and more efficiently. Moreover, any
uncertainty in the subjective evidence can be incorporated before making

predictions.

Hypothesis 4: It is possible to deploy BNs for product safety risk management in
production in a practical format for easy access and use by end users, including

manufacturers, consumers and safety regulators.

Traditionally, BN software such as AgenaRisk [16], Hugin [235] and Netica [236]
aimed to help model experts develop BNs and perform inferences efficiently. Despite
the many benefits offered by the BNs developed using these tools, their widespread
use is limited due to a lack of methods for easy deployment to end users.
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Contribution

In Chapter 10, we described a method for deploying BNs for safety risk management
using Agena.ai cloud service (a novel technology for deploying BNs as web apps to
end users). The case study results show that BNs can easily be deployed to end users
as a web app practically and efficiently. As a web app, end users can access the BN
for safety risk management anywhere, anytime, via the internet. Furthermore, the user-
friendly interface of the web app does not require end users to have knowledge of BNs
to perform tasks, such as risk assessment, hence promoting the use of BNs for safety

risk management and other applications in industry and everyday life.

11.2 Future Directions

The novel contributions presented in this thesis provide a guide for developing and
deploying BNs for product safety risk management. In this section, we present some
interesting future directions for the work presented in this thesis, considering recent
advancements in Artificial Intelligence (Al), in particular Generative Al and
Explainable Al.

11.2.1 BN Improvements

The BN for medical device risk management presented in Chapter 7 could be extended
to model consumer risk perception of medical devices. This will require empirical
studies to understand how consumers perceive the risk of medical devices and how
these perceptions change given risk communication. The risk perception information
can be incorporated in the BN using the consumer risk perception idiom presented in
Chapter 6.

A limitation of the product safety idioms and BNs presented in this thesis is that they
are not aligned to risk acceptance principles like ALARP (as low as reasonably
practicable), SFAIRP (so far as is reasonably practicable), GAMAB (“globalement au
moins aussi bon”, generally at least as good) and MEM (minimum endogenous

mortality).

The ALARRP principle [239]-[242] requires that the risk of a system be reduced to a
“reasonably practicable” level. Determining whether the risk of a system is ALARP
entails considering whether risk control measures are “good practice” and whether the

cost of additional risk control measures is grossly disproportionate to its benefits; the
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latter is facilitated by a Cost Benefit Analysis (CBA). The BN models presented in
this thesis can be extended to incorporate a Cost Benefit Analysis (CBA) to support
ALARP decisions. The CBA component of the BN will include nodes representing
the cost of the risk control measures, the benefits of the risk control measures (defined
using the same units as the cost) and the results of the CBA; the latter used for
assessing ALARP. It is important to note that the risk is only considered ALARP when
the cost of the risk control measures is judged grossly disproportionate to its benefits.
In situations where the cost of the risk control measures is not judged grossly
disproportionate to its benefits, then the risk control measures must be implemented.
The risk tolerability idiom presented in Chapter 6 can be adapted to model a CBA. In
this thesis, SFAIRP is considered the same as ALARP.

The GAMAB principle [243] requires that the risk of new systems should not exceed
the risks of previous similar systems. The MEM principle [243] requires that a new
system does not significantly increase the minimum endogenous mortality (i.e., lowest
natural mortality rate). The BN models can be extended to support GAMAB and MEM

decisions using the requirement idiom presented in Chapter 6.

Other future work includes applying the product safety idioms to other industries in
the safety domain, such as aviation and conducting additional empirical studies to gain
a comprehensive understanding of the risk perception of products since it is product

dependent.
11.2.2 Generative Al for BN Development

The novel method for developing BNs using causal idioms presented in Chapter 6 can
provide the basis for the use of Generative Al for the development of BNs. Generative
Al is an artificial intelligence technology that can generate different types of content,
such as text and imagery given instructions, e.g., questions or text [244]. For example,
the Al tool “DALL-E2” developed by OpenAl can create realistic images and art from
a text description [245]. Regarding BN development, a generative model can be
trained on the product safety idioms since they represent the generic logical causal
patterns of reasoning for safety risk management. Once trained, end users can enter
text describing a desired model for safety risk management, and the system would
generate reasonable model structures based on the structure of the pre-defined idioms.
In addition, the generative model can also create new idioms or structures as required
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by combining and mixing different idioms. Using generative models for BN

development would further increase the use of BNs in industry and everyday life.
11.2.3 Generative Al for explaining BN Model and Results

Although the product safety idioms support the explainability of the BN model results,
this can be further improved by using Generative Al tools like ChatGPT [246], also
developed by OpenAl. ChatGPT is an Al tool that supports human-like conversations
with a chatbot. When applied to BNs, ChatGPT can provide a creative description of
the structure and results of the model for end users, as requested. In addition, it can
explain the reason for the results since the processes by which BNs make predictions
are causal and explicit. Explainability can help model experts ensure that the model
predictions are accurate and help end users understand the model results, further
promoting the use of BNs in industry and everyday life.
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Appendix A Chapter 6 Supplemental Material

This section of the Appendix presents the safety risk reports for the hammer and car

engine examples discussed in Chapter 6.

Hammer Risk Report [167]

European

Commission | Safety Gate Alerts
Alert number A12/1765/12
Product Hammer

Risk type

Category
Type
Description

Brand

Name

Type / number of model
Batch number

Weekly report number
Alert submitted by

Is the product counterfeit?

Country of origin

01/12/2022

Injuries

The hammer head has been made from unsuitable material
and metal parts may detach and injure the person using the
hammer or people nearby. The product does not comply with
the relevant European standard EN10083.

Hand tools
Consumer
Hammer with a wooden handle.

Chetak Tools

Unknown
1402CKAO1

8 694461 118002
Report-2012-047
Bulgaria
Unknown

People's Republic of China

Page 1
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Car Engine Risk Report [168]

European |
Commission

Alert number

Product

Risk type

Category
Type
Description

Brand

Name

EC-type approval/model
Production dates

Weekly report number
Alert submitted by

Is the product counterfeit?
Country of origin

Measures taken by
economic operators

Products were found and
measures were taken also
in

01/12/2022

Safety Gate Alerts

A12/1733/12

Passenger cars

Injuries
A possible crack in the crankshaft may lead to engine failure

and might cause the engine to seize which may lead to a road
accident.

Motor vehicles
Consumer
Passenger car.

Ferrari

458 Italia, California

Types: F142, F149 Models: EC-type approvals:
e3*2007/46*0040*00-*03, e3*2001/116*0285*00;

Vehicles from the production period July 2011 to August 2011
are affected.

Report-2012-047
Germany

No

Italy

Recall of the product from end users
Other

Italy

The Netherlands
Portugal
Sweden

United Kingdom

Page 1
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Appendix B Chapter 7 Supplemental Material

B1 Classes of Medical Devices

This section of Appendix B presents the different categories and classes of medical

devices.

Table B1 Categories of medical devices by purpose

Category Definition Example
Non-invasive Devices which do not enter the body Wheelchairs
Invasive Devices inserted into the body’s orifices Examination gloves
Surgically Devices used or inserted in surgery Needles

invasive

Active Devices requiring an external source of power ultrasound
Implantable Devices implanted into the body Breast implants

Table B2 Classes of medical devices by inherent risk

Class Inherent Risk Level Example
Class | Low Wheelchairs
Class I Medium Dental fillings
Class 111 High Pacemakers

B2 Model Variables and NPT

This section of Appendix B presents the variables and NPTs used in the BN for

medical device risk management.

