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Abstract

The non-linear stability of the sub-extremal Schwarzschild-de Sitter spacetime in the
stationary region near the conformal boundary is analysed using a technique based on the
extended conformal Einstein field equations and a conformal Gaussian gauge. This strategy
relies on the observation that the Cosmological stationary region of this exact solution can be
covered by a non-intersecting congruence of conformal geodesics. Thus, the future domain of
dependence of suitable spacelike hypersurfaces in the Cosmological region of the spacetime
can be expressed in terms of a conformal Gaussian gauge. A perturbative argument then
allows to prove existence and stability results close to the conformal boundary and away from
the asymptotic points where the Cosmological horizon intersects the conformal boundary. In
particular, we show that small enough perturbations of initial data for the sub-extremal
Schwarzschild-de Sitter spacetime give rise to a solution to the Einstein field equations which
is regular at the conformal boundary. The analysis in this article can be regarded as a first
step towards a stability argument for perturbation data on the Cosmological horizons.

1 Introduction

One of the key problems in mathematical General Relativity is that of the non-linear stability of
black hole spacetimes. This problem is challenging for its mathematical and physical features.
Most efforts to establish the non-linear stability of black hole spacetimes in both the asymptot-
ically flat and Cosmological setting have, so far, relied on the use of vector field methods —see
e.g. [4].

The results in [6, 7, 27] show that the conformal Einstein field equations are a powerful tool for
the analysis of the stability of vacuum asymptotically simple spacetimes. They provide a system
of field equations for geometric objects defined on a four-dimensional Lorentzian manifold (M, g),
the so-called unphysical spacetime, which is conformally related to a spacetime (M̃, g̃), the so-
called physical spacetime, satisfying the Einstein field equations. The usefulness of the conformal
transformation relies on the fact that global problems for the physical spacetimes are recasted
as local existence problems for the unphysical spacetime. The conformal Einstein field equations
constitute a system of differential conditions on the curvature tensors with respect to the Levi-
Civita connection of g and the conformal factor Ξ. The original formulation of the equations,
see e.g. [5], requires the introduction of so-called gauge source functions to construct evolution
equations. An alternative approach to gauge fixing is to adapt the analysis to a congruence of
curves. A natural candidate for a congruence is given by conformal geodesics —a conformally
invariant generalisation of the standard notion of geodesics. Using these curves to fix the gauge
allows to define a conformal Gaussian system. To combine this gauge choice with the conformal
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Einstein field equations it is necessary to make use of a more general version of the latter —
the extended conformal Einstein field equations. The extended conformal field equations have
been used to obtain an alternative proof of the semiglobal non-linear stability of the Minkowski
spacetime and of the global non-linear stability of the de Sitter spacetime —see [20].

In view of the success of conformal methods to analyse the global properties of asymptotically
simple spacetimes, it is natural to ask whether a similar strategy can be used to study the non-
linear stability of black hole spacetimes. This article gives a first step in this direction by analysing
certain aspects of the conformal structure of the sub-extremal Schwarzschild-de Sitter spacetime
which can be used, in turn, to adapt techniques from the asymptotically simple setting to the
black hole case.

The Schwarzschild-de Sitter spacetime. The Schwarzschild-de Sitter spacetime is a spheri-
cally symmetric solution to the vacuum Einstein field equations with Cosmological constant. This
spacetime depends on the de Sitter-like value of the Cosmological constant λ and on the massm of
the black hole. Assuming spherical symmetry almost completely singles out the Schwarzschild-de
Sitter spacetimes among the vacuum solutions to the Einstein field equations with de Sitter-like
Cosmological constant. The other admissible solution is the Nariai spacetime —see e.g. [26].
In the Schwarzschild-de Sitter spacetime, the relation between the mass and the Cosmological
constant determines the location of the Cosmological and black hole horizons —see e.g. [14].

The Schwarzschild-de Sitter spacetime solution can be studied by means of the extended
conformal Einstein field equations —see [13]. This is in fact a spacetime with a smooth conformal
extension towards the future (or past). Since the cosmological constant takes a de Sitter-like value,
the conformal boundary of the spacetime is spacelike and moreover, there exists a conformal
representation in which the induced 3-metric on the conformal boundary I is homogeneous.
Thus, it is possible to integrate the extended conformal field equations along single conformal
geodesics —see [12].

In this article, we analyse the sub-extremal Schwarzschild-de Sitter spacetime as a solution
to the extended conformal Einstein field equations and use the insights to prove existence and
stability results.

The main result. The metric of the Schwarzschild-de Sitter spacetime can be expressed in
standard coordinates by the line element

˚̃g = −
(
1− 2m

r
− λ

3
r2
)
dt⊗ dt+

(
1− 2m

r
− λ

3
r2
)−1

dr ⊗ dr + r2σ. (1)

In this article we restrict our attention to a choice of the parameters λ and m for which the
exact solution is sub-extremal —see Section 3 for a definition of this notion. The sub-extremal
Schwarzschild-de Sitter spacetime has three horizons. Of particular interest for our analysis is
the Cosmological horizon which bounds a region (the Cosmological region) of the spacetime in
which the roles of the coordinates t and r reversed. In analogy to the de Sitter spacetime,
the Cosmological region has an asymptotic region admitting a smooth conformal extension with
spacelike conformal boundary. In the following, our analysis will be solely concerned with the
Cosmological region.

The analysis of the conformal properties of the Schwarzschild-de Sitter spacetime allows us to
formulate a result concerning the existence of solutions to the initial value problem for the Einstein
field equations with de Sitter-like cosmological constant which can be regarded as perturbations of
portions of the initial hypersurface at S⋆ ≡ {r = r⋆} in the Cosmological region of the spacetime.
In this region these hypersurfaces are spacelike and the coordinate t is spatial. In the following, let
R• denote finite cylinder within S⋆ for which |t| < t• for some suitable positive constant t•. Let
D+(R•) denote the future domain dependence of R•. For the Schwarzschild-de Sitter spacetime
such a region is unbounded towards the future and admits a smooth conformal extension with a
spacelike conformal boundary.

Our main result can be stated as:

Theorem. Given smooth initial data (h̃, K̃) for the vacuum Einstein field equations on R• ⊂ S⋆

which is suitably close (as measured by a suitable Sobolev norm) to the data implied by the metric
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(1) in the Cosmological region of the spacetime, there exists a smooth metric g̃ defined over the
whole of D+(R•) which is close to ˚̃g, solves the vacuum Einstein field equations with positive
Cosmological constant and whose restriction to R• implies the initial data (h̃, K̃). The metric g̃
admits a smooth conformal extension which includes a spacelike conformal boundary.

A detailed version of this theorem will be given in Section 6.

Observe that the above result is restricted to the future domain of dependence of a suitable
portion R• of the spacelike hypersurface S⋆. The reason for this restriction is the degeneracy of
the conformal structure at the asymptotic points of the Schwarzschild-de Sitter spacetime where
the conformal boundary, the Cosmological horizon and the singularity seem to “meet” —see
[13]. In particular, at these points the background solution experiences a divergence of the Weyl
curvature. This singularity is remarkably similar to that produced by the ADM mass at spatial
infinity in asymptotically flat spacetimes —see e.g. [27], chapter 20. It is thus conceivable that
an approach analogous to that used in the analysis of the problem of spatial infinity in [9] may
be of help to deal with this singular behaviours of the conformal structure.

The ultimate aim of the programme started in this article is to obtain a proof of the stability
of the Schwarzschild-de Sitter spacetime for data prescribed on the Cosmological horizon. Key to
this end is the observation that the hypersurfaces of constant coordinate r, S⋆, can be chosen to
be arbitrarily close to the horizon. As such, an adaptation of the optimal local existence results
for the characteristic initial value problem developed in [21] —see also [15]— should allow to
evolve from the Cosmological horizon to a hypersurface S⋆. These ideas will be developed in a
subsequent article.

It should be stressed that the spacetimes obtained as a result of our perturbative analysis
are dynamic —in the sense that, generically, they will not have Killing vectors. This is a conse-
quence of the fact that initial data sets for the Einstein field equations admitting solutions to the
Killing initial data (KID) equations are non-generic —see e.g. [1]. Whether it is possible to use
conformal Gaussian systems to describe more generic, dynamic, black hole spacetimes (in both
the asymptotically flat and Cosmological setting) is an interesting and challenging open question
which would benefit from the input of numerical simulations.

Other approaches. The non-linear stability of the Schwarzschild-de Sitter spacetime has been
studied by means of the vector field methods that have proven so successful in the analysis of
asymptotically flat black holes —see e.g. [23, 24, 25]. An alternative approach has made use
of methods of microlocal analysis in the steps of Melrose’s school of geometric scattering —see
[16, 17]. The methods developed in the present article aim at providing a complementary approach
to the non-linear stability of this Cosmological black hole spacetime. The interrelation between
the results obtained in this article and those obtained by vector field methods and microlocal
analysis will be discussed elsewhere.

Outline of the article

This article is organised as follows. In Section 2 we provide a succinct discussion of the tools of
conformal geometry that will be used in our analysis —the extended conformal Einstein equations
and conformal geodesics. Moreover, it also discusses the notion of a conformal Gaussian gauge
and provides a hyperbolic reduction of the extended conformal equations in terms of this type of
gauge. Section 3 summarises the general properties of the Schwarzschild-de Sitter spacetime that
will be used in our constructions. Section 4 describes the construction of a suitable conformal
Gaussian gauge system starting from data prescribed on hypersurfaces of constant coordinate r on
the Cosmological region of the Schwarzschild-de Sitter spacetime. Section 5 provides a discussion
of the key properties of the Schwarzschild-de Sitter spacetime in the conformal Gaussian gauge
of Section 4. The main existence and stability results of this article are presented in Section 6.
We conclude the article with some conclusions and outlook in Section 7.
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Notations and conventions

In what follows, the low-case Latin letters a, b, c . . . will denote spacetime abstract tensorial
indices, while i, j, k, . . . are spatial tensorial indices ranging from 1 to 3. By contrast, the low-
case Greek letters µ, ν, λ, . . . and α, β, γ, . . . will correspond, respectively, to spacetime and spatial
coordinate indices. Boldface Latin letters a, b, c, . . . will be used as frame indices.

