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ABSTRACT

In this work, we tackle the challenging problem of separating mono-
phonic instrument mixtures found in chamber music from monau-
ral recordings. This task differs from the Music Demixing Chal-
lenge where the task is to separate vocals, drums, and bass stems
from mastered stereo tracks. In our task, we separate the instru-
ments in a permutation invariant fashion such that our model is
capable of separating any two monophonic instruments, including
mixtures of the same instrument. This task is particularly difficult
due to label ambiguity and high spectral overlap. In this paper, we
present a pre-training strategy and data augmentation pipeline using
the multi-mic renders from the synthetic chamber ensemble dataset
EnsembleSet and evaluate its impact using real-world chamber en-
semble recordings from the URMP dataset. Our data augmentation
pipeline, using synthetic data, has resulted in up to a remarkable
+5.14 dB cross-dataset performance improvement for time-domain
separation models when tested on real data. Our fine-tuning strategy
in conjunction with our data augmentation pipeline results in up to
+10.62 dB performance improvement w.r.t. our baseline for cham-
ber ensemble separation. We report a strong negative correlation
between pitch overlap and separation performance with an average
of 5 dB performance drop for examples with pitch overlaps. We
also show that pre-training our model with string, wind, and brass
ensembles helps with separation of vocal harmony mixtures from
Bach Chorales and Barbershop Quartet datasets with up to +17.92
dB SI-SDR improvement for 2 source vocal harmony mixtures.

Index Terms— leveraging synthetic data, domain adaptation,
cross-dataset evaluation, monaural source separation, chamber en-
sembles

1. INTRODUCTION

Audio source separation is the task of extracting individual sound
sources from a recorded mixture. Our work primarily focuses on
the challenge of source separation of musical mixtures, where each
source is a musical instrument. Our sources are strongly correlated
with each other by virtue of musical structure and context. The
current paradigm of music source separation is highly focused on
stem-based decomposition [1, 2, 3] as the research field was largely
limited by the available datasets. While specific sub-tasks in the
speech domain like speech denoising, multi-speaker separation, and
dereverberation have been thoroughly explored, music separation
research has largely been focused on the demixing task aided by the
popular MUSDB dataset [4]. The demixing challenge is targeted
at solving the problem of separating vocals, bass, and drums from
mixed and mastered pop songs. Very little research has focused on
other musical decomposition tasks such as separating harmonized
sources. Even though the problem of music source separation has

seen great strides recently reaching up to +8.11 dB [5] output SDR,
we find enough room for improvement when compared to state-of-
the-art speech separation performance which is able to achieve up to
+22 dB output SDR using time-domain separation [6, 7] methods.
TasNet [6] based approaches have not been successful for music
separation and have been observed to introduce artifacts [3]. Cham-
ber ensemble typically refers to a sub-genre of classical music with
a small number of performers, mostly playing monophonic instru-
ments in a highly synchronized fashion. We define the task of sep-
arating such mixtures with sources that suffer from label ambiguity
and high timbral similarity as ensemble separation.

There are some separation tasks that fit into our definition of en-
semble separation that have been explored recently. One such task is
vocal harmony separation which has been tackled by [8, 9, 10, 11].
While the label ambiguity problem does exist for this task, some
approaches have circumvented this issue by either looking at the
problem in a class-based separation fashion by categorizing the con-
stituent sources based on their vocal registers i.e. alto, soprano,
bass, and tenor. One method of tackling this problem is called per-
mutation invariant training (PIT) [12] which has been the preferred
solution to tackle the label ambiguity problem for speech separation
research [6, 7]. PIT has been utilized for ensemble separation in vo-
cal harmony separation [10, 13] and chamber ensemble separation
[14].

