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Abstract

Extra-intestinal pathogenic Escherichia coli (ExPEC) are a significant cause of urinary tract infections and 
bacteraemia in the UK and around the world. These E. coli primarily belong to phylogenetic groups B2 
and D, with the clones ST131, ST127, ST95, ST73 and ST69 responsible for the majority of these 
infections.
In the UK, studies of ExPEC have focused on isolates from the North of England, ST131 strains and ExPEC 
that possess extended-spectrum beta-lactamase (ESBL) enzymes. Therefore, very little is understood 
about the UK ExPEC population as a whole, the breadth of virulence factors contributing to these 
infections and the differences between urinary and bloodstream-derived ExPEC.

In this study ST131 was more frequently detected in bloodstream isolates and ST95 was most prevalent 
in urinary isolates. Comparative virulence of the major clones in the Galleria mellonella infection model 
revealed ST131 isolates to effect the highest mortality, although serogroup O6, which is linked with 
ST73, was also associated with high mortality, potentially explaining the success of ST73-O6 in 
bacteraemia. Analysis of virulence factors identified pap, afa/dra and kpsMTII as important
determinants in isolates causing urosepsis and those of ST131, while fyuA and fimH were distinctly 
lacking, demonstrating their role as colonisation factors rather than virulence factors.

Although these findings are important, with appropriate treatment of urinary tract infections 
they can become redundant, as ExPEC would be eradicated before causing a severe infection such as 
bacteraemia or urosepsis. In urinary isolates, resistance to trimethoprim approached 50% and ampicillin 
resistance was >70%, while ST131 isolates as a whole demonstrated ciprofloxacin and trimethoprim 
resistance >50%. Together these indicate that empirical UTI guidelines need to be revisited, to prevent 
recurrence of infection and ascension to the kidneys and bloodstream. In addition, data from this study 
can be used to develop a point-of-care test to detect ST131, to guide appropriate treatment, without 
the delay associated with referring a urine specimen for microbiological investigation.
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1. Introduction

1.1 Escherichia coli

Escherichia coli is a Gram-negative, facultative anaerobic bacillus and the type species of the genus 

Escherichia, within the Enterobacteriaceae family (Colman et al. 1993). The E. coli Genome Project 

measured the genome at 4,639,221 base pairs in length, with a GC content of 51%. Initial comparative 

gene analysis, using multiple gene and peptide databases, suggested that 60% of the genome was E. 

coli- or Enterobacteriaceae-specific (Blattner et al. 1997). However, a later study reported only 40% of 

the E. coli genome to be conserved, with the remaining 60% conferring the pathotype, virulence and 

resistance (Welch et al. 2002). First described by the German physician Theodor Escherich in 1885, E. 

coli was isolated from the faeces of healthy newborns and named Bacterium coli commune after its 

shape and natural habitat. However, it was not until 1954 that the name Escherichia coli was recognised 

(Cowan, 1954). Subsequent isolation from urinary tract infections (UTI) suggested ascension of bacteria 

from the colon to the bladder. Despite this finding, E. coli was long considered the major commensal of 

intestinal flora and of low virulence, before becoming established as a human pathogen (Crichton and 

Old 1985; Sussman, 1985).

As in humans, E. coli is also an intestinal commensal and a pathogen of animals (Bettelheim, 1997). In 

companion animals E. coli is a frequent cause of UTIs (Ewers et al. 2010; Johnson et al. 2008b), while in 

farm and food animals E. coli causes colibacillosis, post-weaning diarrhoea, mastitis and septicaemia 

(Ghanbarpour and Oswald, 2010; Johnson et al. 2009b; Ruan and Zhang, 2013).

1.1.1 Laboratory Identification

E. coli produce round, flat, opaque colonies on non-selective media (e.g. blood agar). Some strains also 

produce a zone of haemolysis due to haemolysin production. On selective media such as MacConkey 
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agar and cysteine lactose electrolyte-deficient (CLED) agar, E. coli ferment the lactose, producing pink 

and yellow colonies respectively. Although 10% of E. coli are lactose non-fermenters, including most 

diarrhoeal pathotypes, a positive indole reaction distinguishes these E. coli from other 

Enterobacteriaceae (Nataro and Kaper, 1998). A summary of the biochemical tests used to distinguish E. 

coli from other genera can be found in table 1. 

Chromogenic agars are now routinely employed for isolation and identification of urinary tract 

pathogens, including E. coli, to speed up identification. These agars contain either β-glucuronidase or β-

galactosidase, producing blue or pink E. coli colonies, depending on the manufacturer. CHROMagar is as 

sensitive (98-100%) as traditional selective agars employed for E. coli identification (Scarparo et al. 

2002). 

In clinical microbiology laboratories a combination of solid-culture, semi-automated biochemical 

analysers, PCR and/or matrix-assisted laser desorption ionisation time of flight (MALDI-Tof) mass 

spectroscopy (MS) may be employed to identify E. coli (Harris and Hartley 2003; Menozzi et al. 2006;

Persson et al. 2007) in all specimen types. These systems are time-efficient, improving the time to 

bacterial identification and, in some instances, associated antibiotic resistance profile.

Table 1 Biochemical tests differentiating Escherichia coli from closely related genera

Organism Lactose ONPG Indole Urease Hydrogen 
sulphide

E. coli + + + - -
Shigella species - - - - -

Salmonella species - - - - +
K. pneumoniae + + - + -

E. aerogenes + + - - -
S. marcescens - + - - -

Adapted from Medical Microbiology, 2nd edition (Mims, 1998; Boadi et al. 2010; Guentzel, 1996; Hale 

and Keusch, 1996; Rosa et al. 1980)
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1.2 Intestinal pathogenic Escherichia coli

E. coli are broadly categorised into intestinal and extra-intestinal. The seven intestinal pathogenic E. coli

variants (or pathotypes) include enterohaemorrhagic E. coli (EHEC), a subset of shiga-toxin-producing E. 

coli (STEC) also known as verotoxin-producing E. coli (VTEC); enteropathogenic E. coli (EPEC); 

enterotoxigenic E. coli (ETEC); enteroinvasive E. coli (EIEC); enteroaggregative E. coli (EAEC); diffusely-

adherent E. coli (DAEC) and adherent-invasive E. coli (AIEC). 

These pathotypes cause diarrhoeal disease by invasion (EIEC); toxins (STEC, ETEC); or 

rearrangement of the intestinal epithelial cytoskeleton (EPEC), mediated by pathotype-specific virulence 

factors (e.g. shiga toxin (Stx) 1 or 2, STEC). 

The prevalence of each pathotype varies according to geographical region and patient 

population (Croxen et al. 2013; Nataro and Kaper, 1998). In the UK bloody diarrhoea caused by E. coli is 

associated with food-borne outbreaks of EHEC O157:H7 and O26, although frontline laboratories tend to 

limit their detection to the former. Incidence is higher in the summer months, when faecal shedding of 

EHEC O157:H7 in cattle is at its highest, and infection is frequently more severe in children, occasionally 

leading to haemorrhagic colitis and haemolytic uraemic syndrome (HUS) if not diagnosed and treated 

promptly (Croxen, et al. 2013; Gormley et al. 2011; Jenkins et al. 2008; Money et al. 2010). DAEC is 

thought to account for  approximately 10%-11% of cases of diarrhoea in UK children (Knutton et al. 

2001), while EPEC strains account for approximately 4% of suspected VTEC isolates referred to Public 

Health England’s (PHE) Gastrointestinal Bacterial Reference Unit (GBRU). Similarly to EHEC, EPEC was 

isolated mostly (86%) from children <15 years with bloody diarrhoea (Sakkejha et al. 2013). Travellers’ 

diarrhoea has traditionally been associated with ETEC (Hill and Ryan, 2008), but in the UK EAEC and EIEC 

have been implicated in a significant proportion of cases (Perry et al. 2010). In addition to diarrhoeal 

disease, EAEC has been associated with UTIs and Clonal group A strains (uropathogenic clone associated 

with trimethoprim-sulfamethoxazole resistance), that suggest EAEC possesses extra-intestinal traits 
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(Olesen et al. 2012; Wallace-Gadsden et al 2007). AIEC strains also possess extra-intestinal traits, 

including serotypes and virulence factors. Unlike the other diarrhoeal pathotypes AIEC is associated with 

persistent infection of Crohn’s disease patients, rather than self-limiting diarrhoeal disease of healthy 

patients (Martinez-Medina et al. 2009).

1.3 Extra-intestinal Pathogenic Escherichia coli

Extra-intestinal pathogenic E. coli (ExPEC) primarily cause UTIs and bacteraemia, but also neonatal 

meningitis, osteomyelitis and intra-abdominal infections, among others. They have also been 

characterised by phylogenetic group (predominantly groups B2 and D) and the presence of specific 

virulence factors: P-fimbriae, type 1 fimbriae, haemolysin, yersiniabactin, aerobactin, type II capsule, 

serum resistance proteins and the virulence-associated pathogenicity island malX (Johnson and Stell,

2000; Johnson et al. 2012b; Russo and Johnson, 2000; Smith et al. 2007; Venier et al. 2007).

The uropathogenic E. coli (UPEC) type strain, CFT073, was originally isolated from the blood and 

urine of a woman with pyelonephritis from Maryland, USA in 1997 (Kao et al. 1997). Full genome 

sequencing of CFT073 identified these virulence factors on virulence-associated DNA fragments, 

including pathogenicity islands (PAI), plasmids, prophages and insertion sequences (Parham et al. 2005a;

Welch et al. 2002; Guyer et al. 1998). Since this initial study, resistance determinants such as CTX-M-15 

and aac(6’)-Ib-cr have been identified on these mobile genetic elements, along with these virulence 

factors (Huang et al. 2012; Woodford et al. 2004). 

Other ExPEC pathotypes, in addition to UPEC, include neonatal meningitis-causing E. coli (NMEC) 

and avian pathogenic E. coli (APEC), which share genomic similarities and sequence types with human 

strains (Mora et al. 2009; Wiles et al. 2008). The prevalence of virulence and resistance determinants 

varies among these pathotypes and among commensal E. coli, although commensals are reported to 

possess fewer determinants (Obata-Yasuoka et al. 2002).
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Different types of E. coli virulence factors are displayed in figure 1. Isolates in this study were 

investigated for a variety of virulence factors described by Johnson and Stell (2000), as detailed below 

(Johnson & Stell, 2000).

Figure 1 Mobile genetic elements and virulence factors possessed by extra-intestinal pathogenic 

Escherichia coli

1.3.1 Virulence determinants

1.3.1.1 Adhesins

E. coli adhesins can be broadly categorised as fimbrial (type I, P, S, F1C, G) or afimbrial (AFA, Dr, Hra, Tsh, 

Iha, M and CS31A). As their name infers, these virulence factors perform the important primary stage of 

infection: attachment to host cells or tissues. This binding facilitates the establishment of a bacterial 

community and/or biofilm, in order to initiate infection.

Of the fimbrial adhesins, type 1 fimbriae are by far the most common, typically identified in 
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88%-100% of E. coli strains, plus other members of the Enterobacteriaceae family, with a higher 

proclivity in virulent strains (Blum et al. 1991; Cooke et al. 2010; Duguid and Campbell, 1969; Johnson,

1991; Johnson et al. 2005b; Moreno et al. 2005). Key factors in adhesion, these fimbriae also aid 

establishment of intracellular reservoirs within bladder cells, which act as a source for recurrent UTI 

(Anderson et al. 2003).

Traditionally more widespread in UPEC causing pyelonephritis, P-fimbriae or pap (pyelonephritis-

associated pili) are the second-most prevalent fimbrial type (Blum et al. 1991; Narciso et al. 2011;

Norinder et al. 2011; Piatti et al. 2008). These fimbriae exist in three forms, with different binding 

affinities affecting the cells (uroepithelials and erythrocytes) and the host (human or animal) that they 

bind (Stromberg et al. 1990). 

In contrast with type I and P-fimbriae, S- and F1C-fimbriae are reported to have a specific 

function in binding to the brain endothelium and facilitating the development of E. coli meningitis 

(Huang et al. 1995; Johnson, 1991; Korhonen et al. 1985; Schnaar et al. 2009). However, these fimbriae 

have also been indentified in ExPEC causing UTI and bacteraemia (Blanco et al. 1997; Norinder et al.

2011; Spurbeck et al. 2011), but at a lower prevalence of 21%-54% (Blum et al. 1991; Johnson and Stell,

2000; Johnson et al. 2005b; Mitsumori et al. 1999).

Rarely detected in human ExPEC infections (Johnson & Stell, 2000; Karisik et al. 2008), G-

fimbriae (gafD) have been identified in EPEC, ETEC and occasional E. coli strains causing septicaemia, in 

humans and animals (el Mazouari et al. 1994; Lintermans et al. 1988). These fimbriae bind erythrocytes 

and intestinal villi, enabling toxin secretion directly adjacent to the target tissue (Lintermans et al. 1988;

Saarela et al. 1995; Tanskanen et al. 2001).

Afimbrial cell surface adhesins function in cell binding, but also in pore formation and as serine 

proteases (Guignot et al. 2000; Kobayashi et al. 2010).
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One of the more prevalent afimbrial adhesins is the heat-resistant agglutinin (Hra), also known 

as Hek, which has been identified in human and animal ExPEC. Identified in 28%-55% of human ExPEC 

strains, this adhesin is encoded on the J96 II PAI, but is not an absolute requirement for colonisation. 

However, its PAI location and association with other PAIs leads to the hra gene often being detected 

alongside the virulence factors type I fimbriae (fimH), haemolysin A (hlyA), cytotoxic necrotising factor 1 

(cnf1), P-fimbriae (pap), uropathogenic specific protein (usp), the siderophore iroN and the pks island 

(Bhargava et al. 2009; Bidet et al. 2005; Johnson et al. 2008a; Lutwyche et al. 1994; Srinivasan et al. 

2003).

The AFA/Dr family of adhesins bind different epitopes of collagen and blood group antigens in 

the attachment process (Labigne-Roussel et al. 1984; Nowicki et al. 1990). Unlike fimbrial adhesins this 

family of proteins has been identified in <20% ExPEC strains (Lopes et al. 2005; Venier et al. 2007), as 

well as DAEC and commensal E. coli isolates (Obata-Yasuoka et al. 2002).

More prevalent (40%) in ExPEC than the AFA/Dr adhesins (Johnson et al. 2008a), the iron-

regulated gene A (IrgA) homologue adhesin (Iha), which was originally identified by deletion mutants of 

an adhesion-conferring operon, has been associated with virulent E. coli strains (Johnson et al. 2005a), 

including EHEC O157:H7 and the UPEC type strain CFT073 (Tarr et al. 2000). Iha appears to be 

upregulated in iron-depleted environments, acting as a siderophore receptor (Hagan and Mobley, 2007;

Leveille et al. 2006).

Identified by transposon mutagenesis, the E. coli temperature-sensitive haemagglutinin (Tsh) so 

named due to its optimal expression at 26⁰C, rather than the conventional 37⁰C, has also been identified 

in multiple pathotypes, including ExPEC (7%-9%) and APEC (33%). With a broad binding specificity 

(erythrocytes, haemoglobin, fibronectin and collagen), this adhesin also functions as a serine protease 

autotransporter of Enterobacteriaceae (SPATE) protein in strains causing cystitis, pyelonephritis, 

bacteraemia and neonatal meningitis (Heimer et al. 2004; Mora et al. 2009; Provence and Curtiss, 1994).
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Co-localised with G-fimbriae (Rhen et al. 1986), the M adhesin is similarly rarely detected in 

ExPEC strains (Johnson et al. 2005b), suggesting it functions more as a colonisation factor than a 

virulence factor (Johnson & Stell, 2000; Karisik et al. 2008). 

Another adhesin, identified predominantly in bovine E. coli, is the coli-surface-associated 

antigen, CS31A (Korth et al. 1991), which also appears to be rarely detected in human ExPEC. However, 

this virulence factor is encoded on a highly transmissible plasmid (Jallat et al. 1994). Given that several E. 

coli virulence factors appear to be expressed by both animal and human ExPEC strains, it would be 

interesting to determine if the prevalence of this adhesin in human ExPEC has changed in recent years.

1.3.1.2 Toxins

Once attachment to host cells has been initiated, E. coli secrete or inject toxins that serve to damage 

host cells, facilitate invasion or destroy host tissues; completing the second stage of infection.

Haemolysin A (HlyA) is perhaps the principal toxin of most ExPEC strains, identified in 29%-52% 

of isolates (Cooke et al. 2010; Johnson & Stell, 2000; Mahjoub-Messai et al. 2011; Moreno et al. 2005). 

HlyA lyses erythrocytes allowing the producing strain to obtain iron for growth and survival in the 

absence of siderophores (Beutin, 1991; Blanco et al. 1997; Cavalieri et al. 1984; Mitsumori et al. 1999;

Norinder et al. 2011). Encoded on a number of ExPEC PAIs, hlyA is often detected in combination with 

pap, hra and cnf1 (Guyer et al. 1998; Bidet et al. 2005; Blanco et al. 1997). APEC haemolysins, hlyE and 

hlyF, meanwhile, are encoded on plasmids and are also occasionally identified in human ExPEC strains 

(del Castillo et al. 1997; Reingold et al. 1999).

Secreted autotransporter toxin (Sat) is another dominant ExPEC toxin, which had been identified 

in 39%-94% of investigated strains (Johnson et al 2008a; Mahjoub-Messai et al 2011; Pitout et al. 2005), 

although this toxin has rarely been screened for, likely due to its recent discovery (Guyer et al. 2000). 

Encoded on the 536 III PAI, this toxin interferes with the cytoskeleton of epithelial cells and acts as a 



Page | 26

serine protease, with homology to two diarrhoeagenic SPATE proteins, as determined by comparison of 

deletion mutants and wildtype strains in cytotoxicity assays (Dobrindt et al. 2002; Guyer et al. 2000).

Vacuolating autotransporter toxin (Vat) is another SPATE protein, with homology to the tsh and 

vat of APEC. In addition, it has also rarely been screened for, but a few studies demonstrated high 

prevalence in phylogenetic group B2 and ExPEC strains causing bacteraemia and UTIs (Johnson et al.

2008a; Parham et al. 2005b).

EAEC and Shigella flexneri encode the SPATE ‘Protein involved in Intestinal Colonisation’ (Pic), 

which lyses mucin as part of diarrheal disease and mediates serum resistance and weak 

haemagglutination during extra-intestinal infection (Henderson et al. 1999; Olesen et al. 2012). However, 

Pic has also been identified in ExPEC strains causing cystitis and pyelonephritis, but these studies suggest 

that Pic is not required for extra-intestinal virulence despite its function (Heimer et al. 2004).

Another EAEC virulence factor is the heat-stable enterotoxin, EAST1 (Savarino et al. 1993). 

Identified in 6%-88% of diarrhoeagenic strains, EAST1 has also been detected in 16%-43% of ExPEC 

strains causing UTIs and bacteraemia (Girardeau et al. 2003; Lopes et al. 2005; Paiva de and Dubreuil,

2001).

Cyclomodulins are a group of toxins that interfere with the cytoskeleton of Host epithelials to mediate 

tissue invasion and damage. Colibactin is the most frequently detected cyclomodulin in human ExPEC 

strains (Dubois et al. 2010; Johnson et al. 2008a; Johnson & Stell, 2000), inducing megalocytosis: the 

enlargement of the cytoplasm and nucleus of cells (Nougayrede et al. 2006). This genotoxin is encoded 

on the pks island, along with clbA, which is reported to facilitate colibactin production and synthesis of 

the siderophore yersiniabactin (FyuA), together ensuring the virulence of ExPEC (Martin et al. 2013).

Cytotoxic necrotising factor 1 (Cnf1) functions similarly to AB-type toxins, generating 

multinucleated cells that develop into necrotic lesions (Caprioli et al. 1983; Johnson, 1991). Encoded on 
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the J96 II PAI (Blum et al. 1995), cnf1 has been detected in 15%-54% of human ExPEC strains causing UTI 

and bacteraemia (Cooke et al. 2010; Johnson et al. 2005b; Mahjoub-Messai et al. 2011; Venier et al.

2007).

Cycle inhibiting factor (Cif) is common in EPEC and EHEC, but has rarely been detected in ExPEC 

strains (Dubois et al. 2010; Marches et al. 2003). Cif is another cyclomodulin with cysteine protease, 

transglutaminase and acetyltransferase activity that induces cell cycle arrest (Jubelin et al. 2009; Samba-

Louaka et al. 2009; Taieb et al. 2006). Cytolethal distending toxin B (CdtB) is also rarely detected in 

human ExPEC. As with the other cyclomodulins, this toxin induces cell cycle arrest and production of 

large mononucleated cells (Johnson and Stell, 2000; Mahjoub-Messai et al. 2011; Taieb et al. 2006; Toth 

et al. 2003).

1.3.1.3 Siderophores

Unlike the adhesins and toxins of E. coli, there are only four siderophores that have been routinely 

screened for in human ExPEC. Siderophores are used to chelate iron from the host for various cell 

processes during infection (Johnson, 1991).

Yersiniabactin (FyuA) is perhaps the most well known and also the primary siderophore of ExPEC, 

identified in ≤98% ExPEC strains (Johnson et al. 2005b; Johnson and Stell, 2000; Mahjoub-Messai et al.

2011; Moreno et al. 2005). Encoded on the ‘high pathogenicity island’ (Riley et al. 2006; Schubert et al. 

1998), FyuA has been implicated in bacteraemia-associated mortality and has been proposed to be one 

of, if not the, most important ExPEC virulence factor (Martin et al. 2013; Mora-Rillo et al. 2013). 

Aerobactin (IutA) is another highly efficient siderophore of ExPEC that has been identified in 

Salmonella and Shigella species (Johnson, 1991). Encoded on the colV plasmid or the chromosome (de, V 

et al. 1986; Johnson, 1991), IutA has been reported in 41%-68% of ExPEC causing UTI and bacteraemia, 

but slightly less frequently than FyuA (Johnson et al. 2005b; Johnson and Stell, 2000;Mahjoub-Messai et 
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al. 2011; Moreno et al. 2005).

Both the iron-responsive element (IreA) and iron-regulated locus (IroN) are less frequently 

reported in ExPEC than IutA and FyuA (Girardeau et al. 1991; Johnson et al. 2005b; Mahjoub-Messai et 

al. 2011). However, these siderophores, identified by transposon mutagenesis, have only recently been 

discovered (Russo et al. 2001).  Both IreA and IroN have been associated with APEC virulence (Jeong et 

al. 2012; Kariyawasam et al. 2006), but IreA has also been linked to antibiotic resistance (Johnson et al.

2012b; Pitout et al. 2005).

1.3.1.4 Capsule

E. coli produces more than 80 different capsule types, or K antigens, which are composed of acidic 

polysaccharides. Capsules are reported to facilitate invasion of tissues and evasion of the host immune 

system (Ananias and Yano, 2008; Huang et al. 1999; Orskov and Orskov, 1992). E. coli capsules were 

previously categorised into three groups (I-III), based on thermostability during serotyping, biochemical 

and genetic characteristics. However, a new capsule classification scheme has since been described 

which includes four capsular groups (1-4) composed of O-antigens and/or K antigens. Not all strains of E. 

coli express K antigens, but the majority of ExPEC isolates are capsulated, supporting the notion of 

capsules as an important virulence factor (Orskov & Orskov, 1992; Whitfield and Roberts, 1999). 

The K1 capsule has dominated ExPEC infections, including neonatal meningitis and APEC, often 

being the most frequently reported capsule type in strains causing UTIs and bacteraemia (Johnson et al.

2005b; Johnson and Stell, 2000; Kariyawasam et al. 2006; Mahjoub-Messai et a.l 2011; Mora et al. 2009;

Obata-Yasuoka et al. 2002). As with K1, K5 is also commonly identified in E. coli causing neonatal 

meningitis and bacteraemia (Johnson and Stell, 2000; Karisik et al. 2008). 

Specific K-antigens are often associated with particular O-antigens, including K15, which has 
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been identified in O6 strains (Johnson et al. 2008b). Other capsular types traditionally associated with 

ExPEC infections included K2, K3, K8, K12, K13, K15, K52 and K53 (McCabe et al. 1978).

1.3.1.5 Miscellaneous

Finally, ExPEC express a variety of virulence factors, previously of hypothetical function, that do not 

conform to any of the above groups. 

These include uropathogenic specific protein (usp), which was originally thought to be limited to 

strains causing UTIs (Kurazono et al. 2000). Described as an important factor in infectivity (Yamamoto et 

al. 2001), Usp has recently been described as a genotoxin with DNase activity, disrupting tight junctions 

and the actin cytoskeleton of host cells (Nipic et al. 2013). While usp has been identified in 80%-94% of 

urinary E. coli, this genotoxin appears to be absent from Clonal group A strains, which comprise a 

significant UPEC clone (Johnson et al. 2009a; Kurazono et al. 2000; Skjot-Rasmussen et al. 2012b).

The function of outer membrane protein T (OmpT) in ExPEC infections, on the other hand, 

remains unclear, although siderophore and protease activity have been suggested (Lundrigan and Webb,

1992; Rupprecht et al. 1983). Despite this unknown, OmpT is proposed to be a very important virulence 

factor of ExPEC, with a high prevalence (41%-83%) in ExPEC strains (Johnson et al. 2005b; Mahjoub-

Messai et al. 2011).

In contrast to OmpT, IbeA has a defined function in the invasion of the brain endothelium during 

neonatal meningitis, which was determined by transposon mutagenesis (Huang et al. 1995; Huang et al.

1999). Encoded on the gimA genomic island (Homeier et al. 2010; Huang et al. 2001), IbeA is thought to 

facilitate invasion of multiple other extra-intestinal sites, as it has been detected in strains causing 

cystitis, pyelonephritis and prostatitis (Johnson et al. 2005b; Moreno et al. 2005). In addition, IbeA is 

highly prevalent in APEC strains, with a hypothetical avian origin (Homeier et al. 2010).
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The outer membrane protein TraT confers surface exclusion (preventing cells with the same 

plasmid type from conjugating), has a minor role in serum resistance and is thought to prevent 

opsonisation, thereby inhibiting phagocytosis (Achtman et al. 1977; Binns et al. 1982; Kanukollu et al. 

1985; Waters and Crosa, 1991). Encoded chromosomally on colV plasmids along with iutA (Waters and

Crosa, 1991), traT is highly prevalent (65%-74%) among ExPEC strains causing bacteraemia and UTI 

(Cooke et al. 2010; Johnson et al. 2005b).

As with TraT, the increased serum survival (Iss) protein has been detected on colV plasmids, with 

roles in serum resistance and surface exclusion (Binns et al. 1982; Waters and Crosa, 1991). Despite co-

localisation on colV plasmids, iss is less prevalent than traT in isolates causing bacteraemia (23% vs. 

68%), UTI (17% vs. 65%) and in APEC strains, probably due to the location of the traT gene in the plasmid 

transfer region of the plasmid (Johnson et al. 2005b; Olesen et al. 2012; Skjot-Rasmussen et al. 2012b;

Waters and Crosa, 1991).

The fourth virulence factor encoded on colV plasmids is the bacteriocin colicin V, which is 

thought to function as an adhesin and cause cell lysis by disrupting the cell membrane (Waters and

Crosa, 1991). Like iss, colicin V is also less frequently detected than the other plasmid-encoded virulence 

factors in human ExPEC strains, suggesting colicin V is more important in APEC virulence, but not human 

ExPEC virulence; that these virulence factors may also be chromosomally encoded; or a mobile element 

within the plasmid is being transmitted that encodes traT and iutA more frequently than iss and colicin V 

(Johnson and Stell, 2000; Mora et al. 2009; Wang et al. 2010).

Finally, the enzyme encoded by malX functions in the metabolism of maltose and glucose (Reidl 

and Boos, 1991), but has no role in ExPEC virulence. However, it is located on the CFT073 II PAI, which is 

frequently identified in virulent ExPEC strains (Ostblom et al. 2011; Parham et al. 2005a). Therefore, 

malX is considered a marker of virulence, with high detection rates (60%-87%) in urinary and 

bacteraemia strains (Johnson et al. 2005b; Johnson and Stell, 2000; Moreno et al. 2005).
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While new E. coli virulence factors continue to be discovered, data from this study is limited to the 

determinants described above, which are included in the updated PCR protocol of Johnson and Stell 

(2000) (Johnson and Stell, 2000).

1.3.1.6 Galleria mellonella model

Previous studies have used various cell lines (Stromberg et al. 1990; Guignot et al. 2000; Nipic et al. 

2013) and mouse models to characterise various ExPEC virulence factors (Johnson et al. 2005a; Anderson 

et al. 2003), but more recently a new animal model has been proposed.  Galleria mellonella larvae have 

been used to study the pathogenesis, virulence and antibiotic susceptibility of various bacteria including 

Klebsiella, Acinetobacter, Stenotrophomonas species and EPEC (Leuko and Raivio, 2012; Wand et al. 

2013; Hornsey et al. 2013; Betts et al. 2014). In 2014 this model was validated for studying the virulence 

of ExPEC (Williamson et al, 2014) and was used in this study to analyse 40 clinical ExPEC strains. This is 

detailed in chapter 8.

1.4 Urinary Tract Infection

It is well established in the medical community that UTIs are one of the most common community- and 

hospital-associated infections, affecting most women at least once in their lifetime. Approximately, 12%-

20% of men will also suffer a UTI, while in children UTI prevalence ranges from <1% to 8% depending on 

age (Newcastle asymptomatic bacteruria research group, 1975; Foxman, 2002; Jakovljevic et al. 2013;

Lipsky, 1989).

The commensal flora of the periurethral area is comprised of a range of bacteria, most of which 

are intestinal in origin: Enterobacteriaceae, Gardnerella vaginalis, Lactobacillus, Staphylococcus, 

Streptococcus, Enterococcus, Corynebacterium, Bacteroides, Fusobacterium and Veillonella species; with 

E. coli accounting for 1%-12% (Hooton and Stamm, 1996). However, any of these bacteria may gain entry 



Page | 32

into the bladder, via the urethra, through instrumentation or sexual activity. Host and bacterial factors 

(e.g. pH change, antibiotics, fimbriae) then determine whether bacteria are removed by micturition 

shortly after causing a temporary, asymptomatic bacteruria; or if they colonise the bladder epithelium, 

establishing a bladder infection termed cystitis or a lower UTI. Conditions that enable bacteria to ascend 

the ureters (e.g. ureteric reflux, pregnancy) result in a kidney infection, also known as pyelonephritis or 

an upper UTI (Mobley et al. 1990). This pathophysiology (Figure 2) lends to women developing a UTI 

more frequently than men, due to their shorter urethras and proximity of faecal commensals and 

pathogens, which can be transmitted easily from the perineal region to the urethral opening. Hormonal 

changes in women also increase susceptibility to infection at early and later stages of life (Hooton and

Stamm, 1996). In men however, the urethral meatus is further from the perineal region, the skin is drier 

and the urethra is longer, making colonisation and ascension to the bladder less likely (Lipsky, 1989).

Figure 2 Diagram demonstrating the pathophysiology of developing a urinary tract infection and 

subsequent bacteraemia
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1.4.1 Asymptomatic bacteruria

Asymptomatic bacteruria (ABU) is the presence of bacteria in urine in the absence of symptoms. 

Transient bacteruria occurs at a low frequency in children, but is common in pregnant women and the 

elderly. Signs of infection may include pyuria and/or a positive dipstick test. Therefore, culture is the gold 

standard for confirming ABU (Nicolle et al. 2005; Rubin et al. 1992).

Approximately 2%-15% of pregnant women develop ABU and/or symptomatic UTI due to 

changes in the position of their bladder and ureters, which results in increased urine retention and urine 

reflux. This results in a 20- to 30-fold increased risk of developing pyelonephritis, with potentially serious 

consequences for the mother and the baby (e.g. premature labour, low birth weight). Therefore all 

pregnant women are screened and, if warranted, treated in the early stages of pregnancy for ABU (Ipe et 

al. 2013; Nicolle et al. 2005). 

Elderly patients are predisposed to ABU due to anatomical obstruction (e.g. prostatitis), 

hormonal changes and poor hygiene. However, antibiotic treatment is discouraged, as most cases will 

resolve naturally or go undiagnosed. In addition, antibiotic treatment in the elderly may not clear the 

infection; may cause the infection to become symptomatic; can lead to the infecting isolate developing 

resistance; may select for a resistant strain; or the patient may suffer adverse side effects (Fraser et al. 

2012; Nicolle et al. 2005; O'Sullivan et al. 2013; Werner et al. 2011).

1.4.2 Uncomplicated cystitis

Uncomplicated cystitis refers to symptomatic bladder infection in healthy patients lacking any 

complications or abnormalities. Symptoms in women include dysuria (pain on urination), frequency, 

urgency and lower abdominal pain. Men may also suffer with slow-stream micturition and dribbling, 

while in children symptoms are often non-specific. Therefore, malaise, incontinence, vomiting, 

abdominal pain and nocturnal incontinence in the absence of systemic signs, such as fever, may be 
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suggestive of infection. In catheterised patients new costovertebral tenderness, new onset of delirium, 

rigors and a fever greater than 37.9°C are indicative of a symptomatic UTI (Newcastle asymptomatic 

bacteruria research group, 1975; Kudinha et al. 2013b; SIGN 2006; Lipsky, 1989).

Uncomplicated cystitis is typically reported (86%) in sexually active, non-pregnant women 

between the ages of 18 and 84 years, with a mean age of 40 years (Bean et al. 2008; Lipsky, 1989). Men 

usually present when aged 58 to 63 years, although UTIs attributed to instrumentation, such as 

catheters, have been diagnosed in men <60 years. Despite gender differences in age of presentation, 

cystitis is reported to increase with age, irrespective of sex (Cornia et al. 2006; De Backer et al. 2008;

Kahlmeter, 2003; Koeijers et al. 2010; McNulty et al. 2004; Lipsky, 1989).

Recent studies suggested 7%-8% of children (<18 years) were diagnosed with a UTI, compared to 

an early study reporting a prevalence of 2%, with young girls tending to suffer more frequently than 

young boys. However, UTIs in young boys peak in those aged <3 months and are often attributed to 

congenital genitourinary disorders, frequent incomplete emptying of the bladder, greater risk of faecal 

contamination than their older counterparts and being uncircumcised. Renal scarring, a major 

complication of UTI in children, has been observed more frequently in girls (Shaikh et al. 2008; 

Newcastle asymptomatic bacteruria research group, 1975; Jakovljevic et al. 2013; Lipsky, 1999; McNulty 

et al. 2004). 

1.4.3 Complicated cystitis and pyelonephritis

Complicated cystitis refers to a lower UTI in the presence of comorbidity, or a structural or functional 

abnormality that increases the patient’s susceptibility to UTI. These include catheterisation or other 

instrumentation, diabetes, neurogenic bladder, immunocompromising conditions (e.g. lupus, HIV), 

recurrent UTI, infection with a multi-drug-resistant isolate, prostatitis and urogenital surgery. 

Pyelonephritis is also considered a complicated UTI, which is caused by an ascending infection or 
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by haematogenous spread. Delays in diagnosis and/or treatment may result in impaired kidney function 

due to renal scarring or development of bacteraemia and sepsis, which is associated with significant 

mortality (Newcastle asymptomatic bacteruria research group, 1975; Ronald and Ludwig, 2001; SIGN,

2006). Reports suggest pyelonephritis occurs more often in women (60% of cases) than men, affects 

≤30% pregnant women and is generally more likely to affect both kidneys (53%) in women (Lipsky, 1989; 

Nicolle et al. 2005; SIGN, 2006).

Symptoms are the same as for uncomplicated cystitis, but may be accompanied by loin pain, 

flank tenderness, fever, rigors or other systemic inflammatory response symptoms. In children symptoms 

include fever and vomiting, with or without flank pain (Balsara et al. 2013; Gupta et al. 2011; Krieger et 

al. 1999; Kudinha et al 2013b; Leydon et al. 2009; SIGN, 2006). 

Men are generally considered as having a complicated UTI, due to the increased likelihood of

functional/structural abnormalities (e.g. tumours, enlarged prostate), genitourinary instrumentation 

(e.g. catheter) or surgery. Bacterial prostatitis, occurring in men between the ages of 40 and 60 years 

(<1%, acute infection) or 50 and 80 years (10%, chronic infection), is the most commonly reported 

reason for (recurrent) UTI in elderly men. UTI symptoms may be accompanied by fever, chills, myalgia 

and lower back pain, although some patients remain asymptomatic (Krieger et al. 1999; Lipsky, 1999;

Lipsky et al. 2010; Williamson et al. 2013a). In addition, 35% of men presenting with a community-

associated UTI have a long-term catheter (Cornia et al. 2006). Despite the association between recurrent 

UTI and prostatitis, recurrence is more frequent in women and 78% of cases are due to E. coli (Czaja et 

al. 2009). In addition to the typical UTI pathophysiology, formation of intracellular pod-like reservoirs 

within the bladder mucosa, mediated by type 1 fimbriae, where E. coli are protected from antibiotics 

and the host immune system, are also thought to be a source for recurrent infection (Anderson et al.

2003; Barber et al. 2013).
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1.4.4 Bacterial aetiology

E. coli is the most common cause of UTI (Newcastle asymptomatic bacteruria research group, 1975;

Kahlmeter, 2003; Lipsky, 1999; Schito et al. 2009). Other bacteria isolated from women and young girls 

include Klebsiella pneumoniae, Proteus mirabilis and Staphylococcus saprophyticus, with S. saprophyticus

more common in those aged 18 to 49 years (Newcastle asymptomatic bacteruria research group, 1975;

De Backer et al. 2008). UTI aetiology in pregnant women is similar to non-pregnant women, although a 

higher prevalence (26%) of Streptococcus agalactiae in women with gestational diabetes has been 

reported (Ipe et al. 2013). 

In men, UTI aetiology is varied. E. coli remains the dominant pathogen in community-associated 

UTIs, but other species causing the remainder of infections vary with age. For example, Pseudomonas 

species are more frequently detected in >70 years, Enterococcus species predominate in men aged 18 to 

50 years, whilst other Gram-negative bacteria (e.g. Serratia, Proteus, Klebsiella and Enterobacter species) 

occur more frequently in men aged 51 to 70 years (Jakovljevic et al. 2013; Koeijers et al. 2010; Lipsky,

1999)

1.4.5 Clinical and laboratory diagnosis

Most UTIs are diagnosed clinically by a GP and empirical antibiotics are prescribed according to local 

guidelines and resistance rates. Only with treatment failure, pregnancy or a complicated infection are 

urine specimens routinely referred for microbiological investigation. However, this referral practice varies 

according to, and within, GP practices (Fahey et al. 2003; Hillier et al. 2006; McNulty et al. 2003; Olesen 

and Oestergaard, 1995). Therefore, resistance data derived from these specimens is often biased 

(Hryniewicz et al. 2001). 

Indicators of UTI include the presence of leucocyte esterase and/or nitrites (Chien et al. 2007), 

plus erythrocytes, leucocytes (≥103 cells/L), cellular casts or epithelial cells, which also predict kidney 
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damage and the degree of specimen contamination during collection (Health Protection Agency, 2012b;

Lipsky, 1989). With quantitative culture,≥103 or ≥105 bacterial colony-forming units (CFU) per millilitre 

(ml) of urine is indicative of UTI in men and women, respectively, with lower counts considered to 

indicate probable contamination (Kass, 1957; Lipsky, 1999; Lipsky, 1989). Cultures of catheter bag urine 

are more difficult to interpret, due to permanent colonisation of the catheter. However, ≥105CFU/ml may 

be considered significant, in conjunction with a new symptomatic episode, from a well-collected 

specimen (Health Protection Agency, 2012b; Hooton et al. 2010).

1.5 Bacteraemia

Presence of bacteria in the blood, or bacteraemia, is classified as primary (bacteria directly enter the 

bloodstream) or secondary (enter from a primary infected focus) (Mims, 1998). Bacteraemia may be 

transient, intermittent or continuous following tooth extraction, pneumococcal pneumonia or 

endocarditis, for example. Primary bacteraemia is more common in hospitalised patients with a 

weakened immune system or undergoing invasive procedures, while secondary bacteraemia is typically a 

community-associated infection (Health Protection Agency, 2012a).

1.5.1 Signs and symptoms

Fever (>38°C or <36°C) is the most common symptom of bacteraemia and may be accompanied by 

hypotension, tachycardia, tachypnea, confusion, rigors, oliguria, lactic acidosis, leukocytosis, leukopenia 

and thrombocytopenia. Examples of source-specific symptoms include pneumonia (chest source) or 

dysuria (urinary source). Catheter-associated bacteraemia is also difficult to diagnose, but signs include 

isolation of the same organism from blood cultures and catheter/tip culture; sepsis resolution on 

removal of the catheter; and quantitative culture comparison between catheter-drawn and alternative 

line/vein blood cultures. 
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Pregnant women often present with a fever and a raised C-reactive protein. Complications 

include septic shock (4%), caesarean section (29%), pre-term labour (29%), neonatal/foetal death (10%) 

and neonatal infection (5%). Foetal mortality was highest if diagnosis occurred in the second trimester 

(40%) and lowest in the third trimester (1%) (Surgers et al. 2012).

1.5.2 Incidence and prevalence

Bacteraemia occurs primarily in patients >65 years, in men and in those with co-morbidities (Health 

Protection Agency, 2011; Sogaard et al. 2011), followed by children <5 years (Eykyn et al. 1990), with a 

rate of 0.3% in pregnant women (Surgers et al. 2012).

E. coli is the leading cause, accounting for 47% of reports in Europe, with a significant increase in 

isolates resistant to third-generation cephalosporins. In addition, the urinary tract is the most common 

source (45%) of bacteraemia (de Kraker et al. 2012; Health Protection Agency and Health, 2012;

Laupland et al. 2008). Staphylococcus aureus (29%) is also common, followed by Streptococcus 

pneumoniae, Enterococcus faecalis and Enterococcus faecium (de Kraker et al. 2012; Lawes et al. 2012). 

In the developing world, E. coli and S. aureus commonly cause bacteraemia, but Salmonella typhi (India, 

Nepal, Laos), Cryptococcus neoformans, Mycobacterium species (both Thailand), Streptococcus 

pneumoniae and Haemophilus influenza (both Indian sub-continent) are also frequent causes of 

bacteraemia (Deen et al. 2012).

In the UK, reports of E. coli bacteraemia have increased yearly. Between 2009 and 2013 

reporting of E. coli bacteraemia was voluntary, with rates increasing from 27.2% to 31.5% of all reported 

bacteraemias. In June 2011 reporting became mandatory, with approximately 18,000 cases reported for 

that year. This increased to 32,000 cases in 2012 and 33,000 in 2013, compared to the 25,000 voluntarily 

reported in 2009 (Health Protection Agency, 2013; Health Protection Agency, 2014; Public Health 

England, 2014b). This rise in E. coli bacteraemia has been linked to antibiotic pressure and 
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immunosuppression facilitating E. coli success and evasion of the host’s immune system (Health 

Protection Agency, 2011; Schlackow et al. 2012). 

An Oxford (UK) study reported a 28-day mortality of 17%, far higher than a Danish study 

reporting a 30-day mortality of 6%, but similar to the 30-day mortality of 20% reported by a Dutch 

group. Inappropriate empirical therapy was hypothesised as the main reason for high mortality in 

Oxford, supported by the Dutch study, which reported lower mortality rates if appropriate empirical 

therapy was administered within 24 hours of admission (Frakking et al. 2013; Schlackow et al. 2012;

Sogaard et al. 2011). An NHS trust in Essex (UK) reported higher 30-day mortality rates for both 

community-associated (25%) and hospital-associated (35%) cases of bacteraemia, which covered all 

bacterial causes. E. coli specific 30-day mortality was reported for community-associated bacteraemia 

only at 15.5%; with age, PITT score (system based on mental status, fever, hypotension, mechanical 

ventilation and history of heart attack), Charlson comorbidity index (score based on age and presence of 

specific diseases) and undefined source of infection significantly associated with 30-day mortality. 