The signature convention for spacetime metrics is (−,+,+,+). Thus, the induced metrics on
spacelike hypersurfaces are positive definite.

An index-free notation will be often used. Given a 1-form ω and a vector v, we denote
the action of ω on v by ⟨ω,v⟩. Furthermore, ω♯ and v♭ denote, respectively, the contravariant
version of ω and the covariant version of v (raising and lowering of indices) with respect to a
given Lorentzian metric. This notation can be extended to tensors of higher rank (raising and
lowering of all the tensorial indices).

The conventions for the curvature tensors will be fixed by the relation

(∇a∇b −∇b∇a)v
c = Rc

dabv
d.

2 Tools of conformal geometry

The purpose of this section is to provide a brief summary of the technical tools of conformal
geometry that will be used in the analysis of the stability of the Cosmological region of the
Schwarzschild-de Sitter spacetime. Full details and proofs can be found in [27].

2.1 The extended conformal Einstein field equations

The main technical tool of this article are the extended conformal Einstein field equations —see
[8, 9]; also [27]. This system of equations constitute a conformal representation of the vacuum
Einstein field equations written in terms of Weyl connections. These field equations are formally
regular at the conformal boundary. Moreover, a solution to the extended conformal equations
implies, in turn, a solution to the vacuum Einstein field equations away from the conformal bound-
ary. In this section, we provide a brief discussion of this system geared towards the applications
of this article. A derivation and further discussion of the general properties of these equations
can be found in [27], Chapter 8.

Throughout this article let (M̃, g̃) with M̃ a 4-dimensional manifold and g̃ a Lorentzian metric
denote a vacuum spacetime satisfying the Einstein field equations with Cosmological constant

R̃ab = λg̃ab. (2)

Let g denote an unphysical Lorentzian metric conformally related to g̃ via the relation

g = Ξ2g̃

with Ξ a suitable conformal factor. Let ∇a and ∇̃a denote, respectively, the Levi-Civita con-
nections of the metrics g and g̃. The set of points for which Ξ = 0 is called the conformal
boundary.

2.1.1 Weyl connections

A Weyl connection is a torsion-free connection ∇̂a such that

∇̂agbc = −2fagbc.

It follows from the above that the connections ∇a and ∇̂a are related to each other by

∇̂av
b −∇av

b = Sac
bdfdv

c, Sac
bd ≡ δa

bδc
d + δa

dδc
b − gacg

bd, (3)

where fa is a fixed smooth covector and va is an arbitrary vector. Given that

∇av
b − ∇̃av

b = Sac
bd(Ξ−1∇aΞ)v

c,
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one has that
∇̂av

b − ∇̃av
b = Sac

bdβdv
c, βd ≡ fd + Ξ−1∇dΞ.

In the following, it will be convenient to define

da ≡ Ξfa +∇aΞ. (4)

In the following R̂a
bcd and L̂ab will denote, respectively, the Riemann tensor and Schouten

tensor of the Weyl connection ∇̂a. Observe that for a generic Weyl connection one has that
L̂ab ̸= L̂ba. One has the decomposition

R̂c
dab = 2Sd[a

ceL̂b]e + Cc
dab,

where Cc
dab denotes the conformally invariant Weyl tensor. The (vanishing) torsion of ∇̂a will

be denoted by Σa
c
b. In the context of the conformal Einstein field equations it is convenient to

define the rescaled Weyl tensor dcdab via the relation

dcdab ≡ Ξ−1Cc
dab.

2.1.2 A frame formalism

Let {ea}, a = 0, . . . ,3 denote a g-orthogonal frame with associated coframe {ωa}. Thus, one
has that

g(ea, eb) = ηab, ⟨ωa, eb⟩ = δb
a.

Given a vector va, its components with respect to the frame {ea} are denoted by va. Let Γa
c
b

and Γ̂a
c
b denote, respectively, the connection coefficients of ∇a and ∇̂a with respect to the frame

{ea}. It follows then from equation (3) that

Γ̂a
c
b = Γa

c
d + Sab

cdfd.

In particular, one has that

fa =
1

4
Γ̂a

b
b.

Denoting by ∂a ≡ ea
µ∂µ the directional partial derivative in the direction of ea, it follows then

that

∇aT
b
c ≡ ea

aωb
bω

c
c(∇aT

b
c),

= ∂aT
b
c + Γa

b
dT

d
c − Γa

d
cT

b
d,

with the natural extensions for higher rank tensors and other covariant derivatives.

2.1.3 The frame version of the extended conformal Einstein field equations

In this article, we will make use of a frame version of the extended conformal Einstein field
equations. In order to formulate these equations it is convenient to define the following zero-
quantities:

Σa
c
bec ≡ [ea, eb]− (Γ̂a

c
b − Γ̂b

c
a)ec, (5a)

Ξc
dab ≡ Rc

dab − ρcdab, (5b)

∆cdb ≡ ∇̂cL̂db − ∇̂dL̂cb − dad
a
bcd, (5c)

Λbcd ≡ ∇̂ad
a
bcd − fad

a
bcd, (5d)

where the components of the geometric curvature R̂c
dab and the algebraic curvature ρ̂cdab are

given, respectively, by

Rc
dab ≡ ∂a(Γ̂b

c
d)− ∂b(Γ̂a

c
d) + Γ̂f

c
d(Γ̂b

f
a − Γ̂a

f
b) + Γ̂b

f
dΓ̂a

c
f − Γ̂a

f
dΓ̂b

c
f ,

ρcdab ≡ Ξd̂cdab + 2Sd[a
ceL̂b]e,
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where L̂ab and dcdab denote, respectively, the components of the Schouten tensor of ∇̂a and the
rescaled Weyl tensor with respect to the frame {ea}. In terms of the zero-quantities (5a)-(5d),
the extended vacuum conformal Einstein field equations are given by the conditions

Σa
c
bec = 0, Ξc

dab = 0, ∆cdb = 0, Λbcd = 0. (6)

In the above equations the fields Ξ and da —cfr. (4)— are regarded as conformal gauge fields
which are determined by supplementary conditions. In the present article these gauge conditions
will be determined through conformal geodesics —see Subsection 2.2 below. In order to account
for this it is convenient to define

δa ≡ da − Ξfa − ∇̂aΞ, (7a)

γab ≡ L̂ab − ∇̂a(Ξ
−1db)−

1

2
Ξ−1Sab

cddcdd +
1

6
λΞ−2ηab, (7b)

ςab ≡ L̂[ab] − ∇̂[afb]. (7c)

The conditions
δa = 0, γab = 0, ςab = 0, (8)

will be called the supplementary conditions. They play a role in relating the Einstein field equa-
tions to the extended conformal Einstein field equations and also in the propagation of the con-
straints.

The correspondence between the Einstein field equations and the extended conformal Einstein
field equations is given by the following —see Proposition 8.3 in [27]:

Lemma 1. Let
(ea, Γ̂a

b
c, L̂ab, d

a
bcd)

denote a solution to the extended conformal Einstein field equations (6) for some choice of the
conformal gauge fields (Ξ, da) satisfying the supplementary conditions (8). Furthermore, suppose
that

Ξ ̸= 0, det(ηabea ⊗ eb) ̸= 0

on an open subset U . Then the metric

g̃ = Ξ−2ηabω
a ⊗ ωb

is a solution to the Einstein field equations (21) on U .

2.1.4 The conformal constraint equations

The analysis in this article will make use of the conformal constraint Einstein equations —i.e.
the intrinsic equations implied by the (standard) vacuum conformal Einstein field equations on
a spacelike hypersurface. A derivation of these equations in its frame form can be found in [27],
Section 11.4.

Let S denote a spacelike hypersurface in an unphysical spacetime (M, g). In the following let
{ea} denote a g-orthonormal frame adapted to S. That is, the vector e0 is chosen to coincide
with the unit normal vector to the hypersurface and while the spatial vectors {ei}, i = 1, 2, 3
are intrinsic to S. In our signature conventions we have that g(e0, e0) = −1. The extrinsic
curvature is described by the components χij of the Weingarten tensor. One has that χij = χji

and, moreover
χij = −Γi

0
j .

We denote by Ω the restriction of the spacetime conformal factor Ξ to S and by Σ the normal
component of the gradient of Ξ. The field lij denotes the components of the Schouten tensor of
the induced metric hij on S.
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With the above conventions, the conformal constraint equations in the vacuum case are given
by —see [27]:

DiDjΩ = Σχij − ΩLij + shij , (9a)

DiΣ = χi
kDkΩ− ΩLi, (9b)

Dis = LiΣ− LikD
kΩ, (9c)

DiLjk −DjLik = Σdkij +DlΩdlkij − (χikLj − χjkLi), (9d)

DiLj −DjLi = DlΩdlij + χi
kLjk − χj

kLik, (9e)

Dkdkij = −(χk
idjk − χk

jdik), (9f)

Didij = χikdijk, (9g)

λ = 6Ωs+ 3Σ2 − 3DkΩD
kΩ, (9h)

Djχki −Dkχji = Ωdijk + hijLk − hikLj , (9i)

lij = Ωdij + Lij − χ(χij −
1

4
χhij) + χkiχj

k − 1

4
χklχ

klhij , (9j)

with the understanding that
hij ≡ gij = δij

and where we have defined

Li ≡ L0i, dij ≡ d0i0j , dijk ≡ di0jk.