Table B3. Variables and NPTs for Medical Device Risk Management BN

Variable
/Name

Abbrev

Node Probability Tables (NPT)

Number of
demands (test)

nd Uniform (0, 1000000)

Number of
observed
hazards (test)

no Binomial (nd, phd)

Prob. of hazard
per demand
(test)

phd Uniform (0, 1)
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Category
Reliability

Reliability

Reliability




Current or device States: (Current device: 0.985, Previous Reliability
previous device similar: 0.005, Previous device Minor
device? Difference:0.005, Previous device Major

Difference: 0.005)
Prob. hazard per | phd_device | Partitioned Expression (Current device: phd, Reliability
demand given Previous device similar: phd, Previous device
device Minor Difference: phdx1.25, Previous device

Major Difference: phdx2)
Generic or Test | genswitch States: (Testing: 0.99, Generic: 0.01) Reliability
Data?
Generic prob. levels States: (Frequent: 0.2, Probable: 0.2, Reliability
levels Occasional: 0.2, Remote; 0.2, Improbable:

0.2)
Generic prob. genprob Partitioned Expression (Frequent: Uniform Reliability
hazard per (0.001, 1), Probable: Uniform (1E-4, 0.99E-3),
demand Occasional: Uniform (1E-5, 0.99E-4),

Remote: Uniform (1E-6, 0.99E-5),

Improbable: Uniform (0, 0.99E-6))
Prob. of hazard | phdtest Partitioned Expression (Testing: phd_device, Reliability
per demand Generic: genprob)
(generic or test)
Prob. of hazard | phd_ts Partitioned Expression (Less strenuous: Reliability
given testing (phd_test+0.5xphd_test), Typical of normal
strategy use: (phd_ts), More strenuous:

(phd_ts—0.5%phd _test))
Test strategy ts States: (Less strenuous: 0.333, Typical of Reliability,

normal use: 0.333, More strenuous: 0.333) Requirement
Testing treq IF(dreq >= phd_ts,"True","False") Requirement
requirement met
Defined safety dreq Uniform(0,1) Requirement
requirement by
standards
Intended use ureq IF(dreq >= phd_df,"True","False™) Requirement
requirement
Prob. of hazard | phd_pc Partitioned Expression (Yes: (Low: Reliability
per demand (phd_tsx1.1), Normal: (phd_ts,
given process high:phd_tsx0.9)), No: (phd_ts)
information
Years in yo Ranked: (<1 year: 0.2, 1-5 years: 0.2, 5-10 Manufacturer
operation years: 0.2, 10-20 years: 0.2, 20+ years: 0.2) Process Quality
Manufacturer mr Ranked: (Highly reputable: 0.333, Reputable: | Manufacturer
reputation 0.333, Disreputable: 0.333) Process Quality
Customer cs TNormal (oqg, 0.05, 0, 1) Manufacturer
satisfaction Process Quality
Organisation 0q TNormal (wmean(1, yo, 1, mr), 0.001, 0, 1) Manufacturer
quality Process Quality
Process quality | pq TNormal (pdri, 0.005, 0, 1) Manufacturer

Process Quality

Product defects | pdef TNormal (pg, 0.05, 0, 1) Manufacturer

Process Quality
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Process drifts pdri Ranked: (Major: 0.333, Minor: 0.333, None: Manufacturer
0.333) Process Quality
Process padd TNormal (pq ,0.05, 0, 1) Manufacturer
additives Process Quality
Organisation org_pro TNormal (wmean (1, oqg, 2, pq), 0.001, 0, 1) Manufacturer
and Process Process
Quality Quality,
Reliability
Manufacturer man_info States: (Yes: 1E-4, No: 0.9999) Manufacturer
information Process
available? Quality,
Reliability
Rework effort re States: (Very high: 0.2, High: 0.2, Medium: Rework
0.2, Low: 0.2, Very low: 0.2)
Rework process | rpq Ranked: (Very high: 0.2, High: 0.2, Medium: Rework
quality 0.2, Low: 0.2, Very low: 0.2)
Rework process | rpo TNormal (wmean(1, re, 1, rpg), 0.001, 0, 1) Rework
overall
effectiveness
Rework done on | rd States: (Yes: 0.5, N0:0.5) Rework
device
Prob. hazard per | phd_df phd_pcx(1.0—prob_fix) Reliability,
demand after fix Requirement
(P1)
Probability of prob_fix See Table B3a Rework,
fixing defect Reliability
Prob. of hazard | P1 (r/100.0)xp_hazard_field+((100.0- Reliability,
per demand (P1) r)/100.0)xphd_df Risk
% Dependence r TNormal(0, 0.001, 0, 100) Reliability
on field data
Actual number ad Uniform (0, 2000000) Reliability
of demands
(field)
Accuracy of accuracy States: (Very low: 0.2, Low: 0.2, Medium: Reliability
estimated 0.2, High: 0.2, Very high: 0.2)
demands
Number of estdemands | Partitioned Expression (Very low: TNormal Reliability
estimated (ad, adx10000, 0, 1E12), Low: TNormal (ad,
demands (field) adx1000, 0, 1E12), Medium: TNormal (ad,
adx100, 0, 1E12), High: TNormal (ad, adx10,
0, 1E12), Very high: (ad)
Number of field_haz Binomial (ad, p_hazard_field) Reliability
reported or
potential
hazards (field)
Prob. of hazard | p_hazard_fie | Uniform (0, 1000000) Reliability
per demand Id
(field)
Number of n_fatal Binomial (field_haz, ph_fatal) Injury
reported or Occurrence

243




potential fatal

injuries

Number of n_critical Binomial (field_haz, ph_critical) Injury
reported or Occurrence
potential critical

injuries

Number of n_major Binomial (field_haz, ph_major) Injury
reported or Occurrence
potential major

injuries

Number of n_minor Binomial (field_haz, ph_minor) Injury
reported or Occurrence
potential minor

injuries

Number of n_negligible | Binomial (field_haz, ph_neglibile) Injury
reported or Occurrence
potential

negligible

injuries

Prob. hazard ph_fatal Uniform(0,1) Injury
causes a fatal Occurrence,
injury Risk

Prob. hazard ph_critical Uniform(0,1) Injury
causes a critical Occurrence,
injury Risk

Prob. hazard ph_major Uniform(0,1) Injury
causes a major Occurrence,
injury Risk

Prob. hazard ph_minor Uniform(0,1) Injury
causes a minor Occurrence,
injury Risk

Prob. hazard ph_neglibile | Uniform(0,1) Injury
causes a Occurrence,
negligible injury Risk

Prob. risk control_f 1—ph_fatal Injury
control stops Occurrence,
fatal injury Risk

Prob. risk control_c 1—ph_critical Injury
control stops Occurrence
critical injury

Prob. risk control_ma 1—-ph_major Injury
control stops Occurrence
major injury

Prob. risk control_mi 1—ph_minor Injury
control stops Occurrence
minor injury

Prob. risk control_n 1—ph_negligbile Injury
control stops Occurrence
negligible injury

Prob. of fatal pfatal P1xph_fatal Risk

injury per
demand
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Prob. of critical
injury per
demand

pcritical

P1xph_critical

Risk

Prob. of major
injury per
demand

pmajor

P1xph_major

Risk

Prob. of minor
injury per
demand

pminor

P1xph_minor

Risk

Prob. of
negligbile injury
per demand

pnegligible

P1xph_negligible

Risk

Acceptable
prob. of a fatal
injury per
demand

a_pfatal

Uniform(0,1)

Risk Evaluation

Acceptable
prob. of a
critical injury
per demand

a_pcritical

Uniform(0,1)

Risk Evaluation

Acceptable
prob. of a major
injury per
demand

a_pmajor

Uniform(0,1)

Risk Evaluation

Acceptable
prob. of a minor
injury per
demand

a_pminor

Uniform(0,1)

Risk Evaluation

Acceptable
prob. of a
negligible injury
per demand

a_pnegligble

Uniform(0,1)

Risk Evaluation

Fatal injury risk
acceptability

accept_fatal

IF(pfatal<=a_pfatal,"Acceptable","Not
Acceptable™)

Risk Evaluation

Critical injury
risk
acceptability

accept_critic
al

IF(pcritical<=a_pcritical,"Acceptable","Not
Acceptable™)

Risk Evaluation

Major injury
risk
acceptability

accept_majo
r

IF(pmajor<=a_pmajor,"Acceptable”,"Not
Acceptable™)