In this work, we analyze the impact of different types of mix-
tures on the task of separation from a single-channel recording.
The mixtures consist of two harmonized monophonic sources. We
first introduce a data augmentation method enabled by the multi-
microphone renders available in EnsembleSet [14] and evaluate
its impact on cross-dataset generalisability for time-domain and
complex-domain separation models. We then introduce a pre-
training strategy using synthetic data from EnsembleSet followed
by fine-tuning on real-world datasets. We evaluate the impact of
pre-training using EnsembleSet for both same-domain (chamber
ensemble instruments from URMP dataset) and cross-domain data
(harmonized vocals from Bach Chorales and Barbershop Quartet
datasets). We train the models using PIT to separate any two mono-
phonic sources, regardless of instrument type, and evaluate their
ability to separate mixtures of the same or different instruments.
Finally, we test the effectiveness of our separation strategy for mix-
tures with pitch overlaps between sources. Our key contributions
are listed below:

• We present an instrument-agnostic source separation model
trained using PIT that can separate any monophonic instrument
from a mixture with a fixed number of sources.

• We propose a novel data augmentation pipeline using multi-
mic renders from EnsembleSet that improve cross-dataset gen-
eralisability.
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• Pre-training ensemble separation models with EnsembleSet,
followed by fine-tuning with a limited amount of target domain
data, improves performance by up to +12.92 dB compared to
baseline trained only on EnsembleSet and up to +2.1 dB com-
pared to training only on target domain data.

• Pre-training vocal harmony separation models on chamber en-
semble instruments improves performance by up to +1.08 dB.

• Overlapping pitches between sources in musical mixtures sig-
nificantly decrease separation performance of models trained
with PIT, by up to -5.5 dB regardless of instrument type.

2. EXPERIMENTAL SETUP

2.1. Problem definition

We train our models to separate mixtures of a given number
of monophonic musical sources regardless of the type of instru-
ment/source, unlike other music source separation tasks. Using a
PIT objective forces our model to learn how to separate mixtures
based on onsets and pitch tracking instead of timbres. This approach
also enables our model to be able to separate mixtures of identical
instruments (eg: 2 violins), similar sounding instruments (eg: vio-
lin+viola, or 2 singers), and also unseen instruments/sources. An-
other advantage of using PIT is related to the amount of training
data, where we are able to generate

(
N
2

)
training examples from a

piece with N concurrent sources which greatly improves the total
training data size.

There are a few drawbacks of our problem formulation as well.
Firstly, there are some monophonic instruments (such as violins)
where there are rare instances of a performer playing multiple notes
at an instance, in which case our model is confounded since it ex-
pects the sources to be monophonic. The second drawback is that
due to the nature of PIT, each model is constrained to the number of
instruments present in the mixture to be the number of output nodes
of the model.

2.2. Datasets

EnsembleSet [14] is a multi-track chamber ensemble music dataset
synthesized by passing the MIDI transcriptions from the RWC Clas-
sical Music Database [15] and lilypond scores from Mutopia [16]
through a realistic sample library Spitfire BBC Symphony Orches-
tra (BBCSO) [17]. This dataset presents 18 unique multi-mic
recordings and 2 professional mixes for each individual source
which can be used as data augmentation to avoid overfitting mod-
els to the synthesised dataset. EnsembleSet contains a total of 25
hours of multi-mic instrument renders and is focused around string
ensembles (24 hours) with a limited amount of wind and brass in-
struments (30 minutes each). The synthetic nature of the dataset,
combined with its relatively large size, enables us to test if pre-
training our model on a large variety of musical contexts with lim-
ited timbral diversity can benefit ensemble separation models.

Since our models are pre-trained on synthetic data, we use real-
world recordings from the URMP dataset [18] which is a multi-
modal, multi-track dataset comprising audio-visual recordings of 44
chamber ensemble pieces. Unlike most other multi-track datasets
of chamber ensembles, this dataset takes particular care to ensure
that the individual instrument recordings do not contain bleed. In
order to achieve this, each instrument was recorded in a separate
take, subsequently, each of these recordings were dereverberated
and downmixed together with the other instruments with reverb.