The fields dij and dijk correspond, respectively, to the electric and magnetic parts of the rescaled
Weyl tensor. The scalar s denotes the Friedrich scalar defined as

s ≡ 1

4
∇a∇aΞ +

1

24
RΞ,

with R the Ricci scalar of the metric g. Finally, Lij denote the spatial components of the Schouten
tensor of g.

2.2 Conformal geodesics

The gauge to be used to analyse the dynamics of perturbations of the Schwarzschild-de Sit-
ter spacetime is based on certain conformally invariant objects known as conformal geodesics.
Conformal geodesics allow the use of conformal Gaussian systems in which a certain canonical
conformal factor gives an a priori (coordinate) location of the conformal boundary. This is in
contrast with other conformal gauges in which the conformal factor is an unknown.

2.2.1 Basic definitions

A conformal geodesic on a spacetime (M̃, g̃) is a pair (x(τ),β(τ)) consisting of a curve x(τ)
on M̃, τ ∈ I ⊂ R, with tangent ẋ(τ) and a covector β(τ) along x(τ) satisfying the equations

∇̃ẋẋ = −2⟨β, ẋ⟩ẋ+ g̃(ẋ, ẋ)β♯, (10a)

∇̃ẋβ = ⟨β, ẋ⟩β − 1

2
g̃♯(β,β)ẋ♭ + L̃(ẋ, ·), (10b)

where L̃ denotes the Schouten tensor of the Levi-Civita connection ∇̃. A vector v is said to be
Weyl propagated if along x(τ) it satisfies the equation

∇̃ẋv = −⟨β,v⟩ẋ− ⟨β, ẋ⟩v + g̃(v, ẋ)β♯. (11)
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2.2.2 The conformal factor associated to a congruence of conformal geodesics

A congruence of conformal geodesics can be used to single out a metric g ∈ [g̃] by means of a
conformal factor Θ such that

g(ẋ, ẋ) = −1, g = Θ2g̃. (12)

From the above conditions, it follows that

Θ̇ = ⟨β, ẋ⟩Θ.

Taking further derivatives with respect to τ and using the conformal geodesic equations (10a)-
(10b) together with the Einstein field equations (21) leads to the relation

...
Θ = 0.

From the latter it follows the following result:

Lemma 2. Let (M̃, g̃) denote an Einstein spacetime. Suppose that (x(τ),β(τ)) is a solution to
the conformal geodesic equations (10a)-(10b) and that {ea} is a g-orthonormal frame propagated
along the curve according to equation (11). If Θ satisfies (12), then one has that

Θ(τ) = Θ⋆ + Θ̇⋆(τ − τ⋆) +
1

2
Θ̈⋆(τ − τ⋆)

2, (13)

where the coefficients

Θ⋆ ≡ Θ(τ⋆), Θ̇⋆ ≡ Θ̇(τ⋆) Θ̈⋆ ≡ Θ̈⋆(τ⋆)

are constant along the conformal geodesic and are subject to the constraints

Θ̇⋆ = ⟨β⋆, ẋ⋆⟩Θ⋆, Θ⋆Θ̈⋆ =
1

2
g̃♯(β⋆,β⋆) +

1

6
λ.

Moreover, along each conformal geodesic one has that

Θβ0 = Θ̇, Θβi = Θ⋆βi⋆,

where βa ≡ ⟨β, ea⟩.
A proof of the above result can be found in [27], Proposition 5.1 in Section 5.5.5.

Remark 1. Thus, if a spacetime can be covered by a non-intersecting congruence of conformal
geodesics, then the location of the conformal boundary is known a priori in terms of data at a
fiduciary initial hypersurface S⋆.

2.2.3 The g̃-adapted conformal geodesic equations

As a consequence of the normalisation condition (12), the parameter τ is the g-proper time of the
curve x(τ). In some computations it is more convenient to consider a parametrisation in terms of
a g̃-proper time τ̃ as it allows to work directly with the physical (i.e. non-conformally rescaled)
metric. To this end, consider the parameter transformation τ̃ = τ̃(τ) given by

dτ

dτ̃
= Θ, so that τ̃ = τ̃⋆ +

∫ τ

τ⋆

ds

Θ(s)
, (14)

with inverse τ = τ(τ̃). In what follows, write x̃(τ̃) ≡ x(τ(τ̃)). It can then be verified that

x̃′ ≡ dx̃

dτ̃
=

dτ

dτ̃

dx

dτ
= Θẋ, (15)

so that g̃(x̃′, x̃′) = −1. Hence, τ̃ is, indeed, the g̃-proper time of the curve x̃. Now, consider the
split

β = β̃ +ϖẋ♭, ϖ ≡ ⟨β, ẋ⟩
g̃(ẋ, ẋ)

, (16)
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where the covector β̃ satisfies

⟨β̃, ẋ⟩ = 0, g♯(β,β) = ⟨β, ẋ⟩2 + g♯(β̃, β̃). (17)

It can be readily verified that

g̃(ẋ, ẋ) = −Θ−2, ⟨β, ẋ⟩ = Θ−1Θ̇, ϖ = ΘΘ̇. (18)

Using the split (16) in equations (10a)-(10b) and taking into account the relations in (15), (17)
and (18) one obtains the following g̃-adapted equations for the conformal geodesics:

∇̃x̃′ x̃′ = β̃♯, (19a)

∇̃x̃′ β̃ = β̃2x̃′♭ + L̃(x̃′, ·)− L̃(x̃′, x̃′)x̃′♭, (19b)

with β̃2 ≡ g̃♯(β̃, β̃) —observe that as a consequence of (17) the covector β̃ is spacelike and, thus,
the definition of β̃2 makes sense. For an Einstein space one has that

L̃ =
1

6
λg̃.

The Weyl propagation equation (11) can also be cast in a g̃-adapted form. A calculation
shows that

∇̂x̃′(Θv) = −⟨β̃,Θv⟩x̃′ + g̃(Θv, x̃′⟩β̃♯. (20)

2.2.4 Conformal Gaussian gauges

Now, consider a region U of the spacetime (M̃, g̃) covered by a non-intersecting congruence
of conformal geodesics (x(τ),β(τ)). Following from Lemma 2, it follows that the requirement
g(ẋ, ẋ) = −1 singles out a canonical representative g of the conformal class [g̃] with an explicitly
known conformal factor as given by the formula (13).

Now, let {ea} denote a g-orthonormal frame which is Weyl propagated along the conformal
geodesics. It is natural to set e0 = ẋ. To every congruence of conformal geodesics one can
associate a Weyl connection ∇̂a by setting fa = βa. It follows that for this connection one has

Γ̂0
a
b = 0, f0 = 0, L̂0a = 0.

This gauge choice can be supplemented by choosing the parameter τ of the conformal geodesics
as the time coordinate so that

e0 = ∂τ .

In the following, it will be assumed that initial data for the congruence of conformal geodesics is
prescribed on a fiduciary spacelike hypersurface S⋆. On S⋆ one can choose some local coordinates
x = (xα). If the congruence is non-intersecting, one can extend the coordinates x off S⋆ by
requiring them to remain constant along the conformal geodesic which intersects S⋆ at the point
p on S⋆ with coordinates x. The spacetime coordinates x = (τ, xα) obtained in this way are
known as conformal Gaussian coordinates. More generally, the collection of conformal factor
Θ, Weyl propagated frame {ea} and coordinates (τ, xα) obtained by the procedure outlined in
the previous paragraph is known as a conformal Gaussian gauge system. More details on this
construction can be found in [27], Section 13.4.1.

3 The Schwarzschild-de Sitter spacetime

The purpose of this section is to discuss the key properties of the Schwarzschild-de Sitter spacetime
that will be used in our argument on the stability of the Cosmological region of this exact solution.

9



3.1 Basic properties

The Schwarzschild-de Sitter spacetime, (M̃,˚̃g), is the solution to the vacuum Einstein field equa-
tions with positive Cosmological constant

R̃ab = λg̃ab, λ > 0 (21)

with M̃ = R× R+ × S2 and line element given in standard coordinates (t, r, θ, φ) by

˚̃g = −
(
1− 2m

r
− λ

3
r2
)
dt⊗ dt+

(
1− 2m

r
− λ

3
r2
)−1

dr ⊗ dr + r2σ (22)

where
σ ≡ dθ ⊗ dθ + sin2 θdφ⊗ dφ,

denotes the standard metric on S2. The coordinates (t, r, θ, φ) take the range

t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ (0, π), φ ∈ [0, 2π).

This line element can be rescaled so to that

˚̃g = −D(r)dt⊗ dt+
1

D(r)
dr ⊗ dr + r2σ, (23)

where

M ≡ 2m

√
λ

3

and

D(r) ≡ 1− M

r
− r2.

In our conventions M , r and λ are dimensionless quantities.

3.2 Horizons and global structure

The location of the horizons of the Schwarzschild-de Sitter spacetime follows from the analysis of
the zeros of the function D(r) in the line element (23).

Since λ > 0, then the function D(r) can be factorised as

D(r) = −1

r
(r − rb)(r − rc)(r − r−),

where rb and rc are, in general, distinct positive roots of D(r) and r− is a negative root. Moreover,
one has that

0 < rb < rc, rc + rb + r− = 0.

The root rb corresponds to a black hole-type of horizon and rc to a Cosmological de Sitter-like
type of horizon. One can verify that

D(r) > 0 for rb < r < rc,

D(r) < 0 for 0 < r < rb and r > rc.

Accordingly, ˚̃g is static in the region rb < r < rc between the horizons. There are no other static
regions outside this range.