Risk Evaluation

Minor injury accept_mino | IF(pminor<=a_pminor,"Acceptable”,"Not Risk Evaluation

risk r Acceptable™)

acceptability

Negligible accept_negl | IF(pnegligible<=a_pnegligble,"Acceptable”," | Risk Evaluation

injury risk Not Acceptable™)

acceptability

Overall residual | orr TNormal (wmean (10, accept_fatal, 4, Risk

risk (ORR) accept_critical, 3, accept_major, 2, Evaluation,
accept_minor, 1, accept_negl), 0.001, 0, 1) Benefit-Risk

Analysis
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Risk control control_req | Partitioned Expression: (Acceptable (Yes: 0, Risk Evaluation

required No: 1), Not Acceptable (Yes: 1, No: 0))

ORR risk orr_accept TNormal (wmean (1, orr, 1, benefits), 0.001, Risk

acceptability 0,1) Evaluation,

given benefits Benefit-Risk

Analysis
Benefits of benefits TNormal (wmean (2, pop, 1, perf, 1, outcome, | Benefits,
device 1),0.001, 0, 1) Benefit-Risk
Analysis

Performance perf Ranked: (Very low:0.2, Low:0.2, Medium:0.2, | Benefits

during clinical High:0.2, Very high:0.2)

use

Patient pop Ranked: (Very low:0.2, Low:0.2, Medium:0.2, | Benefits

population High:0.2, Very high:0.2)

Clinical outcome Ranked: (Very low:0.2, Low:0.2, Medium:0.2, | Benefits

outcome from High:0.2, Very high:0.2)

using device
Table B3a. NPT for Probability of Fixing Defect
Rework process overall

effectiveness Very Low Low Medium High Very High
Rework done on device |No |Yes No |Yes No |Yes No |Yes No |Yes

TNormal(0. TNormal(0 TNormal(0 TNormal(0 TNormal(0
01,0.001,0. .15.0.001,0 .4.0.001,0. .6,0.001,0. .8.0.001,0.

Expressions 0(0.1.0) 0].0,1.0) 0[0,1.0) 0[0,1.0) 0]0,1.0)

B3 The Complete BN for Medical Device Risk Management

This section of Appendix B presents the schematic and complete BN for medical

device risk management.

. 3 e
Manufacturer Risk :antrc: and Device Use Operational and A Ritskb.l.
Information ewor Information Injury cceptability
Information Information Criteria
p.

l l

Product Testing Probability of ( Probability of Hazard )
Information e.g., Hazard or Failure or Failure per D d Risk Estimation Risk Evaluation
Failures per Demand given Use Information
(. - J
Previous or Other Benefits Benefit-Risk
Analysis Information Information Analysis
e.g., PHA

Figure B1 Schematic of the Medical Device Risk Management BN
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B4 Model Assumptions

This section of Appendix B presents the model assumptions.

Model Assumptions:

1.

Five injury severity levels i.e., fatal, critical, major, minor and negligible, see
Table B4.

Aninjury risk is judged acceptable if it is less than or equal to risk acceptability
criteria.

There are hidden nodes whose parents are the ‘Injury Risk Acceptability’
nodes. These hidden nodes are used to translate the results of the discrete nodes
used for ‘Injury Risk Acceptability’ to ranked nodes for computing the
‘Overall Residual Risk Acceptability’ (defined as a ranked node). This
explains why there are dotted lines in the model.

The NPT for ‘Overall Residual Risk Acceptability’ node is defined as TNormal
(wmean (10.0, fatal injury acceptability, 4.0, critical injury acceptability, 3.0,
major injury acceptability, 2.0, minor injury acceptability, 1.0 negligible
injury acceptability), 0.001, 0,1). We used a weighted mean function to
combine the respective scores for injury risk acceptability to produce an
overall residual risk acceptability score. The nodes with higher weights will
have a greater impact on the overall residual risk acceptability score.

A single known type of hazard is investigated. In Section 7.5, we discuss

combining the risk results of different hazards for a medical device.

Table B4 Qualitative severity levels for harm

Rank Terms Description

5 Fatal Result in death

4 Critical Result in irreversible injury

3 Major Results in injury requiring
medical intervention

2 Minor Results in temporary injury

1 Negligible Results in temporary discomfort
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Table B5 probability levels for the occurrence of harm

Rank Terms Probability range

5 Frequent >103

4 Probable <10%and > 10*
3 Occasional <10*and > 10
2 Remote <10%and > 10°
1 Improbable <10

B5 Instructions for using Medical Device Risk Management BN

This section of Appendix B presents the instructions for using the medical device risk

management BN.

Instructions:

4.

Define the scope and objectives of the analysis, including the hazards to be
investigated and the risk acceptability criteria.

Describe the device, including its requirements, functions, users, intended use,
safety characteristics, benefits, risk controls and life cycle phase.

Collate and organise other relevant information for the analysis:

a. Product testing information: Information about the number of hazards
observed in a set of demands during testing will allow the BN to
estimate the probability of the hazard per demand. We define a demand
as a measure of usage, e.g., single use, years etc.

b. Injury information: Information about hazard occurrences and related
injuries in the field will allow the BN to estimate the probability of the
hazard or hazardous situation resulting in injury. Injury information can
be obtained from hospitals and injury databases.

c. Manufacturer information: Information such as manufacturer
reputation, customer satisfaction, and product defects will allow the
BN to estimate the quality of the manufacturing process. Since the
quality of the manufacturing process can influence the occurrence of
hazards, it will be used to revise the probability of the hazard per
demand, especially in situations where there are little or no product
testing data.

Perform the analysis using the BN:
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a. Populate product testing information, manufacturer information, injury
information and risk acceptability criteria.

b. Compute the risk and overall residual risk acceptability.

c. Estimate the effect of additional risk controls: In situations where the
overall residual risk is not acceptable, populate risk control and rework
information to estimate the residual risk given additional risk controls.

d. Perform benefit-risk analysis: Populate the benefits information to
determine whether the risk of the device is acceptable given its benefits.
This is useful, especially in situations where the overall residual risk is
not acceptable after additional risk controls are implemented or

situations where risk control measures are not practicable.

B6 Model Validation Results — AgenaRisk Screenshots

This section of Appendix B presents the model results for the risk management

scenarios discussed in Section 7.4.
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Figure B5 - BN Results for Defibrillator Scenario 1
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Figure B6 - BN Results for Defibrillator Scenario 1 — Rework Information
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Figure B7 - BN Results for Defibrillator Scenario 2
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Figure B8 - BN Results for Defibrillator Scenario 3
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Figure B9 - BN Results for Defibrillator Scenario 4
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Figure B10 - BN Results for LIFEPAK Defibrillator 1000
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Appendix C Chapter 8 Supplemental Material

C1 RAPEX Risk Matrix
This section of Appendix C presents the risk matrix used in the RAPEX methodology.

Table C1 RAPEX Risk Matrix

Probability of harm

Severity of harm

over life of product
>50%

Level 1

Level 2

>1in 1,000,000
<1in 1,000,000

>11in 10 Medium
>1in 100 Medium
>1in 1000

>1in 10,000

>1in 100,000

C2 Model Variables and NPT
This section of Appendix C presents the variables and NPTs used in the BN for

consumer product safety risk assessment.

