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Abstract

Security and privacy have become increasingly significant concerns in wireless communi-

cation networks, due to the open nature of the wireless medium which makes the wireless

transmission vulnerable to eavesdropping and inimical attacking. The emergence and

development of decentralized and ad-hoc wireless networks pose great challenges to the

implementation of higher-layer key distribution and management in practice. Against

this background, physical layer security has emerged as an attractive approach for per-

forming secure transmission in a low complexity manner. This thesis concentrates on

physical layer security design and enhancement in wireless networks.

First, this thesis presents a new unifying framework to analyze the average secrecy

capacity and secrecy outage probability. Besides the exact average secrecy capacity

and secrecy outage probability, a new approach for analyzing the asymptotic behavior is

proposed to compute key performance parameters such as high signal-to-noise ratio slope,

power offset, secrecy diversity order, and secrecy array gain. Typical fading environments

such as two-wave with diffuse power and Nakagami-m are taken into account.

Second, an analytical framework of using antenna selection schemes to achieve secrecy

is provided. In particular, transmit antenna selection and generalized selection combin-

ing are considered including its special cases of selection combining and maximal-ratio

combining.

Third, the fundamental questions surrounding the joint impact of power constraints on

the cognitive wiretap channel are addressed. Important design insights are revealed

regarding the interplay between two power constraints, namely the maximum transmit

at the secondary network and the peak interference power at the primary network.

Fourth, secure single carrier transmission is considered in the two-hop decode-and-
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forward relay networks. A two-stage relay and destination selection is proposed to mini-

mize the eavesdropping and maximize the signal power of the link between the relay and

the destination. In two-hop amplify-and-forward untrusted relay networks, secrecy may

not be guaranteed even in the absence of external eavesdroppers. As such, cooperative

jamming with optimal power allocation is proposed to achieve non-zero secrecy rate.

Fifth and last, physical layer security in large-scale wireless sensor networks is introduced.

A stochastic geometry approach is adopted to model the positions of sensors, access

points, sinks, and eavesdroppers. Two scenarios are considered: i) the active sensors

transmit their sensing data to the access points, and ii) the active access points forward

the data to the sinks. Important insights are concluded.
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Chapter 1

Introduction

Wireless networks have experienced rapid evolutions towards scalability, interoperability,

and sustainability. Future networked societies will drive the digital economy to a more

holistic community of intelligent infrastructures and connected services for a smarter and

more sustainable society. Device-to-device (D2D) communication, dense networks, and

security are envisaged as core components of next generation heterogeneous 5G networks.

Traditional homogeneous cellular networks are moving towards heterogeneous for seam-

less transmission in multi-tiered networks with multiple classes of base stations. D2D

communication has been developed to support direct single- and multi-user transmis-

sions, in order to decrease delays and enhance spectrum efficiency and energy efficiency.

The secondary users are allowed to utilize the same frequency spectrum with the primary

users in cognitive radio, to improve the spectrum efficiency. Multi-hop transmissions in

wireless sensor and ad-hoc networks expand the coverage. Future 5G network will serve

as a key enabler to meet the continuously increasing demand for future wireless appli-

cations, including ultra-high data rate, ultra-wide radio coverage, ultra-large number

of devices, and ultra-low latency [1, 2]. Given the ubiquitousness and necessity of 5G

connections in the near future, an enormous amount of sensitive and confidential infor-

mation, e.g., financial data, electronic media, medical records, and customer files, will

1
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be transmitted via wireless channels. However, the emergence of these new advanced

systems pose great challenges to the implementation of higher-layer key distribution

and management. Physical layer security is an appealing alternative to resist various

malicious abuses and security attacks. The basic concept behind it is to exploit charac-

teristics of wireless channels for transmitting confidential messages. Its target is to blind

the eavesdroppers such that they cannot extract any confidential information from the

received signals.

1.1 Research Motivation

Compared with cryptography, physical layer security techniques do not depend on com-

putational complexity, which implies that the achieved level of security will not be com-

promised even if the unauthorized smart devices in the network have powerful compu-

tational capabilities. This is in contrast to the computation-based cryptography which

is based upon the premise that the unauthorized devices have insufficient computational

capabilities for hard mathematical problems. In the future network, devices are always

connected to the nodes with different powers and computation capabilities at the dif-

ferent levels of the hierarchical architecture. Also, devices always join in or leave the

network at random time instants, due to the decentralized nature of the network. As a

consequence, cryptographic key distribution and management become very challenging.

To cope with this, physical layer security can be used to either provide direct secure

data communication or facilitate the distribution of cryptographic keys. The potentials

of physical layer security in the multiple-antenna techniques and emerging systems need

to be exploited. Therefore, this thesis is motivated by the following aspects.

Antenna Selection: Amongst multiple-antenna techniques, the low-complexity

antenna selection schemes have been widely adopted and standardized in the IEEE

802.11n for WLAN [3], IEEE 802.16 for WiMAX [4], long term evolution (LTE) and

LTE-Advanced [5]. Physical layer security using transmit antenna selection has been
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investigated in the literature such as [6, 7]. However, a comprehensive study for general-

ized antenna selection system has not been provided, some key performance parameters

such as high signal-to-noise ratio (SNR) slope and high SNR power offset have not been

evaluated in the existing works. Moreover, since physical layer security exploits the prop-

erties of wireless fading channel, the use of multi-antenna techniques in some practical

and flexible fading wiretap channels such as two-wave with diffuse power has not been

examined. In this thesis, new analytical frameworks are developed to tackle these issues.

Cognitive Radio: In cognitive radio networks, the data of the secondary network

needs to be protected, since the eavesdroppers or malicious primary users may intercept

it. Although existing works [8–14] laid a solid foundation for understanding the role of

physical layer security in cognitive radio networks, the impact of multi-antenna wiretap

channels in cognitive networks with passive eavesdropping is less well understood. Key

performance parameters such as secrecy diversity order and secrecy array gain under

interference power constraint in cognitive radio networks have not been addressed in the

existing literature.

Single Carrier Systems: Single carrier transmission is now being adopted in sev-

eral wireless systems such as millimeter wave wireless personal area networks (WPAN)

targeting in-flight entertainment distribution and wireless high-definition multimedia

interface (HDMI), high-speed backhaul, etc. [15]. In this thesis, physical layer security

in single carrier systems is first introduced.

Wireless Sensor Networks: In wireless sensor networks, secure transmission is

crucial. Sensors are densely and randomly distributed in practical scenarios, which

brings new difficulties for security. In this thesis, a stochastic geometry approach is

implemented to model the three-tier sensor network. The impact of network parameters

such as density of nodes on the secrecy performance is investigated.

5G Networks: Massive multiple-input multiple-output (MIMO) and millimeter

wave are two key technologies in 5G systems, which provide physical layer security
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with big opportunities [16]. In this thesis, opportunities and challenges of physical layer

security in massive MIMO and mmWave systems are investigated. In particular, some

traditional techniques such as artificial noise need to be re-designed in 5G networks.

1.2 Physical Layer Security Related Works

Secure transmission in wireless networks is confronted with increasing problems due

to the rapid evolution of wireless network architectures [17–19]. The mobile terminals

are more vulnerable to eavesdropping compared to their fixed counterparts, and the

implementation of conventional cryptographic protocols to ensure security becomes dif-

ficult [20, 21]. In the 1970s, Aaron D. Wyner first introduced physical layer security [22].

Triggered by the rapid evolution of wireless network architectures, the idea of enabling

security at physical layer has drawn attention of the wireless community [23, 24].

MIMO Wiretap Channel: Physical layer security has recently been addressed in

MIMO wiretap channels where the transmitter, the receiver, and/or the eavesdropper

are equipped with multiple antennas, as shown in [25–29] and the references therein.

Growing research interests have been devoted to examine physical layer security from

a practical perspective. To design secure transmission schemes in practice, [20] proposed

robust beamforming with artificial noise to mitigate the effect of inaccurate channel state

information (CSI) in MIMO wiretap channels. An effective power distribution between

the information signal and artificial noise was introduced in [30], which considered the use

of beamforming with artificial noise over a multiple-input single-output (MISO) system

in the presence of multiple single-antenna eavesdroppers. Considering the availability

of partial CSI from the eavesdropper at the transmitter, [31] analyzed the secrecy out-

age probability in MISO wiretap channels. To facilitate low-complexity implementation,

transmit antenna selection was utilized to promote security with low feedback overhead

and low computational cost [6, 32]. Based on this, [33] examined the impact of antenna

correlation at the receiver and the eavesdropper on the secrecy performance. For confi-
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dential broadcasting, [34] proposed the regularized channel inversion precoding for the

downlink of a multi-user MIMO system, where multiple users act as eavesdroppers. In

[34], power allocation to maximize the achievable secrecy sum rate was considered. To

provide valuable insights into the secrecy performance in practical fading channels, [35]

introduced two secrecy performance metrics, namely the average secrecy rates and the

secrecy outage probability, for single antenna wiretap channels. Inspired by this work,

[36] took into consideration the single-input multiple-output (SIMO) wiretap channel

and analyzed the secrecy outage probability with maximal-ratio combing (MRC) at the

receiver and the eavesdropper in Rayleigh fading.

Cognitive Radio Networks: Spectrum-sharing cognitive radio is a promising tech-

nique to improve efficient utilization of the scarce radio spectrum, in order to tackle con-

stant growth of numerous bandwidth-consuming wireless network users [37–39]. Security

in cognitive radio networks is critical as it is easily exposed to external threats. The

robust transmitter design via optimization for secure cognitive radio networks with and

without perfect channel state information (CSI) was addressed in [8] and [9], respectively.

In [10], cognitive relay beamforming was designed to maximize the secrecy rate, while

the interference on the primary receiver was kept below a predefined value. In [11], relay

selection was proposed for cognitive radio with a single eavesdropper. The proposed

scheme in [11] selected a relay to maximize the achievable secrecy rate of the cognitive

radio network subject to interference power constraint at the primary user. In [40], a

pair of cognitive relays was opportunistically selected, where the first relay transmits

confidential signals and the second relay transmits jamming signals. In [12], secure com-

munications with untrusted secondary users in cognitive radio was examined and the

achievable secrecy rate was derived. In [13], secure transmission in primary networks

with the help of trusted secondary users was considered in the presence of a malicious

eavesdropper attempting to obtain the primary user’s messages. The proposed method

in [13] modeled the cooperative transmission as a Stackelberg game. In [14], it was

shown that non-cooperative jammers can be employed to improve the secrecy rate by
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compensating them with a fraction of bandwidth, which implies that secondary users

can act as non-cooperative jammers in cognitive radio networks.

Cooperative Relay: Cooperative relay communications has attracted much atten-

tion, due to its capabilities to establishing reliable links and increasing capacity [41].

Therefore, several recent works have considered physical layer security in cooperative

communications [42–48]. In [42], cooperative decode-and-forward (DF) relays were

deployed to perform distributed beamforming, and the secrecy diversity-multiplexing

tradeoff was analyzed. In [43], several opportunistic relay selection schemes were pro-

posed to achieve secrecy. In [44], based on the DF, amplify-and-forward (AF) and coop-

erative jamming (CJ) relay protocols, relay cooperation was investigated to increase the

secrecy rate. In [45], optimal CJ using multiple relays for security enhancement was

studied and the condition for positive secrecy rate was derived. In [46], CJ and relay

chatting schemes for secrecy were proposed in opportunistic relay systems, which showed

that the proposed relay chatting scheme can perform better than CJ. Joint relay and jam-

mer selection for security enhancement was examined in one-way DF relay networks [47]

and two-way AF relay networks [48].

Untrusted Relay: Standards for relay-assisted transmission have been established,

such as the IEEE 802.11s and the IEEE 802.16j. Relay is a low-cost technique to increase

the coverage and maintain link reliability in wireless networks [18, 49]. However, if

the relay is untrusted or unauthenticated, it becomes an issue to keep the messages

confidential between the source and the destination. The reason is that the untrusted

relay may belong to public networks that have low security clearance. In this case,

the untrusted relay acts as both a helper and an eavesdropper. The optimal secure

beamforming design for an AF MIMO untrusted relay system was proposed in [50].

Ergodic secrecy capacity for the untrusted relay selection was derived in [51], where

the destination-based jamming was used to achieve positive secrecy rate. The outage

performance in two-hop relaying with CJ was analyzed in [52], where all nodes are

equipped with a single antenna. In [53], antenna selection at the untrusted relay was
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considered, in which the relay selects the strongest source-relay link to receive the signal

and the strongest relay-destination link to forward the signal.

Wireless Sensor Networks: In wireless sensor networks (WSNs), the sensed data

is usually sensitive, and therefore secure transmission is critical in WSNs. Physical layer

security has been recently introduced in WSNs to combat eavesdropping [54–57]. In

[54], the downlink secure transmission from the mobile agent to the authorized user was

considered and two randomized array transmission schemes were developed. In [55], Dis-

tributed detection under secrecy constraint in an energy-constrainedWSN was addressed,

and the optimal operative solutions were analyzed. In [56], sensor transmissions were

observed by the authorized fusion center (FC) and unauthorized (third party) FC. It

was shown in [56] that the proposed security scheme at physical layer is highly scalable

with low-complexity, compared to the traditional network security protocols such as

cryptography and key management at the link and network layer. More recently in [57],

AF compressed sensing (CS) was introduced to provide secrecy against eavesdropping

in WSNs, and it was confirmed that the eavesdroppers cannot successfully decode the

signal when the number of eavesdropper is less than the sparsity level of the signal.

Cellular Networks: In cellular networks, physical layer security is important for

adding another level of protection. In [58], secure downlink transmission in cellular

networks was investigated, and the secrecy using linear precoding based on regularized

channel inversion was examined. In multi-cell environments, cell association and location

information of mobile users play an important role in determining the secrecy perfor-

mance [59]. In [60], the Kuhn-Munkres (KM) algorithm was introduced to solve the

radio resource allocation problem, in order to maximize the sum secrecy capacity for

both cellular and D2D users. In [61], it was shown that the interference from D2D trans-

mission can enhance the physical layer security of cellular communications. In [62], secure

transmission in multi-cell massive MIMO systems was exploited, which showed that ran-

dom artificial noise (AN) generation can provide a favourable performance/complexity

tradeoff compared to conventional AN.
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Millimeter Wave: As an innovative solution to meet the 5G’s requirement, mil-

limeter wave (mmWave) communication systems use a huge swath of spectrum, from 30

to 300 GHz, to shift wireless transmissions away from the nearly fully occupied spectral

band of current wireless networks [63–65]. In [66], antenna subset modulation with large

antenna arrays was introduced to provide secure mmWave transmission at the physical

layer. In [67], the secrecy throughput using analog beamforming with phase shifters

was analyzed. Since secure mmWave transmission is a completely new and promising

research frontier, new secure transmission designs are needed by taking advantage of the

mmWave channel properties [63, 64].

1.3 Dissertation Organization and Contributions

The remainder of the thesis is organized as follows. Chapter 2 presents some fundamental

concepts such as physical layer security, stochastic geometry, and cooperative jamming.

Chapter 3 exploits the benefits of MRC in two-wave with diffuse power (TWDP) fading

wiretap channel. Chapter 4 provides an analytical framework for antenna selection in

Nakagami-m fading wiretap channel. Chapter 5 examines the effect of power constraint

on the secrecy in cognitive radio networks. Chapter 6 introduces physical layer security

in single carrier systems. Chapter 7 proposes cooperative jamming with optimal power

allocation in two-hop untrusted relay networks. Chapter 8 investigates secure transmis-

sion in three-tier WSNs with stochastic geometry. The main contributions of this thesis

are detailed as follows.

Chapter 3 focuses on physical layer security of MRC in TWDP fading channels. The

TWDP fading is of high flexibility as it includes Rayleigh, Rician, and hyper-Rayleigh

fading as special cases. In such a channel model, two practical scenarios are considered,

namely the active eavesdropping scenario and the passive eavesdropping scenario. Key

performance parameters such as high SNR slope, power offset, and secrecy diversity order

are introduced and derived. The performance gap for different number of antennas is
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quantified.

Chapter 4 focuses on transmit antenna selection and receive generalized selection

combining in MIMO Nakagami-m fading wiretap channels. The aim is to construct a

unifying approach to evaluate the secrecy performance using practical antenna selection

techniques. Two distinct and practical scenarios are considered: 1) the legitimate receiver

is located close to the transmitter, and 2) the legitimate receiver and the eavesdropper

are located close to the transmitter.

Chapter 5 focuses on secure cognitive transmission in passive eavesdropping. Both

the legitimate receiver and eavesdropper use selection combining to receive the signal.

An analytical framework is first presented. Under interference power constraint, closed-

form expressions for secrecy outage probability are derived. Based on the asymptotic

analysis, the secrecy diversity order and secrecy array gain are explicitly obtained.

Chapter 6 focuses on cooperative single carrier systems. A new relay selection crite-

rion is proposed to enhance the security. Closed-form expressions for key performance

metrics such as ergodic secrecy rate and secrecy outage probability are derived. It is

shown that the multipath diversity and multiuser diversity can be utilized to improve

the secrecy.

Chapter 7 focuses on security design in untrusted relay networks, which is different

from the relay networks presented in Chapter 6. In untrusted relay networks, the relay is

also an eavesdropper and intercepts the information transmitted by the source. Optimal

power allocation with cooperative jamming to maximize the ergodic secrecy capacity is

examined. The benefits of using large antenna arrays are also shown.

Chapter 8 focuses on physical layer security in three-tier WSNs. The system topology

is built based on stochastic geometry. The aim is to evaluate the effect of the densities

of sensors, access points, and sinks on the secure transmission. The average secrecy rate

of the three-tier WSN is derived.
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Chapter 9 consists of conclusions and future work of this thesis. For future work,

two extensions of current work are proposed, i.e., imperfect channel state information

condition and multi-hop secure transmission with trusted/untrusted relays. In addi-

tion, physical layer security can safeguard data confidentiality by exploiting the intrinsic

randomness of the communications medium and reaping the benefits offered by the dis-

ruptive technologies to 5G. Among various technologies, two most promising ones are

discussed, namely, massive MIMO and millimeter wave. On the basis of the key prin-

ciples of each technology, the rich opportunities and the outstanding challenges that

security designers must tackle are identified. Such an identification is expected to deci-

sively advance the understanding of physical layer security of tomorrow.
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Chapter 2

Fundamental Concepts

2.1 Introduction

In this chapter, fundamental concepts are clarified: 1) The basic idea of physical layer

security is presented; 2) Physical layer security exploits the properties of the wireless

fading channel to transmit confidential messages, therefore several practical and realistic

fading models are described; 3) Stochastic geometry is presented as a useful tool to model

large-scale wireless networks, in which large number of nodes are randomly located; 4)

Antenna selection is presented as a practical implementation design for the uplink of

4G long term evolution (LTE) and LTE-Advanced [5]. It is well known that using

antenna selection can achieve the full diversity gain with less number of radio frequency

(RF) electronics [68]; 5) Relay protocols are discussed. When the relay is untrusted,

secure transmission cannot be achieved by using conventional protocols such as amplify-

and-forward and decode-and-forward. The implementation of cooperative jamming can

help to achieve positive secrecy rate in untrusted relay networks; 6) Cognitive radio is

discussed as an effective way to cope with the scarce spectrum and improve the spec-

trum efficiency [69]; 7) Single carrier systems is presented as an important technology

to support high-speed short-range transmission. It is well-known that single carrier

13
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Figure 2.1: A basic wiretap channel.

transmission has a lower peak-to-average power ratio (PAPR) compared to orthogonal

frequency-division multiplexing (OFDM); and 8) Wireless sensor networks (WSNs) is

discussed, motivated by its widespread use in industrial and scientific applications such

as environmental sensing, health monitoring, and military communications [70].

2.2 Physical Layer Security

Physical layer security is not a new paradigm, since it was first proposed by Wyner

in the 1970s [22]. Triggered by new transmission techniques such as multiple-input

multiple-output (MIMO), cooperative relaying, and emerging decentralized networks

such as ad-hoc and sensor networks, physical layer security as a low-complexity approach

has regained attention. Under physical layer secrecy constraint, various signal processing

techniques have been proposed and analyzed [71]. In [72], artificial noise was designed

at the transmitter to confuse the eavesdropper and enhance the secrecy.

A basic wiretap channel is shown in Figure 2.1, where the transmitter (Alice) trans-

mits the secrecy information to the legitimate receiver (Bob), and the eavesdropper

(Eve) intends to maliciously obtain this information. In his pioneering work, Wyner has

shown that for a degraded eavesdropper’s channel, Alice can transmit the confidential
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information at a positive secrecy rate, and Eve cannot obtain any bits of information.

The secrecy capacity is characterized as [28, 35]

Cs = [CM − CE]
+ ,

where CM is the main channel capacity, and CE is the eavesdropper’s channel capacity.

In practice, Alice encodes a message block W k into a codeword Xn, and Eve receives

Y n
w from the output of its channel. The equivocation rate of Eve is Re = H

(
W k
∣∣Y n

w

)
/n,

which is the amount of ignorance that the eavesdropper has about a messageW k [28]. A

secrecy rate R can be achieved when R ≤ Re, and Cs is the maximum of the achievable

secrecy rate [28].

2.3 Wireless Fading Channels

In this section, some typical fading channels are briefly illustrated. Chapters 3 and 4

consider the two-wave with diffuse power fading channel and Nakagami-m fading channel,

respectively, and Chapters 5-8 take into account the Rayleigh fading channel.

2.3.1 Two-wave with Diffuse Power Fading

The two-wave with diffuse power (TWDP) fading was first modeled in [73] to charac-

terize the propagation scenario where the received signal contains two strong, specular

multipath waves. This fading model is of high flexibility as it includes Rayleigh, Rician,

and hyper-Rayleigh fading as special cases. In particular, it was verified in [74] that the

TWDP fading model provides a more accurate way to represent real-world frequency-

selective fading data from wireless sensor networks. Moreover, it can be used to describe

a link worse than Rayleigh fading [75]. As such, some research attention has been paid

to examine the performance of wireless networks under TWDP fading. For example, the
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average bit error rate was analyzed in [76] for quadrature amplitude modulation and in

[77] for non-coherent multiple frequency-shift keying. More recently, the outage proba-

bility was derived in [78] for single decode-and-forward (DF) relay networks. In [79], the

symbol error rate was derived for multiple DF relay networks.

In Chapter 3, maximal ratio combining (MRC) is adopted to combine the TWDP

fading signals at the receiver. Hence, the PDF for the sum of TWDP fading channel

power gains after MRC is expressed as

f (τ) =
1

2M

L̃M∑
l=1

ul
2σ2

e−
τ+ϑl
2σ2

∞∑
k=0

(
ϑl
2σ2

)k 1

k! (M + k − 1)!

( τ

2σ2

)M+k−1
, (2.1)

where M is the number of receive antennas, L̃M = (2L)M , L is the order of the PDF,

ul is the lth entry of u with u = ã1 ⊗ · · · ãm ⊗ · · · ⊗ ãM and ãm = [ã1 · · · ãl · · · ã2L],

ãl = a⌊(l+1)/2⌋, where the first five values of {ai}Li=1 are given in Table II of [73],

ϑl = ln (ωl), ωl is the lth entry of ω with ω = b̃1 ⊗ · · · b̃m ⊗ · · · ⊗ b̃M and b̃m =

[exp (κm,1) · · · exp (κm,l) · · · exp (κm,2L)], κm,l = Km

(
1 + (−1)l ∆m cos ⌊(l−1)/2⌋π

2L−1

)
2σ2,Km

is the ratio of the total specular power to diffuse waves, ∆m is the relative strength of

the two specular components for the mth TWDP branch channel, and 2σ2 is the average

power of the diffuse waves. When Km = 0, TWDP fading reduces to Rayleigh fading,

and when Km ̸= 0 and ∆m = 0, TWDP fading reduces to Rician fading.

2.3.2 Nakagami-m Fading

Nakagami-m distribution has versatility in providing a good match to various empirically

obtained measurement data [80]. Moreover, it includes Rayleigh as a special case [81].

The PDF of the Nakagami-m channel power gain τ is given by

f (τ) =
mmτm−1

(m− 1)!τ̄m
e−m τ

τ̄ , (2.2)

where m is the fading severity parameter and τ̄ = E {τ} is the mean value.
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Figure 2.2: A three-tier HCNs with stochastic geometry, where macrocell base
stations (red circle) are overlaid with picocell bases stations (green
triangle) and femtocell base stations (blue square).

2.3.3 Rayleigh Fading

Rayleigh fading channel is commonly considered in the literature. When the multiple

reflective paths are large in number and there is no line-of-sight signal component, the

envelope of the received signal τ is statistically described by a Rayleigh probability

density function (PDF) [82], which can be expressed as

f (τ) =
2τ

σ
e−τ2/σ, (2.3)

where σ = E
{
τ2
}
.
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Figure 2.3: Hexagonal Cellular Networks.

2.4 Stochastic Geometry

In conventional system model, density of nodes, node mobility, and triangle inequalities

are usually ignored. Stochastic geometry is a useful tool to analyze the average behavior

over many spatial realizations of a network whose nodes are located according to some

distributions [83]. Recent studies such as [84–87] have shown that stochastic geometry

can well model the heterogeneous cellular networks (HCNs). As shown in Figure 2.2, a

Poisson point process (PPP) model is used for modeling the three-tier downlink HCNs.

The traditional hexagonal model with fixed geometry (See Figure 2.3) cannot model the

unplanned networks such as femtocells [86]. Therefore, stochastic geometry is very useful

for modeling practical random and distributed networks such as wireless sensor networks

and ad-hoc networks.

In stochastic geometry theory, PPP is commonly-used in the literature such as [85,

88], which is defined as follows [83]:

Poisson Point Process (PPP) Definition: Let Λ be a locally finite measure on

some metric space E . A point process Φ is Poisson on E if
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• For all disjoint subsets A1,. . . ,An of E , the random variables Φ (Ai) are indepen-

dent;

• For all sets A of E , the random variables Φ (A) are Poisson;

A PPP can be either homogeneous or heterogeneous. In homogeneous PPP, the

density of the points is constant. A fundamental property of PPP is the Slivnyak’s

theorem, which is as follows [89]:

Slivnyak’s Theorem: Let Φ denote a PPP with intensity measure Λ. For Λ almost

all x ∈ Rd,

P !
x (·) = P (Φ ∈ ·) ;

that is, the reduced Palm distribution P !
x (·) of the PPP is equal to its original distribu-

tion.

Slivnyak’s theorem shows that for a PPP including an arbitrary point x, it is identical

to the law of the original PPP if point x is ignored. Another useful property that

calculates the products over PPP is the probability generating functional (PGFL), which

is as follows [90]:

E

[∏
x∈Φ

f (x)

]
= exp

(
−
∫
Rn

(1− f (x)) Λ (dx)

)
.

In Chapter 8, a stochastic geometry approach is proposed to model a three-tier wire-

less sensor network, where the positions of the sensors, access points, sinks, and eaves-

droppers are modeled following the independent homogeneous PPPs.
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2.5 Antenna Selection

2.5.1 Transmit Antenna Selection and Selection Combining

Transmit antenna selection (TAS) is a low-complexity transmission design, which demands

small feedback information. The core idea behind TAS is to select a single antenna that

maximizes the receive signal power. TAS achieves the full diversity gain with a single

RF chain and has been implemented in LTE systems.

Selection combining adopts the best receive antenna with the largest receive signal

power to receive the signal and save the RF chains compared to MRC with multiple

RF chains. It has been standardized in the IEEE 802.11n for WLAN [3] and the IEEE

802.16 for WiMAX [4]. In Chapter 5, selection combining at the legitimate receiver and

the eavesdropper is considered.

2.5.2 Generalized Selection Combining

Generalized selection combining (GSC), or the so-called hybrid-selection/MRC (HS/MRC),

selects a subset of diversity branches with largest signal-to-noise ratio (SNR) and com-

bines them using MRC. This diversity combining method offers a tradeoff between the

performance advantage of MRC and the implementation advantage of SC [91]. With the

help of the moment generating function (MGF), the performance of GSC was examined

over Rayleigh fading [92] and Nakagami fading [93]. The impact of correlated Nakagami

fading on GSC was considered in [94, 95]. In [96, 97], the high SNR performance of

GSC was analyzed in various environments. In [98], approximations were presented for

the high SNR performance of GSC in relay networks over Nakagami-m fading channels.

Motivated by these prior works, new analytical results for secure communications with

GSC are provided in this thesis.
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2.6 Relay

Relay transmission has been widely studied [41, 99], since it can expand the coverage

and enhance the system performance. Many relay protocols have been proposed such as

amplify-and-forward (AF), decode-and-forward (DF), and compress-and-forward (CF)

etc. In this thesis, AF and DF are considered.

2.6.1 Amplify-and-Forward

In AF protocol, the source first transmits the signal to the relay, then the relay amplifies

the signal and forwards the signal to the destination [99, 100]. In two-hop AF relay

networks, based on the end-to-end (e2e) SNR, the achievable rate is expressed as [100]

Re2e = log2

(
1+

γs,rγr,d
1+γs,r+γr,d

)
, (2.4)

where γs,r is the receive SNR at the relay and γr,d is the receive SNR at the destination.

When the relay is untrusted as an eavesdropper, the secrecy rate is given by [51]

Rs = [Re2e − log2 (1 + γs,r)]
+ . (2.5)

Note that

γs,rγr,d
1+γs,r+γr,d

<min {γs,r,γr,d} ≤ γs,r.

The secrecy rate Rs in (2.5) is zero. Therefore, in two-hop untrusted relay networks,

secrecy cannot be achieved for AF transmission. Cooperative jamming is an appealing

scheme to achieve positive secrecy rate in two-hop untrusted relay networks [101], and

more details are discussed in the following Section 2.7.
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Figure 2.4: A basic wiretap channel with an external cooperative jammer.

2.6.2 Decode-and-Forward

In DF protocol, relay first decodes the signal from the source, then re-encodes it and

forwards it to the destination [99]. Therefore, the untrusted DF relay cannot be employed

to help forward confidential signals.

2.7 Cooperative Jamming

Cooperative jamming is a security enhancement approach, which can be used to confuse

the external eavesdroppers [14, 102–104] or the untrusted relays [101, 105].