Despite the prevalence of E. coli in causing bacteraemia, mortality attributed to E. coli was lower than 

that for S. aureus (17.1%) and S. pneumoniae (20%) bacteraemias (Hounsom et al. 2011; Melzer and 

Welch, 2013).  

1.5.3 Clinical and laboratory diagnosis

Blood culture is the gold standard for diagnosing bacteraemia, enabling rapid detection and targeted 

antibiotic treatment (following empirical antibiotic therapy), to reduce mortality (Health Protection 

Agency, 2012a; Pradipta et al. 2013). However, only 7%-12% of blood cultures sent to the laboratory are 

positive. This may be because blood cultures were taken as a precaution, as it is not always possible to 

distinguish between an infectious cause and non-infectious cause from symptoms alone; the patient 

may have been given antibiotics prior to cultures being collected; and a low volume of blood can cause 
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false-negatives. This also means multiple blood culture sets may be required to identify a pathogen 

causing bacteraemia (Deen et al. 2012; Eykyn et al. 1990; O'Grady et al. 2008; Sogaard et al. 2011). The 

source of infection is confirmed by culturing the same pathogen from a non-blood site showing signs of 

infection, such as the urinary tract (Bouza et al. 2002; Horan et al. 2008; O'Grady et al. 2008). Elevated 

C-reactive protein (secreted in response to acute inflammation) and procalcitonin (increased in serum 

during severe bacterial infections) levels may also indicate infection (Tunkel et al. 2004). 

1.6 Treatment and prevention

1.6.1 Urinary tract infection

UTIs are predominantly diagnosed clinically and treated empirically, using the recommended antibiotics 

listed in table 2. Unless the patient has had a previous infection, it is assumed that the urinary strain will 

be fully antibiotic-susceptible. Generally a short course of antibiotics is used to treat cystitis and a longer

course is prescribed for complicated infections (e.g. prostatitis) and pyelonephritis. Patients not 

receiving antibiotics include the elderly (ABU only) and catheter-associated bacteruria, unless a new 

symptomatic episode arises.

Infection with a resistant isolate is more likely to be diagnosed microbiologically, and is often 

associated with recent antibiotic therapy. Ampicillin and trimethoprim prescriptions have been 

significantly associated with subsequent UTIs caused by resistant E. coli. A similar trend has been 

documented with low-dose ciprofloxacin inducing resistance-conferring mutations (Hillier et al. 2007;

Marcusson et al. 2005; Nicolle et al. 2005). In response many GPs have reduced unnecessary prescribing, 

especially if the patient’s symptoms are mild (Butler et al. 2007). The GP may also refer a urine specimen 

for culture to confirm the absence of a UTI or suggest self-management, such as increased fluid intake 

and cranberry supplements (Fahey et al. 2003; Leydon et al. 2009; McNulty et al. 2003; SIGN, 2006).
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Table 2 Recommended antibiotic treatment for Escherichia coli urinary tract infections

Infection type Antibiotic(s)
Asymptomatic bacteruria, not pregnant No treatment
Asymptomatic bacteruria, pregnant Nitrofurantoin (avoid at term) or co-trimoxazole (avoid in 

first trimester), 3-7 days
Cystitis Nitrofurantoin or co-trimoxazole or fosfomycin (one dose) 

or pivmecillinam, 3-5 days (7 days for men); amoxicillin or 
oral cephalosporin if pregnant

Pyelonephritis Augmentin or ciprofloxacin or co-trimoxazole, 7 days 
(women) or 14 days (men); add IV amikacin or IV 
ceftriaxone if hospital-acquired, patient has a co-morbidity 
or received antibiotics in last 3 months

Catheter-associated bacteruria Ciprofloxacin or augmentin, 7-10 days

Prostatitis Ciprofloxacin, 14-28 days; trimethoprim as an alternative
(Gupta et al. 2011; Joint Formulary Committee 2013; Lipsky et al. 2010; SIGN, 2006; Barts and the 

London Trust Antimicrobial Review Group, 2011) 

1.6.2 Bacteraemia

National and local (Bart’s and the London Trust) recommendations for antibiotic treatment of E. coli

bacteraemia can be found in table 3. Empirical treatment is started within one to two hours of diagnosis 

due to the high morbidity and mortality rates. Treatment may also involve catheter removal, fluid 

drainage or surgical debridement. If severe sepsis is diagnosed, fluids and vasopressors may also be 

administered to facilitate tissue recovery. Treatment length varies according to antibiotic resistance, 

source of infection and complicating factors. If the source of infection can be removed (e.g. catheter) 

treatment can last 7 days, whilst bacteraemia secondary to endocarditis, liver abscess, brain abscess, 

prosthetic device-related infection or disciitis may be extended to 4-6 weeks to achieve optimal tissue 

penetration. In pregnant women, treatment for 14 days with amoxicillin, augmentin or a third-

generation cephalosporin has been reported (Surgers et al. 2012). However, with the high rates (70%) of 
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augmentin resistance reported in E. coli, a third-generation cephalosporin with low-level resistance 

would be more appropriate (Cooke et al. 2010; Health Protection Agency, 2011; Schlackow et al. 2012).

Table 3 Recommended antibiotic treatment for Escherichia coli bacteraemia 

Treatment type Antibiotic(s) Infection source
Empirical Broad-spectrum cephalosporin (e.g. 

cefuroxime) or anti-pseudomonas penicillin 
(e.g. piperacillin-tazobactam)

Unknown

Suspected resistant 
bacteria

Use carbapenem (e.g. meropenem)

Escherichia coli
bacteraemia

Augmentin or piperacillin-tazobactam or 
ciprofloxacin, 14 days. Add amikacin if severe

Genitourinary tract

Meropenem, 14 days Pancreatitis

Meropenem, 21 days. De-escalate to 
ceftriaxone (if required) once antibiogram 
known

Meningitis

Piperacillin-tazobactam or ciprofloxacin or 
ceftriaxone, 14 days

Cholecystitis, peritonitis

Augmentin, 14 days. Add amikacin if severe Biliary, (post-surgical) 
intra-abdominal

Ciprofloxacin, 4-6 weeks Osteomyelitis

(Bouza et al. 2002; Dellinger et al. 2013; Phee, 2013; Pradipta et al. 2013; Barts and the London Trust 

Antimicrobial Review Group, 2011)

1.6.3 Vaccines

Vaccines targeting E. coli are currently licensed for use in cattle and poultry only (e.g. SCOURMUNE®, 

Merck, NJ, USA; PROSYSTEM® RCE, Merck). An E. coli vaccine for preventing human UTI/ExPEC infections 

is required, because recurrent UTI does not confer a protective effect, increasing resistance is limiting 

treatment options, and the ExPEC population is highly heterogeneous. However, this heterogeneity also 

makes designing an E. coli vaccine difficult.

Various UPEC strains, outer membrane proteins and virulence factors have been trialled in E. coli 
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vaccines including Urovac® (SolcoBasel, Basel, Switzerland and Protein Express, Cincinnati, OH, USA), 

Uro-Vaxom® (OM Pharma, Myerin, Switzerland), Urvakol® (Institute of Microbiology, Olomouc, Czech 

Republic) and Urostim® (Bulbio, National Centre for Infectious and Parasitic Diseases, Sofia, Bulgaria). 

However, these were poorly immunogenic, did not confer long-term protection and compliance issues 

were raised (Brumbaugh and Mobley, 2012). A novel vaccine (Medimmune, Gaithersburg, MD, USA) 

containing the fimH adhesin and fimC chaperone protein was evaluated in monkey and human trials. 

While promising in monkeys, protective antibody levels in women were comparable to previous vaccine 

trials, requiring further vaccine development (Langermann et al. 2000; Meiland et al. 2004).

Bacterial interference by means of a 2-hour indwelling bladder suspension with non-pathogenic 

E. coli provides an alternative option, with>50% patients remaining infection-free one year after 

treatment. However, the once-daily dosing will likely result in compliance issues (Darouiche et al. 2005).

1.7 Antibiotic Resistance

1.7.1 Antibiotic resistance by age and sex

Antibiotic resistance rates in E. coli are reported to be higher in men, or women, depending on the study. 

This is likely due to the chosen study population and/or regional differences in prescription practices 

(Bean et al. 2008; De Backer et al. 2008; den Heijer et al. 2013; Health Protection Agency, 2008; Koeijers 

et al. 2010; Linhares et al. 2013; Schito et al. 2009). 

In children, the antibiotic-naive may carry E. coli that is resistant to trimethoprim (34%) and 

amoxicillin-clavulanate (48%), representative of community strains and resistance rates (Chakupurakal et 

al. 2010). Resistance increases into adulthood as patients are prescribed antibiotics, acquire resistant 

community strains and are hospitalised (Fahey et al. 2003; Hillier et al. 2007; Sahm et al. 2001). 

Antibiotic resistance peaks in patients aged >65 years and isolates are more likely to be multi-drug 
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resistant (Gobernado et al. 2007; Goettsch et al. 2000).

1.7.2 Antibiotic resistance in urinary tract infections

Empirical treatment has evolved as resistance has increased. Short courses of ampicillin or trimethoprim 

have been replaced with β-lactam/β-lactamase inhibitor combinations, early-generation cephalosporins 

and trimethoprim-sulfamethoxazole (co-trimoxazole). Transmission of plasmid-mediated extended-

spectrum β-lactamases (ESBLs) with aac(6’)-Ib-cr  and spread of strains with chromosomal 

fluoroquinolone resistance, has also led to the re-evaluation of ciprofloxacin in treating complicated 

UTIs, with dual therapy proposed. Nitrofurantoin and fosfomycin may be considered for uncomplicated 

cystitis (Den Heijer et al. 2010; Dyer et al. 1998). Fortunately community-associated infections (CAI) tend 

to demonstrate lower rates of resistance than hospital-associated infections (HAI) (Bean et al. 2008).

Antibiotic resistance rates and associated resistance mechanisms, for urinary and bloodstream E. coli

isolates, can be found in table 4.

1.7.3 Antibiotic resistance in bacteraemia

E. coli causing bacteraemia are often more resistant than urinary strains (Bean et al. 2008; Livermore et 

al. 2008), as demonstrated by the resistance rates in table 4. In addition, ESBLs are more frequently 

isolated from bloodstream infections than UTIs (e.g. 12% vs. 2%) (Livermore et al. 2008; Schito et al.

2009). Despite this, carbapenem resistance remains low and carbapenemase enzymes are rarely 

detected in E. coli compared to other Enterobacteriaceae and non-fermenting Gram-negative rods 

(European Centre for Disease Prevention and Control, 2011; Woodford et al. 2013). However, this will 

probably change as plasmid-mediated carbapenemases start to circulate within the E. coli population.



Page | 45

Table 4 UK non-susceptibility rates for the antibiotics used to eradicate Escherichia coli causing urinary tract infection and bacteraemia

Antibiotic Mechanism of action* Resistance mechanism* Percentage 
resistance (UTI)#

Percentage 
resistance (BLC) #

Ampicillin Binds penicillin-binding proteins, 
inhibiting cell wall synthesis

Penicillinase enzymes (TEM-1, OXA-1) or ESBLs 
(especially CTX-M types, particularly CTX-M-15 in UK); 
increased expression of efflux pumps

31.8 - 55 63 – 91

Amoxicillin-
clavulanate

Clavulanate inhibits β-lactamase 
enzymes; amoxicillin binds penicillin-
binding proteins

2 – 48 9 – 43.8

Piperacillin-
tazobactam

Tazobactam inhibits β-lactamase 
enzymes; piperacillin binds penicillin-
binding proteins

TEM and OXA ESBLS and carbapenemase enzymes NK 8 – 10.3

Cefuroxime† Binds penicillin-binding proteins, 
inhibiting cell wall synthesis

Expression of ESBLs or carbapenemase enzymes e.g. 
KPC

0.5 – 7.5 4 – 19.4

Meropenem Binds penicillin-binding proteins, 
inhibiting cell wall synthesis

Expression of carbapenemase enzymes; porin loss; 
upregulation of efflux pumps

NK 0 – 0.1

Trimethoprim Binds DHFR enzymes involved in folate 
metabolism

Increased enzyme activity or alternative enzyme e.g. 
dfrA

14.9 – 40.2 40

Trimethoprim-
sulfamethoxazole

Binds DHFR and PABA enzymes 
involved in folate metabolism

Increased enzyme activity or alternative enzyme e.g. 
dfrA, sul1

14.4 40 - 54

Nitrofurantoin Inhibit enzymes of the citric acid cycle, 
DNA and protein synthesis 

unknown 0 – 11 NK

Ciprofloxacin Binds DNA gyrase, preventing 
rejoining of DNA strands

Mutations in DNA gyrase (gyrA) and topoisomerase 
IV(parC) enzymes; DNA gyrase protection proteins 
(qnrA/B/C); efflux pumps (qepA, oqxAB); other 
enzymes e.g. aac(6’)-Ib-cr

0.5 - 12 14 – 42

Gentamicin‡ Binds 30S ribosomal subunit, 
inhibiting transcription and thus 
protein synthesis

Aminoglycoside modifying enzymes e.g. the N-
acetyltransferase encoded by aac(6’)-Ib

0.5 – 6.3 7.5 – 12
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†representative of cephalosporin resistance; ‡representative of aminoglycoside resistance

NB. DHFR – dihydrofolate reductase, PABA – para-aminobenzoic acid, UTI – urinary tract infection, BLC – bacteraemia, NK - unknown

*(Drawz and Bonomo, 2010; Joint Formulary Committee, 2013; Lacey, 1982; McOsker and Fitzpatrick, 1994; Neu and Gootz, 1996; Pan et al. 1996;

Strahilevitz et al. 2009)

#(Bean et al. 2008; Chakupurakal et al. 2010; Cooke et al. 2010; Health Protection Agency, 2011; Horner et al. 2014; Kahlmeter and Poulsen, 2012;

Livermore et al. 2008)
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1.8 Typing 

Traditionally E. coli strains were differentiated by phenotypic and biochemical methods, but these 

have been surpassed by various molecular methods. Typing of E. coli was originally performed to 

improve understanding of the species and infections it causes, but now typing facilitates outbreak 

investigations and various research studies (Gibreel et al. 2012; Gordon et al. 2008; Johnson et al.

2012b; Ochman et al. 1983).

1.8.1 Serotyping

Serotyping of Escherichia coli was first described by Kauffman, who classified this genus according to 

its O (somatic antigen, part of the surface lipopolysaccharide), H (flagellar) and K (capsular) antigens 

(Kauffmann, 1947). One hundred and eighty-one O-antigens, 80 K-antigens and 56 H-antigens have 

since been identified, creating thousands of possible unique O:H:K serotypes. Occasionally multiple 

genera of Enterobacteriaceae may share the same serogroup, such as E. coli O8 and Klebsiella 

pneumoniae O5 (Orskov and Orskov, 1992; Scheutz et al. 2004; Reeves and Wang, 2002). 

Within virulent E. coli specific serogroups have been associated with intestinal and extra-

intestinal infections. In 1978, serogroups O6 and O16 were associated with adult and neonatal 

infections, respectively, with O4, O6 and O18 particularly associated with septic shock and death 

(McCabe et al. 1978). Other important extra-intestinal serogroups included O1, O2, O7, O8, O11, 

O15, O22, O25, O75, O78, O83 and O86 (Ananias and Yano, 2008; Kanamuru et al. 2006; Korhonen 

et al. 1985; McCabe et al. 1978; Melzer et al. 2008; Orskov and Orskov, 1992). Multiple E. coli 

pathotypes (e.g. ExPEC, EAEC and ETEC) often share the same serogroups, probably due to genetic 

exchange in the intestine before transmission to other sites. These include O1, O2, O4, O6, O15, 

O18, O25 and O77 (Nataro and Kaper, 1998). ExPEC causing UTIs in companion animals, meanwhile, 

also share serogroups common to human strains: O4 and O6. Together these serogroups 

demonstrate the universal, cross-species virulence and success of E. coli (Orskov and Orskov, 1992;

Wang et al. 2010).
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1.8.2 Multi-locus enzyme electrophoresis 

Multi-locus enzyme electrophoresis (MLEE) was first described in the 1980s to characterise E. coli by 

allelic variation of enzymes encoded at specific loci in the genome. Differences between alleles could 

be used to approximate the number of nucleotide differences or amino acid substitutions. Unlike 

serotyping, which often branded strains non-typeable; MLEE identified an allele every time. Analysis 

of E. coli allelic variation identified three distinct clusters - I, II and III - with groups II and III closely 

related (Ochman et al. 1983; Selander et al. 1986). The ECOR collection comprised 72 E. coli

reference strains isolated from humans and animals, from around the world, which represented the 

genotypic diversity of E. coli, as determined by MLEE (Ochman and Selander, 1984). MLEE 

characterisation of these isolates using 38 enzyme loci, instead of the traditional 20, separated these 

isolates into four main phylogenetic groups (A, B1, B2 and D), which corresponded with Ochman’s 

groups: I (A), II (B) and III (D). Originally there was also a phylogenetic group designated C, but MLEE 

analysis led to the redistribution of these strains among the four other phylogenetic groups (Herzer 

et al. 1990). However, phylogenetic group C has since been re-established as a sister group to B1, 

while phylogenetic group E contains EHEC O157:H7 strains and phylogenetic group F is a sister group 

to B2 strains (Clermont et al. 2011b; Croxen et al. 2013).

1.8.3 Phylogenetic Grouping

These studies and subsequent ones revealed phylogenetic groups (phylogroup) A and B1 to comprise 

principally commensal and intestinal pathogenic strains, while phylogroups B2 and D contained 

virulent, persistent strains causing extra-intestinal pathogenic infections. Occasionally there were 

strains that contradicted this general consensus, such as EAEC and EPEC isolates which have been 

classified as phylogroup D (Bingen et al. 1998; Croxen et al. 2013; Herzer et al. 1990; Ochman et al.

1983). Phylogroup distribution of Shigella species also varied, with most Shigella dysenteriae

classified as phylogroup B1, Shigella boydii classified as either phylogroup B1 or D, while the 

remaining species were classified as phylogroup D. However, the closely related EIEC was classified 
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mostly within phylogroups A or B1 (Rolland et al. 1998). In addition, phylogroups B2 and D were 

reported to have much larger genomes, suggesting acquisition of virulence-associated DNA 

fragments and mobile elements from other strains or species (Boyd and Hartl, 1998).

To avoid the complex and time-consuming use of MLEE, a triplex PCR was developed, using 

the genes chuA, yjaA and the DNA fragment TspE4C2, to identify these four principal phylogenetic 

groups based on combinations of presence and absence of these three amplicons (Clermont et al. 

2000). This simple, rapid procedure has since been used internationally to classify E. coli isolates 

(Bukh et al. 2009; Cagnacci et al. 2008; Johnson et al. 2009a). However, comparison of this triplex 

PCR with multi-locus sequence typing (MLST) schemes (see 1.1.2.4) identified some discrepancies, 

due to genetic variation in the PCR target genes (Gordon et al. 2008). MLST data suggested that this 

triplex PCR could not accurately assign 100% of E. coli isolates to the correct phylogroup. This report 

also assigned isolates to phylogroups C and E, according to MLST data, but the PCR assay reported 

these isolates as either phylogroup A, B1, B2 or D. It is possible that these strains represent hybrids 

of the main phylogroups or that the assay needs updating, as these rare phylogroups have been 

described previously (Clermont et al. 2011a; Escobar-Paramo et al. 2004; Gordon et al. 2008). 

Recently a novel phylogroup has been described, but it is unclear how these strains relate to the 

established phylogroups A - F (Mendonca et al. 2011; Molina-Lopez et al. 2011). To resolve this issue 

of the novel phylogroup, the triplex PCR was revisited and primers redesigned for optimal 

assignation of phylogroups (Doumith et al. 2012).

1.8.4 Multi-locus sequence typing (MLST)

Six years after the development of the phylogroup triplex PCR, MLST was developed to analyse and 

classify the E. coli population. There are two main MLST schemes used for E. coli: the Institut Pasteur 

scheme (www.pasteur.fr/mlst), which uses six gene targets, and the UK-based Achtman scheme, 

which uses seven alternative gene targets, described here (Wirth et al. 2006). Sequencing and 

concatenation of seven chromosomally conserved (house-keeping) genes interspersed around the E. 
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coli genome created a numeric profile or sequence type (ST): adk (adenylate kinase), fumC (fumarate 

hydratase), gyrB (DNA gyrase, subunit B), icd (isocitrate dehydrogenase), mdh (malate 

dehydrogenase), purA (adenylosuccinate synthetase) and recA (recombinase A). This scheme has 

identified between 292 and 533 alleles, based on sequence polymorphisms, for each of the seven 

target genes, creating thousands of hypothetical STs. However, only 600 STs and 54 sequence type 

complexes (STC) have been identified (http://mlst.warwick.ac.uk), demonstrating the conservative 

and clonal nature of E. coli (according to ST and STC), but also the diversity (according to alleles).

Clustering of ST data was mostly in agreement with the four major phylogenetic groups. However, 

there were additional hybrid groups containing isolates belonging to two (AxB1) or three (ABD) of 

the phylogenetic groups, which appear to have resulted from homologous recombination. These 

virulent hybrids likely represent phylogroups C and E, as these clusters included Shigella species, 

diarrhoeagenic strains and some extra-intestinal strains (Wirth et al. 2006).

The Achtman MLST scheme has since become well established in the field of ExPEC (Dias et al. 2009;

Manges et al. 2008; Nicolas-Chanoine et al. 2008). However, it should be noted that data generated 

by the Institut Pasteur scheme and Achtman scheme are not entirely comparable (Gordon et al.

2008) and major ExPEC clones have often been defined by the Achtman scheme only (Tartof et al. 

2005).

With the advent of whole genome sequencing, MLST and phylogroup data can now be acquired 

simultaneously, along with the detection and identification of genes for virulence factors and those 

conferring antibiotic resistance or raised MICs. Isolates may also be compared by SNP analysis

(McNally et al. 2013). In the future, this technique may supersede all those used in this study to 

characterise ExPEC.

1.8.5 Pulsed-field gel electrophoresis 

Pulsed-field gel electrophoresis (PFGE) has been used to analyse inter-strain, inter-species and 

intergenic variation in DNA. Restriction enzymes are used to cleave DNA, infrequently, at specific 
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restriction sites, producing DNA bands of various lengths according to the number of restriction sites 

and polymorphisms. Separation of these bands using an alternating electric current enables optimal 

resolution of large DNA fragments and separation of the smaller DNA fragments (Bingen et al. 1994). 

In reference facilities and research laboratories, PFGE compares epidemiologically linked isolates to 

determine their genetic relatedness and to identify outbreak strains (Gibreel et al. 2012; Manges et 

al. 2008). As with serotyping this method can be time-consuming, but PFGE provides a deeper 

analysis of E. coli populations, often sub-dividing different clones and lineages. While this can 

facilitate understanding of a particular lineage, it also adds another layer of complexity in 

understanding extra-intestinal E. coli. Therefore, it is important to use this method in the right 

setting, such as discriminating outbreak and non-outbreak strains.

1.9 Lineages of extra-intestinal pathogenic Escherichia coli

1.9.1 Major lineages

Monitoring of antibiotic resistance and molecular typing has identified specific ExPEC lineages. They 

pose a significant public health threat due to their resistance and circulation in the community 

(Johnson et al. 2009a; Woodford et al. 2004). The five major lineages are ST131, ST95, ST73, ST69 

and ST127 and belong principally to phylogroup B2, but also to group D (ST69). Particular serogroups 

associated with these lineages include O1 (ST95), O6 (ST73 and ST127), O17 (ST69) and O25 (ST131 

and ST69), which are frequently identified along with O2, O4, O8, O9, O15, O17, O18 and O75 

(Gibreel et al. 2012; Johnson and Stell, 2000; Johnson et al. 2013; Lau et al. 2008b; Manges et al.

2008; Weissman et al. 2012; Johnson and Russo, 2002).

1.9.2 ST127

ST127 (phylogroup B2) is associated with UTIs, serotype O6:H31 and IroN, S/F1C-fimbriae, HlyA and 

Cnf1 (Johnson et al. 2006; Lau et al. 2008b). An alternative study linked ST127 to canine infections 

and virulence factors IreA, K15 and F48, F536 and F16 fimbriae (Johnson et al. 2008b). Compared to 
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the other ExPEC lineages, ST127 reportedly has the highest number of virulence factors, but is 

relatively antibiotic susceptible (Gibreel et al. 2012). Despite this, ST127 comprised approximately 

1%-6% ExPEC strains (Banerjee et al. 2013a; Gibreel et al. 2012; Horner et al. 2014; Lau et al. 2008b;

Mahjoub-Messai et al. 2011).

1.9.3 ST73

ST73 (phylogroup B2) was associated with serogroup O6, specifically serotype O6:K2:H1, and causing 

UTIs. Additional associated serogroups included O2 and O18, plus the virulence factors P-fimbriae, 

F1C-fimbriae, IutA, Iha, Sat and HlyA (Johnson et al. 2006; Johnson et al. 2008b; Lau et al. 2008b;

Mahjoub-Messai et al. 2011; Manges et al. 2008).

ST73 strains are often pan-susceptible (29%), with ampicillin, amoxicillin-clavulanate and 

trimethoprim resistance reported, very occasionally with ESBL expression (Dias et al. 2009; Horner et 

al. 2014; Kang et al. 2013; Manges et al. 2008). However, ST73 strains were more prevalent 

accounting for 7%-15% of ExPEC (Dias et al. 2009; Lau et al. 2008b; Mahjoub-Messai et al. 2011).

1.9.4 ST95

Human ST95 (phylogroup B2) strains are reported to have originated from APEC. Classified by 

serogroups O2 and O18, plus serotype O1:K1:H7/NM, isolates appear to have an antibiogram similar 

to ST73 (Manges et al. 2008; Mora et al. 2009). Associated virulence factors included type I fimbriae, 

P-fimbriae, Tsh, IroN, colicin V and Iss, although Tsh, IroN, Iss and colicin C were more common in 

APEC (Mora et al. 2009). Studies reveal ST95 to account for 7%-38% ExPEC strains causing UTI and 

bacteraemia (Lau et al. 2008b; Mahjoub-Messai et al. 2011).

1.9.5 ST69

ST69 (phylogroup D) was originally isolated from women with a UTI in North America, in 2001, and 

was associated with trimethoprim-sulfamethoxazole resistance (Manges et al. 2001). Also known as 

Clonal group A (CgA) the majority of isolates belong to serogroups O11, O15, O17, O25, O44, O73, 
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O77, O86 and O125ab. However, resistance to trimethoprim-sulfamethoxazole has varied by study 

(8%-93%), calling into question the validity of UTI treatment guidelines in eradicating this lineage

(Blanco et al. 2011; Dias et al. 2009; Gupta et al. 2011; Lau et al. 2008b; Manges et al. 2008; SIGN,

2006; Skjot-Rasmussen et al .2012b; Tartof et al. 2005). Virulence factors are also varied, but include 

type I fimbriae, P-fimbriae, Sat, IutA, group II capsule, TraT, Iha, FyuA, Sat, OmpT and Ag43 (Blanco et 

al. 2011; Johnson et al. 2009a; Skjot-Rasmussen et al. 2012b). Prevalence of ST69 also varies by 

study and country (4%-15%), demonstrating that the significance of this particular lineage varies 

geographically (Blanco et al. 2011; Dias et al. 2009; Johnson et al. 2009a; Skjot-Rasmussen et al.

2012b).

1.9.6 ST131

The ST131 lineage contains an extensive range of strains, predominantly of phylogroup B2, but also 

group D, as well as ranging in antibiotic susceptibility. However, studies tend to focus on CTX-M-15 

producing, ciprofloxacin resistant, O25b:H4 strains; using fluoroquinolone resistance as the 

definitive characteristic of this sub-clone (Clermont et al. 2008; Gibreel et al. 2012; Lau et al. 2008a;

Nicolas-Chanoine et al. 2008; Peirano and Pitout, 2010). PFGE analysis also demonstrates great sub-

clonal diversity (Lau et al. 2008a), but virulence factors are relatively conserved with most strains 

expressing type I fimbriae, Sat, FyuA, Usp, OmpT, TraT and malX (Blanco et al. 2011; Clermont et al.

2008; Johnson et al. 2009a; Nicolas-Chanoine et al. 2008). The prevalence of this clone ranges from 

12% to 43%, as does resistance to extended-spectrum cephalosporins (16%-69%), fluoroquinolones 

(26%-67%), aminoglycosides (28%-55%) and trimethoprim-sulfamethoxazole (18%-31%) (Blanco et 

al. 2011; Johnson et al. 2009a; Johnson et al. 2010).

1.10 Present-day situation

E. coli is the predominant cause of UTIs and bacteraemia within the UK and worldwide (de Kraker et 

al. 2012; Den Heijer et al. 2010; Health Protection Agency, 2011; Koeijers et al. 2010).
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Phylogroups B2 and D are most prevalent, but phylogroups A and B1 are also increasing (Abdallah et 

al. 2011; Clermont et al. 2013a; Lee et al. 2010), with a significant number of ESBL producers 

observed among phylogroup A (Lee et al. 2010; Pitout et al. 2005).

Increasing resistance to cephalosporins, fluoroquinolones, aminoglycosides and trimethoprim-

sulfamethoxazole has been associated with these circulating lineages, particularly ST131 and ST69 

(Colpan et al. 2013; Johnson et al. 2011). However, it is unclear how other sequence types may be 

contributing to antibiotic resistance in E. coli. In addition, UK resistance rates are routinely 

monitored for E. coli causing bacteraemia by the BSAC bacteraemia resistance surveillance 

programme, but little is known about resistance in other infections, such as urinary tract infections, 

with the exception of hospitals or research groups reporting results from their studies (Reynolds et 

al. 2008; Bean et al. 2008; Gibreel et al. 2012). Resistance surveillance is especially important in light 

of the rapid rise and spread of carbapenemase-producing Enterobacteriaceae across Europe, with 

13% of those referred to Public Health England’s Antimicrobial Resistance and Healthcare Associated 

Infections Reference Unit identified as E. coli (Woodford et al. 2013). 

ExPEC isolates are reported to have an inverse relationship between antibiotic resistance and 

virulence (Cooke et al. 2010; Piatti et al. 2008). As the major ExPEC lineages vary in their virulence 

and resistance it is important to investigate this phenomenon, to achieve greater understanding of 

the true implication of these lineages (Gibreel et al. 2012; Johnson et al. 2009a). 

In order to accomplish this the current ExPEC population needs to be defined and the future 

population structure predicted; the repercussions of ESBL-producing phylogroup A strains needs to 

be evaluated, as well as the likelihood of carbapenem-resistant and pan-resistant ExPEC emerging; 

and the heterogeneity of virulence factor possession within clonal strains and ExPEC as a whole 

needs to be investigated, as does the potential for novel MLST types or emerging clones.
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2. Hypothesis and Project aims

Hypothesis 1: Urinary E. coli strains are predominantly isolated from female patients aged 18-60 

years, while bacteraemia strains are frequently isolated from patients >60 years old. ExPEC strains in 

the UK and London are highly variable, but predominantly comprise specific lineages and 

serogroups, with the majority of isolates belonging to phylogroups B2 and D.

Aim 1: Define the patient population for ExPEC infections and the UK ExPEC population using patient 

data and molecular typing techniques. Compare isolates from London and the UK to identify 

similarities between these two populations.

Hypothesis 2: Urinary E. coli are more susceptible to antibiotics than bacteraemia strains, with 

resistance more significant in bacteraemia isolates. However, overall antibiotic resistance in E. coli is 

rising.

Aim 2: Determine the antibiograms for urinary and bacteraemia E. coli strains by agar dilution and 

perform PCRs to detect various resistance genes. Describe resistance rates according to patient and 

strain variables; compare with published reports; and interpret the results in light of current 

therapeutic guidelines.

Hypothesis 3: ST131-O25b is the most prevalent ExPEC lineage and the greatest threat to empirical 

antibiotic therapy in the UK.

Aim 3: Determine the prevalence of ST131 strains in the UK and by Public Health England region. 

Characterise the clone using established methods.

Hypothesis 4: Specific virulence factors are required to cause bacteraemia, which differ from those 

required for causing UTI. E. coli causing urosepsis are more resistant and virulent.
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Aim 4: Define and compare the virulence factors required for causing UTI, bacteraemia and 

urosepsis. Use an infection model to determine the significance of virulence or resistance in 

urosepsis.
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3. Materials and Methods

This chapter includes details of the isolate collections and the tests performed on these specimens 

prior to study collection. Generic methods used throughout the study are detailed here, while 

chapter-specific methods and amendments are included in the relevant sections of this thesis.

3.1 Study Definitions

E. coli Bacteraemia – E. coli isolated from a positive blood culture as determined using the BD 

BACTEC™ (Becton Dickinson, Maryland, USA). At the Royal London Hospital only isolates with ≥1 of 

the following signs or symptoms were collected during the study: fever, rigors, confusion, query 

sepsis, pyelonephritis, fall, diarrhoea and vomiting, query unwell or hypotension (O'Grady et al.

2008).

Asymptomatic Bacteruria - Isolation of ≥104-105 CFU per ml of bacteria, in pure form, from the 

patient’s urine (Kass, 1957), with no symptoms suggestive of UTI at the time of collection (Nicolle et 

al. 2005; SIGN, 2006) and no other signs or sources of infection detected. For pregnant women, 

isolates were collected from urine that was taken at the first antenatal appointment.

Uncomplicated Cystitis – Diagnosis was based on semi-quantitative culture, as described above, and 

the presence of ≥1 of the following symptoms: frequency, urgency, dysuria and/or suprapubic pain, 

pyuria and/or haematuria, with no signs suggestive of kidney infection (Nicolle et al. 2005; SIGN,

2006).

Complicated cystitis and/or pyelonephritis – Complicated cystitis was defined as a patient with lower 

UTI symptoms in the presence of a functional/structural abnormality or complication, including 

prostatitis, recurrent infection, immunocompromised (e.g. diabetes, multiple sclerosis), urinary tract 

abnormality or recent genito-urinary surgery. UTIs in men were considered complicated infections. 

Pyelonephritis was defined as bladder infection, accompanied by ≥1 symptoms suggestive of upper 
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UTI, including costovertebral angle (flank) pain and tenderness, loin pain, fever, chills, rigors or other 

signs suggestive of systemic inflammatory response (Nicolle et al. 2005; SIGN, 2006).

Note: there has been much debate about how to classify UTI in children due to difficulty diagnosing 

UTIs and the risk of renal scarring. As part of this study, children <18 years who presented with 

symptoms suggestive of lower urinary tract infection were classified as uncomplicated cystitis. 

Children <18 years presenting with a fever, loin pain and/or tenderness or other signs suggestive of 

upper urinary tract infection were classified as complicated UTI (Habib, 2012; NICE, 2007). As with 

adults, all males with a UTI were considered complicated infections.

Community-associated Infection (CAI) – Patient presenting with signs or symptoms of an infection to 

their General Practitioner (GP), community clinic or out-patient department (OPD), including 

Accident and Emergency. CAI also included hospitalised patients who presented with signs or 

symptoms of infection within 48 hours of admission.

Hospital-associated Infection (HAI) – Hospitalised patient who presented with signs or symptoms of 

infection more than 48 hours after admission. Infections may also be defined as healthcare-

associated, such as those in nursing homes or those that have been hospitalized within the last 30 

days but have since been discharged (Cooke et al. 2010). Due to the lack of patient information it 

was not possible to identify isolates that fit this definition. Therefore, this study defines isolates as 

CAI and HAI only.

Non-susceptible – In this study non-susceptible referred to isolates considered as completely 

resistant or with intermediate resistance to an antibiotic, as determined by comparing the minimum 

inhibitory concentration (MIC) with the antibiotic specific breakpoint (Andrews, 2001; The European 

Committee on Antimicrobial Susceptibility Testing, 2014).
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3.2 Escherichia coli Isolates

3.2.1 Local Collection

In total 556 (n=508 urinary & n=48 bacteraemia) E. coli isolates were collected from 540 patients at 

the Clinical Microbiology Laboratory at the Royal London Hospital, between October 2011 and 

February 2012. Demographical data collected alongside each isolate included patient age, sex and 

healthcare setting (e.g. GP, Accident & emergency, Hospital name, etc). The Clinical Microbiology 

laboratory serves GPs, clinics and hospitals of three London boroughs; Hackney, Tower Hamlets, 

Newham and now Waltham Forest, although Waltham Forest was included after all study isolates 

were collected.

Patients were classed as having either a community-associated infection (CAI) or a hospital-

associated (HAI); urinary tract infections were defined as asymptomatic bacteruria (ABU), 

uncomplicated cystitis (UC) or complicated cystitis and/or pyelonephritis (COMP) based on clinical 

details; and source of infection was identified by a positive culture of the same organism, collected 

within 24 hours of the blood culture, from urine, stool, site-specific swab, site-specific fluid, cerebral 

spinal fluid (CSF), tips or sputum specimen.

Only one isolate was collected per patient, except for 17 patients where E. coli isolates were 

collected from both their urine and their blood (paired isolates), for comparison. Paired isolates 

were only collected from clinical specimens that were taken within 24 hours of each other.

3.2.2 BSAC Collection

In total 521 E. coli isolates were collected as part of the BSAC Bacteraemia Resistance Surveillance 

Programme by Public Health England (PHE, Colindale, UK), from 38 laboratories around the UK and 

Republic of Ireland, between 1st January and 31st December 2011. Each laboratory sent up to 14 

consecutive E. coli isolates from separate patients. Demographical data received with the isolates 

included patient age, sex, source of bacteraemia and healthcare setting. From here on these isolates 

will be known as the BSAC (2011) collection. Only isolates accompanied by a full set of 

demographical data were included in the study.
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3.2.3 Identification 

Local collection: Pink colonies grown on BrillianceTM UTI Agar (Oxoid, Basingstoke, UK) were 

provisionally identified as urinary E. coli. Blood culture isolates were sub-cultured on to blood agar 

(Oxoid) after a Gram stain of the positive bottle revealed Gram-negative rods. All urinary and blood 

culture isolates were identified as E. coli using MALDI-Tof MS (Bruker Daltonik GmbH, Bremen, 

Germany), according to the manufacturer’s instructions. Briefly, individual colonies were lightly 

smeared on to the target plate and overlaid with matrix (α-cyano-4-hydroxycinnamic acid in 50% 

acetonitrile/2.5% trifluoroacetic acid). Once dried, the plates are loaded into the mass spectrometer, 

where each sample is vaporised (desorption) by the laser and ionised. The mass analyser detects 

these ions, creating a spectral image unique to bacterial and fungal genera and most species (Clark 

et al. 2013).

BSAC collection: Isolates were sub-cultured on to MacConkey agar (PHE) to check for pure growth. 

Pure cultures were then sub-cultured on to nutrient agar (PHE) before their identity was confirmed 

using MALDI-Tof MS (Bruker Daltonik), as above.

3.3 DNA extraction

DNA lysates were prepared from pure cultures using a simple boil extraction. A 10 µl loop of 

overnight culture was suspended in 200 µl sterile distilled water and incubated at 95°C for 10 

minutes. The suspensions were cooled to room temperature and centrifuged for 1 minute at 13,000 

rpm in a HeraeusTM PicoTM microcentrifuge (Thermo Scientific, MA, USA) to pellet the cell debris. 

Supernatant containing the DNA was transferred to a new eppendorf and stored at -20°C, for 

approximately one month, until required for PCR assays and/or transformation.

3.4 Polymerase chain reaction (PCR)

Throughout this project multiple genes were sought to facilitate characterisation and identification 

of the study isolates.
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Assays performed at the Blizard Institute (Queen Mary’s) used 12.5 µl ReddyMixTM PCR Master Mix 

(Thermo Scientific) as the main component for all PCR reactions. While assays performed at PHE 

used 12.5 µl MyTaqTM Red Mix (Bioline, London, UK) as the main component for all PCR reactions. 

Only the phylogrouping assay (section 4.2.2) was performed at both sites, using both master mixes. 

Positive controls were used to validate the assay at each site and master mixes were found to be 

comparable.

Primers were used at a concentration of 0.5 µM and reactions made up to 20 µl with sterile-filtered 

water (Sigma-Aldrich Company Ltd., Gillingham, Dorset, UK), unless otherwise stated.

Amplification typically consisted of an initial hold at 94°C for 3 minutes; followed by 30 cycles of 

denaturation at 94°C for 30 seconds, annealing at 65°C for 30 seconds, and extension at 72°C for 1 

minute; with a final extension at 72°C for 5 minutes. Alternative cycling conditions are included in 

the relevant sections and all primers are listed in appendix C.

Amplified DNA was separated by 2% gel electrophoresis (section 3.5), alongside an InvitrogenTM 100 

base-pair (bp) or 123 bp DNA ladder (Life Technologies, Paisley, UK).

3.5 Gel electrophoresis

A 2% agarose gel was prepared using 2 g UltraPureTM agarose (InvitrogenTM, Life Technologies) 

dissolved in 100 ml 1X Tris-Borate-EDTA (TBE) buffer (Promega, Southampton, UK). DNA samples 

were electrophoresed in BionicTM 1X buffer (Sigma) or TBE buffer at 130 volts for 90 minutes. Gels 

were stained for at least 30 minutes in ethidium bromide solution or GelredTM (Biotium, CA, USA) 

and excess removed by rinsing in distilled water. The banding patterns were visualised using a G:Box 

imaging camera (IMGEN technologies, Alexandria, VA, USA) and software.

3.6 PCR product purification

Purification of CMY PCR products, at QMUL, (see section 5.2.8) was performed using the MinElute®

PCR purification kit (Qiagen, Crawley, UK). The in-house method was used to purify all other PCR 
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products. Purified DNA was stored at 4°C to -20°C until required for DNA sequencing (maximum one 

week).

For the MinElute® PCR purification PCR products were diluted 5-fold in binding buffer and 

transferred to a spin column. Centrifugation for 1 minute at 13,000 rpm transferred DNA onto the 

column membrane. The DNA was washed with 750 µl of wash buffer and centrifuged again. DNA 

was then eluted in 20 µl elution buffer (10mM Tris-chloride, pH 8.5) or water, by centrifuging again 

for one minute.

For the in-house method 2 µl reaction solution was mixed with 10 µl PCR product and incubated at 

37°C for 45 minutes (enzyme activation), followed by 80°C for 20 minutes (enzyme inactivation). The 

final purified product was diluted 1:2 prior to sequencing. The reaction solution was made up in 10 

µl aliquots consisting of 1 µl exonuclease I reaction buffer (New England BioLabs© Inc., MA, USA), 1 

µl rAPid alkaline phosphatase reaction buffer (Roche Diagnostics Ltd., Burgess Hill, UK), 1 µl 

exonuclease I enzyme (New England BioLabs©), 1 µl rAPid alkaline phosphatase enzyme (Roche 

Diagnostics Ltd.) and 6 µl sterile-filtered water.

3.7 Sanger DNA sequencing

PCR amplicons were sequenced using the dideoxy Sanger sequencing method (Shendure et al. 2004)

and DNA sequences determined using an ABI Genetic Analyser Capillary Platform (Life technologies). 

CMY plasmids were sequenced by Source Bioscience (London) and all other purified PCR products 

were sequenced by the Genomic Services Unit at PHE.