Level 3

Level 4

Table C2. Variables and NPTs for Consumer Product Safety Risk Assessment BN

Variable name Abbrev Node type NPT

Number of demands tested ndt Simulation (integer | Uniform(0, 1000000)
interval)

Number of times hazard nho Simulation (integer | Binomial(ndt, p_h_testcond)

observed in tests interval)

Testing strategy ts Labelled (Less Less strenuous than normal use:
strenuous than 0.1, Typical of normal use 0.6,
normal use, Typical | More strenuous than normal use
of normal use, 0.2, Generally poor testing 0.1
More strenuous
than normal use,

Generally poor
testing)

Probability of hazard per p_h_testcon | Simulation Partitioned Expression (Less

demand under testing d (continuous strenuous than normal use:

conditions interval) p_h_strat-0.5*p_h_strat, Typical
of normal use: p_h_strat, More
strenuous than normal use:
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p_h_strat + 0.5*p_h_strat,
Generally poor testing:
TNormal(p_h strat,0.001,0,1))

Probability of hazard per p_h_strat Simulation TNormal(0.001, 0.01, 0,1)
demand given testing strategy (continuous
interval)
Generic or Test Data? genswitch Boolean (Testing, Testing: 0.99, Generic: 0.01
Generic)
Generic prob. levels levels Labelled (Frequent, | Frequent: 0.2, Probable: 0.2,
Probable, Occasional: 0.2, Remote: 0.2,
Occasional, Improbable; 0.2
Remote,
Improbable)
Generic prob. hazard per genprob Simulation Partitioned Expression
demand (continuous (Frequent: Uniform (0.001, 1),
interval) Probable: Uniform (1E-4,
0.99E-3), Occasional: Uniform
(1E-5, 0.99E-4), Remote:
Uniform (1E-6, 0.99E-5),
Improbable: Uniform (0, 0.99E-
6))
Prob. of hazard per demand phdtest Simulation Partitioned Expression (Testing:
(generic or test) (continuous p_h_strat, Generic: genprob)
interval)
Testing requirement result test_req Boolean (True, if(reg_hpd>=p_h_testcond,"Tru
False) e","False")
Regulator hazard per demand | reg_hpd_req | Simulation TNormal(0,0.001,0,1)
requirement (continuous
interval)
Normal product use norm_req Boolean (True, if(reg_hpd>=p_h_normal_use,"
requirement result False) True","False")
Manufacturer Reputation reputation Ranked Disreputable: 0.33333334,

(Disreputable,
Reputable, Highly

Reputable: 0.33333334, Highly
Reputable: 0.33333334

Reputable)

Years in operation years_operat | Ranked (< 1year,1 | <lyear:0.2,1-5years:0.2,5

ing -5 years,5-10 - 10 years: 0.2, 10 - 20 years:

years, 10 - 20 years, | 0.2, 20+ years: 0.2
20+ years)

Customer satisfaction cust_sat Ranked (Very Low, | TNormal(m_quality,0.05, 0, 1)
Low, Medium,
High, Very High)

Product design prod_design | Ranked (No TNormal(m_quality,0.05, 0, 1)
change, Minor
improvements,
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Major

improvements)
Manufacturer process quality | m_quality Ranked (Low, TNormal(wmean(1.0,years_ope
Normal, High) rating,2.0,reputation),0.001,0,1)
Probability of hazard per p_h_normal | Simulation Partitioned Expression (Low:
demand for normal product _use (continuous phdtest *1.1, Normal: phdtest,
use given process information interval) High: 0.9* phdtest)
Product usage informaiton prod_usage Labelled (Used as Used as intended: 0.9, Minor
intended, Minor deviations: 0.07, Major
deviations, Major deviations: 0.03
deviations)
Probability of hazard per p_h_usage Simulation Partitioned Expression (Used as
demand given product usage (continuous intended: p_h_normal_use,
interval) Minor deviations:
p_h_normal_use +
0.1*p_h_normal_use, Major
deviations: p_h_normal_use +
0.5*p_h_normal_use)
Number of demands in demands Simulation (integer | TNormal(100, 1000, 0, 1ES8)
particular product lifetime interval)
Probability of hazard per p_h_demand | Simulation 1.0-(1.0-p_h_usage)*demands
demand adjusted for demands | s (continuous
in product lifetime interval)
Years in use years Simulation TNormal(0, 10, 0, 30)
(continuous
interval)
Probability of hazard per p_h_wear Simulation min(1.0,p_h_demands+p_h_de
demand adjusted for wear (continuous mands*years"2.0/1000.0)
interval)
Number of demands in the f_demands Simulation Uniform(0,1E9)
field (continuous
interval)
Number of observed hazards f_hazards Simulation (integer | Binomial(f_demands, ph_field)
in the field interval)
Probability of hazard per ph_field Simulation Uniform(0,1)
demand in field (continuous
interval)
Number of observed major num_maj Simulation (integer | Binomial(f_hazards,
injuries interval) p_uh_major)
Number of observed minor num_min Simulation (integer | Binomial(f_hazards,

injuries

interval)

p_uh_minor)
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Probability hazard causes a p_uh_major | Simulation Uniform(0,1)
major injury (continuous
interval)
Probability hazard causes a p_uh_minor | Simulation Uniform(0,1)
minor injury (continuous
interval)
Probability control stops pcontrolmaj | Simulation 1.0-p_uh_major
major injury or (continuous
interval)
Probability controls stops pcontrolmin | Simulation 1.0-p_uh_minor
minor injury or (continuous
interval)
Probability other control stops | p_control Simulation Uniform(0,1)
injury (continuous
interval)
Probability hazard causes a p_h_major Simulation p_uh_major*(1.0-p_control)
major injury revised (continuous
interval)
Probability hazard causes a p_h_minor Simulation p_uh_minor*(1.0-p_control)
minor injury revised (continuous
interval)
Probability of hazard per P1 Simulation (percentage/100.0)*ph_field+((1
demand (continuous 00.0-
interval) percentage)/100.0)*p_h_wear
% Dependence on field data percentage Simulation TNormal(50, 0.001, 0, 100)
(continuous
interval)
Probability of major injury per | p_major_L Simulation P1*p_h_major
demand (continuous
interval)
Probability of minor injury per | p_minor_L Simulation P1*p_h_minor
demand (continuous
interval)
Actual Number of product t prod Simulation (integer | Uniform(0,1000000000)
instances interval)
Total number of major injuries | t_major Simulation (integer | P_major_L*t prod
interval)
Total number of minor t_minor Simulation (integer | t_prod * p_minor_L
injuries interval)
Risk level (one product risk_level Ranked (Very Low, | TNormal((min(1.0,100.0*(p_ma
instance) Low, Medium, jor_L +0.5*p_minor_L)),0.001,
High, Very High) 0,1)
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Number of product instances Num_prod Ranked (Very Low: | Very Low: <10k: 0.2, Low: 10k
<10k, Low: 10k - -100k: 0.2, Medium: 100k -
100k, Medium: 500k: 0.2, High: 500k — 1m:
100k - 500k, High: | 0.2, Very High: > 1m: 0.2
500k - 1m, Very
High: > 1m)

Likelihood of use likelihood Ranked (High, High: 0.33333334, Medium:
Medium, Low) 0.33333334, Low: 0.33333334

Benefits benefits Ranked (High, High: 0.33333334, Medium:
Medium, Low) 0.33333334, Low: 0.33333334

Overall benefits util Ranked (High, TNormal((wmean(1.0,
Medium, Low) likelihood, 1.0 benefits)), 0.001,

0,1)

Government intervention gov_int req | Boolean(True, if(risk_level>0.5,"True","False"

required given risk level False) )

Risk tolerability risk_toler Ranked (Very High | TNormal((wmean(2.0,risk_level
(Acceptable), High | ,1.0,util)), 0.001, 0, 1)
(Acceptable),

Medium
(Tolerable), Low
(Unacceptable),
Very Low
(Unacceptable))

Government intervention gov_int req | Boolean(True, if(risk_toler>0.5,"True","False™)

required given risk tolerability | 2 False)

Severity of injury severity Ranked (Low, Low: 0.33333334, Medium:
Medium, High) 0.33333334, High: 0.33333334

Hazardousness hazardousne | Ranked (Low, Low: 0.33333334, Medium:

SS Medium, High) 0.33333334, High: 0.33333334

Worry worry Ranked (Low, Low: 0.33333334, Medium:
Medium, High) 0.33333334, High: 0.33333334

Consumer perceived risk c_risk_per Ranked (Low, TNormal((wmean(1.0,severity,1
Medium, High) .0, worry, 1.0, hazardousness)),

0.001,0,1)

Consumer risk tolerability crt Ranked (Very High | TNormal((wmean(1.0,c_risk_pe
(Acceptable), High | r,1.0, util)), 0.001,0,1)
(Acceptable),

Medium
(Tolerable), Low
(Unacceptable),
Very Low
(Unacceptable))
Risk communication rc Ranked (None, None: 0.33333334 Small media

Small media story,

story: 0.33333334, large media
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large media story /
product recall)

story / product recall:
0.33333334

announced

Revised benefits given risk rev_util See Table C2a for NPT
communication

Revised consumer perceived rev_c_risk_p See Table C2b for NPT
risk given risk communication | er