As shown in Figure 2.4, Alice transmits the confidential signal to Bob, and Eve

intercepts the signal. The external cooperative jammer transmits the jamming signal

to confound Eve. In such a scenario, interference from the jamming signal should be

mitigated at Bob. If the interfering signal from the cooperative jammer can be shared

by Bob with specific method (e.g., use the seed of the random noise generator in a secure
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Figure 2.5: A two-hop untrusted relay networks with destination-based coop-
erative jamming.

fashion [106]), Bob can cancel the jamming signal. Another promising way is for the

jammer to use null-steering beamforming [104], i.e., the jamming signal is transmitted

using the null space of the channel between jammer and Bob. As such, Bob will not

receive the jamming signal.

In untrusted relay networks, destination-based cooperative jamming was proposed to

achieve positive secrecy rate [101]. As shown in Figure 2.5, there are two time slots for

each information transmission. In the first time slot, while Alice transmits the infor-

mation signal, Bob transmits the jamming signal. In the second time slot, the relay

forwards the signals to Bob. Since Bob knows the jamming signal, it can easily cancel

the jamming signal. In Chapter 7, optimal power allocation with cooperative jamming

is proposed in two-hop untrusted relay networks.
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2.8 Cognitive Radio Networks

Frequency spectrum is an increasingly scarce and expensive wireless resource due to the

upsurge in demand for multimedia services in current and future generation wireless

networks. Unfortunately, recent measurement campaigns have found that the radio fre-

quency spectrum is not being efficiently utilized [107–113]. Cognitive radio, proposed by

Mitola in [114], has the potential to mitigate such inefficiency. Particularly, by allow-

ing a secondary user (SU) to reuse the radio spectrum that is licensed to a primary

user (PU), the scarcity of frequency spectrum can be alleviated. Several approaches to

cognitive radio such as overlay, interweave, and underlay have been considered [115].

Among them, the most promising approach is underlay spectrum sharing in which the

SU simultaneously transmits in the same radio spectrum as the PU, provided that the

secondary transmission does not exceed the maximum interference constraint set by the

primary network [116]. One of the drawbacks of underlay spectrum sharing is the need

to limit the transmit power of the SU transmitter (SU-Tx) to avoid any deleterious effect

on the PU receiver (PU-Rx). In some practical scenarios, the cognitive radio network

may not be feasible due to heavy pathloss and severe shadowing [117]. As such, several

advanced transmission technologies have been introduced to enhance the performance

of underlay spectrum sharing such as cognitive relaying [118] and cognitive multiuser

diversity [119]. In Chapter 5, secrecy outage for passive eavesdropping is first examined

in cognitive radio network.

2.9 Single Carrier Transmission

In practice, multipath components frequently exist in wireless communication systems

due to multiple reflectors, in which reflectors cause a time dispersion and frequency selec-

tive fading. If the signal bandwidth is larger than the frequency coherence bandwidth or

the delay spread is larger than the symbol duration, the signal is distorted due to inter-

symbol interference (ISI). To avoid the use of equalizers in dealing with ISI, single carrier
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(SC) transmission is an alternative attractive solution which uses an increased symbol

duration by forming a transmission block symbol [120, 121], with additional cyclic prefix

(CP) symbols in front of the transmission block symbol. Thus, compared to OFDM

transmission, a block-wise processing is necessary for CP-SC transmission. There are

several existing works and on-going activities in the context of CP-SC transmission in

several different domains, including non-cooperative systems, cooperative relaying sys-

tems, and spectrum sharing systems, as follows.

• Non-cooperative systems: Opportunistic scheduling was proposed in [122] to achieve

multiuser diversity. In [123], cyclic delay diversity (CDD) was employed for the

frequency-domain equalizer (FDE), whereas distributed space-frequency block cod-

ing was employed in CP-SC systems [124] to achieve transmit diversity gain. Sev-

eral channel estimators for CP-SC systems were investigated in [125–127].

• Cooperative relaying systems: For several relaying protocols such as DF and AF,

as well as project and forward relaying [128], optimal power allocation [129], new

receiver design [130], optimal training sequences for channel estimation [131], and

best terminal selection [132] were proposed to enhance the performance.

• Spectrum sharing systems: For cooperative spectrum sharing [133, 134], and non-

cooperative spectrum sharing [135], CP-SC transmission was proposed to exam-

ine the impact of multipath diversity on the system performance, by taking into

account several performance indicators such as outage probability, symbol error

rate, and ergodic capacity.

In Chapter 6, physical layer security is first introduced in single carrier system. An

analytical framework is presented and key performance parameters such as multiplexing

gain and secrecy diversity gain are explicitly demonstrated.
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Figure 2.6: Multihop architecture in wireless sensor networks.

2.10 Wireless Sensor Networks

Wireless sensor networks (WSNs) have attracted considerable attention from industry

and academia, due to its civilian and military applications [70]. In WSNs, the low-power

low-cost sensors are densely deployed. As shown in Figure 2.6, sensors are randomly

located, and sensed data are routed back to the gateway through multihop transmission.

Since the sensors are battery-powered devices, it is important to save the sensors’energy,

in order to prolong the lifetime of the network. In [136], the delay-aware data collection

network structure in WSNs was investigated, in which the delays in the data collection

process can be shortened. In [137], an energy-efficient hybrid data collection scheme was

proposed and it is shown that substantial energy saving is achieved. In practice, sensors

are located in the remote areas, and mobile sinks or data collectors are employed to

collect the sensed data [138, 139]. In [138], the impact of density of data collectors on

the the successful connectivity probability was examined based on stochastic geometry

model. In [139], the use of pairwise key predistribution scheme was developed to provide

authentication and pairwise key establishment between the sensors and mobile sinks.

In Chapter 8, physical layer security in three-tier wireless sensor networks is proposed,

where the sensors communicate with sinks with the help of access points in the presence

of eavesdropping.
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Physical Layer Security
Enhancement in Two-Wave with
Diffuse Power Fading Channels

3.1 Introduction

In this chapter, physical layer security enhancement in the single-input multiple-output

(SIMO) wiretap channel with two-wave with diffuse power (TWDP) fading is examined.

In this wiretap channel, a single antenna transmitter sends confidential information to

an M -antenna receiver, while an N -antenna eavesdropper overhears the transmission.

To leverage the benefits of multiple antennas, we assume that maximal-rational combin-

ing (MRC) is applied at the receiver and the eavesdropper. We address two practical

eavesdropping scenarios. In the first scenario, we consider that the eavesdropper’s chan-

nel state information (CSI) is available at the transmitter. In the second scenario, we

consider that the eavesdropper’s CSI is not available at the transmitter. For the first sce-

nario, we characterize the average secrecy capacity as the principal security performance

metric. Since the CSI of the eavesdropper is available at the transmitter, the transmitter

adapts its transmission rate in order to achieve perfect secrecy. For the second scenario,

we characterize the secrecy outage probability as the principal security metric. Since

the CSI of the eavesdropper is not available at the transmitter, the transmitter selects a

27
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constant secrecy rate and perfect secrecy is not always guaranteed.

Notation: (·)T denotes the transpose operator, (·)H denotes the conjugate transpose

operator, ∥·∥ denotes the Euclidean norm, IM denotes theM×M identity matrix, 0M×N

denotes the M × N zero matrix, E [·] denotes the expectation operator, ⊗ denotes the

kronecker product operator, ⌊x⌋ denotes the greatest integer less than or equal to x, and

o (·) denotes the higher order terms.

3.2 System Model and Channel Statistical Properties

3.2.1 System Model

Figure 3.1 depicts a SIMO wiretap channel where the transmitter (Alice) encodes her

messages and transmits the codewords to the legitimate receiver (Bob), while the mali-

cious eavesdropper (Eve) overhears the transmission. We denote the channel between

Alice and Bob as the main channel, and the channel between Alice and Eve as the

eavesdropper’s channel. We assume that Alice is equipped with a single antenna, Bob

is equipped with M antennas, and Eve is equipped with N antennas. In this wiretap

channel, the secrecy capacity CS is defined as [35]

CS = [CM − CN ]+ , (3.1)

where CM = log2 (1 + γM ) is the capacity of the main channel and CN = log2 (1 + γN )

is the capacity of the eavesdropper’s channel. Here, we denote γM as the instantaneous

received SNR of the main channel and γN as the instantaneous received SNR of the

eavesdropper’s channel. It is evident from (3.1) that CS increases with CM and dimin-

ishes with CN . Motivated by this, Bob applies MRC to combine the received signals

and maximize the received SNR. This allows Bob to exploit the M -antenna diversity

and maximize the probability of secure transmission. On the other hand, Eve applies

MRC to exploit the N -antenna diversity and maximize the probability of successful
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Figure 3.1: Illustration of a SIMO wiretap channel, where anN -antenna eaves-
dropper (Eve) overhears the transmission from a single antenna
transmitter (Alice) to an M -antenna legitimate receiver (Bob).

eavesdropping.

For this wiretap channel, we take into account two distinct scenarios: 1) active eaves-

dropping and 2) passive eavesdropping. In active eavesdropping, the CSI of the main

channel and the eavesdropper’s channel are available at Alice. Based on the CSI of these

two channels, Alice calculates CM and CN and then determine CS according to (3.1).

After this, Alice transmits its messages at a secrecy rate no higher than CS . In this

scenario, perfect secrecy is always guaranteed. In passive eavesdropping, the CSI of the

main channel is available at Alice but the CSI of the eavesdropper’s channel is not known

at Alice. As such, Alice selects a constant secrecy rate RS to transmit its messages. In

this scenario, perfect secrecy is achieved when RS < CS , and is compromised otherwise.

To perform secure transmission, Alice encodes the message block w into the codeword

x = [x (1) , · · · , x (l) , · · · , x (L)],where L is the length of x. This codeword is subject

to the average power constraint 1
L

∑L
l=1E

[
|x (l)|2

]
≤ P . We assume that both the

main channel and the eavesdropper’s channel are quasi-static fading channels where the

channel coefficients are constant for each transmission block but vary independently
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between different blocks. At the lth time slot, the MRC-combined signal vector at Bob

is written as

yM (l) = hH
MhMx (l) + hH

MnM , (3.2)

where hM is the M × 1 main channel vector and nM ∼ CNM×1

(
0M×1, δ

2
MIM

)
is the

additive white Gaussian noise (AWGN) vector at Bob. Based on (3.2), the instantaneous

SNR of the main channel is given by γM = ∥hM∥2P/δ2M . Correspondingly, the average

SNR of the main channel is given by γM = E
[
∥hM∥2

]
P/δ2M . In the eavesdropper’s

channel, the MRC-combined signal vector at Eve is written as

yN (l) = hH
NhNx (l) + hH

NnN , (3.3)

where hN is the N × 1 eavesdropper’s channel vector and nN ∼ CNN×1

(
0N×1, δ

2
NIN

)
is the AWGN vector at Eve. Based on (3.3), the instantaneous SNR of the eavesdrop-

per’s channel is given by γN = ∥hN∥2P/δ2N . Correspondingly, the average SNR of the

eavesdropper’s channel is given by γN = E
[
∥hN∥2

]
P/δ2N .

3.2.2 Channel Statistical Properties

In the wiretap channel, we assume that the main channel and eavesdropper’s channel are

subject to independent and non-identically distributed (i.n.i.d.) TWDP fading. Accord-

ing to [78], the probability density function (PDF) of γM is given by

fγM (γ) =
1

2MγM

L̃M∑
l=1

uM,l

2σ2M
e
−

(
γ

γM

)
+ϑγM,l

2σ2
M

∞∑
k=0

(
ϑγM,l

2σ2M

)k

× 1

k! (M + k − 1)!

(
γ

2σ2MγM

)M+k−1

, (3.4)

where L̃M = (2L)M , L is the order of the PDF, uM,l is the lth entry of uM with

uM = ã1⊗· · · ãm⊗· · ·⊗ãM and ãm = [ã1 · · · ãl · · · ã2L], ãl = a⌊(l+1)/2⌋, where the first five
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values of {ai}Li=1 are given in Table II of [73], ϑγM,l
= ln(ωγM,l

), ωγM,l
is the lth entry of

ωγM with ωγM = b̃1⊗· · · b̃m⊗· · ·⊗b̃M and b̃m = [exp (κm,1) · · · exp (κm,l) · · · exp (κm,2L)],

κm,l = Km

(
1 + (−1)l ∆m cos ⌊(l−1)/2⌋π

2L−1

)
2σ2M , Km is the ratio of the total specular power

to diffuse waves, and ∆m is the relative strength of the two specular components for the

mth TWDP branch channel at Bob. Based on (3.4), the cumulative distribution function

(CDF) of γM is derived using [140, eq. (3.351.1)] as

FγM (γ) =

∫ γ

0
fγM (x)dx

= 1− 1

2M
e
− γ

2σ2
M

γM

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2
M

∞∑
k=0

1

k!

(
ϑγM,l

2σ2M

)k M+k−1∑
i=0

1

i!

(
γ

2σ2MγM

)i

. (3.5)

Similarly, the PDF and CDF of γN are given by

fγN (γ) =
1

2NγN

L̃N∑
l=1

uN,l

2σ2N
e
−

(
γ

γN

)
+ϑγN,l

2σ2
N

∞∑
k=0

(
ϑγN,l

2σ2N

)k
1

k! (N + k − 1)!

(
γ

2σ2NγN

)N+k−1

(3.6)

and

FγN (γ) =1− 1

2N
e
− γ

2σ2
N

γN

L̃N∑
l=1

uN,le
−

ϑγN,l

2σ2
N

∞∑
k=0

1

k!

(
ϑγN,l

2σ2N

)k N+k−1∑
i=0

1

i!

(
γ

2σ2NγN

)i

. (3.7)

respectively, where L̃N = (2L)N , uN,l is the lth entry of uN with uN = ã1 ⊗ · · · ãn ⊗

· · · ⊗ ãN and ãn = [ã1 · · · ãl · · · ã2L], ãl = a⌊(l+1)/2⌋, ωγN,l
is the lth entry of ωγN

with ωγN = b̃1 ⊗ · · · b̃n ⊗ · · · ⊗ b̃N and b̃n = [exp (κn,1) · · · exp (κn,l) · · · exp (κn,2L)],

κn,l = Kn

(
1 + (−1)l ∆n cos

⌊(l−1)/2⌋π
2L−1

)
2σ2N , Kn is the ratio of the total specular power

to diffuse waves, and ∆n is the relative strength of the two specular components for the

nth TWDP branch channel at Eve.
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3.3 Ergodic Secrecy Capacity in Active Eavesdropping Sce-

nario

In this section, we concentrate on active eavesdropping where Alice adapts its trans-

mission rate based on CM and CN and thus guarantees perfect secrecy. In such a

scenario, ergodic secrecy capacity is a pivotal and practical performance metric to quan-

tify the maximum average achievable secrecy rate [35]. Therefore, we derive new exact

and asymptotic closed-form expressions for the ergodic secrecy capacity. Based on the

asymptotic result, we characterize the high SNR slope and the high SNR power offset

which explicitly capture the impact of the channel parameters on the ergodic secrecy

capacity at high SNRs [141]. These new closed-form results encompass Rayleigh fad-

ing and Rician fading as special cases. To the best of my knowledge, the analytical

framework and the results presented in this section are new.

3.3.1 Exact Ergodic Secrecy Capacity

The ergodic secrecy capacity is the average of the instantaneous secrecy capacity CS over

γM and γN . We formulate the ergodic secrecy capacity as

CS =

∫ ∞

0

∫ ∞

0
CSfγM (γ1) fγN (γ2)dγ1dγ2

=

∫ ∞

0

[∫ ∞

0
CSfγN (γ2) dγ2

]
︸ ︷︷ ︸

~1

fγM (γ1) dγ1. (3.8)

According to (3.1), we first express ~1 in (4.10) as

~1 =
∫ γ1

0
(log2 (1 + γ1)− log2 (1 + γ2)) fγN (γ2) dγ2. (3.9)
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Utilizing integration by parts and applying some algebraic manipulations, we derive

(4.11) as

~1 =log2 (1 + γ1)FγN (γ1)−
∫ γ1

0
log2 (1 + γ2) fγN (γ2) dγ2

=
1

ln 2

∫ γ1

0

FγN (γ2)

1 + γ2
dγ2. (3.10)

Substituting (4.12) into (4.10), we rewrite the ergodic secrecy capacity as

CS =
1

ln 2

∫ ∞

0

[∫ γ1

0

FγN (γ2)

1 + γ2
dγ2

]
fγM (γ1) dγ1. (3.11)

Changing the order of integration in (A.3.1) with the help of [140, eq. (4.611.1)], we

obtain

CS =
1

ln 2

∫ ∞

0

FγN (γ2)

1 + γ2
[1− FγM (γ2)] dγ2. (3.12)

It is shown in (3.12) that CS depends on the statistics of the main channel and the

eavesdropper’s channel. Substituting (3.5) and (3.7) into (3.12) and applying [140, eq.

(1.111)] and [140, eq. (3.351.2)] to solve the resultant integrals, we derive the exact

ergodic secrecy capacity as (3.13), where Ei (α) is the exponential integral function given

by Ei (α) = e
α

2σ2
∫∞

α
2σ2

e−x

x dx.

3.3.2 Asymptotic Ergodic Secrecy Capacity

We proceed to derive the asymptotic ergodic secrecy capacity to examine the maximum

average achievable secrecy rate in the high SNR regime. To do so, we consider that the

average SNR of the main channel is sufficiently high, i.e., γM → ∞1. We maintain the

consideration of arbitrary values of the average SNR of the eavesdropper’s channel.

We commence the asymptotic analysis by presenting the first order expansion of

1We note that as γN → ∞, the probability of successful eavesdropping approaches one. As such, we
do not consider γN → ∞.
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CS =
1

2M ln 2

L̃M∑
l=1

∞∑
k=0

uM,l

k!
e−

ϑγM,l

2σ2

(
ϑγM,l

2σ2

)k M+k−1∑
i=0

1

i!

[
Ei

(
1

γ̄M

)(
− 1

2σ2γ̄M

)i

+

i∑
q=1

(
i

q

)(
− 1

2σ2γ̄M

)i−q q−1∑
t=0

(q − 1)!

t!

(
1

2σ2γ̄M

)t

− 1

2N (γ̄M )i

L̃N∑
l1=1

∞∑
k1=0

uN,l1

k1!
e−

ϑγN,l1
2σ2

(
ϑγN,l1

2σ2

)k1 N+k1−1∑
j=0

1

j!(γ̄N )j

×

Ei

(
1

γ̄M
+

1

γ̄N

)(
− 1

2σ2

)i+j

+

i+j∑
η=1

(
i+ j

η

)(
− 1

2σ2

)i+j−η

×
η−1∑
ϕ=0

(η − 1)!

ϕ!

(
1

γM
+

1

γN

)ϕ−η( 1

2σ2

)ϕ
 (3.13)

FγM (γ) in the high SNR regime. Applying the Taylor series expansion truncated to the

kth order given by ex =
∑k

j=0 x
j/j! + o

(
xk
)
[142] in (3.5), we derive the first order

expansion of FγM (γ) as

FγM (γ) = 1− 1

2M

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2

∞∑
k=0

1

k!

(
ϑγM,l

2σ2

)k

× e
− γ

2σ2γM

[
e

γ

2σ2γM − 1

(M + k)!

(
γ

2σ2γM

)M+k

− o

((
γ

2σ2γM

)M+k
)]

=
1

2MM !

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2

(
γ

2σ2γM

)M

+ o
(
γ−M
M

)
. (3.14)

To facilitate our asymptotic analysis, we rewrite (3.7) as FγN (γ) = 1−χγN (γ), where

χγN (γ) =
1

2N
e
− γ

2σ2
N

γN

L̃N∑
l=1

uN,le
−

ϑγN,l

2σ2
N

∞∑
k=0

1

k!

(
ϑγN,l

2σ2N

)k N+k−1∑
i=0

1

i!

(
γ

2σ2NγN

)i

.
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It follows that (A.3.1) is re-expressed as

CS =
1

ln 2

∫ ∞

0

(∫ γ1

0

1− χγN (γ2)

1+γ2
dγ2

)
fγM (γ1)dγ1

= κ1 − κ2, (3.15)

where

κ1 =
1

ln 2

∫ ∞

0
ln (1 + γ1) fγM (γ1)dγ1 (3.16)

and

κ2 =
1

ln 2

∫ ∞

0

∫ γ1

0

χγN (γ2)

1+γ2
fγM (γ1)dγ2dγ1. (3.17)

We next derive the asymptotic expressions for κ1 and κ2. In the high SNR regime

with γM → ∞, we have ln (1 + γ1) ≈ ln (γ1). As such, we apply [140, eq. (4.352.1)] and

perform some algebraic manipulations to derive the asymptotic expression for κ1 as

κ∞1 =
1

ln 2

∫ ∞

0
ln (γ1) fγM (γ1)dγ1

=log2
(
2σ2γM

)
+

1

2M ln 2

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2

∞∑
k=0

ψ (M + k)

k!

(
ϑγM,l

2σ2

)k

, (3.18)

where ψ (·) is the digamma function [143].

To derive the asymptotic expression for κ2, we change the order of integration in

(3.17) and rewrite κ2 as

κ2 =
1

ln 2

∫ ∞

0

χγN (γ2)

1+γ2
[1− FγM (γ2)]dγ2. (3.19)

From (3.14), we find that FγM (γ) ≈ 0 when γM → ∞. Applying some algebraic manip-
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ulations, we derive the asymptotic expression for κ2 as

κ∞2 =
1

ln 2

∫ ∞

0

χγN (γ2)

1+γ2
dγ2

=
1

2N ln 2

L̃N∑
l=1

uN,le
−

ϑγN,l

2σ2

∞∑
k=0

(
ϑγN,l

2σ2

)k
k!

N+k−1∑
i=0

ζ (γN , i)

i!
, (3.20)

where

ζ (γN , i) =Ei

(
1

γN

)(
− 1

2σ2γN

)i

+

i∑
q=1

(
i

q

)(
− 1

2σ2γN

)i−q q−1∑
t=0

(q − 1)!

t!

(
1

2σ2γN

)t

.

(3.21)

Finally, by substituting κ∞1 in (3.18) and κ∞2 in (3.20) into (3.15), the asymptotic ergodic

secrecy capacity C
∞
S is derived as

C
∞
S =log2

(
2σ2γM

)
+

1

2M ln 2

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2

∞∑
k=0

ψ (M + k)

k!

(
ϑγM,l

2σ2

)k

− 1

2N ln 2

L̃N∑
l=1

uN,le
−

ϑγN,l

2σ2

∞∑
k=0

(
ϑγN,l

2σ2

)k
k!

N+k−1∑
i=0

1

i!
ζ (γN , i) . (3.22)

Based on (3.22), we evaluate the high SNR slope and the high SNR power offset, as

two key parameters determining the ergodic secrecy capacity in the high SNR regime

[141, 144]. Conveniently, we rewrite the asymptotic ergodic secrecy capacity in (3.22) in

a general form as

C
∞
S = S∞ (log2 (γM )− L∞) , (3.23)

where S∞ is the high SNR slope in bits/s/Hz/(3 dB) and L∞ is the high SNR power

offset in 3 dB units.
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We first express the high SNR slope as

S∞ = lim
γM→∞

C
∞
S

log2 (γM )
. (3.24)

Substituting (3.22) into (4.24), we obtain

S∞ = 1. (3.25)

From (4.25), we conclude that the number of antennas at Bob and Eve have no impact

on the high SNR slope.

We next express the high SNR power offset L∞ as

L∞ = lim
γM→∞

(
log2 (γM )− C

∞
S

S∞

)
. (3.26)

It is clear from (4.26) that the effects of the main channel and the eavesdropper’s channel

on the asymptotic ergodic secrecy capacity reside in L∞. Substituting (3.22) and (4.25)

into (4.26), we derive L∞ as

L∞ = LM
∞ + LN

∞, (3.27)

where

LM
∞ =− log2

(
2σ2
)
− 1

2M ln 2

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2

∞∑
k=0

ψ (M + k)

k!

(
ϑγM,l

2σ2

)k

(3.28)

and

LN
∞ = κ∞2 . (3.29)

Based on (4.27), (3.28), and (3.29), we conclude that the contribution of the main channel

to L∞ is characterized by LM
∞ and the contribution of the eavesdropper’s channel to L∞

is characterized by LN
∞. We highlight that LM

∞ assesses the benefits of M on the ergodic
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Figure 3.2: Ergodic secrecy capacity versus γM with γN = 10 dB and N = 2.

secrecy capacity. Specifically, LM
∞ decreases as M increases, and as such the ergodic

secrecy capacity increases. On the other hand, LN
∞ quantifies the loss of ergodic secrecy

capacity due to eavesdropping. Specifically, LN
∞ increases withN , and as such the ergodic

secrecy capacity decreases.

3.3.3 Numerical Examples

Figure 3.2 depicts the ergodic secrecy capacity versus γM for different M in TWDP

fading channels. We set K = 3 dB and ∆ = 1. The exact and asymptotic ergodic

capacity results are obtained from (3.13) and (3.22), respectively. Evidently, the exact

curves match precisely with Monte Carlo simulations and the asymptotic curves well

approximate the exact ones in the high SNR regime. We first see that the curves for

different M have the same secrecy capacity slope, which is indicated by (4.25). We also

see that the ergodic secrecy capacity increases with increasingM . This can be explained
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Figure 3.3: Ergodic secrecy capacity versus γM with γN = 10 dB and M = 4.

by the fact that increasing M brings about additional power gains via MRC. It follows

that LM
∞ in (3.28) decreases with increasing M and accordingly the high SNR power

offset L∞ decreases.

Figure 3.3 depicts the ergodic secrecy capacity versus γM for different N in TWDP

fading channels. We set K = 3 dB and ∆ = 1. We see that the ergodic secrecy capacity

decreases with increasing N . This is due to the fact that LN
∞ in (3.29) increases with

increasing N and accordingly the high SNR power offset L∞ increases.

Figure 3.4 depicts the high SNR power offset for differentM and N in TWDP fading

channels. We set K = 3 dB and ∆ = 1. We first see that for fixed N = 2, increasing M

decreases L∞, which increases the ergodic secrecy capacity. We also see that for fixed

M = 2, increasing N increases L∞, which decreases the ergodic secrecy capacity.
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Figure 3.4: Solid line shows the high SNR power offset versusM with γN = 10
dB and N = 2. Dash line shows the high SNR power offset versus
N with γN = 10 dB and M = 2.

3.3.4 Special Cases

We next present results for the special cases of Rayleigh fading and Rician fading.

Observing (4.24), we confirm that the high SNR slope, S∞, is constant unity for Rayleigh

and Rician fading. As such, we provide simplified expressions for LM
∞ and LN

∞ in the

following two remarks.

Remark 1: For Rayleigh fading, LM
∞ in (3.28) reduces to

LM
∞ = −ψ (M) log2e (3.30)
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and LN
∞ in (3.29) reduces to

LN
∞ =

1

ln 2

N−1∑
i=0

1

i!
ζ (γN , i). (3.31)

In (3.30), ψ (M) can be expressed as ψ (M) = −C+
∑M−1

k=1
1
k [140, eq. (8.365.4)], where

C is the Euler’s constant [140, eq. (8.367.1)]. We confirm that ψ (M) is an increasing

function of M . As such, an increase in M decreases LM
∞ and thus improves the ergodic

secrecy capacity. We also confirm that an increase in N increases LN
∞ and thus degrades

the ergodic secrecy capacity. Furthermore, we note that when the eavesdropper is in

absence, we have LN
∞ = 0 and L∞ = LM

∞ . In this case, LM
∞ in (3.30) reduces to the high

SNR power offset of the SIMO Rayleigh fading channel, equivalent to [141, eq. (15)]

with a single transmit antenna.

Remark 2: For Rician fading, K is the Rician K-factor and 2σ2 = 1
K+1 . In this

case, LM
∞ in (3.28) reduces to

LM
∞ = −log2

(
1

1 +K

)
− e−MK

ln 2

∞∑
k=0

(MK)k

k!
ψ (M + k) (3.32)

and LN
∞ in (3.29) reduces to

LN
∞ =

1

ln 2
e−NK

∞∑
k=0

(NK)k

k!

N+k−1∑
i=0

1

i!
ζ (γN , i). (3.33)

Taking the derivative of LN
∞ with respect to K, we confirm that dLN

∞
dK ≥ 0. This indicates

that LN
∞ is an increasing function of K. As such, when the Rician K-factor of the

eavesdropper’s channel increases, the high SNR power offset increases and the ergodic

secrecy capacity decreases.
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3.4 Secrecy Outage Probability in Passive Eavesdropping

Scenario

In this section, we focus on passive eavesdropping where Alice transmits confidential

information at a constant secrecy rate. Perfect secrecy is only guaranteed when the

secrecy rate is lower than the instantaneous secrecy capacity, otherwise, perfect secrecy is

compromised. In such a scenario, secrecy outage probability is a useful security metric to

characterize the probability that perfect secrecy is compromised [35]. Motivated by this,

we derive new exact and asymptotic closed-form expressions for secrecy outage probabil-

ity. Based on the asymptotic expression, we examine two key performance parameters

governing secrecy outage probability in the high SNR regime, namely secrecy diversity

order and secrecy array gain. We further derive the probability of non-zero secrecy capac-

ity. This essentially represents the probability of existence of positive secrecy. These new

closed-form results encompass Rayleigh fading and Rician fading as special cases.

3.4.1 Exact Secrecy Outage Probability

We first concentrate on the secrecy outage probability. Given the expected secrecy rate

RS , secrecy outage is declared when the instantaneous secrecy capacity CS drops below

RS . As such, the secrecy outage probability is given by

Pout (RS) = Pr (CS < RS)

=

∫ ∞

0
fγN (γ2)FγM

(
2RS (1+γ2)− 1

)
dγ2. (3.34)
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Pout (RS) =1− e
− 2RS−1

2σ2γM

2M+N

L̃M∑
l=1

∞∑
k=0

(
ϑγM,l

2σ2

)k uM,le
−

ϑγM,l

2σ2

k!

M+k−1∑
i=0

1

i!

×
L̃N∑
l1=1

∞∑
k1=0

(
ϑγN,l1

2σ2

)k1 uN,l1e
−

ϑγN,l
1

2σ2

k1! (N + k1 − 1)!
×

i∑
j=0

(
i

j

)(
2RS − 1

2σ2

)i−j

×
2RSjγN+k1+j−i

M γjN (N + k1 + j − 1)!