3.8 Statistics

Statistical analysis was performed using STATA®, version 12 (StataCorp LP, TX, USA). For tests used 

and set significance level please refer to each chapter.  

GraphPad Prism version 5.04 (GraphPad Software Inc., CA, USA) was used for analysis of data 

generated using the Galleria mellonella assay (chapter 8).
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3.9 Ethics

This research project was logged with the Queen Mary Research Office, the Barts Health NHS Trust 

Joint Research and Development Office and Public Health England’s Research and Development 

Office (Appendix A).

NHS research ethics approval was not required for this study, as this study used sub-cultures of 

bacteria isolated from patient’s specimens and patient identifiable information was not used. Please 

see a quote from the Barts Health NHS Trust website below:

“We often receive queries asking if it is necessary to seek ethics approval before 

commencing research using collections of micro organisms, where the organisms were 

derived from human samples. Professor Terry Stacey, Director of the National Research 

Ethics Service, has advised that there is no need to seek approval from an NHS research 

ethics committee for such projects.

Guidance from the Department of Health’s inspector of microbiology confirmed this, and in 

addition stated that “any bacterial sub-cultures and viruses isolates, made from clinical 

specimens, are not part of the specimen themselves, they do not belong to the patient from 

whom they were obtained”.

However, if you are at all in doubt about your study, it is best to check before going ahead, 

to confirm that no ethics approval is needed.” 

(http://www.bartshealth.nhs.uk/research/governance/administrative-processes/ethical-approval/

Accessed 8th October 2011).
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4. The UK ExPEC population

4.1 Introduction

Escherichia coli is the most common cause of urinary tract infection (UTI) in the UK and Europe 

(Chakupurakal et al. 2010; Denes et al. 2012; Kahlmeter, 2003). Predominantly an infection of 

women, the majority of symptomatic patients (men and women) present to their GP or community 

clinic, with fewer healthcare-associated UTIs reported (Bean et al. 2008; Hryniewicz et al. 2001). 

Although, the World Health Organisation ranks UTIs as the most common hospital-associated 

infection (HAI), in the UK UTI is secondary to respiratory infections among hospitalised patients, 

while across Europe UTIs are the third most frequently reported HAI (World Health Organisation,

2002; Health Protection Agency, 2012c; European Centre for Disease Prevention and Control, 2013a).

Importantly, the urinary tract is reported as the most frequent source of bacteraemia and E. coli the 

most common pathogen (Bukh et al. 2009; de Kraker et al. 2012; Horner et al. 2014; Hounsom et al.

2011). Unlike UTI, bacteraemia is more frequently diagnosed in men and is predominantly an 

infection of those aged >64 years. However, as with UTIs, bacteraemia is more frequently a 

community-associated infection (CAI) (Health Protection Agency, 2011; Health Protection Agency,

2014; Hounsom et al. 2011; Laupland et al. 2008).

With these slight variations in patient demographics, it is important to define the UK patient 

population at risk of E. coli UTI and/or bacteraemia. This will provide insight into how these two 

infections are linked or whether they are primarily independent infections that occasionally occur 

together.

Over the years extra-intestinal pathogenic E. coli (ExPEC) have been characterised by source of

infection (extra-intestinal site), phylogroup (chiefly B2 and D), virulence factors and antibiotic 

resistance (Clermont et al. 2000; Johnson et al. 2009a; Johnson and Stell, 2000; Russo and Johnson,

2000). However, studies of ExPEC often focus on restricted geographical areas (e.g. North-West 

England), particular infection syndromes (e.g. urosepsis) or strain characteristics (e.g. serogroup O6), 
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rather than the ExPEC population as a whole in a particular region or country (Johnson et al. 2008b;

Lau et al. 2008a; Lau et al. 2008b). In the UK the BSAC Bacteraemia Resistance Surveillance 

Programme routinely monitors the antibiogram of E. coli isolates collected from around the UK 

(Reynolds et al. 2008), but does not analyse the genotypic characteristics that comprise this E. coli

population. In addition, there is no UK-wide study of urinary E. coli and it was impractical to collect 

urinary E. coli from around the UK for this study. However, as E. coli bacteraemia is primarily caused 

by urinary E. coli, it was decided that urinary E. coli isolates collected in East London could be directly 

compared to the UK-derived bloodstream isolates.

Therefore, this study characterised 521 bloodstream isolates collected from across the UK, as well as 

556 urinary and bloodstream isolates collected in London, with the aim of defining the UK ExPEC 

population, the patients frequently affected by these strains and to determine whether these 

populations have changed over time.
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4.2 Methods

4.2.1 Isolates

Details of the Local (n=556; 508 urinary, 48 bloodstream) and BSAC (n=521) collections of E. coli

isolates can be found in section 3.2. It was originally planned to collect urinary and bloodstream 

isolates over a similar time period so that they could be directly comparable. Unfortunately it was 

not possible to collect urinary isolates retrospectively from January 2011 through to October 2011 

when this project started. Therefore, urinary isolates were collected between October 2011 and 

March 2012. A similar number of urinary and BSAC isolates were collected to facilitate fair 

comparisons between specimen collections, although the bacteraemia isolates were collected from 

a widespread geographical region compared to the urinary isolates which were restricted to East 

London.

Only BSAC isolates with a full complement of patient data (sex, age, location) were analysed, 

regardless of the source of infection. The strategy for collecting the urinary isolates was different 

and focused on the type of UTI, with relatively equal proportions of uncomplicated (UC) and 

complicated (COMP) cystitis/pyelonephritis isolates and a smaller proportion of asymptomatic 

bacteruria (ABU) isolates. This was to enable large-scale characterisation of E. coli isolates causing 

uncomplicated cystitis, complicated cystitis/pyelonephritis and asymptomatic bacteruria, but also 

considered the difficulty in collecting an equally large proportion of asymptomatic bacteruria 

isolates. The lack of clinical details accompanying urine specimens and available information on the 

hospital information systems led to development of the study definitions (section 2.1). These 

definitions ensured urinary isolates were collected that categorically matched each UTI type. Local 

bloodstream isolates were collected similarly to the BSAC isolates, with complete patient 

demographics. However, the focus on collecting paired isolates, from both the urine and blood of a 

patient, led to a much smaller collection of Local bloodstream isolates.
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4.2.2 Phylogenetic Grouping 

All 1077 isolates underwent phylogenetic grouping using a modified multiplex PCR assay (Doumith et 

al. 2012) based on the PCR previously described by Clermont et al (2000). This method enabled 

distinction between phylogroup A isolates that lacked all three ExPEC genetic markers and PCR-

negative isolates, by inclusion of a universal E. coli (gadA) marker.

PCR reaction and amplification conditions were as described in section 3.4, with an abbreviated 

extension step of 30 seconds per cycle. Primers are listed in appendix C. The banding pattern 

generated by gel electrophoresis (section 3.5) was used to identify the phylogroup (Table 5). 

Table 5 Multiplex PCR profiles for the four principal Escherichia coli phylogenetic groups

All possible phylogroup A, B1, B2 and D profiles are included, along with an unknown profile 

reported by several authors and seen in this study (Clermont, Bonacorsi, & Bingen 2000;Doumith, 

Day, Hope, Wain, & Woodford 2012;Mendonca, Calhau, Lin, Boaventura, Ribeiro, & Da Silva 

2011;Skjot-Rasmussen et al. 2013). Targets included the E. coli specific target, glutamate 

decarboxylase alpha gene (gadA), an outer membrane heme receptor (chuA), a hypothetical protein 

(yjaA) and a DNA fragment from a lipase esterase gene (TspE4.C2).

Targets A A B1 B2 B2 D D Unknown
gadA X X X X X X X X
chuA X X X X
yjaA X X X X

TspE4.C2 X X X X

4.2.3 Sequence type PCR

The five major ExPEC lineages are ST131, ST127, ST95, ST73 and ST69 (Gibreel et al. 2012; Lau et al.

2008b; Manges et al. 2008). All isolates were screened for these lineages by multiplex PCR (Doumith 

et al. 2014). Primers are listed in appendix C. PCR reactions were prepared according to section 3.4, 

with 12.5 µl PCR buffer. Amplification conditions were as described in section 3.4, with an annealing 
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temperature of 60°C and an extension step of 30 seconds, followed by a final hold at 72°C for 3 

minutes. Products were separated by gel electrophoresis (section 3.5) and band size used to identify 

the lineage: ST131 (310bp), ST127 (404bp), ST95 (200bp), ST73 (490bp) and ST69 (100bp). 

4.2.4 Multi-Locus Sequence Typing (MLST)

Paired isolates that were PCR-negative for the five major ExPEC lineages underwent MLST, using the 

Achtman scheme (http://mlst.warwick.ac.uk/mlst/) and a modified version of the protocol described 

by Wirth et al (Wirth et al. 2006). Primers and corresponding annealing temperatures can be found 

in appendix C. The isolate with the unusual phylogroup profile also underwent MLST, as did an ST131 

isolate with a serogroup novel to this clone, to confirm the sequence type PCR result. 

PCR reactions were as described in section 3.4, using 15 µl PCR buffer. Cycling conditions consisted 

of an initial hold at 94°C for 2 minutes; followed by 30 cycles of denaturation at 94°C for 1 minute, 

annealing at 54°C for 1 minute and extension at 72°C for 1 minute; completed by a final hold at 72°C 

for 5 minutes. Products were separated by gel electrophoresis (section 3.5) to confirm gene 

presence; amplicons purified (section 3.6) and sequenced (section 3.7). Sequences were aligned in 

BioNumerics version 6.1 (Applied Maths NV, Sint-Martens-Latem, Belgium) and entered into the 

Achtman scheme database to identify the specific gene alleles and composite sequence type. 

4.2.5 Serogrouping

Six hundred and fifty-nine of 1077 (61%) sequential E. coli isolates (n=380 urinary and n=279 

bloodstream) were serogrouped and this was done according to the method by Gross and Rowe 

(Gross and Rowe, 1985), as adopted by the Gastrointestinal Bacterial Reference Unit, Public Health 

England. 

Isolates were grown overnight at 37°C in Hedley Wright broth, then steamed at 100°C for 40 minutes 

using an SBB14 boiling bath (Grant Instruments Ltd, Cambridge, UK). Cultures were cooled and 

preserved in 0.3% (v/v) formal saline at a ratio of 1:2.
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Serogrouping was performed in three stages. 1) Equal volume of culture (40 µl) was added to the 

screening plate, containing all 191 O-antisera (PHE), and incubated at 50°C overnight. Positive 

agglutinations were recorded and these O-antisera used in the second stage. 2) Titrations of the 

positive sera were prepared (doubling dilutions in saline from 1/100 to 1/6400), equal volumes of 

culture were added (50 µl) and the plate incubated as previous. Positive agglutinations and titres 

were recorded and compared with titres of the relevant O-antigen control strain. Titres equal to that 

of the control strain, or within two doubling dilutions, were titrated against pure absorbed antisera. 

3) Pure monoclonal antisera were diluted 1:5 then titrated in a 96-well microtitre plate (Thermo 

Scientific) as before (doubling dilutions in saline). Equal volumes of culture were added (50 µl) and 

suspensions were incubated overnight as previous. If the test isolate generated a titre equal to, or 

within one doubling dilution, of the O-antigen control strain the serogroup was recorded and 

identified.

All bloodstream isolates and urinary isolates that were negative at the initial screen (191 O-antisera) 

were autoclaved at 121°C for 15 minutes to remove possible capsular material. Isolates that 

agglutinated with all O-antisera at the initial screen were sub-cultured into a Thiotone Craigie broth 

for 1-5 days at 37°C to remove the rough coat and serogrouping repeated. 

Isolates that were positive for one of the five major ExPEC lineages (section 4.2.3) were screened for 

all serogroups previously identified in each corresponding ST (Table 6) (Johnson et al. 2008b;

Manges et al. 2008; Platell et al. 2011). If negative for these serogroups, the complete serogrouping 

procedure was performed. All other isolates underwent the complete serogrouping procedure. 

Isolates that did not generate significant agglutination titres or did not agglutinate with any of the 

initial antiserum were classified as O-non-typeable (NT). Isolates which agglutinated with more than 

40 antisera were classified as rough/NT. 
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Table 6 The five major ExPEC lineages and their corresponding serogroups as reported in studies 

conducted in the UK, North America and Australia (Johnson et al. 2008b; Lau et al. 2008b; Manges et 

al. 2008; Platell et al. 2011). 

Sequence 
type

Phylogroup Corresponding serogroups

ST131 B2 O16 O25
ST127 B2 O6
ST95 B2 O1 O2 O18
ST73 B2 O6 O18
ST69 D O11 O15 O17 O25 O73 O77

4.2.6 Enteroaggregative E. coli (EAEC) PCR

A selection of urinary isolates, with serogroups frequently detected in EAEC (O3, O15, O44, O62, 

O77, O78 and O86), were selected for aggR screening (Olesen et al. 2012; Smith et al. 1994;

Wallace-Gadsden et al. 2007). The aggR gene regulates expression of aggregative adherence 

fimbriae I (AAF/I) and is restricted to EAEC, making it an ideal target for differentiating between 

EAEC and other diarrheal pathotypes (Nataro et al. 1994), plus extra-intestinal E. coli. This assay was 

performed by colleagues in the Gastrointestinal Bacterial Reference Unit, PHE, using the method 

published by Chattaway and Jenkins (2014) (Chattaway et al. 2014). 

Each PCR reaction contained 12.5 µl FAST BLUE qPCR MasterMix (Eurogentec, Southampton, UK), 10 

µM of each primer, 1 mM of probe and 1 µl of DNA lysate made up to 25 µl with sterile-filtered 

water (Sigma). Primers are listed in appendix C. Amplification consisted of an initial hold at 95°C for 5 

minutes; followed by 30 cycles of denaturation at 94°C for 1 minute, annealing at 55°C for 1 minute 

and elongation at 72°C for 1 minute; and a final extensions at 72°C for 10 minutes on a Rotor-Gene Q 

(Qiagen GmbH, Hilden, Germany). 

4.2.7 Pulsed-field Gel Electrophoresis (PFGE)

Paired isolates, isolate 3837 (unknown phylogroup) and a random, diverse selection of isolates 

(n=22) representing the major ExPEC lineages and phylogroups were analysed by PFGE. This was 

performed to facilitate identification (unknown phylogroup), to determine if urosepsis is caused by 
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one or multiple strains (paired isolates) and to determine the general relatedness of ExPEC strains 

(lineage isolates). PFGE was performed using the method described by Turton et al (Turton et al. 

2004), as adopted by the Antimicrobial Resistance and Healthcare Associated Infections Reference 

Unit (AMRHAI), PHE. 

Isolates were grown on nutrient agar overnight at 37°C and colonies suspended in 1 ml suspension 

(SE) buffer to a density of 2.3-2.7 McFarland. A 1:1 suspension of culture and 2% agarose (Sigma) 

was prepared and aliquotted into gel blocks. Blocks were set at 4°C for <1 hour, then suspended in 3 

ml first lysis buffer with 0.5 mg/ml lysozyme (Sigma), overnight at 37°C, with shaking at 550 rpm on 

an Innova® 2100 platform shaker (New Brunswick Scientific, Stevenage, UK). Lysis buffer was 

aspirated and replaced with 3 ml alkaline phosphate buffer and 3.6 µl proteinase K, then incubated 

in an OLS200 shaking waterbath (Grant instruments Ltd) overnight at 56°C and 550 rpm. Buffer was 

aspirated and blocks washed 3 times with 1X Tris-EDTA (TE) buffer at 4°C for at least 30 minutes. 

After the final wash blocks were suspended in 2 ml 1X TE buffer until digestion. 

1X FastDigest buffer (Thermo Scientific, MA, USA) was aliquotted (100 µl) into 0.5 ml eppendorf 

tubes and a 1-2 mm strip from each agarose block was suspended in the digest buffer. Blocks were 

incubated overnight at 4°C. Digest buffer was aspirated and replaced with 100 µl fresh 1X FastDigest

buffer, plus 2 µl (2U/100µl) Xbal FastDigest enzyme (Thermo Scientific), before incubation at 37°C 

for at least 30 minutes. Isolate blocks were loaded into the wells of a 1.25% (approximately) agarose 

gel (MacroSieve low melt agarose; SLS Ltd, Hessle, UK), interspersed every 6-8 lanes with a 

concatenated lambda ladder (New England BioLabs©). The gel was run for 30 hours, at 6 volts and at 

12°C, with an initial switch of 5 seconds and a final switch of 35 seconds, using a CHEF-DR II chiller 

system (Bio-rad, Hemel Hempstead, UK). After electrophoresis gels were stained with GelredTM

(Biotium, CA, USA; section 3.5) and analysed using BioNumerics, version 6.1 (Applied Maths NV). 

Isolate similarity was calculated using dice coefficient and isolates clustered using unweighted pair 

group method with arithmetic averages (UPGMA) with a band tolerance of 1%.
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4.2.8 Statistical analysis

Associations between isolate and patient variables were calculated using the chi2 test, with Stata, 

version 12 (StataCorp LP). A P-value of ≤0.05 was considered significant, unless stated otherwise.
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4.3 Results

Patient demographics

Patient demographics for the urinary isolates can be found in table 7. Urinary isolates were primarily 

from female patients (n=426, 84%), aged 21-50 years (n=250, 59%; Figure 3) and were mostly 

diagnosed in the community (n=453, 89%). Due to the lack of clinical details accompanying urine 

specimens, all ABU isolates, except one (64 year old female), were collected from pregnant women 

aged 18-41 years at their first antenatal appointment. UC isolates were also collected from women 

only, as men were considered to have a complicated UTI. COMP isolates were collected from 

significantly more HAIs and from more patients >50 years of age (P<0.0001), than the remaining 

urinary isolates.

Table 7 Patient demographics for the urinary isolates 

The number of isolates is listed for each UTI type, with the percentage listed in parenthesis.

Demographic Asymptomatic 
bacteruria (ABU)

Uncomplicated 
cystitis (UC) 

Complicated cystitis 
/pyelonephritis 

(COMP)
Total:

102 198 208
Healthcare setting:

CAI 101 (99) 190 (96) 162 (78)
HAI 1 (1) 8 (4) 46 (22)

Sex:
Male - - 82 (39)

Female 102 (100) 198 (100) 126 (61)
Age:

Range 18-64 2-99 1-94
Mean 28 31 54

Median 29 32 58

Forty (8%) urinary isolates were collected from children (<18 years old). Overall these accounted for 

2% (n=2) and 9% (n=38, P=0.04) of urinary isolates from male and female patients, respectively. 

Including the two isolates from boys, 35% were classified as COMP and the remaining 65% as UC.
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Co-morbidities and complicating factors accompanying urinary isolates from children included fever, 

convulsions, recurrent infection and pyelonephritis. For adult patients these factors were also listed, 

along with urological instrumentation/surgery, diabetes, systemic symptoms or sepsis, catheter, 

renal disease/failure/transplant, HIV, lupus, liver disease, cancer/receiving chemotherapy, 

prostatitis, spinal compression and recent ESBL. The most frequently reported complicating factors, 

accounting for 42% (n=87) of all COMP isolates, were diabetes, recurrent infection, pyelonephritis 

and systemic signs.

Figure 3 Age range of patients comprising the urinary and bloodstream isolates 

Patient demographics for the bloodstream isolates can be found in table 8. As with urinary isolates, 

the majority of bloodstream isolates were from CAIs, but at a lower proportion than seen with UTIs 

(67% bloodstream vs. 89% urinary). A similar proportion of male and female patients contributed to 

the bloodstream isolates, despite the low number of local bloodstream isolates collected, which 

made drawing conclusions difficult. For example, the number of bloodstream isolates collected as 

part of the BSAC collection, increased with age regardless of sex, but within the local bloodstream 
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isolates this pattern was only noted for male patients, as there was no discernible relationship 

between age and the female sex.

Bloodstream isolates were also collected from children (<18 years old), accounting for 4% (n=11) and 

1% (n=4) of male and female patients with bacteraemia, respectively.

Table 8 Patient demographics for the bloodstream isolates

Demographic Local No. Isolates (%) BSAC No. Isolates (%)
Total:

48 521
Healthcare setting:

CAI 30 (63) 353 (68)
HAI 18 (37) 168 (32)

Sex:
Male 23 (48) 260 (50)

Female 25 (52) 261 (50)
Age:

Range 11-90 0–99
Mean 55 68

Median 64 73

The genitourinary (GU) tract was the most common source of bacteraemia, accounting for 56% and 

38% of the local and BSAC isolates, respectively (Figure 4). The gastrointestinal tract (GIT) was the 

second most common source, followed by the respiratory tract (Chest). Skin and soft tissue 

infections (SSTI), intravenous lines (Line) and cerebral spinal fluid (CSF) comprised the remaining 

bloodstream isolates in the BSAC collection, but these sources were not reported in the local 

bloodstream isolates. Unknown source was recorded for 31% and 43% of local and BSAC 

bloodstream isolates, respectively, with ascites, diabetic foot ulcers, trauma, cancer and surgery 

listed as potential foci of infection.

Notably, all local bloodstream isolates from female patients were recorded as having a urinary focus 

of infection and in the BSAC collection GU-source isolates were more frequently collected from 

female patients than male patients. In contrast, respiratory-source isolates were more frequently 

collected from male patients (15 male, 5 female).
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Figure 4 Source of bacteraemia for both Local and BSAC collections Sources included the 

genitourinary (GU) tract, gastrointestinal tract (GIT), skin and soft tissue infections (SSTI), respiratory 

(Chest) infection, cerebral spinal fluid (CSF) and intravenous (Line) line infections.

Strain characteristics

Phylogenetic grouping

Phylogroup distribution according to infection type (UTI or bacteraemia) is displayed in figure 5. 

Phylogroup B2 comprised 64% of all study isolates, followed by phylogroup D (22%). Phylogroup A 

isolates consisted mostly of urinary strains (13% vs. 7% bloodstream), while phylogroup B1 strains 

were relatively evenly distributed between the urinary (5%) and bloodstream (3%) isolates. 

Generally, phylogroups A, B1 and D were more frequently detected in urinary isolates, but B2 

isolates were more frequent in bloodstream isolates. Local urinary and bloodstream isolates 

followed a similar trend in phylogroup.

Overall phylogroup B2 was more common in male patients (74% vs. 59%) and phylogroup D was 

more common in female patients (26% vs. 13%), except for the local bloodstream isolates, where 

phylogroups A (26% vs. 0%) and B1 (9% vs. 4%) were more prevalent in male patients and 
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phylogroups B2 (60% vs. 43%) and D (36% vs. 22%) were more prevalent in female patients (Figure 

6). 

Figure 5 Phylogroup distributions within the urinary and bloodstream isolates 

Figure 6 Phylogroup distributions according to patient sex and ExPEC collection
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In the urinary isolates the proportion of phylogroup B2 isolates increased from ABU<UC<COMP, 

while phylogroup A and D isolates decreased and phylogroup B1 remained constant (Figure 7). In the 

bloodstream isolates phylogroup B2 dominated all sources of bacteraemia, followed, in decreasing 

order, by groups D, A and B1. In addition, phylogroups B1 was not detected in bloodstream isolates 

with a SSTI or line-source, group A was lacking from the respiratory-source isolates and the one CSF-

source isolate belonged to group B2 (Figure 8).

The other exception was a bloodstream isolate, of unknown source, which generated an unusual 

phylogroup profile (gadA+, chuA-, yjaA+, TspE4.C2+).

Figure 7 Phylogroup distributions according to UTI type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ABU UC COMP

A

B1

B2

D



Page | 79

Figure 8 Phylogroup distributions according to source of bacteraemia. Number of isolates per 

source is as follows: GU (n=224), GIT (n=63), SSTI (n=6), Chest (n=20), CSF (n=1) and Line (n=10). 

Sequence type

The major ExPEC lineages (ST131, ST127, ST95, ST73 and ST69) accounted for 40% and 44% of 

urinary and bloodstream isolates, respectively, with a slightly larger proportion detected in HAIs 

(53%).

ST95, followed by ST69, was the most frequently detected lineage in urinary isolates. In the 

bloodstream isolates ST131 was the most common lineage, followed by ST73 (BSAC) or ST69 (Local), 

as displayed in figure 9.

The major lineages predominantly comprised phylogroup B2 strains, except for ST69, which was 

mostly comprised of phylogroup D strains. Exceptions to this included an ST131 isolate (phylogroup 

D), five ST127 isolates (phylogroup A), three ST95 isolates (phylogroup D) and three ST69 isolates (2 

phylogroup B2, 1 phylogroup B1).
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Figure 9 Sequence type distributions according to ExPEC collection and specimen type. These five 

lineages accounted for 40% of the urinary isolates, 39% of the local bloodstream isolates and 57% of 

the BSAC bloodstream isolates. 

As expected, ST95 and ST69 comprised a large cluster of urinary isolates from female patients aged 

21-40 years (Figure 10), while ST131 was more prevalent in patients >50 years from which 

bloodstream isolates were collected (Figure 11). These clusters correlate with the patients most 

frequently affected by urinary tract and bloodstream infections. In addition, ST95 clustered 

predominantly in patients aged 21-50 years, ST73 increased in prevalence in patients aged >70 

years, ST69 peaked in patients aged 31-40 years, while ST127 was lacking in patients ≤30 years. 

Regarding patient sex, both ST131 (P=0.04) and ST127 (P=0.02) were more frequently detected in 

male patients (38% and 13%, respectively) rather than female patients (23% and 5%, respectively).
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Figure 10 Sequence type distributions in urinary isolates according to patient age

Figure 11 Sequence type distributions in bloodstream isolates according to patient age
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Among the urinary isolates ST69 (8%) was the most common lineage in ABU infection, followed by 

ST95 (6%). ST95 was also the most common lineage in COMP isolates (13%), followed by ST131 

(12%) and ST73 (11%). While in UC isolates ST95 (12%) was second to ST69 (14%). 

For the GU-derived bloodstream isolates ST131 (21%) was the most common lineage, closely 

followed by ST73 (20%). This pattern was seen for respiratory-source isolates also (3% and 2%, 

respectively). While GIT strains were mostly ST131 (21%) and ST95 (13%) and the sole CSF strain also 

belonged to ST95. The line-source isolates demonstrated no obvious trend and all five lineages were 

absent from the SSTI strains.

As the BSAC isolates were collected from around the UK and Republic of Ireland, the distribution of 

each of the major lineages by country (Table 9) and region (Table 10) was reviewed. Of note, ST131 

was almost twice as prevalent in Welsh isolates (P≤0.008), than isolates from England, Scotland and 

the Republic of Ireland. ST127 and ST95 were more common in English isolates than all other 

countries, while ST73 was more prevalent in Irish isolates. Interestingly, ST69 was only detected in 

isolates collected from England and the Republic of Ireland (P≤0.04).

Table 9 Distributions of the major ExPEC lineages in bloodstream isolates according to country of 

origin. Number of isolates is shown, plus the proportion of isolates encompassing that lineage per

country, in parenthesis.

Country ST131
N (%)

ST127
N (%)

ST95
N (%)

ST73
N (%)

ST69
N (%)

England 75 (20) 22 (6) 53 (14) 62 (17) 14 (4)
Ireland 12 (17) 3 (4) 7 (10) 15 (21) 8 (11)
Scotland 7 (17) 1 (2) 3 (7) 6 (15) 0
Wales 14 (37) 1 (3) 5 (13) 6 (16) 0

Public Health England has defined nine regions of England, as follows: South-East, South-West, 

London, East Midlands, West Midlands, East of England, North-East, North-West and Yorkshire and 

Humber (Figure 12). Within these regions ST131 was most prevalent in London and the South-West, 
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compared with all other regions (P≤0.02). ST69 was also more prevalent in London, along with the 

East and West Midlands. In addition to ST69, the East Midlands also had the highest proportion of 

ST127 isolates (P≤0.01), compared to all other regions, and ST95 (P≤0.02). However, ST73 was most 

prevalent in Yorkshire and Humber isolates (P≤0.03), whereas ST127 could not be detected in 

isolates from here or in South-East isolates either. 

Table 10 Distributions of the major ExPEC lineages in bloodstream isolates according to region of 

origin in England. Number of isolates is shown, plus the proportion of isolates encompassing that 

lineage per region, in parenthesis.

Region ST131
N (%)

ST127
N (%)

ST95
N (%)

ST73
N (%)

ST69
N (%)

South-East 7 (10) 0 9 (13) 14 (13) 1 (1)
South-West 15 (28) 4 (7) 5 (9) 6 (11) 3 (6)
London 16 (29) 2 (4) 11 (20) 8 (14) 4 (7)
East Midlands 2 (14) 4 (29) 5  (36) 0 1 (7)
West 
Midlands

9 (21) 6 (14) 5 (12) 8 (19) 3 (7)

East England 9 (22) 3 (7) 8 (20) 4 (10) 1 (2)
North-East 4 (14) 1 (4) 2 (7) 6 (21) 0
North-West 4 (14) 2 (7) 6 (21) 5 (18) 0
Y. & Humber 9 (21) 0 2 (5) 11 (26) 1 (2)
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Figure 12 Map displaying the countries and English regions from which the BSAC bacteraemia 
resistance surveillance study (2011) isolates were collected, as defined by Public Health England. 
The number of centres is represented by proportionally sized circles, increasing from one (small) to 
five (large).

Serogroup

Six hundred and fifty-nine isolates were serogrouped, including 380 urinary and 279 bloodstream 

isolates. Sixty serogroups were identified, of which 29 were only identified in urinary isolates, 6 were 

only identified in bacteraemia isolates and 25 were identified in both (Figure 13). In 21% (n=139) a 

serogroup could not be identified and isolates were recorded as non-typeable.



Figure 13 Serogroups identified in either urinary or bloodstream isolates or both
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three percent (n=413/659) of isolates comprised the 15 most common serogroups (table 11), 

of which O2, O6 and O25 were the three most frequently identified, comprising a higher proportion 

loodstream isolates (24%). 

Within the urinary isolates, serogroups O2, O6 and O25 were more frequently detected in COMP 

(n=58, 15%) isolates rather than UC (n=39, 10%) or ABU (n=11, 3%) isolates. While in the BSAC 

source isolates (n=52, 22%), compared to all 

>0.05).
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Table 11 the most common serogroups according to each of the ExPEC collections. Number of 

isolates is listed in the table, with the percentage in parenthesis

Serogroup Urinary Local 
bloodstream

BSAC 
bloodstream

Total

O1 14 (4) 0 13 (5) 27 (4)
O2 21 (6) 2 (5) 21 (9) 44 (7)
O4 7 (2) 2 (5) 0 9 (1)
O6 45 (12) 4 (11) 29 (12) 78 (12)
O7 10 (3) 1 (3) 2 (1) 13 (2)
O8 10 (3) 1 (3) 5 (2) 16 (2)

O15 6 (2) 0 4 (2) 10 (2)
O16 6 (2) 2 (5) 10 (4) 18 (3)

O18ac 9 (2) 1 (3) 3 (1) 13 (2)
O22 5 (1) 1 (3) 2 (1) 8 (1)
O25 43 (11) 3 (8) 61 (25) 107 (16)
O44 7 (2) 2 (5) 2 (1) 11 (2)
O75 11 (3) 2 (5) 10 (4) 23 (3)
O77 17 (4) 0 6 (2) 23 (3)
O86 5 (1) 1 (3) 7 (3) 13 (2)

Four serogroups were only detected in urinary and local bloodstream isolates from female patients: 

O7, O44, O75 and O77 (P>0.05). All of the O44 and O77 isolates belonged to phylogroup D (n=24/24) 

and most to ST69 (n=20/24). The O75 isolates belonged to phylogroup B2 and the O7 strains to a 

combination of phylogroups, all of unknown sequence type, and both serogroups were lacking from 

ABU isolates. However, O75 along with O77 were prevalent among UC isolates, in particular, while 

O7 and O44 isolates were equally prevalent among UC and COMP isolates.

As well as infection-specific patterns in serogroup, a limited serogroup profile was also observed in 

each of the major ExPEC lineages (Table 12), although some serogroups were found in multiple 

lineages, such as O6 in ST73 and ST127.
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Table 12 Serogroups detected in each of the major ExPEC lineages in order of frequency 

For serogroups comprising more than 10% of isolates, the proportion is listed in parenthesis

Lineage Serogroup
ST131 O25 (77%), O16 (14%), O19a, O136, O153

ST127 O6 (75%), O27, O11, O16, O25

ST95 O2 (28%), O1 (21%), O4, O18ac, O25, O16, O31, O6, O110, O150, O153

ST73 O6 (57%), O2 (11%), O22, O25, O8, O4, O18ac, O27, O158

ST69 O77 (25%), O44 (14%), O15, O25, O11, O17, O27, O45, O73, O86, O102, O117, 
O125ab, O150, O153

In addition to the frequently identified O-antigens, several serogroups that have not been reported 

in ExPEC strains were identified. These included O12, O31, O32, O36, O37, O39, O40, O46, O56, O62, 

O81, O83, O87, O93, O110, O118, O135, O150, O158, O162 and O182, of which most were detected 

in urinary isolates, except O36 and O37 (bloodstream isolates) and O162 and O182 (urinary and 

bloodstream isolates). Together these serogroups encompassed 6% of the ExPEC collections.

Enteroaggregative E. coli

Thirty-one urinary isolates, encompassing three phylogroups (A, B1 and D), possessed serogroups 

associated with EAEC: O3 (n=1), O15 (n=5), O44 (n=7), O62 (n=1), O77 (n=11), O78 (n=1) and O86 

(n=5). However, the aggR gene was not detected in any of these isolates, indicating they all lacked 

EAEC traits.

Paired isolates

Thirty-four paired (urinary and bacteraemia) isolates were collected from seventeen patients with 

urosepsis. Patient demographics and strain characteristics are listed in table 13. Data reveals that 

16/17 of these patients were infected with a single E. coli strain, while patient 16 had two E. coli

strains simultaneously causing infection (ST14/B2-O18ac and ST354/D-O153). The majority of paired 

isolates belonged to phylogroups B2 and D (16/17), with 10/17 encompassing the five major ExPEC 

lineages. Other sequence types detected included ST14, ST62, ST354, ST404, ST405, ST617 and 
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ST1405. Eight of the common serogroups (O2, O4, O6, O7, O18ac, O25, O44 and O75) were 

identified in 21/34 of the paired isolates. The remaining isolates were non-typeable (n=8) or were 

phylogroup D isolates with serogroups O11, O125ab and O153.

PFGE 

PFGE of the paired isolates revealed those of the same phylogroup and/or sequence type to cluster 

in groups and confirmed that UTI and bacteraemia in patient 16 was caused by two separate isolates 

(Figure 14). Percentage relatedness was much higher between isolates of the same sequence type 

than those of the same phylogroup. For example, phylogroup D isolates demonstrated 

approximately 40% DNA relatedness, but ST69 isolates demonstrated approximately 60% 

relatedness.

While PFGE of isolate 3837 (unusual phylogroup profile), along with a selection of ExPEC isolates, 

revealed approximately 40% relatedness to all other ExPEC strains analysed, including ST127 isolates 

(Figure 15). These ExPEC isolates also appeared less related, especially within the different sequence 

types, to the paired urosepsis isolates.



Page | 89

Table 13 Patient and strain characteristics for the thirty-four paired urosepsis isolates

Isolate 
pair Sample

Age 
(years) Sex CAI/HAI Phylogroup Serogroup MLST

PFGE  
relatedness

1 Blood 22 F CAI D O44 69 92.7%
Urine

2 Blood 88 F CAI D NT 1405 97.3%
Urine

3 Blood 87 F CAI D O7 62 95%
Urine

4 Blood 52 F CAI B2 NT 405 100%
Urine

5 Blood 81 M CAI B2 O2 95 86.7%
Urine

6 Blood 90 F CAI B2 O25 131 100%
Urine

7 Blood 83 M CAI A NT 617 97.3%
Urine

8 Blood 69 F HAI B2 O2 73 95%
Urine

9 Blood 44 F CAI D NT 405 94.4%
Urine

10 Blood 88 M CAI B2 O25 131 92.3%
Urine

11 Blood 32 F CAI B2 O75 404 95.2%
Urine

12 Blood 63 M HAI B2 O6 127 100%
Urine

13 Blood 88 F CAI B2 O6 73 95%
Urine

14 Blood 31 F CAI D O125ab 69 98%
Urine

15 Blood 31 F HAI D O11 69 100%
Urine

16 Blood 27 F CAI B2 O18ac 14 38.1%
Urine D O153 354

17 Blood 26 F CAI B2 O4 95 100%
Urine

F – female, M – male, CAI – community-associated infection, HAI – hospital-associated infection, NT 

– non-typeable, PFGE relatedness used a cut-off of 85% to identify E. coli isolates with the same 

PFGE profile (Gibreel, Dodgson, Cheesbrough, Fox, Bolton, & Upton 2012b).
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Figure 14 Dendrogram showing Xbal PFGE profiles for the 34 paired ExPEC isolates representing 
the principal phylogroups and lineages. The key identifies the paired isolates by number and source 
of isolation. For example, 2B is the bloodstream isolate from pair 2. Percentage band relatedness is 
detailed on the left hand side.
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Figure 15 Dendrogram showing Xbal PFGE profiles for a selection of ExPEC isolates representing 
various sequence types and phylogroups, including the unusual phylogroup (underlined in red). 
Percentage band relatedness is detailed on the left hand side. 

10
0

806040 Key

192..

349..

090.

3520..

3669.

3786.

3860

219.

3656.

3732.

3631.

3379.

3493.

3336.

3498.

3393.

367.

3363.

3422.

3396.

3820.

3350.

3625.

3760.

231.

197.

152.

153.

025.

188.

3339.

3434.

3837

phylo group

B2

B2

D

B2

B2

B2

B2

A

B2

B2

B2

A

B1

D

B1

B1

B2

A

B1

B2

B2

B2

B2

B2

B2

B2

D

D

D

B2

A

A

NK

MLST

131

131

1405

131

131

NK

NK

617

127

131

95

NK

NK

NK

NK

NK

404

127

NK

95

73

73

73

73

73

95

62

62

69

405

NK

NK

NK

serotype

O25

O25

NT

O25

O18ab

O75

NT

O75

O27

O2

O2

O2

O7

O7

O44

NT

O18ab



Page | 92

4.4 Discussion points

UTIs were predominantly a community-associated infection (87%) of women (84%) aged 

approximately 40 years, while bacteraemia was less frequently community-associated (68%) and 

equally affected men and women with an average age of 68 years. However, UTIs (8%) and 

bacteraemia (3%) also affected paediatric patients (<18 years old).

Collection of urinary isolates was heavily influenced by the specimen collection criteria. In contrast, 

the random specimen collection of the BSAC bloodstream isolates suggests accurate conclusions can 

be drawn regarding the typical patient presenting with bacteraemia, including the urinary tract as 

the number one source of infection.

ExPEC strains causing UTI and bacteraemia predominantly belonged to phylogroups B2 (64%) and D 

(22%), with the five major ExPEC lineages (ST131, ST127, ST95, ST73 and ST69) comprising a 

significant proportion of the isolates collected locally (40%) and nationally (57%). In addition, 

distribution of these lineages, within the BSAC collection, varied by country and region.

Despite the range of serogroups (n=60) identified in this study, isolates encompassing the major 

ExPEC lineages also possessed the most frequently identified serogroups. Other reported ExPEC 

clones identified in this study included ST62-O7 and ST404-O75. PFGE revealed isolates of these 

lineages and isolates of the same phylogroup to cluster in groups, but also demonstrated the great 

diversity of ExPEC strains.

Urosepsis was typically associated with a single strain, although one patient suffered simultaneous 

infection with 2 different E. coli strains.



Page | 93

5. Antibiotic resistance in Escherichia coli causing urinary tract infections and 

bacteraemia, in East London and across the United Kingdom

5.1 Introduction

The previous chapter demonstrated that patient demographics have remained relatively unchanged 

for those with E. coli causing UTIs and bacteraemia, compared to recent UK and international 

studies. However, ExPEC strains are highly varied, encompassing many serogroups, sequence types 

and lineages, as demonstrated in chapter 4. With this heterogeneity it is important to review and 

understand the current antibiotic resistance profiles and to determine if they have changed and 

whether therapeutic guidelines are still applicable or need updating.

Increasing antibiotic resistance in E. coli has led to changes in the treatment of UTIs, with current 

guidelines recommending trimethoprim or nitrofurantoin for uncomplicated UTIs and ciprofloxacin 

or amoxicillin-clavulanate with amikacin for complicated UTIs (Cormican et al. 1998; Dyer et al. 1998;

Gupta et al. 2011; Huovinen and Toivanen, 1980; SIGN, 2006; Barts and the London Trust 

Antimicrobial Review Group, 2011). However, the most recent UK studies of urinary E. coli in 

paediatric patients (<16 years) reported resistance rates of 3.8%-7% to nitrofurantoin, 5.9% to 

ciprofloxacin, 3.6% to gentamicin, 8.2%-11% to cefalexin, 34%-46.3% to trimethoprim and 12.9%-

48% to amoxicillin-clavulanate (augmentin) (Bean et al. 2008; Chakupurakal et al. 2010). While in 

adults with urinary E. coli, 13.7% were resistant to amoxicillin-clavulanate, 10.6% to cefalexin, 6.1% 

to nitrofurantoin, 39.4% to trimethoprim, 12.7% to ciprofloxacin and 6.6% to gentamicin (Bean et al.

2008). In comparison, European studies typically reported lower resistance rates of 2.5%-8.9% 

amoxicillin-clavulanate, 15.8%-19.1% trimethoprim, 0%-1.4% nitrofurantoin, 2.5%-7.6% 

ciprofloxacin, 1%-2.8% gentamicin and 0%-2.7% ceftazidime (Den Heijer et al. 2010; Kahlmeter and

Poulsen, 2012).
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E. coli causing bacteraemia are reported to have higher rates of antibiotic resistance than urinary 

isolates (Kahlmeter, 2003; Livermore et al. 2008; Martin et al. 2012). There are no specific guidelines 

for treating bacteraemia due to the multiple sources of infection and causative organisms. 

Therefore, empirical treatment is often broad-spectrum (Joint Formulary Committee, 2013). At the 

Royal London Hospital, E. coli bacteraemia is typically treated with amoxicillin-clavulanate with or 

without an aminoglycoside, which may be changed to ciprofloxacin (osteomyelitis), meropenem 

(meningitis) or piperacillin-tazobactam (cholecystitis) depending on the source of bacteraemia 

(Phee, 2013). 

HAIs often demonstrate higher rates of resistance than CAIs, as these patients have likely received 

antibiotics previously and are more likely to be colonised with a multi-drug resistant nosocomial 

strain (Bean et al. 2008). In the UK, 15% of Enterobacteriaceae causing HAIs are reported to involve 

an ESBL (Health Protection Agency, 2012c), with CTX-M-15 the most frequently detected enzyme in 

Klebsiella and E. coli (Woodford et al. 2004; Younes et al. 2011). Multiple studies have linked 

circulation of these enzymes and particular resistance phenotypes to lineages such as ST131, ST405 

and CgA (ST69) (Johnson et al. 2009a; Matsumura et al. 2012; Peirano and Pitout, 2010; Wallace-

Gadsden et al. 2007). 