Government intervention govt_int_ann | Ranked (No, Yes) No: 0.5, Yes: 0.5

Revised consumer risk
tolerability

risk_toler2

Ranked (Very High
(Acceptable), High
(Acceptable),
Medium
(Tolerable), Low
(Unacceptable),
Very Low
(Unacceptable))

TNormal((wmean(2.0,rev_c_ris
k_per,1.0,rev_util)),0.001,0,1)

Government intervention
required given revised risk
tolerability

gov_int_req
3

Boolean(True,
False)

if(risk_toler2>0.5,"True","False

")

Table C2a NPT for the node Revised benefits given risk communication

Overall Ben... | Medium Low
Risk commu. . | None I Small media story [ Large media stor... [ None Small media story | Large media stor... | None Small media story | Large media stor...
High | 1.D_ D.SS_ 0.2_ D.D_ 0.0_ 0.0_ O.D_ D.D_ 0.0
Medium 0.0| 0.14| 0.7 10| 0.8 0.5 0.0 0.0] 0.0
lLow 0.0/ 0.01] 0.1] 0.0 0.2] 0.5 10| 1.0] 1.0
Table C2b NPT for the node Revised consumer perceived risk given risk
communication
Consumer ... | Low Medium High
Risk commu... | None Small media story |Large media stor... None Small media story |Large media stor... None Small media story |Large media stor...
Low 1.0 0.85 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Medium 0.0 0.14 0.7 1.0 0.8 0.5 0.0 0.0 0.0
High 0.0 0.01 0.1 0.0 0.2 0.5 1.0 1.0 1.0

Table C2c NPT for the node risk level (all products instances)

RIXLE... very Low \ Low | Medum | \ very Hioh
Number...| VeryL... [Low: 1...[Medu... [High: ... [Very H...[Very L... [Low: 1...[Medu... [High: ... [very H... | very L... [Low: 1...[Medu... [ Hioh: ... [veryH...| veryL... [Low: 1...[Medu... [High: ... [very H...[Very L... [Low: 1...[Medu... [High: ... [veryH...|
Very Low 10 10 10, 1.0 10 00 00 _ 00 00 00 00 00 00 00 00 _ 00 _ 00 00 00 00 00 _ 00 _ 00
Low |00 00 00 00 00 1.0 1.0 0.0 0.0 00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Medum | 00| 00/ 00 00 00 00 _ 0.0 10 10 00 1.0 1.0 10 00 00 00 00 00 00 00 00 00 00
Woh | 00| 00 00 00 00 00 00 00 00 10| 00 00 0.0 10| 00 10 10 10| 00 00 00 00 00
Very Hgh 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10| 00 00 00 10 10 10 L0 L0

264

0.0/

0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.0
1.0



This section of Appendix C presents the complete BN for consumer product safety

C3 The Complete BN for Consumer Product Risk Assessment

risk assessment.
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C4 Model Assumptions

This section of Appendix C presents the model assumptions.

Model Assumptions:

1.

3.
4.

Consumer perceived risk is dependent on three factors i.e., severity of injury,
hazardousness and worry.

Benefits of the product is dependent on two factors i.e., likelihood of use and
benefits.

Risk communication can influence risk perception of the product.

A single known type of hazard is investigated. In Section 8.6, we discuss

combining the risk results of different hazards for a product.

C5 Instructions for using Consumer Product Risk Assessment BN

This section of Appendix C presents the instructions for using the consumer product

risk assessment BN.

Instructions:

1.

Define the scope and objectives of the analysis, including the hazards to be
investigated.

Describe the device, including its requirements, functions, users, intended use,
safety characteristics, and benefits.

Collate and organise other relevant information for the analysis:

a. Product testing information: Information about the number of hazards
observed in a set of demands during testing will allow the BN to
estimate the probability of the hazard per demand. We define a demand
as a measure of usage, e.g., single use, years etc.

b. Injury information: Information about hazard occurrences and related
injuries in the field will allow the BN to estimate the probability of the
hazard or hazardous situation resulting in injury. Injury information can
be obtained from hospitals and injury databases.

c. Manufacturer information: Information such as manufacturer
reputation will allow the BN to estimate the quality of the
manufacturing process. Since the quality of the manufacturing process

can influence the occurrence of hazards, it will be used to revise the
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probability of the hazard per demand, especially in situations where
there are little or no product testing data.

d. Product usage information: Information about product usage e.g.,
frequency of use, and product age will allow the BN to revise the
estimated failure (or hazard) rate and the overall risk as needed.

e. Product instances information: Information such as the number of
product instances available on the market will allow the BN to estimate
the number of injuries and risk associated with the product.

f. Benefits and risk perception information: Information such as the
likelihood of use and severity of injury will allow the BN to estimate
the benefits and perceived risk of the product.

g. Risk communication information: Information relating to risk
communication such as product recall, media stories etc.

4. Perform the analysis using the BN:

a. Populate product testing information, benefits information,
manufacturer information, product usage information, product
instances information and injury information.

b. Compute the risk and risk tolerability.

c. Perform a consumer risk perception analysis: Populate risk perception
information and risk communication information to estimate consumer

perceived benefits, risk and risk tolerability for the product.

C6 Model Validation Results — AgenaRisk Screenshots

This section of Appendix C presents the model results for the risk assessment scenarios

discussed in Section 8.5.
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Figure C4 - BN Results for Teddy Bear Scenario 1
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Figure C5 - BN Results for Teddy Bear Scenario 2
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Figure C6 - BN Results for Kettle Scenario 1
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Figure C7 - BN Results for Kettle Scenario 2

Manufactu

Manufacturer
Reputation

rer Information

Product Testing Information

Generi
probabill

levels

c

ity

Years in
Operation

L' Generic prob. of
hazard per
demand

Customer
satisfaction

cturer Process

Low 97.732%

-

T
Scenario 2 Di
A

Product design

Device Use Information

| Product Usaae Information |
Used as intended
Winor deviations
Major deviations

90%

3%

Prob. of hazard per

Scenario 2 : No change

2864
1432

2.268%

Test or
Generic
Switch

Scenario 2 Testing

1

el

0

Prob. of hazard per

3156
1678
1]

f

a1000

Proh. of hazard per demand

50000
100D
12000

281Uj m

=}

Number of

00070
Lo
9000
LZ00°0

0.01

¥
Prob. of hazard per

Mumbar

Testing strategy
3156
[Scenario 2 : Typical of normal use | 1578
af Prob. of hazard per 0
3156
per demand
0 ¥ requirement
Number of Testina
hazards observed False
intests
True 100%
Scenario 2:1

Product In:

Prob. of hazard ner

egulator hazard

stances Information

Actual Number of

Product Risk Level

0.00002
0.00001
0

0.0002
0.0001 4

Total number of

IProb. of a major injury

15
0.7
0

2
1
Prob. of hazard per 0

\

»

9ELE

£98
000E

o o % dependence
R

0}

/

Prob. of hazard per
148
07
1)
o o o
W in

2 7
@

on field data

Prob. hazard
causes a major
injury

7
0

Prob. hazard causes
14

ag'n
€1
BLD
G20

e

14
M$ ’

T
=
wl
=]

G0
TZ'0

Y

Me:

Total number of

0

Product Risk Level and Risk Tolerability

Mean = 10832

an = 3859 Mean = 0,

2 (w00

Prob. of a minor injury

Prob. other

control stops

Prob. hazard causes

5
3
0
S &
S W e =
4 Mean = 0.14 o

12
— &
o o 0

£2°0

nenQ
5S¢0

o
w
@

&

RISK LEVEL (one product instance)

Vary Low
Medlum

Wery ngh

] 99.365%)

Consumer Risk Perception

Likelihood of

Benefits

Government

Risk Tolerability

False

True

5.995%

94.005%

Very High {Acceptable)
High {Acceptable)
Medium (Tolerable)

Low (Unacceptable)
Wery Low {Unacceptable) ] 1

f]11.514%
{171 .485%

6.763%

RISK LEVEL (one product
Very Low Number of Product use
Low Instances
Mediurn
High
very High 99.365%
Overall Beneﬁ‘s
i 50%
RISK LEVEL (all product
Government Very Low
False Low
[ Medium
Trus 59.719% High
Wery High 59.365% Revised benefits
High{| 10%
J / medium{ ] 60%