(2RSγN + γM )N+k1+j
. (3.36)

Substituting (3.5) and (3.6) into (3.34), we re-express the secrecy outage probability as

Pout (RS) = 1− 1

2M+NγN

L̃M∑
l=1

∞∑
k=0

(
ϑγM,l

2σ2

)k uM,le
−

ϑγM,l

2σ2

k!

×
M+k−1∑

i=0

1

i!

L̃N∑
l1=1

1

2σ2

∞∑
k1=0

(
ϑγN,l1

2σ2

)k1 uN,l1e
−

ϑγN,l1
2σ2

k1! (N + k1 − 1)!

×
∫ ∞

0
e
− γ2

2σ2γN

(
γ2

2σ2γN

)N+k1−1

e
− 2RS (1+γ2)−1

2σ2γM

(
2RS (1 + γ2)− 1

2σ2γM

)i

dγ2. (3.35)

Applying the binomial expansion [140, eq. (1.111)] and [140, eq. (3.351.3)] to solve the

integral in (3.35), we derive the exact secrecy outage probability as (3.36). This exact

expression is derived in closed-form. It consists of finite summations of exponential

functions and power functions.

3.4.2 Asymptotic Secrecy Outage Probability

We now derive the asymptotic secrecy outage probability as γM → ∞. This expression

allows us to examine the secrecy performance in the high SNR regime via two parameters,

namely the secrecy diversity order and the secrecy array gain. Substituting (3.14) into

(3.34) and performing algebraic manipulations, the asymptotic secrecy outage probability

is derived as

P∞
out (RS) = (GaγM )−Gd + o

(
γ−Gd
M

)
, (3.37)
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where the secrecy diversity order is given by

Gd =M (3.38)

and the secrecy array gain is given by

Ga =

 1

2M+NM !

L̃M∑
l=1

uM,le
−

ϑγM,l

2σ2

L̃N∑
l1=1

uN,l1e
−

ϑγN,l1
2σ2

×
∞∑
k=0

(
ϑγN,l1

2σ2

)k
1

k! (N + k − 1)!

M∑
i=0

(
M

i

)(
2RSγN

)i
×
(
2RS − 1

2σ2

)M−i

(N + k − 1 + i)!

]− 1
M

. (3.39)

It is evident from (3.38) that the secrecy diversity order is solely dependent on M and

is independent of N . Hence, the secrecy diversity order increases with the number of

antennas at Bob. It is also evident from (3.39) that the eavesdropper’s channel exerts a

negative effect on the secrecy array gain. As such, increasing the number of antennas at

Eve decreases the secrecy array gain and thus degrades the secrecy outage probability.

3.4.3 Probability of Non-Zero Secrecy Capacity

According to (3.1), the non-zero secrecy capacity is achieved when γM > γN . As such,

the probability of non-zero secrecy capacity is given by

Pr (CS > 0) = Pr (γM > γN )

=

∫ ∞

0
fγM (γ1)FγN (γ1) dγ1. (3.40)
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Substituting (3.4) and (3.7) into (3.40) yields

Pr (CS > 0) = 1− 1

2M+NγM

L̃N∑
l=1

uN,le
−

ϑγN,l

2σ2

∞∑
k=0

(
ϑγN,l

2σ2

)k
k!

×
N+k−1∑
i=0

L̃M∑
l1=1

uM,l1e
−

ϑγM,l1
2σ2

∞∑
k1=0

(
ϑγM,l1
2σ2

)k1

k1!2σ2 (M + k1 − 1)!i!

×
∫ ∞

0

(
γM

2σ2γM

)M+k1−1( γM
2σ2γN

)i

e
− γM

2σ2

(
1

γM
+ 1

γN

)
dγM . (3.41)

Employing [140, eq. (3.351.3)] to solve the integral in (3.41), we derive the probability

of non-zero secrecy capacity as

Pr (CS > 0) = 1− 1

2M+N

L̃N∑
l=1

∞∑
k=0

(
ϑγN,l

2σ2

)k uN,le
−

ϑγN,l

2σ2

k!

L̃M∑
l1=1

∞∑
k1=0

N+k−1∑
i=0

(
M + k1 − 1 + i

i

)

×
(
ϑγM,l1

2σ2

)k1 uM,l1e
−

ϑγM,l1
2σ2 γM

iγN
M+k1

k1!(γM+γN )M+k1+i
. (3.42)

For the special case of Rayleigh fading where no specular waves exist in the main channel

and eavesdropper’s channel, (3.42) reduces to [36, eq. (3)]. This highlights the validity

and generality of our result.

3.4.4 Numerical Examples

Figure 3.5 depicts the secrecy outage probability versus γM for different M in TWDP

fading channels. We set RS = 1 bit/s/Hz and K = 3 dB. The exact and asymptotic

secrecy outage probability results are obtained from (3.36) and (3.37), respectively. Pre-

cise agreement can be seen between the exact curves and the Monte Carlo simulations.

We also see that the asymptotic curves accurately predict the secrecy diversity order

and the secrecy array gain. We observe that the secrecy outage probability decreases

dramatically with increasing M . This can be explained by the fact that M increases the

secrecy diversity order.
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Figure 3.5: Secrecy outage probability versus γM with γN = 10 dB, N = 2,
and ∆ = 1.

Figure 3.6 depicts the secrecy outage probability versus γM for different N in TWDP

fading channels. We set RS = 1 bit/s/Hz and K = 3 dB. We see that the secrecy outage

probability curves are parallel in the high SNR regime. This is due to the fact that the

secrecy diversity order is independent of N as indicated by (3.38). We also see that

the secrecy outage probability increases with N . This is explained by the fact that the

secrecy array gain decreases with increasing N as indicated by (3.39).

3.4.5 Special Cases

We next examine results for the special cases of Rayleigh fading and Rician fading. Based

on (3.38), we confirm that the secrecy diversity order is maintained atM for Rayleigh and

Rician fading. We then offer the following two remarks to present simplified expressions

for the exact secrecy outage probability and the secrecy array gain.
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Figure 3.6: Secrecy outage probability versus γM with γN = 10 dB, M = 4,
and ∆ = 1.

Remark 1: For Rayleigh fading, the exact secrecy outage probability in (3.36)

reduces to

Pout (RS) =1− e
− 2RS−1

γM

(N − 1)!

M−1∑
i=0

i∑
j=0

(
i

j

)(
2RS − 1

)i−j 2RSjγN+j−i
M γjN (N + j − 1)!

i!(2RSγN + γM )N+j
. (3.43)

The secrecy array gain in (3.35) reduces to

Ga =

[
M∑
i=0

(
M

i

)
2RSi

(
2RS − 1

)M−i
γiNΓ (N + i)

M !Γ (N)

]− 1
M

. (3.44)

Combining the first two terms of [36, eq. (6)], we find that the exact secrecy outage

probability in [36] can be simplified as (3.43). From (3.44), we see that the secrecy array

gain decreases with increasing N and γN .

Remark 2: For Rician fading, the exact secrecy outage probability in (3.36) reduces
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to

Pout (RS) =1− e
− 2RS−1

2σ2γM
−NK

∞∑
k=0

(MK)ke−MK

k!

M+k−1∑
i=0

×
∞∑

k1=0

(NK)k1

i!k1! (N + k1 − 1)!

i∑
j=0

(
i

j

)(
2RS − 1

2σ2

)i−j

×
2RSjγN+k1+j−i

M γjN (N + k1 + j − 1)!

(2RSγN + γM )N+k1+j
. (3.45)

The secrecy array gain in (3.35) reduces to

Ga =

[
e−(M+N)K

M !

∞∑
k=0

(NK)k

k! (N + k − 1)!

M∑
i=0

(
M

i

)
2RSi

×
((
2RS − 1

)
(K + 1)

)M−i
Γ (N + k + i) γiN

]− 1
M
. (3.46)

Taking the derivative of Ga with respect to K, we confirm that dGa
dK > 0, which indicates

that Ga is an increasing function of the Rician K-factor. Thus, we confirm that the

secrecy array gain increases with K.

3.4.6 Performance Gap

In this subsection, we evaluate the performance loss when the number of antennas at

Eve increases from N to N+1. As indicated by (3.38) and (3.39), increasing the number

of antennas at Eve only impacts the secrecy array gain. As such, we derive the SNR gap

between N and N + 1 antennas as a simple ratio of their respective secrecy array gains.

Motivated by this, we define the SNR gap between N and N + 1 antennas as

Ga (N + 1)

Ga (N)

∣∣∣∣
dB

= 10log10

(
Ga (N + 1)

Ga (N)

)
. (3.47)

For TWDP fading channels, the SNR gap between N and N + 1 antennas is calculated

using (3.39) together with (3.47). For the special cases of Rayleigh fading and Rician

fading, we proceed to provide some useful insights in the following remarks.
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Remark 3: For Rayleigh fading, based on (3.44) and (3.47), the SNR gap between

N and N + 1 antennas is characterized as

Ga (N + 1)

Ga (N)

∣∣∣∣
dB

= −10

M
log10 (1 +ϖ) , (3.48)

where ϖ is given by

ϖ =

∑M
i=0

(
M
i

)
i
(
2RS − 1

)M−i
2RSiΓ (N + i) γiN

N
∑M

i=0

(
M
i

)
(2RS − 1)M−i2RSiΓ (N + i) γiN

. (3.49)

From (3.48), increasing N to N + 1 antennas results in an SNR loss of 10
M log10 (1 +ϖ)

dB.

Remark 4: For Rician fading, based on (3.46) and (3.47), the SNR gap between N

and N + 1 antennas is characterized as

Ga (N + 1)

Ga (N)

∣∣∣∣
dB

=
10K

M
log10e−

10

M
log10

(
1 +

ϖ1

ϖ2

)
, (3.50)

where

ϖ1 =

∞∑
k=0

k−1∑
j=0

(
k

j

)
N jKk

k! (N + k)!

M∑
i=0

(
M

i

)(
2RS − 1

)M−i
(K + 1)M−i 2RSi (N + k + i)!γiN

+
∞∑
k=0

(NK)k

k! (N + k)!

M∑
i=0

(
M

i

)
i
(
2RS − 1

)M−i
(K + 1)M−i 2RSi (N + k − 1 + i)!γiN (3.51)

and

ϖ2 =
∞∑
k=0

(NK)k

k! (N + k − 1)!

M∑
i=0

(
M

i

)(
2RS − 1

)M−i
(K + 1)M−i2RSi (N + k − 1 + i)!γiN .

(3.52)

From (3.50), increasingN toN+1 antennas results in an SNR loss of 10
M log10

(
1 + ϖ1

ϖ2

)
−

10K
M log10e dB. For the special case of non-line-of-sight with K = 0, (3.50) reduces to

(3.48).
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Figure 3.7: SNR gap versus N with γN = 10 dB and M = 4 in three different
fading scenarios.

Figure 3.7 depicts the SNR gap between N and N + 1 antennas for three different

fading scenarios: 1) TWDP fading with K = 3 dB and ∆ = 1, 2) Rician fading with

K = 3 dB and ∆ = 0, and 3) Rayleigh fading. We set RS = 1 bit/s/Hz. We see that

the SNR gap diminishes with increasing N . We also see that the SNR gap for all three

fading scenarios approach each other for large N .

3.5 Conclusions

Physical layer security of MRC systems in TWDP fading channels was analyzed. Two

practical scenarios were taken into account, depending on whether or not the CSI of

the eavesdropper is known at the transmitter. For the first scenario where Eve’s CSI is

not known, new expressions for the exact and asymptotic average secrecy capacity were

derived. Based on these, it has been demonstrated that the high SNR slope is one. The
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joint impacts of the main channel and the eavesdropper’s channel on the average secrecy

capacity via the high SNR power offset were characterized. For the second scenario

where Eve’s CSI is known, new expressions for the exact and asymptotic secrecy outage

probability were derived. Based on these, it is shown that the secrecy diversity order

is solely dependent on the number of receive antennas at the legitimate receiver and

independent of the number of antennas at the eavesdropper. We further examined the

performance loss by presenting the SNR gap between N and N + 1 antennas. Based on

the SNR gap, the loss of secrecy array gain with increasing number of antennas at the

eavesdropper is accurately quantified.



Chapter 4

Secure Transmission with

Antenna Selection in MIMO

Nakagami-m Fading Channels

4.1 Introduction

In this chapter, transmit antenna selection (TAS) with GSC (TAS/GSC) for secure

transmissions in MIMO wiretap channels is proposed. The proposed protocol combines

the advantages of TAS and GSC in multiple antenna transmissions. Two eavesdropping

scenarios are addressed: 1) Passive eavesdropping and 2) active eavesdropping. For

passive eavesdropping, the secrecy outage probability is characterized as the fundamental

security metric. For active eavesdropping, the average secrecy rate is characterized as the

fundamental security metric. New asymptotic expressions for the average secrecy rate

and secrecy outage probability in the high SNR regime are derived for two important

cases: 1) The legitimate receiver is located close to the transmitter, and 2) the legitimate

receiver and the eavesdropper are located close to the transmitter.

52
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Notation: In this chapter, (·)T denotes the transpose operator, IM denotes theM×M

identity matrix, 0M×N denotes the M × N zero matrix, E [·] denotes the expectation

operator, Fφ(·) denotes the CDF of random variable (RV) φ, fφ(·) denotes the PDF

of φ, sgn (·) denotes the signum function, o (·) denotes the higher order terms, and

[x]+ = max{x, 0}.

4.2 System Model

A MIMO wiretap channel model which consists of a transmitter (Alice) with NA anten-

nas, a legitimate receiver (Bob) with NB antennas, and an eavesdropper (Eve) with

NE antennas is considered. The main channel (Alice-Bob) and the eavesdropper’s

channel (Alice-Eve) are assumed to undergo quasi-static Nakagami-m fading with fad-

ing parameters mB and mE , respectively. In the main channel, Alice selects a single

transmit antenna among NA antennas that maximizes the GSC output SNR at Bob,

while Bob combines the LB (1 ≤ LB ≤ NB) strongest receive antennas. In the eaves-

dropper’s channel, Eve combines the LE (1 ≤ LE ≤ NE) strongest receive antennas.

The channel power gain from the pth transmit antenna to the lBth receive antenna

at Bob is denoted as |hp,lB |
2 with E

[
|hp,lB |

2
]

= Ω1, p = 1, · · · ,NA, lB= 1, · · · ,NB.

The channel power gain from the pth transmit antenna to the lEth receive antenna at

Eve is denoted as |gp,lE |
2 with E

[
|gp,lE |

2
]
= Ω2, lE= 1, · · · ,NE . Based on GSC, we

arrange
{∣∣hp,(lB)

∣∣2, 1 ≤ lB ≤ NB

}
in descending order as

∣∣hp,(1)∣∣2 ≥
∣∣hp,(2)∣∣2 ≥ · · · ≥∣∣hp,(NB)

∣∣2, and
{∣∣gp,(lE)

∣∣2, 1 ≤ lE ≤ NE

}
in descending order as

∣∣gp,(1)∣∣2 ≥
∣∣gp,(2)∣∣2 ≥

· · · ≥
∣∣gp,(NE)

∣∣2. The index of the optimal transmit antenna is determined as

p∗ = argmax
1≤p≤NA


LB∑
lB=1

∣∣hp,(lB)

∣∣2 . (4.1)

Secure transmission is achieved by encoding the confidential message block W into

a codeword x = [x (1) , · · · , x (l) , · · · , x (L)], where L is the length of x. The codeword
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is subject to an average power constraint 1
L

∑L
l=1 E

[
|x (l)|2

]
≤ P . In the main channel,

at time slot l, the received signal vector is given by yB (l) = hx (l) + nB (l), where h =

[hp∗,1, hp∗,2, · · · , hp∗,NB
]T ∈ CNB×1 is the main channel vector between transmit antenna

p∗ at Alice and the NB receive antennas at Bob, and nB (l) ∼ CNNB×1

(
0NB×1, δ

2
BINB

)
is the additive white Gaussian noise (AWGN) vector at Bob. We denote γ̄B = Ω1

P
δ2B

as

the average SNR per antenna at Bob. Combining the subset of receive antennas with

the largest SNRs at Bob results in the instantaneous SNR in the main channel as

γB =

LB∑
lB=1

γB(lB), (4.2)

where γB(lB) =
∣∣hp∗,(lB)

∣∣2 P
δ2B

. In the eavesdropper’s channel, at time slot l, the received

signal vector is given by yE (l) = gx (l) + nE (l), where g = [gp∗,1, gp∗,2, · · · , gp∗,NE
]T ∈

CNE×1 is the eavesdropper’s channel vector between transmit antenna p∗ at Alice and

the NE receive antennas at Eve, and nE (l) ∼ CNNE×1

(
0NE×1, δ

2
EINE

)
is the additive

white Gaussian noise (AWGN) vector at Eve. We denote γ̄E = Ω2
P
δ2E

as the average SNR

per antenna at Eve. Combining the subset of receive antennas with the largest SNRs at

Eve results in the instantaneous SNR in the eavesdropper’s channel as

γE =

LE∑
lE=1

γ(lE), (4.3)

where γ(lE) =
∣∣gp∗,(lE)

∣∣2 P
δ2E

.

4.3 New Statistical Properties

In this section, we derive new closed-form expressions for the probability density function

(PDF) and the cumulative distribution function (CDF) of γB in the main channel, and

the PDF and the CDF of γE in the eavesdropper’s channel, which lay the foundation for

extracting several key secrecy performance indicators, namely the high SNR slope, the
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high SNR power offset, the secrecy diversity order, and the secrecy array gain. These

statistics are general in nature and as such are useful for determining the performance

of other wireless systems with GSC.

4.3.1 CDF and PDF of the SNR in the Main Channel

Theorem 1: The expressions for the CDF and the PDF of γB are derived as

FγB (x) =

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

~ρxθρe−ηρx, (4.4)

fγB (x) =

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

~ρxθρ−1e−ηρx (θρ − ηρx) , (4.5)

where
∑̃

,
∑
SB

∑
S1
B

· · ·
∑
Sk
B

· · ·
∑
S|S|
B

, SB =

{(
nτ,1, · · · , nτ,|S|

)∣∣ |S|∑
k=1

nτ,k = NA

}
, |S| is the car-

dinality of set S, and S denotes a set of (2mB + 1)-tuples satisfying the condition

S =

(nΦk,0 · · · , nΦk,mB−1, n
F
k,0, · · · , nFk,mB

)∣∣mB−1∑
i=0

nΦk,i = LB − 1,

mB∑
j=0

nFk,j = NB − LB

,

thereby |S| =
(
mB+LB−2

mB−1

)(
mB+NB−LB

mB

)
, Sk

B =

{
(nρk,0, · · · , nρk,mBLB+bFk

)∣∣∣mBLB+bFk∑
n=0

nρk,n =

nτ,k

}
, k = 1, · · · , |S|, and ~ρ, θρ, and ηρ are respectively given by

~ρ =

|S|∏
k=1

((
aΦk a

F
k

(n1 − 1)!

(LB)
n1

)nτ,k

mBLB+bFk∏
n=0

ℓ
nρk,n
n

mBLB+bFk∏
n=0

nρk,n!

)
,

θρ =

|S|∑
k=1

mBLB+bFk∑
n=0

µnnρk,n, ηρ =

|S|∑
k=1

mBLB+bFk∑
n=0

νnnρk,n,

where n1 = bΦk + bFk +mB, a
Φ
k , a

F
k , ℓn, b

F
k , b

Φ
k , µn, and νn are defined in Appendix A.1.

Proof. The proof is given in Appendix A.1.
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Theorem 2: In the high SNR regime with γB → ∞, the asymptotic CDF of γB is

given by

FγB (x) =

(
LB

(
NB
LB

))NA
(
mB
γ̄B

)mBNBNA

xmBNBNA(
(mB − 1)!(mB!)

NB−LB (mBNB)!
)NA

∑
SΦ
B

aΦk

(
bΦk +mB (NB − LB) +mB − 1

)
!

(LB)
bΦk +mB(NB−LB)+mB

NA

, (4.6)

where SΦ
B =

{(
nΦk,0, · · · , nΦk,mB−1

)∣∣∣mB−1∑
i=0

nΦk,i = LB − 1

}
.

Proof. The proof is given in Appendix A.2.

4.3.2 CDF and PDF of the SNR in the Eavesdropper’s Channel

Alice selects the strongest transmit antenna according to the channel power gains of

the main channel, which corresponds to selecting a random transmit antenna for Eve.

Hence, similar to (A.1.9) given in Appendix A, the expressions for the CDF and the

PDF of γE are respectively derived as

FγE (x) =
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=0

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓnx
µne−νnx, (4.7)

fγE (x) =
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓnx
µn−1e−νnx (µn − νnx),

(4.8)

where SE denotes a set of (2mE + 1)-tuples satisfying the condition

SE =

(nΦk,0 · · · , nΦk,mE−1, n
F
k,0, · · · , nFk,mE

)∣∣mE−1∑
i=0

nΦk,i = LE − 1,

mE∑
j=0

nFk,j = NE − LE

.
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All the parameters in (4.7) and (4.8) are identical to those in Theorem 1 and are calcu-

lated accordingly.

4.4 Average Secrecy Rate

In this section, we focus on the active eavesdropping scenario1, where the CSI of the

eavesdropper’s channel is also known at Alice. Following the wiretap channel in [28, 35],

Alice encodes a message block W k into a codeword Xn, and Eve receives Y n
w from the

output of its channel. The equivocation rate of Eve is Re = H
(
W k
∣∣Y n

w

)
/n, which is the

amount of ignorance that the eavesdropper has about a message W k [28]. In the active

eavesdropping scenario, Alice can adapt the achievable secrecy rate R such that R ≤

Re [28, 35]. Here, We focus on the maximum achievable secrecy rate Cs = Re [28, 35],

which is characterized as [28, 35, 145, 146]

Cs = [CB − CE ]
+, (4.9)

where CB = log2 (1 + γB) is the capacity of the main channel and CE = log2 (1 + γE)

is the capacity of the eavesdropper’s channel. Since the CSI of eavesdropper’s channel

is available to Alice, Alice can transmit confidential messages at a rate Cs, to guarantee

perfect secrecy.

In active eavesdropping scenario, the average secrecy rate is essentially a fundamental

secrecy performance metric. We derive new exact and asymptotic expressions for the

average secrecy rate. Based on the asymptotic expressions, we characterize the average

secrecy rate in terms of the high SNR slope and the high SNR power offset, to explicitly

capture the impact of arbitrary antennas and channel parameters on the average secrecy

rate at high SNR [141].

1In this scenario, the eavesdropper is active [35]. Such a scenario is particularly applicable in networks
combining multicast and unicast transmissions, where the users play dual roles as legitimate receivers
for some signals and eavesdroppers for others [44].
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4.4.1 Exact Average Secrecy Rate

The average secrecy rate is the average of the secrecy rate Cs over γB and γE . As such,

the exact average secrecy rate is given by

C̄s =

∫ ∞

0

∫ ∞

0
CsfγB (x1) fγE (x2)dx1dx2

=

∫ ∞

0

[∫ ∞

0
CsfγE (x2) dx2

]
︸ ︷︷ ︸

ω1

fγB (x1) dx1. (4.10)

We first calculate ω1 in (4.10) as

ω1 =

∫ x1

0
(log2 (1 + x1)− log2 (1 + x2)) fγE (x2) dx2. (4.11)

Using integration by parts, and applying some algebra, we derive (4.11) as

ω1 = log2 (1+x1)FγE (x1)−
(
log2 (1+x1)FγE (x1)−

1

ln 2

∫ x1

0

1

1+x2
FγE (x2) dx2

)
=

1

ln 2

∫ x1

0

FγE (x2)

1 + x2
dx2. (4.12)

Substituting (4.12) into (4.10), and changing the order of integration, we obtain

C̄s =
1

ln 2

∫ ∞

0

FγE (x2)

1 + x2

[∫ ∞

x2

fγB (x1) dx1

]
dx2

=
1

ln 2

∫ ∞

0

FγE (x2)

1 + x2
(1− FγB (x2))dx2. (4.13)

Using the new statistical properties in Section III, we calculate (4.13) as

C̄s =
LE

ln 2 (mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=0

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓn

[
µn!Ψ (µn + 1, µn + 1; νn)

−
(

LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

~ρ (µn + θρ)!Ψ (µn + θρ + 1, µn + θρ + 1; νn + ηρ)

]
,

(4.14)
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where Ψ (·, ·; ·) is the confluent hypergeometric function [140, eq. (9.211.4)]. Our new

expression for the exact average secrecy rate in (4.14) applies to arbitrary numbers of

antennas, arbitrary fading parameters, and arbitrary average SNRs.

4.4.2 Asymptotic Average Secrecy Rate

In order to explicitly examine the performance in the high SNR regime, we proceed to

derive the asymptotic average secrecy rate. We take into account two realistic scenarios:

1) Bob is located close to Alice, which can be mathematically described as γ̄B → ∞ for

arbitrary γ̄E , and 2) Bob and Eve are located close to Alice, which can be mathematically

described as γ̄B → ∞ and γ̄E → ∞.

To facilitate the analysis, we rewrite the CDF of γE as

FγE (x) = 1 + χγE (x) , (4.15)

where

χγE (x) =
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓnx
µne−νnx.

4.4.2.1 γ̄B → ∞

In this case, we introduce a new general form to derive the average secrecy rate in the

following theorem.

Theorem 3: The asymptotic average secrecy rate is given by

C̄∞
s = ∆1 +∆2, (4.16)
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where

∆1 =
1

ln 2

∫ ∞

0
ln (x1) fγB (x1)dx1 (4.17)

and

∆2 =
1

ln 2

∫ ∞

0

χγE (x2)

1+x2
dx2. (4.18)

Proof. The proof is given in Appendix A.3.

Based on Theorem 3, we calculate the asymptotic average secrecy rate using the new

statistical properties in Section III. Specifically, by substituting (4.5) into (4.17), and

employing [140, eq. (4.352.1)], ∆1 is derived as

∆1 =log2 (γ̄B)− log2 (mB) +
1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

~̃ρζ1, (4.19)

where ~̃ρ = ~ρ
(
mB
γ̄B

)−θρ
and

ζ1 =


0, θρ = 0, η̃ρ = 0,

ln(η̃ρ) + C, θρ = 0, η̃ρ > 0,

− (θρ−1)!

(η̃ρ)
θρ
, θρ > 0, η̃ρ > 0,

(4.20)

In (4.20), C is the Euler’s constant [140, eq. (8.367.1)] and η̃ρ =
(
mB
γ̄B

)−1
ηρ. It is worth

noting that ~̃ρ and η̃ρ are independent of γ̄B. We should also note that ∆1 in (4.19)

explicitly quantifies the impact of the main channel on the average secrecy rate.
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Substituting χγE given in (4.15) into (4.18), we obtain ∆2

∆2 =
LE

ln 2 (mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓnµn!Ψ (µn + 1, µn + 1, νn), (4.21)

which explicitly quantifies the impact of the eavesdropper’s channel on the average

secrecy rate.

Based on (4.16), (4.19), and (4.21), we derive the asymptotic average secrecy rate as

C̄∞
s =log2 (γ̄B)− log2 (mB) +

1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

×NA!
∑̃

~̃ρζ1 +
LE

ln 2 (mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk

× aFk

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓnµn!Ψ (µn + 1, µn + 1, νr). (4.22)

Based on (4.22), we derive two key performance indicators that determine the average

secrecy rate at high SNR, namely the high SNR slope and the high SNR power offset [141,

147]. The asymptotic average secrecy rate in (4.22) can be conveniently re-expressed

as [141]

C̄∞
s = S∞ (log2 (γ̄B)− L∞) , (4.23)

where S∞ is the high SNR slope in bits/s/Hz/(3 dB) and L∞ is the high SNR power

offset in 3 dB units. We note that the high SNR slope is also known as the maximum

multiplexing gain or the number of degrees of freedom [148]. The high SNR power

offset is a more intricate function which depends on the number of transmit and receive

antennas, as well as the channel characteristics [141, 147].
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The high SNR slope S∞ is given by

S∞ = lim
γ̄B→∞

C̄∞
S

log2 (γ̄B)
. (4.24)

Substituting (4.22) into (4.24), we obtain

S∞ = 1. (4.25)

From (4.25), we see that the eavesdropper’s channel and the number of Bob’s receive

antennas have no impact on the high SNR slope S∞.

The high SNR power offset L∞ is given by

L∞ = lim
γ̄B→∞

(
log2 (γ̄B)−

C̄∞
S

S∞

)
. (4.26)

Substituting (4.22) and (4.25) into (4.26), we derive L∞ as2

L∞ = LB
∞(mB, NB, LB, NA) + LE

∞(mE , NE , LE , γ̄E), (4.27)

where

LB
∞ (mB, NB, LB, NA) =log2 (mB)−

1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

~̃ρζ1 (4.28)

and

LE
∞(mE , NE , LE , γ̄E) = −∆2. (4.29)

In (4.28), LB
∞ quantifies the contribution of the main channel to the high SNR power

offset. In (4.29), LE
∞ quantifies the contribution of the eavesdropper’s channel to the

high SNR power offset. We next examine special cases of LB
∞ and LE

∞ in which these

2Here, we explicitly reveal the dependence of the high SNR power offset on mB , NA, NB , LB , mE ,
NE , LE , γ̄E .
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expressions reduce to more simple forms.

Corollary 1: For the special case of Rayleigh fading, where mB = mE = 1, LB
∞ in

(4.28) reduces to

LB
∞ (1, NB, LB, NA) = − 1

ln 2

(
LB

(
NB

LB

))NA

NA!
∑̃

~̃ρζ1 (4.30)

and LE
∞ in (4.29) reduces to

LE
∞ (1, NE , LE , γ̄E) =− 1

ln 2

(
NE

LE

)∑
SF
E

LE∑
n=1

aFk ℓnµn!Ψ (µn + 1, µn + 1, νn) , (4.31)

where SF
E =

{(
nFk,0, n

F
k,1

)∣∣∣ 1∑
j=0

nFk,j = NE − LE

}
.

Corollary 2: For the special case of Rayleigh fading with TAS/MRC, where mB =

mE = 1, LB = NB, and LE = NE , LB
∞ in (4.28) reduces to

LB
∞ (1, NB, NB, NA) = − 1

ln 2
NA!