Data on E. coli causing UTIs are often restricted to studies of healthy women with uncomplicated 

cystitis and test against few antibiotics (De Backer et al. 2008; Kahlmeter, 2003; Schito et al. 2009), 

while data on E. coli causing bacteraemia in the UK is limited to the BSAC Bacteraemia Resistance 

Surveillance Programme (Reynolds et al. 2008) and reports collected from UK hospitals via Public 

Health England’s labBase2 system. As patients live longer and receive more antibiotics, it is 

important to continually review antibiotic resistance rates, especially with the rapid spread of β-

lactamases and resistance determinants further complicating antibiotic treatment.
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5.2 Methods

5.2.1 Antibiotic susceptibility testing (AST)

5.2.1.1 Local Antibiotic susceptibility testing 

At the Royal London Hospital all urinary isolates underwent susceptibility testing with ciprofloxacin 

(1 µg), gentamicin (10 µg), cefalexin (30 µg), amoxicillin (25 µg), amoxicillin-clavulanate (30 µg), 

cefpodoxime (10 µg), trimethoprim (2.5 µg) and nitrofurantoin (200 µg) impregnated discs (Oxoid, 

UK), using the BSAC disc diffusion method (BSAC, 2011). Resistance to cefpodoxime prompted 

further AST using the MicroScan WalkAway 96 plus (Siemens) Gram-negative panel to identify 

potential ESBL-producers and determine susceptibilities against a larger panel of antibiotics. All 

isolates from blood cultures (bacteraemia) were subjected to AST using the MicroScan system.

5.2.1.2 Minimum Inhibitory Concentration (MIC)

MICs were determined for all 1077 isolates to ensure uniform testing against the same antibiotic 

panel. MICs were determined using the BSAC agar dilution method (Andrews 2001) and considered 

the gold standard for determining antibiotic susceptibilities. EUCAST breakpoints were used to 

determine whether an isolate was susceptible, had reduced susceptibility (intermediate) or was 

resistant to the antibiotics tested. As there is no EUCAST breakpoint for cefoxitin the Clinical 

Laboratory Standards Institute (CLSI) breakpoint was used. MICs were determined for the following 

antibiotics on ISO-Sensitest (ISO) or Mueller-Hinton (MH) agars for the carbapenems: amikacin 

(AMK), amoxicillin-clavulanate (AUG), ampicillin (AMP), aztreonam (AZT), cefotaxime (CTX) with and

without clavulanate, cefoxitin (FOX), cefpirome (CPR) with and without clavulanate, ceftazidime 

(CAZ) with and without clavulanate, ciprofloxacin (CIP), chloramphenicol (CHL), ertapenem (ERP), 

gentamicin (GEN), imipenem (IM), meropenem (MEM), minocycline (MIN), nitrofurantoin (NIT), 

piperacillin-tazobactam (PZT), temocillin (TEM), tigecycline (TIG), trimethoprim (TRIM) with and 

without sulfamethoxazole (SXT), and tobramycin (TOB). Antibiotic suppliers are listed in appendix B. 

E. coli control strains ATCC 25922 and NCTC 10418 were included in each MIC run to validate the 
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MIC results and to check for any anomalies between the initial disc diffusion/ MicroScan® AST results 

and the MIC results. ESBL possession was inferred if the MIC of the cephalosporin compared to the 

MIC of the cephalosporin with clavulanate was ≥8-fold higher (Livermore and Brown, 2001). Isolates 

resistant to ≥1 cephalosporin were analysed by PCR for β-lactamase enzymes (see section 5.2.2). 

MICs were compared to MIC data reported by EUCAST (http://www.eucast.org/).

5.2.2 CTX-M group detection and identification

Genes for CTX-M enzyme groups 1 and 9 were detected using the PCR assay described by Woodford 

(2010) (Woodford 2010). PCR reactions and amplification conditions are as described in section 3.4, 

but with annealing step of 60°C for 40 seconds. 

PCR products were separated by agarose gel electrophoresis and product size (appendix C) was used 

to identify the CTX-M group. CTX-M group 1 PCR products were purified (section 3.6) and sequenced 

(section 3.7). DNA sequences were aligned in BioNumerics version 6.1 (Applied Maths NV) and 

compared with sequences in the GenBank database (National Institute of Health, MD, USA) to 

identify the specific CTX-M allele.

Isolates that were positive for CTX-M group 9 genes were investigated using the primers described 

by Girlich et al (Girlich et al. 2009), which amplified the entire open reading frame of the CTX-M 

gene. PCR amplicons were generated and identified as described above. All primers are listed in 

appendix C.

5.2.3 TEM and SHV Detection

All CTX-M-positive strains and isolates with an antibiogram suggestive of cephalosporinase activity 

(cephalosporin resistant) were analysed for TEM and SHV genes using the primers described 

previously (Livermore et al. 2001; M'Zali et al. 1996). PCR reactions, amplification conditions and 

enzyme identification were as described in section 5.2.2. Primers are listed in appendix C.
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5.2.4 OXA Detection

All CTX-M-positive strains and isolates with an antibiogram suggestive of cephalosporinase activity 

(cephalosporin resistant) were analysed for OXA-1-like genes using the primers described previously 

(Karisik et al. 2006). PCR reactions, amplification conditions and enzyme identification were as 

described in section 5.2.2. Primers are listed in appendix C.

5.2.5 AmpC β-lactamase detection and identification

Isolates that were cefoxitin-resistant and/or negative for CTX-M, TEM, SHV or OXA-1 enzymes 

(sections 5.2.2 – 5.2.4), were investigated for acquired AmpC enzymes using the PCR described by 

Dallenne et al (Dallenne et al. 2010). PCR reactions, amplification conditions and enzyme 

identification were as described in section 5.2.2. Primers are listed in appendix C.

Isolates that were positive for the CIT family of acquired AmpC β-lactamases were subjected to a 

CMY-specific PCR, as CMY is the most commonly detected CIT AmpC β-lactamase in E. coli (Dierikx et 

al. 2012; Jacoby, 2009). PCR reaction and cycling conditions were as described above, using primers 

(appendix C) published previously (Ahmed and Shimamoto, 2008). CMY PCR products were purified 

and cloned into plasmids (section 5.2.7) prior to DNA sequencing. DNA sequences were aligned and 

identified, as described in section 5.2.2. 

5.2.6 Aminoglycoside-modifying enzymes

All urinary isolates demonstrating reduced susceptibility to ≥1 aminoglycoside were screened for the 

common aminoglycoside-modifying enzymes (AME), using the PCRs developed by Noppe-Leclercq et 

al (1999) and Leelaporn et al (2008). PCR reactions and amplification conditions were as described in 

section 3.4, but with varying annealing temperatures, as listed in appendix C (Leelaporn et al. 2008;

Noppe-Leclercq et al. 1999). 

Isolates demonstrating pan-resistance to all three aminoglycosides were screened for genes 

encoding all 16S rRNA methyltransferases using the multiplex PCR developed by Fritsche et al

(2008). PCR reactions were as described in section 3.4, but with 25 cycles of denaturation for 15 
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seconds at 94°C, annealing at 58°C for 30 seconds and extension at 72°C for 60 seconds. PCR 

amplicons were resolved and identified by gel electrophoresis (section 3.5). All primers are listed in 

appendix C. 

5.2.7 Plasmid-mediated quinolone resistance (PMQR) determinants 

All ciprofloxacin-resistant isolates were subjected to a multiplex PCR, developed as part of this 

project, targeting eight plasmid-mediated genes that confer reduced susceptibility to 

fluoroquinolones. The targets were qnrA, qnrB, qnrC, qnrD, qnrS, oqxAB, qepA and the aac (6’)-lb-cr

allele (appendix C). The Qiagen Multiplex PCR kit (Qiagen) was used for the PCR reactions, according 

to the manufacturer’s instructions. Each PCR reaction contained 12.5 µl master mix, 10X primer mix 

(2 µM each primer), 2.5 µl Q solution and 5 µl DNA lysate made up to a final volume of 25 µl with 

sterile-filtered water. Amplification conditions were as recommended with an initial hold at 95°C for 

15 minutes; followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 63°C for 90 

seconds and extension at 72°C for 90 seconds; with a final hold at 72°C for 10 minutes. PCR products 

were resolved by gel electrophoresis (section 3.5) for 120 minutes and product size used to identify 

the PMQR determinant (Figure 16). In order to determine the optimal annealing temperature a 

gradient PCR was performed, with a range of annealing temperatures from 56-64°C. Pooled (positive 

control) DNA was amplified at each annealing temperature and products resolved by gel 

electrophoresis. The temperature at which optimal resolution of all eight targets was achieved was 

selected as the chosen annealing temperature for the PMQR PCR.
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Figure 16 Gel electrophoresis of PMQR control strains and pooled control DNA: Lane 1) 100bp 

ladder; 2) qnrA; 3) qnrD; 4) qnrB and aac(6’)-lb-cr; 5) qnrS; 6) oqxA; 7) aac(6’)-lb-cr; 8) qepA; 9) qnrC; 

10) pooled control DNA

5.2.8 PCR product cloning

5.2.8.1 CMY gene cloning

All purified CMY gene PCR amplicons were cloned using the TOPO TA cloning kit (Invitrogen). M13 

PCR was performed to confirm presence of the CMY gene in the vector, before plasmid extraction 

using the QIAprep Spin miniprep kit (Qiagen). Plasmids were sent away for DNA sequencing (section 

3.7). 

The cloning reaction was prepared by combining 3 µl CMY PCR products with 1 µl each of salt 

solution, water and TOPO vector, before leaving the reaction on ice. A small aliquot of the cloning 

reaction (2 µl) was added to a vial of One Shot chemically competent DH5α E. coli cells and 

incubated on ice for a further 5 minutes. Cells were heat-shocked at 42°C for 30 seconds and 

immediately transferred back onto ice, before suspension in 250 µl S.O.C. medium, then incubation 

at 37°C for 1 hour on an Innova 4000 (New Brunswick Scientific, Stevenage, UK) at 220 rpm. Two 

volumes (10 µl and 100 µl) of transformed cells were spread on LB agar (Sigma) containing 50 µg/ml 

ampicillin (Sigma) and incubated overnight at 37°C. Colonies were analysed for transformed cells as 

described below.

1       2     3      4     5      6      7     8      9    10
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5.2.8.2 M13 PCR

The M13 primers bind either side of the pCR4-TOPO vector insertion site. Therefore, positive PCR 

amplification products should contain the inserted CMY gene. 

DNA lysates (section 3.3) were prepared from the transformed cells. PCR reactions are as described 

in section 3.4, but made up to a final volume of 25 µl with sterile-distilled water. Primers are listed in 

appendix C. Amplification was as follows: initial hold at 94°C for 4 minutes; 35 cycles of denaturation 

at 94°C for 30 seconds, annealing at 50°C for 30 seconds and extension at 72°C for 90 seconds. PCR 

products were separated by gel electrophoresis (section 3.5) to identify the transformed isolates 

carrying the CMY gene.

5.2.9 Statistics

Associations between patient variables and antibiotic resistance were calculated using the chi2 test, 

in Stata, version 12 (StataCorp LP). A P-value of ≤0.05 was considered significant, unless stated 

otherwise.
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5.3 Results

Minimum Inhibitory Concentrations 

Non-susceptibility (intermediate or resistant isolates) results for 22 antibiotics, as determined by 

agar dilution MICs, are displayed in figure 17, for all study isolates.

Figure 17 Percentage non-susceptibility to 22 antibiotics, as determined by MICs, for all ExPEC 

isolates Proportions are displayed for the local urinary isolates (n=508), local bloodstream isolates 

(n=48) and the BSAC bloodstream isolates (n=521). 

Overall, the resistance rates in the local isolates were comparable to the prevalence seen in the 

national BSAC collection. The proportion of resistance in the local bloodstream isolates appear 

disproportionately higher due to the small sample size (n=48). 

Excluding the local bacteraemia isolates, non-susceptibility among local urinary and BSAC 

bloodstream isolates to ampicillin and amoxicillin-clavulanate was 72% and 35%, respectively. 

Amoxicillin-clavulanate resistance was reduced even further in light of the amended EUCAST 

breakpoint for uncomplicated cystitis, as clavulanate was reported to accumulate in high 
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concentrations in the bladder (Alou et al. 2006). The breakpoint was increased to 32 mg/L, resulting 

in 0% of UC and ABU urinary isolates demonstrating amoxicillin-clavulanate resistance.

Cephalosporin resistance was higher in bloodstream isolates versus urinary isolates (10% vs. 1%,

P=0.01), as was resistance to cefoxitin (17% vs. 8%) and piperacillin-tazobactam (15% vs. 3%, 

P=0.01). Resistance to the carbapenems and tigecycline was negligible, with only one bloodstream 

isolate showing ertapenem resistance and two urinary isolates demonstrating reduced susceptibility 

to tigecycline. Ciprofloxacin resistance in BSAC isolates was double that of urinary isolates (21% vs. 

10% NS, P=0.05), while gentamicin resistance was less different (11% vs. 8%). Temocillin resistance 

appeared higher in BSAC isolates than urinary isolates, due to the difference in breakpoint between 

these two infection types (8 mg/L vs. 32 mg/L), but analysis of the MIC distributions reveals a similar 

trend for urinary and bloodstream isolates (Figure 18). Chloramphenicol (48% vs. 46%) and 

nitrofurantoin (both 1%) resistance was also not significantly different between the BSAC 

bacteraemia and urinary isolates. However, the urinary isolates demonstrated slightly higher 

resistance rates to trimethoprim (47% vs. 38%) and trimethoprim-sulfamethoxazole (44% vs. 36%).
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Figure 18 Temocillin MIC distributions for all urinary and bloodstream isolates. Dark blue bars 

represent bloodstream isolates (n=569) and light blue bars represents urinary isolates (n=508).

Comparison with the EUCAST wild type MICs (http://www.eucast.org/mic_distributions/ accessed 

13th September 2014) revealed similar trends in MIC distribution for all antibiotics, except ampicillin, 

amoxicillin-clavulanate and cefoxitin (Figures 19 and 21). For these three antibiotics there was a shift 

towards higher MICs compared to the EUCAST wild type. There was also a slight variation in 

cefotaxime MICs where the EUCAST wild-type had two MIC peaks at <=0.125mg/L and 1mg/L. This 

second peak is missing in the study isolates, with most isolates generating an MIC <=0.125mg/L and 

a small peak of (ESBL-expressing) isolates with an MIC >=128mg/L. Unfortunately there were no 

wild-type data for temocillin MICs, but the urinary isolates and BSAC isolates demonstrated a normal 

MIC distribution, with a peak at 8 mg/L (Figure 18). 

Disc diffusion versus MIC (urinary isolates)

The limited panel of antibiotics used to screen urinary isolates at the Royal London Hospital is 

designed to detect resistance against antibiotics recommended in the therapeutic guidelines, as well 

as ESBL production. MIC results suggested that antibiotic resistance, as determined by disc diffusion 

(DD), is greatly underestimated for amoxicillin, amoxicillin-clavulanate, chloramphenicol and 
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trimethoprim, while nitrofurantoin resistance is over-estimated (Figure 19). EUCAST data for E. coli

also revealed resistance rates in London to be higher than Europe for all antibiotics, except 

ciprofloxacin, gentamicin and nitrofurantoin, which were similar (Figure 19).

According to MICs, isolates causing all three types of UTI (ABU, UC and COMP) displayed similar 

trends in resistance (>20% non-susceptible to ampicillin, amoxicillin-clavulanate, minocycline, 

chloramphenicol, trimethoprim and trimethoprim-sulfamethoxazole), but resistance to individual 

antibiotics was higher in COMP infections (Figure 20). 

When comparing resistance rates between male and female patients, resistance was significantly 

higher in men for the cephalosporins, piperacillin-tazobactam, ciprofloxacin, tobramycin, gentamicin 

and temocillin. While in female patients resistance was higher against trimethoprim and 

trimethoprim-sulfamethoxazole, but not significantly so. 

Figure 19 Percentage non-susceptibility of local urinary isolates (n=508), according to disc diffusion 

and MIC, overlaid with the European E. coli non-susceptibility rates as reported by EUCAST. 

EUCAST data can be accessed here http://www.eucast.org/mic_distributions/).
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Figure 20 Percentage non-susceptibility according to the type of urinary tract infection: 

asymptomatic bacteruria (ABU, n=102), uncomplicated cystitis (UC, n=198), complicated 

cystitis/pyelonephritis (COMP, n=208).

MicroScan versus MIC

For the local bloodstream isolates, susceptibility results as determined by MicroScan and MIC were 

relatively comparable (within 1-5% of each other), with the exception of ampicillin, ampicillin-

sulbactam, cefoxitin, minocycline and chloramphenicol (Figure 21). As with the urinary isolates, MICs 

for the local bloodstream isolates demonstrated higher resistance rates to ampicillin, ampicillin-

sulbactam (compared to amoxicillin-clavulanate), cefoxitin, minocycline and chloramphenicol, with 

overall resistance higher than the rest of Europe (EUCAST data, figure 21). Resistance rates were also 

higher in isolates collected from male patients, compared to female patients: amoxicillin-clavulanate 

74% vs. 60%, cefotaxime 35% vs. 4%, ciprofloxacin 48% vs. 8%, gentamicin 35% vs. 12%; except for 

trimethoprim resistance which was slightly higher in female patients (48% vs. 43%). 
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Figure 21 Percentage non-susceptibility of local bloodstream isolates (n=48), according to 

MicroScan and MIC, overlaid with the European E. coli non-susceptibility rates as reported by 

EUCAST. Additional antibiotics tested by MicroScan included ampicillin-sulbactam (AMS) and 

cefepime (4GC, compared to cefpirome MIC). EUCAST data can be accessed here 

http://www.eucast.org/mic_distributions/).

Within the BSAC collection, breakdown of the MICs by bacteraemia source revealed the CSF-source 

isolate to be relatively susceptible; resistant only to ampicillin, minocycline, trimethoprim and 

trimethoprim-sulfamethoxazole. Among the remaining sources of bacteraemia, resistance to 

individual antibiotics varied (Figure 22). For example, trimethoprim-sulfamethoxazole resistance was 

highest in GU isolates (42% vs. 25-41%).
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Figure 22 Percentage non-susceptibility according to source of bacteraemia: 

antibiotics used in the MIC testing, representing al

display resistance rates according to each source of bacteraemia: skin and soft tissue infection (SSTI), 

intravenous lines (Line), genitourinary infection (GU), gastrointestinal infection (GIT), respiratory 

tract infection (Chest) and cerebral spinal fluid (CSF).

Healthcare Setting

Comparison of MICs between isolates causing community

associated infections (HAI) revealed higher rates of resistance for HAI isolates, for 

antibiotics (Table 14). In particular, resistance to the cephalosporins, the aminoglycosides and 

ciprofloxacin was ≥5% higher in HAI isolates than CAI isolates, with temocillin resistance almost 

double that of the CAI isolates (P<0.01).
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Comparison of MICs between isolates causing community-associated infections (CAI) and hospital

associated infections (HAI) revealed higher rates of resistance for HAI isolates, for nearly all 

antibiotics (Table 14). In particular, resistance to the cephalosporins, the aminoglycosides and 

≥5% higher in HAI isolates than CAI isolates, with temocillin resistance almost 
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Table 14 Percentage non-susceptibility in ExPEC isolates from community-associated infections 

and hospital-associated infections

Antibiotic Community
(n=836, %)

Hospital
(n=241, %)

Ampicillin 70 80
Amoxicillin-clavulanate 34 44
Cefotaxime 5 10
Ciprofloxacin 15 20
Gentamicin 9 15
Temocillin* 25 47
Chloramphenicol 46 49
Trimethoprim 40 41
Nitrofurantoin 1 2
Non-susceptibility, as defined by the breakpoint, for each antibiotic is as follows: ampicillin, 

amoxicillin-clavulanate, temocillin (bloodstream isolates) and chloramphenicol >8 mg/L; cefotaxime 

>2 mg/L; ciprofloxacin >1 mg/L; gentamicin and trimethoprim ≥4 mg/L; temocillin (urinary isolates) 

>32 mg/L; nitrofurantoin >64 mg/L. Significant differences in resistance rates are indicated with an 

asterisk.

Regional Setting

MICs of the BSAC isolates were analysed according to country and, for England, regions.

Overall resistance rates were similar for all four countries (Figure 23), but Welsh isolates 

demonstrated higher rates of resistance to amoxicillin-clavulanate, aztreonam, cephalosporins and 

aminoglycosides. Scottish isolates had the highest rates of chloramphenicol resistance and Irish 

isolates had the highest percentage cefoxitin resistance.

Major variation in regional resistance rates was observed for specific antibiotics (Figure 24). Of note, 

amoxicillin-clavulanate, trimethoprim and trimethoprim-sulfamethoxazole resistance was highest in 

York and Humber isolates; resistance to cephalosporins and ciprofloxacin was highest in London and 

the South-West; and amikacin and chloramphenicol resistance was highest in the East Midlands, 

with amikacin resistance two to four times higher than any other region.



Figure 23 Percentage non-susceptibility according to country of origin:

used in the MIC testing, representing all included antibiotic classes, were chosen to display 

resistance rates for BSAC isolates collected from England, the Republic of Ireland, Scotland and 

Wales.
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Figure 24 Percentage non-susceptibility according to region of England. Regions include the South-

East (SE), South-West (SW), London, East of England (East), East Midlands (E Mid), West Midlands (W 

Mid), Yorkshire and Humber (York & H), the North-East (NE) and North-West (NW). Imipenem and 

meropenem are excluded as all isolates were 100% susceptible. Cumulative % resistance for all 

regions is plotted against the y-axis.

Strain characteristics

Phylogroup A and B1 isolates demonstrated the highest rates of resistance of all four phylogroups 

(Table 15). Comparison of the two principal virulent ExPEC phylogroups (B2 and D) revealed higher 

rates of resistance to the cephalosporins, ciprofloxacin and the aminoglycosides in B2 strains, while 

phylogroup D strains were more resistant to temocillin, chloramphenicol, trimethoprim and 

trimethoprim-sulfamethoxazole.
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Table 15 Percentage non-susceptibility according to phylogenetic group

Antibiotic A 
(n=109, %)

B1 
(n=43, %)

B2 
(n=690, %)

D 
(n=234, %)

Ampicillin 66 82 75 81
Amoxicillin-clavulanate 32 54 35 42
Cefotaxime 8 0 2 1
Ciprofloxacin 19 21 11 7
Gentamicin 14 4 11 6
Temocillin 41 7 24 36
Chloramphenicol 54 57 39 51
Trimethoprim 46 64 33 57
Nitrofurantoin 5 0 1 1
Breakpoints defining non-susceptibility are as per table 14.

Of the five major ExPEC lineages it was evident that ST131 strains demonstrated the highest rates of 

resistance to several antibiotics, including amoxicillin-clavulanate, cefotaxime, cefoxitin, piperacillin-

tazobactam, ciprofloxacin and gentamicin (Figure 25).

Trimethoprim resistance was similar in ST131 (62%) and ST69 (58%) isolates, while temocillin 

resistance was almost equal in ST131 and ST73 isolates (52% and 53%, respectively). Overall, all non-

ST131 lineages (included in the study) demonstrated a similar antibiotic resistance profile of 74% 

ampicillin, 30% amoxicillin-clavulanate, 8% cefoxitin, 6% piperacillin-tazobactam, 4% ciprofloxacin, 

6% gentamicin, 95% minocycline, 40% chloramphenicol and 27% trimethoprim resistance.



Figure 25 Percentage non-susceptibility for the five major ExPEC lineages
displayed for minocycline (MIN), ampicillin (AMP), amoxicillin
cefoxitin (FOX), piperacillin-tazobactam (PTZ), ertapenem (
gentamicin (GEN), chloramphenicol (CHL), trimethoprim (TRIM), trimethoprim
(SXT) and nitrofurantoin (NIT).
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of CTX-M type enzymes for bloodstream isolates (11% vs. 7%) and for urinary isolates (3% vs. 1%, 

P<0.05).

These ESBLs were detected in 11, 2, 45 and 8 phylogroup A, B1, B2 and D isolates, respectively. 

Forty-one of the 53 ESBL isolates belonged to a major ExPEC lineage: ST131 (n=40) and ST69 (TEM-1 

only). All but one (OXA-1 only) of the ST131 isolates expressed CTX-M-15, CTX-M-14 or CTX-M-27. 

The ST131 isolates are discussed in more detail in chapter 6.

Table 16 Beta-lactamases detected in cephalosporin-resistant isolates according to specimen type

Β-lactamase Urinary isolates
(n=4) 

Bloodstream isolates
(n=55) 

Total
(n=59)

CTX-M:
CTX-M-1 0 2 2

CTX-M-14 0 5 5
CTX-M-15 3 41 44
CTX-M-27 0 4 4

OXA:
OXA-1 3 37 40

TEM:
TEM-1 3 26 29

SHV:
SHV-12 0 2 2

CMY:
CMY-42 0 2 2

All ciprofloxacin-resistant isolates (n=170) were screened for PMQR determinants, but only qnrS, 

qepA, oqxAB and aac(6’)-Ib-cr were detected, as detailed in table 17. The gene for aac(6’)-Ib-cr was 

the most frequently detected PMQR determinant. In 38/59 aac(6’)-Ib-cr positive isolates a β-

lactamase was also detected. The remaining PMQR-positive isolates (n=26, 41%) were β-lactamase 

negative. According to phylogroup/lineage combinations, the PMQR determinants were identified 

within the following: aac(6’)-Ib-cr (10 A/-; 1 B2/-; 1 B2/ST73; 1 B2/ST127; 45 B2/ST131; 3 D/-), qnrS

(1 B1/-, 1 B2/-), qepA (1 B1/-, 1 D/-) and oqxAB (1 B2/ST95).
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Table 17 Plasmid-mediated quinolone resistance determinants detected in ciprofloxacin-resistant 

isolates according to specimen type Ciprofloxacin resistance was determined according to the 

EUCAST breakpoint (>1 mg/L). Forty-seven urinary isolates and 123 bloodstream isolates were 

resistant and analysed for PMQR genes.

PMQR Urinary isolates Bloodstream isolates 

aac(6’)-Ib-cr (n=59) 10 49

qnrS (n=2) 2 0

qepA (n=2) 1 1

oqxAB (n=1) 1 0

Seventy-seven of 556 (14%) local isolates demonstrated non-susceptibility to ≥1 aminoglycoside and 

at least one aminoglycoside-modifying enzyme (AME) was detected by PCR in 43/77 (56%) of these 

isolates. These isolates encompassed 32 (6%) urinary and 11 (23%) bloodstream strains. According to 

phylogroup, the majority of AME-positive isolates belonged to phylogroup B2 (n=25), followed by 

group A (n=10) and D (n=7), with just one phylogroup B1 isolate. Only two AMEs were detected in 

these resistant isolates: aac(3’)-IIa (n=36) and aac(6’)-Ib (n=21). All of the isolates, except one, 

encoding the acetyltransferase aac(6’)-Ib encoded its fluoroquinolone-resistant conferring allele 

aac(6’)-Ib-cr. Fourteen isolates encoded both aac(3’)-IIa and aac(6’)-Ib-cr, of which 11/14 also 

encoded CTX-M-15.

Within the BSAC collection a slightly higher proportion of isolates (n=92/521, 18%) demonstrated 

reduced susceptibility to ≥1 aminoglycoside and 62/92 (67%) encoded at least one AME. Thirty-eight 

BSAC isolates encoded aac(3’)-IIa, 43 encoded aac(6’)-Ib and 19 encoded both. All but two isolates 

encoding aac(6’)-Ib  possessed the fluoroquinolone-resistance conferring allele aac(6’)-Ib-cr. As with 

the local isolates, the majority of AME genes were detected in phylogroup B2 (n=50) isolates, 
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followed by groups D (n=8) and A (n=4). Interestingly, aac(6’)-Ib and its allele were not detected in 

phylogroup D isolates.

Comparison of phenotypic resistance with AME production revealed the majority (n=63/74) of 

aac(3’)-IIa isolates and (n=25/61) aac(6’)-Ib-cr isolates to have the phenotype RSR (TOB/AMK/GEN). 

All three aminoglycoside pan-resistant (RRR) isolates, with MICs of >32, 16 and >32 mg/L, expressed 

both enzymes and were negative for any of the 16S methyltransferases. Analysis of MICs in 

conjunction with AME genes revealed an MIC of ≥16 for gentamicin and tobramycin to be linked to 

possession of aac(3’)-IIa and aac(6’)-Ib, respectively.
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5.4 Discussion points

Within ExPEC strains antibiotic resistance is high (>20%) for many of the antibiotics used to treat 

UTIs and bacteraemia empirically. In particular, antibiotic resistance appears greater in bloodstream 

isolates, HAI isolates and those collected from male patients. Comparison of the three different AST 

methods revealed inconsistencies, especially when comparing disc diffusion to agar dilution.

Within the BSAC bacteraemia collection, isolates from Wales had the highest rates of resistance to 

the cephalosporins and aminoglycosides, Irish isolates had the highest rates of cefoxitin resistance 

and Scottish isolates had the highest rates of chloramphenicol resistance. Within England, resistance 

to trimethoprim +/- sulfamethoxazole was highest in strains from York and Humber; cephalosporin 

and fluoroquinolone resistance was highest in strains from London and the South-West; with 

amikacin and chloramphenicol resistance highest in strains from the East Midlands.

Despite the prevalence of phylogroup B2 and D isolates, strains belonging to phylogroups A and B1 

demonstrated the highest rates of resistance to individual antibiotics. Within the five major ExPEC 

lineages, ST131 isolates were significantly more resistant than isolates belonging to the other four 

sequence types. However, trimethoprim +/- sulfamethoxazole resistance was similar in ST131 and 

ST69 isolates.

ESBL genes accounted for 0.6% of urinary and 8.8% of bloodstream isolates, with CTX-M-15 the most 

frequently detected ESBL and OXA-1 the most common β-lactamase in cephalosporin-resistant 

isolates.

PMQR genes were rarely detected within these ExPEC isolates, with the exception of aac(6’)-Ib-cr, 

which was often detected alongside the aminoglycoside-modifying enzyme aac(3’)-IIa.

Overall, MIC data and resistance genes detected in this study suggest that nitrofurantoin would be a 

more appropriate first-line antibiotic for uncomplicated cystitis, even in the presence of ESBLs, with 

trimethoprim-sulfamethoxazole no longer prescribed empirically, due to the high resistance rates. 
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Ideally patients with pyelonephritis and/or complicated UTIs should have urine culture and antibiotic 

sensitivities reviewed prior to commencing treatment, to prevent unnecessary use of ciprofloxacin 

and increasing resistance to this antibiotic. However, this delay in treatment would prolong 

symptoms and increase the risk of bacteraemia developing. 

For E. coli causing bacteraemia use of cephalosporins as first-line therapy would be more effective 

than amoxicillin-clavulanate, due to the lower rates of resistance against this class of antibiotics. 

However, national data reveals reductions in cephalosporin prescriptions, to avoid selection of ESBL-

positive isolates and reduce the risk of Clostridium difficile-associated diarrhoea. Therefore, 

alternative treatments such as piperacillin-tazobactam, tigecycline or a carbapenem may be more 

appropriate.
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6. The UK ST131-O25b Clone 

6.1 Introduction

ST131-O25b strains have dominated extra-intestinal infections since the early 2000s (Nicolas-

Chanoine et al. 2008). Often cited as the most common sequence type causing multi-drug resistant 

UTIs and bacteraemia since 2000, this clone is associated with fluoroquinolone resistance and CTX-

M-15 ESBL expression (Blanco et al. 2011; Johnson et al. 2010; Peirano and Pitout, 2010; Smet et al. 

2010). 

Additional resistances reported in this clone include non-susceptibility to chloramphenicol, 

tetracyclines, macrolides, sulphonamides and aminoglycosides, which adds to the cumulative 

resistance burden posed by this particular ExPEC clone. Genes conferring these resistances are 

usually located on IncF or IncI1 plasmids, alongside the genes for CTX-M, SHV, TEM, OXA and aac(6’)-

Ib-cr, although IncK/B and IncN plasmids have also been reported in this clone (Carattoli et al. 2005;

Ho et al. 2013; Huang et al. 2012; Matsumura et al. 2012; Matsumura et al. 2013; Wang et al. 2013;

Woodford et al. 2009). More recently, AmpC beta-lactamase and carbapenemase genes have been 

identified in this clone, including CMY-2, KPC and NDM-1 (Bonnin et al. 2012; O'Hara et al. 2014;

Peirano and Pitout, 2014).

In the UK, epidemic CTX-M-15-producing ExPEC strains, collected between 2004 and 2005, were 

identified as belonging to the ST131-O25b clone and this clone was the most frequently detected 

lineage in urinary and bloodstream isolates (Lau et al. 2008a; Lau et al. 2008b). However, more 

recent studies conducted in the North of England, which included all ExPEC regardless of antibiotic 

resistance, revealed ST131 was second to ST73 in frequency among ExPEC isolates (Gibreel et al.

2012; Horner et al. 2014). In addition, these later studies revealed <70% DNA relatedness among 

clonal isolates by pulsed-field gel electrophoresis, compared with earlier studies reporting >70% 

DNA relatedness (Gibreel et al. 2012b; Lau et al. 2008a). Another interesting observation was the 

identification of CTX-M-3 enzymes in ST131 isolates collected from Northern Ireland, which conflicts 
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with all other studies reporting CTX-M-15 as the most frequently identified CTX-M enzyme;

highlighting the ability of this clone to acquire locally circulating genes and plasmids quite readily 

(Dhanji et al. 2011). Despite all these differences, each UK study has confirmed that the ST131 clone 

is multi-drug resistant, regardless of ESBL expression.

Many molecular methods have been developed to facilitate identification of ST131 strains which 

often divide this clone into various sub-clades, including repetitive element (rep) PCR, pabB allele 

PCR, mdh and gyrB single nucleotide polymorphism (SNP) PCR and a triplex PCR that targets the afa

operon and CTX-M-15 gene (Peirano and Pitout, 2010). These methods are often employed 

alongside identification of the O25b serogroup, which was reported to be unique to this clone 

(Clermont et al. 2007). However, another O-antigen has recently been identified in ESBL-positive 

ST131 strains, O16 (Dahbi et al. 2013; Matsumura et al. 2012).

Virulence factors are also relatively conserved among ciprofloxacin-resistant ST131 strains, with 

>75% reported to possess fimH, fyuA, usp, ompT, iutA, sat, pap, iha, traT and the virulence marker, 

malX (Platell et al. 2011). Of importance is fimH, the type I fimbrial adhesin, which comprises a 

multitude of alleles (Weissman et al. 2012). Sequencing of the fimH gene has identified specific 

alleles associated with ST131-O25b strains, including H30, H22 and H35 (Johnson et al. 2013), with 

particular focus on the H30-Rx sub-clone, which has been linked with fluoroquinolone resistant, 

ESBL-positive isolates only (Price et al. 2013). Taken together these data suggest that the ST131 

clone is relatively homogeneous, with the occasional new addition, such as O16.

ST131 was identified in 7% of urinary and 19% of bloodstream isolates collected as part of this study. 

As such a prolific clone in the UK and worldwide, it was important to determine whether these UK 

isolates reflect the results of previous studies. Therefore, all ST131 isolates from this study were fully 

characterised using established methods to define the ST131 clone within the UK.



6.2 Methods

The ST131 clone can be sub-divided according to the laboratory tests performed, as described in the 

relevant sections below. Figure 26 details the sub

performed.

Figure 26 Sub-division of ST131 according to laboratory tests
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divided according to the laboratory tests performed, as described in the 

division of ST131, in conjunction with the tests 
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including paired ST131 strains (n=4) and isolates with novel serogroups (n=3), underwent MLST 

(section 4.2.4) to confirm their sequence type. These 144 ST131 strains were analysed, using the 

O25b clone or as non-
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6.2.2 ST131-O25b (pabB) real-time PCR

All 144 ST131 isolates were analysed for two ST131-O25b specific (‘clonal’) SNPs using the real-time 

assay described by Dhanji et al (2010).

Each PCR reaction contained 10 µl SensiFASTTM SYBR No-ROX buffer (Bioline), 0.4 µM each primer 

(appendix C) and 3 µl DNA lysate made up to a final volume of 20 µl with sterile-filtered water. The 

thymine-144 and adenine-450 SNP reactions were run separately on a Lightcycler® 2.0 (Roche, 

Burgess Hill, UK) according to the following cycling conditions: polymerase activation step at 95°C for 

3 minutes; followed by 40 cycles of denaturation at 95°C for 5 seconds and annealing/extension for 

10 seconds at 58°C, with a single fluorescence acquisition step after each cycle. After amplification 

the PCR reaction underwent high resolution melt, heating the PCR product to 95°C with a ramp rate 

of 0.05°C per second. E. coli ST131 epidemic strain A was used as a positive control and E. coli ATCC 

25922 as a negative control to determine the positive and negative values for each of the SNPs. 

Isolates positive for the adenine and thymine ST131-O25b pabB-specific SNPs had a Tm value of 

79.79 ± 0.29°C and 81.28 ± 0.17°C, respectively. 

6.2.3 Serogroup O25b PCR

All 144 ST131 isolates underwent conventional serogrouping (section 4.2.5) and those that were 

identified as O25 were analysed using the O25b antigen-specific PCR described by Clermont et al

(2008) (Clermont et al. 2008). Each reaction was prepared and amplified as described in section 3.4, 

using the primers listed in appendix C, with an annealing temperature of 60°C. The 300 bp product 

was resolved by gel electrophoresis (section 3.5).

6.2.4 FimH PCR

Isolates that possessed the clonal-specific SNPs (section 6.2.2) were analysed by PCR for the fimH

gene, which was purified (section 3.6) and sequenced (section 3.7) if identified. 

Each PCR reaction was prepared according to section 3.4, with 0.2 µM of each primer (appendix C) 

and an annealing step of 57°C lasting 15 seconds.
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After DNA sequencing of the fimH amplicon, sequences were aligned using BioNumerics version 6.1 

(Applied Maths NV). Aligned sequences were compared with the consensus (wild type) ECOR28 fimH

sequence (GenBank ID: FJ865637) and the target region analysed for allele-specific SNPs (Weissman 

et al. 2012). The fimH target region and H30 allele-specific SNP are displayed in figure 27.

Statistical analysis of the relationship between fimH allele and ciprofloxacin resistance was 

performed using the chi2 test, using Stata, version 12 (StataCorp LP). A P-value of ≤0.05 was 

considered significant, unless stated otherwise.

CCACTCAGGGAACCATTCAGGCAGTGATTANCATCACCTATACCTACAGCTGANCCCGAAGAGATAATTGTAA
TGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTGTAAA
ACCGCCAATGGTACCGCTATCCCTATTGGCGGTGGCAGCGCTAATGTTTATGTAAACCTTGCGCCTGCCGTGA
ATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCCGGAAACCATTACA
GACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCCGGGACCGTAAAATATA
GTGGCAGTAGCTATCCATTTCCGACCACCAGCGAAACGCCGCGGGTTGTTTATAATTCGAGAACGGATAAGCC
GTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGCGATTAAAGCTGGCTCATTAAT
TGCCGTGCTTATTTTGCGACAGACCAAAAACTATAACAGCGATGATTTCCAGTTTGTGTGGAATATTTACGCCA
ATAATGATGTGGTAGTGCCTACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCACCGTTACTCTGCCGGACTA
CCCTGGTTCAGTGCCAATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAACCTGGGGTATTACCTCTCCGGCA
CAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTCACCAGCGCAGGGCGTCGGCGTACA
GTTGACGCGCAACGGTACGATTATTCCAGCGAATAACACGGTATCGTTAGGAGCAGTAGGAACTTCGGCGGT
AAGTCTGGGATTAACGGCAAATTACGCACGTACCGGCGGGCAGGTGACTGCAGGGAATGTGCAATCGATTAT
TGGCGTGACTTTTGTTTATCAATAA

Figure 27 E. coli fimH target region for allele-specific polymorphisms. Underlined sequences 

indicate the forward, middle and reverse primer-binding sites. The fimH start codon is indicated in 

bold text, while the codon underlined with an arrow represents (target) codon number 1, with the 

subsequent codons numbered sequentially. The stop codon is also highlighted in bold and comprises 

the last three bases of the reverse primer. Codon 166 (boxed) encodes the amino acid arginine (R). 

The H30 allele, associated with the ST131 clone, has a nonsynonymous substitution (R166H) 

(Weissman et al. 2012). This figure was adapted from the ECOR28 sequence in Genbank, accession 

number FJ865637.
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6.2.5 Pulsed-field Gel Electrophoresis (PFGE)

All ST131 isolates were analysed by PFGE, as described in section 4.2.7, to determine the relatedness 

of the isolates and identify any specific clusters within the clone. 

6.2.6 Plasmid extraction

6.2.6.1 Crude extraction

This method was performed on all 39 CTX-M-positive clinical isolates prior to transformation (section 

6.2.6.3) and has been published elsewhere (Barton et al. 1995; Guerra et al. 2004).

Isolates were sub-cultured in 3 ml LB broth and incubated overnight at 37°C. Cultures were 

centrifuged for 5 minutes at 13,000 rpm and 4°C in an Eppendorf 5415 R bench top centrifuge 

(Eppendorf, Stevenage, UK). Broth was aspirated and the pellet was emulsified in 200 µl solution A 

(20mM EDTA and 400mM Tris, pH 8). Equal volumes of solutions B (0.4M sodium hydroxide) and C 

(400mM Tris and 4% sodium dodecyl sulphate, SDS) were mixed together and 400 µl aliquots were 

added to the emulsified pellet. The tube was then inverted 5-10 times and incubated at room 

temperature for 5 minutes. After cell lysis proteins were precipitated by adding 240 µl 5M sodium 

chloride. Tubes were inverted 5-10 times and incubated on ice for 5 minutes. After incubation, tubes 

were centrifuged for 20 minutes at 13,000 rpm and 4°C in the 5415 R centrifuge (Eppendorf). 

Protein-free supernatant was transferred to a new tube and DNA purified by adding 800 µl ice cold 

(stored at -20°C) absolute ethanol (VWR). Tubes were inverted 5-10 times and incubated at -20°C for 

one hour. Tubes were then centrifuged again for 20 minutes, as described previously. The 

supernatant was discarded, 1 ml 70% ethanol added to wash the DNA pellet and tubes centrifuged 

as described previously. After discarding the supernatant the DNA pellet was air dried for 10-15 

minutes then re-suspended in 30 µl sterile-filtered water. Plasmid extracts were stored at -20°C until 

use (within one month).
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6.2.6.2 Clean extraction

For a purer plasmid extract, an additional phenol-chloroform step was added. This method was 

performed on plasmid transformants, prior to S1 nuclease digestion (section 6.2.7).

Cells were lysed, as described above, using solutions A, B and C. In place of sodium chloride, 300 µl 

3M sodium acetate (pH 5.5) was added to the cell lysis suspension. Tubes were inverted 5-10 times 

and incubated on ice for 5 minutes. Tubes were centrifuged for 20 minutes, as described previously 

(section 6.2.6.1), and the supernatant transferred to a new tube. Protein was precipitated by adding 

500 µl phenol-chloroform and inverting the tubes 5-10 times, before centrifuging again for 5 

minutes at 5,000 rpm and 4°C. The upper aqueous phase was transferred to a new tube and 500 µl 

chloroform was added, before repeating the 5 minute centrifugation step. The upper aqueous phase 

was transferred to a new tube and DNA purified using the two ethanol steps described previously 

(section 6.2.6.1). The pellet was re-suspended in 30 µl sterile-filtered water and stored at -20°C until 

use.