Using Cardano’s formula for cubic equations, we have

r− = − 2√
3
cos

(
ϕ

3

)
, (24a)

rb =
1√
3

(
cos

(
ϕ

3

)
−

√
3 sin

(
ϕ

3

))
, (24b)

rc =
1√
3

(
cos

(
ϕ

3

)
+

√
3 sin

(
ϕ

3

))
. (24c)

10



6

∇̃ẋẋ = −2⟨β, ẋ⟩ẋ + g̃(ẋ, ẋ)β♯, (15a)

∇̃ẋβ = ⟨β, ẋ⟩β − 1
2

g̃♯(β, β)ẋ♭ + L̃(ẋ, ·), (15b)

where ∇̃ denotes the Levi-Civita connection of the physical metric g̃ and ∇̃ẋ denotes a deriva-
tive in the direction of ẋ. Notice that in the last expression the indices of the vectors and covec-
tors are raised or lowered using g̃—unless otherwise stated, we follow this convention in the 
rest of this article. The symbol L̃ denotes the Schouten tensor of g̃ defined by:

Figure 1. Penrose diagram for the subextremal Schwarzschild–de Sitter spacetime. 
The serrated line denotes the location of the singularity; the continuous black line 
denotes the conformal boundary; the dashed line shows the location of the black hole 
and cosmological horizons which are located at r  =  rb and r  =  rc respectively. The 
excluded points Q and Q′ where the singularity seems to meet the conformal boundary 
correspond to asymptotic regions of the spacetime that does not belong to the singularity 
nor the conformal boundary.

Figure 2. Penrose diagrams for the extremal Schwarzschild–de Sitter spacetime. 
Figure  (a) corresponds to a white hole which evolves towards a de Sitter final state 
while figure (b) is a model of a black hole with a future singularity. The Killing horizon 
is located at r = rH as described in the main text. Similar to the subextremal case, the 
excluded points denoted by P , Q represent asymptotic regions of the spacetime that do 
not belong to the singularity nor the conformal boundary.

A García-Parrado Gómez-Lobo et alClass. Quantum Grav. 35 (2018) 045002

Figure 1: Penrose diagram of the sub-extremal Schwarzschild-de Sitter spacetime. The serrated
line denotes the location of the singularity; the continuous black line denotes the conformal bound-
ary; the dashed line shows the location of the black hole and Cosmological horizons denoted by
Hb and Hc respectively. As described in the main text, these horizons are located at r = rb and
r = rc. The excluded points Q and Q′ where the singularity seems to meet the conformal bound-
ary correspond to asymptotic regions of the spacetime that does not belong to the singularity nor
the conformal boundary.

where the parameter ϕ is defined through the relation

M =
2 cosϕ

3
√
3
, ϕ ∈

(
0,
π

2

)
. (25)

In the sub-extremal case we have that 0 < M < 2/3
√
3 and ϕ ∈ (0, π/2). This describes a black

hole in a Cosmological setting. The extremal case corresponds to the value ϕ = 0 for which
M = 2/3

√
3 —in this case the Cosmological and black hole horizons coincide. Finally, the hyper-

extremal case is characterised by the condition M > 2/3
√
3 —in this case the spacetime contains

no horizons.

The Penrose diagram of the Schwarzschild-de Sitter is well known —see Figure 1. Details of
its construction can be found in e.g. [14, 27].

3.3 Other coordinate systems

In our analysis, we will also make use of retarded and advanced Eddington-Finkelstein null coor-
dinates defined by

u ≡ t− r∗, v ≡ t+ r∗, (26)

where r∗ is the tortoise coordinate given by

r∗(t) ≡
∫

dr

D(r)
, lim

r→∞
r∗(r) = 0. (27)

It follows that u, v ∈ R. In terms of these coordinates the metric ˚̃g takes, respectively, the forms

˚̃g = −D(r)du⊗ du+ (du⊗ dr + dr ⊗ du) + r2σ,
˚̃g = −D(r)dv ⊗ dv + (dv ⊗ dr + dr ⊗ dv) + r2σ.

In order to compute the Penrose diagrams, Figures 2 and 3, we make use of Kruskal coordinates
defined via

U ≡ 1

2
exp(bu), V ≡ 1

2
exp(bv)

where u and v are the Eddington-Finkelstein coordinates as defined in (26) and b is a constant
which can be freely chosen. A further change of coordinates is provided by

T ≡ U + V, Ψ ≡ U − V.

11



These coordinates are related to r and t via

T (r, t) = cosh(bt) exp(br∗(r)), Ψ(r, t) = sinh(bt) exp(br∗(r)).

Then by recalling that

r− < 0 < rb < rc and r− + rb + rc = 0,

the equation of r∗(r) as defined by (27) renders

r∗(r) = − rb ln(r − rb)

(rb − rc)(2rb + rc)
+

rc ln(r − rc)

r2b + rbrc − 2r2c
+

(rb + rc) ln(r + rb + rc)

(2rb + rc)(rb + 2rc)
.

Hence, in order to have coordinates which are regular down to the Cosmological horizon, the
constant b must be given by

b =
r2b + rbrc − 2r2c

2rc
.

4 Construction of a conformal Gaussian gauge in the Cos-
mological region

The hyperbolic reduction of the extended conformal Einstein field equations to be used in this
article makes use of a conformal Gaussian gauge system —i.e. coordinates and frame are prop-
agated along a suitable congruence of conformal geodesics. This congruence provides, in turn, a
canonical representative of the conformal class of a solution to the Einstein field equations —see
e.g. Proposition 5.1 in [27].

A class of non-intersecting conformal geodesics which cover the whole maximal extension of
the sub-extremal Schwarzschild-de Sitter spacetime has been studied in [12]. The main outcome
of the analysis in that reference is that the resulting congruence covers the whole maximal analytic
extension of the spacetime and, accordingly, provides a global system of coordinates —modulo
the usual difficulties with the prescription of coordinates on S2. This congruence is prescribed
in terms of data prescribed on a Cauchy hypersurface of the spacetime. In the present article,
we are interested in the evolution of perturbations of the Schwarzschild-de Sitter spacetime from
data prescribed on hypersurfaces of constant coordinate r in the Cosmological region of the
spacetime. Thus, the congruence of conformal geodesics constructed in [12] is of no direct use to
us. Consequently, in this section, we study a class of conformal geodesics of the Schwarzschild-
de Sitter spacetime which is prescribed in terms of data on hypersurfaces of constant r in the
Cosmological region. These curves turn out to be geodesics of the physical metric g̃ and intersect
the conformal boundary orthogonally.

4.1 Basic setup

In the following, it is assumed that
rc < r <∞

corresponding to the Cosmological region of the Schwarzschild-de Sitter spacetime. Given a fixed
r = r⋆ we denote by Sr⋆ (or S⋆ for short) the spacelike hypersurfaces of constant r = r⋆ in this
region —see Figure 2. Points on S⋆ can be described in terms of the coordinates (t, θ, φ).

4.1.1 Initial data for the congruence

In order to prescribe the congruence of conformal geodesics, we follow the general strategy outlined
in [10, 12]. This requires prescribing the value of a conformal factor Θ⋆ over S⋆. We will only be
interested on prescribing the data on compact subsets of S⋆ so it is natural to require that

Θ⋆ = 1, Θ̇⋆ = 0.

12



Q

rb rc

I +

rc rb

Q′

rcrb

I −

rc rb

Q Q′

Figure 2: Hypersurfaces with constant r are plotted on the Penrose diagram of the Cosmological
region of the sub-extremal Schwarzschild-de Sitter spacetime.

The second condition implies that the resulting conformal factor will have a time reflection sym-
metry with respect to S⋆. Now, following [10, 12] we require that

x̃′
⋆ ⊥ S⋆, β̃⋆ = Θ−1

⋆ dΘ⋆.

The latter, in turn, implies that

t = t⋆ t′⋆ =
1√
D⋆

, r′⋆ = 0, β̃t⋆ = 0, β̃r⋆ = 0, (28)

where t⋆ ∈ (−t•, t•) for some t• ∈ R+. Notice that the tangent vector x̃′ coincides with the future
unit normal to S̃.

Given a sufficiently large constant t• we define

R• = {p ∈ S⋆ | t(p) ∈ (−t•, t•)}.

The constant t• will be assumed to be large enough so that D+(R•) ∩ I + ̸= ∅.

Remark 2. The starting point of the curves on S⋆ is prescribed in terms of the coordinates
(t, θ, φ) = (t⋆, θ⋆, φ⋆) The conditions (28) gives rise to a congruence of conformal geodesics which
has a trivial behaviour of the angular coordinates —that is, it is spherically symmetric. In other
words effectively analysing the curves on a 2-dimensional manifold M̃/SO(3) with quotient metric
ℓ̃ given by

ℓ̃ = −D(r)dt⊗ dt+D−1(r)dr ⊗ dr

Accordingly, the only non-trivial parameter characterising each curve of the congruence is t⋆.

4.1.2 The geodesic equations

It follows that for the initial data conditions (28) one has β2 = 0 so that the resulting congruence
of conformal geodesics is, after reparametrisation, a congruence of metric geodesics. This last
observation simplifies the subsequent discussion. The geodesic equations then imply that

r′ =
√
γ2 −D(r), D(r)t′2 − 1

D(r)
r′2 = 1, (29)
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where γ is a constant. Evaluating at S⋆ one readily finds that

t′⋆ =
|γ|
|D⋆|

.

Observe that since we are in the Cosmological region of the spacetime we have that D⋆ < 0.
Moreover, the unit normal to S⋆ is given by

n =

(
1√
|D⋆|

)
dr

while
x̃′

⋆ = r̃′⋆∂r + t′⋆∂t.

So, it follows that x̃′
⋆ and n♯ are parallel if and only if γ = 0.

4.1.3 The conformal factor

In the following, in order to obtain simpler expressions we set λ = 3 and τ⋆ = 0. It follows then
from formula (13) that one gets an explicit expression for the conformal factor. Namely, one has
that

Θ(τ) = 1− 1

4
τ2. (30)

The roots of Θ(τ) are given by
τ+ ≡ 2, τ− ≡ −2.