∑
S1
B

NB∏
n=1

(
−1

(n−1)!

)nρ1,n

NB∏
n=0

nρ1,n!

β, (4.32)

where S1
B =

{
(nρ1,0, · · · , nρ1,NB

)|
NB∑
n=0

nρ1,n = NA

}
and

β =


ln(NA) + C, θρ = 0,

− (θρ−1)!

(NA)θρ
, θρ > 0.

(4.33)

From (4.29), LE
∞ reduces to

LE
∞ (1, NE , NE , γ̄E) =

1

ln 2

NE∑
n=1

(
1

γ̄E

)n−1

Ψ

(
n, n,

1

γ̄E

)
. (4.34)

It is clear from (4.34) that LE
∞ is an increasing function of NE . As such, when the

number of antennas at Eve increases, the high SNR power offset also increases, which in
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turn decreases the average secrecy rate.

Corollary 3: For the special case of Rayleigh fading with TAS/SC, where mB =

mE = 1, LB = 1, and LE = 1, LB
∞ in (4.28) reduces to

LB
∞ (1, NB, 1, NA) =− 1

ln 2
(NB)

NANA!
∑̃

~̃ρsgn(η̃ρ)(ln(η̃ρ) + C). (4.35)

By applying [140, eq. (3.352.4)], LE
∞ in (4.29) reduces to

LE
∞ (1, NE , 1, γ̄E) =

NE

ln 2

∑
SF
E

(NE − 1)!
1∏

j=0
nFk,j !

(−1)n
F
k,1

(
sgn(nFk,1)

nFk,1 + 1

+1− sgn(nFk,1)

)(
−e

(nF
k,1+1)
γ̄E Ei

(
−

(
nFk,1 + 1

)
γ̄E

))
, (4.36)

where SF
E =

{(
nFk,0, n

F
k,1

)∣∣∣ 1∑
j=0

nFk,j = NE − 1

}
and Ei (·) is the exponential integral

function defined in [140, eq. (8.211.1)].

4.4.2.2 γ̄B → ∞ and γ̄E → ∞

In this case, the average secrecy rate can be easily obtained based on Theorem 3. We

only need to further provide the asymptotic ∆2 with γ̄E → ∞. Observing ∆1 in (4.19),

the asymptotic ∆2 is derived according to

∆2 = − (log2 (γ̄E)− log2 (mE))− Ξ, (4.37)

where

Ξ =
1

ln 2

LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓ̃n(
(1− sgn (µn)) (C + ln (ν̃n))− sgn (µn)

(µn − 1)!

(ν̃n)
µn

)
. (4.38)
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Figure 4.1: The ergodic secrecy capacity for mB = mE = 2, NA = 2, NB = 4,
NE = 3, LE = 2, γ̄E = 10 dB.

In (4.38), ℓ̃n = ℓn

(
mE
γ̄E

)−µn

and ν̃n = νn

(
mE
γ̄E

)−1
. We should note that in (4.38), Ξ is

independent of γ̄E .

Substituting (4.19) and (4.37) into (4.16), we derive the asymptotic average secrecy

rate as

C̄∞
s =log2

(
γ̄B
γ̄E

)
− log2

(
mB

mE

)
+

1

ln 2

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!
∑̃

~̃ρζ1 − Ξ. (4.39)

From (4.39), we see that for a fixed ratio of γ̄B and γ̄E , the average secrecy rate is

a constant value at high SNR. According to (4.24), the high SNR slope S∞ is zero.

This new result shows that when the eavesdropper is located close to the transmitter,

increasing the transmit power does not have an impact on the average secrecy rate.
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Figure 4.2: The ergodic secrecy capacity for mB = mE = 2, NA = 2, NB = 4,
NE = 4, LB = 2, γ̄E = 10 dB.

4.4.3 Numerical Results

Figure 4.1 depicts the ergodic secrecy capacity versus γ̄B for different LB. The exact and

asymptotic ergodic secrecy capacity results are obtained from (4.14) and (4.22), respec-

tively. It is shown that the exact curves match precisely with Monte Carlo simulations

and the asymptotic curves well approximate the exact ones in the high SNR regime. The

ergodic secrecy capacity increases when more antennas are selected by Bob. However,

the improvement diminishes with increasing LB.

Figure 4.2 depicts the ergodic secrecy capacity versus γ̄B for different LE . The ergodic

secrecy capacity decreases when more antennas are selected by Eve. The loss of ergodic

secrecy capacity from selecting one more antenna lessens with increasing LE .

Figure 4.3 depicts the high SNR power offset for different scenarios. We can see that

the power offset increases with increasing NE and LE , which decreases the ergodic screcy
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Figure 4.3: The high SNR power offset in decibels, obtaining by either (a)
mB = mE = 2, NA = 2, NB = 4, NE = N , LB = 2, LE = 4,
γ̄E = 10 dB, (b) mB = mE = 2, NA = 2, NB = 4, NE = N ,
LB = LE = 2, γ̄E = 10 dB, (c) mB = mE = 2, NA = 4, NB = N ,
NE = 3, LB = LE = 2, γ̄E = 10 dB, (d) mB = mE = 2, NA = 4,
NB = N , NE = 3, LB = 4, LE = 2, γ̄E = 10 dB.

capacity. The power offset decreases with increasing NB and LB, which increases the

ergodic secrecy capacity.

Figure 4.4 depicts the ergodic secrecy capacity versus γ̄B for different LB. Here we

consider the scenario where both Bob and Eve are close to Alice. We set u = γ̄B
γ̄E

∣∣∣
dB

= 10

dB3. The exact and asymptotic ergodic secrecy capacity are obtained from (4.14) and

(4.39), respectively. The ergodic secrecy capacity increases with increasing LB. In the

high SNR regime, the ergodic secrecy capacity becomes a constant value, which has been

predicted from (4.39).

Figure 4.5 depicts the ergodic secrecy capacity versus γ̄B for different LE . We set

3Notation: x|dB = 10log10 (x).
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Figure 4.4: The ergodic secrecy capacity for mB = mE = 2, NA = 2, NB = 4,
NE = 3, LE = 2.

u = 10 dB. The ergodic secrecy capacity decreases with increasing LE . As expected, the

ergodic secrecy capacity is constant in the high SNR regime.

4.5 Secrecy Outage Probability

In this section, we concentrate on passive eavesdropping scenario, where the CSI of the

eavesdropper’s channel is not known at Alice. In such a scenario, Alice has no choice

but to encode the confidential data into codewords of a constant rate Rs [35], if Rs ≤ Cs

(Cs has been defined in (4.9)), perfect secrecy can be achieved. Otherwise, if Rs > Cs,

information-theoretic security is compromised. In other words, unlike the active eaves-

dropping scenario, perfect secrecy cannot be guaranteed in the passive eavesdropping

scenario, since Alice has no information about the eavesdropper’s channel. Motivated by

this, we adopt the secrecy outage probability as a useful performance measure. We derive
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Figure 4.5: The ergodic secrecy capacity for mB = mE = 2, NA = 2, NB = 4,
NE = 4, LB = 2.

new closed-form expressions for the exact and the asymptotic secrecy outage probability.

Based on the asymptotic expressions, we present two key performance indicators, namely

the secrecy diversity order and the secrecy array gain.

4.5.1 Exact Secrecy Outage Probability

A secrecy outage is declared when the secrecy rate Cs is less than the expected secrecy

rate Rs. As such, the secrecy outage probability is derived as

Pout (Rs) = Pr (Cs < Rs) =

∫ ∞

0
fγE (x2)FγB

(
2Rs (1+x2)− 1

)
dx2. (4.40)
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Substituting (4.4) and (4.8) into (4.40), and applying the binomial expansion [140, eq.

(1.111)] and [140, eq. (3.351.3)], we obtain

Pout (Rs) =
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

×
(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓn

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!

×
∑̃

~ρ
θρ∑
q=0

(
θρ
q

)
2Rsq(2Rs − 1)θρ−qe−ηρ(2Rs−1)

×

 µnΓ (q + µn)

(ηρ2Rs + νn)
q+µn

− νn (q + µn)!

(ηρ2Rs + νn)
q+µn+1

. (4.41)

Our new expression for the exact secrecy outage probability in (4.41) applies to arbitrary

numbers of antennas at Bob and Eve, arbitrary fading parameters, and arbitrary average

SNRs in the main and eavesdropper’s channels. As shown in [33], the probability of

positive secrecy can be evaluated as 1− Pout (0).

4.5.2 Asymptotic Secrecy Outage Probability

In this subsection, we turn our attention to the asymptotic secrecy outage probability.

We consider the following two scenarios.

4.5.2.1 γ̄B → ∞

In this case, Bob is located close to Alice. We substitute (4.6) and (4.8) into (4.40), and

derive the asymptotic secrecy outage probability as

P∞
out (Rs) = (Gaγ̄B)

−Gd + o
(
γ̄−Gd
B

)
, (4.42)
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where the secrecy diversity order is

Gd = mBNBNA (4.43)

and the secrecy array gain is

Ga =

 LE

(mE − 1)!

(
LB

(
NB
LB

))NA

(mB)
mBNBNA(

Γ (mB)(mB!)
NB−LB (mBNB)!

)NA

×
(
NE

LE

)∑
SΦ
B

aΦk

(
bΦk +mB (NB − LB) +mB − 1

)
!

(LB)
bΦk +mB(NB−LB)+mB

NA

×
∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

ℓn

mBNBNA∑
q=0

(
mBNBNA

q

)

× (Γ (q + µn)µn − (q + µn)!)
2Rsq

(
2Rs − 1

)mBNBNA−q

(νn)
q+µn


− 1

mBNBNA

. (4.44)

Based on (4.43) and (4.44), we find that the secrecy diversity order is entirely determined

by the antenna configuration and the fading parameters in the main channel. The impact

of the eavesdropper’s channel is only reflected in the secrecy array gain.

In order to characterize the impact of GSC on the secrecy outage probability, we

quantify the secrecy outage tradeoff between LB + l and LB, l = 1, · · · , NB −LB. From

(4.43), we confirm that LB + l and LB have the same secrecy diversity order. As such,

one can conclude that the SNR gap between LB + l and LB is strictly determined by

their respective secrecy array gains and is expressed as

Ga (LB + l)

Ga (LB)
=

(mB!)
l (LB + l)

(
NB

LB+l

)
LB

(
NB
LB

)
∑
SΦl
B

aΦ
l

k

(
bΦ

l

k +mB(NB−LB−l)+mB−1
)
!

(LB+l)
bΦ

l
k

+mB(NB−LB−l)+mB∑
SΦ
B

aΦk
(bΦk +mB(NB−LB)+mB−1)!

(LB)
bΦ
k
+mB(NB−LB)+mB


− 1

mBNB

(4.45)
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where SΦl

B satisfies the condition

SΦl

B =

{(
nΦ

l

k,0, · · · , nΦ
l

k,mB−1

)∣∣∣mB−1∑
i=0

nΦ
l

k,i = LB + l − 1

}
.

Corollary 4: For the special case of Rayleigh fading, the secrecy diversity order in (4.43)

reduces to NBNA and the secrecy array gain in (4.44) reduces to

Ga =

[(
NE

LE

) (
2Rs − 1

)NBNA

(LB!)
NA(LB)

NA(NB−LB)

∑
SF
E

LE∑
n=1

aFk ℓn

×
NBNA∑
q=0

(
NBNA

q

)(
2Rs

2Rs − 1

)q
(Γ (q + µn)µn − (q + µn)!)

(νn)
q+µn

]− 1
NBNA

. (4.46)

Based on (4.46), we confirm that Ga(LB+1)
Ga(LB) > 1. This proves that the secrecy array gain

is an increasing function of LB. It follows that the SNR gap between LB + l and LB in

(4.45) reduces to

Ga (LB + l)

Ga (LB)
=

[
(LB)

lLB!

(LB + l)!
(
1 + l

LB

)NB−LB−l

]− 1
NB

. (4.47)

Based on (4.47), we confirm that
(
Ga(LB+1+l)
Ga(LB+1)

)/(
Ga(LB+l)
Ga(LB)

)
< 1. This proves that the

SNR gap is a decreasing function of LB.
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Figure 4.6: The secrecy outage probability for mB = 1, mE = 2, NB = 3,
NE = 3, LE = 2, γ̄E = 10 dB.

4.5.2.2 γ̄B → ∞, γ̄E → ∞

In this case, both Bob and Eve are located close to Alice. Based on (4.41), the asymptotic

secrecy outage probability is derived as

P∞
out (Rs) = lim

γ̄B→∞, γ̄E→∞
Pout (Rs)

=
LE

(mE − 1)!

(
NE

LE

)∑
SE

mELE+bFk∑
n=1

aΦk a
F
k

× ℓ̃n

(
bΦk + bFk +mE − 1

)
!

(LE)
bΦk +bFk +mE

(
LB

(mB − 1)!

(
NB

LB

))NA

NA!

×
∑̃

~̃ρ
(
mB γ̄E
mE γ̄B

)θρ 2Rsθρ(
η̃ρ2Rs mB γ̄E

mE γ̄B
+ ν̃n

)θρ+µn

×

(
µnΓ (θρ + µn)−

ν̃n (θρ + µn)!

η̃ρ2Rs mB γ̄E
mE γ̄B

+ ν̃n

)
. (4.48)
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Figure 4.7: The SNR gap for mB = 2, NB = 10.

For a fixed ratio of γ̄B and γ̄E , (4.48) confirms that the secrecy outage probability

approaches a constant at high SNR, which implies that the secrecy diversity order is

zero. Once again, this result shows that increasing the transmit power does not have an

impact on the secrecy outage probability.

4.5.3 Numerical Results

In this subsection, we provide some numerical results to confirm the aforementioned

analysis. In the simulation, we assume that the expected secrecy rate Rs = 1 bit/s/Hz.

Figure 4.6 depicts the secrecy outage probability versus γ̄B for different LB and NA.

The exact and asymptotic results are obtained from (4.41) and (4.42), respectively. The

exact curves are in precise agreement with the Monte Carlo simulations, and the asymp-

totic curves accurately predict the secrecy diversity order and the secrecy array gain. As
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Figure 4.8: The secrecy outage probability for mB = 1, mE = 2, NB = 3,
NE = 3, LE = 2.

suggested in (4.43), the secrecy diversity order increases with NA, which decreases the

secrecy outage probability. Increasing LB decreases the secrecy outage probability, due

to the increase of the secrecy array gain.

Figure 4.7 depicts the SNR gap versus LB for different l, the results are obtained from

(4.45). When LB is low, the SNR gap is sharp and increases with increasing l antenna

at Bob. However, increasing LB can diminish the gap, which indicates that GSC has an

advantage of balancing the receive performance and implementation complexity.

Figure 4.8 depicts the secrecy outage probability versus γ̄B for different LB and NA.

We set u = γ̄B
γ̄E

∣∣∣
dB

= 10 dB. The exact and asymptotic results are obtained from (4.41)

and (4.48). The secrecy outage probability decreases with increasing LB and NA. As

suggested in (4.48), the secrecy outage probability becomes constant in the high SNR

regime.
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4.6 Conclusions

Transmit antenna selection with generalized selection (TAS/GSC) combining for physical

layer security was examined in MIMO wiretap channels. In doing so, new analytical

expressions of the statistical properties on the SNR with TAS/GSC were derived in

Nakagami-m fading. With the aid of these results, new closed-form expressions for the

exact and the asymptotic average secrecy rate were derived. Using these expressions,

the high SNR slope and the high SNR power offset were precisely characterized. New

closed-form expressions for the exact and the asymptotic secrecy outage probability were

provided, which concisely characterized the secrecy diversity order and the secrecy array

gain. Several key observations were drawn based on the locations of the legitimate

receiver and the eavesdropper relative to the transmitter. It is shown that a capacity

ceiling and an outage floor were created when both the legitimate receiver and the

eavesdropper are close to the transmitter.



Chapter 5

Security in Cognitive Radio

Networks

5.1 Introduction

Security is an important requirement for future 5G systems, and cognitive radio is no

exception. Particularly, security of cognitive radio networks is critical as it is easily

exposed to external threats [8–14]. In [10], security for the main channel was guaranteed

by performing beamforming from a group of relays. In [12], secure communications with

untrusted secondary users in cognitive radio networks was proposed and the achievable

secrecy rate was derived. In [13, 14], game theory was utilized to exploit the security

aspect of cognitive radio networks.

In this chapter, passive eavesdropping is considered, where the channel state infor-

mation (CSI) of the eavesdropper’s channel is not available at the secondary transmitter.

In such a cognitive wiretap channel, the secondary transmitter sends confidential mes-

sages to the secondary receiver in the presence of a eavesdropper. In this network, the

interference power at the PU from the secondary transmitter must not exceed a peak

interference power threshold. The aim is to address fundamental questions surrounding
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i
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nB

nE

Figure 5.1: A cognitive wiretap radio network.

the joint impact of two power constraints on the cognitive wiretap channel: 1) the maxi-

mum transmit power at the secondary transmitter, and 2) the peak interference power at

PU. To address these constraints, new closed-form expressions for the exact and asymp-

totic secrecy outage probability are derived. These analytical results reveal important

design insights into the impact of the primary network on the secondary network in

cognitive wiretap radio networks.

5.2 System and Channel Models

Consider a cognitive wiretap radio network, where the secondary transmitter Alice (A)

communicates with the secondary receiver Bob (B) under the malicious attempt of the

eavesdropper Eve (E) as shown in Figure 5.1. We assume a cognitive network with

underlay spectrum sharing which allows concurrent transmissions from PU and A in

the same spectrum band. For this network, A transmits data to B, where B and E

are equipped with multiple antennas nB and nE, respectively, whereas A and PU are

equipped with a single antenna.



Chapter 5. Security in Cognitive Radio Networks 79

Both the primary channel and the secondary channel are assumed to undergo inde-

pendent identically distributed (i.i.d.) Rayleigh fading, where the channel gains {h1i}nB
i=1,

{h2j}nE
j=1, and h0 are complex Gaussian random variables (RVs) with zero mean and vari-

ances Ω1, Ω2, and Ω0, respectively. We also assume that the main channel from A to B

and the eavesdropper’s channel from A to E are independent of each other. We consider

antenna selection1 at B and E2. Here, B and E select their strongest receive antennas

based on perfect CSI estimation via pilot signals transmitted by A. Based on this, the

instantaneous signal-to-noise ratio (SNR) in the main and the eavesdropper’s channel

are given by

γM = max
i=1,...,nB

PA

N0
|h1i|2, γE = max

j=1,...,nE

PA

N0
|h2j |2, (5.1)

respectively, where PA is the transmit power at A and N0 is the noise variance.

According to underlay cognitive radio transmission, the transmit power at A must be

managed under a peak interference power threshold to guarantee reliable communication

at PU. With this in mind, A is power-limited such that the maximum transmit power is

Pt. As such, the transmit power at A is strictly constrained by the maximum transmit

power Pt at A and the peak interference power Ip at PU according to

PA = min

(
Ip

|h0|2
,Pt

)
, (5.2)

from which the instantaneous SNR at Bob and Eve in (5.1) are reexpressed as

γM = min

(
γp
X
, γ0

)
YM , γE = min

(
γp
X
, γ0

)
YE , (5.3)

respectively, where γp = Ip/N0, γ0 = Pt/N0, X = |h0|2, YM = max
i=1,...,nB

|h1i|2, and

YE = max
j=1,...,nE

|h2j |2.

1It is well-known that using antenna selection can achieve the full diversity gain with a less number
of RF electronics for each branch compared to maximal ratio combining [68].

2In commercial wireless applications, the eavesdropper may be subject to the same resource con-
straints as the legitimate receiver. Specifically, it may be limited to a single radio frequency (RF) chain
due to size and complexity limitations, as was considered in [149] and [7].
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5.3 Secrecy Outage Probability

We focus on passive eavesdropping, where knowledge of the eavesdropper’s channel is

not known at A. In such a scenario, A has no choice but to encode the confidential data

into codewords of a constant rate Rs [35]. Following the wiretap channel in [28, 35], A

encodes a message blockW k into a codeword Xn, and the eavesdropper receives Y n
w from

the output of its channel. The equivocation rate of Eve is Re = H
(
W k
∣∣Y n

w

)
/n. We

assume slow block fading for the main channel and the eavesdropper’s channel, where

the fading coefficients are constant during a codeword transmission. Taking this into

account, we define the secrecy rate as [35]

Cs =


CM − CE if γM > γE

0 if γM ≤ γE

, (5.4)

where CM = log2 (1 + γM) is the capacity of the main channel and CE = log2 (1 + γE) is

the capacity of the eavesdropper’s channel. The secrecy rate Cs in (5.4) is the maximum

achievable perfect secrecy rate R such that Re = R [28, 35]. In passive eavesdropping,

if Rs ≤ Cs, perfect secrecy is guaranteed. Otherwise, if Rs > Cs, information-theoretic

security is compromised. As such, the secrecy outage probability is the probability that

Cs falls below Rs, which is expressed as

Pout =Pr (Cs < Rs) = Pr (γM ≤ γE) + Pr (γM > γE)︸ ︷︷ ︸
A

Pr (Cs < Rs|γM > γE)︸ ︷︷ ︸
I

. (5.5)

In order to evaluate the term I, we first rewrite Cs in (5.4) as

Cs = log2

(
1 + γM
1 + γE

)
< Rs, (5.6)

which is equivalent to

γM < 2Rs (1 + γE)− 1 = ϵ(γE). (5.7)
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Then I can be written as

I =
1

A

∫ ∞

0

∫ ∞

0

∫ ϵ(γE)

γE

fγM|{X=x} (γM) fγE|{X=x} (γE) fX (x) dγMdγEdx. (5.8)

where fX (x) is the PDF of X, fγA|{X=x} (·) is the PDF of γA conditioned on X, γA ∈

{γM, γE}. By exchanging the variable in the limits of inner integral I, we obtain

I =
I1 − I2

A
, (5.9)

where I1 and I2 are respectively given as

I1 =
∫ ∞

0

∫ ∞

0

∫ ϵ(γE)

0
fγM|{X=x} (γM) fγE|{X=x} (γE) fX (x) dγMdγEdx (5.10)

and

I2 = 1−A. (5.11)

Putting together (5.5), (5.9), (5.10), and (5.11), we get

Pout =

∫ ∞

0

∫ ∞

0
FγM|{X=x} (ϵ(γE)) fγE|{X=x} (γE) fX (x) dγEdx. (5.12)

where FγM|{X=x} (·) is the CDF of γM conditioned on X.

For ease of exposition and mathematical tractability, we denote γ1 = γ0Ω1 =
γpΩ1

σ

and γ2=γ0Ω2 =
γpΩ2

σ with σ =
Ip
Pt
. Here, γ1 represents the maximum possible average

SNR of the channel between A and B, and γ2 represents the maximum possible average

SNR of the channel between A and E.
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Pout =
(
1− e

− σ
Ω0

) nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γ2

(−1)i+je
−

i(2Rs−1)
γ1

(
i2Rs

γ1
+
j + 1

γ2

)−1

+

nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γ2σ

(−1)i+j 1

Ω0

(
i2Rs

γ1σ
+
j + 1

γ2σ

)−1
e
− σ

Ω0
−

i(2Rs−1)
γ1

1
Ω0

+ i(2Rs−1)
γ1σ

,

(5.13)

5.3.1 Exact Secrecy Outage Probability

In this subsection, we present a novel closed-form expression for the exact secrecy outage

probability, as given in the following theorem.

Theorem 1. The exact secrecy outage probability of the proposed cognitive multi-antenna

wiretap channel is given by (5.13),

Proof. See Appendix B.1.

It is worth noting that (5.13) involves only finite summations of exponentials, powers,

and exponential integral functions, thus can be calculated in closed-form. This expression

serves as a prerequisite for other secrecy metrics such as the probability of non-zero

secrecy capacity, calculated as Pr (Cs > 0) = Pr (γM > γE) = 1 − Pout (0). In addition,

considering the special case of a single antenna transmitter and a single antenna receiver,

our secrecy outage probability expression without interference power constraint reduces

to [149, eq. (11)]. Our secrecy outage probability expression without interference power

constraint also reduces to [7, eq. 34] with a single transit antenna in Rayleigh fading.

5.3.2 Asymptotic Secrecy Outage Probability

We derive a new asymptotic expression for the secrecy outage probability at high SNR

operating regions. The main driver is to identify the key players that control network

behavior. The aim is to determine the impact of PU on A in the presence of a multi-
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antenna wiretap channel. In particular, we are interested in the joint impact of the

maximum transmit power Pt at A and the peak interference power Ip at PU on the

secrecy outage probability. Other key network players of interest are the number of

antennas nB at B and the number of antennas nE at E. With this in mind, we address

the interference power constraint of Ip proportional to Pt according to Ip = σPt, where

σ is a positive constant. Based on Appendix A, we first obtain the first order expansion

of FγM|{X} (γ) conditioned on X as

FγM|{X} (γ) =


(

γ
γ1

)nB

, X ≤ γp

γ0(
X
γ1σ

γ
)nB

, X >
γp

γ0

. (5.14)

Substituting (5.14) and fγE|{X=x} (γE) and fX (x) into (5.12), and using the binomial

expansion, the asymptotic secrecy outage probability is calculated as

P∞
out =

(
1− e

− γp
γ0Ω0

) nB∑
i=0

(
nB
i

)(
2Rs − 1

γ1

)nB−i(
2Rs

γ1

)i

nE−1∑
j=0

(
nE − 1

j

)
nE
γ2

(−1)j
∫ ∞

0
(γE)

i e
− (j+1)γE

γ2 dγE

+

nB∑
i=0

(
nB
i

)(
2Rs − 1

γ1σ

)nB−i(
2Rs

γ1σ

)i nE−1∑
j=0

(
nE − 1

j

)
nE
γ2σ

(−1)j
1

Ω0

∫ ∞

γp
γ0

e
− x

Ω0

∫ ∞

0
xnB+1 (γE)

i e
− (j+1)γE

γ2σ
x
dγEdx. (5.15)

Employing [140, eq. (3.351.3)] given by
∫∞
0 xne−µxdx = Γ(n+1)

µn+1 , we can evaluate the

integrals in (5.15) and derive the secrecy outage probability as

P∞
out = (Gaγ1)

−Gd +O
(
γ−Gd
1

)
, (5.16)

where the secrecy diversity order is

Gd = nB (5.17)
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and the secrecy array gain is

Ga =

[(
1− e

− σ
Ω0

) nB∑
i=0

(
nB
i

)(
2Rs − 1

)nB−i
2Rsi

nE−1∑
j=0

(
nE − 1

j

)
nEγ2

i(−1)j
Γ (i+ 1)

(j + 1)i+1
+

nB∑
i=0

(
nB
i

)
(
2Rs − 1

)nB−i
σ−nB2Rsi

nE−1∑
j=0

(
nE − 1

j

)
nE (γ2σ)

i

(−1)j(Ω0)
nB−i Γ (i+ 1)

(j + 1)i+1
Γ

(
nB − i+ 1,

σ

Ω0

)]− 1
nB

, (5.18)

where Γ (·, ·) is the incomplete gamma function [140, eq. (8.350.2)].

5.4 Numerical Results

Numerical examples are provided to highlight the impact of the primary network on the

secondary network in the presence of a multi-antenna wiretap channel. The exact and

asymptotic curves are obtained from (5.13) and (5.16), respectively. The exact curves are

in precise agreement with the Monte Carlo simulations. We also see that the asymptotic

curves well approximate the exact curves at high SNR. The asymptotic curves accurately

predict the secrecy diversity order and the secrecy array gain. Throughout this section,

we assume unity variance Ω0 = 1 and expected secrecy rate Rs = 0.1 bit/s/Hz.

Figure 5.2 plots the secrecy outage probability versus γ1 for different σ and different

nB. According to (5.17), we see that the secrecy diversity order increases with nB, which

in turn decreases the secrecy outage probability. We also see that the secrecy outage

probability decreases with increasing σ. This is due to relaxing the peak interference

power constraint Ip = σPt, which in turn increases transmit power PA, as indicated

by (5.2). This can also be explained by the fact that the secrecy array gain in (5.18)

increases with increasing σ.
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Figure 5.2: Secrecy outage probability with γ2 = 10 dB and nE = 2.
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Figure 5.3: Secrecy outage probability with σ = 0.1 and nB = 4.
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Figure 5.3 plots the secrecy outage probability versus γ1 for different γ2 and different

nE. The parallel slopes of the asymptotes confirm that the secrecy diversity order is

independent of γ2 and nE, as indicated in (5.17). Note the secrecy outage probability

increases with increasing γ2 and nE. This confirms that the secrecy array gain in (5.18)

is a decreasing function of γ2 and nE.

5.5 Conclusions

Physical layer security enhancement in cognitive multi-antenna wiretap channels was

analyzed. In an effort to assess the secrecy performance in passive eavesdropping, the

secrecy outage probability as a useful performance measure was adopted. New closed-

form expressions for the exact and asymptotic secrecy outage probability was derived.

Based on these, important design insights into the interplay between two power con-

straints, namely the maximum transmit power at the secondary network and the peak

interference power at the primary network were concluded. The impact of these con-

straints on the cognitive wiretap channel was showcased.



Chapter 6

Security Enhancement of

Cooperative Single Carrier

Systems

6.1 Introduction

The physical (PHY) layer security issues with secrecy constraints in cyclic prefix (CP)

single-carrier (SC) transmission remain unknown. To harness the aforementioned charac-

teristics of multipath components in practice within the framework of PHY layer security,

secure CP-SC transmission in decode-and-forward (DF) relay networks is considered. A

two-stage relay and destination selection is proposed to minimize the eavesdropping and

maximize the signal power of the link between the relay and the destination. Analytical

results for the secrecy outage probability, the probability of non-zero achievable secrecy

rate, and the ergodic secrecy rate are derived in closed-form. The secrecy diversity gain

and the secrecy array gain are calculated based on simplified expressions for the secrecy

outage probability in the high signal-to-noise ratio (SNR) regime. Likewise, the multi-

plexing gain and the power cost are calculated based on simplified expressions for the
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ergodic secrecy rate in the high SNR regime.