6.2.6.3 Plasmid Transformation

Seven isolates encoding the three CTX-M genes represented in this study (3 CTX-M-27, 2 CTX-M-14 

and 2 CTX-M-15) underwent plasmid extraction and transformation into E. coli alpha cells (Bioline, 

London, UK) by electroporation. Results from these seven isolates were used to infer plasmid 

abundance in the remaining 32 CTX-M-15 isolates. Two microlitres of plasmid extract was mixed 

with 20 µl electrocompetent cells (defrosted on ice) and transferred to a pre-chilled GenePulser 0.1 

cm cuvette (Bio-rad, Hemel Hempstead, UK). Cells were electroporated in a GenePulser Xcell (Bio-

rad) set at 1.8 kV, 25 µF and 200 Ω. Cells were immediately recovered with 1 ml S.O.C. medium 

(Bioline) and transferred to a 15 ml polystyrene tube (Greiner Bio-one GmbH, Germany). 

Electroporated cells were incubated at 37°C, with rotation, for one hour. After incubation 100 µl 

cells were inoculated on to an LB agar plate containing 2 mg/L cefotaxime (Sigma), for selection. 

Plates were incubated overnight at 37°C. Cefotaxime-resistant colonies (transformed cells) were sub-

cultured onto non-selective media (ISO) and incubated as above. Cultures of the transformants were 
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stored at 4°C. DNA lysates (section 3.3) and plasmid extraction (section 6.2.6.2) was performed on 

the transformants, as required.

6.2.7 REP typing

It was expected that the majority of CTX-M enzymes would be encoded on IncF plasmids of FIA:FIB 

type (Huang et al. 2012; Johnson et al. 2012b; Matsumura et al. 2013; Wang et al. 2013). Therefore, 

all CTX-M-positive isolates and the seven plasmid transformants were screened for IncF FIA and FIB 

alleles, using the PCR plasmid replicon-typing method described by Carattoli et al (2005). The PCR 

reactions and amplification conditions were as described in section 3.4, with 0.2 µM of each primer 

(appendix C), an annealing temperature of 60°C and a denaturation step lasting one minute. 

Products were resolved by gel electrophoresis (section 3.5). All FIA and FIB alleles were cleaned up 

(section 3.6) and sequenced (section 3.7). The generated sequences were aligned using BioNumerics 

version 6.1 (Applied Maths NV) and compared with known alleles in the plasmid MLST website 

(http://pubmlst.org/ plasmid/) to identify the allele combinations (Jolley and Maiden, 2010).

Isolates that did not carry an IncF plasmid were screened for all other replicon types, as described 

above, in simplex PCRs using the primers listed in appendix C. If isolates could not be typed using this 

PCR scheme they were screened using the PBRT kit (Diatheva, Italy), which contains updated 

primers. Each PCR reaction contained 23.8 µl PCR mix, 0.2 µl DNA polymerase and 1 µl DNA lysate, 

as per the manufacturer’s instructions. There were eight PCR mixes together comprising primers for 

25 replicon types. PCR amplification and product resolution was as described above.

6.2.8 S1 nuclease pulsed-field gel electrophoresis

Plasmid analysis by S1 nuclease PFGE was performed to identify the number of plasmids carried by 

each of the CTX-M-positive ST131 isolates; to confirm that the transformed plasmid was the same 

size as in the clinical isolate; to determine if plasmids of the same IncF type were the same size; and 

to determine the size of the plasmids that encoded CTX-M enzymes. This was performed using a 

modified version of the method described by Barton et al (1995) (Guerra et al. 2004).
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Overnight cultures of all CTX-M-positive ST131 isolates and the seven transformants were used to 

prepare DNA blocks, as described in section 4.2.5. A 1-2 mm strip was cut from each block and 

incubated in 100 µl 1X S1 nuclease buffer (Promega), for 20 minutes at room temperature. The 

buffer was aspirated and replaced with 100 µl fresh buffer, plus 8 U S1 nuclease enzyme (Promega), 

for 45 minutes at 37°C. The enzyme reaction was stopped with 10 µl 0.5M EDTA (Sigma) and the 

enzyme-buffer reaction replaced with 100 µl 0.5X TBE (Invitrogen).

Each strip was loaded into an individual well of a 1.25% (approximately) agarose gel, as described in 

section 4.2.5. The gel was run for 17 hours, at 6 volts and at 12°C, with an initial switch of 1 second 

and a final switch of 25 seconds, using a CHEF-DR II chiller system (Bio-rad). After electrophoresis 

gels were stained with GelredTM (section 3.5) and analysed using BioNumerics, version 6.1 (Applied 

Maths NV), to identify the bands and size the plasmids. Each defined band was considered to be a 

linearised plasmid (Barton et al. 1995; Wang et al. 2013). Isolates that failed to produce a band after 

initial digestion were repeated twice more.
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6.3 Results

Clonal ST131 strains

All phylogroup B2, ST131 isolates (144/1077, 13%) were separated into two main clades, designated 

clonal and non-clonal, as determined by ST131-O25b specific SNPs detected by real-time PCR 

(section 6.2.2). The ‘clonal’ clade (pabB SNPs detected) was then further sub-divided according to 

CTX-M possession (Figure 28). 

Figure 28 Sub-clades of E. coli ST131 isolates as defined by clonal specific single nucleotide 

polymorphisms, serogroup, CTX-M expression and ciprofloxacin resistance All non-clonal isolates 

were CTX-M negative and ciprofloxacin-susceptible, whereas clonal isolates included both 

ciprofloxacin-susceptible and resistant isolates, plus CTX-M positive isolates, all of which were 

ciprofloxacin-resistant.

Patient demographics

Of the clonal isolates, 27% belonged to the local E. coli collection (n=32 urinary, n=3 bloodstream, 

total n=35, 6%), but the majority belonged to the BSAC collection (n=92, 18%). Patients with ST131 

isolates ranged from 8 to 96 years, with a modal age of 85 years and a mean of 43 years. The 

majority of clonal isolates (>70%) were isolated from patients aged >60 years, which corresponded 

with the high proportion of bloodstream isolates (75%, n=95) and the urinary tract (44%, n=42/95) 

as the most common source of these bloodstream isolates. Of the 32 urinary isolates, 19 (60%) were 

ST131

(n=144)

Clonal (n=127):
ST131-O25b, ST131-O19a,

ST131-O136, ST131-O153

CTX-M+ (n=39):
All ciprofloxacin resistant

CTX-M- (n=88):
59/88 ciprofloxacin 

resistant

Non-clonal (n=17): 
ST131-O16, ST131-O25a,

ST131-O-NT
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classified as COMP, 11 (34%) as UC and two (6%) as ABU. The majority of these clonal isolates were 

classified as CAIs (59%, n=75/127).

Serogroup

Within the clonal isolates, 124 (98%) were identified as serogroup O25 by conventional 

serogrouping, which were confirmed as O25b by PCR (section 6.2.3). The three other clonal isolates 

were identified as serogroup O19a, O136 and O153 and were negative by the O25b PCR. Further 

characterisation, including pabB SNP detection, fimH typing and antibiogram, classified these three 

strains as clonal.

Within the non-clonal strains (n=17), one was identified as O25 by conventional serogrouping, but 

was negative by O25b PCR, identifying the allele as O25a. Twelve isolates belonged to serogroup 

O16 and the remaining four were non-typeable, but all were negative by the O25b PCR and for one 

or both of the ST131-specific SNPs.

CTX-M Extended-spectrum β-lactamases

Only 39 clonal ST131 isolates (31%) encoded a CTX-M enzyme, all of which were serogroup O25b. 

The CTX-M enzymes detected were CTX-M-15 (n=34), CTX-M-27 (n=3) and CTX-M-14 (n=2). In 

addition, 30 (24%) also expressed OXA-1 and 16 (13%) expressed TEM-1 (13 expressed both). None 

of the CTX-M-positive isolates expressed an SHV enzyme. Replicon typing of the 39 CTX-M-encoding 

isolates and the seven transformants revealed all, except two, to possess IncF type plasmids. CTX-M-

15 enzymes were identified in isolates encoding FIA or FIA-FIB plasmid combinations, as displayed in 

figure 29. Both CTX-M-14 enzymes were encoded on approximately sized 100 Kb IncF A2:B- plasmids 

and the three CTX-M-27 enzymes were encoded on IncF A2:B20 plasmids of approximately 120-140 

Kb. The two non-IncF plasmids were identified as IncU and assumed to encode the CTX-M-15 

enzymes. 

Only 35 of 39 CTX-M-positive isolates produced a linear plasmid band after S1 nuclease digestion 

and PFGE, despite repeat digestion. Plasmids of equal size were identified within the seven 



transformants and their respective c

plasmid, probably encoding the CTX

1-2 plasmids. The four isolates that failed to generate a linear band on three separate occasion

included the two IncU strains, the only A6:B26 IncF strain and one A3:B1 IncF strain.

The remaining 88 clonal ST131 isolates were negative for CTX

except for one isolate which encoded OXA

enzymes.

Figure 29 IncF plasmids identified in ST131 strains expressing CTX

in size from 50Kb-165Kb. Alleles as defined by pubMLST database (

Ciprofloxacin resistance 

All 39 CTX-M-positive isolates were ciprofloxacin

59/88 (67%) CTX-M-negative isolates were also ciprofloxacin

providing an overall resistance of 77%. All non

A4:B1

A6:B-

A6:B26

transformants and their respective clinical isolates. The majority (n=25/35) possessed only an IncF 

plasmid, probably encoding the CTX-M enzyme, while the remaining (n=10) possessed an additional 

2 plasmids. The four isolates that failed to generate a linear band on three separate occasion

included the two IncU strains, the only A6:B26 IncF strain and one A3:B1 IncF strain.

The remaining 88 clonal ST131 isolates were negative for CTX-M, TEM, OXA and SHV enzymes, 

except for one isolate which encoded OXA-1. All non-clonal ST131 isolates were negative for these 

Figure 29 IncF plasmids identified in ST131 strains expressing CTX-M-15 enzymes. Plasmids ranged 

165Kb. Alleles as defined by pubMLST database (http://pubmlst.org/plasmid/

positive isolates were ciprofloxacin-resistant according to MICs (section 5.2.1.2) and

negative isolates were also ciprofloxacin-resistant, including the O136 isolate, 

providing an overall resistance of 77%. All non-clonal isolates were susceptible to ciprofloxacin.

A1:B-

A1:B20

A1:B26

A2:B-

A2:B20

A3:B1
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The aac(6’)-Ib-cr enzyme was detected in 30/39 CTX-M positive isolates and 9/88 CTX-M negative 

isolates. This enzyme was not detected in the non-clonal ST131 isolates.

Antibiogram 

As reported in chapter 5, antibiotic resistance in ST131 isolates was much higher than in the other 

lineages analysed in this study. Comparison of clonal versus non-clonal isolates and CTX-M positive 

versus CTX-M negative, revealed further differences within this clone (Table 18).

Table 18 Percentage non-susceptibility of non-clonal versus clonal ST131 isolates, including 

percentage resistance in CTX-M positive versus CTX-M negative strains. Breakpoints used to 

determine non-susceptibility were as follows: ≥1 (ciprofloxacin), ≥2 (cefotaxime), ≥4 mg/L 

(gentamicin, trimethoprim), >8 mg/L (ampicillin, chloramphenicol, temocillin for bloodstream 

isolates) and >32 mg/L (temocillin for urinary isolates). The two CTX-M-negative isolates that were 

cefotaxime resistant had MICs of 2 and 64, with the former encoding OXA-1, while the latter lacked 

genes for CTX-M groups, TEM, SHV and OXA enzymes, but may have lost porins and activated efflux 

pumps, conferring resistance (Perez-Moreno et al. 2004).

Antibiotic Non-clonal
(n=17)

Clonal
(n=127)

CTX-M positive
(n=39)

CTX-M negative
(n=88)

Ampicillin 88 87 100 82
Cefotaxime 0 32 100 2

Ciprofloxacin 0 77 100 67
Gentamicin 24 34 49 27
Temocillin 53 53 85 39

Chloramphenicol 59 49 49 49
Trimethoprim 59 62 82 53

Between the clonal and non-clonal isolates similar resistance rates was observed for ampicillin, 

temocillin and trimethoprim. However, resistance was higher in clonal isolates for cefotaxime, 

ciprofloxacin and gentamicin, but lower for chloramphenicol. The higher rates of resistance in the 

clonal isolates is likely attributable to the CTX-M positive isolates, which demonstrated much greater 

levels of reduced susceptibility against all antibiotics tested, except chloramphenicol.



Page | 131

Alleles of type 1 fimbriae (fimH)

Alongside the consensus (wild-type) fimH DNA sequence, three different fimH alleles were identified 

within this ST131 collection; H30, H27 and H22. The proportion of each allele according to 

ciprofloxacin susceptibility is displayed in figure 30.

Greater diversity was seen within the susceptible isolates, while the ciprofloxacin-resistant isolates 

mostly possessed the H30 allele (94%, P<0.01). Despite being identified in both ciprofloxacin-

resistant and -susceptible strains, the H22 allele was significantly associated with susceptible strains 

(P<0.001).

Figure 30 Alleles of the fimH target sequence according to ciprofloxacin susceptibility. Alleles 

detected included H30, H27, H22, wild type (WT) or isolates were negative for the fimH gene. 

PFGE

Analysis of XbaI-digested DNA from all ST131 isolates revealed the clonal and non-clonal strains to 

share ≤40% similarity, with small isolate clusters of highly related PFGE profiles (>70%). Within the 

clonal isolates there was no clustering of strains according to fimH allele, CTX-M enzyme, IncF 

plasmid, ciprofloxacin resistance or serogroup; with random dispersion of these characteristics 
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within the clone (Figure 31). In particular, the H27 allele and serogroups that were atypical of ST131-

O25b strains were all closely related (>70%) to ciprofloxacin-resistant ST131-O25b strains.

Figure 31 PFGE Dendrogram of XbaI-digested clonal ST131 strains. Isolate highlighted in red 

encoded the H27 fimH allele. Profiles highlighted in green identify the isolates of serogroups O19a, 

O136 and O153.

(Please turn the page for figure 31).
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6.4 Discussion points

Peirano et al (2010) described ST131 as a successful, fluoroquinolone-resistant clone, whose rapid 

spread was intensified by the acquisition of a CTX-M-15 encoding IncF plasmid and the possession of 

the virulence factors ompT, usp and malX.

Within the UK the ST131 clone predominantly caused bloodstream infections, with a smaller 

proportion of urinary tract infections.

Thirty-one percent (n=39/127) of clonal isolates exhibited the traditional characteristics of ST131-

O25b-CTX-M, but in-depth characterisation of ST131 isolates revealed new serogroups and plasmid 

replicon types associated with the UK clone.

Clonal ST131 strains were highly resistant, especially in conjunction with ESBL enzymes.

The ST131 clone within the UK appeared more diverse than strains analysed in other parts of the 

world.

Analysis of the virulence determinants expressed by these clonal isolates would reveal whether 

virulence of ST131 strains has changed and whether these factors can provide an alternative means 

to identify the clone.
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7. ExPEC virulence determinants

7.1 Introduction

E. coli strains express a variety of virulence factors (VF) for attachment to host cells (fimH, pap, hra, 

iha), to facilitate transmission by damaging host cells (sat, vat, cnf1), to acquire iron (hlyA, fyuA, 

iutA) and to evade the host immune response (K1, traT) (Bhargava et al. 2009; Johnson, 1991;

Johnson et al. 2005a; Waters and Crosa, 1991). In ExPEC, in particular, VF expression is reported to 

be highly varied.  

Johnson and Stell (2000) originally defined ExPEC by the possession of ≥2 of the following: pap, fimH, 

hlyA, fyuA, iutA, KpsII, traT and malX. Specific VFs have also been linked with particular infections: 

ibeA and sfa have been associated with neonatal meningitis; usp was identified as UTI-specific; pap

were discovered in E. coli causing pyelonephritis; plus iss and traT facilitate serum survival during 

bloodstream infections (Blum et al. 1991; Huang et al. 1995; Kurazono et al. 2000; Waters and Crosa,

1991).

Since then VFs have been used to characterise specific ExPEC clones and pathotypes, including 

ST131-O25b (fimH, fyuA, iutA, traT, malX), CgA (pap, iutA, traT, kpsII) and APEC (iutA, cvaC, iss, traT, 

iroN, hlyF, fimH, ompT) (Clark et al. 2012; Jeong et al. 2012; Johnson et al. 2012b; Manges et al.

2001; Platell et al. 2011). It has been reported that the expression of particular VFs (pap, hlyA, cnf1, 

iutA, traT and ibeA) is inversely related to antibiotic resistance (Cooke et al. 2010; Piatti et al. 2008). 

With the highly resistant ST131 clone and highly susceptible ST127 clone, it will be interesting to 

determine how relevant this observation is today.

Studies investigating the virulence of ExPEC have used multiple PCRs or traditional laboratory 

methods, such as latex agglutination and haemagglutination to identify few VFs (Blanco et al. 1997;

Moreno et al. 2005; Venier et al. 2007). These types of investigation were improved by the 

development of six multiplex PCR assays, to screen for a multitude of E. coli virulence factors 

(Johnson and Stell, 2000), which have been used regularly since first reported (Czaja et al. 2009;
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Karisik et al. 2008; Moreno et al. 2008; Pitout et al. 2005). However, multiplex PCRs are limited to 

approximately 4-8 targets per PCR. Microarrays provide an alternative to PCR, enabling simultaneous 

detection of hundreds of targets and can determine the expression level of specific targets. Many 

arrays have been developed for genus and species identification, typing data, antibiotic resistance 

and VFs (Hu et al. 2012; Platteel et al. 2011; Vanhomwegen et al. 2013). 

Alere Technologies GmbH (Jena, Germany) has produced multiple arrays, including those for 

genotyping of common pathogens, antibiotic resistance and species identification (http://alere-

technologies.com). For this project, an experimental E. coli combined genotyping array was 

evaluated alongside phenotypic (MIC determination, serogroup) and genotypic methods (multiplex 

PCR assays of Johnson and Stell (2000), as the ‘gold standard’. 
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7.2 Methods

7.2.1 E. coli Genotyping Combined Array 

The E. coli combined genotyping microarray (Alere Technologies GmbH, Jena, Germany) consisted of 

targets for 74 virulence determinants, 94 antibiotic resistance genes, 48 H-antigens and 23 O-

antigens. Details of the targets can be found on the company website (http://alere-

technologies.com) and appendix D. A schematic detailing the layout of the microarray and 

hybridisation process is detailed in figure 32.

Figure 32 Schematic of the microarray including hybridisation and labelling steps

A) Target-specific probes are immobilised on the array surface. B) Biotin-labelled ssDNA, which has 

been amplified using one target-specific antisense primer, binds the complementary probe. C) 

During hybridisation streptavidin binds to the biotin label and horseradish peroxidase (HRP) 

subsequently binds to streptavidin. The conjugation of streptavidin with HRP causes seramun green 

dye to precipitate, which is detected by the ArrayMate reader.

7.2.1.1 Genotyping DNA Extraction

DNA was extracted from overnight cultures using a modified version of the Animal Tissue – spin 

column protocol of the DNeasy® Blood and Tissue Kit (Qiagen). Bacterial colonies were resuspended 

A         B    C
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in 180 µl buffer ATL and 20 µl proteinase K then incubated at 56°C for 10 minutes in an Eppendorf 

thermomixer comfort (Eppendorf, Hamburg, Germany). Four microlitres of RNase A (Qiagen) at 100 

µg/ml was added to the suspension, vortexed briefly and incubated at room temperature for 2 

minutes. Suspensions were vortexed again, and 200 µl buffer AL and 200 µl 95% ethanol added 

before vortexing for 10-15 seconds. 

Suspensions were transferred to a spin column and processed according to the manufacturer’s 

instructions. Columns were centrifuged for 1 minute at 8000 rpm in an IEC® MicroMax centrifuge 

(Thermo Scientific). The column was transferred to a new tube, 500 µl AW1 buffer added and

centrifugation repeated as above. The column was transferred to a new tube, 500 µl AW2 buffer 

added and centrifuged for 3 minutes at 14000 rpm. The column was transferred to a new eppendorf 

tube, 200 µl AE buffer added and tubes incubated at room temperature for 1 minute. Tubes were 

centrifuged for 1 minute at 8000 rpm and eluted DNA stored at 4°C until required. Prior to analysis 

DNA was quantified using a ND-1000 NanoDrop (Thermo Scientific).

7.2.1.2 Genotyping PCR

Multiplex PCR was performed with primers and reagents provided by Alere Technologies (Germany), 

to label the DNA with a biotin marker for detection, according to the manufacturer’s instructions. 

Each reaction contained 3.9 µl B1 buffer, 0.1 µl B2 (polymerase enzyme), 1 µl primer mix, 4 µl sterile-

filtered water and 1 µg DNA. Alere Technologies recommended 0.5-2 µg, while Geue et al (2010), 

which have been referenced by several similar studies, recommended 1.0-1.5 µg (Monecke et al. 

2011; Schilling et al. 2012; Wu et al. 2013). Therefore, a compromise of 1 µg was selected. 

Amplification consisted of an initial denaturation at 96°C for 5 minutes, followed by 45 cycles of 

denaturation at 96°C for 60 seconds, annealing at 60°C for 20 seconds and elongation at 72°C for 40 

seconds, with a final 4°C hold. PCR products were stored at 4°C until required for hybridisation.
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7.2.1.3 Genotyping Hybridisation

All reagents were supplied by Alere Technologies (Germany). Prior to hybridisation DNA samples 

were prepared by suspending 10 µl PCR product in 90 µl C1 buffer. Horse radish peroxidase (HRP)-

streptavidin conjugate was also prepared by adding 1 µl C3 concentrated HRP to 99 µl C4 buffer, per 

sample.

The ArrayStripsTM, which were spotted with probes for each of the targets, were washed with 200 µl 

sterile distilled water, per well, for 5 minutes at 56°C with shaking at 550 rpm in an OLS200 shaking 

waterbath (Grant Instruments). As with all subsequent washes and incubations, the water was 

removed using a pastette, at the edge of the well, so as not to scratch the array surface. The initial 

wash step was repeated with 200 µl C1 buffer and incubated as above. C1 buffer was aspirated and 

100 µl DNA preparation was added to each well before re-incubation, as above, for 60 minutes. The 

wells were washed twice with 200 µl C2 buffer. C2 buffer was aspirated and 100 µl pre-prepared 

conjugate added to each well then incubated for 15 minutes at 30°C with shaking at 550 rpm. Wells 

were washed twice with 200 µl C5 buffer, before incubation with 100 µl D1 seramun green substrate 

at room temperature for 10 minutes. The substrate was aspirated before the target signals were 

read using an ArrayMateTM reader (Identibac, Alere Technologies GmbH, Cologne, Germany), using 

IconoClust software, version 3 (Alere Technologies, Germany).

7.2.1.4 Genotyping Analysis

The array signal value(s) was determined by subtracting the background signal from the target 

signal, using the manufacturer’s software. The manufacturer recommends that all signal values of 

≤0.1 should be considered negative (target absent), values of ≥0.3 should be considered positive 

(target present) and values between 0.1 – 0.3 as indeterminate. Array signals were considered 

positive if the signal value was above the cut-off level for both target spots. Four controls were 

included on the microarray: a biotin staining control and three E. coli controls; glutamate 

decarboxylase (gad), integration host factor subunit A (ihfA) and glyceraldehydes-3-phosphate 

(gapA). 
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Microarray results were compared with MICs (presence of certain antibiotic resistance genes should 

confer an MIC greater than the breakpoint), β-lactamase PCRs (specific β-lactamase gene should be 

detected by the microarray), PMQR determinant PCR (specific PMQR genes should be detected by 

the microarray) and serogrouping data. These tests were considered the gold standard for 

evaluating the microarray. As well as confirming and validating these results, the microarray would 

reveal the virulence factors encoded by these isolates.

Preliminary analysis resulted in the cut-off being revised. Several studies using this array, or 

alternative versions, used a positive cut-off of ≥0.4 (Charnock et al. 2014; Dierikx et al. 2012; Vogt et 

al. 2014; Wagner et al. 2014), but this did not improve the results here. While adjustment of the cut-

off (≥0.86) according to the ATCC 25922 control results (as a fully susceptible type strain antibiotic 

resistance determinants conferring resistance should not be hybridized), did not improve the 

accuracy or reliability of the array either.

7.2.2 E. coli isolates 

Ninety-five E. coli isolates (appendix E) and the ATCC 25922 control were analysed using the E. coli

combined genotyping microarray (Alere Technologies), according to the manufacturer’s instructions, 

as described above. Isolates encompassed a range of ages, sexes, infection types and sources of 

bacteraemia. The 34 paired isolates (section 3.2.1) were also included to determine whether they 

carried the same VFs and antibiotic resistance genes. 

For the virulence determinant PCRs 154 newly selected isolates (appendix E) were investigated, 

including 53 of the microarray isolates. These included 30 asymptomatic bacteruria (ABU) isolates, 

30 uncomplicated cystitis (UC) isolates, 30 complicated cystitis/pyelonephritis (COMP) isolates, 30 

bloodstream isolates and the 34 paired urosepsis isolates.

7.2.3 Virulence determinant PCRs

E. coli isolates were investigated for E. coli virulence factors (VF), using an updated version (personal 

correspondence from Prof. James Johnson, 2013) of Johnson and Stell’s PCR assays (Johnson and
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Stell, 2000). The results of these PCRs, in conjunction with antibiotic resistance data and 

serogrouping data, were compared with the microarray results.

PCR reactions were prepared using the Qiagen® Multiplex PCR kit (Qiagen). Each PCR reaction 

contained 10 µl master mix, 2.5 µl Q solution, primer mix, and 5 µl DNA lysate made up to a final 

volume of 25 µl with sterile-filtered water. Primers were separated into 6 primer mixes (appendix C) 

at a working concentration of 0.6 µM per primer. Amplification consisted of an initial hold at 95°C 

for 15 minutes; followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 68°C for 

30 seconds and extension at 72°C for 1 minute; with a final hold at 72°C for 5 minutes. Primer mix six 

was amplified with an annealing temperature of 58°C. Products were resolved by gel electrophoresis 

(section 3.5).

7.2.4 Cyclomodulin PCR

These 154 E. coli isolates were also analysed for cycle inhibiting factor (cif), cytotoxic necrotising 

factor – 1 (cnf1), cytolethal distending toxin (cdtB) and the colibactin-encoding pks island, which was 

detected by identification of two marker genes; clbA and clbQ. These cyclomodulins were detected 

using previously published PCRs (Dubois et al. 2010; Salvarani et al. 2011). PCR reactions and cycling 

conditions were as described in section 3.4, using two different annealing temperatures; 48°C (cnf1) 

and 55°C (all other targets) and the primers listed in appendix C. PCR products were resolved by gel 

electrophoresis (section 3.5).

7.2.5 Pathogenicity islands

In addition to VFs, the Galleria isolates were investigated for eight pathogenicity islands (PAI) that 

have been identified in ExPEC strains (Dobrindt et al. 2002; Sabate et al. 2006). Two multiplex PCR 

assays were used to screen for the PAIs. Multiplex 1 detected CFT073 II, 536 III and 536 IV, while 

multiplex 2 detected J96 I, J96 II, CFT073 I, 536 I and 536 II. PCR reactions were prepared as 

described in section 3.4, using the primers listed in appendix C, with 3 µl DNA lysate. Cycling 

conditions were also as described in section 3.4 with an annealing temperature of 55°C and all cycle 
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steps extended to 1 minute. PCR products were resolved by gel electrophoresis (section 3.5). CFT073 

(Mobley et al. 1990), J96 (Minshew et al. 1978) and 536 (Blum et al. 1991) type strains were included 

as positive controls. These strains were kindly provided by Dr McNally (University of Nottingham, 

UK) and Professor Johnson (University of Minnesota, MN, USA). PAIs were included in the analysis of 

the G. mellonella model to identify any association with larvae mortality.

7.2.6 Rifamycin resistance PCR

Isolates identified by the microarray as encoding rifamycin resistance genes (arr) were screened by 

PCR for these targets (Hopkins et al. 2014), using the primers listed in appendix C. PCR reactions and 

cycling conditions were as described in section 3.4, with an annealing temperature of 55°C. PCR 

products were resolved by gel electrophoresis (section 3.5).

7.2.7 Statistics

All statistical analysis was performed using Stata®, version 12 (StataCorp LP, TX, USA). 

Based on the VF determinant PCRs, isolates were given a virulence (VF) score, calculated as the sum 

of virulence factors (and cyclomodulins) identified in each isolate. Multiple targets for the same 

virulence factor were considered as one for scoring. Isolates were also given an antibiotic (Abx) 

resistance score, calculated as the sum of antibiotics demonstrating reduced susceptibility per 

isolate, according to MICs. VF and Abx scores were rounded to the nearest whole number and 

percentage positive calculated according to various strain characteristics and patient demographics. 

Associations between patient variables, strain characteristics and VFs were determined by 

correlation coefficient. Any significant associations were analysed using the Fishers exact test.

The association between VF and Abx score was calculated by linear regression. Comparisons of 

scores, according to various patient and strain variables, were calculated using the Mann-Whitney U 

test.

A P-value ≤0.05 was considered significant for all statistical tests, except for the correlation 

coefficient, which used a P-value ≤0.01.
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Combined genotyping array

Sensitivity and specificity of specific targets on the microarray were calculated, by comparing to the 

gold standard tests (MICs and PCR).

Paired Isolates

A paired t-test was performed to calculate whether there was a significant difference in VF score and 

Abx resistance score between the urinary and blood culture isolate of each pair. Significance was set 

at a value P<0.05. 
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7.3 Results

Genotyping Microarray

Using the recommended cut-off of ≥0.3; 93 of the 95 isolates were positive for the biotin (staining 

control) and 54 were positive for the gadA (E. coli control), yet failed to hybridise with the ihfA and 

gapA E. coli control targets. All 95 isolates were positive for the gadA gene in the phylogrouping PCR 

(section 4.2.2), resulting in the array gadA target demonstrating a sensitivity of 57%. Employing the 

higher cut-off levels of 0.4 and 0.86, further reduced the sensitivity of gadA to 41% (39/95) and 0% 

(0/95), respectively. The ATCC 25922 control was negative for gadA (both target spots) at each cut-

off. Although each of the four DNA controls should be positive for the array results to be accurately 

interpreted and validated, the data for the antibiotic resistance genes and O-antigens were 

analysed, as a second step in determining the reliability of this microarray, using the ≥0.3 cut-off.

Fifteen of the 95 isolates possessed either a CTX-M group 1 or group 9 gene, or both, as determined 

by PCR (section 5.2.5). However, only 2/15 of these genes (both CTX-M group 9) were detected using 

the microarray. An additional 27 ESBL-negative isolates also hybridized with these targets, resulting 

in a sensitivity and specificity of 13% and 66% respectively, for the microarray. Multiple AmpC/beta-

lactamase targets (ACC-1, ACT-1, DHA, KHM, LEN-1, OXA, SPM, VIM) hybridized with 83 isolates that 

were negative for these genes by PCR and the microarray failed to detect 8/12 OXA and 10/10 TEM-

1 genes. However, the two CMY-positive isolates were correctly identified using the microarray, 

although a further 44 also hybridized with the CMY target on the array, despite being negative by 

PCR.

PCR identified the PMQR genes aac(6’)-Ib-cr, qepA and qnrS (section 5.2.7) in 19/25 of the 

ciprofloxacin-resistant isolates and 1/70 ciprofloxacin-susceptible isolates that were subsequently 

analysed using the microarray. The microarray successfully identified the aac(6’)-Ib gene in 12 

isolates, but also detected this target in 42 other ciprofloxacin-susceptible isolates, as well as qnrB

and/or qnrD in 66 isolates (all false-positive as determined by PCR). In addition, the 16S rRNA 

methyltransferases armA, rmtA, rmtB and rmtC, which confer pan-resistance to the 
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aminoglycosides, were detected using the microarray in 85 isolates. However, none of these 16S 

methyltransferases were confirmed by PCR (section 5.2.6). Multiple aminoglycoside modifying 

enzymes (AME) were also detected by the array, including aadA, aadB and aphD, in isolates of varied 

aminoglycoside susceptibility, none of which were confirmed by PCR (section 5.2.6). The only AME 

detected by PCR was aac(3’)-IIa, which was not detected by the array.

The arr-1 and arr-4 genes, that confer resistance to rifampicin (da Fonseca et al. 2008), were 

detected in 83 isolates. PCR (Hopkins et al. 2014) did not confirm the presence of these genes. The 

tetA, tetB, tetC and tetD genes were detected by microarray in 79 isolates, of which 73 (92%) were 

minocycline resistant. The dfrA and sul2 genes confer trimethoprim and sulfamethoxazole resistance 

respectively, by encoding alternative alleles of the dihydrofolate reductase and dihydropteroate 

synthase enzymes (Skold, 2001). These targets were detected in 52 and 76 isolates, respectively. 

However, of these isolates 27/52 (52%) and 32/76 (42%) were resistant and 25/52 and 44/76 were 

susceptible to trimethoprim and sulfamethoxazole respectively. The chloramphenicol 

acetyltransferase, catB, was detected in 72 isolates, of which 25/72 (35%) were chloramphenicol 

resistant. The genes floR and cmlA1 also confer florfenicol and chloramphenicol resistance and were 

detected in 49 and 26 isolates respectively, of which 19 were chloramphenicol resistant.

Eighty-two of 95 isolates analysed by the microarray underwent conventional serogrouping (section 

4.2.5), of these 18/82 expressed an O-antigen that was included as a target on the microarray. 

However, the microarray failed to correctly identify the O-antigen in all isolates and often detected 

multiple (1 - 6) O-antigens per isolate. 

Overall the microarray lacked both sensitivity and specificity when compared with PCR detection of 

antibiotic resistance targets and serogroup data. Therefore, the virulence factor data obtained from 

the microarray was also considered to be unreliable. Especially as the array failed to detect pap, sfa, 

sat, tsh, iha and cnf1 in the majority of isolates, but hybridized with cif, cdtB, K88 fimbriae, hlyE and 

vat which were not confirmed by PCR. Other common virulence targets hybridized by the array 

included cloacin, microcins B, ipaH, perA and shiga-toxin.
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Virulence factor PCR

The imprecision of the microarray (see section 7.3) led to 154 isolates (appendix E) being 

investigated for VF genes using the updated PCR protocol (2010) published by Johnson and Stell 

(2000). Fifty-three of the isolates analysed using the microarray were also included in this PCR 

analysis. 

Multiple ExPEC and diarrhoeagenic E. coli (DEC) virulence factors were detected by PCR (Table 19), 

with a prevalence ranging from 1% (gafD, clpG, pic, and kpsMTII) to 81% (fimH). The determinants 

fimH, pap, fyuA, iutA, kpsMTII, traT and usp were all detected in >50% isolates.

The proportion of each detected VF according to infection (UTI or bacteraemia), UTI type (ABU, UC, 

COMP) and GIT versus GU source bacteraemia can be found in table 19.
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Table 19 Proportion of virulence factors according to infection type

UTI type BLC source Infection
Characteristic ABU UC COMP GU GIT UTI BLC Overall

(n=30) (n=30) (n=47) (n=20) (n=9) (n=107) (n=47) (n=154)
Adhesins:

fimH 97 ** 93 * 79 45 78 * 88*** 66 81
pap 53 67 70 80 ** 44 64 62 64
iha 46 63 *** 43 60 40 50 49 49

sfa/foc 27 13 19 20 33 20 21 20
afa/dra 3 * 13 19 35 ** 0 13 17 14

hra 3 3 6 - - 5** 0 3
bmaE 3 0 6 - - 4* 0 3
clpG - - - 0 11 0 2 1
gafD 3 0 0 - - 1 0 1

Toxins:
sat 37 57 ** 36 40 33 42 32 39

hlyD 30 21 23 0 33 ** 23 15 21
hlyF 17 9 17 5 11 15 11 14
vat 0 0 6 15 22 3 11* 5

EAST1 3 6 2 0 0 4 2 3
tsh 0 0 4 20 11 2 13*** 3
pic - - - 5 11 0 4* 1

Siderophores:
fyuA 80 80 68 30 67 * 75* 60 70
iutA 47 63 60 65 56 57 60 58
iroN 37 33 36 0 44** * 36 32 34
ireA 10 0 ** 15 - - 10** 0 7

Capsules:
kpsMTII 53 53 62 40 33 57 57 57
kpsMTIII 0 0 2 - - 1 0 1

K1 10 3 * 19 15 11 12 19 14
K5 3 * 0 0 - - 1 0 1

K15 0 3 0 5 0 1 2 1
Protectins:

traT 53 63 62 56 75 60 66 62
iss 23 13 ** 23 30 56 21 53*** 31

cvaC 17 13 11 5 11 13 11 12
rfc 0 10 ** 4 - - 5 0 3

Asterisk indicates if the proportion of isolates possessing that VF is significantly different between 

infection types, as determined by the Fishers exact test: ***P<0.001; **P<0.01; *P<0.05
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Table 19 continued

Characteristic ABU UC COMP GU GIT UTI BLC Overall
Miscellaneous:

usp 53 40 * 62 45 67 53 66 57
malX 50 40 43 15 78 *** 44 51 46
pks 30 33 40 30 44 36 40 37

ompT 33 37 28 45 ** 0 32 21 29
cnf1 27 6 ** 28 24 33 21 21 21
ibeA 17 0 * 6 0 11 7 19* 11
cdtB 3 6 13 5 22 8 9 8
cif 0 0 4 0 10 2 4 3

Asterisk indicates if the proportion of isolates possessing that VF is significantly different between 

infection types, as determined by the Fishers exact test: ***P<0.001; **P<0.01; *P<0.05

Of the fimbriae, fimH was the most prevalent (81%), followed by pap (64%). The iha gene was by far 

the most common non-fimbrial adhesin, detected in 49% of isolates. Yersiniabactin (fyuA) was the 

second most prevalent VF (70%) and also the most common siderophore detected, followed by iutA

(58%). Of the toxins, sat was the most frequently detected (39%), followed by hlyD (21%) and the 

avian haemolysin, hlyF (14%). The kpsMTII (57%) capsules were more common than kpsMTIII (1%) 

capsules, with K1 (14%) the principal K-antigen detected. Sixty-two percent of isolates encoded traT, 

with half of those encoding iss (31%), and approximately a quarter encoding cvaC (12%). Of the 

miscellaneous proteins, usp was most prevalent (57%), followed by the PAI virulence marker, malX

(46%), and the pks island (37%). Cnf1 was the most common cyclomodulin (21%), with <10% isolates 

encoding cdtB and cif.

Urinary tract infections: fimH was significantly more prevalent in urinary isolates (88%, P<0.01) than 

bloodstream isolates (66%), particularly ABU (97%) and UC (93%) infections. In addition, hra, bmaE

and gafD were only detected in urinary isolates. Of the toxins sat, hlyD, hlyF and East1 were more 

frequently detected in urinary isolates. In particular, sat was more common in UC isolates (57%) 

versus ABU (37%) and COMP (36%) isolates, but not significantly so. FyuA was more frequently 

detected in ABU and UC (both 80%) isolates than COMP isolates (68%), but also not significantly so. 
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While iutA was less common in ABU (47%) than the other urinary isolates (60-63%) and iroN was 

similarly distributed across all UTI types (33-37%). Of note was ireA, which was only detected in 

urinary isolates (10%, P<0.05), but not UC infections. KpsMTII genes were detected more frequently 

in COMP isolates (62%) than other urinary isolates (53%). As for the protectins, traT was more 

common in UC (63%) and COMP (62%) isolates, while iss was more frequently detected in COMP and 

ABU isolates (both 23% vs. 13%). Of the miscellaneous proteins usp, pks, cnf1, cdtB and cif were 

more common in COMP isolates, while malX and ibeA were more common in ABU isolates and ompT

was more prevalent in UC isolates.

Analysis of UC isolates alone, as an indicator of the VF required to cause infection in non-

compromised patients, revealed iha, sat, iutA, traT and ompT to be more frequently detected. Of 

these, the association of iha and sat with UC approached significance (P<0.08). 

Bacteraemia: As the urinary tract is the most common source of E. coli bacteraemia, GU and GIT 

isolates were compared to identify VFs associated with severe infection, versus those required for 

colonisation or less severe infections. In contrast to fimH, pap appeared more prevalent in GU 

isolates, but the difference was not significant (80% vs. 44%, P=0.07). The adhesins iha (60%) and 

afa/dra (35%) were also more common in GU isolates. CS31A adhesins were only detected in 

bacteraemia isolates, albeit at a low rate (2%), but were detected in GI isolates only and were absent 

in GU isolates. Sat was notably more prevalent in GU isolates (40% vs. 33%), as was tsh (20% vs. 

11%). However, in GIT isolates, hlyD was more common (33% vs. 0%), along with vat (22% vs. 15%) 

and pic (11% vs. 5%). Of the siderophores fyuA (67% vs. 30%) was significantly more prevalent in GIT 

isolates, along with iroN (44% vs. 0%, P<0.01). As for the capsular types, all were more prevalent in 

GU isolates, while the protectins and miscellaneous proteins were all more prevalent in GIT isolates, 

except for ompT (0% vs. 45%, P<0.05). The association of pap, afa/dra and ompT with GU isolates, 

approached significance (P<0.06). 

Analysis of the alternative source bacteraemia isolates (Line, Chest, CSF, SSTI) revealed other 

associations. The CSF-source isolate belonged to ST95 and encoded fimH, pap, sfa/foc, hlyF, fyuA, 
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iutA, iroN, K1, traT, iss, cvaC, usp, ibeA, pks and malX. Of the Chest-source isolates only fyuA was 

encoded in 100% of isolates, with fimH in 80%. In Line-source isolates 100% encoded usp only, with 

83% also encoding fimH, fyuA, iss and malX. In SSTI-source isolates 100% of isolates encoded fyuA, 

iroN, kpsMTII, iss and usp, with 75% also possessing pap, fimH, iha, ibeA, pks and malX. 

Urosepsis: Analysis of VFs more prevalent in COMP and GU isolates may indicate determinants 

important in urosepsis. Notably, pap (P<0.01), afa/dra (P<0.01) and kpsMTII were more frequently 

detected in these isolates, while fimH (P<0.01), fyuA (P<0.01) and cvaC were lacking.

VF and Abx scores were not significantly different (P>0.05) between the urinary isolates and 

bloodstream isolates of the 17 pairs (Table 20), except for pair 16 which comprised two separate 

strains (see Table 13). However, there were some minor differences in VF possession and 

antibiogram between paired isolates. For example, in one pair the bloodstream isolate had two 

additional VFs (afa/dra and iha); while in another pair the urinary isolate was resistant to additional 

antibiotics (cefoxitin and ertapenem). In addition, fimH and fyuA were only detected in 13/34 and 

8/34 of the paired isolates respectively, despite being detected in 112/120 (93%) and 100/120 (83%) 

of the remaining 120/154 isolates analysed by PCR.
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Table 20 Virulence and resistance scores for the 34 paired urosepsis isolates

Isolate pair Sample VF score Abx score
1 Blood

Urine
8 5
6 5

2 Blood
Urine

12 3
11 3

3 Blood
Urine

10 5
10 5

4 Blood
Urine

12 6
13 6

5 Blood
Urine

10 3
9 3

6 Blood
Urine

9 11
12 10

7 Blood
Urine

2 16
1 18

8 Blood
Urine

12 4
14 2

9 Blood
Urine

8 2
10 3

10 Blood
Urine

10 15
10 13

11 Blood
Urine

9 6
7 5

12 Blood
Urine

10 6
12 5

13 Blood
Urine

16 3
13 3

14 Blood
Urine

12 4
10 4

15 Blood
Urine

11 4
10 4

16 Blood
Urine

10 5
4 8

17 Blood
Urine

15 6
15 5
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Pathogenicity islands: 134/154 (87%) of the VF isolates possessed ≥1 of the PAIs. The isolates lacking 

the PAIs were mostly from UTIs (n=17/20) and belonged to phylogroup A (n=11/20), with a VF score 

ranging from 1-9.