In the following, we concentrate on the root τ+ corresponding to the location of the future
conformal boundary I +. The relation between the unphysical proper time τ̃ is obtained from
equation (14), so that

τ̃ = 2arctanh

(
τ

2

)
, τ = 2tanh

(
τ̃

2

)
. (31)

From these expressions, we deduce that

τ → τ± = 2, as τ̃ → ∞.

Moreover, the conformal factor Θ can be rewritten in terms of the g̃-proper time τ̃ as

Θ(τ̃) = sech2
(
τ̃

2

)
.

Remark 3. In [11] it has been shown that conformal geodesics in an Einstein space will reach
the conformal boundary orthogonally if and only if they are, up to a reparametrisation standard
(metric) geodesics. In the present case, this property can be directly verified using equations (29).

4.2 Qualitative analysis of the behaviour of the curves

Having, in the previous subsection, set up the initial data for the congruence of conformal
geodesics, in this subsection we analyse the qualitative behaviour of the curves. In particu-
lar, we show that the curves reach the conformal boundary in a finite amount of (conformal)
proper time. Moreover, we also show that the curves do not intersect in the future of the initial
hypersurface S⋆.

4.2.1 Behaviour towards the conformal boundary

Recalling that
r′ =

√
|D(r)| (32)

and observing that D(r) < 0, it follows that if r′⋆ ̸= 0 then, in fact r′ > 0. Moreover, one can
show that r′′⋆ > 0 and that r′′⋆ ̸= 0 for r ∈ [r⋆,∞). Thus, the curves escape to the conformal
boundary.
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Now, we show that the congruence of conformal geodesics reaches the conformal boundary in
an infinite amount of the physical proper time. In order to see this, we observe that D(r) < 0,
consequently from equation

r′ = ±
√

|D(r)|
it follows that r(τ̃) is a monotonic function. Moreover, using equations

D(r) = −1

r
(r − rb)(r − r−)(r − rc)

and

t′ =
|γ + βr|
|D(r)| = 0

we find that

τ̃ =

∫
r

r⋆

√
r̄

(r̄ − rb)(r̄ − rc)(r̄ − r−)
dr̄.

It is possible to rewrite this integral in terms of elliptic functions —see e.g. [19]. More precisely,
one has that

τ̃ =
2r⋆

α2
√
r⋆(α+ − α−)

(
κ2w+ (α2 − κ2)Π[ϕ, α2, κ]

)
, (33)

where Π[ϕ, α2, κ] is the incomplete elliptic integral of the third kind and

sn2w =

(
rc − r−
rb − r−

)(
r − rb
r − rc

)
, α2 ≡ rb − r−

rc − r−
,

κ2 ≡ rc(rb − r−)
r⋆(rc − r−)

, ϕ ≡ arcsin(snw),

with sn denotes the Jacobian elliptic function. From the previous expressions and the general
theory of elliptic functions it follows that τ̃(r, r⋆) as defined by Equation (33) is an analytic
function of its arguments. Moreover, it can be verified that

τ̃ → ∞ as r → ∞.

Accordingly, as expected, the curves escape to infinity in an infinite amount of proper time. Using
the reparametrisation formulae (31) the latter corresponds to a finite amount of time.

4.2.2 Analysis of the behaviour of the conformal deviation equation

In [10] (see also [12]) it has been shown that for congruences of conformal geodesics in spherically
symmetric spacetimes the behaviour of the deviation vector of the congruence can be understood
by considering the evolution of a scalar ω̃ —see equation (33) in [12]. If this scalar does not
vanishes, then the congruence is non-intersecting. Since in the present case one has β = 0, it
follows that the evolution equation for ω̃ takes the form

d2ω̃

dτ̃2
=

(
1 +

M

r3

)
ω̃, r ≡ r(τ̃ , r⋆).

Since in our setting r ≥ r⋆ > rc, it follows that

1 +
M

r3
> 1,

from where, in turn, one obtains the inequality

d2ω̃

dτ̃2
> ω̃.
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Q

rb rc

I +

rc rb

Q′

rcrb

I −

rc rb

Q Q′

Figure 3: The conformal geodesics are plotted on the Penrose diagram of the Cosmological region
of the sub-extremal Schwarzschild-de Sitter spacetime. The purple line represents the initial
hypersurface S⋆ corresponding to r = r⋆. The red lines represent conformal geodesics with
constant time leaving this initial hypersurface. The curves are computed by setting λ = 3 and
ϕ = π

4 .

Accordingly, the scalars ω̃ and ω ≡ Θω̃ satisfy the inequalities

ω̃ ≥ ω̄, ω ≥ Θω̄,

where ω̄ is the solution of

d2ω̄

dτ̃2
= ω̄, ω̄(0, ρ⋆) =

r⋆
ρ⋆
, ω̄′(0, ρ⋆) = 0.

The solution to this last differential equation is given by

ω̄ = (r⋆/ρ⋆)coshτ̃ .

Using equations (30) and (31) we get the inequality

ω ≥
(
1− τ2

4

)
r⋆
ρ⋆

cosh

(
2arctanh

(
τ

2

))
=
r⋆
ρ⋆

(
1 +

τ2

4

)
> 0.

Consequently, we get the limit

lim
τ→±2

ω ≥ 2r⋆
ρ⋆

> 0.

Hence, we conclude that the geodesics with r⋆ > r• which go to the conformal boundary I +

located at τ = 2 do not develop any caustics.

The discussion of the previous paragraphs can be summarised in the following:

Proposition 1. The congruence of conformal geodesics given by the initial conditions (28) leaving
the initial hypersurface S⋆ reach the conformal boundary I + without developing caustics.

The content of this Proposition can be visualised in Figure [3].
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4.3 Estimating the size of D+(R•)

Up to this point the size of the domain R• ⊂ S⋆ (or more precisely, the value of the constant t•
has remained unspecified). An inspection of the Penrose diagram of the Schwarzschild-de Sitter
spacetime shows that if the value of t• is too small, it could happen that the future domain of
dependenceD+(R•) is bounded and, accordingly, will not reach the spacelike conformal boundary
I + —see e.g. Figure 4. Given our interest in constructing perturbations of the Schwarzschild-
de Sitter spacetime which contain as much as possible of the conformal boundary it is then
necessary to ensure that t• is sufficiently large. In this subsection given a fiduciary hypersurface
S⋆ in the Cosmological region of the spacetime, we provide an estimate of how large should t• be
for D+(R•) to be unbounded. In order to obtain this estimate we consider the future-oriented
inward-pointing null geodesics emanating from the end-points of R• and look at where these
curves intersect the conformal boundary.

In order to carry out the analysis in this subsection it is convenient to consider the coordinate
z ≡ 1/r. In terms of this new coordinate, the line element (23) takes the form

˚̃g =
1

z2

(
− F (z)dt⊗ dt+

1

F (z)
dz ⊗ dz + σ

)
,

where
F (z) ≡ z2D(1/z).

The above expression suggest defining an unphysical metric ḡ via

ḡ = Ξ2˚̃g, Ξ ≡ z.

More precisely, one has

ḡ = −F (z)dt⊗ dt+
1

F (z)
dz ⊗ dz + σ. (34)

In order to study the null geodesics we consider the Lagrangian

L = −F (z)ṫ2 + 1

F (z)
ż2,

where · ≡ d
ds . In the case of null conformal geodesics L = 0 so that

ṫ = ± 1

F (z)
ż.

This, in turn, means that
dt

dz
ż = ± 1

F (z)
ż.

By integrating both sides it follows that∫ t+

t•

dt = ±
∫ 0

z⋆

1

F (z)
dz,

where t+ denotes the value of the (spacelike) coordinate t at which the null geodesic reaches I +.
Accordingly for the inward-pointing light rays emanating from the points on S⋆ defined by the
condition t = t• one has that

t+ = t• −
∫ z⋆

0

1

F (z)
dz. (35)

An analogous condition holds for the inward-pointing light rays emanating from the points with
t = −t•. Since in the Cosmological region F (z) > 0 it follows that∫ z⋆

0

1

F (z)
dz > 0.
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The key observation in the analysis in this subsection is the following: D+(R•) is unbounded (so
that it intersects the conformal boundary) if t+ as given by equation (35) satisfies t+ > 0. As
t• > 0, having t+ < 0 would mean that the light rays emanating from the points with t = t• and
t = −t• intersect before reaching I +. Now, the condition t+ > 0 implies, in turn, that

t• >
∫ z⋆

0

1

F (z)
dz.

As the integral in the right-hand side of the above inequality is not easy to compute we
provide, instead, a lower bound. One has then that

t• >
z⋆
F⊛

,

where F⊛ denotes the maximum of

F (z) = z2 −Mz3 + 1

over the interval [0, z⋆]. Thus, F ′(z) vanishes if z = 0 or z = z⊙ ≡ 2/3M . Also, notice that
F ′(z) > 0 for z ≈ 0. It can be readily verified that F ′′(0) > 0 while F ′′(2/3M) < 0 so that an
inflexion point occurs in the interval (0, z⊙) and there are no other inflexion points in [0, z⋆]. Now,
looking at the definition of M , equation (24c), and the expression for rc as given by equation
(25) one concludes that z⊙ > zc ≡ 1/rc. As z⊙ is independent of z⋆, it is not possible to decide
whether z⊙ lies in [0, z⋆] or not. In any case, one has that

F (z⊙) = 1 +
4

27M2
≥ F⊛,

so that

t• >
27M2z⋆
27M2 + 4

. (36)

One can summarise the discussion in this subsection as follows:

Lemma 3. If condition (36) holds then D+(R•) is unbounded.

Remark 4. In the rest of this article it is assumed that condition (36) always holds.

4.4 Conformal Gaussian coordinates in the sub-extremal Schwarzschild-
de Sitter spacetime

We now combine the results of the previous subsections to show that the congruence of conformal
geodesics defined by the initial conditions (28) can be used to construct a conformal Gaussian
coordinate system in a domain in the chronological future of R• ⊂ S⋆, J

+(R• ⊂ S⋆), containing
a portion of the conformal boundary I +.