Notation: The superscript (·)H denotes complex conjugate transposition; IN is an

N×N identity matrix; 0 denotes an all-zeros matrix of appropriate dimensions; CN
(
µ, σ2

)
denotes the complex Gaussian distribution with the mean µ and the variance σ2; Cm×n

denotes the vector space of all m × n complex matrices; Fφ(·) denotes the cumulative

distribution function (CDF) of the random variable (RV) φ; and Ea{·} denotes expecta-

tion with respect to a. The probability density function (PDF) of φ is denoted by fφ(·);

[x]+ = max(x, 0) and

i∑
l1,...,la

denotes a set of nonnegative integers {l1, . . . , la} satisfying

a∑
t=1

lt = i.

6.2 System and Channel Model

S

R1

Rk

RK

D1

Dq

DQ

E1
En EN

K relays

Q destinations

N eavesdroppers

k,q

1

k,n

2

Figure 6.1: PHY layer security for cooperative single carrier systems.

In the considered system, which is shown in Figure 6.1, we assume the following set

of instantaneous impulse channel responses.

• A set of channels {gk,q,∀k, q} between a particular kth relay and the qth desti-

nation undergo a frequency selective fading. They are assumed to have the same
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N1 multipath components, i.e., gk,q△=[gk,q1 , . . . , gk,qN1
]T ∈ CN1×1, each of which is

distributed by the complex white Gaussian distribution with the zero mean and

the unit variance. The path losses over these channels are denoted by {αk,q
1 ,∀k, q}.

• A set of channels {hk,1, . . . ,hk,n, . . . ,hk,N} between the kth relay and the N eaves-

droppers undergo a frequency selective fading. They are assumed to have the same

N2 multipath components, i.e., hk,n

△
=[hk,n1 , . . . , hk,nN2

]T ∈ CN2×1, each of which is distributed by the complex white

Gaussian distribution with the zero mean and the unit variance. The path losses

over these channels are denoted by {αk,n
2 ,∀k, n}.

• The maximum channel length in the considered system is assumed to be Ng =

max(N1, N2, N3), where N3 denotes the multipath channel length between the

source and relays.

For single-carrier cooperative transmission, we assume that

• Binary phase shift keying (BPSK) modulation is applied such that P modulated

data symbols transmitted by the source form a transmit symbol block x ∈ CP×1 ∈

{−1, 1}P satisfying Ex{x} = 0 and Ex{xxH} = IP .

• To prevent inter-block symbol interference (IBSI) [120, 129, 131], the CP compris-

ing of Pg symbols is appended to the front of x. It is also assume that Pg ≥ Ng.

• We employ the selective-DF relaying protocol, which selects one relay and destina-

tion among their groups. This selection is accomplished via the proposed two-step

selection scheme.

• We assume perfect decoding at each relay, so that error propagation does not exist

in the considered system 1.

1Practically, the source and the relays are located in the same cluster yielding high received SNRs
at the DF relays to successfully decode the messages.
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The signal received at the nth eavesdropper from the kth relay is given by

rk,n =

√
Psα

k,n
2 Hk,nx+ nk,n

2 (6.1)

where Ps is the transmit power and Hk,n is the right circulant matrix [129, 150] defined

by hk,n. Also, we assume that nk,n
2 ∼ CN (0, σ2nIP ). Since we assume perfect decoding

at all the relays and perfect knowledge of channel state information (CSI)2, channels

between the source and the relays are not taken into account in (6.1) [43, 151].

Applying the properties of the right circulant channel matrix [129, 150], the instan-

taneous SNR between the kth relay and the nth eavesdropper is defined as

γk,n2 =
Psα

k,n
2 ∥hk,n∥2

σ2n
= α̃k,n

2 ∥hk,n∥2 ∼ χ2(2N2, α̃
k,n
2 ) (6.2)

where α̃k,n
2

△
=

Psα
k,n
2

σ2
n

, and the CDF and PDF of γk,n2 are, respectively, given by

F
γk,n
2

(x) = 1− e−x/α̃k,n
2

N2−1∑
l=0

1

l!

(
x

α̃k,n
2

)l

U(x) and

f
γk,n
2

(x) =
1

(α̃k,n
2 )N2(N2 − 1)!

xN2−1e−x/α̃k,n
2 U(x) (6.3)

where U(x) denotes the discrete unit function.

Now the received signal at the qth destination from the kth relay is given by

zk,q =

√
Psα

k,q
1 Gk,qx+ nk,q

1 (6.4)

where Gk,q is the right circulant matrix defined by gk,q. Also, we assume that nk,q
1 ∼

CN (0, σ2nIQ). According to Definition 1, the instantaneous SNR of the link between

the kth relay and the qth destination is given by γk,q1 =
Psα

k,q
1 ∥gk,q∥2
σ2
n

= α̃k,q
1 ∥gk,q∥2 ∼

2This assumption is commonly seen in the prior literature [43, 44]. The CSI of the eavesdropper
channels can be obtained in the scenario where eavesdroppers are active.
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χ2(2N1, α̃
k,q
1 ), so that the CDF of γk,q1 is given by

F
γk,q
1

(x) = 1− e−x/α̃k,q
1

N1−1∑
l=0

1

l!

(
x

α̃k,q
1

)l

U(x). (6.5)

In the sequel, we assume that pathloss components αk,n
2 and αk,q

1 are independent of the

indices of the relay, eavesdropper, and destination, so that we have α2 = {αk,n
2 ,∀k, n}

and α1 = {αk,q
1 ,∀k, q}.

6.3 Relay and Destination Selection under a group of Eaves-

droppers

In this section, we shall first propose the two-stage relay and destination selection pro-

cedure, in which a relay is selected to minimize the worst-case eavesdropping in the

eavesdropper group, to decrease the amount of information that eavesdroppers wiretap.

And then, the desired destination is selected from the chosen relay to have the maxi-

mum instantaneous SNR between them. That is, the relay and destination are chosen

according to the following selection criterion:

stage1 : k∗ = min argk∈[1,K](γ
k,max
2 ) and

stage2 : q∗ = max argq∈[1,Q](γ
k∗,q
1 ) (6.6)

where γk,max
2 denotes the maximum instantaneous SNR among those of between the kth

relay and N eavesdroppers. In addition, γk
∗,q

1 denotes the maximum instantaneous SNR

between the selected relay and the qth destination. When Q = 1, the proposed relay and

destination selection scheme becomes somewhat similar to that of [43] (Note that the

relay selection based on maximal secrecy rate was analyzed in the prior literature such

as [10], which brings large system overhead compared with our proposed scheme.). How-

ever, due to an achievable multiuser diversity, the proposed selection scheme will result
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f
γmin,max
2

(x) =
KN

(α̃2)N2(N2 − 1)!

K−1∑
k=0

Nk∑
m=0

N−1∑
j=0

(
K − 1

k

)(
Nk

m

)(
N − 1

j

)
(−1)k+m+j

m∑
v1,...,vN2

j∑
u1,...,uN2

m!

v1! . . . vN2 !

j!

u1! . . . uN2 !

1∏N2−1
t=0 (t!(α̃2)t)vt+1

1∏N2−1
t=0 (t!(α̃2)t)ut+1

e
−x(m+j+1)

α̃2 xN2+(
∑N2−1

t=0 tvt+1)+(
∑N2−1

t=0 tut+1)−1

= C
∑̃

e−β2xxÑ2−1U(x) (6.8)

where C
△
= KN

(α̃2)N2 (N2−1)!
, β2

△
= (m+j+1)

α̃2
, Ñ2

△
=N2 + (

∑N2−1
t=0 tvt+1) + (

∑N2−1
t=0 tut+1), and

∑̃△
=

K−1∑
k=0

Nk∑
m=0

N−1∑
j=0

(
K − 1

k

)(
Nk

m

)(
N − 1

j

)
(−1)k+m+j

m∑
v1,...,vN2

j∑
u1,...,uN2

m!

v1! . . . vN2 !

j!

u1! . . . uN2 !

1∏N2−1
t=0 (t!(α̃2)t)vt+1

1∏N2−1
t=0 (t!(α̃2)t)ut+1

. (6.9)

in better secrecy outage probabilities, non-zero achievable secrecy rates, and ergodic

secrecy rates. For this selection, we use a training symbol which has the same statistical

properties as x, and assume a quasi-stationary channel during its operation.

Next, the corresponding CDF and PDF for a link from a particular relay to a group

of eavesdroppers will be derived. We start the derivation for the CDF of γk,max
2 , which

is given by

F
γk,max
2

(x) =

[
1− e−x/α̃2

N2−1∑
l=0

1

l!

(
x

α̃2

)l]N
U(x) (6.7)

where we assume that channels between a particular relay and N eavesdroppers are

independent and identically distributed (i.i.d.).

Since {γ1,max
2 , · · · , γK,max

2 } is a set of i.i.d. continuous random variables, the PDF of

γmin,max
2

△
=γk

∗,max
2

△
=min(γ1,max

2 , · · · , γK,max
2 ) can be derived in the following lemma.

Lemma 1. For the i.i.d. frequency selective fading channels between a particular relay

and a group of eavesdroppers, the PDF of γmin,max
2 is given by (6.8).
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Proof. A proof of this lemma is provided in Appendix C.1.

For the i.i.d. frequency selective fading channels between a particular relay and a

group of Q destinations, the CDF of γk
∗,q∗

1
△
=max(γk

∗,1
1 , ..., γk

∗,Q
1 ) is given by

F
γk∗,q∗
1

(x) =

[
1− e−x/α̃1

N1−1∑
l=0

1

l!

(
x

α̃1

)l
]Q

U(x). (6.10)

6.4 Performance Analysis of the Physical Secrecy System

The instantaneous secrecy rate is expressed as [28]

Cs =
1

2
[log2(1 + γk

∗,q∗

1 )− log2(1 + γmin,max
2 )]+ (6.11)

where log2(1 + γk
∗,q∗

1 ) is the instantaneous capacity of the channel between the cho-

sen relay and the selected destination, whereas log2(1 + γmin,max
2 ) is the instantaneous

capacity of the wiretap channel between the selected relay and the eavesdropper group.

Having obtained PDFs and CDFs of SNRs achieved by the two-stage relay and des-

tination selection scheme, the secrecy outage probability, the probability of non-zero

achievable secrecy rate, and the ergodic secrecy rate will be derived. Then, an asymp-

totic analysis of the secrecy outage probability will be developed to see the asymptotic

behavior of the system.

6.4.1 Secrecy Outage Probability

According to [152], the secrecy outage probability for a given secure rate, R, is given by

Pout = Pr(Cs < R) =

∫ ∞

0
F
γk∗,q∗
1

(22R(1 + γ)− 1)f
γmin,max
2

(γ)dγ. (6.12)

A closed-form expression of (6.12) is provided by the following theorem.

Theorem 1. The secrecy outage probability of the single carrier system employing the
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proposed relay selection scheme in frequency selective fading is given by

Pout = C
∑̃ Q∑

q=0

(
Q

q

)
(−1)qe

− q(JR−1)

α̃1

q∑
w1,...,wN1

q!

w1! . . . wN1 !

1∏N1−1
t=0 (t!(α̃1)t)wt+1

L̃1∑
p=0

(
L̃1

p

)
(JR − 1)L̃1−p(JR)

p

(
qJR
α̃1

+ β2

)−(p+Ñ2)

(p+ Ñ2 − 1)! (6.13)

where JR
△
=22R and L̃1

△
=
∑N1−1

t=0 twt+1.

Proof. A detailed derivation is provided in Appendix C.2.

To explicitly see the secrecy diversity gain, we provide an asymptotic expression for

(6.13) in the following theorem.

Theorem 2. The asymptotic secrecy outage probability at a fixed α̃2 is given by

P∞
out

△
= lim

α̃1→∞
Pout = (Gaα̃1)

−QN1 +O

(
(α̃1)

−QN1

)
(6.14)

where the secrecy array gain is given by

Ga =

[
Ĉ

(N1!)Q

∑̂QN1∑
l=0

(
QN1

l

)
(JR − 1)QN1−l(JR)

l(α̃2)
l (l + Ñ2 − 1)!

(β̂)l+Ñ2

]− 1
QN1

(6.15)

with Ĉ
△
= KN

(N2−1)! , β̂
△
=m+ j + 1, and

∑̂
, which is given by

∑̂△
=

K−1∑
k=0

Nk∑
m=0

N−1∑
j=0

(
K − 1

k

)(
Nk

m

)(
N − 1

j

)
(−1)k+m+j

m∑
v1,...,vN2

j∑
u1,...,uN2

m!

v1! . . . vN2 !

j!

u1! . . . uN2 !

1∏N2−1
t=0 (t!)vt+1

1∏N2−1
t=0 (t!)ut+1

. (6.16)

Proof. A detailed proof of this theorem is provided in Appendix C.3.

This theorem shows that the secrecy diversity gain is QN1, which is the product

of the multipath diversity gain and the multiuser diversity gain achievable between the
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Pr(Cs > 0) = 1− Q

(α̃1)N1(N1 − 1)!

K∑
k=0

Nk∑
m=0

Q−1∑
q=0

(
Q− 1

q

)(
K

k

)(
Nk

m

)
(−1)q+k+m

m∑
v1,...,vN2

( m!

v1! . . . vN2 !

) q∑
w1,...,wN1

( q!

w1! . . . wN1 !

) 1∏N2−1
t=0 (t!(α̃2)t)vt+1

1∏N1−1
t=0 (t!(α̃1)t)wt+1

(m
α̃2

+
q + 1

α̃1

)−Ñ1

(Ñ1 − 1)!. (6.18)

selected relay and the Q destinations.

Corollary 1. When α̃1 → ∞, α̃2 → ∞ with α̃1
α̃2

= κ, then the asymptotic secrecy outage

probability is given by

P∞
out =

Ĉ

(N1!)Q

∑̂
(κ)QN1(JR)

QN1
(QN1 + Ñ2 − 1)!

(β̂)QN1+Ñ2
(6.17)

which shows that the secrecy diversity gain is not achievable for this particular case.

6.4.2 The Probability of Non-Zero Achievable Secrecy Rate

In the following, we shall derive the probability of non-zero achievable secrecy rate.

Corollary 2. The probability of non-zero achievable secrecy rate is provided by (6.18).

In (6.18), we have defined Ñ1
△
=N1 + (

∑N1−1
t=0 twt+1) + (

∑N2−1
t=0 tvt+1).

Proof. A proof of this corollary is provided in Appendix C.4.

To investigate the effect of the diversity gain on the convergence behavior of the prob-

ability of non-zero achievable secrecy rate to Pr(Cs > 0) = 1, we derive an asymptotic

probability of non-zero achievable secrecy rate. According to (C.4.3), the probability of

non-zero achievable secrecy rate can be rewritten as

Pr(Cs > 0) = 1−
∫ ∞

0
F
γk∗,q∗
1

(x)f
γmin,max
2

(x)dx. (6.19)
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Substituting (C.3.1) and (6.8) into (6.19), we get the following asymptotic probability

of non-zero achievable secrecy rate

Pr(C∞
s > 0) = 1− C

(N1!)
Q

(
1

α̃1

)N1Q∑̃(N1Q+ Ñ2 − 1)!

(β2)
N1Q+Ñ2

(6.20)

which shows that the multipath diversity gain and the multiuser diversity gain simulta-

neously affect the convergence speed of the non-zero achievable secrecy rate to Pr(Cs >

0) = 1. In the following, we shall derive the ergodic secrecy rate for the proposed system.

6.4.3 Ergodic Secrecy Rate

The ergodic secrecy rate is defined as the instantaneous secrecy rate Cs averaged over

γj
∗,q∗

1 and γmin,max
2 . As such, we formulate the ergodic secrecy rate as

C̄s =

∫ ∞

0

∫ ∞

0
Csfγk∗,q∗

1
(x1) fγmin,max

2
(x2)dx1dx2. (6.21)

Substituting (6.11) into (6.21), and applying some algebraic manipulations, we obtain

C̄s =
1

2 log(2)

∫ ∞

0

F
γmin,max
2

(x2)

1 + x2

(
1− F

γk∗,q∗
1

(x2)
)
dx2. (6.22)

Based on the PDF of γmin,max
2 given in (6.8), the CDF of γmin,max

2 is given by

F
γmin,max
2

(x) =

∫ x

0
f
γmin,max
2

(t) dt

= C
∑̃[

(Ñ2 − 1)!

(β2)Ñ2
− e−β2x

Ñ2−1∑
n1=0

(Ñ2 − 1)!

n1!

xn1

(β2)Ñ2−n1

]
. (6.23)
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C̄s = − C

2 log(2)

∑̃ Q∑
q=1

(
Q

q

)
(−1)q

q∑
w1,...,wN1

q!

w1! . . . wN1 !

1∏N1−1
t=0

(
t!(α̃1)

t)wt+1

(Γ(Ñ2)Γ(L̃1 + 1)

(β2)Ñ2
Ψ(L̃1 + 1, L̃1 + 1; q/α̃1)−

Ñ2−1∑
n1=0

Γ(Ñ2)Γ(L̃1 + n1 + 1)

n1!(β2)Ñ2−n1

Ψ(L̃1 + n1 + 1, L̃1 + n1 + 1;β2 + q/α̃1)
)
. (6.25)

In addition, by employing binomial and multinomial formulas, the CDF of γk
∗,q∗

1 in (6.10)

can be re-expressed as

F
γk∗,q∗
1

(x) = 1 +

Q∑
q=1

(
Q

q

)
(−1)qe−qx/α̃1

q∑
w1,...,wN1

q!

w1! . . . wN1 !

xL̃1∏N1−1
t=0

(
t!(α̃1)

t)wt+1
. (6.24)

Substituting (6.23) and (6.24) into (6.22), and using the confluent hypergeometric func-

tion [140, eq. (9.211.4)] given by Ψ (α, γ; z) = 1
Γ(α)

∫∞
0 e−zttα−1(1 + t)γ−α−1dt, we obtain

the ergodic secrecy rate expressed in (6.25).

In order to gather further insight, we present the asymptotic ergodic secrecy rate.

We first consider the case of α̃1 → ∞ and a fixed α̃2, and provide the following corollary.

Corollary 3. The asymptotic ergodic secrecy rate at α̃1 → ∞ and a fixed α̃2 is given by

(6.26). In (6.26), ψ (·) is the digamma function [153].

Proof. A proof of this corollary is provided in Appendix C.5.

With the help of (6.26), we confirm that the multiplexing gain [154] is 1/2 in

bits/sec/Hz/(3 dB), which is given by

S∞ = lim
α̃1→∞

C̄∞
1

log2 (α̃1)
=

1

2
. (6.27)

It is indicated from (6.27) that under these circumstances, secure communication achieves
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C̄∞
1 =

1

2
log2(α̃1) +

1

2 log(2)

[ Q

(N1 − 1)!

Q−1∑
q=0

(
Q− 1

q

)
(−1)q

q∑
w1,...,wN1

(
q!

w1! . . . wN1 !
)

1∏N1−1
t=0 (t!)wt+1

Γ(N1 + L̃1)

(q + 1)N1+L̃1
[ψ(N1 + L̃1)− log(q + 1)] +

K∑
k=1

Nk∑
m=1

(
K

k

)(
Nk

m

)
(−1)k+m+1

m∑
v1,...,vN2

(
m!

v1! . . . vN2 !
)

Γ(
N2−1∑
t=0

tvt+1 + 1)∏N2−1
t=0 (t!(α̃2)

t)
vt+1

Ψ(

N2−1∑
t=0

tvt+1 + 1,

N2−1∑
t=0

tvt+1 + 1;m/α̃2)
]
.

(6.26)

the same spectral efficiency as communication without eavesdropping. Moreover, using

(6.26), we can easily calculate the additional power cost for different network parameters

while maintaining a specified target ergodic secrecy rate. For example, we consider

different numbers of relays K1 and K2 with K1 > K2. Compared to the K1 case, the

additional power cost in achieving the specified target ergodic secrecy rate in the K2

scenario is calculated as

∆P (dB) =
10

log 10
[η(K1)− η(K2)] (6.28)

where

η(K) =

K∑
k=1

Nk∑
m=1

(
K

k

)(
Nk

m

)
(−1)k+m+1

m∑
v1,...,vN2

(
m!

v1! . . . vN2 !
)

Γ(
N2−1∑
t=0

tvt+1 + 1)∏N2−1
t=0 (t!(α̃2)

t)
vt+1

Ψ(

N2−1∑
t=0

tvt+1 + 1,

N2−1∑
t=0

tvt+1 + 1;m/α̃2).

Similarly, the additional power cost in achieving the specified target ergodic secrecy rate

under different numbers of destinations or eavesdroppers can be accordingly obtained.

We next consider the case of α̃1 → ∞ and α̃2 → ∞ with α̃1
α̃2

= κ, and provide the

following corollary.

Corollary 4. The asymptotic ergodic secrecy rate at α̃1 → ∞ and α̃2 → ∞ with α̃1
α̃2

= κ
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C̄∞
2 =

1

2
log2(κ) +

1

2 log (2)

[ Q

(N1 − 1)!

Q−1∑
q=0

(
Q− 1

q

)
(−1)q

q∑
w1,...,wN1

(
q!

w1! . . . wN1 !
)

1∏N1−1
t=0 (t!)wt+1

Γ(N1 + L̃1)

(q + 1)N1+L̃1
[ψ(N1 + L̃1)− log(q + 1)]− Ĉ

∑̂Γ(Ñ2)

(β̂)Ñ2
[ψ(Ñ2)− log(β̂)]

]
. (6.29)

is given by (6.29).

Proof. A proof of this corollary is provided in Appendix C.6.

It is indicated from (6.29) that a capacity ceiling exists in this case.

6.4.4 The Effects of Multiple Antennas at the Eavesdroppers

We shall investigate the effect of multiple antennas at the eavesdroppers. Using MRC

at each eavesdropper, the received signal expressed in (1) becomes

rk,n =

√
Psα

k,n
2

M∑
r=1

(H̃k,n
r )HHk,n

r x+

M∑
r=1

(H̃k,n
r )Hnk,n

1 (6.30)

where Hk,n
r is the right circulant matrix formed for a link from the kth relay to the rth

receive antenna branch at the nth eavesdropper. In the formulation of (6.30), we assume

M antennas at the each eavesdropper, and αk,n
2 is independent of the antenna branches.

In addition, H̃k,n
r is the receive matrix for the rth receive antenna branch at the nth

eavesdropper. The maximum instantaneous post-processing SNR due to MRC, which is

imposes H̃k,n
r = Hk,n

r , becomes [135]

γk,n,eMRC
2 =

Psα
k,n
2

∑M
r=1 ∥h

k,n
r ∥2

σ2n
. (6.31)
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P eMRC
out = CeMRC

∑̃eMRC Q∑
q=0

(
Q

q

)
(−1)qe

− q(JR−1)

α̃1

q∑
w1,...,wN1

q!

w1! . . . wN1 !

1∏N1−1
t=0 (t!(α̃1)t)wt+1

L̃1∑
p=0

(
L̃1

p

)
(JR − 1)L̃1−p(JR)

p
(qJR
α̃1

+ β2
)−(p+ÑeMRC

2 )
(p+ Ñ eMRC

2 − 1)!,

P r(CeMRC
s > 0) = 1− Q

(α̃1)N1(N1 − 1)!

K∑
k=0

Nk∑
m=0

Q−1∑
q=0

(
Q− 1

q

)(
K

k

)(
Nk

m

)
(−1)q+k+m

m∑
v1,...,vMN2

( m!

v1! . . . vMN2 !

) q∑
w1,...,wN1

( q!

w1! . . . wN1 !

) 1∏MN2−1
t=0 (t!(α̃2)t)vt+1

1∏N1−1
t=0 (t!(α̃1)t)wt+1

(m
α̃2

+
q + 1

α̃1

)−Ñ1(Ñ1 − 1)!, and

C̄eMRC
s = − 1

2 log(2)
CeMRC

∑̃eMRC Q∑
q=1

(
Q

q

)
(−1)q

q∑
w1,...,wN1

q!

w1! . . . wN1 !

1∏N1−1
t=0

(
t!(α̃1)

t)wt+1

[Γ(Ñ eMRC
2 )Γ(L̃1 + 1)

(β2)
ÑeMRC

2

Ψ(L̃1 + 1, L̃1 + 1; q/α̃1)−
ÑeMRC

2 −1∑
n1=0

Γ(Ñ eMRC
2 )Γ(L̃1 + n1 + 1)

n1!(β2)
ÑeMRC

2 −n1

Ψ(L̃1 + n1 + 1, L̃1 + n1 + 1;β2 + q/α̃1)
]
. (6.33)

Comparing to the expression in (6.2), we can easily see that

γk,n,eMRC
2 = α̃k,n

2

M∑
r=1

∥hk,n
r ∥2 ∼ χ2(2N2M, α̃k,n

2 ). (6.32)

Using the statistical properties of γk,n,eMRC
2 , the performance metrics, such as the secrecy

outage probability, the probability of non-zero achievable secrecy rate, and the ergodic

secrecy rate can be derived. Their corresponding expressions are given by (6.33) at the

bottom of the previous page. In (6.33), we have defined CeMRC△
=C

∣∣∣∣
N2→MN2

,

∑̃eMRC△
=
∑̃∣∣∣∣∣

N2→MN2

, and Ñ eMRC
2

△
=MN2 + (

∑MN2−1
t=0 tvt+1) + (

∑MN2−1
t=0 tut+1).

Corollary 5. The multiple antennas employed in the form of MRC at each eavesdropper

do not influence the secrecy diversity gain. They can only change the secrecy array gain.
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Proof. According to Theorem 2, the asymptotic secrecy outage probability at a fixed α̃2

is given by

P∞,eMRC
out = (GeMRC

a α̃1)
−QN1 +O((α̃1)

−QN1) (6.34)

where

GeMRC
a =

[
ĈeMRC

(N1!)Q

∑̂eMRC QN1∑
l=0

(
QN1

l

)
(JR − 1)QN1−l

(JR)
l(α̃2)

l (l + Ñ eMRC
2 − 1)!

(β̂)l+ÑeMRC
2

]− 1
QN1

(6.35)

with ĈeMRC△
=Ĉ

∣∣∣∣
N2→MN2

and
∑̂eMRC△

=
∑̂∣∣∣∣∣

N2→MN2

, where Ĉ and
∑̂

are specified in

(6.16). From (6.34), we can readily see that MRC at the each eavesdropper does not

affect the secrecy diversity gain.

Corollary 6. The multiple antennas employed in the form of MRC at the eavesdroppers

do not influence the multiplexing gain. They can only change the additional power cost

for a specified target ergodic secrecy rate.

Proof. According to Corollary 3, the asymptotic ergodic secrecy rate at a fixed α̃2 is

given by only interchanging the parameter N2 → MN2. From (6.27), we see that the

multiplexing gain is still 1/2, and MRC at the eavesdroppers impacts the additional

power cost as shown in (6.28).

6.5 Simulation Results

For the simulations, we use BPSK modulation. The transmission block size is formed by

64 BPSK symbols. The CP length is given by 16 BPSK symbols. Every channel vectors

are generated by hk,n ∼ CN(0, IN2),∀k, n and gk,q ∼ CN(0, IN1),∀k, q. The curves

obtained via actual link simulations are denoted by Ex, whereas analytically derived
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curves are denoted by An. Asymptotically obtained curves are denoted by As in the

following figures.

6.5.1 Secrecy Outage Probability

Figures 6.2-6.4 show the secrecy outage probability for various scenarios. Figure 6.2

shows the secrecy outage probability for various values of N1 at fixed values of (K =

4, N = 2, N2 = 3, Q = 1,M = 1, R = 1) and α̃2 = 5 dB. As Theorem 2 proves, a

lower secrecy outage probability is achieved by a bigger value of N1. In this particular

scenario, the secrecy diversity gain becomes N1. We can see exact matches between the

analytically derived curves and the simulation obtained curves for the outage probability.

Figure 6.3 shows the secrecy outage probability for various values of Q and M at

fixed value of (K = 4, N = 2, N1 = 3, N2 = 2, R = 1) and α̃2 = 5 dB. We can observe the
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An : N1 = 2
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Figure 6.2: Secrecy outage probability for various values of N1 at fixed values
of (N2 = 3, R = 1) and α̃2 = 5 dB.
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An : Q = 1, M = 1
An : Q = 2, M = 1
An : Q = 3, M = 1
An : Q = 1, M = 2
An : Q = 2, M = 2
An : Q = 3, M = 2

Figure 6.3: Secrecy outage probability for various values of Q and M at fixed
values of (N1 = 3, N2 = 2, R = 1) and α̃2 = 5 dB.

effect of the multiuser diversity gain on the secrecy outage probability. As Q increases,

a lower secrecy outage probability is obtained due to the multiuser diversity. We can

also observe the effect of multiple antennas at the eavesdroppers. For the same channel

length and the number of destinations, for example, (N1 = 3, N2 = 2, Q = 1,M = 1)

has a 3 dB gain over (N1 = 3, N2 = 2, Q = 1,M = 2) at 1 × 10−3 outage probability.

Similar behavior can be observed as M becomes larger. Moreover, it can be seen that

N , the number of eavesdroppers, does not change the secrecy diversity gain.

Figure 6.4 verifies the derived asymptotic secrecy outage probability at a fixed α̃2.

As α̃1 increases, the asymptotic curves approaches the simulation obtained curves for

various values of N1, Q, andM . From these curves, we can see that the secrecy diversity

gain is N1Q, which is determined by the multipath diversity gain, N1, and the multiuser

diversity gain, Q. It is irrespective of M . A similar overall diversity gain is obtained in

[129], which does not consider eavesdroppers.
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Figure 6.4: Asymptotic secrecy outage probability for various values of N1, Q,
and M at fixed values of (N2 = 3, R = 1) and α̃2 = 5 dB.

6.5.2 The Probability of Non-Zero Achievable Secrecy Rate

Figure 6.5 illustrates the probability of non-zero achievable secrecy rate for various values

of N1, M , and Q. At fixed (K = 4, N = 2) and α̃2 = 5 dB, this figure shows that (N1 =

2,M = 2, Q = 1) has the slowest convergence speed arriving at Pr(Cmin > 0) = 0.999

due to the smallest achievable diversity gain and the value ofM . Although (N1 = 2,M =

2, Q = 1) has the same diversity gain as (N1 = 2,M = 1, Q = 1), its convergence speed

is slowest due to greater eavesdropping capability of eavesdroppers. If we compare two

particular scenarios, such as (N1 = 2,M = 2, Q = 1) and (N1 = 3,M = 2, Q = 1), then

the multipath diversity is seen to be one of the key factor in determining the convergence

speed, whereas by comparing (N1 = 2,M = 2, Q = 1) with (N1 = 2,M = 2, Q = 2), we

can see that the multiuser diversity is another key factor in determining the convergence

speed of the non-zero achievable secrecy rate.
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Figure 6.5: The Probability of non-zero achievable secrecy rate for various
values of N1, M , and Q at fixed values of N2 = 2 and α̃2 = 5 dB.