In order of prevalence, 536 IV was the most frequently detected (n=129/154), followed by CFT073 I 

(n=71/154), CFT073 II (n=68/154), 536 I (n=25/154), J96 II (n=18/154), 536 II (n=13/154), J96 I 

(n=7/154) and 536 III (n=5/154). 

The most common PAI profile, which was detected in 49/154 (32%) isolates, was CFT073 I, CFT073 II 

and 536 IV. Isolates possessed between 1-7 PAIs.

PAIs were often significantly associated (P≤0.01) with the presence of other PAIs, including CFT073 I 

with CFT073 II and 536 I with 536 III. The CFT073 and J96 PAIs were also significantly more prevalent 

in phylogroup B2 isolates, than any other phylogroup, while 536 III was significantly associated with 

serogroup ST127 and serogroup O6 isolates (all P<0.01).

Scores: Across all isolates, VF scores ranged from 0-18 (median=9) and Abx scores ranged from 0-30 

(median=4). Linear regression revealed VF scores were inversely associated with the Abx scores 

(P<0.05), for all isolates, including the paired isolates. VF scores and Abx scores according to patient 

and isolate variables are listed in table 21.

Of note, Abx scores increased with age and were higher in male patients and bacteraemia isolates, 

although these observations were not significant. COMP isolates had higher scores than the other 

urinary isolates, while bacteraemia scores were difficult to interpret according to source due to the 

variation in sample number.
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Table 21 Virulence and resistance scores according to patient demographics and strain 

characteristics

Variable Number of isolates VF score Abx score
Infection:

Urinary tract 107 9 4
Bacteraemia 47 9 6 **

UTI type:
ABU 30 9 3
UC 30 9 4

COMP 47 9 5
BLC type:

Chest 5 6 9
CSF 1 18 4
GI 9 9 7
GU 20 8 6
Line 6 10 5
SSTI 4 13 5
NK 2 12 2

Phylogenetic group:
A 26 5 6*

B1 2 7 6
B2 84 11*** 4
D 42 7 5

Sequence type:
ST131 13 10 8**
ST127 9 10 4
ST95 14 12 *** 4 *
ST73 12 12*** 3**
ST69 20 7** 4
NK 86 8* 5

Age (years):
0-10 8 9 3

11-20 6 9 4
21-30 29 9 5
31-40 30 9 4
41-50 14 9 4
51-60 15 10 6
61-70 13 10 5
71-80 15 8 7
81-90 19 9 7
>90 5 9 3
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Table 21 continued

Variable Number of isolates VF score Abx score
Sex:

Female 113 9 4
Male 41 8 7 **

Healthcare setting:
CAI 122 9 5
HAI 32 10 5

Overall: 9 4
Asterisk indicates if the scores are significantly different according to various patients and strain 

variables, as determined by the Mann Whitney U test: ***P<0.001; **P<0.01; *P<0.05

Phylogroup: Phylogroup B2 had the highest mean VF score of 11 (P<0.01), while phylogroups D and 

B1 both had a score of 7. Phylogroup A had the lowest VF score of 5, but also the highest Abx score 

at 6, along with phylogroup B1 isolates. VFs only detected in phylogroup B2 included sfa/foc, gafD, 

clpG, pic, tsh, ireA, cif and cdtB, while vat and ibeA were detected in phylogroups B2 and D only. The 

isolate of the novel phylotype (gadA+, chuA-, yjaA+, TspE4.C2+) possessed pap, fimH, iha, sat, ireA, 

iutA, usp, traT, pks and malX. No other isolates in this collection shared this virulence profile. 

Sequence type (ST): ST73 and ST95 had the highest VF score (VF=12, P<0.01). ST69 had the lowest 

score of the 5 lineages (VF=7). All STs had a low Abx score compared with the VF score, with the 

exception of ST131 isolates, which had a mean VF and Abx score of 10 and 8 respectively. Multiple 

VFs were detected in at least three of the lineages, including pap, usp, malX and pks, but some VFs 

were also significantly associated with one lineage compared to all others, according to a correlation 

matrix; ST131 was significantly associated with iha (92%, P<0.01) and iutA (100%, P<0.01); ST127 

was significantly associated with cnf1 (78%, P<0.01); ST95, the avian lineage, was significantly 

associated with cvaC (42%, P<0.01), hlyF (50%, P<0.01) and K1 (57%, P<0.01); ST73 was significantly 

associated with sfa/foc fimbriae (83%, P<0.01), pks (100%, P<0.01) and cytolethal distending toxin, 

cdtB (42%, P<0.01); and ST69 was significantly associated with sat (80%, P<0.01) plus ompT (75%, 

P<0.01). Despite these differences in VF detection, it was not possible to use VFs to identify 
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particular lineages or to distinguish them. Analysis of the ST131 virulence repertoire (Table 22) 

according to the three sub-clones (section 6.3) revealed afa/dra and pap to be absent from the non-

clonal strain, while in the clonal isolates pap was present in all ESBL+ isolates, but only in one of the 

ESBL- isolates and cnf1 was detected in three of the ESBL+ isolates only. Median VF scores also varied 

between the three sub-clones: 8 (clonal, ESBL+), 10 (clonal, ESBL-) and 11 (non-clonal). 

Table 22 Virulence factors detected in the ST131 isolates according to sub-clone. VFs that are 

underlined were identified in >70% of isolates, according to each sub-group, except for non-clonal 

isolates, of which only one was investigated using the VF PCR assays.

ST131 

sub-group

No. of 

isolates

VF 

score

Virulence factors (% isolates positive for VF)

Clonal, 

ESBL+
7 8

fimH (57) pap (86) afa/dra (43) clpG (14) iha (100) hlyD (14) sat

(43)

pic (14) fyuA (57) kpsII (57) ompT (29) usp (86) traT (71) iss (57)

cnf1 (43) malX (43)

Clonal, 

ESBL-
6 10

fimH (100) pap (17) afa/dra (17) iha (67) hlyF (33) sat (83) fyuA (83)

iutA (100) iroN (17) kpsII (83) usp (100) traT (100) iss (50) ibeA (50)

cdtB (17) cvaC (17) malX (100)

Non-clonal 1 11 fimH iha sat fyuA iutA kpsII usp traT iss pks malX (100)
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Virulence profiles: Particular clones and pathotypes have been investigated for virulence profiles, 

with VFs detected in ≥70% of isolates included in the profile (Clark et al. 2012). For example, Clonal 

group A (ST69/D) isolates have been characterised by the presence of pap, iutA, traT and kpsII and 

the absence of sfa/foc, afa/dra, hlyD, cnf1, iroN, iss and malX (Manges et al. 2001). 

Using this method ≥70% UK ST131 isolates possessed ≥3 of the following: fimH, iutA, fyuA, iha, kpsII, 

usp, traT and malX, with some variations according to sub-clone (Table 22). The ST69 profile 

included pap, fimH, iutA, iha, sat, traT and ompT but lacked sfa/foc, afa/dra, hlyD, malX, cnf1, hra, 

pic, vat, tsh, ireA, usp, ibeA, pks, cif and cdtB. 

In addition, 10% of UK isolates possessed APEC traits including iroN, fimH, hlyF, iss and iutA and 94% 

possessed ≥2 of the following, defining these isolates as ExPEC according to Johnson and Stell 

(2000): pap, fimH, hlyD, fyuA, iutA, kpsII, traT and malX.
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7.4 Discussion points

It was not possible to evaluate the virulence and resistance profile of 95 selected ExPEC isolates 

using the E. coli combined genotyping microarray.

The ExPEC VF PCR assays designed by Johnson and Stell (2000) revealed the virulence repertoire of 

154 UK ExPEC isolates to be highly varied.

Specific VFs were identified within the five major ExPEC lineages that were highly prevalent, but 

unable to distinguish between these sequence types.

Paired isolates causing urosepsis typically possess the same virulence factors, but during 

transmission from the urinary tract to the bloodstream, additional factors may be gained or lost.

Evaluation of VFs prevalent in UC cystitis and genitourinary-source bacteraemia, compared to all 

other isolates, could identify those required for colonisation and those required for virulence.
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8. ExPEC virulence in Galleria mellonella

8.1 Introduction

Multiple virulence factors have been reported in ExPEC (Johnson and Stell, 2000). Recent studies 

suggest that pap, fyuA, iroN, kpsMTII and ompT are important in pyleonephritis strains, with kpsMTII

associated with particularly severe infection (Kudinha et al. 2013b; Marschall et al. 2012). Despite 

this, only the presence of fyuA and pap have been linked to increased patient mortality (Mora-Rillo 

et al. 2013), while the pks island encoding colibactin is suggested to decrease sepsis survival in a 

mouse model (Marcq et al. 2014). Another study investigated the role of O-antigens in ExPEC 

survival and confirmed that O-antigens increase serum survival, but O6, in particular, facilitates 

colonisation of the urinary tract (Sarkar et al. 2014). Antibiotic resistance and delay in receiving 

appropriate antibiotic therapy have been strongly linked to patient mortality, specifically the 

presence of ESBL enzymes (Ku et al. 2013; Melzer and Petersen, 2007). These two observations are 

interesting given that Piatti et al (2008) and Cooke et al (2010) have demonstrated the inverse 

relationship between VF expression and antibiotic resistance, suggesting that mortality and severity 

of infection is due to one or the other, but not both.

UK ExPEC isolates revealed great diversity in their virulence factor (VF) repertoire (see 7.3). Data 

suggested that iutA and traT were important VFs in UTIs, while pap, afa/dra and tsh were important 

VFs in GU-source bacteraemia and iha, sat and ompT were important in both infection types. 

Analysis of urosepsis isolates suggested that the presence of pap, afa/dra and kpsMTII coupled with 

the absence of fimH, fyuA and cvaC were significantly associated with these infections. Overall 

phylogroup B2 strains possessed the highest number of VFs, along with ST73 and ST95 strains and 

specific VFs were associated with particular sequence types, such as ST131 and iha. While statistical 

analysis has revealed many of these findings to be significant, evaluation of these strains in an 

infection model would further support the validity of these results.
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Various cell lines, mice and Caenorhabditis elegans have been used as models of infection for 

investigating virulence of ExPEC (Bhargava et al. 2009; Blango and Mulvey, 2010; Johnson et al. 

2012a; Lemaitre et al. 2013; Totsika et al. 2013). Disadvantages include their time-consuming nature, 

the expense to maintain these cell lines and animal models, but also the ethical requirements that 

need to be addressed before some of the models can be used. Final instar larvae of the greater wax 

moth, Galleria mellonella, provide a more affordable, high-throughput model that is simple to 

maintain, can be incubated over a large temperature range (15-37°C) and can be inoculated with 

exact quantities of test organism and antibiotic (Glavis-Bloom et al. 2012). As such, G. mellonella

have been used in numerous studies to analyse the pathogenesis, virulence and antibiotic treatment 

of multiple bacterial and fungal pathogens, including Francisella tularensis, Listeria monocytogenes, 

Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia and 

Cryptococcus neoformans (Andrejko and Mizerska-Dudka, 2012; Aperis et al. 2007; Hornsey et al. 

2013; Joyce and Gahan, 2010; Mylonakis et al. 2005; Nicoletti et al. 2011). Recently G. mellonella

was also established as a good model for assessing the comparative virulence of clinical Klebsiella 

pneumoniae strains, by analysing larval mortality (Insua et al. 2013; Wand et al. 2013). In addition, 

non-pathogenic bacteria demonstrated larval mortality comparable to that seen in PBS-inoculated 

larvae, suggesting that avirulent strains could be identified using this criteria (Aperis et al. 2007;

Mylonakis et al. 2005).

The innate immune system of G. mellonella is comprised of the hemolymph which carries the 

hemocytes (equivalent to white blood cells in mammals). The hemocytes recognise invading 

pathogens and perform oxidative killing or encapsulation/nodulisation of these organisms and 

necrotic tissue (Lionakis, 2011; Ribeiro and Brehelin, 2006). Recognition and encapsulation of these 

pathogens result in the hemocytes producing phenoloxidase, which is released on cell destruction 

(Ribeiro and Brehelin, 2006). Phenoloxidase metabolises phenol precursors into quinine molecules, 

melanin pigments and toxic reactive oxygen and nitrogen species (Nappi and Christensen, 2005). The 

dark melanin pigments act as a structural immune defence by hardening and preventing pathogens 
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from spreading further into the larval cuticle, as well as perturbing pathogen enzymes, which would 

degrade the larval cuticle. This process can be monitored readily by eye because it results in a 

darkening of the larvae from cream to brown/black (Dubovskiy et al. 2013). Lactate dehydrogenase 

(LDH) is produced by skeletal muscle and erythrocytes during glycolysis. As a result LDH is produced 

during exercise (Berg et al. 2002), but also in tumour cells where glucose metabolism is highly 

upregulated (Lu et al. 2013). During infection apoptosis leads to release of cellular LDH in G. 

mellonella, enabling the level of LDH to act as a marker of cell damage (Wand et al. 2013). Therefore, 

measurement of melanin production and LDH concentration can be used as additional markers of 

pathogen virulence and tissue damage.

Until 2014 there were no published studies analysing the virulence of ExPEC in the G. mellonella

model (Williamson et al. 2014). Therefore 40 ExPEC strains, encompassing both urinary and 

bloodstream isolates and the five major ExPEC lineages, were analysed using the G. mellonella

model to identify patient and strain characteristics associated with larval mortality and to determine 

how severity of human infection might relate to larval mortality.
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8.2 Methods

8.2.1 Isolates for analysis

Forty of the 154 ExPEC isolates (see 7.2.2, appendix E) analysed by the VF PCR assays were 

investigated in the G. mellonella model, as listed in appendix F. From here on these isolates will be 

referred to as the ‘Galleria isolates’. Patient and strain characteristics for the Galleria isolates are 

listed in table 23. VF PCR results can be found in appendix F.

Table 23 Patient and strain characteristics for the forty ExPEC isolates analysed using the G. 

mellonella infection model

Characteristic Number of isolates Total
Sex Male 14 40

Female 26
Urinary tract infection ABU 7 24

UC 6
COMP 11

Source of bacteraemia GU 2 16
GIT 4

CHEST 3
LINE 3
SSTI 3
CSF 1

Healthcare setting CAI 33 40
HAI 7

Phylogroup A 10 40
B1 2
B2 21
D 7

Sequence type 131 4 40
127 4
95 4
73 3
69 3

unknown 22
Scores VF 1 - 18

Abx 1 - 18
NB: ABU, asymptomatic bacteruria; UC, uncomplicated cystitis; COMP, complicated 

cystitis/pyleonephritis; GU, genitourinary source; GIT, gastrointestinal source; CSF, cerebral spinal 

fluid source; CHEST, respiratory tract source; LINE, intravenous line source; SSTI, skin and soft tissue 
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infection source; CAI, community-associated infection; HAI, hospital-associated infection; VF, 

virulence factor; Abx, antibiotic resistance.

8.2.2 G. mellonella Infection Model

8.2.2.1 Inoculum Preparation

From an overnight culture on ISO agar (Oxoid), a 1 µl loop of culture was taken and inoculated in 3-

5ml LB broth (Sigma). Suspensions were incubated overnight, at 37°C, in an Innova 4000 incubator 

shaker (New Brunswick Scientific; Eppendorf). Cultures were centrifuged at 4000 rpm for 10 minutes 

in an IEC CL40 centrifuge (Thermo Fisher Scientific) and the supernatant aspirated. Pellets were re-

suspended in 3ml PBS. Centrifugation and re-suspension steps were repeated twice more. A serial 

1:10 dilution was performed (100 µl pellet suspension in 900 µl PBS), with a final dilution of 1 x 

107/ml. A 100 µl aliquot of the 1 x 107 suspension was spread evenly on an ISO agar plate using an L-

shaped spreader (STARLAB, Hamburg, Germany). Inoculated plates were incubated overnight, at 

37°C. Colony counts were performed to determine the number of colony forming units (CFU) in all 

serial dilutions. The most appropriate dilution was selected and diluted to achieve the required 

inoculum for the G. mellonella (Livefood UK Ltd, Rooks Bridge, Somerset, UK) model.

8.2.2.2 Inoculum Test

Prior to analysing the E. coli isolates in the G. mellonella model an inoculum test was performed to 

determine the most appropriate inoculum required for the virulence assay. Previous studies have 

used an inoculum of 101-107 CFU (Hornsey et al. 2013; Nicoletti et al. 2011); however, other studies 

conducted here at the Blizard Institute indicated that an inoculum of 104-106 was most appropriate 

for important Gram-negative bacteria (Betts et al. 2014; Hornsey et al. 2013). Therefore, for this test 

an inoculum of 1 x 104, 1 x 105 or 1 x 106 of three ExPEC strains was injected into ten larvae each to 

identify the inoculum that would kill 50% of G. mellonella after 24 hours incubation at 37°C. These 

three strains included the ATCC 25922 type strain (VF score = 4), one clinical isolate with a VF score 

of two and another clinical isolate with a VF score of seven. 
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8.2.2.3 Virulence Assay

Ten G. mellonella larvae were injected in the first left proleg (Figure 33) with 105 CFU/larvae, per test 

isolate using a 22-gauge gastight syringe (Hamilton, Bonaduz, Switzerland). The UPEC type strain 

CFT073 was also inoculated into G. mellonella larvae as a comparator for the test isolates. Ten larvae 

were inoculated with PBS as a stress control. Larvae were incubated aerobically at 37°C (for optimal 

E. coli growth conditions) on Grade 1 WhatmanTM filter paper (Whatman plc, Maidstone, UK) in 

extra-deep petri dishes (Thermo Fisher Scientific) for 96 hours. Larvae were considered dead if they 

did not respond to touch. The virulence assay was performed on three separate occasions with three 

different batches of larvae. Virulence of the Galleria isolates (as determined by the proportion of 

larvae killed) was analysed according to various patient and strain characteristics to identify 

variables linked to larval mortality. 

Figure 33 External morphology of the underside of G. mellonella larvae. A indicates the 

mesothoracic legs and B indicates the prothoracic legs, or pro-legs. This image was amended from 

the image by Smith (1965).

8.2.2.4 Melanisation Assay

Galleria larvae were investigated for melanin production, as a marker of the immune response, four 

hours post-inoculation, as performed by Wand et al (2013). Ten G. mellonella were injected per 

strain and incubated, as described above. After four hours the larvae were chilled on ice for 10-15 

A                                                     B
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minutes and surface sterilised with 70% ethanol (Thermo Fisher Scientific). Larvae were sacrificed 

using a sterile disposable surgical scalpel (Swann-Morton, Sheffield, UK) and hemolymph collected 

into a pre-chilled eppendorf tube (STARLAB, Germany) containing 10-20 crystals of N-phenylthiourea 

(Alfa Aesar, Ward Hill, MA, USA) to prevent further melanisation of the hemolymph (Andrejko and

Mizerska-Dudka, 2012). A 100 µl aliquot of pooled hemolymph was transferred into a 96-well 

polystyrene microplate (STARLAB, Germany) and the optical density (OD) measured at a wavelength 

of 450 nm using an ELx800 absorbance microplate reader (Biotec, Winooski, VT, USA). Uninoculated 

larvae were used as a background control and their OD subtracted from the OD readings of each of 

the Galleria isolates. The assay was performed in triplicate on three separate days. The highly 

virulent CFT073 strain was included as a comparator for the test strains.

OD was measured at 450 nm, instead of 490 nm, as described by Wand et al (2013). Yellow solutions 

(hemolymph is yellow) absorb blue light with a wavelength of 450-490 nm (Royal Society of 

Chemistry, 2013). Therefore, readings at 450 nm, instead of 490 nm, were considered valid and 

comparable.

8.2.2.5 Lactate Dehydrogenase Assay

Galleria larvae were investigated for lactate dehydrogenase (LDH) production, as a marker of cell 

damage, four hours post-inoculation, as performed by Wand et al (2013). Ten larvae were 

inoculated, incubated and sacrificed, as described above (see 8.2.4.4). A 50 µl aliquot of pooled 

hemolymph was transferred to a 96-well polystyrene microplate (STARLAB) and analysed using the 

CytoTox 96 non-radioactive cytotoxicity assay (Promega), according to the manufacturer’s 

instructions. Briefly, 50 µl assay buffer was added to each well containing hemolymph. The 

microplate was incubated at room temperature, in the dark, for 30 minutes. After incubation 50 µl 

of stop solution was added to each well and the OD read using an ELx800 absorbance microplate 

reader (Biotec), at a wavelength of 450 nm. Uninoculated larvae were used as a background control, 

as described previously. The assay was performed in triplicate on three separate days. The highly 

virulent CFT073 strain was included as a comparator for the test strains.
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8.2.3 Statistics

All statistical analyses were performed using GraphPad Prism version 5.04 (GraphPad Software Inc., 

La Jolla, California, USA).

Association between PAIs and patient/strain characteristics were analysed by Spearman correlation, 

assuming data were non-parametric. Association between two variables was further analysed using 

Fishers exact test. A P-value ≤0.01 was considered significant for both tests.

Association between larvae survival and melanin/LDH production was measured by linear 

regression, with a P-value ≤0.01 considered as significant. Difference in melanin/LDH production 

according to patient and strain variables was measured using the unpaired t-test, with a P-value

≤0.05 considered significant.

Larvae survival curves have traditionally been analysed by the log rank test (Betts et al. 2014;

Hornsey et al. 2013; Mylonakis et al. 2005). However, this test analyses the trend of survival curves, 

irrespective of time. After discussions with a statistician, relative risk was used to analyse larvae 

survival 96 hours after inoculation. This test is more appropriate as it analyses the proportion of 

dead larvae at specific time points and can be used to analyse different variables irrespective of 

sample size. The relative risk (RR) of larvae death is reported according to various strain and patient 

variables, with a P-value <0.01 considered significant. Variables that generated a RR >5 were 

analysed further by Spearman correlation to identify those significantly associated with mortality. A 

P-value <0.05 was considered significant.
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8.3 Results

G. mellonella Infection Model

A dose of 1 x 105 was identified as the most appropriate inoculum for virulence discrimination in this 

assay (Table 24). The CFT073 control strain affected 100% larvae mortality and the PBS control 

affected 87% larvae survival after 96 hours. For the 40 Galleria isolates, larvae survival ranged from 

0% - 100% (Figure 34). 

Table 24 Larvae survival 24 hours post-inoculation with 1 x 104, 105 and 106 colony forming units

Isolate Inoculum No. surviving larvae after 24hrs 
3 1 x 104 10
9 10
25922 8
3 1 x 105 3
9 3
25922 2
3 1 x 106 0
9 0
25922 0
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Figure 34 Percentage larvae survival, melanin 

production and LDH production for each of the 

40 ExPEC isolates.  Percentage larvae survival, 

96-hours post-inoculation is plotted on the lower 

x-axis (blue dots). Melanin (green bars) and 

lactate dehydrogenase (red bars) OD readings 

are plotted on the upper x-axis. For each isolate 

the specimen type (U, urine or B, bloodstream) 

and sequence type (131, 127, 95, 73, 69 or 

unknown; -) are included with the isolate number 

on the y-axis.
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Table 25 G. mellonella mortality and relative risk ratios associated with individual patient and 

strain variables. Percentage mortality is calculated from pooled data generated by the three assay 

replicates. RR is calculated by comparing each variable to the PBS control.

Variable Number of 
isolates

Mortality 
(%)

RR P-value†

Infection 
type

U 24 65 4.84 <0.01 (RR 1.17, P<0.01)
B 16 55 4.14

Setting CAI 33 64 4.77 <0.01 (RR 1.38, P<0.01)
HAI 7 46 3.46

Sex Female 26 62 4.63 <0.01 (RR 1.1, P<0.01)
Male 14 56 4.20

UTI type ABU 7 54 1.04 <0.01 (UC vs. COMP RR 1.21 & ABU 
vs. COMP RR 1.35, P<0.01)UC 6 61 4.54

COMP 11 72 5.41
Bacteraemia 
source

GU 2 100 7.50 <0.01 (GU vs. GIT RR 2.4, P<0.01)
GIT 4 40 3.00
Line 3 41 3.08
Chest 3 32 2.42
SSTI 3 76 5.67
CSF 1 63 4.75

Phylogroup A 10 72 5.40 <0.01 (A vs. B2 RR 1.25, P<0.01)
B1 2 53 4.00
B2 21 58 4.32
D 7 55 4.11

ExPEC 
lineage

131 4 78 5.88 <0.01 (131 vs. 95 RR 1.13, P>0.01)
           (131 vs. 73 RR 1.33, P<0.01)
           (131 vs. 69 RR 1.26, P>0.01)

127 4 31 2.31
95 4 69 5.19
73 3 59 4.42
69 3 62 4.67

†Direct comparison of RRs of binary variables is included in parenthesis. 

Larvae mortality was significantly higher with urinary isolates, particularly COMP isolates, CAIs, 

isolates from female patients, isolates of phylogroup A and isolates belonging to ST131, closely 

followed by those of ST95. As for bloodstream isolates, a GU-source affected significantly higher 

mortality rates than all other foci of infections (all P <0.01).

Despite the high VF score of phylogroup B2 isolates, the average mortality rate was similar to 

isolates of phylogroup B1 and D, with phylogroup A isolates affecting the highest rate of the four 

phylogroups. However, analysis of the major ExPEC lineages, all of which belong to phylogroup B2 or 
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D, revealed ST131 isolates to affect higher rates of mortality than phylogroup A isolates (78% vs. 

72%). While ST127 isolates were the least virulent, affecting just 31% mortality.

Although the CFT073 (ST73) control affected 100% mortality, the three clinical ST73 isolates affected 

a mortality of 100%, 70% and <7%. 

Larvae mortality was also analysed according to individual VFs, PAIs and scores, as detailed in table 

26.

Table 26 G. mellonella mortality and relative risk ratios associated with individual virulence 

factors, pathogenicity islands and scores. 

Variable Number of 
isolates

Mortality 
(%)

RR P-value† (if significant)

Fimbriae fimH 30 57 4.30 <0.01 
pap 20 72 5.36 <0.01 
sfa/foc 9 63 4.69 <0.01 
bmaE 3 50 3.75 <0.01 
gafD 1 3 0.25

Non-fimbrial 
adhesins

afa/dra 2 97 7.25 <0.01 
iha 13 57 4.29 <0.01 
hra 4 61 4.56 <0.01 
clpG 1 40 3.00

Toxins cnf1 11 65 4.84 <0.01 
cdtB 2 67 5.00 <0.01 
sat 8 58 4.31 <0.01 
vat 1 63 4.75 <0.01 
tsh 2 53 4.00 <0.01 
EAST1 2 12 0.88
hlyD 11 62 4.68 <0.01 
hlyF 5 73 5.45 <0.01 

Siderophores fyuA 30 58 4.38 <0.01 
iutA 19 65 4.91 <0.01 
iroN 15 68 5.07 <0.01 
ireA 1 70 5.25 <0.01 

Capsules kpsII 20 62 4.65 <0.01 
kpsIII 1 63 4.75 <0.01 
K1 6 68 5.13 <0.01 
K5 1 3 0.25

O-antigen O6 3 93 7.00 <0.01 
O25 4 78 5.88 <0.01 
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Table 26 continued

Variable Number of 
isolates

Mortality 
(%)

RR P-value† (if significant)

Miscellaneous usp 23 57 4.28 <0.01 
traT 21 64 4.82 <0.01 
ompT 4 87 6.50 <0.01 
iss 13 63 4.69 <0.01 
ibeA 4 75 5.63 <0.01 
cvaC 4 71 5.31 <0.01 
pks 16 63 4.72 <0.01 
malX 20 54 4.04 <0.01 

Pathogenicity 
islands

CFT073 I 24 60 4.52 <0.01 
CFT073 II 18 64 4.79 <0.01 
J96 I 7 59 4.39 <0.01 
J96 II 8 73 5.50 <0.01 
536 I 5 41 3.05 <0.01 
536 II 7 81 6.11 <0.01 
536 III 1 97 7.25 <0.01 
536 IV 33 63 4.74 <0.01 

High Scores VF (>9) 18 61 4.58 <0.01 
Abx (>4) 22 62 4.66 <0.01 

Note: RR is calculated by comparing each variable to the PBS control. 

Of all the virulence factors, isolates possessing afa/dra, serogroup O6 or the PAI 536 III (encodes 

sfa/foc, tsh and sat) were >7x as likely to affect larvae death, than isolates lacking these factors. 

Isolates possessing ompT or 536 II (encodes hlyA and hra) were >6X more likely to affect larvae 

death and isolates with pap, hlyF, iroN, ireA, K1, serogroup O25, ibeA, cvaC or J96 II (encodes pap, 

hlyA, cnf1 and hra) were >5x more likely to affect larvae death than isolates lacking these 

determinants (Bidet et al. 2005; Dobrindt et al. 2002). The remaining virulence factors were 

associated with a RR ≤5 and gafD, clpG, bmaE,  EAST1 and K5, in particular, were associated with low 

RRs (<4) and low rates of mortality (≤50%).

Isolates with high VF scores or high Abx scores affected similar mortality and RRs. Notably, malX, 

which was considered a marker of virulent ExPEC isolates affected 54% mortality, with a RR <5. 
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Variables generating a RR >5 were considered to be associated with larvae mortality and were 

analysed further by Spearman correlation (Figure 35). Of these, genitourinary-source bloodstream 

isolates, pap, PAI 536 II and serogroup O6 correlated with larvae mortality (P<0.05).

Figure 35 the ExPEC variables significantly associated with larvae mortality. Spearman correlation 

revealed strains from genitourinary-source bacteraemia or those with pap, 536 II or serogroup O6 to 

be associated with low larvae survival (P<0.05).

G. mellonella immune response

Melanin production was used as a marker of the G. mellonella immune response. The CFT073 

control strain induced melanin production with a mean OD reading of 1.69. The Galleria isolates 

induced a mean melanin OD reading ranging from 0-2.32 (Figure 34). Linear regression revealed an 

inverse association between larvae survival and melanin production (P<0.0001). In addition, urinary 

isolates induced significantly higher melanin production than bloodstream isolates (P=0.04), with 
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isolates causing UC inducing the highest mean melanin production (OD 1.48), compared with COMP 

(OD 0.92) and ABU (OD 0.72) isolates. Of all six known sources of bacteraemia, GU isolates induced 

the highest mean melanin production (OD 1.06) and GIT isolates the lowest (OD 0.16). 

While not significant, phylogroup B2 isolates induced the highest mean melanin production (OD 

0.86), followed by phylogroup A isolates (OD 0.80), compared with phylogroup B1 (OD 0.67) and D 

isolates (OD 0.75). Within the five major lineages ST73 isolates induced the highest mean melanin 

production (OD 1.38), followed by ST131 (OD 1.09) and ST127 induced the lowest mean melanin 

production (OD 0.68). Isolates with a VF score >9 also induced higher mean melanin production (OD 

1.14) than isolates with a low VF score (OD 0.92). Virulence factors found to significantly induce 

higher melanin production included P-fimbriae (OD 1.13) and OmpT (OD 1.7)(P<0.01).

LDH production was used as a marker of cell damage as a result of ExPEC infection. The CFT073 

control strain induced a mean LDH OD reading of 0.34. Mean LDH OD readings ranged between 0.05-

0.98 (Figure 34), but LDH production was found to be unrelated to larvae survival.

LDH production was higher for urinary isolates (OD 0.26 vs. 0.19), particularly COMP isolates (OD 

0.28 vs. 0.22 – 0.27); for GU bacteraemia isolates (OD 0.42 vs. 0.09 – 0.25); and for CAIs (OD 0.23 vs. 

0.21), but these findings were not significant. However, isolates from men produced significantly 

more LDH than isolates from women (OD 0.32 vs. 0.21, P=0.05), despite there being no difference in 

melanin production.

Isolates from phylogroups A and B1 induced higher LDH production than isolates from phylogroups 

B2 and D. As with melanin, ST73 isolates (OD 0.45) induced the highest LDH production of all the 

major lineages, followed by ST131 (OD 0.25), with the remaining generating an LDH OD reading of 

0.14-0.15. However, these readings were not significant.

Interestingly, isolates lacking fimH, fyuA (P=0.03), hlyF, hra, ibeA (P=0.04), iss, cvaC, usp and malX

induced higher LDH production than isolates possessing these virulence factors. While possession of 

iutA, sat and ompT resulted in higher LDH production compared with isolates that lacked these 
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virulence factors. Again, however, these findings were not significant. In addition, LDH production 

was highly similar between isolates with a high VF score (>9) and those with a low VF score (≤9).
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8.4 Discussion points

The three most prevalent PAIs (CFT073 I, CFT073 II and 536 IV) encode four frequently detected 

ExPEC virulence factors; pap, hlyA, fyuA and the marker malX. Of these, pap was significantly 

associated with low larvae survival, but the others were not.

Urinary isolates, particularly from complicated infections, were associated with higher mortality 

rates than bloodstream isolates, in which a GU-source affected the highest mortality compared with 

all other sources. Community-associated infections were also linked to high mortality, as was 

phylogroup A and ST131 isolates. Notably, urinary isolates, GU-source and ST73 isolates induced a 

strong immune response and urinary isolates causing complicated infection, community-associated 

isolates and GU-source isolates were associated with high levels of cell damage.

Regarding virulence factors, afa/dra, ompT, serogroups O6 and O25 generated the highest relative 

risk ratios and mortality, all of which are associated with ST131, except for O6, which is frequently 

identified in ST73 isolates. ST73 isolates and those possessing ompT were also associated with high 

levels of cell damage. However, only pap and O6 were significantly correlated with mortality.

In contrast isolates possessing fimH, fyuA, hlyF, hra, ibeA, iss, cvaC, usp or malX were associated with 

low levels of cell damage, supporting the idea of a colonisation factor, rather than a virulence factor.

Many of the findings from these assays approached significance, but often the number of isolates 

analysed was too small. Subsequent studies analysing a larger sample population would confirm the 

significance and validity of these observations. In addition, current and future research involving 

whole genome sequencing of ExPEC strains could identify novel virulence factors or genetic 

elements associated with urosepsis, severe infection and high mortality.

The G. mellonella infection model provides a simple and effective method for analysing the virulence 

of ExPEC strains.
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9. General discussion and concluding remarks

The UK ExPEC population

There have been no large-scale investigations of UK ExPEC strains for several years (Lau et al. 2008b)

and recent studies were restricted geographically (Gibreel et al. 2012) and by infection type (Horner 

et al. 2014). This study improved on earlier investigations by comparing >1000 urinary and 

bloodstream isolates, collected from around the UK and Republic of Ireland, between January 2011 

and March 2012. As expected the patient populations were similar for these two infection types and 

the distribution of phylogenetic groups was consistent with previous studies (Banerjee et al. 2013a;

Bukh et al. 2009). However, there were some variations in age, sex, clonal composition and 

serogroup depending on whether the isolate caused a UTI or bacteraemia.

There was no change, from previous studies, in the patient demographics for urinary strains (Bean et 

al. 2008; Foxman, 2002; Kahlmeter, 2003; Linhares et al. 2013), with the majority (89%) causing CAIs, 

isolated from female patients (84%) aged 21-50 years (55%), with an average age of 40 years. This is 

unsurprising given the common, tedious nature of UTIs and empirical management, which lends to 

this infection being diagnosed more frequently in community clinics, GP practices or out-patient 

departments (Bean et al. 2008; Denes et al. 2012; Leydon et al. 2009). 

In contrast to female patients, the average age of men presenting with a UTI was higher (62 years) 

and the frequency of UTIs in men increased with age, likely a result of the increased risk of 

prostatitis and instrumentation (e.g. catheter) in this age group (Cornia et al. 2006; Etienne et al. 

2008; Lipsky, 1999). Otherwise the demographics of men presenting with UTI was similar to recent 

UK and European studies (Bean et al. 2008; den Heijer et al. 2013; Koeijers et al. 2010; Marschall et 

al. 2013). The most recent UK study of UTI in children was conducted in Staffordshire (Chakupurakal 

et al. 2010), reporting approximately 72 paediatric UTIs each year, predominantly in girls. A study in 

London found 10% (n=1227) of urinary isolates were from patients <16 years (Bean et al. 2008), 
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although the distribution according to patient sex was unknown. Similar to these studies, 8% of 

urinary strains here were isolated from patients aged <18 years, with the majority from girls.

The lack of sufficient clinical information often made it difficult to determine the UTI type caused by 

the isolates. Together with the criteria for collecting urinary strains, some bias was introduced 

during isolate collection. Lack of good clinical information supplied with study isolates led to all 

asymptomatic bacteruria isolates, except one, being collected from asymptomatic pregnant women 

screened for UTI at their initial antenatal visit. Uncomplicated infections affect both men and 

women (Bean et al. 2008; Kahlmeter, 2003), but the controversy surrounding the classification of UTI 

in men (it is assumed that men have an anatomical or structural abnormality resulting in infection) 

led to isolates from male patients being classified as complicated (SIGN, 2006; Lipsky, 1989). 

Therefore, all uncomplicated isolates, by default, were from female patients only. Further analysis of 

the clinical information from male patients identified 32/82 (39%) with symptoms of cystitis only and 

the majority aged 50–78 years (56%), suggesting that approximately 40% of men diagnosed with a 

UTI have an uncomplicated infection. However, without a complete patient history it cannot be 

confirmed that these male patients lacked an abnormality, co-morbidity or other complication that 

would alter their UTI diagnosis. In patients <18 years old complicating factors included urosepsis or 

recurrent infection, but in adults additional factors included immunocompromising conditions, 

surgery and instrumentation, suggesting that environmental and host factors are more influential in 

adult UTIs, but also more common in this age group. Despite the overall isolate collection bias, 

especially towards uncomplicated cystitis isolates, these strains were typical of the reported patient 

population (Den Heijer et al. 2010; Foxman et al. 2000; Kahlmeter, 2003).

ExPEC causing bacteraemia also reflected recent studies, being isolated almost equally from male 

and female patients, predominantly aged >60 years and prevalence of bacteraemia increased with 

patient age (Alhashash et al. 2013; Health Protection Agency, 2011; Schlackow et al. 2012; Wester et 

al. 2013; Williamson et al. 2013b). Similar to urinary isolates the majority were CAIs (67%). Despite 

the collection process for the local bacteraemia strains being skewed toward urinary-source strains, 
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the non-biased BSAC (Reynolds et al. 2008) strains still revealed the genitourinary tract to be the 

most common source of infection (39%), as identified in multiple UK and European studies (Bukh et 

al .2009; Horner et al. 2014; Laupland et al. 2008; Wester et al. 2013). 

Interestingly, respiratory-source strains were more common in male patients than female patients. It 

is possible that this is due to aspiration pneumonia (Wei et al. 2013) and community-acquired 

pneumonia (Millett et al. 2013; van Gageldonk-Lafeber et al. 2013) occurring more frequently in 

men or that the respiratory tract infection was reported as the most common HAI in the UK (Health 

Protection Agency, 2012c). However, this is unclear here without further investigation of patient 

histories. Genitourinary, gastrointestinal and respiratory-source isolates were predominantly 

isolated from patients aged 61–90 years, demonstrating the high number of patients presenting with 

bacteraemia between these ages and the increased likelihood of co-morbidity at this age (Wester et 

al. 2013).

There has been no major change in the phylogroups dominating ExPEC strains in the UK (Cooke et al.

2010). Phylogroups B2 and D were most prevalent in all infection types, with a higher proportion of 

these two groups in bloodstream isolates than urinary isolates (89% versus 82%). The success of 

these groups was affirmed by the prevalence of the five major lineages ST131, ST95, ST127, ST73 (all 

B2) and ST69 (D), which have been reported as frequent causes of extra-intestinal infections in the 

UK and around the world over the last few years (Abraham et al. 2012; Banerjee et al. 2013a; Horner 

et al. 2014; Johnson et al. 2011; Skjot-Rasmussen et al. 2012b). These lineages were identified in a 

similar proportion of urinary (40%) and bloodstream (44%) isolates, which supports the notion of 

urinary strains spreading to the bloodstream and causing infection. Occasionally (2%) strains of 

these sequence types were detected in other phylogroups (e.g. ST131/D, ST127/A, ST95/D, 

ST69/B1), as identified previously (Johnson et al. 2008b; Molina-Lopez et al. 2011). These rare strains 
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likely display traits of these sequence types, but differ enough to be distinguished, such as EAEC 

strains (ST69/A) with clonal group A (CgA) characteristics that occasionally cause UTIs, but were 

absent in this study (Olesen et al. 2012; Wallace-Gadsden et al. 2007).

Regarding infection type, ST95 and ST127 were uniformly distributed among bloodstream and 

urinary isolates, suggesting universal adaption to multiple anatomical sites or lack of site-specific 

virulence factors. ST95 strains are known to cause avian and human extra-intestinal infections, with 

virulence factors (ibeA) enabling invasion of the brain endothelium (Homeier et al. 2010). This 

confirms the former conclusion, that these sequence types possess universal virulence factors, as 

ST95 strains appear specifically adapted to brain tissue, but also possess some of the adhesins and 

toxins that allow colonisation of the urinary tract or bloodstream (Mora et al. 2009). In addition, 

ST95 was responsible for the only CSF-source bloodstream isolate in this study, also supporting these 

conclusions. ST127 isolates are reported to possess a high number of virulence factors (Gibreel et al.

2012), but are more closely linked to infections in dogs than humans (Johnson et a.l 2008b), 

suggesting this even distribution among extra-intestinal infections is due to low adaptation to 

human anatomical sites, which is overcome by the virulence factors present .

In contrast ST131 and ST73 were more frequently detected in bloodstream isolates. This mirrors a 

recent study from Nottingham, UK (Alhashash et al. 2013). However, another study from the same 

region reported ST73 as the predominant clone causing bacteraemia (Horner et al. 2014). The 

former study investigated isolates from HAIs only, while the latter study included both CAIs and 

HAIs, demonstrating that ST131 is more successful in the hospital setting, while ST73 is better 

adapted for success in the community. The success of ST73 in the community is confirmed by 

another study of UPEC in Manchester, UK, which identified this sequence type as the most prevalent 

in urinary isolates also (Gibreel et al. 2012).

Unsurprisingly ST69 was more frequently detected in urinary isolates than bloodstream isolates. As a 

clone originally identified in college women with uncomplicated cystitis (Manges et al. 2001), studies 
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from around the world indicate that ST69 has remained a significant cause of UTIs (Banerjee et al.

2013a; Dias et al. 2009; Johnson et al. 2011). In conjunction with ST95 these two clones were 

responsible for the majority of ABU, UC and COMP isolates, reaffirming the adaption of these 

lineages to the urinary tract.

The geographical spread and distribution of the major lineages around the UK was surprising. As a 

well characterised multi-drug resistant clone, it was assumed that ST131 would be the most 

common lineage in bloodstream isolates in each region and country of the UK. However, this was 

only observed for London, the South-West of England and Wales. The office of National Statistics 

(http://www.neighbourhood.statistics.gov.uk/) reports that Wales has a higher proportion of people 

aged >65 years (19.1%) compared with England (16.9%). In addition, of all nine regions of England, 

the South-West also has the highest proportion of people aged >65 years (20.3% vs. 11.3-18.2%). As 

this aged population is the most frequently affected by E. coli bacteraemia, it is possible that ST131 

is prevalent in these regions due to the larger susceptible population. ECDC data also reports that 

more quinolones are prescribed in Wales than in England, which may be driving the success of ST131 

in this country also (European Centre for Disease Prevention and Control, 2013a).