In the following let S̃dSI denote the Cosmological region of the Schwarzschild-de Sitter space-
time —that is

S̃dSI = {p ∈ M̃ | r(p) > rc}.

Moreover, denote by SdSI the conformal representation of S̃dSI defined by the conformal factor
Θ defined by the non-singular congruence of conformal geodesics given by Proposition 1. For
r > rc let z ≡ 1/r —cfr the line element (34). In terms of these coordinates, one has that

SdSI = {p ∈ R× R× S2 | 0 ≤ z(p) ≤ z⋆} (37)

where z⋆ ≡ 1/r⋆ with r⋆ > rc. In particular, the conformal boundary, I +, corresponds to the
set of points for which z = 0.
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Figure 4: The plotted future domain of dependence of the solution D+(R•) on the Penrose
diagram of the Cosmological region of the sub-extremal Schwarzschild-de Sitter spacetime. The
value of t• can be chosen as close as possible to the asymptotic points Q and Q′ so as to satisfy
condition (36).

The analysis of the previous subsections shows that the conformal geodesics defined by the
initial conditions (28) can be thought of as curves on SdSI of the form

(τ, t⋆) 7→
(
t(τ, t⋆), z(τ, t⋆), θ⋆, φ⋆

)
.

Thus, in particular, the congruence of curves defines a map

ψ : [0, 2]× [−t•, t•] → [0, z⋆]× [−t•, t•].

This map is analytic in the parameters (τ, t⋆). Moreover, the fact that the congruence of conformal
geodesics is non-intersecting implies that the map is, in fact, invertible —the analysis of the
conformal geodesic deviation equation implies that the Jacobian of the transformation is non-
zero for the given value of the parameters. In particular, it can be readily verified that the
function Θω̃ coincides with the Jacobian of the transformation. Accordingly, the inverse map
ψ−1

ψ−1 : [0, z⋆]× [−t•, t•] → [0, 2]× [−t•, t•], (t, z) 7→
(
τ(t, z), t⋆(t, z)

)
is well-defined. Thus, ψ−1 gives the transformation from the standard Schwarzschild coordinates
(t, z, θ, φ) into the conformal Gaussian coordinates (τ, t⋆, θ, φ). In the following let

M• ≡ [0, 2]× [−t•, t•].

As the conformal geodesics of our congruence are timelike, we have that

M• ⊂ J+(R•).

All throughout we assume, as discussed in Subsections 4.1.1 and 4.3, that t• is sufficiently large
to ensure that D+(R•) contains a portion of I + —cfr Lemma 3.

Proposition 2. The congruence of conformal geodesics on SdSI defined by the initial conditions
on S⋆ given by (28) induce a conformal Gaussian coordinate system over D+(R•) which is related
to the standard coordinates (t, r) via a map which is analytic.
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5 The Schwarzschild-de Sitter spacetime in the conformal
Gaussian system

In the previous section, we have established the existence of conformal Gaussian coordinates in
the domain M• ⊂ SdSI of the Schwarzschild-de Sitter spacetime. In this section, we proceed to
analyse the properties of this exact solution in these coordinates. This analysis is focused on the
structural properties relevant for the analysis of stability in the latter parts of this article.

Remark 5. The metric coefficients implied by the line element (34) are analytic functions of the
coordinates in the region M• —barring the usual degeneracy of spherical coordinates.

5.1 Weyl propagated frames

The ultimate aim of this section is to cast the Schwarzschild-de Sitter spacetime in the region
M• as a solution to the extended conformal Einstein field equations introduced in Section 2.1.3.
A key step in this construction is the use of a Weyl propagated frame. In this section, we discuss
a class of these frames in M•.

Since the congruence of conformal geodesics implied by the initial data (28) satisfies β̃ = 0,
the Weyl propagation equation (20) reduces to the usual parallel propagation equation —that is,

∇̃x̃′(Θẽa) = ∇̃x̃′ea = 0. (38)

The subsequent computations can be simplified by noticing that the line element (23) is in warped-
product form. Given the spherical symmetry of the Schwarzschild-de Sitter spacetime, most of the
discussion of a frame adapted to the symmetry of the spacetime can be carried out by considering
the 2-dimensional Lorentzian metric

ℓ = ℓABdx
A ⊗ dxB

= −D(r)dt⊗ dt+
1

D(r)
dr ⊗ dr.

In the spirit of a conformal Gaussian system, we begin by setting the time leg of the frame as
e0 = ẋ. Then since

ẋ = Θ−1x̃′,

it follows that
e0 = Θ−1x̃′.

Now, recall that
x̃′ = t̃′∂t + r̃′∂r, t̃ = t(τ̃), r̃ = r(τ̃),

and let
ω ≡ ϵℓ(x̃

′, ·).
It follows then that ⟨ω, x̃′⟩ = 0 so that it is natural to consider a radial leg of the frame, e1,
which is proportional to ω♯. By using the condition ℓ(e1, e1) = 1 one readily finds that

e1 = Θω♯.

It can be readily verified by a direct computation that the vector e1 as defined above satisfies
the propagation equation (38).

Finally, the vectors e2 and e3 are chosen in such a way that they span the tangent space of
the 2-spheres associated to the orbits of the spherical symmetry. Accordingly, by setting

e2 = e2
A∂A, e3 = e3

A∂A, A = 2, 3,

it follows readily from the warped-product structure of the metric that

x̃′A(∂Ae2
A) = x̃′A(∂Ae3

A) = 0.
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In other words, one has that the frame coefficients e2
A and e3

A are constant along the conformal
geodesics. Thus, in order to complete the Weyl propagated frame {ea} we choose two arbitrary
orthonormal vectors ẽ2⋆ and ẽ3⋆ spanning the tangent space of S2 and define vectors {e2, e3} on
M• by extending (constantly) the value of the associated coefficients

(
e2

A)
⋆
and

(
e3

A)
⋆
along

the conformal geodesic.

The analysis of this subsection can be summarised in the following:

Proposition 3. Let x̃′ denote the vector tangent to the conformal geodesics defined by the initial
data (28) and let {e2⋆, e3⋆} be an arbitrary orthonormal pair of vectors spanning the tangent
bundle of S2. Then the frame {e0, e1, e2, e3} obtained by the procedure described in the previous
paragraphs is a g-orthonormal Weyl propagated frame. The frame depends analytically on the
unphysical proper time τ and the initial position t⋆ of the curve.

Remark 6. In the previous proposition we ignore the usual complications due to the non-
existence of a globally defined basis of TS2. The key observation is that any local choice works
well.

5.2 The Weyl connection

The connection coefficients associated to a conformal Gaussian gauge are made up of two pieces:
the 1-form defining the Weyl connection and the Levi-Civita connection of the metric ḡ. We
analyse these two pieces in turn.

5.2.1 The 1-form associated to the Weyl connection

We start by recalling that in Section 4 a congruence of conformal geodesics with data prescribed on
the hypersurface S⋆ was considered. This congruence was analysed using the g̃-adapted conformal
geodesic equations. The initial data for this congruence was chosen so that the curves with tangent
given by x̃′ satisfy the standard (affine) geodesic equation. Consequently, the (spatial) 1-form β̃
vanishes. Thus, the 1-form β is given by

β = −Θ̇x̃′♭,

—cfr. equation (16). Now, recalling that x̃′ = r′∂r and observing equation (32) one concludes
that

x̃′♭ =
1

|
√
D(r)|

dr.

Rewritten in terms of z, the latter gives

x̃′♭ = − 1

z
√

|F (z)|
dz.

As F (0) = 1, and Θ̇|I + = −1 (cfr. equation (30)), it then follows that

β ≈ −1

z
dz for z ≈ 0.

That is, β is singular at the conformal boundary. However, in the subsequent analysis the key
object is not β but β̄, the 1-form associated to the conformal geodesics equations written in terms
of the connection ∇̄. Now, from the conformal transformation rule β̄ = β+Ξ−1dΞ and recalling
that Ξ = z it follows that

β̄ =
Θ̇

z
√
|F (z)|

dz +
1

z
dz.

Thus, from the preceding discussion it follows that β̄ is smooth at I + and, moreover, β̄|I + = 0.
Notice, however, that β̄ ̸= 0 away from the conformal boundary.
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5.2.2 Computation of the connection coefficients

The 1-form β defines in a natural way a Weyl connection ∇̂ via the relation

∇̂ − ∇̃ = S(β)

where S corresponds to the tensor Sab
cd as defined in (3). As the coordinates and connection

coefficients associated to the physical connection ∇̃ are not well adapted to a discussion near the
conformal boundary we resort to the unphysical Levi-Civita connection ∇̄ to compute ∇̂. From
the discussion in the previous subsections, we have that

∇̄ − ∇̃ = S(z−1dz).

It thus follows that
∇̂ − ∇̄ = S(β̄).

Now let {ea} denote the Weyl propagated frame as given by Proposition 3. The connection
coefficients Γ̂a

b
c are defined through the relation

∇̂aec = Γ̂a
b
ceb.

Now, writing ea = ea
µ∂µ one has that

∇̂aec =
(
∇̂µec

ν
)
ea

µ∂ν ,

where

∇̂µec
ν = ∇̄µec

ν + Sµλ
νρβ̄ρec

λ,

= ∂µec
ν + Γ̄µ

ν
λec

λ + Sµλ
µρβ̄ρec

λ. (39)

A direct computation shows that the only non-vanishing Christoffel symbols of the metric
(34), Γ̄µ

ν
λ are given by

Γ̄t
t
z = −Γ̄z

z
z =

z( 32Mz − 1)

1 + z2(Mz − 1)
,

Γ̄t
z
t = z( 32Mz − 1)

(
1 + z2(Mz − 1)

)
,

Γ̄φ
θ
φ = − cos θ sin θ, Γ̄θ

φ
φ = cot θ.