Low:

{]30%

N

273

Prob. hazard
causes minor
injury

Scenario 2 : Medium

injury
Scenario 2: 0.5

N
Scenario 2 High

Reported Field and Injury Information

Proh. control
Number of
. demands in the
[LIPR RN field
in m o ol
Scenario 2: 7000
Number of
observed or Number of
potential major observed or
injuries potential hazards
Scenario 210 x, M e Tield
Scenario 2 50
Prob. of hazard ner
394
197

0

Proh. control
stops minor
injury

Hazardousness

observed or
. Ppotential minor

Number of

injuries

Scenario 2:30

Worry

[Scenario 2 : Medium | Scenario 2 - Medium |

Consumer Risk Tolerability

Wery High (Acceptable)
High (Acceptahle)
Medium (Tolerable)

Low (Unacceptable)
Very Low (Unacceptahle)

Consumer perceived

7] 26.295%

[ j40073% | Low

:2| ;30-74%8% Medium
High

Risk communication e.g., media story,
government recall

| |7e321%

23.679%

[Scenario 2 : Large media story/ Product rec%l_l

Revised consumer

Government intervention VREW:-E?] ?:nsur?irl r;sk tolerability
‘ery High (Acceptable Low
False ] 20.418% High (Acceptable){] 5.751 %
K= WMeadium (Tolerable){ ] 29.241% 3 Medium
True 79.581% Low (Unaceeptable) {7 44.817%)
Very Low (Unacceptahle) 20.143% High

:|381ﬁ1%
|| s1.830%




Appendix D Chapter 9 Supplemental Material

D1 Study 1: Conceptual Framework

This section of Appendix D presents the conceptual framework for Study 1.

4 I
Sources of risk communication: Perceived Risk
1. Government \ )
2. Manufacturer
3. Media ( h
Perceived Utility
. A
1. Prod ( )
- Procuct Perceived Risk
2. Product Type (smart and >
tolerance
non-smart) L )

Figure D1. Conceptual framework for Study 1

D2 Study 1: BN models for two means hypothesis tests

This section of Appendix D presents the Bayesian network (BN) model, variables, and
node probability tables (NPTs) for comparing two population means and distributions.

The Bayesian approach includes the following steps:

1. Learn the population mean and variance from the sample mean and sample
variance for each population using the BN model shown in Figure D2. This
model uses the following theorem to learn the population distribution:

Sample variance = Chisquared(n — 1) x variance/(n — 1)

Where n is the sample size. See Table D1 for node probability tables (NPTS).
2. Determine the difference between the two populations by estimating the

difference in the population means and distributions using the nodes pop

greater than popl, pm greater than pm1, and population mean difference.
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Population A Population B

population
variance

population
mean_1
7

sample
wvariance_1

&
&
sample
mean_1

population mean _\t:hisquared_1 |

difference

Figure D2. BN model used for two means hypothesis test

Table D1. BN Variables and NPTs for BN model used for two means hypothesis test

Variables Abbrev. Node Probability Tables
Sample size n Normal (0, 1000000)

Sample mean sm Normal (pm, pv/n)

Sample variance sV chisquared x pv/(n—1.0)
Population mean pm Normal (0, 2000000)
Population variance pv Normal (0, 12000000)
Chisquared chisquared Chi Squared(n—1.0)
Population pop Normal (pm, pv)

Population_1 popl Normal (pm_1, pv_1)

Pop greater than popl popcomparison | If (pop > pop_1, “True”, “False”)

PM greater than PM1 pmcomparison If (pm > pm_1, “True”, “False”)

Population mean pm_difference pm—pm_1

difference

Population variance_1 | pv_1 Normal (0, 1000000)
Population mean_1 pm_1 Normal (0, 1000000)
Sample size_1 n_1 Normal (0, 1000000)
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Sample mean_1 sm_1 Normal (pm_1, pv_1/n_1)

Sample variance_1 sv_ 1 chisquaredl x pv_1/(n_1-1.0)

Chisquared_1 chisquaredl Chi Squared(n_1-1.0)

The BN model shown in Figure D3 was used to investigate the interaction effects
between gender, product, product type and risk communication source on perceived
risk, utility and risk tolerance. The model NPTs was learnt from the study data.

Perceived Risk
Tolerance

Perceived Risk Perceived Utility

Product Type
(smart or non

Perceived Risk
Tolerance

Perceived Risk

Risk
Communication
Source

Figure D3. BN model used to investigate interaction effects between variables
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D3 Study 1: Correlation Analysis
This section of Appendix D presents correlation analysis results for Study 1.

Experiment 1 Results

A correlation analysis revealed (see Figure D4) a negative correlation between risk
and utility ratings (r = -0.25, p = 6.9e-7) and risk and risk tolerance ratings (r = -0.51,
p = 4.9e-28). However, there was a positive correlation between utility and risk

tolerance ratings (r = 0.31 p = 2.5e-10).

Correlation Heatmap for Experiment 1 - Microwave Oven
-100

-0.75

risk

wility

I
utility risk tolerance

risk tolerance

Figure D4. Dependent variables Correlation Heatmap for Experiment 1
Experiment 2 Results

Similar to Experiment 1, a correlation analysis revealed (see Figure D5) a negative
correlation between risk and utility ratings (r = -0.25, p = 4.2e-7) and risk and risk
tolerance ratings (r = -0.47, p = 5.6e-23). However, there was a positive correlation

between utility and risk tolerance ratings (r = 0.35 p = 2.7e-13).

Correlation Heatmap for Experiment 2 - Wacuum Cleaner
-100

-075

risk

wtility

risk tolerance

1
ukility risk tolerance

Figure D5. Dependent variables correlation Heatmap for Experiment 2
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D4 Study 1: Effect of risk communication on risk perception

This section of Appendix D presents the results of the Bayesian two means hypothesis
test for Study 1.

Experiment 1 Results

Table D2. Results of Bayesian two means hypothesis test for non-smart microwave

oven
Before risk communication: L
Risk Dependent x After nsk communication: y Mean 1-95% U-95%
Product . e n difference:
communication | variables CI CI
M Lo5% | U95% | 1-95% | U-95% yox
e a cI ~hean I 1
Risk 100 | 23.78 | 19.46 25.02 81.88 7819 83.6 381 52.39 63.82
Government Utility 100 | 78 74.22 81.79 44.42 37.85 50.90 -33.58 -41.19 -26.02
recall i
Rick 100 | 75.06 | 69.95 80.15 2308 1815 27.96 -51.98 -59.16 -44 87
tolerance
Rask 100 | 2572 | 2139 30.09 79.33 7375 §4.87 5361 46.42 60.65
Manufacturer Utility 100 | 7597 | 7233 79.6 20.8 23.15 36.46 -46.17 -53.80 -38.53
recall
Non-smart Rick 100 | 7692 | 72.22 81.66 22.52 16.42 28.49 -54.4 -62.26 -46.76
: tolerance
microwave - —
oven Risk 100 | 2290 | 1870 27.25 79.63 73.22 §4.07 J6.64 50.46 62.83
Large media Utility 100 | 7868 | 7542 8192 3302 27.60 40.21 -44.76 -51.92 -37.5%
story
. Risk 100 | 76.82 | 71.94 81.76 24.88 19.46 30.25 -51.94 -59.37 -44.61
tolerance
Risk 100 | 2651 | 2211 30.95 3779 52.23 63.35 31.28 24.09 38.44
Small media Utility 100 | 7320 | FiLi8 79.42 33.83 47.52 60.07 -21.46 -29.02 -13.92
story i
B Risk 100 | 7316 | 70.19 80.17 42.7 36.85 48.61 -32.46 -40.19 -24.66
tolerance