6.5.3 The Ergodic Secrecy Rate
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Figure 6.6: Ergodic secrecy rate for various values of (K,N1, N2,M,Q).
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In Figure 6.6, we first compare the derived ergodic secrecy rate with the simulation

obtained ergodic secrecy rate for the case of (N1 = 3, N2 = 2,M = 1, Q = 4). We assume

a fixed number of eavesdroppers (N = 3) and a single relay (K = 1). Perfect matchings

between them can be observed. From this figure, we can compare several scenarios to

investigate the effects from the system configurations and channels.

• The effect of eavesdropping: More eavesdropping reduces the ergodic secrecy rate.

For example, (N1 = 3, N2 = 2,M = 2, Q = 4) vs. (N1 = 3, N2 = 2,M = 1, Q = 4).

• The effect of multipath diversity which is achievable between the relay and the

destination: Higher multipath diversity gain results in a higher ergodic secrecy rate.

For example, (N1 = 3, N2 = 2,M = 2, Q = 2) vs. (N1 = 2, N2 = 2,M = 2, Q = 2).

• The effect of number of destinations: With more destinations, a higher ergodic

secrecy rate can be obtained due to a larger multiuser diversity gain. For example,

(N1 = 2, N2 = 2,M = 2, Q = 4) vs. (N1 = 2, N2 = 2,M = 2, Q = 2).

• The effect of fixed α̃2: As Corollary 4 verified, capacity ceilings are intrinsic for

this case.

In Figure 6.7, we show the asymptotic ergodic secrecy rate for various values of

(K,N1, N2,M,Q) at a fixed number of eavesdroppers N = 3 and α̃2. This plot shows

the corresponding asymptotic ergodic secrecy rate obtained from Corollary 3. As α̃1

increases, the differences between the analytical ergodic secrecy rates and the asymptotic

ergodic secrecy rates are negligible. We can also easily see that the multipath diversity

and the multiuser diversity are two key factors in determining the ergodic secrecy rates.

According to (6.28), a total of five relays can reduce 0.8 dB power than a single relay in

achieving 2.0 secrecy rate.

Figure 6.8 shows the multiplexing gain S∞ as a function of (K,N1, Q), which are the

key system and channel parameters in determining the diversity gain. As α̃1 increases,

the multiplexing gain S∞ approaches 1/2. Since a larger diversity has a more influence
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Figure 6.7: Ergodic secrecy rate for various values of N1 and Q at fixed values
of (K = 4, N = 2) and α̃2 = 1 dB.
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from the second term in the right hand side of (6.26), the convergence speed to 1/2

becomes slower as the diversity gain increases.

6.6 Conclusions

In this chapter, cooperative single carrier systems with multiple relays and destinations

was investigated. A coexisting group of eavesdroppers have been assumed to eavesdrop

the relays. For this challenging environment, we have proposed a two-stage relay and des-

tination selection scheme: 1) relay is selected to minimize the worst-case eavesdropping,

and 2) the desired destination is selected to achieve the multiuser diversity gain. We have

derived the secrecy outage probability, the non-zero secrecy rate, and the ergodic secrecy

rate. From the derivations and the link simulations, the diversity gain has been shown to

be determined by the multipath diversity gain and the multiuser diversity gain. Having

derived the asymptotic ergodic secrecy rate, the multiplexing gain has been shown to be

equal to the number of hops.



Chapter 7

Secure Transmission with

Optimal Power Allocation in

Untrusted Relay Networks

7.1 Introduction

Security in untrusted relay networks has been paid considerable attention in the recent

literature. For example, cooperative jamming (CJ) was proposed to achieve positive

secrecy rate in [101, 105]. Secrecy outage performance for different relaying schemes was

examined in [155]. The impact of relay antenna selection on secrecy outage probability

was analyzed in [53]. The lower bound of the ergodic secrecy capacity (ESC) without

optimal power allocation (OPA) was derived in [51], where single-relay and multiple-relay

cases were considered.

Different from the aforementioned works, CJ with OPA is employed for securing

the transmission in two-hop amplify-and-forward (AF) untrusted relay networks in this

chapter. The asymptotic analysis for large number of antennas is also presented.
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7.2 Mathematical Model

The implementation of CJ is considered in a half-duplex two-hop relay network consisting

of a source (Alice) and a destination (Bob) communicating via an untrusted AF relay.

During the first phase, while Alice transmits the information signal1, Bob transmits

the jamming signal, and the direct link between Alice and Bob is assumed to be non-

existent2. During the second phase, the relay forwards the signals to Bob. The purpose

is to quantify the impact of OPA in securing the transmission for two practical networks:

1) Alice is equipped with Na antennas, whereas both the relay and Bob are equipped with

a single antenna (Na−1−1), and 2) Bob is equipped with Nb antennas, whereas both the

relay and Alice are equipped with a single antenna (1−1−Nb). For the Na−1−1 network,

Alice uses the maximum-ratio transmission (MRT) beamformer to transmit the signal.

For the 1−1−Nb network, Bob uses the MRT beamformer to transmit the jamming signal

and maximum-ratio combining (MRC) to maximize the received SNR. This transceiver

design at Bob can be easily achieved, particularly in reciprocal channels [51, 53]. We

note that the MRT beamformer has low implementation complexity compared to other

more complex beamforming designs [50]. Let ha,r∼CN 1×Na (01×Na ,Ωa,rINa) denote the

complex Gaussian channel vector from Alice to relay and hr,b∼CN 1×Nb
(01×Nb

,Ωr,bINb
)

denote the channel vector from relay to Bob. We assume a reciprocal channel between

the relay and Bob [51, 53].

The instantaneous received signal-to-interference-plus-noise ratio (SINR) at the relay

is given by

γR =
αγa,r

(1− α) γr,b + λ
(7.1)

1Note that Alice knows the channel knowledge of the two hops, in order to determine the length of
codeword.

2In fact, since the destination operates in half-duplex mode, it cannot receive the transmitted signal
from the source while transmitting the jamming signal.
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and the instantaneous end-to-end SNR at Bob is given by

γB =
αγa,rγr,b

αγa,r + (2− α) γr,b + λ
, (7.2)

where α is the power allocation factor, α ∈ (0, 1]. Alice transmits the signal with

power αP and Bob transmits the jamming signal with power (1− α)P , where P is the

total power budget in this network for each transmission. Also γa,r = ∥ha,r∥2γ0 and

γr,b = ∥hr,b∥2γ0, where γ0 = P
N0

is the transmit SNR of this network. In (7.1) and (7.2),

we note that λ = 1 accounts for the noise variance at the relay and λ = 0 does not

account for the noise variance at the relay.

7.3 Optimal Power Allocation

The instantaneous secrecy rate is expressed as

Cs =
1

2
[log2 (1 + γB)− log2 (1 + γR)]

+, (7.3)

where [x]+=max {0, x}.

In order to facilitate analysis and gather deep insights behind this system, we consider

λ = 0, as mentioned in [156]. Note that the λ = 0 case asymptotically approaches the

λ = 1 case at high SNRs. The λ = 0 case also takes into account the maximum

probability of eavesdropping at the relay, since the received SINR at the relay given in

(7.1) becomes the signal-to-interference ratio (SIR)3. As such, let
γa,r
γr,b

= µ, we rewrite

(7.1) and (7.2) as

γr =
αµ

(1− α)
and γb =

αµγr,b
αµ+ 2− α

. (7.4)

Our aim is to maximize the secrecy rate. Hence, we focus on optimal power allocation

3In a practical scenario, the noise power at the untrusted relay may not be available or accurately
estimated, in this case the noise power at the relay is ignored.
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(OPA). Based on (7.3) and (7.4), the OPA factor is calculated as

α∗=argmax
α

{ω (α)} , (7.5)

where ω (α) = 1+γb
1+γr

. Noting that ∂2ω(α)
∂α2 < 0, we take the derivative of ω (α) w.r.t. α

and set it to zero to obtain the OPA factor as

α∗ =


0.5− 1

γr,b
, µ = 1

2−2µ−2γr,b+
√

2γr,b
√
∆

(µ−1)2+(µ−2)γr,b+µ2γr,b
, µ ̸= 1,

(7.6)

where ∆ = 1−µ2+µγr,b+µ2γr,b. For large γr,b4, based on (7.6), when µ = 1, α∗ ≈ 1/2,

and when µ ̸= 1, α∗ can be approximated as

α∗ =

2−2µ
γr,b

− 2 +
√
2
√

1−µ2

γr,b
+ µ+ µ2

(µ− 1)2/γr,b + (µ− 2) + µ2

≈−2 +
√
2
√
µ+ µ2

(µ− 2) + µ2
=
−1+

√
(µ+µ2) /2

(µ+µ2) /2− 1

=
1√

(µ+µ2) /2 + 1
. (7.7)

Since µ = 1 case also satisfies α∗ = 1√
(µ+µ2)/2+1

= 1
2 , for arbitrary µ, α

∗ is approximated

as

α∗=
1√

(µ+ µ2) /2 + 1
. (7.8)

In an effort to assess the secrecy performance, we proceed to derive the ESC with OPA

and present fundamental design insights as the number of antennas grows large.

4From (7.4), we note that increasing γr,b increases the end-to-end SNR at Bob and decreases the
received SINR at the untrusted relay. Therefore, a larger γr,b will improve the secrecy performance. We
also note that γr,b = ∥hr,b∥2γ0, as such γr,b increases with either the transmit power or the number of
antennas at Bob.
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C̄s =
1

2 ln 2

∫ ∞

0

∫ ∞

0

[
ln

(
1 +

α∗µx2
α∗µ+ 2− α∗

)
− ln

(
1 +

α∗µ

(1− α∗)

)]
× x2fγa,r (µx2) fγr,b (x2) dµdx2. (7.11)

7.4 Ergodic Secrecy Capacity

The ESC describes the maximum of the average achievable secrecy rate, which is formu-

lated as [35]

C̄s = E {Cs} =

∫ ∞

0

∫ ∞

0
Csfγa,r (x1) fγr,b (x2)dx1dx2, (7.9)

where E {x} is the expectation of x, fγa,r (x1) is the probability density function (PDF)

of γa,r, and fγr,b (x2) is the PDF of γr,b. Using the integration by substitution [140, eq.

(4.601.1)], the ESC in (7.9) is re-expressed as

C̄s =

∫ ∞

0

∫ ∞

0
Csx2fγa,r (µx2) fγr,b (x2)dµdx2. (7.10)

Substituting (7.3) and (7.4) into (7.10), we obtain the ESC with OPA given in (7.11).

Note that (7.11) is the asymptotic ESC expression at high SNRs when the noise variance

at the relay is used (λ = 1). From (7.6) and (7.11), we find that it is intractable to

further simplify the ESC expression in (7.11). To gain more insights, we derive new

compact expressions for the ESC at high SNRs. We also quantify the impact of large

scale antennas on the ESC for the Na−1−1 and 1−1−Nb networks.

7.4.1 Na−1−1

In this network, Alice is equipped with Na antennas and uses the MRT beamformer to

transmit the signal.
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7.4.1.1 High SNR Analysis

We obtain a simple yet accurate expression for the asymptotic ESC as

C̄asy
s =

1

2 ln 2

[
ln γ̄a,r + ψ (Na)−Na

γ̄a,r
γ̄r,b

∫ ∞

0
φ (µ)µNa−1

(
µ+

γ̄a,r
γ̄r,b

)−(Na+1)

dµ

]
, (7.12)

where γ̄a,r = Ωa,rγ0, γ̄r,b = Ωr,bγ0, ψ (Na) = −C +
Na−1∑
n=1

1
n with Euler’s constant C [140,

eq. (8.365)], and φ (µ) = ln
(
1 + 3µ+ 2

√
2 (µ+ µ2)

)
. A detailed derivation of (7.12)

is provided in Appendix D.1. From (7.12), we find that ESC is an increasing function

of the transmit SNR γ0. Moreover, using (7.12), we can easily calculate and compare

the transmit power costs for different network parameters, while maintaining a specified

target ESC.

7.4.1.2 Large Na Analysis

By substituting (7.8) into (7.4), we obtain

γr =
1√

(µ−1 + 1) /2
, γb =

γr,b

1 +
√

2 (1 + 1/µ) + 1/µ
. (7.13)

For large Na, µ =
γa,r
γr,b

=
∥ha,r∥2

∥hr,b∥2 ≫ 1, and hence 1/µ ≈ 0. Therefore, (7.13) reduces to

γr =
√
2 and γb =

γr,b

1 +
√
2
. (7.14)

Based on (7.14), we have

C̄s =
1

2
E

{
log2

(
1 +

γr,b

1 +
√
2

)
− log2

(
1 +

√
2
)}

=
1

2 ln 2

∫ ∞

0

1− Fγr,b (x)

1 +
√
2 + x

dx− 1

2
log2

(
1 +

√
2
)

= − eϑ

2 ln 2
Ei (−ϑ)− 1

2
log2

(
1 +

√
2
)
, (7.15)
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where Fγr,b (x) = 1− e−x/γ̄r,b is the cumulative distribution function (CDF) of γr,b, ϑ =(
1 +

√
2
)
/γ̄r,b =

(
1 +

√
2
)
/ (Ωr,bγ0), and Ei (x) is the exponential integral function [140,

eq. (8.211.1)]. As indicated by (7.15), the ESC is entirely determined by the average

channel gain of the second hop and the transmit SNR of the network. We also find that

increasing the number of antennas at Alice has no impact on the ESC when Na is large.

7.4.2 1− 1−Nb

In this network, Bob is equipped with Nb antennas and uses the MRT beamformer to

transmit the jamming signal to confound the untrusted relay. Upon receiving the signal

from the relay, Bob first cancels the jamming signal, then uses MRC to maximize the

received SNR.

7.4.2.1 High SNR Analysis

We derive a compact expression for the asymptotic ESC as

C̄asy
s =

1

2 ln 2

[
(ln γ̄a,r − C)−

γ̄r,bNb

γ̄a,r

∫ ∞

0
φ (µ)

(
µγ̄r,b
γ̄a,r

+ 1

)−(Nb+1)

dµ

]
. (7.16)

7.4.2.2 Large Nb Analysis

Recall that µ =
∥ha,r∥2

∥hr,b∥2 . For large Nb, µ≪ 1. Based on (7.13) and (??), we obtain

γr =

√
2µ√

1 + µ
≈
√

2µ and (7.17)

γb =
µγr,b

µ+
√

2 (µ2 + µ) + 1
≈ µγr,b = γa,r. (7.18)
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As such, we have

C̄s =
1

2
E
{
log2 (1 + γa,r)− log2

(
1 +

√
2µ
)}

=
1

2 ln 2

∫ ∞

0
ln (1 + x) fγa,r (x) dx− 1

2 ln 2
×∫ ∞

0

∫ ∞

0
x2 ln

(
1 +

√
2µ
)
fγa,r (µx2) fγr,b (x2)dµdx2

=− e1/γ̄a,r

2 ln 2
Ei (−1/γ̄a,r)−

1

2 ln 2

∫ ∞

0

(
γ̄r,bt

2

2γ̄a,r
+ 1

)−Nb

(1 + t)−1dt. (7.19)

From (7.19), we see that the ESC increases with increasing number of antennas at Bob.

For very large antennas, i.e., Nb → ∞, γr ≈ 0, (7.19) reduces to

C̄s = −e
1/γ̄a,r

2 ln 2
Ei (−1/γ̄a,r) . (7.20)

It is indicated by (7.20) that ESC only depends on the average channel gain of the first

hop and the transmit SNR of the network when Nb is very large.

7.5 Numerical Results

In this section, we present numerical examples for the ESC with OPA to illustrate the

Na−1−1 and 1−1−Nb networks. We assume that Ωa,r = Ωr,b = 1. In our examples,

‘o’ are Monte Carlo simulations with OPA factor given by (7.6) and ‘+’ are Monte

Carlo simulations with approximate OPA factor given by (7.8). The solid and dash

lines represent the large system analysis and high SNR approximation, respectively. For

comparison, we set α = 0.5 for equal power allocation (EPA).

Figure 7.1 shows ESC versus γ0 for Na−1−1. Compared with EPA, OPA can achieve

perfect secrecy with some positive secrecy rate, even at low SNRs. The simplified OPA

factor in (7.8) can well match those obtained from the exact calculation in (7.6). The

asymptotic curves obtained from (7.12) well approximate the Monte Carlo simulations

in the high SNR regime. Moreover, our large system analysis in (7.15) well assess the
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Figure 7.1: Ergodic secrecy capacity versus γ0 for Na − 1− 1.

secrecy performance limit with large antennas. It is interesting to note that under OPA,

increasing antennas improve the ESC, this however is not the case for EPA. Under EPA,

ESC decreases with increasing antennas. This is due to the fact that increasing Na helps

the untrusted relay to increase the probability of successful eavesdropping. In such a

scenario, more power should be allocated to the jamming signal.

Figure 7.2 shows ESC versus γ0 for 1 − 1 − Nb. The simplified OPA factor in (7.8)

well approximates the exact OPA factor in (7.6). The asymptotic curves obtained from

(7.16) are in precise agreement with Monte Carlo simulations in the high SNR regime.

The theoretical result in (7.19) tightly predicts the ESC with large Nb. As expected

from (7.19), the ESC increases with Nb. We also see that the ESC with EPA increases

with increasing antennas. The reason is that strengthening the jamming signal reduces

the eavesdropping.



Chapter 7. Secure Transmission with Optimal Power Allocation in Untrusted Relay
Networks 118

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

 

 

b
N , from  (20)

b
N = , from  (17)64

b
N = , from  (17)8

b
N = , from  (17)1

64, EPA
b
N =

8, EPA
b
N =

1, EPA
b
N =

E
rg

o
d

ic
 S

ec
re

cy
 C

ap
ac

it
y

 (
b

it
s/

s/
H

z)

0γ (dB)

= 64

Figure 7.2: Ergodic secrecy capacity versus γ0 for 1− 1−Nb.

7.6 Conclusions

Cooperative jamming with optimal power allocation was examined in the two-hop untrusted

relay network. The ergodic secrecy capacity was derived. Some interesting conclusions

are drawn from our large system analysis as Na → ∞ and Nb → ∞. For large Na, it

is shown that the ergodic secrecy capacity only depends on the average channel gain of

the second hop and the transmit SNR. For very large Nb, the ergodic secrecy capacity

only depends on the average channel gain of the first hop and the transmit SNR.



Chapter 8

A Stochastic Geometry Approach

for Physical Layer Security in

Three-Tier Wireless Sensor

Networks

8.1 Introduction

The potential of using physical layer security in three-tier wireless sensor networks

(WSNs) is investigated in this chapter. In three-tier WSNs, the sensors are located

far from the sinks, and the relays are deployed to help the sensors forward their data to

the sinks. Confidential information transmissions are intercepted by the eavesdroppers.

Considering the fact that sensors are densely deployed and their locations are randomly

distributed [70], stochastic geometry is implemented to model the locations of the nodes

in WSNs. Such a modeling approach has been applied in heterogeneous networks [85]

and cognitive radio networks [88].
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Sensing �eld Relays Sinks

Eavesdropper

Sensor
 Relay Sink

Figure 8.1: The illustration of three-tier wireless sensor networks, where the
sensors transmit the sensed data to the sinks via the relays, in the
presence of eavesdropping.

8.2 System Description

As shown in Figure 8.1, a three-tier wireless sensor networks is considered, where the

geographically remote sensors transmit the sensed data to the sinks with the help of

half-duplex decode-and-forward (DF) relays with no direct links between sensors and

sinks. The eavesdroppers overhears the data transmission without modifying it. In

the sensing field, sensors are randomly located according to a homogeneous Poisson

point process (HPPP) Φs,a with intensity λs. The relays and sinks are randomly located

according to independent HPPPs Φap,a and Φsk with intensities λap and λsk, respectively.

Since the sensors may transmit data intermittently, the activity probability of sensor

that is triggered to transmit the data is denoted as ρs (0 < ρs < 1), and the activity

probability of relay that forwards the data to the sink is denoted as ρap (0 < ρap < 1).

Non-colluding eavesdroppers are considered and eavesdroppers’ locations are modeled as

two independent HPPPs Φs,e and Φap,e with intensities λse and λape , respectively. The

eavesdroppers in Φs,e intercept the data transmitted by the sensors and the eavesdroppers

in Φap,e intercept the data transmitted by the relays. Note that the eavesdroppers in

Φs,e and in Φap,e are far from each other.
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In this three-tier network, the sensor is associated with its nearest relay and the relay

is associated with its nearest sink. Each relay is equipped with M antennas, and the

sensors and sinks are single-antenna nodes. To enhance the information transmission,

the relays use maximal-ratio combining (MRC) to receive the sensors’ data signals and

maximal-ratio transmission (MRT) beamformer to transmit the signals. The wireless

channels are modeled as independent quasi-static Rayleigh fading. For an arbitrary

typical sensor o, the receive signal-to-interference-plus-noise ratio (SINR) after MRC at

its corresponding typical relay is given by

γap =
∥hs0,ap0∥

2|Xs0,ap0 |
−α

Is,ap + Iap,ap︸ ︷︷ ︸
Inap

+δ2
/
Ps
, (8.1)

where Is,ap =
∑

i∈Φs,a\{s0}

∣∣∣∣ hs0,ap0
†

∥hs0,ap0∥
hi,ap0

∣∣∣∣2|Xi,ap0 |
−α, Iap,ap = µ

∑
j∈Φap,a\{ap0}∣∣∣∣∣ hs0,ap0

†

∥hs0,ap0∥
Hj,ap0

hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

|Xj,ap0 |
−α, µ = Pap/Ps, † is the conjugate transpose. Here, Φs,a

and Φap,a are the locations of active sensors and active relays, hs0,ap0 and |Xs0,ap0 | are

the channel fading vector and distance between the typical sensor and its typical relay,

respectively, α is the path loss exponent, hi,ap0 ∈ CM×1 and |Xi,ap0 | are the channel fading

vector and distance between the sensor i and the typical relay, respectively, Hj,ap0 and

|Xj,ap0 | are the channel fading matrix and distance between the relay j and the typical

relay, respectively, hj,skj ∈ C1×M is the channel fading vector between the relay j and its

corresponding sink, Ps is the sensor’s transmit power, Pap is the relay’s transmit power,

and δ2 is the noise power.

We consider the non-colluding eavesdropping scenario, in which the most detrimental

eavesdropper that has the highest receive SINR dominates the secrecy rate [44]. Thus,

the received SINR at the most detrimental eavesdropper in Φs
e for the sensor and the
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relay transmission is given by

γs,e = max
ek∈Φs,e


|hs0,ek |

2|Xs0,ek |
−α

Is,e + Iap,e︸ ︷︷ ︸
Ins,e

+δ2
/
Ps

 , (8.2)

where Is,e =
∑

i∈Φs,a\{s0}|hi,ek |
2|Xi,ek |

−α and Iap,e =
∑

j∈Φap,a\{ap0}µ

∣∣∣∣∣hj,ek

hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

|Xj,ek |
−α,

hs0,ek and |Xs0,ek | are the channel fading coefficient and distance between the typical sen-

sor and the eavesdropper, respectively, hi,ek and |Xi,ek | are the channel fading coefficient

and distance between sensor i and the eavesdropper, respectively, and hj,ek and |Xj,ek |

are the channel fading vector and distance between the relay j and the eavesdropper,

respectively.

After receiving the sensors’ data, relays will forward them to the nearest sinks for

data collection. In this scenario, we select an arbitrary relay as a typical node ap0, and

the received SINR at the typical sink sk0 is given by

γsk =
∥gap0,sk0∥

2|Xap0,sk0 |
−β

Inap,sk + δ2
/
Pap

, (8.3)

where Inap,sk =
∑

j∈Φap,a\{ap0}

∣∣∣∣∣gj,sk0 hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

|Xj,sk0 |
−β , gap0,sk0 ∈ C1×M and |Xap0,sk0 |

are the channel fading vector and distance between the typical relay and its typical sink,

respectively, β is the path loss exponent, gj,sk0 ∈ C1×M and |Xj,sk0 | are the channel

fading vector and distance between the relay j and the typical sink, and hj,skj ∈ C1×M

is the channel fading vector between the relay j and its associated sink. In this case,

the received SINR at the most detrimental eavesdropper for the relay and the sink

transmission is given by

γap,e = max
ek∈Φap,e


∣∣∣∣gap0,ek gap0,sk0

†

∥gap0,sk0∥

∣∣∣∣2|Xap0,ek |
−β

Inap,e + σ2
/
Pap

, (8.4)
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where Inap,e =
∑

j∈Φap,a\{ap0}

∣∣∣∣gj,ek hj,skk
†

∥hj,skk∥

∣∣∣∣2|Xj,ek |
−β , gap0,ek and |Xap0,ek | are the chan-

nel fading coefficient and distance between the typical relay and the eavesdropper, respec-

tively, and gj,ek and |Xj,ek | are the channel fading vector and distance between the relay

j and the eavesdropper, respectively.

8.3 Secrecy Performance Evaluations

In this section, we characterize the secrecy performance in terms of average secrecy

rate and secrecy outage probability. Before exhibiting the overall secrecy performance

behaviors, we evaluate the secrecy of the two different links, namely the link between

the sensor and relay, and the link between the relay and sink, respectively. In doing

so, we derive new analytical expressions for the average secrecy rate and secrecy outage

probability, and analyze the impact of these two links on the overall secrecy performance.

8.3.1 Average Secrecy Rate between the Sensor and the relay

We evaluate the average secrecy rate based on the worst-case, i.e., the average secrecy

rate is dominated by the eavesdropper with the best channel [44]. Hence, for a typical

link between a typical sensor and its associated relay, the instantaneous secrecy rate is

defined as [146]

Cap
s = [Cap − Cs,e]

+, (8.5)

where [x]+ = max{x, 0}, Cap = log2 (1 + γap) is the capacity of the channel between the

typical sensor and relay, and Cs,e = log2 (1 + γs,e) is the capacity of the eavesdropping

channel between the typical sensor and the most detrimental eavesdropper.
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Fγap (γth) = 1− 2πλap (1− ρap)

∫ ∞

0
r exp

{
−
(
λsρs + λapρapµ

2
α

)
πΓ

(
1 +

2

α

)
Γ

(
1− 2

α

)
(γth)

2
α r2 − γthr

αδ2Ps − πλap (1− ρap) r
2
}
dr

− 2πλap (1− ρap)
M−1∑
m=1

(rα)m

(−1)m
∑ 1

m∏
l=1

ml!l!ml

∫ ∞

0
r exp

{
−
(
λsρs + λapρapµ

2
α

)
πΓ

(
1 +

2

α

)

Γ

(
1− 2

α

)
(γth)

2
α r2 − γthr

αδ2
/
Ps − πλap (1− ρap) r

2
}

[
− 2

α

(
λsρs + λapρapµ

2
α

)
πΓ

(
1 +

2

α

)
Γ

(
1− 2

α

)
(γth)

2
α r(2−α) − γthδ

2
/
Ps

]m1

m∏
l=2

[
−
(
λsρs + λapρapµ

2
α

)
πΓ

(
1 +

2

α

)
Γ

(
1− 2

α

)
(γth)

2
α

l−1∏
j=0

(
2

α
− j

)
r2−lα

ml

dr,

(8.6)

where
m∑
l=1

l ·ml = m.

8.3.1.1 New Statistics

We first derive the cumulative distribution functions (CDFs) of SINRs at the typical

relay and the most detrimental eavesdropper which intercepts the transmission between

the typical sensor and the relay in the following Lemma 1 and Lemma 2, respectively.

Lemma 1. The CDF of SINR at the typical relay is derived as (8.6).

Proof. See Appendix E.1.

Lemma 2. The CDF of SINR at the most detrimental eavesdropper which intercepts

the transmission between the typical sensor and the relay is derived as

Fγs,e (γth) = exp

{
−πλse

∫ ∞

0
exp

{
−
(
λsρs + λapρapµ

2/α
)
π

Γ (1 + 2/α) Γ (1− 2/α) (γth)
2
α t− δ2γtht

α/2
/
Ps

}
dt. (8.7)

Proof. See Appendix E.2.
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8.3.1.2 Average Secrecy Rate

Based on our preliminary work in [152], the average secrecy rate between the sensor and

the relay is the average of secrecy rate Cap
s over γs,e and γap, which can be written as

C̄ap
s =

1

ln 2

∫ ∞

0

Fγs,e (x)

1 + x
(1− Fγap (x))dx. (8.8)

By substituting the CDF of γap in (8.6) and the CDF of γs,e in (8.7) into (8.8), we can

obtain the average secrecy rate between the sensor and the relay.

Note that the derived average secrecy rate between the sensor and the relay is not in

a simple form, we present the interference-limited case for the average secrecy rate with

single antenna at the relay in the following corollary.

Corollary 1. When the relays are equipped with single antenna in the interference-

limited scenario, the average secrecy rate between the sensor and the relay is given by

C̄ap
s =

πλap (1− ρap)

ln 2

∫ ∞

0

exp
{
−πλse

/(
Λ1x

2/α
)}

(1 + x)
(
Λ1x2/α + πλap (1− ρap)

)dx, (8.9)

where Λ1 =
(
λsρs + λapρapµ

2
α

)
πΓ (1 + 2/α) Γ (1− 2/α) .

8.3.2 Average Secrecy Rate between the relay and the Sink

Similar to (8.5), for a typical relay and its associated sink, the instantaneous secrecy rate

is defined as

Csk
s = [Csk − Cap,e]

+, (8.10)

where Csk = log2 (1 + γsk) and Cap,e = log2 (1 + γap.e).
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8.3.2.1 New Statistics

We first derive the CDFs of SINRs at the typical sink and the most detrimental eaves-

dropper which intercepts the transmission between the typical relay and the sink in the

following Lemma 3 and Lemma 4, respectively.