To study the transferability of features learned from chamber
ensemble instruments to vocals, which have significantly different
dynamics and modulations compared to bowed and wind instru-
ments, we use the Bach Chorales and Barbershop Quartets (BCBQ)
datasets. These are multi-track datasets of a capella recordings
from [19] which we use for fine-tuning our pre-trained model from
ensemble separation to vocal harmony separation. They include
26 songs from Bach Chorales (BC) and 22 songs from Barbershop
Quartets (BQ). This gives us a total of 104 minutes of 4 parts: So-
prano, Alto, Tenor, and Bass (SATB) recordings, where BC contains
2 male (tenor and bass) and 2 female (soprano and alto) vocalists,
and BQ contains all 4 male vocalists.

2.3. Models

We choose two different baselines for our experiments, one for
time-domain end-to-end separation (DPTNet [7]), and one for com-
plex domain separation (DCUNet [20]), both of which have shown
comparable results for speech separation using PIT.

We use the DPTNet models (9.9M parameters) as described in
[14, 10] for our experiments with URMP and Choral Music, re-
spectively. We train our models at 44.1 kHz except for experiments
related to vocal harmony mixtures, where we pre-train our model at
22.05 kHz as the test dataset is bandlimited and we have observed
noisy separation when models were trained at a higher sample rate
than the contents of the data [10].

DCUNet (7.7M parameters) builds upon the original U-Net [21]
by introducing a phase-aware complex-valued masking framework.
We use the asteroid [22] implementation of this model with PIT as
a baseline to compare and contrast our observations.

2.4. Training

We train our models with synchronised pairs of musical instru-
ments. Our data pre-processing involves activity detection on the
source monophonic instrument audio files and identifying frames
of 2.97 seconds (131072 samples at 44.1 kHz) where both instru-
ments are concurrently active for at least 40% of the frame. We
generate a train-validation split by randomly choosing 10% of the
training frames presented to the dataloader as the validation set. We
generate our input mixtures by linearly downmixing the augmented
versions of our reference sources.

All of our models are trained at 44.1 kHz, except the experi-
ments associated with vocal harmony separation which are trained
and evaluated at 22.05 kHz. We use the SI-SDR [23] metric as our
loss function with PIT. We train our DPTNet models for 100 epochs
with early stopping patience of 10 epochs. We start with a learning
rate of 5 × e−3 with a scheduler that halves the learning rate if the
validation loss does not improve for 3 epochs. We train our models
on 4 x NVIDIA A100 GPUs with a batch size of 3 per GPU using a
distributed data parallel backend.

2.5. Data Augmentation

The data augmentation is applied on-the-fly using torch-
audiomentations [24] and is applied across all the experiments, ex-
cept using multi-mic renders from EnsembleSet. We stochastically
apply gain modulations to each of the sources in a mixture sep-
arately in the range of +5dB to −15dB, pitch shift by up to ±2
semitones, followed by channel swaps for the reference targets.

The experiments using EnsembleSet for training have the op-
portunity to use the 20 unique microphone and mix configurations
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that are presented in the dataset for each source. While most of
these renders are stereo and utilize multiple microphones, we down-
mix them to mono for our experiments. We believe this exposes
our models to a good variety of recording and microphone config-
urations which helps improve generalisability. To enable this, our
dataloader selects one of the 20 available renders at random at each
training iteration and the data augmentation described before is ap-
plied subsequently.

2.6. Fine-tuning/Pre-training

To enable our model to adapt to unseen acoustics and instruments,
we propose using EnsembleSet with multi-mic augmentation as a
pre-training step before training the model on limited test-domain
data for improved performance. For the pre-training stage, we use
the same training configuration as our EnsembleSet baseline exper-
iments, where the train and validation sets are generated with a ran-
dom split and we train the model for 100 epochs. We then use the
learned model weights as the initial weights for re-training on tar-
get domain data with a low learning rate of 1 × e−6. For URMP
cross-dataset performance experiments, we use a single song from
URMP, and 10 songs each from BC and BQ datasets as our fine-
tuning data while using the remaining tracks as test data. We do not
freeze any layers during this fine-tuning stage due to the nature of
joint optimization of the free-filterbank and the separator stack in
DPTNet.