Observe that the coefficients Γ̄t
t
z, Γ̄z

z
z and Γ̄t

z
t are analytic at z = 0.

Remark 7. The connection coefficients Γ̄φ
θ
φ, Γ̄θ

φ
φ correspond to the connection of the round

metric over S2. In the rest of this section, we ignore this coordinate singularity due to the use of
spherical coordinates.

It follows from the discussion in the previous paragraphs and Proposition 3 that each of the
terms in the righthand side of (39) is a regular function of the coordinate z and, in particular,
analytic at z = 0. Contraction with the coefficients of the frame does not change this. Accordingly,
it follows that the Weyl connection coefficients Γ̂a

b
c are smooth functions of the coordinates used

in the conformal Gaussian gauge on the future of the fiduciary initial hypersurface S⋆ up to and
beyond the conformal boundary.

5.3 The components of the curvature

In this section we discuss the behaviour of the various components of the curvature of the
Schwarzschild-de Sitter spacetime in the domain M•. We are particularly interested in the
behaviour of the curvature at the conformal boundary.

The subsequent discussion is best done in terms of the conformal metric ḡ as given by (34).
Consider also the vector ē0 given by

ē0 =
√

|F (z)|∂z, F (z) = z2 −Mz3 − 1.

This vector is orthogonal to the conformal boundary I + which, in these coordinates is given by
the condition z = 0.
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5.3.1 The rescaled Weyl tensor

Given a timelike vector, the components of the rescaled Weyl tensor dabcd can be conveniently
encoded in the electric and magnetic parts relative to the given vector. For the vector ē0 these
are given by

dac = dabcdē0
bē0

d, d∗ac = d∗abcdē0
bē0

d,

where d∗abcd denotes the Hodge dual of dabcd. A computation using the package xAct for
Mathematica readily gives that the only non-zero components of the electric part are given by

dtt = −M
(
z2(1−Mz)− 1

)
,

dθθ = −M
2
,

dφφ = −M
2

sin2 θ,

while the magnetic part vanishes identically. Observe, in particular, that the above expressions
are regular at z = 0 —again, disregarding the coordinate singularity due to the use of spherical
coordinates. The smoothness of the components of the Weyl tensor is retained when re-expressed
in terms of the Weyl propagated frame {ea} as given in Proposition 3.

5.3.2 The Schouten tensor

A similar computer algebra calculation shows that the non-zero components of the Schouten
tensor of the metric ḡ are given by

L̄tt =
1

2
(2Mz − 1)(1 + z2(Mz − 1)),

L̄zz = −1

2

(2Mz − 1)

1 + z2(Mz − 1)
,

L̄θθ = −1

2
(Mz − 1),

L̄φφ = −1

2
sin2 θ(Mz − 1).

Again, disregarding the coordinate singularity on the angular components, the above expressions
are analytic on M• —in particular at z = 0. To obtain the components of the Schouten tensor
associated to the Weyl connection ∇̂ we make use of the transformation rule

L̄ab − L̂ab = ∇̄aβ̄b −
1

2
Sab

cdβ̄cβ̄d.

The smoothness of β̄a has already been established in Subsection 5.2. It follows then that the
components of L̂ab with respect to the Weyl propagated frame {ea} are regular on M•.

5.4 Summary

The analysis of the precedent subsections is summarised in the following:

Proposition 4. Given t• > 0 and the Weyl propagated frame {ea} as given by Proposition
3, the connection coefficients of the Weyl connection associated to the congruence of conformal
geodesics, the components of the rescaled Weyl tensor and the components of the Schouten tensor
of the Weyl connection are smooth on M• and, in particular, at the conformal boundary.

Remark 8. In other words, the sub-extremal Schwarzschild-de Sitter spacetime expressed in
terms of a conformal Gaussian gauge system gives rise to a solution to the extended conformal
Einstein field equations on the region M• ⊂ D+(R•) where R• ⊂ S⋆.
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Figure 5: The red curves identify the timelike hypersurfaces T−2t• and T2t• . The resulting
spacetime manifold M̄• has compact spatial sections, S̄z, with the topology of S1 × S2.

5.5 Construction of a background solution with compact spatial sec-
tions

The region R• ⊂ S⋆ has the topology of I × S2 where I ⊂ R is an open interval. Accordingly,
the spacetime arising from R• will have spatial sections with the same topology. As part of the
perturbative argument given in Section 6 based on the general theory of symmetric hyperbolic
systems as given in [18] it is convenient to consider solutions with compact spatial sections. We
briefly discuss how the (conformal) Schwarzschild-de Sitter spacetime in the conformal Gaussian
system over M• can be recast as a solution to the extended conformal Einstein field equations
with compact spatial sections.

The key observation on this construction is that the Killing vector ξ = ∂t in the Cosmological
region of the spacetime is spacelike. Thus, given a fixed z◦ < zc, we have that the hypersurface
Sz◦ defined by the condition z = z◦ has a translational invariance —that is, the intrinsic metric
h and the extrinsic curvature K are invariant under the replacement t 7→ t + κ for κ ∈ R.
Moreover, the congruence of conformal geodesics given by Proposition 4 are such that the value
of the coordinate t is constant along a given curve.

Consider now, the timelike hypersurfaces T−2t• and T2t• in D+(S⋆) generated, respectively, by
the future-directed geodesics emanating from S⋆ at the points with t = −2t• and t = 2t•. From
the discussion in the previous paragraph, one can identify T−2t• and T2t• to obtain a smooth
spacetime manifold M̄• with compact spatial sections —see Figure 5. A natural foliation of M̄•
is given by the hypersurfaces S̄z of constant z with 0 ≤ z ≤ z⋆ having the topology of a 3-handle
—that is, Hz ≈ S1 × S2.

The metric ḡ on SdSI , cfr (37), induces a metric on M̄• which, on an abuse of notation,
we denote again by ḡ. As the initial conditions defining the congruence of conformal geodesics
of Proposition 1 have translational invariance, it follows that the resulting curves also have this
property. Accordingly, the congruence of conformal geodesics on SdSI given by Proposition 1
induces a non-intersecting congruence of conformal geodesics on M̄• —recall that each of the
curves in the congruence has constant coordinate t.

In summary, it follows from the discussion in the preceding paragraphs that the solution
to the extended conformal Einstein field equations in a conformal Gaussian gauge as given by
Proposition 4 implies a similar solution over the manifold M̄•. In the following, we will denote
this solution by ů. The initial data induced by ů on S̄⋆ will be denoted by ů⋆.
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6 The construction of non-linear perturbations

In this section, we bring together the analysis carried out in the previous sections to construct
non-linear perturbations of the Schwarzschild-de Sitter spacetime on a suitable portion of the
Cosmological region.

6.1 Initial data for the evolution equations

Given a solution (S⋆, h̃, K̃) to the Einstein constraint equations, there exists an algebraic pro-
cedure to compute initial data for the conformal evolution equations —see [27], Lemma 11.1.
In the following, it will be assumed that we have at our disposal a family of initial data sets
for the vacuum Einstein field equations corresponding to perturbations of initial data for the
Schwarzschild-de Sitter spacetime on hypersurfaces of constant coordinate r in the Cosmolog-
ical region. Initial data for the conformal evolution equations can then be constructed out of
these basic initial data sets. Assumptions of this type are standard in the analysis of non-linear
stability.

Remark 9. An interesting open problem is that of the construction of perturbative initial data
sets for the evolution problem considered in this article using the Friedrich-Butscher method —
see e.g. [2, 3, 28]. In this setting the free data is associated to a pair of rank 2 transverse and
trace-free tensors prescribing suitable components of the curvature (i.e. the Weyl tensor) on the
initial hypersurface. The main technical difficulty in this approach is the analysis of the Kernel
of the linearisation of the so-called extended Einstein constraint equations.

Given a compact hypersurface S̄z ≈ S1 × S2 and a function u : S̄z → RN let ||u||S̄z,m for

m ≥ 0 denote the standard L2-Sobolev norm of order m of u. Moreover, denote by Hm(S̄z,RN )
the associated Sobolev space —i.e. the completion of the functions w ∈ C∞(S̄z,RN ) under the
norm || ||S̄z,m.

In the following, consider some initial data set for the conformal evolution equations u⋆ on
R• ≈ [−t•, t•]×S2 which is a small perturbation of exact data ů⋆ for the Schwarzschild-de Sitter
spacetime in the sense that

u⋆ = ů⋆ + ŭ⋆, ||ŭ⋆||R•,m < ε

for m ≥ 4 and some suitably small ε > 0. Making use of a smooth cut-off function over S̄z⋆ ≈
S1 × S2 the perturbation data ŭ⋆ over R• can be matched to vanishing data 0 on [−2t•,− 3

2 t•]×
S2 ∪ [ 32 t•, 2t•]× S2 with a smooth transition region, say, [− 3

2 t•,−t•]× S2 ∪ [t•, 32 t•]× S2. In this
way one can obtain a vector-valued function ˘̄u⋆ over S̄⋆ ≈ S1 × S2 whose size is controlled by the
perturbation data ŭ⋆ on R•. In a slight abuse of notation, in order to ease the reading, we write
ŭ⋆ rather than ˘̄u⋆.

6.2 Structural properties of the evolution equations

In this section, we briefly review the key structural properties of the evolution system associated
to the extended conformal Einstein equations (6) written in terms of a conformal Gaussian system.
This evolution system is central in the discussion of the stability of the background spacetime. In
addition, we also discuss the subsidiary evolution system satisfied by the zero-quantities associated
to the field equations, (5a)-(5d), and the supplementary zero-quantities (7a)-(7c). The subsidiary
system is key in the analysis of the so-called propagation of the constraints which allows to
establish the relation between a solution to the extended conformal Einstein equations (6) and
the Einstein field equations (21). One of the advantages of the hyperbolic reduction of the
extended conformal Einstein field equations by means of conformal Gaussian systems is that it
provides a priori knowledge of the location of the conformal boundary of the solutions to the
conformal field equations.