Lemma 3. The CDF of SINR at the typical sink is derived as

Fγsk (x) = 1− 2πλsk

∫ ∞

0
r exp

{
−λapρapπΓ (1 + 2/β)

Γ (1− 2/β) (γth)
2
β r2 − γthr

βδ2
/
Pap − πλskr

2

}
dr − 2πλsk

M−1∑
m=1

1

(−1)m
∑ 1

m∏
l=1

ml!l!ml

∫ ∞

0
rβm+1 exp

{
−λapρapπ

Γ (1 + 2/β) Γ (1− 2/β) (γth)
2
β r2 − γthr

βδ2
/
Pap − πλskr

2

}
[
− λapρapπ

2

β
Γ (1 + 2/β) Γ (1− 2/β) (γth)

2
β r2−β − γth

δ2
/
Pap

]m1 m∏
l=2

[
− λapρapπΓ (1 + 2/β) Γ (1− 2/β) (γth)

2
β

l−1∏
j=0

(2/β − j) r2−lβ

]ml

dr. (8.11)

Proof. See Appendix E.3.

Lemma 4. The CDF of SINR at the most detrimental eavesdropper which intercepts

the transmission between the typical relay and the sensor is derived as

Fγap,e (x) = exp

{
−πλape

∫ ∞

0
exp

{
−λapρapπΓ (1 + 2/β)

Γ (1− 2/β) γth
2
β t− σ2γtht

β/2
/
Pap

}
dt

}
. (8.12)

Proof. See Appendix E.4.
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8.3.2.2 Average Secrecy Rate

The average secrecy rate between the relay and the sink is the average of the secrecy

rate Csk
s over γsk and γap,e, which is given by

C̄sk
s =

1

ln 2

∫ ∞

0

Fγsk (x)

1 + x
(1− Fγap,e (x))dx. (8.13)

By substituting the CDF of γsk in (8.11) and the CDF of γap,e in (8.12) into (8.13), we

can obtain the average secrecy rate between the relay and the sink.

Note that the derived the average secrecy rate between the relay and the sink is also

not in a simple form, we present the interference-limited case for the average secrecy rate

with single antenna at the relay in the following corollary.

Corollary 2. When the relays are equipped with single antenna in the interference-

limited scenario, the average secrecy rate between the relay and the sink is given by

C̄sk
s =

πλsk
ln 2

∫ ∞

0

exp
{
−πλape

/
Λ2x

2/β
}

(1 + x)
(
Λ2x2/β + πλsk

)dx, (8.14)

where Λ2 = λapρapπΓ (1 + 2/β) Γ (1− 2/β) . Based on (8.14), for a specific target average

secrecy rate C̄0 between the relay and the sink, the number of sinks must satisfy

λsk > C̄0Λ2
ln 2

πε
, (8.15)

where ε =
∫∞
0

exp{−πλap
e /(Λ2x2/β)}

(1+x)x2/β dx.

8.3.3 Overall Average Secrecy Rate

In this subsection, we derive the overall average secrecy rate in three-tier WSNs. The

instantaneous secrecy rate is defined as Cs = min
(
Cap
s , Csk

s

)
. As such, the overall average
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secrecy rate is calculated as

C̄s =

∫ ∞

0
xfCs (x) dx =

∫ ∞

0
(1− FCs (x))dx, (8.16)

where fCs (x) and FCs (x) is the probability density function (PDF) and the CDF of Cs,

respectively. The CDF of Cs is calculated as

FCs (x) = Pr
(
min

(
Cap
s , Csk

s

)
< x

)
= 1− Pr

(
min

(
Cap
s , Csk

s

)
> x

)
= 1− Pr (Cap

s > x) Pr
(
Csk
s > x

)
(8.17)

Substituting (8.17) into (8.16), we have

C̄s =

∫ ∞

0
Pr (Cap

s > x) Pr
(
Csk
s > x

)
dx, (8.18)

where [152]

Pr (Cap
s > x) = 1−

∫ ∞

0
fγs,e (t)Fγap (2

x (1 + t)− 1)dt, (8.19)

and

Pr
(
Csk
s > x

)
= 1−

∫ ∞

0
fγap,e (t)Fγsk (2

x (1 + t)− 1)dt, (8.20)

respectively. Here, fγs,e is the derivative of Fγs,e given in (8.7), and fγap,e is the derivative

of Fγap,e given in (8.12).

Unfortunately, the derived overall average secrecy rate between the sensor and the

sink is not in a simple form, we present the interference-limited case for the overall average

secrecy rate with no noise and single antenna at the relay in the following corollary.

Corollary 3. When the relays are equipped with single antenna in the interference-

limited scenario, the overall average secrecy rate between the sensor and the sink is given
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Figure 8.2: The average secrecy rate versus λse/λs. λs = 10−2, ρs = 0.01,
λap = 10−2, ρap = 0.1, α = 3.5, Ps = 15 dBm, Pap = 25 dBm,

by

C̄s =

∫ ∞

0

∫ ∞

0

2πλse
αΛ1y2/α+1

exp

{
−πλse

/(
Λ1y

2/α

)}

πλap (1− ρap)

Λ1(2x (1 + y)− 1)2/α + πλap (1− ρap)
dy


∫ ∞

0

2π2λape λsk exp
{
−πλape

/
Λ2y

2/β
}

βΛ2y2/β+1
(
Λ2(2x (1 + y)− 1)2/β + πλsk

)dy
dx, (8.21)

with Λ1 =
(
λsρs + λapρapµ

2
α

)
πΓ (1 + 2/α) Γ (1− 2/α), Λ2 = λapρapπΓ (1 + 2/β) Γ (1− 2/β) .
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Figure 8.3: The average secrecy rate versus λs. ρs = 0.05, ρap = 0.5, λse =
10−3, α = 3.5, Ps = 15 dBm, Pap = 25 dBm,

8.4 Numerical Examples

In this section, we present numerical examples to show the average secrecy rate of three-

tier WSN. We assume that the activity probability of relay ρap = 0.1, the transmit

power of sensor Ps = 15 dBm, the power spectral density of noise is −170 dBm/Hz,

and the bandwidth is 1 MHz. For all figures below, we see a perfect match between the

simulations and the exact analytical curves, which validate our analysis.

8.4.1 Average Secrecy Rate between the Sensor and relay

Figure 8.2 plots the average secrecy rate between the sensor and the relay versus λse/λs.

The analytical results are obtained from (8.8). We first see that the average secrey rate

decreases with increasing the density of eavesdroppers that intercepts the tranmission

between sensor and relay, due to the detrimental effects of eavesdropping. We also see
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Figure 8.4: The average secrecy rate versus λap/λ
ap
e . ρap = 0.1, λsk = 10−2,

β = 3.5, Pap = 15 dBm,

that the average secrecy rate increases with increasing the number of antennas at the

relay, which results from the array again brought by using MRC at the relay.

Figure 8.3 plots the average secrecy rate between the sensor and the relay versus λs

for various λap and M . The analytical results are obtained from (8.8). An interesting

observation is that for the same number of antennasM , the average secrecy rate is nearly

invariable for λs < 2 × 10−3, since the interference from other sensors is much smaller

than the interference from the active relays, and slightly increasing the interference from

the sensor imposes negligible effect on the performance. However, when λs > 2× 10−3,

the interference from other sensors is comparable with the interference from the active

relays, and increasing the interference from the sensor degrades the secrecy performance.

We also observe that increasing λap increases the average secrecy rate. This is because

with more relays, the distance between the typical sensor and the typical relay becomes

shorter, which improves the average secrecy rate. In additiona, we find that increasing

λap slows down the decreasing trend of average secrecy rate when λs increases.
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Figure 8.5: The average secrecy rate versus λap. ρap = 0.1, β = 3, λape = 10−3,
Pap = 25 dBm,

8.4.2 Average Secrecy Rate between the relay and Sink

Figure 8.4 plots the average secrecy rate between the relay and the sink versus λape /λap

for various λap and M . The analytical results are obtained from (8.13). We first observe

that the average secrecy rate decreases with increasing λape /λap, which indicates that

more relays need to be deployed as the density of eavesdroppers increases, to combat

eavesdropping. Second, with the same number of antennas at the relay, the average

secrecy rate decreases with increasing λape . The average secrecy rate between the relay

and the sink improves with increasing the number of antennas at the relay M .

Figure 8.5 plots the average secrecy rate between the relay and the sink versus λap

for various λsk and M . The analytical results are obtained from (8.13). We observe

that the average secrecy rate alters slightly for λap < 2 × 10−3, and decreases with

increasing λap for λap > 2 × 10−3. This can be explained by the fact that for λap <

2 × 10−3, the interference from the active relays is relatively small compared with the
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Figure 8.6: The average secrecy rate versus λap. Ps = 15 dBm, Pap = 30 dBm,
M = 2, ρs = 0.01, ρap = 0.1, α = 2.8, β = 3.2, λse = λape = 5∗10−3,

noise, and increasing the number of relays scarcely influence the performance. However,

for λap > 2 × 10−3, the interference from the relay imposes a dominant impact on the

SINR between the relay and the sink, thus increasing the interference from the relays

degrades the average secrecy rate. Another observation is that the average secrecy rate

improves with increasing the density of sink, because the distance between the typical

relay and the corresponding sink becomes shorter.

8.4.3 Overall Average Secrecy Rate

Figure 8.6 plots the overall average secrecy rate versus λap for various λs and λsk. The

analytical results are obtained from (8.18). Interestingly, we find that the overall aver-

age secrecy rate first increases, and then decreases with increasing λap, which implies

that there exists an optimal λap to achieve the maximum average secrecy rate. This

phenomenon can be well explained by the tradeoff between the benefits brought by the
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Figure 8.7: The average secrecy rate versus λap. Ps = 15 dBm, Pap = 30 dBm,
ρs = 0.01, ρap = 0.1, α = 2.8, β = 3.2, λs = λsk = 10−2,

shorter distance from the typical sensor to the typical relay and the detrimental effects

caused by more interference from the active relays due to increasing λap. It is also seen

that the overall average secrecy rate can be improved by deploying more sinks, due to

the shorter distance between the relay and the sink. It is further demonstrated that

deploying more sensors in this network may not greatly degrade the average secrecy rate

due to the low transmit power of sensors. More importantly, it is shown that the optimal

λap is more dependent on the λsk.

Figure 8.7 plots the overall average secrecy rate versus λap for various λse, λ
ap
e and

M . The analytical results are obtained from (8.18). Similar as Figure 8.6, we see that

the overall average secrecy rate first increases, and then decreases with increasing λap.

As expected, the average secrecy rate decreases with increasing eavesdroppers. It is

indicated that the optimal λap for achieving the maximum average secrecy rate does not

alter drastically with different λse and λape .
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8.5 Conclusions

Physical layer security in three-tier wireless sensor networks was introduced. The impacts

of random locations and spatial densities of sensors, relays, sinks and external eavesdrop-

pers on the secrecy performance were analyzed. New expressions for average secrecy rate

were obtained. The results provide guidelines on the secure transmission in practical

wireless sensor networks. Based on our analysis, the importance of using physical layer

security in the three-tier wireless sensor networks was clearly established.



Chapter 9

Conclusions and Future Works

9.1 Contributions and Insights

This thesis concentrates on the physical layer security in wireless networks. There are

three principal aspects in the thesis: 1) Since physical layer security exploits the prop-

erties of wireless channel such as fading, some practical channel fading have been inves-

tigated; 2) Antenna selection and opportunistic relaying technique have been utilized

for security enhancement; 3) The potentials of physical layer security in the emerging

networks such as cognitive radio networks, relay networks, and wireless sensor networks

(WSNs) have been exploited. The main contributions and insights are as follows.

In Chapter 3, physical layer security in single-input multi-output wiretap channels

under two-wave with diffuse power fading was investigated. New closed-form expressions

for the exact and asymptotic average secrecy capacity and secrecy outage probability

were derived. It was demonstrated that the high signal-to-noise ratio (SNR) slope is

one. Particularly, the high SNR slope is not affected by the number of antennas at

the legitimate receiver and eavesdropper. The impacts of the main channel and the

eavesdropper’s channel on the average secrecy capacity were characterized via the high

SNR power offset. It is indicated that the secrecy diversity order is entirely dependent

136
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on legitimate receiver’s antennas. It also indicates that the detrimental effect of the

eavesdroppers channel resides in the secrecy array gain. Furthermore, the performance

gap for different number of antennas was quantified via their respective secrecy array

gains.

In Chapter 4, a unified framework was presented to examine the secrecy perfor-

mance for antenna selection techniques in multiple-input multiple-output (MIMO) wire-

tap channels. New exact closed-form expressions for the average secrecy rate and the

secrecy outage probability were derived using the new cumulative distribution function

and probability density function of the SNR with transmit antenna selection and gener-

alized selection combining. It is shown that although the high SNR slope is independent

of the network parameters, the high SNR power offset is dependent on the system param-

eters including transceiver antenna configuration and the fading parameters in the main

and the eavesdropper’s channels. An interesting conclusion is reached that a capacity

ceiling is created when both the legitimate receiver and the eavesdropper are close to

the transmitter. When the legitimate receiver is close to the transmitter, the full secrecy

diversity order is achieved and is entirely determined by the antenna configuration and

the fading parameters in the main channel. The impact of the eavesdropper is only

reflected in the secrecy array gain. The secrecy diversity order collapses to zero when

both the legitimate receiver and the eavesdropper are close to the transmitter.

In Chapter 5, fundamental questions were addressed surrounding the joint impact of

two power constraints on the cognitive wiretap channel: 1) the maximum transmit power

at the secondary transmitter, and 2) the peak interference power at PU. To address these

constraints, new closed-form expressions for the exact and asymptotic secrecy outage

probability were derived. Our expressions reveal important design insights surrounding

the impact of the primary network on the secondary network in cognitive wiretap radio

networks.

In Chapter 6, frequency selective fading was considered, in which multiple relays

and multiple destinations coexist with a cluster of eavesdroppers. A two-stage relay
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and destination selection was proposed to minimize the eavesdropping and maximize

the signal power of the link between the relay and the destination. It is confirmed

that the secrecy diversity gain is directly determined by the multipath diversity and the

multiuser diversity between the relays and the destinations. The multiplexing gain is

independent of the system and channel parameters such as the number of multipaths,

relays, eavesdroppers, and destinations. Our high SNR analysis showed that when the

average received power at the eavesdropper is proportional to the counterpart at the

destination, both the secrecy diversity gain and the secrecy capacity slope collapse to

zero, thereby creating a secrecy outage floor and a secrecy capacity ceiling.

In Chapter 7, the secure transmission with optimal power allocation (OPA) and

cooperative jamming was analyzed in the two-hop amplify-and-forward untrusted relay

network. Ergodic secrecy capacity (ESC) was characterized as a performance metric and

compact expressions for asymptotic ESC were derived. Compared to the equal power

allocation, OPA can achieve positive rate even at low SNR. For increasing antennas at

source, there are no significant increase in ESC, and ESC approaches constant for mod-

erately large antennas, which only depends on the average channel gain of the second

hop and the transmit SNR of the system. For moderately large antennas at the destina-

tion, ESC increases with the number of antennas at the destination, when the number

of antennas is massive, ESC only depends on the average channel gain of the first hop

and the transmit SNR of the system.

In Chapter 8, a new analytical framework was presented to examine the implementa-

tion of physical layer security in three-tier WSNs. The locations and spatial densities of

sensors, relays, sinks, and eavesdroppers are modeled using stochastic geometry. Each

relay used the low-complexity maximal-ratio combining (MRC) to receive the sensor’s

data signals and maximal-ratio transmission (MRT) beamformer to transmit the signals.

The secure transmissions between the active sensors and relays, and between the active

access points and sinks were investigated. Using MRC/MRT at relays can enhance the

secure transmission. Based on the proposed analysis and simulations, several important
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observations are reached: 1) the average secrecy rate decreases as the number of sensors

grows large, due to more interference from sensors, 2) the average secrecy rate increases

with increasing the number of sinks, because of the shorter distances between the relays

and their associated sinks, and 3) the overall average secrecy rate increases with increas-

ing the number of relays, although it decreases the average secrecy rate between the relay

and its associated sink. However, beyond a critical value, the overall average secrecy rate

decreases with increasing the number of relays.

9.2 Future Works

In this subsection, two extensions of the current work are proposed. Furthermore, phys-

ical layer security in 5G networks is investigated.

9.2.1 Extensions of Current Work

9.2.1.1 Imperfect CSI

Current work in this thesis may also need to consider the impact of imperfect channel

state information (CSI), although imperfect CSI wiretap channel is a challenging prob-

lem. The key performance parameters such as high SNR slope and power offset under

imperfect CSI are not known and have not been examined in the existing literature.

In Chapter 5, the interference power at the primary receiver inflicted by the sec-

ondary transmitter must not exceed the maximal peak, however, this constraint may

not be guaranteed under imperfect CSI [117]. New secure transmission designs may be

demanded. The secrecy outage probability and average achievable secrecy rate in such

scenario also need to be analyzed.
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9.2.1.2 Multi-hop Secure Transmission with Trusted/Untrusted Relay

In this thesis, secure transmission was investigated in two-hop networks with external

eavesdroppers (Chapters 6 and 8) and two-hop untrusted relay networks (Chapter 7).

Such line of work may be extended to the multi-hop case, which is an interesting and

practical research area. In [157], an multi-hop line work was considered and all the

intermediate relays were assumed to be untrusted, it was shown that using the proposed

transmission schedule, an end-to-end secrecy rate can be achieved in an information-

theoretical way, which is independent of the number of hops. However, more research

efforts are needed to fully understand this field before the application in practice.

9.2.2 Physical Layer Security in 5G Systems

Massive MIMO and millimeter wave (mmWave) are two promising techniques in 5G

networks. The investigation of physical layer security in massive MIMO and mmWave

systems is an appealing and highly rewarding research field.

9.2.2.1 Massive MIMO

Massive MIMO systems are emerging as a new research field and have attracted sub-

stantial interests from both scientists and industrialists. The benefits of the massive

MIMO technique are realized by using very large antenna arrays (typically tens or even

hundreds) at the transmitter and/or the receiver. Compared with the current coun-

terpart, massive MIMO systems can bring high power and spectrum efficiency with

low-complexity transmission designs. Random impairments such as small-scale fading

and noise are averaged out when a large number of antennas are deployed at the base

station (BS) [158]. Moreover, the interference, channel estimation errors, and hardware

impairments [159] vanish when the number of antennas grows large, leaving only pilot

contamination as the performance limit [160]. Therefore, massive MIMO opens up a
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new and promising research avenue, extending the current research efforts in conven-

tional MIMO systems to a new area. Specifically, we consider the following aspects:

• Low Power Consumption: In massive MIMO systems, the secrecy performance

can be remarkably enhanced by adopting a reduced power consumption.

• Time Division Duplex Operation: Massive MIMO systems are recommended

to operate in a time division duplex (TDD) mode [161]. As such, it becomes difficult

for eavesdroppers to know the CSI between themselves and the BS, as well as the

CSI from other users to the BS. Therefore, how to design secure transmission under

the assumption of imperfect (or no) CSI at eavesdroppers is of practical importance

in massive MIMO systems.

• Secure Multiuser Communications: In massive MIMO systems, each base

station simultaneously communicates with multiple users. Each downlink message

must be kept confidential from all the users other than the intended one, i.e., each

receiver is seen as an eavesdropper for all messages other than its own. Therefore, it

is pivotal to provide design guidelines and performance metrics of linear precoders

in massive MIMO systems.

9.2.2.2 Millimeter Wave

In the 5G network, mmWave communication systems, operating in the frequency range

of 30-300 GHz, have been recognized as a promising solution to remove the restriction

and meet a thousand-fold capacity increase [63]. MmWave with physical layer security

has at least the following merits:

• Large Bandwidth: MmWave communication systems provide GHz bandwidths.

Therefore, the secrecy outage probability in the passive eavesdropping scenario

is remarkably reduced if the transmitter sets a lower transmit secrecy rate in

mmWave communications. Also, high secrecy throughput can be obtained with
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large mmWave bandwidths.

• Short-range Transmission: Compared to the current microwave communication

systems in the lower frequencies, mmWave signals in the higher frequencies experi-

ence an increase in free-space path loss by several orders of magnitude. Therefore,

only geographically neighbouring eavesdroppers are able to overhear the signals,

whereas geographically remote users cannot capture the data transmission.

• Large Antenna Arrays: For a fixed array aperture, the shorter wavelengths at

the mmWave frequencies enable the mmWave BSs to pack more antennas. There-

fore, mmWave systems with large antenna arrays offer a wealth of opportunities

at the physical layer security to secure mmWave communication.

Based on the aforementioned factors, the aim of physical layer security design in

mmWave communication systems is to fully exploit the potentials of these factors. In

this design, several challenging tasks need to be solved.

First, the propagation characteristics at higher frequencies need to be precisely mod-

eled. Indeed, an accurate and comprehensive quantification of the impact of path loss,

blocking, penetration, and rain absorption on mmWave transmission enables network

security designers to theoretically capture the properties of mmWave channels and

address these properties in their design.

Second, new secure transmission schemes need to be developed. It has been shown

that beamforming is a key enabler of mmWave mobile broadband service [162]. Since

digital beamforming with a large number of radio frequency (RF) chains incurs a very

high implementation cost and power consumption, secure mmWave transmission needs

to be designed based on analog beamforming and RF beamforming with a small number

of RF chains.

Third, some traditional techniques need to be re-designed. For example, artificial

noise is proposed to enhance the security in traditional systems. The core idea behind
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it is to transmit artificial noise in the null space of the receiver’s channel, thus imposing

no effect on the intended channel, whereas degrading the wiretap channels [72]. For

mmWave systems equipped with large antenna arrays, the computation of the null space

becomes infeasible, due to the high dimensional MIMO channel matrix. The use of ran-

dom and independent artificial noise may be a promising solution since the independent

artificial noise can be averaged out with large antenna arrays. As an external helper, the

cooperative jammer can help to enhance the security by transmitting the jamming signal,

in order to confound the eavesdroppers. In traditional systems, the information signal at

the transmitter and jamming signal at the jammer are jointly designed, to mitigate the

adverse effect of jamming on the legitimate receiver. Thanks to the mmWave networks’

inherently noise-limited feature and massive MIMO’s interference mitigation capability,

the traditional design requirements for cooperative jamming may not be needed.



Appendix A

Proofs of in Chapter 4

A.1 Proof of Theorem 1

We first present the PDF and the CDF of the SNR of a single branch in the main channel

with Nakagami-m fading as [163]
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respectively. The marginal moment generating function (MGF) of (A.1.1) is given by [91]
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As shown in [91, 164], the MGF expression for the SNR γ after GSC is expressed as

Φγ (s) =LB

(
NB

LB

)
×
∫ ∞

0
e−sxf (x) (Φ (s, x))LB−1(F (x))NB−LBdx. (A.1.4)
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Here, the MGF is defined as Φγ (s) = E [e−γs]. In order to evaluate the integral in

(A.1.4), we will rewrite (Φ (s, x))LB−1 and (F (x))NB−LB .

Based on (A.1.3), using the multinomial theorem [165], we rewrite (Φ (s, x))LB−1 as
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Based on (A.1.2), we proceed to employ the multinomial theorem to express (F (x))NB−LB

as
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where SF
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Substituting (A.1.1), (A.1.5), and (A.1.6) into (A.1.4), and applying [140, eq. (3.351.3)],

Φγ (s) is derived as
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Let Fγ (x) denote the CDF of γ, the Laplace transform of Fγ (x) is given by L [Fγ (x)] =
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Φγ (s) /s [166]. Therefore, the Laplace transform of the CDF of γ is
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Using a partial fraction expansion [140, eq. (2.102)], we can rewrite (A.1.8) in an

equivalent form. Then, taking the inverse Laplace transform of L [Fγ (x)] to obtain
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where n2 = n−mB (LB − 1) + bΦk . In (A.1.9), we also have
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The CDF of γB with TAS and GSC is given by FγB = (Fγ (x))
NA . Based on (A.1.9),

and employing the multinomial theorem, we derive the CDF of γB as (4.4). Taking the

derivative of the CDF in (4.4), we obtain the PDF of γB as (4.5).
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A.2 Proof of Theorem 2

We start with the asymptotic CDF for the SNR of a single branch of the main channel.

In the high SNR regime with γ̄B → ∞, applying the Taylor series expansion truncated
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It is shown in Appendix A that L [Fγ (x)] = Φγ (s) /s. Taking the inverse Laplace

transform of L [Fγ (x)], Fγ is derived as
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Still employing the Taylor series expansion truncated to the kth order given by ex =
k∑

j=0

xj

j! + o
(
xk
)
in (A.2.3), we rewrite (A.2.3) as

Fγ (x) =
LB

(
NB
LB

)(
mB
γ̄B

)mBNB

xmBNB

(mB − 1)!(mB!)
NB−LB (mBNB)!

∑
SΦ
B

aΦk

(
bΦk +mB (NB − LB) +mB − 1

)
!

(LB)
bΦk +mB(NB−LB)+mB

.

(A.2.4)

Based on (A.2.4), the asymptotic expression for the CDF of γB is FγB (x) = (Fγ (x))
NA

and the final expression is shown in (4.6).

A.3 Proof of Theorem 3

Substituting (4.12) into (4.10), we rewrite the average secrecy rate as

C̄s =
1

ln 2

∫ ∞

0

[∫ x1

0

FγE (x2)

1 + x2
dx2

]
fγB (x1) dx1. (A.3.1)

Substituting (4.15) into (A.3.1), we transform (A.3.1) as

C̄s =
1

ln 2

∫ ∞

0
ln (1 + x1) fγB (x1)dx1︸ ︷︷ ︸

ω2

+
1

ln 2

∫ ∞

0

∫ x1

0

χγE (x2)

1+x2
fγB (x1)dx2dx1︸ ︷︷ ︸

ω3

. (A.3.2)

In the high SNR regime with γ̄B → ∞, ln (1 + x1) ≈ ln (x1), thereby the asymptotic

expression for ω2 can be written as ∆1 in (4.17). Changing the order of integration in

ω3, we rewrite

ω3 =
1

ln 2

∫ ∞

0

χγE (x2)

1+x2
(1− FγB (x2))dx2. (A.3.3)

According to (4.6), when γ̄B → ∞, FγB (x2) ≈ 0. Hence, the asymptotic expression for

ω3 can be expressed as ∆2 in (4.18). Based on (4.17), (4.18), and (A.3.2), we derive the

asymptotic expression for the average secrecy rate as (4.16).



Appendix B

Proofs in Chapter 5

B.1 Proof of Theorem 1

We first provide the CDF and PDF of Y = max
n=1,...,N

Yn, where Yn is i.i.d. exponential RV

with parameter ΩY , which can be written as

FY (y) =
N∑

n=0

(
N

n

)
(−1)ne

− ny
ΩY (B.1)

and

fY (y) =
N−1∑
n=0

(
N − 1

n

)
N

ΩY
(−1)ne

− (n+1)y
ΩY . (B.2)

In addition, fX (x) = 1
Ω0
e
− x

Ω0 .

Based on (5.3), we note that when X ≤ γp

γ0
, γM = γ0YM , γE = γ0YE , and when

X >
γp

γ0
, γM =

γp

X YM , γE =
γp

X YE . Hence, the secrecy outage probability in (5.12) can be
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calculated as

Pout =

∫ γp
γ0

0

∫ ∞

0
FγM|{X=x} (ϵ(γE)) fγE|{X=x} (γE) fX (x) dγEdx︸ ︷︷ ︸

J1

+

∫ ∞

γp
γ0

∫ ∞

0
FγM|{X=x} (ϵ(γE)) fγE|{X=x} (γE) fX (x) dγEdx︸ ︷︷ ︸

J2

. (B.3)

Based on (B.1), for X ≤ γp

γ0
, we have

FγM|{X=x} (ϵ(γE)) =

nB∑
i=0

(
nB
i

)
(−1)ie

− iϵ(γE)

γ0Ω1 ,

fγE|{X=x} (γE) =

nE−1∑
j=0

(
nE − 1

j

)
nE
γ0Ω2

(−1)je
− (j+1)γE

γ0Ω2 . (B.4)

By substituting (B.4) into J1 of (B.3), J1 can be derived as

J1 =

∫ γp
γ0

0
fX (x) dx

nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γ0Ω2

(−1)i+j

∫ ∞

0
e
− iϵ(γE)

γ0Ω1
− (j+1)γE

γ0Ω2 dγE

=

(
1− e

− γp
γ0Ω0

) nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γ0Ω2

(−1)i+je
−

i(2Rs−1)
γ0Ω1

(
i2Rs

γ0Ω1
+
j + 1

γ0Ω2

)−1

.

(B.5)

For X >
γp

γ0
, we have

FγM|{X=x} (ϵ(γE)) =

nB∑
i=0

(
nB
i

)
(−1)ie

− iϵ(γE)

γpΩ1
x
,

fγE|{X=x} (γE) =

nE−1∑
j=0

(
nE − 1

j

)
nE
γpΩ2

(−1)jxe
− (j+1)γE

γpΩ2
x
. (B.6)
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By substituting (B.6) into J2 of (B.3), J2 can be derived as

J2 =

nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γpΩ2

(−1)i+j 1

Ω0

∫ ∞

γp
γ0

e
− x

Ω0

∫ ∞

0
xe

− iϵ(γE)

γpΩ1
x− (j+1)γE

γpΩ2
x
dγEdx

=

nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γpΩ2

(−1)i+j 1

Ω0

∫ ∞

γp
γ0

xe
− x

Ω0 e
−

i(2Rs−1)
γpΩ1

x
∫ ∞

0
e
− i2RsxγE

γpΩ1
− (j+1)γE

γpΩ2
x
dγEdx

=

nB∑
i=0

(
nB
i

) nE−1∑
j=0

(
nE − 1

j

)
nE
γpΩ2

(−1)i+j 1

Ω0

(
i2Rs

γpΩ1
+
j + 1

γpΩ2

)−1
e
− γp

γ0Ω0
−

i(2Rs−1)
γ0Ω1

1
Ω0

+ i(2Rs−1)
γpΩ1

.

(B.7)

Substituting (B.5) and (B.7) into (B.3), we get the desired result (5.13).