Table D3. Results of Bayesian two means hypothesis test for smart microwave oven

Risk Before risk communication: x After risk communication: y Mean o cor
- Dependen - . L-95% U-95%
Product communicati - n difference
t variables o CI CI
on M Los% | U9s% | L95% | U95% yox
e | er I ean I I
Rask 100 | 3115 | 2616 36,17 84.7 80.82 88.60 5355 47.15 55.94
Government Utility 100 | 6075 | 3507 66.44 33.88 27.69 40.08 -26.87 -35.28 -1837
recall Risk ~
100 | 65.78 | 592.72 7179 26.01 20.38 3171 -30.77 -48.08 -31.34
tolerance
Risk 100 | 36.57 | 31.24 41.83 79.7 74.39 §4.98 4313 3557 50.68
Manufacturer | Utility 100 | 59.45 | 53.72 635.32 36.98 31.06 43.05 -22.47 -30.92 -14.02
recall Risk ~ _ B o N
_Sma.n. tolerance 100 | 6154 | 33.60 67.42 23.62 19.95 3143 -35.82 -44.18 -27.50
microwave -
oven Risk 100 | 3418 | 2880 3947 80.04 75.49 8452 45.86 38.82 5294
Large media Utility 100 | 61.26 | 53.29 67.17 3124 25.18 37.40 -30.02 -38.55 -21.35
story Risk - - - <
100 | 60.48 | 34.36 66.59 2318 19.83 30.49 -35.3 -43.54 -27.08
tolerance
Risk 100 | 3354 | 2843 38.63 65.84 60.47 7118 323 24 84 3979
Small media Utalaty 100 | 5894 | 3357 64.30 43.05 37.46 48.60 -15.80 -23.78 -8.11
story Risk
100 | 66.84 | 61.20 7248 4272 36.92 4842 -24.12 -32.32 -16.04
tolerance
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Experiment 2 Results

Table D4. Results of Bayesian two means hypothesis test for non-smart vacuum

cleaner
Rick Dependent Before risk communication: x | After risk communication: v Mean L-95% U-85%
Product S e n difference
communication | variables . CI CI
M L-95% U-95% |\ 1-95% | U95% | ¥ %
M) a I Ve | e I
Risk 101 | 2385 | 19.66 28.09 81.07 76.69 83.48 37.22 51.01 63.32
Government Utility 101 | 75.69 | 7222 7915 33559 29.54 41.63 -40.1 -47.12 -33.05
recall Risk
101 | 77.06 | 7225 81.91 2257 17.86 27.14 -34.55 -61.33 -47 85
tolerance
Risk 101 | 1831 | 14.75 21.88 79.51 73.92 85.10 612 54.48 67.86
Manufacturer Utility 101 | 70.23 | 7552 82.95 3518 2839 41.07 -44.05 -31.85 -36.27
Non- recall Risk -
101 | 78.06 | 72.87 83.26 23.84 18.06 29.61 -54.22 -61.98 -46.39
Smart tolerance
Vacuum Risk 101 | 21.7 17.48 25.89 80.76 76.4 85.13 50.06 52.98 65.20
cleaner Largemedia | Utility 101 | 7431 | 70.33 78.30 33.40 27.11 3072 4052 | -4846 | -33.35
story
B Risk 101 | 7596 | 7107 80.59 20.32 15.04 24.73 -35.64 -62.32 -48.96
tolerance
Risk 101 | 2048 | 16.78 24.18 60.67 33.32 66.01 40.19 33.64 46.73
Small media Utility 101 | 80.63 | 77.52 83.75 49.39 43.31 35.46 -31.24 -38.11 -24.37
story
i Rask 101 | 7917 | 7418 84.14 42.35 36.64 48.17 -36.82 -44.45 -29.09
tolerance

Table D5. Results of Bayesian two means hypothesis test for smart vacuum cleaner

Before risk communication: A ’
Risk Dependent x After isk communication.y | Mean | o0 | 1y 50,
Product P e n difference
communication variables i CI CIL
A L95% | U-B5% | o L95% | U-95% S
e CI cI e cI CI
Risk 100 24.2 19.79 28.66 80.25 | 76.58 83.86 56.05 50.25 61.83
Government Utility 100 68.5 64.02 7291 4231 | 36.00 48.63 -26.19 -33.94 -18.36
recall Risk
1600 7374 | 6851 78.93 24.98 | 19.589 30.09 -48.76 -56.11 -41.4
tolerance
Risk 100 24.03 | 1977 2826 79.04 | 7374 84 34 55.01 48.13 61.89
Manufacturer Utility 1600 63.85 | 60.58 7126 4347 | 36.89 50.04 -22.38 -30.97 -13.89
recall i
Smart R.llﬁk 100 7326 | 67.61 7882 2306 | 1798 2808 -50.2 -57.78 -42.54
Vactum tolerance
cleaner Risk 100 24.690 | 20.26 2913 7823 | 73009 83.25 33.504 46.66 060.30
Large media Utility 100 64.61 | 5926 7015 3651 | 3020 4204 -28.1 -36.66 -19.60
story Risk -
100 7298 | 67.04 7832 2312 | 1849 27.71 -40.86 -57.00 -42.68
tolerance
Risk 29 2354 | 1923 2771 3951 | 3376 63.41 3597 28.78 4337
Small media Utility 99 69.78 | 63.30 74.30 3362 | 48.21 59.09 -16.16 -23.24 -9.03
story ;
Risk 29 7403 | 6855 79.40 43.36 | 37.17 49.61 -30.67 -38.96 -22.29
tolerance
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D5 Study 1: The effect of demographics on risk perception

This section of Appendix D presents the supplementary results for the effect of

demographics on risk perception for Study 1.

Table D6. Results of Bayesian two means hypothesis test for gender

Women: x Men: ¥ Mean
-95% 79597
Product Dfp_endent difference: | 007 U-93%
variables I vx CI CI
U-95% L-95% U-95% 4
% t
7 Mean 95% 1 n Mean c1 I
CI
Non-smart
microwave | Risk 127 | 2341 | 1984 | 27.23 70| 27.09 | 2142 3282 3.08 -3.12 10.52
oven
Smart
microwave | Risk 136 | 351 3064 | 3040 61 | 31.33 | 245 3802 -3.77 -12.01 433
oven
Non-smart
vacuum Risk 118 | 2098 | 17.32 | 24.68 80 | 21 16.49 25.56 0.02 -5.81 5.96
cleaner
Smart
vacuum Risk 136 | 2615 | 2243 | 2987 62 | 19.71 | 1426 23.26 -0.44 -131 031
cleaner
Education
Secondary schoolup Higher or secondary
to 16 years (e.q. ar further education Undergraduate Post-graduate Doctoral degree (e.g.
GCSEs (e.g. Alevels) degree (e.g. BSc) degree (e.g. MSc) PhD)
80
=
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=]
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i , g
§ © g
= @ =
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Product Type

Error bars: +- 1 SE

Figure D6. Mean perceived risk for products by Education Level
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D6 Study 1: Interaction Effects
This section of Appendix D presents the interaction effects for Study 1.

Experiment 1 Results

For the smart microwave oven, before a large media story, the perceived risk for
women (Median = 34, IQR [17, 50]) was similar to men (Median = 31, IQR [14, 48])
and the perceived utility for women (Median =62, IQR [43, 81]) was greater compared
to men (Median = 54, IQR [36, 72]). After the large media story, the perceived risk
for women was greater (Median = 83, IQR [68, 97]) compared to men (Median = 72,
IQR [58, 87]). The difference in perceived risk between men and women after the
large media story though the evidence was not strong, can be explained by the inverse
relationship between risk and utility since the perceived utility for women (Median =
28, IQR [8, 47]) was lesser compared to men (Median = 34, IQR [15,52]) after the

large media story.
Experiment 2 Results

For the smart vacuum cleaner, before the government recall, the perceived risk for
women (Median = 26, IQR [12, 40]) was similar to men (Median = 20, IQR [6, 34])
and the perceived utility for women (Median = 67, IQR [50, 84]) was the same as men
(Median = 67, IQR [54, 79]). After the government recall, the perceived risk for
women was greater (Median = 82 [72, 92]) compared to men (Median = 74, IQR [61,
88]). The difference in perceived risk between men and women after the government
recall though the evidence was not strong, may be due to the inverse relationship
between risk and utility since the perceived utility after the government recall was
slightly less for women (Median = 42, IQR [24, 63]) compared to men (Median = 44,
IQR [24, 65]).
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D7 Study 2: Study 2 Products

This section of Appendix D presents the two products investigated in Study 2. Please
note that TENCIX is a hypothetical brand.