Also of note was the lack of ST69 in Welsh and Scottish isolates. However, as a predominantly 

uropathogenic clone it is possible that this lineage is not as well adapted for the bloodstream and 

limited use of trimethoprim in treating UTIs in these countries may prevent this clone from 

becoming established in these communities and spreading to the bloodstream (Johnson et al. 2011).

Defying the general phylogenetic consensus, an unusual phylogroup PCR profile (gadA+, chuA-, yjaA+, 

TspE4.C2+) was identified in this study. Though uncommon, two other studies have reported this 

unique profile (Mendonca et al. 2011; Skjot-Rasmussen et al. 2013). Contrary to these previous 

reports and the hypothesis that this phylotype was related to ST127, the UK isolate belonged to a 

novel sequence type, ST3679, and serogroup O18ab. In addition, PFGE analysis (Figure 15) revealed 

just 40% DNA relatedness between this strain, the four major phylogroups and five major lineages of 
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this study, indicating a non-ST127 origin. It is possible that this phylotype represents an atypical 

ExPEC strain or is not ExPEC in origin, as all E. coli strains and pathotypes share 40% of their core 

genome (Welch et al. 2002).

Serotyping can facilitate identification of new ExPEC clones, but this method is usually limited to 

reference facilities and characterisation of small research collections (Blanco et al. 1997; Loos et al. 

2012), with serotyping of ExPEC strains typically focused on internationally recognised clones (Blanco 

et al. 2011; Johnson et al. 2006). This potentially reduces detection of atypical clonal isolates and full 

understanding of the ExPEC population. A benefit of such a large isolate collection included the 

detection of twenty-one novel ExPEC serogroups in this study, as well as 14 serogroups previously 

unlinked to the five major clones. Conversely, 14 well-known ExPEC serogroups were frequently 

(61%) identified in urinary and bloodstream isolates and dominated the five major clones, such as 

ST95-O2, ST73-O6 and ST131-O25 (Ananias and Yano, 2008; Blanco et al. 2011; Emanghoraishi et al. 

2011; Johnson et al. 2008b; Kudinha et al. 2013b; Lau et al. 2008b; Manges et al. 2008; Melzer et al.

2008; Skjot-Rasmussen et al. 2012a). Serogroup O6 in particular has been identified as an important 

colonisation factor of the urinary tract, with an additional role in serum resistance (Sarkar et al.

2014). Therefore, it is possible that the other common O-antigens have similar functions. Together 

these results demonstrate the serogroup diversity within ExPEC and confirm the clonal success of 

many ExPEC strains. Other important serogroups of note included O7 and O75 (Johnson et al. 2006;

Platell et al. 2011), which were not identified in the five major clones, but were identified in 

urosepsis isolates of ST62 and ST404, both of which are recognised ExPEC clones (Alhashash et al.

2013; Berman et al. 2014). This observation reaffirms the role of serotyping in identifying clinically 

significant clones when molecular methods, such as MLST, may be unavailable.  

Analysis of the paired urosepsis isolates demonstrated the success of the five major ExPEC lineages 

and identified other clones circulating within the UK; ST354, ST404, ST405, ST62, ST14 and ST617 

(Alhashash et al. 2014; Horner et al. 2014; Matsumura et al. 2012; Mora et al. 2011; Novais et al. 



Page | 181

2013; Smet et al. 2010). ST1405 was also detected, but little was discovered about this sequence 

type except its association with asymptomatic bacteruria (http://mlst.ucc.ie/mlst accessed 26th

March 2014), highlighting the importance of understanding ExPEC as a whole, as it cannot be 

guaranteed that new sequence types will not become prevalent in the future. Generally urosepsis 

was caused by one strain, however, one patient in this study was simultaneously infected with two 

different strains (ST14/B2 and ST354/D). It is possible that this phenomenon occurs more frequently 

in E. coli infections than reports suggest (Clermont et al. 2013b; Leflon-Guibout et al. 2002), 

especially with the tendency in diagnostic microbiology to select one colony forming unit for 

identification and analysis if all colonies appear the same. In these cases one strain may benefit from 

the virulence repertoire expressed by the other strain, despite being avirulent or antibiotic 

susceptible. This type of symbiotic relationship is particularly evident in biofilms and intracellular 

communities (Blango and Mulvey, 2010). In the future it would be interesting to analyse multiple E. 

coli colonies from urosepsis patients to determine whether there are any strains or clones that 

function together.

In summary, this study has confirmed the findings of previous studies by observing no major change 

in the UK patient population susceptible to E. coli bacteraemia and UTIs (Bean et al. 2008; Health 

Protection Agency, 2011). Although, this study does provide the supporting information necessary 

for classification of UTIs in men to be more defined. In contrast the ExPEC population in the UK is 

highly diverse, as demonstrated by phylogroup, serogroup, sequence type and PFGE, despite the 

dominance of the five major ExPEC clones. It is also apparent that the clonal composition of UK 

isolates differs from other international studies, demonstrating the importance of local routine 

monitoring of E. coli, not just in bacteraemia, but also UTIs, the most common bacterial infection in 

the community. With the variation in prescribing practices around the world, it is important to 

understand how this diversity affects antibiotic resistance and to determine whether standard 

empirical therapy remains valid. 
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Antibiotic resistance in Escherichia coli causing urinary tract infections and bacteraemia, in East 

London and across the UK

Comparison of antibiotic resistance data from this study with published studies reveals resistance 

rates to have increased in E. coli (Bean et al. 2008; Health Protection Agency, 2011; Kahlmeter and

Poulsen, 2012; Schito et al. 2009), but without any recent or large-scale studies in the UK, it is 

difficult to understand the changes in urinary isolates on a national level.

The Infectious Diseases Society of America (IDSA) has suggested that antibiotics with resistance rates 

≥20% should no longer be prescribed, so as to prevent selection of resistant strains and to minimise 

the risk of treatment failure (Gupta et al. 2011). If this recommendation was adopted, ampicillin, 

amoxicillin-clavulanate (augmentin), trimethoprim and trimethoprim-sulfamethoxazole should no 

longer be prescribed for the eradication of UTIs and bacteraemia caused by ExPEC in the UK. Within 

urinary isolates this high prevalence of resistance was multi-factorial, attributable in part to two 

ExPEC clones, clonal group A/ST69 (58% trimethoprim-resistant) and ST131 (66% ciprofloxacin-

resistant, 62% trimethoprim-resistant), plus the recommended use of trimethoprim-

sulfamethoxazole (uncomplicated cystitis) and ciprofloxacin (complicated cystitis/pyelonephritis) 

which now appear to be inappropriate given these high resistance rates and associated clonal 

resistance (Gupta et al. 2011; Johnson et al. 2011; Johnson et al. 2010; SIGN, 2006; Barts and the 

London Trust Antimicrobial Review Group, 2011).

Fortunately nitrofurantoin resistance has remained low (1%), possibly due to the negative impact on 

bacterial fitness and lack of plasmid-mediated resistance genes targeting this antibiotic (Sandegren 

et al. 2008; Whiteway et al. 1998). In addition, nitrofurantoin is highly effective against ESBL-

producing isolates (Fournier et al. 2013; Livermore et al. 2011; Sahm et al. 2001), making this 

antibiotic a viable option for first-line treatment of lower UTIs. Despite 29% of urinary isolates 

demonstrating amoxicillin-clavulanate resistance, this antibiotic combination could still be used for 

lower UTIs, including those caused by ESBL-producing isolates and infections in pregnant women. 

Clavulanate achieves a high concentration in the bladder, enabling eradication of E. coli with an 
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amoxicillin/clavulanate MIC of 64/32 mg/L (Alou et al. 2006). EUCAST has now adjusted its clinical 

breakpoints accordingly (The European Committee on Antimicrobial Susceptibility Testing, 2014) and 

repeat analysis of the UC study isolates resulted in a shift in resistance rates from 29% to 0%, while 

ABU resistance rates changed from 28% to 0% also. In children, Chakupurakal et al (2010) 

recommended cefalexin as first-line UTI treatment due to the ampicillin and trimethoprim resistance 

in this population. Results from this study support this suggestion. For multi-drug resistant isolates

that express ESBLs, such as ST131 strains, a carbapenem would be effective (Fournier et al. 2013). 

Especially as carbapenem resistance was rarely reported in UK E. coli during this study, despite the 

circulation of carbapenemase enzymes within this species (Hopkins et al. 2014; Woodford et al.

2013). However, recent data from Public Health England (Personal communication with Prof. Neil 

Woodford, September 2014) suggests this low level carbapenem resistance won’t last and this 

proposed treatment of multi-drug resistant isolates will need to be revisited in the future.

Antibiotic resistance in bloodstream isolates was higher than urinary isolates, increasing 2-8-

fold in the presence of ESBLs, but comparable to recent UK and European bacteraemia reports 

(European Centre for Disease Prevention and Control, 2012; European Centre for Disease Prevention 

and Control, 2013b; Horner et al. 2014). However, resistance to the cephalosporins (10%), 

ciprofloxacin (21%) and aminoglycosides (11 – 26%) was often higher in these UK strains, likely as a 

result of the higher proportion of ST131 strains causing bacteraemia. A recent UK study linked rising 

antibiotic resistance to the increasing number of E. coli bacteraemias (Schlackow et al. 2012). 

Therefore, it is important that regular monitoring of prescribing practices and infection control 

policies is performed alongside antibiotic resistance surveillance, to prevent further increases in 

antibiotic resistance and empirical therapy becoming redundant. Until this happens temocillin and 

carbapenems are currently recommended as alternative antibiotic options for eradicating multi-drug 

resistant ExPEC strains causing bacteraemia (Fournier et al. 2013; Livermore et al. 2011). Another 

factor in treating bacteraemia is targeting the source of infection, to prevent repeat infection of the 

bloodstream and to ensure that the prescribed antibiotics will reach effective concentrations at both 
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sites. The genitourinary tract was the most common source of bacteraemia in this study and 

urosepsis can be prevented by improving UTI management. One Danish study indicated that higher 

resistance in their community-associated urosepsis isolates was due to high prescribing in the 

community (Skjot-Rasmussen et al. 2012a). However, in this study hospital-associated bloodstream 

isolates were more resistant than the community-associated isolates, suggesting this principle is not 

applicable here, but revision of prescribing practices may reduce the number of E. coli isolates that 

go on to cause urosepsis and reduce antibiotic resistance (Livermore et al. 2013).

The BSAC bacteraemia isolates revealed regional variations in antibiotic resistance that could 

not be completely explained by antibiotic prescription data (Health Protection Agency, 2008). The 

recent English surveillance programme for antimicrobial utilisation and resistance report from Public 

Health England reveals a north/south divide in antibiotic consumption in England, with a higher 

number of prescriptions in the North (Public Health England, 2014a). However, the lack of national 

guidelines for empirical treatment of E. coli bacteraemia lends to clinicians prescribing antibiotics 

based on their experience, medical specialty and local hospital guidelines, which can vary from 

clinician to clinician (McNulty et al. 2003). Although in London and the South-West of England, the 

high rates of cephalosporin and fluoroquinolone resistance are likely to be a direct result of the 

ST131 prevalence in these regions. On a national level, possible reasons for high rates of resistance 

to cephalosporins, aminoglycosides (both Wales), cefoxitin (Republic of Ireland) and 

chloramphenicol (Scotland) may include the high prevalence of ST131 (Wales), circulation of AmpC 

beta-lactamases (Ireland), co-circulation of plasmid-mediated resistance determinants in animal 

strains (all), the use of chloramphenicol-medicated feed for farm animals (Scotland) and, for the 

South-West and Yorkshire and Humber regions, high prescriptions of ciprofloxacin and 

trimethoprim, respectively. Although further investigation would be required to confirm these 

hypotheses (Frye and Jackson, 2013; Public Health England, 2014a; Woodford et al. 2007). 
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Interestingly, isolates from male patients demonstrated higher rates of resistance compared 

with female patients, with particular emphasis on ciprofloxacin resistance. Published studies have 

reported similar observations (Bean et al. 2008; Linhares et al. 2013), while others contradict this 

finding, likely as a result of differing prescription practices (Den Heijer et al. 2012; SIGN, 2006;

Wagenlehner et al. 2013b). The logical explanation for this finding lies in the infection types and 

treatment options for male patients. Prostatitis and bacteraemia occur more frequently in male 

patients >50 years (Health Protection Agency, 2011; Lipsky et al. 2010), with the former often 

leading to the latter in 46% cases (Etienne et al. 2008). In the UK ciprofloxacin is recommended for 

treating prostatitis (SIGN, 2006) leading to selection and expansion of ciprofloxacin-resistant clones, 

such as ST131 (Wagenlehner et al. 2013b; Williamson et al. 2013a). In addition, ciprofloxacin is not 

the first-line treatment for UTI in female patients and they are not prescribed fluoroquinolones as 

frequently as male patients (Den Heijer et al. 2012; Den Heijer et al. 2010; Goettsch et al. 2000;

Linhares et al. 2013). Furthermore, in hospitalised patients ciprofloxacin is avoided to prevent the 

development of Clostridium difficile-associated diarrhoea and prescriptions in this setting have 

declined over the last few years (Dancer et al. 2013; Public Health England, 2014a).

Much of the resistance observed within UK ExPEC isolates was associated with multi-drug 

resistant clones, such as ST131 and ST69, which belong to phylogroups B2 and D, respectively. 

However, strains of phylogroup A and B1 were cumulatively more resistant than these virulent 

phylogroups. This is likely a result of the low numbers of phylogroup A and B1 strains, plus the 

number of ESBLs (n=13) expressed by these isolates, generating disproportionately high resistance 

rates. 

ESBL prevalence remained low within the urinary (0.6%) and bloodstream (8.8%) isolates (Health 

Protection Agency, 2011; Kahlmeter and Poulsen, 2012) and, similar to previous studies, CTX-M-15 

was the most frequently detected enzyme (Woodford et al. 2004; Horner et al. 2014; Schito et al.

2009), often in conjunction with OXA-1 and/or TEM-1 (Huang et al. 2012; Karisik et al. 2006; Wang et 

al. 2013). It should be noted that approximately 35-88.2% of all E. coli isolates possess the TEM-1 
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gene, conferring resistance to ampicillin +/- amoxicillin-clavulanate, but in this study only 

cephalosporin-resistant isolates were investigated for this gene (Olesen et al. 2004; Perez-Moreno et 

al. 2004; Thomson and Amyes, 1993). However, the frequency at which aac(6’)-Ib-cr was detected in 

ESBL-producing strains has increased to 59%, compared with the 32-51% reported previously in UK 

isolates (Amin and Wareham, 2009; Wu et al. 2013) and was often identified with the widespread 

aminoglycoside modifying enzyme aac(3’)-IIa (Jones et al. 2008; Lindemann et al. 2012; Xiao and Hu,

2012). Notably, aac(6’)-Ib-cr was not found in phylogroup D strains, along with ESBLs, indicating that 

the prevalence of these resistance determinants was directly attributable to ST131 strains and the 

multi-drug resistance plasmids they possess (Calhau et al. 2013; Chmielarczyk et al. 2013; Olesen et 

al. 2013). In addition, isolates lacked 16S rRNA methyltransferases, which confer pan-resistance to 

aminoglycosides, confirming that this pan-resistance was a result of multiple AME possession and/or 

loss of an aminoglycoside transport system or change in membrane potential. It is these additional 

mechanisms, along with efflux pumps, change in membrane permeability and mutations in the 16S

rRNA that likely confer aminoglycoside non-susceptibility in the AME-negative/aminoglycoside-

resistant isolates (Ramirez and Tolmasky, 2010). Few E. coli isolates are reported to possess qnrS, 

qepA or oqxAB (Jones et al. 2008; Kirchner et al. 2011), as confirmed by the results of this study. 

While these genes may benefit other Enterobacteriaceae, such as Klebsiella species  (Deepak et al.

2009; Younes et al. 2011), they are likely redundant in E. coli that possess mutations in the DNA 

gyrase gene and/or aac(6’)-Ib-cr , as these are sufficient to raise the MICs for survival in the presence 

of fluoroquinolones (Johnson et al. 2013; Kim et al. 2013).

Despite this concerning increase in resistance to empirical therapy, a significant proportion 

of urinary isolates displayed susceptibility profiles that should have resulted in effective eradication 

of the infection according to current guidelines. In addition, several antibiotic candidates have been 

identified (e.g. nitrofurantoin, fosfomycin) that could be routinely employed for empirical treatment 

of multi-drug resistant UTI and bloodstream isolates. Also concerning was the discrepancies 

between the antibiotic susceptibility testing methods evaluated as part of this study (disc diffusion, 
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MicroScan and agar dilution), suggesting that antibiotic resistance may be under-reported. However, 

MICs here are unlikely to be 100% representative of the community and nosocomial ExPEC 

population, given the lack of good quality clinical information accompanying patient specimens and 

the typical reasons for referral of urinary isolates (e.g. treatment failure, recurrent infection, 

complication). Much of the antibiotic resistance seen in these UK isolates could be attributed to 

major ExPEC clones, especially ST131, which was likely a major contributor. To ensure that this 

increasing tide in resistance can be controlled, or even reduced, therapeutic strategies targeting the 

multi-drug resistant clones need to be developed, such as rapid diagnostic tests, as well as changes 

in prescribing practices which select for these strains.

The UK ST131-O25b clone 

Many studies of antibiotic resistance in ExPEC have focused on the ST131 clone (Kudinha et al.

2013a; Liss et al. 2013; Matsumura et al. 2013). This multi-drug resistant clone emerged in the early 

2000s, becoming a significant cause of UTIs and bacteraemia, while providing a challenge to 

empirical antibiotic therapy (Nicolas-Chanoine et al. 2008; Peirano and Pitout, 2010). However, in 

the last few years studies have concentrated on the H30 sub-clade, identified by sequencing of the 

fimH gene, and its associated fluoroquinolone resistance and ESBL expression (Banerjee et al. 2013b;

Peirano and Pitout, 2014; Price et al. 2013). Therefore, it was important to identify and characterise 

ST131 strains in the UK and establish how they related to previous studies and this new sub-clade.

Multiple PCRs, SNP analyses and sequencing methods have been employed to identify ST131 strains 

(Blanc et al. 2014; Dahbi et al. 2013; Olesen et al. 2013). In this study a sequence type PCR (Doumith

et al. 2014) was evaluated as a simple method to identify strains belonging to this clone, which was 

in turn validated using the published pabB SNP PCR (Dhanji et al. 2010). Serogrouping, fimH

sequencing and antibiotic resistance further differentiated UK ST131 strains into three sub-clones 

based on the presence (clonal) or absence (non-clonal) of both pabB SNPs, then by the presence or 

absence of ESBLs (Table 27).
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Sub-clone ST131 SNPs ESBL FQ-R
1 X X X X
2 X X X
3 X

Table 27 Algorithm for identification of UK ExPEC strains belonging to the three ST131 sub-clones 

ST131 as determined by sequence type PCR, presence of SNPs determined by real-time PCR, ESBLs 

identified by PCR and DNA sequencing and fluoroquinolone resistance (FQ-R).

ST131 was the most frequently detected ExPEC clone in this study and dominated bloodstream 

isolates (19%), which emulates recent UK and international studies (Horner et al. 2014; Johnson et 

al. 2010; Kang et al. 2013; Kudinha et al. 2013a). However, ST131 (8%) was not the dominant clone 

in urinary isolates, being surpassed by ST95 (11%) and ST69 (10%), although urinary ST131 strains 

were mostly isolated from complicated cystitis/pyelonephritis infections. This trend in infection type 

can be explained by the antibiotic resistance of ST131. UK clonal ST131 strains demonstrated 62% 

and 77% resistance to trimethoprim and ciprofloxacin, respectively, rendering empirical UTI therapy 

with these antibiotics mostly ineffective (Gupta et al. 2011; SIGN, 2006). This ability to overcome 

first-line therapy can result in ascension to the kidneys and initiation of a more severe infection (e.g. 

bacteraemia), which is facilitated by the possession of virulence factors (Rogers et al. 2011). The 

proportion of ciprofloxacin resistance observed here was much higher than recent studies from 

Europe and North America reporting 26%-40% (Blanco et al. 2011; Chmielarczyk et al. 2013; Colpan 

et al. 2013), although some studies have reported 93%-100% resistance (Dahbi et al. 2013; Olesen et 

al. 2013), but these focused on the ESBL-producing variants of the clone. 

The prevalence of CTX-M genes in UK ST131 isolates was also higher (31% vs. 10%-12%) than similar 

studies describing ST131 strains (Blanco et al. 2011; Platell et al. 2011) and 92% of CTX-M-positive 

isolates belonged to the newly designated H30-R sub-clone (Price et al. 2013), with the R 

representing ciprofloxacin resistance. The dominance of CTX-M-15 in these UK strains, reflects the 

successful circulation of this ESBL in the UK (Woodford et al. 2004; Gibreel et al. 2012), but CTX-M-
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14 and CTX-M-27 genes were also detected; a feature reported in Danish ST131 isolates also (Olesen 

et al. 2013). CTX-M-27 is derived from CTX-M-14 (alanine->glycine substitution at position 725), 

sharing >98% amino acid identity, and is one of few CTX-M genes with a D240G (aspartic acid-

>glycine) substitution along with CTX-M-15; together demonstrating the conserved nature of ESBL 

possession in E. coli strains (Bonnet et al. 2003; Bonnet, 2004). These CTX-M genes, except two, 

were encoded on IncF plasmids of FIA or FIA-FIB allelic combinations, many of which have not been 

described in this clone (http://pubmlst.org/plasmid/). The two exceptional strains carried IncU 

plasmids and were thought to encode CTX-M-15, the first description of this plasmid type in ST131 

strains from the UK, however these plasmids were recently described in ST131 strains from Japan 

(Matsumura et al. 2013). Associated with qnrS genes and identified in multi-drug resistant 

Aeromonas species (Cattoir et al. 2008; Picao et al. 2008), the IncU plasmids identified here also 

encoded TEM-1, OXA-1 and aac(6’)-Ib-cr, typical of resistance plasmids in ST131 strains (Dahbi et al.

2013; Matsumura et al. 2012). 

Long established as an identifying feature of the ST131 clone, the O25b antigen was detected in 

100% of UK H30-R isolates, as well as in ciprofloxacin-susceptible and non-H30 strains. In contrast to 

previous studies, (Dahbi et al. 2013; Kudinha et al. 2013a; Matsumura et al. 2013; Olesen et al. 2013)

O16 was identified in non-clonal isolates only, all of which were ciprofloxacin-susceptible and CTX-

M-negative. Importantly, three serogroups novel to ST131 strains within the UK and around the 

world, were identified (O19a, O136 and O153). These serogroups have been reported in E. coli

(Ananias and Yano, 2008; Croxen et al. 2013; Staaf et al. 1999) and, like the IncU plasmids, were 

likely acquired as a result of the plastic nature of the E. coli genome, by horizontal gene transfer of 

plasmids or high-frequency recombination events of chromosomal DNA fragments (Wiesner et al. 

2013; Brouwer et al. 2013; Chewapreecha et al. 2014).

Further evidence of the expansion of this sub-clone lies in analysis of the fimH alleles. Historically the 

H22 allele dominated ciprofloxacin-susceptible ST131 strains (Johnson et al. 2013). However, H30 

was just as prevalent in ciprofloxacin-susceptible strains here, suggesting that the H30-R sub-clone 
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may soon encompass all clinically isolated ST131 strains, especially if the use of fluoroquinolones is 

not restricted further. 

Despite the expansion and spread of H30-R ST131 isolates PFGE revealed great heterogeneity, with 

just 40% DNA relatedness. This differs to previous reports of ST131 strains being highly related 

(>60%), although these reports were limited geographically (Colpan et al. 2013; Gibreel et al. 2012;

Johnson et al. 2009a; Lau et al. 2008a; Liss et al. 2013), whereas these UK isolates represent the 

national diversity of ST131. In addition, there was no clustering of traits such as CTX-M genes, 

serogroups and fimH alleles, as seen in previous studies (Lau et al. 2008a; Price et al. 2013). Together 

these results revealed how ST131 strains have evolved significantly since the first report of this 

emerging clone (Nicolas-Chanoine et al. 2008) and vary from country to country, despite retaining 

the molecular traits specifically attributed to this clone. These results also suggest that PFGE should 

no longer be used to compare such geographically-widespread ST131 collections, given this 

heterogeneity and the over-complicated characterisation of this clone. Peirano and Pitout (2010) 

suggested that only the sequence type, ST131, characterized this clone, with sub-clades comprising 

ciprofloxacin-resistant and/or CTX-M-15 strains. Although, this was before the discovery of ST131-

O16 strains and identification of the H30 fimH allele (Johnson et al. 2013; Matsumura et al. 2012). 

Despite these novel attributes of ST131 strains, results from this study support Peirano’s statement 

(see Table 26 above). However, it is important that the algorithm is re-visited regularly as new traits 

are identified within this clone. 

CTX-M production was always accompanied by ciprofloxacin resistance in this clone (Banerjee and 

Johnson, 2014), but CTX-M-negative ST131 isolates may also be ciprofloxacin-resistant. Therefore, 

antibiotic susceptibility needs to be determined before antibiotics can be prescribed rationally to 

eradicate clonal isolates and prevent treatment failure, except for bacteraemic patients where rapid 

treatment is required. Development of a point-of-care test that identifies this clone, in a similar 

manner to urine dipsticks or pregnancy tests, would enable rapid identification of ciprofloxacin-

resistant ST131 strains in patients presenting to their GP with a UTI and, potentially, patients with 
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bacteraemia presenting to accident and emergency departments. It would also facilitate appropriate 

antibiotic therapy, which in turn would reduce treatment failure and the need to re-visit the GP, as 

well as prevent the infection ascending to the kidneys and causing bacteraemia. A test that targeted 

ST131, cefotaxime resistance (as a marker of ESBL) and ciprofloxacin resistance would enable 

identification of all clonal isolates and distinction of the sub-clades. These patients could then be 

treated with appropriate antibiotics such as nitrofurantoin (lower UTI) or a carbapenem 

(bacteraemia or upper UTI) (Gupta et al. 2007; Takahashi et al. 2009). 

Further analysis of this clone, such as examination of the virulence determinants possessed by ST131 

strains and the three sub-clones, may help explain the diversity of this clone, whether the ‘limited 

profile’ in CTX-M-positive strains (i.e. O25b, ciprofloxacin resistant, H30) includes their virulence 

repertoire and if these determinants explain the invasiveness of the ST131 clone.

ExPEC virulence determinants

In this study an E. coli genotyping microarray was used to simultaneously investigate the antibiotic 

resistance determinants, serotypes and virulence repertoire of 95 ExPEC isolates. Unfortunately this 

array did not perform as expected, producing multiple false-positive and false-negative signals, as 

determined by comparison with data for the same isolates from published PCRs and their MICs. This 

is not the first time that discrepant results have been reported with these arrays (Dierikx et al. 2012;

Geue et al. 2010; Geue et al. 2014; Schilling et al. 2012). Possible reasons include microarray printing 

errors, inefficient primers, excess DNA and low temperatures resulting in non-specific hybridisations, 

inefficient washing during the hybridisation process, stability of stored reagents and inefficient 

labelling (Eads et al. 2006). The microarray assay was performed according to the manufacturer’s 

instructions, using the reagents and protocols recommended at the time. However, subsequent to 

this work being performed, Alere Technologies updated the array (http://alere-

technologies.com/en/products/lab-solutions/e-coli) and removed several targets. These included cif, 

vat, tsh, sat and iha. In this evaluation sat, tsh and iha were not detected in 34 isolates by the 
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microarray, while cif and vat were frequently detected by the microarray (n=62), demonstrating 

poor specificity, despite the VF PCRs demonstrating contradictory results. Although removal of non-

specific targets may improve the performance of the microarray, this does not explain all the 

ambiguous results. Raising the signal value cut-off above that recommended by the manufacturer 

(e.g. ≥0.5) has been used by some researchers to reduce discrepancies (Wagner, 2012). However, 

raising the signal value cut-off did not improve the microarray results in this study. Problems with 

DNA-based microarray platforms have been reported, suggesting that at present this technology can 

be problematic for analysing the genetic content of bacterial strains (Bogaerts et al. 2011; Cohen et 

al. 2010; Nijhuis et al. 2011). Fortunately, whole genome sequencing has advanced in recent years 

and may provide an improved technique for evaluating the gene content of ExPEC isolates 

(Subashchandrabose et al. 2013).

The VF PCR assays provided an improved method for investigating the VF content of these strains, by 

including a higher number of ExPEC, DEC and APEC VFs that have been reported in ExPEC strains 

(Johnson and Stell, 2000). In addition, these assays have been used by multiple international 

research groups, confirming their reliability (Banerjee et al. 2013b; Blanco et al. 2013; Lopez-Banda 

et al. 2014; Santos et al. 2013). 

The majority (94%) of isolates analysed were classified as ExPEC, according to the characteristic VFs 

fimH, pap, fyuA, iutA, kpsMTII, traT and usp, and this proportion was in agreement with similar 

studies (Cooke et al. 2010; Micenkova et al. 2014; Oteo et al. 2014; Piatti et al. 2008). However, in 

contrast to the minimum ExPEC profile defined by Johnson and Stell, hlyD and malX were less 

frequently detected and usp has become more prevalent (Johnson and Stell, 2000). Notably, the 6% 

of isolates that lacked the characteristic VFs were generally avirulent (maximum 3 VFs), collected 

from patients with a complication (diabetic, catheter) and mostly belonged to phylogroup A, 

suggesting their success was a result of patient compromise rather than virulence. Overall, the UK 

ExPEC strains demonstrated great variety in their VF repertoire, with the major ExPEC lineages also 



Page | 193

differing in their VF content compared to internationally characterised strains (Manges et al. 2001;

Platell et al. 2011).

As well as possessing the highest VF score of the four phylogroups, phylogroup B2 isolates also 

demonstrated the highest prevalence of pathogenicity islands (PAI). As reported by Calhau et al

(2013), CFT073 I, CFT073 II and 536 IV were frequently identified together within these isolates. 

These islands encode pap, hlyA, sat, fyuA and malX, supporting the notion that high numbers of PAIs 

and prevalent virulence factors go hand in hand (Dobrindt et al. 2002; Guyer et al. 2000; Parham et 

al. 2005a; Guyer et al. 1998). Another interesting observation from this study was the association of 

536 III with ST127-O6 isolates. This PAI encodes sfa and tsh, of which sfa has been linked to ST127-

O6 isolates and was identified in these UK strains (Dobrindt et al. 2002; Johnson et al. 2008b).

Based on infection-specific differences, virulence factors could be sub-divided into colonisation 

factors and virulence factors. Identified in 94% of isolates, fimH, fyuA, iutA, kpsMTII, traT and usp

could be considered ExPEC colonisation factors. The role of fyuA as a colonisation factor was 

supported by Johnson and Stell (2000), who identified the importance of fyuA in compromised and 

non-compromised patients. In this study fyuA was equally as prevalent as traT (66%), which was 

common to both urinary and bloodstream isolates. Furthermore, fyuA was lacking in the paired 

urosepsis isolates, advocating a colonisation role, along with fimH which was also less prevalent 

(81% vs. 95-100%) than previous studies (Cooke et al. 2010; Johnson et al. 2005b; Norinder et al.

2011). 

Whereas iha and sat were prevalent in both UC and GU isolates, indicating a role in ExPEC virulence 

in UTIs and bacteraemia, which has been confirmed by the presence of these determinants in EHEC 

O157:H7, EAEC causing UTIs and the ST131 H30-Rx sub-clone (Banerjee et al. 2013b; Bielaszewska et 

al. 2011; Olesen et al. 2012). 

In urosepsis isolates (COMP and GU), pap, afa/dra and ompT were more frequently detected 

compared to isolates from other infection types and sources of infection, indicating a urosepsis-
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specific virulence role. As discussed, fyuA and fimH were surprisingly lacking, suggesting a 

colonisation role. One study suggested that pap was required for urosepsis development (Venier et 

al. 2007). However, a more recent study suggested that both pap and afa/dra are required for the 

translocation of E. coli from the urinary tract to the bloodstream (Szemiako et al. 2013), as observed 

here. Interestingly, another study reported pap to be more prevalent in community-associated 

urosepsis isolates, compared with hospital-associated urosepsis isolates (Skjot-Rasmussen et al.

2012a), but this may be a result of UTIs presenting predominantly in the community (Bean et al.

2008) and the increased role of catheters in hospital-acquired infections (Melzer and Welch, 2013)

ruling out the need for conventional adhesins.  Johnson et al (2008a) also demonstrated the 

importance of ompT in bacteraemia, with 22% of faecal isolates and 82% of bloodstream isolates 

encoding this protein, as well as the majority of American ST131 clonal isolates (Colpan et al. 2013;

Johnson et al. 2010). Paired urosepsis isolates were mostly of the same strain, but there were 

differences between the virulence factors detected in urinary and bloodstream isolates. It is possible 

that these discrepancies actually represent multiple variants of an ExPEC strain simultaneously 

causing infection (Clermont et al. 2013b; Leflon-Guibout et al. 2002) or, that during translocation to 

the bloodstream, there has been a change in or acquisition of genetic material that improves 

invasiveness (Mahjoub-Messai et al. 2011; Szemiako et al. 2013).

As with previous reports, there was an inverse relationship between VF score and Abx score (Cooke 

et al. 2010; Piatti et al. 2008), confirming that the success of ExPEC relies on either virulence or 

antibiotic resistance, but generally not both. The high VF score of phylogroup B2 isolates was likely 

partly due to the major ExPEC clones within this group (Gibreel et al. 2012b), especially as the seven 

VFs that characterised 94% of UK ExPEC strains were highly prevalent within ST131, ST95, ST73 and 

ST127 strains. However, virulence profiles specific to these clones (ST131 and ST69) differed to 

previous reports (Clark et al. 2012; Johnson et al. 2012a; Manges et al. 2001; Platell et al. 2011), 

demonstrating the temporal and geographical variation in ExPEC strains (Table 28). In particular, 
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ST73 and ST95 isolates possessed the highest number of VFs (n=12) compared with the infamously 

virulent ST131 clone, which possessed fewer (n=10). Sub-clonal differences in ST131 isolates 

provided insight into this virulent clone. The non-clonal isolate lacked adhesins seemingly important 

in virulence (afa/dra and pap), while the clonal-ESBL+ isolates demonstrated lower VF scores, as 

expected, but possessed pap and iha, suggesting these adhesins compensated for the lack of 

virulence factors in highly resistant strains. However, all three sub-clones included a high proportion 

of isolates with usp and traT, indicating that these two virulence factors are important in ST131 

success. Unfortunately recent ST131 studies have focused primarily on the H30-Rx clone, so it would 

be interesting to investigate these three sub-clones further, such as in an in vivo model, to provide 

insight into the importance of these virulence factors within the sub-clones.

Table 28 Virulence profiles identified in UK isolates of five major ExPEC clones. Virulence factors 

included in the profile are detected in ≥70% isolates of each clone.

Clone Virulence factor profile
ST131 fimH iha iutA kpsII traT usp 
ST127 fimH pap cnf1 usp pks malX
ST95 fimH pap fyuA usp pks malX
ST73 fimH pap sfa/foc iha iutA usp pks
ST69 fimH pap fyuA iutA sat traT ompT

The unusual phylotype isolate was investigated for virulence factors as another means to determine 

relatedness to ExPEC and ST127. This isolate possessed ten virulence factors included in the PCR, 

including the ExPEC defining fimH, pap, iutA, traT and malX, confirming that this isolate likely 

belongs to this pathotype (Johnson and Stell, 2000). Analysis of ST127 strains revealed the majority 

(7/9 analysed) to possess fimH, pap, usp, pks and malX, as detected in this novel isolate. However, 

this strain also possessed iha, sat, ireA, iutA and traT, which were less common in ST127, but have 

been detected frequently in other ExPEC clones. Together these findings suggest that this isolate is 

potentially a rare hybrid of clones, seen in a similar manner with the recent E. coli O104 outbreak 
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strain (Bielaszewska et al. 2011) or is a novel ExPEC variant that has acquired virulence factors 

commonly detected in other sequence types. The intestines act as a melting pot for E. coli strains 

and pathotypes, enabling regular sharing of genetic material, therefore, it is possible that this 

unusual phylotype will become more prevalent and expand, just as the major ExPEC clones have. For 

example, pic and EAST1 were detected in a few ExPEC isolates in this study, highlighting the 

increasing trend of EAEC traits in ExPEC isolates (Olesen et al. 2012; Toval et al. 2014), as a result of 

the sharing of genetic material between E. coli pathotypes.

Bacteraemia isolates with a GIT-source likely originate from commensal or avirulent E. coli in the 

intestines (Bokranz et al. 2005; Johnson et al. 1998). With this in mind, it could be argued that 

isolates with a VF score higher than that of GIT-source isolates (>9) be considered virulent. Closer 

analysis of the UK ExPEC isolates revealed that 69/154 (45%) of isolates had a VF score >9, of which 

63/69 (91%) were phylogroup B2 and 62/69 (90%) belonged to one of the major ExPEC lineages. 

Therefore, it could be assumed that the remaining 55% of isolates, which are seemingly less virulent, 

caused infection in the presence of host compromise, antibiotic selection or other environmental 

factors or were caused by a commensal isolate of phylogroup A/B1. But this was unfounded, with 

many of these less virulent isolates including major ExPEC clones (ST69, ST95, ST131) or causing 

urosepsis. Therefore, invasiveness and success seems multi-factorial.

In summary, results from this study demonstrated the link between high VF scores and strain 

variables, such as phylogroup B2 and ST73, while high resistance scores were linked to male 

patients, those aged >50 years and bloodstream isolates. Colonisation factors enable ExPEC to infect 

the urinary tract and, occasionally, the bloodstream, but specific virulence factors are required for 

urosepsis. As the UK ExPEC population has evolved and diversified, its virulence factor repertoire has 

also changed, with different pathotypes and clones sharing virulence factors that facilitate success. 

In order to understand and confirm the importance of these virulence factors, a selection of these 

strains were analysed in an invertebrate infection model.
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ExPEC virulence in G. mellonella

Mortality effected by the 40 ExPEC isolates was highly varied; however, particular patient and strain 

features were significantly associated with larvae mortality.

Isolates from female patients, UTIs and community-associated infections (CAI) all effected slightly 

higher mortality compared with isolates from male patients, the bloodstream and hospital-

associated infections (HAI). More significant than these were isolates of GU-source (100%), ST131 

(78%), SSTI-source (76%), complicated UTIs (72%) and phylogroup A (72%), which effected the 

highest mortality and relative risk ratios of ≥5.40.

The urinary tract has been identified as the most common source of bacteraemia in the UK (Horner

et al. 2014; Livermore et al. 2008). Notably GU isolates also induced the strongest immune response 

(high melanin) and the most cell damage (high LDH), of all bacteraemia sources, supporting the 

notion of urosepsis as a severe and often fatal infection, often mediated by an overwhelming 

immune response (Knowles et al. 2014; Ku et al. 2013; Melzer and Petersen, 2007; Wagenlehner et 

al. 2013a). Analysis of the urinary isolates identified those causing complicated infections to induce 

high levels of cell damage, which would be required for transmission to the bloodstream, whereas 

isolates from uncomplicated cystitis induced a strong immune response that would result in 

eradication from the bladder. This digression among urinary isolates could possibly be explained by 

UC isolates expressing more immunogenic virulence factors (Brumbaugh et al. 2013), which initiated 

a strong immune response, compared with the immune evasion factors expressed by COMP and GU 

isolates, such as capsules and serum resistance proteins (Sarkar et al. 2014; Ulett et al. 2013).

Interestingly, isolates from male patients produced significantly more cell damage compared with 

isolates from female patients, whereas isolates from female patients effected higher mortality. The 

high levels of cell damage associated with isolates from men is probably linked to the high LDH levels 

induced by COMP isolates, as men tend to present with complicated UTIs, such as prostatitis which is 

more common in older men (Kizilbash et al. 2013; Koeijers et al. 2010; Lipsky, 1999). The higher 
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mortality observed with female patients is likely due to a specific strain characteristic or virulence 

factor that is more frequently encountered in women than men. It was thought that pap may be the 

responsible virulence factor, but statistical analysis revealed no association between pap and female 

patients. However, pap was significantly associated with CAIs and GU isolates (P<0.01), both of 

which were also associated with female patients (P<0.01). It is also possible that the higher mortality 

associated with strains from female patients is due to an unknown genetic trait that has yet to be 

identified and could be explored in future studies.

The extensive virulence factor repertoire of phylogroup B2 isolates explains the strong immune 

response observed with this phylogroup, compared with groups A, B1 and D. However, mortality 

was significantly higher with phylogroup A isolates (72%), compared with phylogroup B2 (58%), even 

though phylogroup A isolates possessed a lower VF score. This difference can be explained by LDH 

production, which was higher with isolates of phylogroups A and B1, compared with groups B2 and 

D, indicating that cell damage plays an important role in larvae mortality, as purported by Wand et al  

(2013) with clinically important Klebsiella strains. These findings also suggest that it is not the 

possession of multiple virulence factors that affect mortality, but other genetic or clonal features.

It was no surprise that ST131 isolates, of all the major ExPEC lineages, effected the highest mortality, 

as this clone is known to be highly pathogenic and transmissible (Colpan et al. 2013; Price et al. 

2013). However, it was isolates of ST73 that induced the strongest immune response and cell 

damage, closely followed by ST131 isolates. The virulence of these two lineages may also explain the 

higher mortality associated with CAIs, rather than HAIs, as both ST131 and ST73 were more 

prevalent in CAIs in this study. The increased invasiveness of ST73 isolates observed here, compared 

with ST131, could also explain the high proportion of ST73 isolates causing bacteraemia around the 

UK (Horner et al. 2014). However, an alternative hypothesis is the role of O-antigens in the virulence 

of these lineages. Serogroups O6 and O25 are frequently detected in ST73 and ST131 isolates 

respectively (Dahbi et al. 2013; Johnson et al. 2008b). The O6 antigen has recently been reported as 
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an important colonisation factor of the urinary tract, with an O6-associated insertion sequence (IS1) 

specifically linked to this virulence (Alghoribi et al. 2014; Sarkar et al. 2014). In support, this study 

identified isolates of serogroup O6 to affect the highest mortality (93%); second only to afa/dra

(97%) of all the virulence factors, with O25 isolates affecting much lower mortality (78%). Lack of this 

insertion sequence would also explain the low mortality of ST127 isolates, which also encode the O6-

antigen (Johnson et al. 2008b), but future work would need to confirm this. 

In addition to afa/dra, the other virulence factor affecting significantly high mortality, and also cell 

damage, was ompT (87%). Both of these factors were significantly associated with urosepsis isolates 

(see section 7.3) and have been associated with the ST131-O25b clone, which could explain the high 

mortality associated with this lineage (Colpan et al. 2013; Dahbi et al. 2013; Platell et al. 2011). Of all 

the fimbriae detected pap was significantly associated with high mortality (72% vs. 3-63%), a strong 

immune response and was another virulence factor linked to urosepsis in this study. Together these 

data confirm that pap, afa/dra and ompT are undoubtedly essential in extra-intestinal infection, 

particularly urosepsis, as demonstrated in previous studies (Johnson et al. 2005b; Kariyawasam et al. 

2006; Mahjoub-Messai et al. 2011; Santos et al. 2013; Skjot-Rasmussen et al. 2012b; Szemiako et al. 

2013; Tarchouna et al. 2013).

In contrast, fimH and fyuA, which were the two most common virulence factors in urinary isolates, 

were not associated with mortality, a strong immune response or cell damage; confirming their role 

as colonisation factors. Yersiniabactin (fyuA) has been linked to patient mortality (Mora-Rillo et al. 