Appendix C

Proofs in Chapter 6

C.1 A detailed derivation of Lemma 1

According to the order statistics, the PDF of γmin,max
2 is given by

f
γmin,max
2

(x) = K(1− F
γk,max
2

(x))K−1f
γk,max
2

(x). (C.1.1)

Binomial and multinomial formulas provide the following expression for f
γk,max
2

(x):

f
γk,max
2

(x) =
N

(α̃2)N2(N2 − 1)!

N−1∑
j=0

(
N − 1

j

)
(−1)je

−x(j+1)
α̃2

×
j∑

u1,...,uN2

(
j!

u1! . . . uN2 !

)
xN2+

∑N2−1
t=0 tut+1−1∏N2−1

t=0 (t!(α̃2)t)ut+1
. (C.1.2)
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Pout =

∫ ∞

0

[
1− e−(JR−1+JRγ)/α̃1

N1−1∑
l=0

1

l!

((JR − 1 + JRγ)

α̃1

)l]Q
f
γmin,max
2

(γ)dγ

=

Q∑
q=0

(
Q

q

)
(−1)q

∫ ∞

0
e−q(JR−1+JRγ)/α̃1

[N1−1∑
l=0

1

l!

((JR − 1 + JRγ)

α̃1

)l]q
︸ ︷︷ ︸

J1

f
γmin,max
2

(γ)dγ.

(C.2.1)

Again binomial and multinomial formulas lead us to get the following expression for

(1− F
γk,max
2

(x))K−1:

(1− F
γk,max
2

(x))K−1 =

[
1−

(
1− e−x/α̃2

N2−1∑
l=0

1

l!

(
x

α̃2

)l)N]K−1

=
K−1∑
k=0

(
K − 1

k

)
(−1)k

(
1− e−x/α̃2

N2−1∑
l=0

1

l!

(
x

α̃2

)l)kN

=

K−1∑
k=0

(
K − 1

k

)
(−1)k

Nk∑
m=0

(
Nk

m

)
(−1)me−mx/α̃2

×
m∑

v1,...,vN2

(
m!

v1! . . . vN2 !

)
x
∑N2−1

t=0 tvt+1∏N2−1
t=0 (t!(α̃2)t)vt+1

. (C.1.3)

Multiplying (C.1.2) and (C.1.3) and after some manipulations, yields (6.8).

C.2 A detailed derivation of Theorem 1

Now substituting f
γmin,max
2

(γ), which is derived in (6.8) and F
γk∗,q∗
1

(γ), which is derived in

(6.5) into (6.12), we have (C.2.1). Using multinomial and binomial formulas, J1 becomes

J1 =

q∑
w1,...,wN1

q!

w1! . . . wN1 !

1∏N1−1
t=0 (t!(α̃1)t)wt+1

L̃1∑
p=0

(
L̃1

p

)
(JR − 1)L̃1−p(JR)

pγp. (C.2.2)
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Substituting (C.2.2) into (C.2.1), yields

Pout =

Q∑
q=0

(
Q

q

)
(−1)qe

− q(JR−1)

α̃1

q∑
w1,...,wN1

q!

w1! . . . wN1 !∑L̃1
p=0

(
L̃1

p

)
(JR − 1)L̃1−p(JR)

p∏N1−1
t=0 (t!(α̃1)t)wt+1

∫ ∞

0
e−qJRγ/α̃1γpf

γmin,max
2

(γ)dγ. (C.2.3)

Again using (6.8) into (C.2.3), we have (6.13).

C.3 A detailed derivation of Theorem 2

Applying the Taylor series expansion truncated to the N1th order given by ex =
N1∑
l=0

xl

l! +

O(xN1), we derive the first order expansion of F
γk∗,q∗
1

(x), which is specified in (6.5), at

high α̃1 as

F
γk∗,q∗
1

(x) =

[
1− e−x/α̃1

(
ex/α̃1 − 1

N1!

(
x

α̃1

)N1

−O((
x

α̃1
)N1

)
)

]Q

=
1

(N1!)Q

(
x

α̃1

)QN1

+O((α̃1)
−QN1). (C.3.1)

In addition, the PDF expression f
γmin,max
2

(x) in (8) needs to be written as

f
γmin,max
2

(x) = Ĉ
∑̂ xÑ2−1

(α̃2)Ñ2
e
− β̂x

α̃2 U(x). (C.3.2)

Substituting (C.3.1) and (C.3.2) into (6.12), the asymptotic secrecy outage probability

is calculated as (C.3.3) which proves (6.15).
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P∞
out =

Ĉ

(N1!)Q

∑̂∫ ∞

0

(JRγ + JR − 1

α̃1

)QN1 γÑ2−1

(α̃2)Ñ2
e
− β̂γ

α̃2 dγ +O((α̃1)
−QN1)

=
Ĉ

(N1!)Q

∑̂QN1∑
l=0

(
N1

l

)( 1

α̃1

)QN1

(JR − 1)QN1−l(JR)
l

∫ ∞

0
γl
γÑ2−1(
α̃1

)Ñ2
e
− β̂γ

α̃2 dγ +O((α̃1)
−QN1)

=
C

(N1!)Q

∑̂QN1∑
l=0

(
QN1

l

)( 1

α̃1

)QN1

(JR − 1)QN1−l(JR)
l(α̃2)

l (l + Ñ2 − 1)!

(β̂)l+Ñ2
+O

(
(α̃1)

−QN1
)

= (Gaα̃1)
−QN1 +O((α̃1)

−QN1). (C.3.3)

C.4 A detailed derivation of Corollary 2

The CDF of γmin,max
2 is given by

F
γmin,max
2

(x) = 1− (1− F
γk,max
2

(x))K

= 1−
K∑
k=0

Nk∑
m=0

(
K

k

)(
Nk

m

)
(−1)k+me−mx/α̃2

m∑
v1,...,vN2

(
m!

v1! . . . vN2 !

)
x
∑N2−1

t=0 tvt+1∏N2−1
t=0 (t!(α̃2)t)vt+1

. (C.4.1)

In addition, the PDF of γk
∗,q∗

1 is given by

f
γk∗,q∗
1

(x) =
Q

(α̃1)N1(N1 − 1)!

Q−1∑
q=0

(
Q− 1

q

)
(−1)q

q∑
w1,...,wN1

(
q!

w1! . . . wN1 !

)
1∏N1−1

t=0 (t!(α̃1)t)wt+1

xN1+
∑N1−1

t=0 twt+1−1e
−x(q+1)

α̃1 U(x). (C.4.2)
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The probability of non-zero achievable secrecy rate is given by

Pr(Cs > 0) =

∫ ∞

0
F
γmin,max
2

(x)f
γk∗,q∗
1

(x)dx

= 1− Q

(α̃1)N1(N1 − 1)!

K∑
k=0

Nk∑
m=0

Q−1∑
q=0

(
Q− 1

q

)(
K

k

)(
Nk

m

)

(−1)q+k+m
m∑

v1,...,vN2

(
m!

v1! . . . vN2 !

)
q∑

w1,...,wN1

(
q!

w1! . . . wN1 !

)
1∏N2−1

t=0 (t!(α̃2)t)vt+1

1∏N1−1
t=0 (t!(α̃1)t)wt+1

∫ ∞

0
e
−x( m

α̃2
+ q+1

α̃1
)
xÑ1−1dx (C.4.3)

which becomes (6.18).

C.5 A detailed derivation of Corollary 3

Based on (C.4.1), we first rewrite the CDF of γmin,max
2 as

F
γmin,max
2

(x) = 1 + F̃
γmin,max
2

(x), (C.5.1)

where

F̃
γmin,max
2

(x) =

K∑
k=1

Nk∑
m=1

(
K

k

)(
Nk

m

)
(−1)k+m+1e−mx/α̃2

m∑
v1,...,vN2

(
m!

v1! . . . vN2 !

)
x
∑N2−1

t=0 tvt+1∏N2−1
t=0 (t!(α̃2)t)vt+1

.

Then, the ergodic secrecy rate is derived as (C.5.2). As α̃1 → ∞, Θ1 asymptotically

becomes

Θ∞
1 = log (α̃1) +

∫ ∞

0
log

(
x1
α̃1

)
f
γk∗,q∗
1

(x1) dx1. (C.5.3)

Substituting the PDF of γk
∗,q∗

1 given in (C.4.2) into (C.5.3), and employing [140, eq.

4.352.1] given by
∫∞
0 xν−1e−µx log (x) dx = 1

µν Γ (ν)

[
ψ (ν)− log (µ)

]
, we compute (C.5.3)
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C̄s =
1

2 log(2)

∫ ∞

0

[∫ x1

0

F
γmin,max
2

(x2)

1 + x2
dx2

]
f
γk∗,q∗
1

(x1) dx1

=
1

2 log(2)

[ ∫ ∞

0
log(1 + x1)fγk∗,q∗

1
(x1)dx1︸ ︷︷ ︸

Θ1

+

∫ ∞

0

∫ x1

0

F̃
γmin,max
2

(x2)

1 + x2
f
γk∗,q∗
1

(x1)dx2dx1︸ ︷︷ ︸
Θ2

]
.

(C.5.2)

as

Θ∞
1 = log(α̃1) +

Q

(N1 − 1)!

Q−1∑
q=0

(
Q− 1

q

)
(−1)q

q∑
w1,...,wN1

(
q!

w1! . . . wN1 !
)

1∏N1−1
t=0 (t!)wt+1

Γ(N1 + L̃1)

(q + 1)N1+L̃1

[
ψ(N1 + L̃1)− log(q + 1)

]
. (C.5.4)

Changing the order of integration in Θ2, we have

Θ2 =

∫ ∞

0

F̃
γmin,max
2

(x2)

1 + x2
(1− F

γk∗,q∗
1

(x2))dx2. (C.5.5)

According to the first order expansion of the CDF of γk
∗,q∗

1 shown in (C.3.1), as α̃1 → ∞,

F
γk∗,q∗
1

(x2) ≈ 0. Hence, the asymptotic expression for Θ2 is given by

Θ∞
2 =

∫ ∞

0

F̃
γmin,max
2

(x2)

1 + x2
dx2

=

K∑
k=1

Nk∑
m=1

(
K

k

)(
Nk

m

)
(−1)k+m+1

m∑
v1,...,vN2

(
m!

v1! . . . vN2 !
)

Γ(
N2−1∑
t=0

tvt+1 + 1)∏N2−1
t=0 (t!(α̃2)

t)
vt+1

Ψ(

N2−1∑
t=0

tvt+1 + 1,

N2−1∑
t=0

tvt+1 + 1;m/α̃2). (C.5.6)

Substituting (C.5.6) and (C.5.4) into (C.5.2), we derive the asymptotic expression for

the ergodic secrecy capacity as (6.26).
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C.6 A detailed derivation of Corollary 4

In the case of α̃1 → ∞ and α̃2 → ∞ with α̃1
α̃2

= κ, the asymptotic ergodic secrecy rate

can be easily obtained based on the proof of Corollary 3 in Appendix E. We only need

to further provide an asymptotic expression for Θ∞
2 with α̃2 → ∞. Observing Θ∞

1 in

(C.5.3), an asymptotic expression for Θ∞
2 can be derived as

Θ∞
21 = − log (α̃2)−

∫ ∞

0
log

(
x2
α̃2

)
f
γmin,max
2

(x2) dx2. (C.6.1)

Substituting the PDF of γmin,max
2 in (6.8) into (C.6.1), we obtain

Θ∞
21 = − log(α̃2)− Ĉ

∑̂Γ(Ñ2)

(β̂)Ñ2
[ψ(Ñ2)− log(β̂)]. (C.6.2)

Substituting the new asymptotic expression for Θ∞
2 in (C.6.2) and (C.5.4) into (C.5.2),

we get (6.29).



Appendix D

Proof in Chapter 7

D.1 Derivation of (7.12)

We see that OPA can achieve perfect secrecy. Hence, based on (7.4) and (7.3), ESC in

(7.10) can be rewritten as

C̄s =
1

2 ln 2
(ℓ1 − ℓ2) , (D.1)

where

ℓ1 =

∫ ∞

0

∫ ∞

0
x2 ln

(
1 +

α∗µx2
α∗µ+ 2− α∗

)
fγa,r (µx2) fγr,b (x2) dµdx2 (D.2)

and

ℓ2 =

∫ ∞

0

∫ ∞

0
x2 ln

(
1 +

α∗µ

(1− α∗)

)
fγa,r (µx2) fγr,b (x2) dµdx2. (D.3)
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In addition, the PDF of γa,r and the PDF of γr,b is written as

fγa,r (x) =
xNa−1e

− x
γ̄a,r

(Na − 1)!(γ̄a,r)
Na
, (D.4)

fγr,b (x)=
1

γ̄r,b
e
− x

γ̄r,b . (D.5)

In the high SNR regime with γ0 → ∞, ℓ1 is evaluated as

ℓ1 =

∫ ∞

0

∫ ∞

0
x2 ln γ̄a,rfγa,r (µx2) fγr,b (x2) dµdx2︸ ︷︷ ︸

Υ1

+

∫ ∞

0

∫ ∞

0
x2 ln

(
α∗µ

α∗µ+ 2− α∗

)
fγa,r (µx2) fγr,b (x2) dµdx2︸ ︷︷ ︸

Υ2

+

∫ ∞

0

∫ ∞

0
x2 ln

x2
γ̄a,r

fγa,r (µx2) fγr,b (x2) dµdx2︸ ︷︷ ︸
Υ3

. (D.6)

It is easily seen that Υ1 = ln γ̄a,r. Substituting (D.4) and (D.5) into (D.6), and after

some manipulations, we obtain Υ2 as

Υ2 = Na
γ̄a,r
γ̄r,b

∫ ∞

0

µNa−1 ln
(

α∗

α∗µ+2−α∗

)
(
µ+

γ̄a,r
γ̄r,b

)(Na+1)
dµ. (D.7)

Using [140, Eq. (4.352.1)], Υ3 is derived as Υ3 = ψ (Na).

Substituting Υ1, Υ2 and Υ3 into (D.6), we first obtain ℓ1. Then, ℓ2 can be evaluated

as

ℓ2 = Na
γ̄a,r
γ̄r,b

∫ ∞

0

µNa−1 ln
(
1 + α∗µ

(1−α∗)

)
(
µ+

γ̄a,r
γ̄r,b

)(Na+1)
dµ. (D.8)

Plugging ℓ1, ℓ2, and the OPA factor given by (7.8) into (D.1), and after some manipu-

lations, we arrive at the desired result shown in (7.12).
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Proofs in Chapter 8

E.1 Proof of Lemma 1

From (8.1), the CDF of γap is given by

Fγap (γth) =

∫ ∞

0
Pr

[
∥hs0,ap0∥

2r−α

Inap + δ2
/
Ps

≤ γth

]
f|Xs0,ap0 | (r) dr

=

∫ ∞

0
Pr

[
∥hs0,ap0∥

2r−α

Inap + δ2
/
Ps

≤ γth

]
2πλap

(1− ρap) r exp
(
−πλap (1− ρap) r

2
)
dr, (E.1.1)

where f|Xs0,ap0 | (r) is the PDF of the nearest distance between the relay and the typical

sensor. The CDF of the relay SINR at distance r from its corresponding sensor is given
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as

Pr

[
∥hs0,ap0∥

2r−α

Inap + δ2
/
Ps

≤ γth

]
=EΦs,a

{
EΦap,a

{
Pr

[
∥hs0,ap0∥

2.

≤ γthr
α
(
Inap + δ2

/
Ps

)∣∣Φs,a,Φap,a

]}}

= 1−
M−1∑
m=0

1

m!
EΦs,a

{
EΦap,a

{∫ ∞

0

[
γthr

α
(
τ + δ2

/
Ps

)]m
exp

[
−γthrα

(
τ + δ2

/
Ps

)]
dPr (Inap ≤ τ)

}}
(E.1.2)

We then substitute
(
−
(
τ + δ2

/
Ps

)
γth
)m
e−(τ+δ2/Ps)γ{s}

th rα =
dm

(
e
−γthx(τ+δ2/Ps)

)
dxm

∣∣∣∣∣∣
x=rα

into (E.1.2), we rewrite the CDF of the relay SINR at distance r from its corresponding

sensor as

Pr

[
∥hs0,ap0∥

2r−α

Inap + δ2
/
Ps

≤ γth

]
=1−EΦs,a

{
EΦap,a

{
∫ ∞

0
exp

[
−γthrα

(
τ + δ2

/
Ps

)]
dPr (Inap ≤ τ)

}}

−
M−1∑
m=1

(rα)m

m!(−1)m
EΦs,a

EΦap,a


∫ ∞

0

dm
(
e−γthx(τ+δ2/Ps)

)
dxm

∣∣∣∣∣∣
x=rα

dPr (Inap ≤ τ)




= 1− exp
(
−γthrαδ2

/
Ps

)
LInap (γthr

α)

−
M−1∑
m=1

(rα)m

m!(−1)m
dm
(
exp

(
−γthxδ2

/
Ps

)
LInap (γthx)

)
dxm

∣∣∣∣∣
x=rα

. (E.1.3)

Remind that Is,ap =
∑

i∈Φs,a\{s0}

∣∣∣∣ hs0,ap0
†

∥hs0,ap0∥
hi,ap0

∣∣∣∣2|Xi,ap0 |
−α, using Slivnyak’s theorem,
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the Laplace transform of Is,ap is

LIs,ap (s) = EΦs

exp
−s

∑
i∈Φs,a\{s0}

∣∣∣∣∣ hs0,ap0
†

∥hs0,ap0∥
hi,ap0

∣∣∣∣∣
2

|Xi,ap0 |
−α




(a)
= exp

{
−2πλsρs

∫ ∞

0

(
1− L hs0,ap0

†

∥hs0,ap0∥
hi,ap0

(
sy−α

))
ydy

}
(b)
= exp

{
−2πλsρs

∫ ∞

0

(
1− 1

1 + sy−α

)
ydy

}
= exp

{
−λsρsπΓ (1 + 2/α) Γ (1− 2/α) s2/α

}
, (E.1.4)

In (E.1.4), (a) follows from the generating functional of HPPP in [89], (b) follows from

the fact that

∣∣∣∣ hs0,ap0
†

∥hs0,ap0∥
hi,ap0

∣∣∣∣2 ∼ exp (1).

Since Iap,ap = µ
∑

j∈Φap,a\{ap0}

∣∣∣∣∣ hs0,ap0
†

∥hs0,ap0∥
Hj,ap0

hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

|Xj,ap0 |
−α

= µ
∑

j∈Φap\{ap0}H
ap,ap
j |Xj,ap0 |

−α, the Laplace transform of Iap,ap is

LIap,ap (s)
(c)
= exp

(
−
∫ ∞

0

[
1−Eh

(
exp

(
−sµHap,ap

j y−α
))]

λapρap2πydy

)
= exp

{
−λapρapπµ

2
αEh

{(
Hap,ap

j

) 2
α

}
Γ

(
1− 2

α

)
s

2
α

}
(d)
= exp

{
−λapρapπµ

2
αΓ (1 + 2/α) Γ (1− 2/α) s2/α

}
, (E.1.5)

where (c) follows from the generating functional of HPPP in [89], (d) follows from

Hap,ap
j ∼ exp (1).

With the Laplace transform of Is,ap and Iap,ap, we derive the Laplace transform of

Inap as

LInap (s) = LIs,ap (s)LIap,ap (s)

= exp
{
−
(
λsρs + λapρapµ

2
α

)
πΓ (1 + 2/α) Γ (1− 2/α) s2/α

}
. (E.1.6)
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Substituting (E.1.6) into (E.1.3), we obtain

Pr

[
∥hs0,ap0∥

2r−α

Inap + δ2
/
Ps

≤ γth

]
= 1− exp

{
−
(
λsρs + λapρapµ

2
α

)
πΓ (1 + 2/α) Γ (1− 2/α) (γth)

2/αr2−γthrαδ2
/
Ps

}
−

M−1∑
m=1

(rα)m

m!(−1)m
dm (V (x))

dxm

∣∣∣∣
x=rα

, (E.1.7)

where V (x) = exp
{
−
(
λsρs + λapρapµ

2
α

)
πΓ (1 + 2/α) Γ (1− 2/α) (γthx)

2/α − γthxδ
2
/
Ps

}
.

We then apply the Faà di Bruno’s formula to solve the derivative of mth order as

follows:

Pr

[
∥hs0,ap0∥

2r−α

Inap + δ2
/
Ps

≤ γth

]
= 1− exp

{
−
(
λsρs + λapρapµ

2
α

)
πΓ (1 + 2/α) Γ (1− 2/α)(γth)

2/αr2 − γthr
αδ2
/
Ps

}
−

M−1∑
m=1

(rα)m

(−1)m
∑ 1

m∏
l=1

ml!l!ml

exp

{
−
(
λsρs + λapρapµ

2/α
)

πΓ (1 + 2/α) Γ (1− 2/α)(γth)
2/αr2 − γthr

αδ2
/
Ps

}
[
−2/α

(
λsρs + λapρapµ

2/α
)
πΓ (1 + 2/α) Γ (1− 2/α)

(γth)
2
α r(2−α)−γthδ2

/
Ps

]m1 m∏
l=2

[
−
(
λsρs + λapρapµ

2/α
)

πΓ (1 + 2/α) Γ (1− 2/α) (γth)
2
α

l−1∏
j=0

(2/α− j) r2−lα

]ml

(E.1.8)

Substituting (E.1.8) into (E.1.1),we derive the CDF of γap in (8.6).



Appendix E. Proofs in Chapter 8 166

E.2 Proof of Lemma 2

From (8.2), the CDF of γs,e is given by

Fγs,e (γth) = Pr

 max
ek∈Φs,e


|hs0,ek |

2|Xs0,ek |
−α

Ins,e + δ2
/
Ps

 ≤ γth


= EΦs,a

EΦap,a

EΦs,e


∏

ek∈Φs,e

Pr


|hs0,ek |

2|Xs0,ek |
−α

Ins,e + δ2
/
Ps

≤ γth

∣∣∣∣∣∣∣∣Φs,a,Φap,a,Φs,e






= EΦs,a

EΦap,a

EΦs,e


∏

ek∈Φs,e

(1−
∫ ∞

0
e−(τ+δ2/Ps)γth|Xs0,ek |

α

dPr (Ins,e ≤ τ)

)



= EΦs,e


∏

ek∈Φs,e

(
1− e−δ2γth|Xs0,ek |

α
/PsLIns,e (γth|Xs0,ek |

α)
)

(a)
= exp

{
−λse

∫
R2

e−δ2γth|Xs0,ek |
α
/PsLIns,e (γth|Xs0,ek |

α) d |Xs0,ek |
}

(b)
= exp

{
−2πλse

∫ ∞

0
e−δ2γthr

α/PsLIns,e (γthr
α) rdr

}
, (E.2.1)

where (a) follows from the generating functional of HPPP in [89], (b) is obtained by

converting cartesian coordinates to polar coordinates.

Using the generating functional of HPPP in [89], |hi,ek |
2 ∼ exp (1), and Hap,e

j =∣∣∣∣∣hj,ek

hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

∼ exp (1), we derive the Laplace transform of Is,e and Iap,e as

LIs,e (s) = exp

(
−
∫ ∞

0

[
1−Eh

(
exp

(
−s|hi,ek |

2y−α
))]

λsρs2πydy

)
= exp

{
−λsρsπΓ (1 + 2/α) Γ (1− 2/α) s2/α

}
, (E.2.2)
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and

LIap,e (s) = exp

(
−
∫ ∞

0

[
1−Eh

(
exp

(
−sµHap,e

j y−α
))]

λapρap2πydy

)
= exp

{
−λapρapπµ

2
αEh

{(
Hap,e

j

) 2
α

}
Γ (1− 2/α) s2/α

}
= exp

{
−λapρapπµ

2
αΓ (1 + 2/α) Γ (1− 2/α) s2/α

}
, (E.2.3)

respectively.

With the Laplace transform of Is,e and Iap,e, we derive the Laplace transform of Ins,e

as

LIns,e (s) = exp
{
−λsρsπΓ (1 + 2/α) Γ (1− 2/α) s2/α − λap

ρapπµ
2/αΓ (1 + 2/α) Γ (1− 2/α) s2/α

}
. (E.2.4)

Substituting (E.2.4) into (E.4.1), we derive the CDF of γs,e in (8.7).

E.3 Proof of Lemma 3

From (8.3), the CDF of γsk is given by

Fγsk (γth) =

∫ ∞

0
Pr

 ∥gap0,sk0∥
2r−β

Inap,sk + δ2
/
Pap

≤ γth

f|Xap0,sk0 | (r) dr

=

∫ ∞

0
Pr

 ∥gap0,sk0∥
2r−β

Inap,sk + δ2
/
Pap

≤ γth

2πλskr exp (−πλskr2) dr. (E.3.1)

where f|Xap0,sk0 | (r) is the PDF of the nearest distance between the sink and the typical

relay.
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The CDF of the sink SINR at distance r from its corresponding relay is derived as

Pr

 ∥gap0,sk0∥
2r−β

Inap,sk + δ2
/
Pap

≤ γth

 = EΦap,a

{
Pr

[
∥gap0,sk0∥

2 ≤γthrβ
(
Inap,sk + δ2

/
Pap

)∣∣∣Φap,a

]}

= 1−
M−1∑
m=0

1

m!
EΦap,a

{∫ ∞

0

[
γthr

β
(
τ + δ2

/
Pap

)]m
exp

[
−γthrβ

(
τ + δ2

/
Pap

)]
dPr (Inap,sk ≤ τ)

}
. (E.3.2)

Note that
(
−
(
τ + δ2

/
Pap

)
γth
)m
e−(τ+δ2/Pap)γ{s}

th rβ =
dm

(
e
−γthx(τ+δ2/Pap)

)
dxm

∣∣∣∣∣∣
x=rβ

, we

rewrite (E.3.2) as

Pr

 ∥gap0,sk0∥
2r−β

Inap,sk + δ2
/
Pap

≤ γth

 = 1−EΦap,a

{∫ ∞

0
exp

[
−γthrβ

(
τ + δ2

/
Pap

)]
dPr (Inap,sk ≤ τ)

}

−
M−1∑
m=1

(
rβ
)m

m!(−1)m
EΦap,a


∫ ∞

0

dm
(
e−γthx(τ+δ2/Pap)

)
dxm

∣∣∣∣∣∣
x=rβ

dPr (Inap,sk ≤ τ)


= 1− exp

(
−γthrβδ2

/
Pap

)
LInap,sk

(
γthr

β
)
−

M−1∑
m=1

(
rβ
)m

m!(−1)m

dm
(
exp

(
−γthxδ2

/
Pap

)
LInap,sk

(γthx)
)

dxm

∣∣∣∣∣
x=rβ

. (E.3.3)

Since Inap,sk =
∑

j∈Φap,a\{ap0}

∣∣∣∣∣gj,sk0 hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

|Xj,sk0 |
−β , using the generating functional

of HPPP and

∣∣∣∣∣gj,sk0 hj,skj
†∥∥∥hj,skj

∥∥∥
∣∣∣∣∣
2

∼ exp (1) , we derive the Laplace transform of Inap,sk as

LInap,sk
(s) = exp

{
−λapρapπΓ (1 + 2/β) Γ (1− 2/β) s2/β

}
. (E.3.4)
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Substituting (E.3.4) into (E.3.3), we obtain

Pr

 ∥gap0,sk0∥
2r−β

Inap,sk + δ2
/
Pap

≤ γth

 = 1− exp

{
−λapρapπΓ (1 + 2/β)

Γ (1− 2/β) (γth)
2/βr2 − γthr

βδ2
/
Pap

}
−

M−1∑
m=1

(
rβ
)m

m!(−1)m
dm (U (x))

dxm

∣∣∣∣
x=rβ

, (E.3.5)

where U (x) = exp

{
−λapρapπΓ (1 + 2/β) Γ (1− 2/β) (γthx)

2/β − γthxδ
2
/
Pap

}
.

We then apply the Faà di Bruno’s formula to solve the derivative of mth order as

follows:

dm [exp (U (x))]

dxm

∣∣∣∣
x=rβ

=
∑ 1

m∏
l=1

ml!l!ml

exp

{
−λapρapπ

Γ (1 + 2/β) Γ (1− 2/β) (γth)
2/βr2 − γthr

βδ2
/
Pap

}[
− λap

ρapπ
2

β
Γ (1 + 2/β) Γ (1− 2/β) (γth)

2/βx2/β−1 − γthδ
2
/
Pap

]m1

m∏
l=2

[
− λapρapπΓ (1 + 2/β) Γ (1− 2/β) (γth)

2/β
l−1∏
j=0

(2/β − j)x2/β−l

]ml

. (E.3.6)

Based on (E.3.6), (E.3.5), and (E.3.1), we derive the CDF of γsk in (8.11).
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E.4 Proof of Lemma 4

From (8.4), the CDF of γap,e is given by

Fγs,e (γth) = EΦap,a

EΦap,e


∏

ek∈Φap,e

Pr

{
|gap0,ek |

2

Inap,e + σ2
/
Pap

|Xap0,ek |
−β ≤ γth

∣∣∣∣∣∣∣∣Φap,a,Φap,e




= EΦap,a

EΦap,e


∏

ek∈Φap,e

(
1−

∫ ∞

0
e−(τ+σ2/Pap)γth|Xap0,ek |

β

dPr (Inap,e ≤ τ))




= EΦap,e

{ ∏
ek∈Φap,e

(
1− e

−σ2γth|Xap0,ek |
β
/
Pap LInap,e

(
γth|Xap0,ek |

β
))}

(a)
= exp

{
−λape

∫
R2

e
−σ2γth|Xap0,ek |

β
/
PapLInap,e

(
γth|Xap0,ek |

β

)
d |Xap0,ek |

}
(b)
= exp

{
−2πλape

∫ ∞

0
e−σ2γthr

β/PapLInap,e

(
γthr

β
)
rdr

}
, (E.4.1)

where (a) follows from the generating functional of HPPP in [89], (b) is obtained by

converting cartesian coordinates to polar coordinates.

Using the generating functional of HPPP in [89], we derive the Laplace transform of

Iap,e as

LIap,e (s) = exp
{
−λapρapπΓ (1 + 2/β) Γ (1− 2/β) s2/β

}
. (E.4.2)

Plugging (E.4.2) into (E.4.1), we derive the CDF of γs,e in (8.12).
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