Conformal Gaussian gauge systems lead to a hyperbolic reduction of the extended conformal
Einstein field equation (6). The particular form of the resulting evolution equations will not be
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required in the analysis, only general structural properties. In order to describe these denote by
υ the independent components of the coefficients of the frame ea

µ, the connection coefficients
Γ̂a

b
c and the Weyl connection Schouten tensor L̂ab and by ϕ the independent components of the

rescaled Weyl tensor dabcd, expressible in terms of its electric and magnetic parts with respect
to the timelike vector e0. Also, let e and Γ denote, respectively, the independent components of
the frame and connection. In terms of these objects one has the following:

Lemma 4. The extended conformal Einstein field equations (6) expressed in in terms of a con-
formal Gaussian gauge imply a symmetric hyperbolic system for the components (υ,ϕ) of the
form

∂υ = Kυ +Q(Γ)υ + L(x̄)ϕ, (40a)(
I+A0(e)

)
∂τϕ+Aα(e)∂αϕ = B(Γ)ϕ, (40b)

where I is the unit matrix, K is a constant matrix Q(Γ) is a smooth matrix-valued function, L(x̄)
is a smooth matrix-valued function of the coordinates, Aµ(e) are Hermitian matrices depending
smoothly on the frame coefficients and B(Γ) is a smooth matrix-valued function of the connection
coefficients.

Remark 10. In this article we will be concerned with situations in which the matrix-valued
function I + A0(e) is positive definite. This is the case, for example, in perturbations of a
background solution.

Remark 11. Explicit expressions of the evolution equations and further discussion on their
derivation can be found in [22] —see also [27], Section 13.4 for a spinorial version of the equations.

For the evolution system (40a)-(40b) one has the following propagation of the constraints
result [22]:

Lemma 5. Assume that the evolution equations (40a)-(40b) hold. Then the independent compo-
nents of the zero-quantities

Σa
b
c, Ξc

dab, ∆abc, Λabc, δa, γab, ςab,

not determined by either the evolution equations or the gauge conditions satisfy a symmetric hy-
perbolic system which is homogeneous in the zero-quantities. As a result, if the zero-quantities
vanish on a fiduciary spacelike hypersurface S⋆, then they also vanish on the domain of depen-
dence.

Remark 12. It follows from Lemmas 4, 5 and 1 that a solution to the conformal evolution
equations (40a)-(40b) with data on S⋆ satisfying the conformal constraints implies a solution to
the Einstein field equations away from the conformal boundary.

6.3 Setting up the perturbative existence argument

In the spirit of the schematic notation used in the previous section, we set u ≡ (v,ϕ). Moreover,
consistent with this notation let ů denote a solution to the evolution equations (40a) and (40b)
arising from some data ů⋆ prescribed on a hypersurface at r = r⋆. We refer to ů as the background
solution. We will construct solutions to (40a) and (40b) which can be regarded as a perturbation
of the background solution in the sense that

u = ů+ ŭ.

This means, in particular, that one can write

e = e̊+ ĕ, Γ = Γ̊+ Γ̆, ϕ = ϕ̊+ ϕ̆. (41)

The components of ĕ, Γ̆ and ϕ̆ are our unknowns. Making use of the decomposition (41) and
exploiting that ů is a solution to the conformal evolution equations one obtains the equations

∂τ ῠ = Kῠ +Q(Γ̊+ Γ̆)ῠ +Q(Γ̆)υ̊ + L(x̄)ϕ̆+ L(x̄)ϕ̊,

(I+A0(e̊+ ĕ))∂τ ϕ̆+Aα(e̊+ ĕ)∂αϕ̆ = B(Γ̊+ Γ̆)ϕ̆+B(Γ̊+ Γ̆)ϕ̊.
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Now, it is convenient to define

Ā0(τ, x, ŭ) ≡
(
I 0
0 I+A0(e̊+ ĕ)

)
, Āα(τ, x, ŭ) ≡

(
0 0
0 Aα(e̊+ ĕ)

)
,

and
B̄(τ, x, ŭ) ≡ ŭQ̄ŭ+ L̄(x̄)ŭ+ K̄ŭ,

where

ŭQ̄ŭ ≡
(
ῠQῠ 0

0 B(Γ̆)ϕ̆+B(Γ̆)ϕ̊

)
, L̄(x̄)ŭ ≡

(
υ̊Qῠ +Q(Γ̆)υ̊ L(x̄)ϕ̆+ L(x̄)ϕ̊

0 0

)
,

K̄ŭ ≡
(
Kῠ 0

0 B(̊Γ)ϕ̆+B(̊Γ)ϕ̊

)
,

denote, respectively, expressions which are quadratic, linear and constant terms in the unknowns.

In terms of the above expressions it is possible to rewrite the system (42a)-(42a) in the more
concise form

Ā0(τ, x, ŭ)∂τ ŭ+ Āα(τ, x, ŭ)∂αŭ = B̄(τ, x, ŭ). (43)

These equations are in a form where the theory of first order symmetric hyperbolic systems can
be applied to obtain a existence and stability result for small perturbations of the initial data
ů⋆. This requires, however, the introduction of the appropriate norms measuring the size of the
perturbed initial data ŭ⋆.

Remark 13. In the following it will be assumed that the background solution ů is given by
the Schwarzschild-de Sitter background solution written in a conformal Gaussian gauge system
as described in Proposition 4. It follows that the entries of ů are smooth functions on M̄• ≡
[0, 2]× S̄⋆ ≈ [0, 2]× S1 × S2.

Theorem 1 (existence and uniqueness of the solutions to the conformal evolution
equations). Given u⋆ = ů⋆+ ŭ⋆ satisfying the conformal constraint equations on S̄⋆ and m ≥ 4,
one has that:

(i) There exists ε > 0 such that if
||ŭ⋆||S̄⋆,m < ε, (44)

then there exists a unique solution ŭ ∈ Cm−2([0, 2]×S̄⋆,RN ) to the Cauchy problem for the
conformal evolution equations (43) with initial data ŭ(0, x) = ŭ⋆ and with N denoting the
dimension of the vector ŭ.

(ii) Given a sequence of initial data ŭ
(n)
⋆ such that

||ŭ(n)
⋆ ||S̄⋆,m < ε, and ||ŭ(n)

⋆ ||S̄⋆,m
n→∞−−−−→ 0,

then for the corresponding solutions ŭ(n) ∈ Cm−2([0, 2]× S̄⋆,RN ), one has ||ŭ(n)||S̄⋆,m → 0

uniformly in τ ∈
[
τ⋆,

5
2

)
as n→ ∞.

Proof. The proof is a direct application of Kato’s existence, uniqueness and stability theory for
symmetric hyperbolic systems [18] to developments with compact spatial sections —see Theorem
12.4 in [27]; see also [22].

Remark 14. In view of the localisation properties of hyperbolic equations the matching of the
perturbation data on R• does not influence the solution u on D+(R•). Accordingly, in the
subsequent discussion we discard the solution u on the region M̄• \ D+(R•) as this has no
physical relevance.

Moreover, given the propagation of the constraints, Lemma 5, and the relation between the
extended conformal Einstein field equations and the vacuum Einstein field equations, Lemma 1,
one has the following:
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Corollary 1. The metric
g̃ = Θ−2g

obtained from the solution to the conformal evolution equations given in Theorem 1 implies a
solution to the vacuum Einstein field equations with positive Cosmological constant on M̃ ≡
D+(R•). This solution admits a smooth conformal extension with a spacelike conformal boundary.
In particular, the timelike geodesics fully contained in M̃ are complete.

Remark 15. The resulting spacetime (M̃, g̃) is a non-linear perturbation of the sub-extremal
Schwarzschild-de Sitter spacetime on a portion of the Cosmological region of the background
solution which contains a portion of the asymptotic region.

Remark 16. As R• is not compact, its development has a Cauchy horizon H+(R•).

7 Conclusions

This article is a first step in a programme to study the non-linear stability of the Cosmological
region of the Schwarzschild-de Sitter spacetime. Here we show that it is possible to construct solu-
tions to the vacuum Einstein field equations in this region containing a portion of the asymptotic
region and which are, in a precise sense, non-linear perturbations of the exact Schwarzschild-de
Sitter spacetime. Crucially, although the spacetimes constructed have an infinite extent to the
future, they exclude the regions of the spacetime where the Cosmological horizon and the confor-
mal boundary meet. From the analysis of the asymptotic initial value problem in [13] it is know
that the asymptotic points in the conformal boundary from which the horizons emanate contain
singularities of the conformal structure. Thus, they cannot be dealt by the approach used in
the present work which relies on the Cauchy stability of the initial value problem for symmetric
hyperbolic systems. It is conjectured that the singular behaviour at the asymptotic points can
be studied by methods similar to those used in the analysis of spatial infinity —see [9]. These
ideas will be developed elsewhere.

The next step in our programme is to reformulate the existence and stability results in this
article in terms of a characteristic initial value problem with data prescribed on the Cosmological
horizon. Again, to avoid the singularities of the conformal structure, the characteristic data has
to be prescribed away from the asymptotic points. Alternatively, one could consider data sets
which become exactly Schwarzschild-de Sitter near the asymptotic points. Given the comparative
simplicity of the characteristic constraint equations, proving the existence of such data sets is not
as challenging as in the case of the standard (i.e. spacelike) constraints. In what respects the
evolution problem it is expected that a generalisation of the methods used in [15] should allow
to evolve characteristics to reach a suitable hypersurface of constant coordinate r. The details of
this construction will be given in a subsequent article.
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