2.7. Evaluation Framework

We use the “Close” mic-render for evaluating our models’ perfor-
mance on EnsembleSet. For our cross-dataset evaluation and do-
main adaptation experiments, we keep aside a few audio recordings
(songs selected at random) from each of our datasets such that they
are never presented to the model during training. For our smaller
datasets, we use the same data for both training models from scratch
and fine-tuning models pre-trained using EnsembleSet. We down-
mix the normalised individual sources to generate the test input
mixtures with an input SNR of roughly 0 dB. We use the aster-
oid [22] implementations of SI-SDR and SDR to report our results.
We then subsequently categorize our input mixtures based on in-
strument types and use pYIN [25] to detect pitch overlaps in test
mixtures to segregate our test set and obtain deeper insights.

3. RESULTS

3.1. Impact of microphone augmentation

We trained the DPTNet and DCUNet models on EnsembleSet with
and without multi-mic augmentation and test them on EnsembleSet
and URMP. Table 1 shows the results of our models trained on En-
sembleSet alone with and without multi-render data augmentation
and tested on a separate test set from EnsembleSet and real-world
data from URMP. We observe that both models suffer from over-
fitting and poor cross-dataset performance when tested on URMP
data when trained without using multi-mic augmentation (MicAug).
However, we observe a significant improvement in cross-dataset
performance when using multi-mic augmentation only on DPTNet,
while DCUNet results do not show any noticeable difference. We
observe a drop in the same dataset performance of DPTNet mod-
els trained with MicAug, as the test data for EnsembleSet used the
Close microphone, which was the same microphone configuration
used for training the models trained without MicAug.

Table 1: Output SI-SDR for 2-source Chamber Ensemble Separa-
tion models trained on EnsembleSet with and without multi-mic
augmentation (MicAug), tested on EnsembleSet (ES) and URMP.

Model Sample Rate MicAug ES URMP

DPTNet 22.05 kHz ✓ +13.67 dB +9.39 dB
DPTNet 22.05 kHz ✗ +18.39 dB +5.74 dB

DPTNet 44.1 kHz ✓ +13.24 dB +9.23 dB
DPTNet 44.1 kHz ✗ +18.84 dB +3.54 dB

DCUNet 44.1 kHz ✓ +14.43 dB +4.49 dB
DCUNet 44.1 kHz ✗ +14.43 dB +4.65 dB

3.2. Cross-dataset performance

Table 2 shows our models’ evaluation results on cross-domain real-
world datasets after pre-training on EnsembleSet with and without
fine-tuning1. Our experiments demonstrate that pre-training using
EnsembleSet leads to better separation results for both chamber en-
semble and vocal harmony separation. Interestingly, even though
choral singing is significantly different from chamber ensemble in-
struments, pre-training on chamber ensembles provides a +1.08 dB
performance improvement over training on harmonized vocal data
alone. While the SI-SDR achieved for vocal harmony separation
is higher, it must be noted that the vocal harmony separation ex-
periments were run at 22.05 kHz (instead of 44.1 kHz for other
experiments) due to the band-limited nature of the BCBQ datasets
as noted in [10].

Table 2: SI-SDR for 2-source Ensemble Separation models trained
on EnsembleSet with fine-tuning on respective test datasets.

Model SR Train Test FT SI-SDR

DPTNet 22.05 kHz ES BCBQ ✗ 4.99 dB
DPTNet 22.05 kHz ES BCBQ ✓ 17.92 dB
DPTNet 22.05 kHz BCBQ BCBQ ✗ 16.84 dB

DPTNet 44.1 kHz ES URMP ✗ 9.23 dB
DPTNet 44.1 kHz ES URMP ✓ 14.87 dB
DPTNet 44.1 kHz URMP URMP ✗ 13.25 dB

DCUNet 44.1 kHz ES URMP ✗ 4.49 dB
DCUNet 44.1 kHz ES URMP ✓ 12.71 dB
DCUNet 44.1 kHz URMP URMP ✗ 10.61 dB