TENCIX Microwave Oven

Recommended Retail Price (RRP): £90

Product Specification
o 24L Capacity e  Grill and microwave settings.
e  Touch operated e 5 power levels for a wide range of
e LED Display cooking requirements.
e Modern handle-less design e  Power output: 800W
o  Electronic timer e Eco-mode
e Child lock feature e Warranty: 2 years

TENCIX Carbon Monoxide Detector

Recommended Retail Price (RRP): £20

Product Specification
e  Carbon monoxide alarm e Piercing 85dB alarm
e  Continuously monitors carbon e Testand reset button: Allow you to test
monoxide levels. the alarm function and silence the
e Peak carbon monoxide level memory alarm
feature e  Battery-powered
e Suitable for ceiling and wall installation o Warranty: 2 years
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D8 Study 2: Interaction Effects Plots

This section of Appendix D presents the interaction effects for Study 2.

The interaction plots in Figures D7-D9 showed that overall, non-compliance
information decreased benefit scores, increased dread scores and decreased WTP
scores. However, this effect was dependent on the reliability of the source. Non-
compliance information from a reliable source had a greater effect on the change in
benefit, dread and WTP scores compared to non-compliance information from an
unreliable source. The interaction plots also showed little or no change in benefit,
dread and WTP scores, given compliance information from a reliable source.
However, compliance information from an unreliable source slightly increased dread
scores and slightly decreased WTP scores. For more detailed information, see Table

D7. Also, see Figure D10 for differences between products.
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Benefits Change
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Figure D7 Mean Benefits Change by Product Compliance Information and Source
Reliability
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Figure D8 Mean Dread Change by Product Compliance Information and Source
Reliability
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Figure D9 Mean WTP Change by Product Compliance Information and Source
Reliability
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Figure D10 Differences in change in benefits, dread and WTP between products
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Table D7. Interaction effect between product compliance information and source

reliability on change in benefits, dread and WTP.

Product
Variables Compliance Sou.rce. ) Estimate H95% | u-95%
Information Reliability Cl Cl
Compliant Reliable 0.14 -0.02 0.3
Benefits Non-Compliant Reliable -1.58 -1.75 -1.42
Change Compliant Unreliable -0.13 -0.3 0.03
Non-Compliant Unreliable -1.02 -1.18 -0.86
Compliant Reliable -0.11 -0.25 0.03
Dread Non-Compliant Reliable 1.92 1.78 2.07
Change Compliant Unreliable 0.25 0.1 0.4
Non-Compliant Unreliable 1.66 1.51 1.8
Compliant Reliable 0.02 -0.03 0.07
WTP Non-Compliant Reliable -0.52 -0.57 -0.47
Change Compliant Unreliable -0.06 -0.11 -0.01
Non-Compliant Unreliable -0.33 -0.38 -0.28
Increase
Decrease
No Change
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D9 Study 2: Bayesian Regression Modelling
This section of Appendix D presents the models used for data analysis in Study 2.

We investigated the study hypotheses using the Bayesian approach to regression
analysis. We developed four Bayesian regression models using R [247] and the R
package brms for Bayesian regression modelling [248]:

Model 1: brm(mvbind(T1 Benefits, T1 Dread, T1 Pay) ~ (GRID + GROUP + GRIP +
Gender + Age + Children + Product))

We used Model 1 to estimate the mean scores for benefits, dread and willingness to

pay at T'1 (i.e., before manipulations) for predictors and the differences between them.

Model 2: brm(mvbind (A Benefits ,A Dread, A Pay) ~ (GRIP + GROUP + GRID +

Gender + Age + Children) X (Product + Product Compliance + Source Reliability) +
((Product + Product Compliance + Source Reliability)"2) + (Product X

Product Compliance X Source Reliability))

We used Model 2 to estimate the mean change (A) in benefits, dread, and willingness
to pay (WTP) scores for predictors, their interactions and the differences between
them. The change (A) in benefits, dread and willingness to pay scores was computed
as T2 - T1, where T1 are the scores before manipulations and T2 are the scores after

manipulations. This model was used to investigate Hypothesis 1.

Model 3: brm(mvbind (RTMIN,RTSUM) ~ (GRIP + GROUP + GRID + Gender + Age +
Children) X (Product + Product Compliance + Source Reliability) + ((Product +

Product Compliance + Source Reliability)"2) + (Product X Product Compliance X

Source Reliability))

We used Model 3 to investigate risk tolerance (RT) by estimating the mean for risk
tolerance sum (RTSUM) and risk tolerance min (RTMIN) for predictors, their
interactions and the differences between them. Risk tolerance consists of two
dimensions, i.e., benefits and dread, which change over time. Hence, RTSUM was
computed as 4 benefits + A dread, and RTMIN was computed as 4 dread —
A benefits. High scores for RTSUM indicated high risk tolerance, whereas high
scores for RTMIN indicated the effect of manipulations. This model was also used to

investigate Hypothesis 1.
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Model 4: brm(mvbind (A Benefits ,A Dread, A Pay) ~ 0 + Communication scenario)

We used Model 4 to estimate the mean for A benefits, A dread, and A willingness to
pay for the communication scenarios and the differences between them. The
communication scenarios combined product compliance and source reliability. This

model was used to investigate Hypotheses 2-5.

For each model, we used the default priors of the brms package [248]. We ran four
sampling chains for 10000 iterations with a warm-up period of 5000 iterations, which
resulted in 20000 samples for each parameter tuple. We reported the expected mean
values under the posterior distribution and their 95% confidence intervals (CI).
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Appendix E Chapter 10 Supplemental Material

In this section of the Appendix, we present screenshots of the web-based application
for medical device risk management.

= Medical Device Risk Management

AU eQ (o

This app is based on a Bayesian network (BN) model for medical device risk management developed by a team of computer
scientists based at the Queen Mary University of London

Risk Assessment Inputs

Please enter any available data. The more data entered, the more accurate the risk estimates.

\ Device: Testing Information

Number of demands (test) Number of hazards observed (test)  Current or Previous device?  Generic or Test Data?
I ‘ ‘ ‘ ‘ Don't know v \ Don't know v
Generic prob. levels Testing strategy

‘ Don't know v ‘ ’ Don't know '

> Device: Manufacturer or Supplier Information

Figure E1. Web application with input fields

Risk Assessment Results

~ Device: P1 Estimate

Prob. of hazard per demand (P1) & 4

9
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~ Device: P2 Estimate

Prob. hazard causes a fatal injury (P2) o)
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& Prob. hazard causes a critical injury (P2) & L B
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Figure E2. Web application results
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= ag=na.ai cloud service Version 102 jL.hunte@qmul.ac.uk R

Home > Web App Designer > Preview

Agena Al Web App Designer
Medical Device Risk Management - Local

File  Design  Preview  Publish Library Getting Started

= Medical Device Risk Management

A Qe (o

This app is based on a Bayesian network (BN) model for medical device risk management developed by a team of computer scientists based at the Queen
Mary University of London

Risk Assessment Inputs

Please enter any available data. The more data entered, the more accurate the risk estimates.

\ Device: Testing Information

Number of demands (test) Number of hazards observed (test)  Current or Previous device?  Generic or Test Data? Generic prob. levels

{ 1000 } { 5 ] ’VCurrent Device v

{ Testing v w { Don't know v

Testing strategy

’ None Or Typical Of Normal Use ‘

> Device: Manufacturer or Supplier Information

> Device: Rework and Risk Control Information

> Device: Operational or Field Information

> Device: Injury Information

> Device: Risk Acceptability Criteria

> Device: P1 Estimation- Field or Test Data

> Device: Benefits Information

> Individual Risk Assessment: Device Use Information

> Individual Risk Assessment: Benefits Information

Click the blue button below to calculate risk:

privacy and data policy © 2023 agena.ai

Figure E3 Complete web application
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