3.3. Musical context vs. Separation performance

Figure 1 provides deeper insights into the performance of our
DPTNet-based model with fine-tuning for different mixture types.
We use the URMP dataset’s test data and divide it into 4 categories:
same instruments vs. different instruments, mixtures with pitch
overlaps and without pitch overlaps. Pitch overlaps are detected us-
ing pYIN [25] on each instrument’s ground truth audio tracks. We
find that examples with pitch overlap perform significantly worse
(≈ -5 db) than examples without pitch overlaps across all our mod-
els. We also find that mixtures of the same instruments perform
slightly worse (≈ -1 db) than mixtures with separate instruments.

1Audio examples: http://c4dm.eecs.qmul.ac.uk/EnsembleSet/
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Figure 1: 2-source separation performance w.r.t. pitch overlap of
DPTNet trained on EnsembleSet with FT, tested on URMP.
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Figure 2: Instrument-wise median output SI-SDR of DPTNet
trained on EnsembleSet with fine-tuning on URMP tested on 2
source mixtures from URMP dataset.

3.4. Instrument-agnostic performance

Even though EnsembleSet is 24 hours of strings and 1 hour of all
other instruments, in Figure 2 we observe minimal variance across
instruments. In fact, we see that most of the rarer instruments on
average perform better than the most dominant instruments which
are violin, viola, and cello. To test our hypothesis, we trained
an EnsembleSet model with multi-render augmentation, excluding
French horn training examples (see Figure 3). The average SI-SDR
on URMP data was +8.8 dB, slightly lower (-0.49 dB) than the
baseline. However, we found similar instrument-wise SI-SDR per-
formance across different instruments, including the French Horn,
which is an unseen instrument for the model. This suggests that
models trained with PIT can separate unseen instruments.

4. DISCUSSION

We tested two models for monaural chamber ensemble separation:
a TasNet-based architecture and a complex domain masking-based
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Figure 3: Average performance of DPTNet models tested on 2
source URMP mixtures.

architecture. We found that using multi-mic renders in Ensemble-
Set helped TasNet models generalize better. We also observe that
the same augmentation has no effect on complex-domain models,
this may be due to the fact that the 20 different microphone and
mix renders present a larger variation in the input representation for
TasNet-based models as compared to complex spectrogram repre-
sentations. Our models trained with PIT were able to separate rare
and unseen instruments and the same instruments mixtures. This
suggests that the models trained with PIT are not learning specific
timbral characteristics for each source but instead learning a gen-
eralizable separation strategy that focuses on pitch onsets and tra-
jectories. This is further strengthened by our observation of a 5
dB average performance drop for examples with pitch overlaps re-
gardless of the combination of instruments present in the mixture.
We also show that pre-training models on large amounts of syn-
thetic chamber ensemble data followed by fine-tuning on real data
improves real-world performance for both chamber ensembles and
vocal harmony mixtures by up to +2 dB. The fact that we observe
performance improvement for vocal harmony separation which is
significantly different from chamber ensembles from a source tim-
bre and dynamics perspective also adds to our understanding that
models trained with PIT tend to be timbre-agnostic. Hence, such
models can be used effectively to separate any musical source with
the only constraint that the instruments should be monophonic.

Our experiments show that separating mixtures of monophonic
sources in an instrument-agnostic fashion is indeed successful using
PIT. With fine-tuning, we are able to achieve very impressive results
of 20+ dB separation improvement for many examples. The output
quality for the better-performing examples is indeed approaching
levels where it may be considered a pre-processing step for music
production. However, we also find that the variance in performance
is quite high and has significant dependence on the musical context
of the mixture, such as when the sources play the same note. Indeed
it is also a question worth considering, whether separating multiple
instruments playing the same note is a source separation problem or
a timbre disentanglement problem. In the future, we would explore
further how to improve our models such that the performance is
more consistent across all mixture scenarios, or even explore differ-
ent loss functions and models to handle the case of timbre disentan-
glement which opens up many new avenues for source separation,
and its impact on music production.
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