2013), but this study did not support this association. 536 IV, the pathogenicity island which encodes 

fyuA, was frequently detected alongside the islands CFT073 I and CFT073 II, as observed in this study 

(Calhau et al. 2013). However, the combination of these three islands did not affect significantly high 

mortality, nor did the virulence factors frequently encoded by these islands; hlyA, iha, sat and iutA,

except pap; although iutA and sat were associated with significant cell damage. Interestingly, the 

pathogenicity islands 536 II and 536 III were associated with high mortality compared to all other 
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islands. Loss of the 536 III PAI from ST127 strains has been linked to decreased virulence. It was 

hypothesised that loss of the iroN gene, located on this island, caused this drop in virulence, but 

future work would need to confirm the effect of this island and associated genes on ExPEC virulence 

(Tourret et al. 2010). 

Analysis of the virulence factors on 536 II and 536 III found no evidence to support this finding, 

suggesting that this associated mortality was due to the genomic content or clonal features of 

isolates encoding these islands, rather than specific virulence factors.

Other determinants associated with low levels of cell damage included hlyF, hra, usp, ibeA, iss, cvaC

and malX, suggesting these factors also function during colonisation rather than as virulence factors. 

A study comparing ExPEC with non-ExPEC also suggested that iss and cvaC were not associated with 

virulence (Santos et al. 2013), while the frequent detection of malX in GIT-source isolates and those 

causing asymptomatic bacteruria, conditions generally associated with less virulent ExPEC, also 

implies that malX is no longer a marker of virulence.

Despite the range in mortality, larvae death was not associated with one specific, universal virulence 

factor. This is particularly apparent with phylogroup B2 isolates, which were frequently reported as 

expressing a high number of virulence determinants, but did not affect significantly higher mortality 

than the other major phylogroups. Similarly, a recent Danish study investigating mortality of patients 

with urosepsis found no association with specific virulence factors or antimicrobial resistance (Skjot-

Rasmussen et al. 2012a).  Notably, ST131 isolates were associated with significantly high mortality, 

but few possessed afa/dra or ompT, which were also linked to mortality. Another important feature 

of ST131, compared to the other major lineages, is that these isolates often have a high VF score and 

a high Abx score, despite previous studies reporting virulence and resistance to be inversely related 

(Banerjee et al. 2013b; Cooke et al. 2010; Ewers et al. 2010). This suggests that virulence and 

mortality, particularly with ST131 isolates, is clonal and determined by particular genomic fragments 
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or genetic make-up, which together confer ExPEC virulence, rather than antibiotic resistance alone 

or a specific virulence factor repertoire.

Williamson et al (2014) were the first group to publish their findings on ExPEC virulence in the G. 

mellonella model. While they found that this model correlated well with the mouse model and that 

high aggregate VF scores were associated with mortality, they were limited by their sample 

population. This study has improved on their initial work by analysing isolates in this model with 

respect to phylogroup, lineage, patient demographics and various virulence factors. However, more 

remains to be done to understand the virulence of ExPEC. 

Next-generation sequencing has recently entered the forefront of diagnostic and research 

microbiology (Bialasiewicz et al. 2014; Skurnik et al. 2013; Underwood et al. 2013), providing greater 

understanding of clinically important ExPEC clones, such as ST131 (McNally et al. 2013). The 

combination of next-generation sequencing and a much larger G. mellonella study could confirm the 

findings reported here, but also determine whether the hypothesis that virulence and mortality of 

ExPEC is clonal and not defined by one sole variable or feature, is valid.
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Concluding remarks

ExPEC remains the most significant cause of urinary tract infections and bacteraemia, in the UK and 

around the world. However, the diversity of ExPEC strains causing these infections makes antibiotic 

therapy problematic and vaccine development challenging.  This study aimed to improve on current 

UK and international ExPEC data by: defining the UK ExPEC population and the patient population 

affected; establishing the antibiograms for urinary and bloodstream isolates; determining the 

prevalence and characteristics of the ST131 clone in the UK; and defining the virulence factors 

required for causing the major ExPEC infections; UTI, bacteraemia and urosepsis. It is hoped that 

results from this study will inform future vaccine development, therapeutic guidelines and facilitate 

development of diagnostic tests.

This is the first UK study to analyse such a large collection of ExPEC strains, by phylogroup, sequence 

type, serogroup and virulence factors. The findings of this study agreed with many long established 

trends in ExPEC, but also identified a number of unique findings.

In agreement with previous studies, it was found that uncomplicated cystitis typically 

affected women, aged 21-50 years in the community, while UTIs in men occurred later in life and 

was typically complicated in nature, likely due to prostatitis in this age group. Bacteraemia, however, 

affected both sexes equally, predominantly in those aged >60 years, and with the genitourinary tract 

the most frequent source of infection. Phylogroup B2 strains remained predominant in UK ExPEC 

infections, followed by phylogroup D. The major ExPEC clones ST131, ST127, ST95, ST73 and ST69 

accounted for ≥40% of UK isolates, with ST131 and ST95 the most prevalent types in bloodstream 

and urinary tract infections, respectively. This finding contrasts with recent UK studies which found 

ST73 to be the most frequent sequence type causing these infections (Gibreel et al. 2012; Horner et 

al. 2014), but this might be a result of ST131 becoming more dominant in the interim.

This large-scale study led to identification of 21 serogroups previously unreported in ExPEC, 

as well as 14 serogroups novel to the major ExPEC clones ST131, ST127, ST95, ST73 and ST69. The 

internationally recognised ST131 clone is known for possessing a few characteristic traits, including 
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serogroups O25 and O16 (Johnson et al. 2010). However, UK ST131 isolates possessed serogroups 

previously unreported in this clone, including O19a, O136 and O153, suggesting that UK ST131 

isolates are more diverse and have evolved differently from ST131 strains in North America, for 

example. 

Novel to this UK study, an isolate of unknown phylotype was identified. Though reported in 

Portugal and Denmark (Mendonca et al. 2011; Skjot-Rasmussen et al. 2013), this variant (of ST3679) 

had not been recognised in the UK until now. Unlike these previous studies, this strain could not be 

linked to ST127 isolates, indicating that it might belong to an unknown clone or possibly a novel 

pathotype that combines intestinal and extra-intestinal traits, similar to Enteroaggregative E. coli

strains with traits of clonal group A (CgA) (Wallace-Gadsden et al. 2007).

Importantly, antibiotic resistance has increased in the ExPEC population, despite the 

decreased use of specific antibiotic classes (e.g. cephalosporins, ciprofloxacin). For example, 

comparison of BSAC isolates collected in 2006 with those collected in 2011 revealed that 

ciprofloxacin resistance had increased from 19% to 21% and gentamicin resistance had increased 

from 9% to 12%. However, cefotaxime resistance has remained stable, at 11% (Health Protection 

Agency, 2011). Within urinary E. coli, ampicillin resistance has increased from 55% to 74%, 

trimethoprim resistance has increased from 40% to 47%, ciprofloxacin resistance has remained 

relatively stable at 12%, but nitrofurantoin resistance has decreased from 6% to 1% (Bean et al. 

2008). Some of the increased resistance can be attributed to the circulation of multi-drug resistant 

clones, such as ST131-O25 and ST69-CgA. However, this study identified a high number of ESBLs in 

phylogroup A isolates, suggesting that phylogroup A isolates contribute significantly to the increased 

resistance, despite previously reports suggesting these isolates were antibiotic susceptible (Johnson 

et al. 2003; Kawamura-Sato et al. 2010). ST617, of phylogroup A, was identified in a patient with 

urosepsis in this study and possessed an ESBL. This sequence type has been reported as a frequent 

carrier of ESBLs, indicating that ExPEC studies shouldn’t limit themselves to the highly prevalent 

clones (ST131, ST127, ST95, ST73 and ST69), but also consider those associated with multi-drug 
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resistance (Kang et al. 2013; Novais et al. 2012; Peirano et al. 2012). The decrease in nitrofurantoin 

resistance is interesting. However, this study compared multiple antibiotic susceptibility testing 

methods and found that disc diffusion often identified isolates as nitrofurantoin-resistant, but MICs 

revealed them to be susceptible; indicating that this decrease in resistance is actually an artifact of 

two non-comparable testing methods. In addition, the regional variation in antibiotic resistance of 

bloodstream isolates indicates that a national guideline for E. coli bacteraemia is urgently required 

to decrease antibiotic resistance, decrease the use of last-line antibiotics and introduce formal 

stewardship of antibiotic prescribing (Public Health England, 2014a). This study also highlighted the 

importance of conducting regular surveillance of antibiotic resistance in urinary E. coli. As an E. coli

UTI can lead to bacteraemia and urosepsis, it would be logical to target the E. coli before it reaches 

the bloodstream. By reviewing regional and national antibiotic resistance on an annual basis, or 

semi-regularly, results would inform local resistance rates and prescribing practices, as well as 

update treatment guidelines accordingly.

Empirical prescribing is one of the possible reasons that the ST131-O25b clone is able to 

succeed. Another is the ability to evolve and acquire new virulence factors that facilitate infection 

and success. These UK ST131 isolates possessed many characteristics of this clone, including H30-Rx 

and CTX-M-15. However, one UK isolate possessed a fimH allele typically associated with ST95 (H27) 

and two other isolates possessed IncU plasmids. These features have not been reported in UK strains 

and, until recently, IncU plasmids were limited to an ST131-O16 isolate in Japan and multi-drug 

resistant Aeromonas species (Cattoir et al. 2008; Matsumura et al. 2013; Picao et al. 2008; Price et 

al. 2013; Weissman et al. 2012). However, this may be because UK studies have not performed such 

a thorough molecular analysis. The virulence factor repertoire of this clone also varied in the UK, 

compared with earlier studies in the UK, Europe and Australia, with fyuA, ompT and malX lacking, 

but iha, iutA and traT highly prevalent and important (Clark et al. 2012; Mora et al. 2014; Platell et 

al. 2011).
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In addition to ST131, the virulence factors that define UK ExPEC differ slightly to those 

identified by Johnson and Stell (Johnson and Stell, 2000). In the UK, fimH, fyuA, hlyD and malX are 

less prevalent, while afa/dra, iha, sat and iroN seem more important in ExPEC infections, particularly 

those caused by the major clones. This is partially in agreement with another UK study conducted in 

Manchester in 2011, which identified fyuA, hlyD and malX in <50% of isolates (Gibreel et al. 2012). 

This study was one of the first in the UK to analyse a selection of ExPEC strains in the Galleria 

mellonella model. This analysis confirmed that fyuA and fimH are commensal factors required for 

establishing an infection, but not the development of severe infections. In addition, this virulence 

model identified ST131 isolates and serogroup O6 as ExPEC variables associated with increased 

mortality. The latter finding is in agreement with a study conducted in Manchester, which identified 

an insertion sequence in the O6-antigen operon of these virulent isolates. The authors linked ST127 

isolates to high mortality, compared with isolates of the other major clones, including ST131, as a 

result of the O6-specific insertion sequence (Alghoribi et al. 2014). While these two studies are 

conflicting, together they highlight the heterogeneity and virulence of ExPEC, but also the diversity 

of these strains within the same country. 

This regional variation indicates that ExPEC studies from around the world are not directly 

comparable to those conducted in the UK. However, UK studies conducted to date have been limited 

by their sample size, the range of virulence factors that were investigated and the degree of 

molecular exploration. Therefore, it is important to review the local resistance and virulence of 

ExPEC, rather than assuming all ExPEC populations are the same.
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Key findings from this study

 In the UK, E. coli bacteraemia affects both men and women equally.

 Resistance has increased to first-line (trimethoprim) and second-line (ciprofloxacin and 

gentamicin) antibiotics used to treat urinary tract infections.

 ST131 and ST95 are the most frequent clones causing bacteraemia and urinary tract 

infections, respectively. 

 UK ST131 isolates are largely similar to those described in North America, except that IncU 

plasmids and serogroups O19a, O136 and O153 have also been identified here.

 Type 1 fimbriae and yersiniabactin are not essential for severe ExPEC infection, while P-

fimbriae and serogroup O6 are associated with mortality.

Future work

This study has increased the knowledge of ExPEC within the UK, but also on an international level. 

However, it is important that the findings from these studies are confirmed and explored further. 

Therefore, future work to expand on this study is described below: 

1. Virulence – use whole genome sequencing to confirm the virulence factor, phylogrouping, 

serotyping and sequence typing data. This would also generate more accurate phylogeny 

data and help characterise the unusual phylotype, plus identify novel virulence factors for 

colonisation, infection and those associated with heightened mortality.

2. Serogrouping – Determine the serogroup of the remaining 40% of isolates to reaffirm the 

serogroup diversity of ExPEC isolates causing UTIs and bacteraemia. 

3. Urinary ExPEC resistance – similar to the BSAC Bacteraemia Resistance Surveillance 

Programme, urinary E. coli isolates could be collected from around the UK to monitor trends 

in antibiotic resistance. Or centre-focused projects could be set up in a similar manner, with 

urine specimens collected directly from GP practices to determine more accurate 
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community-associated antibiotic resistance rates, as well as cystitis, asymptomatic 

bacteruria and pyelonephritis antibiograms.

4. ST131 plasmids – isolate and sequence the ST131 plasmids encoding CTX-M genes to identify 

any differences between those encoding different CTX-M groups. Also compare the IncU 

plasmids with the IncF plasmids frequently identified in ST131 isolates.

5. ST131 virulence – conduct a larger study in the Galleria mellonella model to confirm the 

findings of this study, but also compare sub-clonal ST131 isolates (e.g. CTX-M-negative vs. 

CTX-M-positive)

6. ST127 virulence - investigate the O6-associated insertion sequence (IS1), PAI 536 III and iroN

in ST127 isolates, plus the other major clones, to identify any patterns in highly virulent 

strains compared with avirulent strains.

7. Develop a point-of-care test for ST131 H30-Rx clone that can be used by GPs, out-patient 

departments and accident and emergency departments to guide empirical therapy.

8. Vaccine development – use data from whole genome sequencing with the Galleria 

mellonella model to identify potential vaccine targets to prevent E. coli urinary tract 

infection. 
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Appendix B 

Materials and Reagents

Media 

Agar and broths, once prepared according to the manufacturers’ instructions, were autoclaved at 

121°C for 15 minutes. At PHE agar and broths were prepared by the Media department. At Queen 

Mary’s agar and broths were prepared personally.

The majority of media was supplied by Oxoid (Basingstoke, UK), except where specified below, and 

included: BrillianceTM UTI Agar, blood agar, nutrient agar, ISO-Sensitest agar, Mueller-Hinton agar, 

Luria-Bertani (LB) agar and thiotone Craigie broth.

Media supplied from elsewhere included: Hedley Wright broth (Mast, Bootle, UK), SOC medium 

(Bioline, London, UK) and LB broth (Sigma-Aldrich Company Ltd., Gillingham, Dorset, UK).

Antibiotics (see section 5.2.1.2)

All antibiotics used in this study were supplied by Sigma-Aldrich Company Ltd. (Gillingham, Dorset, 

UK), except for those specified below:

Cefpirome sulphate (Sanofi-Aventis, Guildford, Surrey, UK)

Ertapenem and imipenem monohydrate (Merck Sharpe and Dohme (MSD) Ltd, Hoddesdon, 

Hertfordshire, UK)

Lithium clavulanate (GlaxoSmithKline, Brentford, Middlesex, UK)

Meropenem (AstraZeneca, London, UK)

Temocillin (Eumedica, Basel, Switzerland)

Tigecycline (Pfizer, Walton Oaks, Surrey, UK)

Miscellaneous reagents

Formal saline: 160ml formaldehyde (Sigma), 800ml 17% sodium chloride (VWR International Ltd.) 

and 15.2L distilled water (PHE)
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Sterile phosphate buffered saline (PBS) and sterile distilled water: provided by the in-house media 

departments (Blizard Institute, Queen Mary’s & PHE)

DNA and plasmid extraction (see sections 5.2.8 and 6.2.6)

Absolute ethanol (VWR International Ltd.): 70% ethanol prepared by diluting in sterile distilled water 

DNeasy® Blood and Tissue Kit (Qiagen, Hilden, Germany)

Lysis buffer: 0.05M Tris (Sigma), 0.01M EDTA (VWR International Ltd.), 4% sodium-dodecyl-sulphate 

(SDS) (Sigma), pH 12.45

Neutralisation buffer: 2M Tris (Sigma), pH 7.0

TE buffer: 0.05M Tris (Sigma), 0.01M ethylene-diamine-tetra-acetic acid (EDTA) (VWR International 

Ltd.), pH 8.0

Solution A: 20mM EDTA (Sigma) and 400mM Tris (Gibco®, Life technologies, Paisley, UK), pH8

Solution B: 0.4M sodium hydroxide (Sigma)

Solution C: 400mM Tris (Life technologies) and 4% SDS (FlukaTM, Sigma)

5M sodium chloride (Sigma)

Sterile-filtered water (Sigma)

Sodium acetate, 3M, pH5.5 (Sigma)

Phenol: chloroform: isoamyl alcohol 25:24:1 saturated with 10mM Tris and 1mM EDTA, pH8 (Sigma)

Chloroform (BDH Prolabo®, VWR, UK)

PCR master mix(s) and enzymes (see sections 3.5, 4.2.6, 5.2.7, 6.2.2, 6.2.7 & 7.2.2) 

All primers were sourced from Sigma.

FAST BLUE qPCR MasterMix (Eurogentec, Southampton, UK)

MyTaqTM Red Mix (Bioline)

Qiagen® Multiplex PCR kit (Qiagen)

ReddyMixTM PCR Master Mix (Thermo Scientific, MA, USA)
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SensiFASTTM SYBR No-ROX kit (Bioline)

PBRT kit (Diatheva, Fano, Italy)

Combined genotyping array reagents (see section 7.2.1)

DNeasy® Blood and Tissue Kit (Qiagen)

RNase A (Qiagen)

PCR reagents: B1 buffer, B2 solution and primer mix (Alere Technologies GmbH, Jena, Germany)

Hybridisation reagents: C1, C2, C3, C4 and D1 buffers (Alere Technologies)

ArrayStripTM (Alere Technologies)

PFGE buffers and enzymes (see sections 4.2.7 and 6.2.5)

Alkaline lysis buffer: 1% w/v N-lauroyl sarcosine (Sigma), 0.5M EDTA pH 9.5 (VWR International Ltd.)

FastDigest Green Reaction buffer (Thermo Scientific)

First lysis buffer: 6mM tris (hydroxymethyl) aminomethane (Tris) (VWR International Ltd.), 100mM 

EDTA (VWR International Ltd.), 1M sodium chloride (NaCL) (VWR International Ltd.), 0.5% w/v Brij®

58 (Sigma), 0.2% w/v sodium deoxycholate (Sigma), 0.5% N-lauroyl sarcosine (Sigma), 1mM 

magnesium chloride (MgCL2) (VWR International Ltd.)

Lambda ladder (50 – 1000 kb), PFG marker (New England BioLabs© Inc., MA, USA)

Lysozyme, from chicken egg white (Sigma)

Proteinase K (Sigma)

SE buffer: 75mM NaCL (VWR International Ltd.), 25mM EDTA (VWR International Ltd.), pH 7.5 

TE buffer: 10mM Tris (VWR International Ltd.), 10mM EDTA pH 7.5 (VWR International Ltd.)

TBE buffer: 0.5X TBE (44.5mM Tris, 44.5mM boric acid, 1mM EDTA) (InvitrogenTM, Life Technologies)

Xbal FastDigest enzyme (Thermo Scientific)

S1 nuclease and 10X buffer (Promega, Southampton, UK)
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Electrophoresis solutions and reagents (see sections 3.6, 4.2.7 and 6.2.5)

BionicTM 10X buffer (Sigma) 

DNA ladder, 100 bp or 123 bp (InvitrogenTM, Life Technologies)

Ethidium Bromide, 10 mg/ml (Sigma): dilute 1:10,000

GelredTM (Biotium, CA, USA): 3X solution, dilute 60 µl in 200 ml 0.1M NaCL (VWR International Ltd.)

MacroSieve Low Melt Agarose (Scientific Laboratory Supplies Ltd, Hessle, UK): 2.04g in 170ml 0.5X 

TBE (InvitrogenTM, Life Technologies)

Sterile-filtered water (Sigma)

Tris-Borate-EDTA (TBE) buffer, 10X (Promega) 

TE buffer, 100X (InvitrogenTM, Life Technologies): dilute 1:100

UltraPureTM agarose (InvitrogenTM, Life Technologies): 1.4g/70ml (2%) or 2.1g/70ml (3%)

UltraPureTM 10X TBE buffer (InvitrogenTM, Life Technologies)

DNA cloning and purification kits (see sections 5.2.8 and 6.2.6.3)

Alpha-select electrocompetent cells (Bioline)

Exonuclease I enzyme (New England BioLabs©) 

Exonuclease I reaction buffer (New England BioLabs©)

MinElute® PCR purification kit (Qiagen)

QIAprep® Spin miniprep kit (Qiagen)

rAPid alkaline phosphatase reaction buffer (Roche Diagnostics Ltd, Burgess Hill, UK) 

rAPid alkaline phosphatase enzyme (Roche Diagnostics Ltd)

TOPO TA cloning® kit (Invitrogen)

Galleria mellonella model (see section 8.2.3)

Galleria mellonella (Livefood UK Ltd, Rooks Bridge, Somerset, UK)

30ml universal container (STARLAB GmbH, Hamburg, Germany) 
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1 µl calibrated loop (STARLAB) 

10 µl calibrated loop (STARLAB)

1 ml graduated pipette (STARLAB)

1.5 ml microcentrifuge tube (STARLAB)

Polypropylene L-shaped spreader (STARLAB)

FisherbrandTM extra-deep disposable petri dishes (Thermo Scientific)

WhatmanTM, Grade 1 circles, 240mm, filter paper (Whatman plc, Maidstone, UK)

25 µl, 22 gauge, gastight, bevel tip syringe (Hamilton, Bonaduz, Switzerland)

CytoTox 96® non-radioactive cytotoxicity assay (Promega)

Sterile disposable surgical scalpel (Swann-Morton, Sheffield, UK)

96-well polystyrene microplate, round well, flat bottom (STARLAB)

N-phenylthiourea, crystals (Alfa Aesar, Ward Hill, MA, USA)

Absolute ethanol (Thermo Scientific): diluted to 70% as described above

Consumables

Easy pierce heat sealing foil (Thermo Scientific)

GenePulser® 0.1cm cuvettes (Bio-rad, Hemel Hempstead, Hertfordshire, UK)

Microtitre plate, 96-well U bottom, non-sterile (Thermo Scientific)

PCR plate, 96-well low profile, non-skirted (Thermo Scientific)

PCR tube, 8 strip, 0.2 ml flat cap (Thermo Scientific)

PCR microtube with attached cap, 0.2 ml (Sigma)

Polystyrene tube, 15 ml, with conical bottom, blue screw cap (Greiner Bio-one GmbH, 

Frickenhausen, Germany)

Pro-Lab DiagnosticsTM MicrobankTM Bacterial and Fungal Preservation System, cryobeads (Thermo 

Scientific)
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Equipment

ArrayMateTM reader (Alere Technologies GmbH)

Boiling bath, SBB14 (Grant Instruments Ltd, Cambridge, UK)

Centrifuge, 5415 R (Eppendorf, Stevenage, UK)

Centrifuge, IEC® MicroMax (Thermo scientific)

Centrifuge, IEC® CL40 (Thermo scientific)

CHEF-DR II chiller system (Bio-Rad)

ELx800 absorbance microplate reader (Biotec, Winooski, VT, USA)

G:Box imaging camera (IMGEN technologies, Alexandria, VA, USA)

GenePulser XcellTM (Bio-rad)

Grant OLS200 waterbath (Grant Instruments Ltd)

Grant W14 waterbath (Grant Instruments Ltd)

HeraeusTM PicoTM microcentrifuge (Thermo Scientific)

Innova® 2100 and Innova® 4000 (New Brunswick Scientific, Stevenage, UK)

Lightcycler® 2.0 (Roche Diagnostics Ltd)

MALDI-Tof Microflex LT system (Bruker Daltonics, Germany)

Mastercycler (Eppendorf)

MicroScan® WalkAway 96 plus (Siemens, USA)

ND-1000 NanoDrop (Thermo Scientific)

OLS200 shaking waterbath (Grant instruments Ltd)

Rotor-Gene Q (Qiagen)

Touchgene Gradient Thermal Cycler (Techne)

T100TM Thermal cycler (Bio-Rad)

Techne Dri-block® (Techne, Cambridge, UK)

Vortex genie® (Mo Bio Laboratories Inc., CA, USA)

Wide mini-sub cell GT cell electrophoresis tank (Bio-Rad)
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Appendix C

PCR Primers 

C1 E. coli Phylogenetic group
Primer Sequence (5’-3’) Product Size (bp) Target Reference
gadA-F GATGAAATGGCGTTGGCGCAAG 373 Glutamate decarboxylase-α (Doumith et al. 2012)
gadA-R GGCGGAAGTCCCAGACGATATCC
chuA-F ATGATCATCGCGGCGTGCTG 281 Heme transport protein (Doumith et al. 2012)
chuA-R AAACGCGCTCGCGCCTAAT
yjaA-F TGTTCGCGATCTTGAAAGCAAACGT 216 Unknown function, protein (Doumith et al. 2012)
yjaA-R ACCTGTGACAAACCGCCCTCA
TSPE4.C2-F GCGGGTGAGACAGAAACGCG 152 Unknown function, DNA 

fragment
(Doumith et al. 2012)

TSPE4.C2-R TTGTCGTGAGTTGCGAACCCG

C2 Five most common ExPEC sequence types 
Primer Sequence (5’-3’) Product Size (bp) Target Reference
ST131-F GACTGCATTTCGTCGCCATA 310 (Doumith et al. 2014)
ST131-R CCGGCGGCATCATAATGAAA
ST127-F CGCATAACAGGATTGTCTGG 404 This study
ST127-R GCTATTCTACGGGCATTGTG
ST95-F ACTAATCAGGATGGCGAGAC 200 (Doumith et al. 2014)
ST95-R ATCACGCCCATTAATCCAGT
ST73-F TGGTTTTACCATTTTGTCGGA 490 (Doumith et al. 2014)
ST73-R GGAAATGGTTGATGTTGGCT
ST69-F AGAGAAAGGGCGTTCAGAAT 100 (Doumith et al. 2014)
ST69-R ATCTGGAGGCAACAAGCATA
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C3 E. coli Multi-locus sequence typing (Achtman Scheme)
Primer Sequence (5’-3’) Product size

(bp)
Target Annealing

Tm (°C)
Reference

adk-F ATTCTGCTTGGCGCTCCGGG 583 Adenylate kinase 54 (Wirth et al. 2006)
adk-R CCGTCAACTTTCGCGTATTT
fumC-F TCACAGGTCGCCAGCGCTTC 806 Fumarate hydratase C 54 (Wirth et al. 2006)
fumC-R GTACGCAGCGAAAAAGATTC
gyrB-F TCGGCGACACGGATGACGGC 911 DNA gyrase, subunit B 54 (Wirth et al. 2006)
gyrB-R ATCAGGCCTTCACGCGCATC
icd-F ATGGAAAGTAAAGTAGTTGTTCCGGCACA 878 Isocitrate dehydrogenase 54 (Wirth et al. 2006)
icd-R GGACGCAGCAGGATCTGTT
mdh-F ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG 932 Malate dehydrogenase 60 (Wirth et al. 2006)
mdh-R TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT
purA-F CGCGCTGATGAAAGAGATGA 816 Adenylosuccinate synthetase 54 (Wirth et al. 2006)
purA-R CATACGGTAAGCCACGCAGA
recA-F ATCTACAGAGAAATCCGGCG 780 Recombinase A 60 (Wirth et al. 2006)
recA-R TTTATCGATGCTGAACACGC

C4 fimH allele determination
Primer Sequence Product size (bp) Target Reference
fimH-F CACTCAGGGAACCATTCAGGCA 976 Type 1 fimbriae, minor subunit (Weissman et al. 2012)
fimH-M CGTTGTTTATAATTCGAG
fimH-R CTTATTGATAAACAAAAGTCAC

C5 EAEC PCR (real-time PCR)
Primer Sequence (5’-3’) Target Reference
aggR-F CCATTTATCGCAATCAGATTAA aggR EAEC regulatory gene (Chattaway et al. 2014)
aggR-R CAATGTATAGAAATCCGCTGTT
aggR-probe Cy5-CAGCGATACATTAAGACGCCTAAAGGA -BHQ 
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C6 Sequencing primers: M13
PCR Assay Primer Sequence (5’-3’) Product Size (bp) Target Reference
M13 M13-F GTAAAACGACGGCCAG variable Lac promoter and lacZα 

gene
Invitrogen 
Cat. No. K4575-40M13-R CAGGAAACAGCTATGAC

C7 Genes encoding plasmid-mediated quinolone resistance determinants
Primer Sequence (5’-3’) Product Size (bp) Target Reference
qnrA-F CAGCAAGAGGATTTCTCACG 630 Quinolone resistance determinant A (Ciesielczuk et al. 2013)
qnrA-R AATCCGGCAGCACTATTACTC
qnrB-F GGCTGTCAGTTCTATGATCG 488 Quinolone resistance determinant B (Ciesielczuk et al. 2013)
qnrB-R GAGCAACGATGCCTGGTAG
qnrC-F GCAGAATTCAGGGGTGTGAT 118 Quinolone resistance determinant C (Ciesielczuk et al. 2013)
qnrC-R AACTGCTCCAAAAGCTGCTC
qnrD-F CGAGATCAATTTACGGGGAATA 581 Quinolone resistance determinant D (Cavaco et al. 2009)
qnrD-R AACAAGCTGAAGCGCCTG
qnrS-F GCAAGTTCATTGAACAGGGT 428 Quinolone resistance determinant S (Cattoir et al. 2007)
qnrS-R TCTAAACCGTCGAGTTCGGCG
qepA-F GCAGGTCCAGCAGCGGGTAG 218 Quinolone efflux pump A (Yamane et al. 2008)
qepA-R CTTCCTGCCCGAGTATCGTG
oqxA-F CCGCACCGATAAATTAGTCC 313 RND efflux pump protein A (Ciesielczuk et al. 2013)
oqxA-R GGCGAGGTTTTGATAGTGGA
aac(6’)-lb-cr-F ACACGGCTGGACCATA 260 6’-N-acetyltransferase, type lb-cr allele (Ciesielczuk et al. 2013)
aac(6’)-lb-cr-R TTGGAAGCGGGGACGGAM
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C8 Genes encoding Beta-lactamases 
Primer Sequence (5’-3’) Product Size (bp) Target Reference
CMY-F ACGGAACTGATTTCATGATG 1200* Full CMY gene and flanking region (Ahmed and Shimamoto,

2008)CMY-R GAAAGGAGGCCCAATATCCT
CTX-M group-1 F AAAAATCACTGCGCCAGTTC 415 CTX-M-1 gene (Woodford, 2010)
CTX-M group-1 R AGCTTATTCATCGCCACGTT
CTX-M group-9 F CAAAGAGAGTGCAACGGATG 205 CTX-M-9 gene (Woodford, 2010)
CTX-M group-9 R ATTGGAAAGCGTTCATCACC
CTX-M group-9 F CTGATGTAACACGGATTGAC 932 CTX-M-9 entire open reading frame (Girlich et al. 2009)
CTX-M group-9 R AGCGCCCCATTATTGAGAG
TEM-F ATGAGTATTCAACATTTCCG 858 TEM β-lactamase (Livermore et al. 2001)
TEM-R CCAATGCTTAATCAGTGACG
SHV-F TCAGCGAAAAACACCTTG 475 SHV β-lactamase (M'Zali et al. 1996)
SHV-R TCCCGCAGATAAATCACCA
OXA-1-like F GGATAAAACCCCCAAAGGAA 370 OXA-1-like (Karisik et al. 2006)
OXA-1-like R TGCACCAGTTTTCCCATACA β-lactamase
ACC-F CACCTCCAGCGACTTGTTAC 346 ACC-1 and 2 genes (Dallenne et al. 2010)
ACC-R GTTAGCCAGCATCACGATCC
FOX-F CTACAGTGCGGGTGGTTT 162 FOX-1 and 2-5 genes (Dallenne et al. 2010)
FOX-R CTATTTGCGGCCAGGTGA
MOX-F GCAACAACGACAATCCATCCT 895 MOX-1 and 2, CMY-1 and 8-11 genes (Dallenne et al. 2010)
MOX-R GGGATAGGCGTAACTCTCCCAA
DHA-F TGATGGCACAGCAGGATATTC 997 DHA-1 and 2 genes (Dallenne et al. 2010)
DHA-R GCTTTGACTCTTTCGGTATTCG
CIT-F CGAAGAGGCAATGACCAGAC 538 CMY 2-7, LAT 1-4, BIL-1 genes (Dallenne et al. 2010)
CIT-R ACGGACAGGGTTAGGATAGY
EBC-F CGGTAAAGCCGATGTTGCG 683 ACT-1 and MIR-1 genes (Dallenne et al. 2010)
EBC-R AGCCTAACCCCTGATACA
*size varies depending on CMY allele
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C9 Genes encoding aminoglycoside modifying enzymes 
Primer Sequence (5’-3’) Product Size (bp) Target (annealing temperature, °C) Reference
aph(3’)-VI - F CGGAAACAGCGTTTTAGA 716 3’-phosphotransferase, type VI (49) (Noppe-Leclercq et al.

1999)aph(3’)-VI - R TTCCTTTTGTCAGGTC
ant(2’’)-Ia - F T 404 2’-nucleotidyltransferase, type Ia (49) (Noppe-Leclercq et al.

1999)ant(2’’)-Ia - R CGAGCCTGTAGGACT
aac(6’)-Ih - F TGCCGATATCTGAATC 407 6’-acetyltransferase, type Ih (58) (Noppe-Leclercq et al.

1999)aac(6’)-Ih - R ACACCACACGTTCAG
aac(3)-Ia - F GACATAAGCCTGTTCGGTT 372 3-acetyltransferase, type Ia (58) (Noppe-Leclercq et al.

1999)aac(3)-Ia - R CTCCGAACTCACGACCGA
aac(3)-IIa - F ATGCATACGCGGAAGGC 822 3-acetyltransferase, type IIa (58) (Noppe-Leclercq et al.

1999)aac(3)-IIa - R TGCTGGCACGATCGGAG
aac(6’)-Ib - F TATGAGTGGCTAAATCGAT 395 6’-acetyltransferase, type Ib (55) (Noppe-Leclercq et al.

1999)aac(6’)-Ib - R CCCGCTTTCTCGTAGCA
aph(3’)-Ia - F CGAGCATCAAATGAAACTGC 623 3’-phosphotransferase, type Ia (55) (Noppe-Leclercq et al.

1999)aph(3’)-Ia - R GCGTTGCCAATGATGTTACAG
aacA-aphD - F GAGCAATAAGGGCATACCAAA 829 Acetyltransferase-phosphotransferase  

(56)
(Leelaporn et al. 2008)

aacA-aphD - R GTTCCTATTTCTTCTTCACTATCTTCA
aph(2’’)-Ib - F TCAAATCCCTGCGGTAGTGTA 428 2’’-phosphotransferase, type Ib (56) (Leelaporn et al. 2008)
aph(2’’)-Ib - R CGCCAAAATCAATAACTCCAA
aph(2’’)-Ic - F GAGGGCTTTAGGAATTACGC 125 2’’-phosphotransferase, type Ic (56) (Leelaporn et al. 2008)
aph(2’’)-Ic - R ACACAACCGACCAACAGAGG
aph(2’’)-Id - F TAATCTGCCGAAGCAATCTCA 550 2’’-phosphotransferase, type Id (56) (Leelaporn et al. 2008)
aph(2’’)-Id - R TAATCCCTCTTCATACCAATCC
aadA - F ACCGTAAGGCTTGATGAAACA 624 3’’-adenyltransferase (56) (Leelaporn et al. 2008)
aadA - R GCCGACTACCTTGGTGATCTC
aadE - F GCCCTTGGAAGAGTTAGATAATT 198 6’-adenyltransferase (56) (Leelaporn et al. 2008)
aadE - R CGGCACAATCCTTTAATAACA
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Primer Sequence (5’-3’) Product Size (bp) Target Reference
armA - F TATGGGGGTCTTACTATTCTGCCTAT 545 16S methyltransferases ArmA (Fritsche et al. 2008)
armA - R TCTTCCATTCCCTTCTCCTTT
rmtA - F CTAGCGTCCATCCTTTCCTC 635 16S methyltransferases RmtA (Yokoyama et al. 2003)
rmtA - R TTTGCTTCCATGCCCTTGCC
rmtB - F TCAACGATGCCCTCACCTC 466 16S methyltransferases RmtB (Fritsche et al. 2008)
rmtB - R GCAGGGCAAAGGTAAAATCC
rmtC - F GCCAAAGTACTCACAAGTGG 752 16S methyltransferases RmtC (Fritsche et al. 2008)
rmtC - R CTCAGATCTGACCCAACAAG
rmtD - F CTGTTTGAAGCCAGCGGAACGC 376 16S methyltransferases RmtD (Fritsche et al. 2008)
rmtD - R GCGCCTCCATCCATTCGGAATAG
npmA - F CTCAAAGGAACAAAGACGG 641 16S methyltransferases NpmA (Fritsche et al. 2008)
npmA - R GAAACATGGCCAGAAACTC

C10 Genes encoding rifamycin resistance determinants
Primer Sequence (5’-3’) Product Size (bp) Target Reference
arr2/3-F CTATCATGGAACCAAAGCCA 296 arr-2 and arr-3 (Hopkins et al. 2014)
arr2/3-R CAACGCCAACAATTCTCAAG
arr4-F ACATCTACATCGTTGAACCG 190 arr-4 (Hopkins et al. 2014)
arr4-R TGAAGATCCTCCAGAGACG
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C11 Cyclomodulins
Primer Sequence (5’-3’) Product Size (bp) Target Reference
CDT-s1 GAAAGTAAATGGAATATAAATGTCCG 467 Cytolethal distending toxin B (cdtB), 

variant II, III & V
(Toth et al. 2003)

CDT-as1 AAATCACCAAGAATCATCCAGTTA
CDT-IIas* TTTGTGTTGCCGCCGCTGGTGAAA 556 cdtB-II (Toth et al. 2003)
CDT-IIIas* TTTGTGTCGGTGCAGCAGGGAAAA 555 cdtB-III, cdtB-V (Toth et al. 2003)
CDT-s2 GAAAATAAATGGAACACACATGTCCG 467 cdtB-I, cdtB-IV (Toth et al. 2003)
CDT-as2 AAATCTCCTGCAATCATCCAGTTA
CDT-Is CAATAGTCGCCCACAGGA 411 cdtB-I (Toth et al. 2003)
CDT-Ias ATAATCAAGAACACCACCAC
CDT-IVs CCTGATGGTTCAGGAGGCTGGTTC 350 cdtB-IV (Toth et al. 2003)
CDT-IVas TTGCTCCAGAATCTATACCT
Cif-F AACAGATGGCAACAGACTGG 383 Cycle inhibiting factor (cif) (Marches et al. 2003)
Cif-R AGTCAATGCTTTATGCGTCAT
CNF1-F GGGGGAAGTACAGAAGAATTA 1112 Cytotoxic necrotising

Factor 1 (cnf1)
(Toth et al. 2003)

CNF1-R TTGCCGTCCACTCTCACCAGT
*use CDT-s1 as antisense primer
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C12 Genes encoding ExPEC Virulence Factors
Primer Mix 1 Sequence (5’-3’) Product Size (bp) Target Reference
PAI-F GGACATCCTGTTACAGCGCGCA 930 malX virulence marker (Johnson and Stell, 

2000) updated protocol 
(2010)

PAI-R TCGCCACCAATCACAGCCGAAC
papA-F ATGGCAGTGGTGTCTTTTGGTG 717 P-fimbriae, minor subunit A
papA-R CGTCCCACCATACGTGCTCTTC
K15-F ACGGATTCACGACAAAGCTC 581 K15 capsule (Schneider et al. 2004)
K15-R GGCAAATATCGCTTGGGTTA
fimH-F TCGAGAACGGATAAGCCGTGG 508 Type 1 fimbriae, adhesin (Johnson and Stell, 

2000) updated protocol 
(2010)

fimH-R GCAGTCACCTGCCCTCCGGTA
kpsIII-F TCCTCTTGCTACTATTCCCCCT 392 Type III capsule
kpsIII-R AGGCGTATCCATCCCTCCTAAC 
papEF-F GCAACAGCAACGCTGGTTGCATCAT 326 P-fimbriae, subunits E and F
papEF-R AGAGAGAGCCACTCTTATACGGACA
Vat-F AGAGACGAGACTGTATTTGC 289 Vacuolating toxin (Srinivasan et al. 2003)
Vat-R GTCAGGTCAGTAACGAGCAC   
ireA-F GATGACTCAGCCACGGGTAA 254 ireA siderophore (Johnson and Stell, 

2000) updated protocol 
(2010)

ireA-R CCAGGACTCACCTCACGAAT
Ibe10-F AGGCAGGTGTGCGCCGCGTAC 171 Invasion of brain endothelium protein
Ibe10-R TGGTGCTCCGGCAAACCATGC
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Primer Mix 2 Sequence (5’-3’) Product Size (bp) Target Reference
Cnf1-F GGGGGAAGTACAGAAGAATTA 1112 Cytotoxic necrotising factor 1 (Toth et al. 2003)
Cnf1-R TTGCCGTCCACTCTCACCAGT
fyuA-F TGATTAACCCCGCGACGGGAA 787 Yersiniabactin (Johnson and Stell, 

2000) updated protocol 
(2010)

fyuA-R CGCAGTAGGCACGATGTTGTA
iroN-F AAGTCAAAGCAGGGGTTGCCCG 667 iroN E. coli siderophore
iroN-R GACGCCGACATTAAGACGCAG
clbB-F GATTTGGATACTGGCGATAACCG 579 Pks PAI marker clbB (Nougayrede et al.

2006)clbB-R CCATTTCCCGTTTGAGCACAC
bmaE-F ATGGCGCTAACTTGCCATGCTG 507 Blood group M adhesin (Johnson and Stell, 

2000) updated protocol 
(2010)

bmaE-R AGGGGGACATATAGCCCCCTTC
Sfa-F CTCCGGAGAACTGGGTGCATCTTAC             410 S-fimbriae
Sfa-R CGGAGGAGTAATTACAAACCTGGCA
iutA-F GGCTGGACATCATGGGAACTGG 302 Aerobactin
iutA-R CGTCGGGAACGGGTAGAATCG
Allele III-F GGCCTGCAATGGATTTACCTGG 258 P-fimbriae, papG adhesin allele III
Allele III-R CCACCAAATGACCATGCCAGAC
Hra-F CGAATCGTTGTCACGTTCAG 162 Heat-resistant agglutinin (Srinivasan et al. 2003)
Hra-R TATTTATCGCCCCACTCGTC
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Primer Mix 3 Sequence (5’-3’) Product Size (bp) Target Reference
Pic-F GGGTATTGTCCGTTCCGAT  1200 Protein involved in intestinal 

colonisation
(Wallace-Gadsden et al.
2007)Pic-R ACAACGATACCGTCTCCCG  

hlyD-F CTCCGGTACGTGAAAAGGAC 904 Alpha-haemolysin (Johnson and Stell, 
2000) updated protocol 
(2010)

hlyD-R GCCCTGATTACTGAAGCCTG
rfc-F ATCCATCAGGAGGGGACTGGA 788 Serogroup O4 regulatory gene
rfc-R AACCATACCAACCAATGCGAG        
ompT-F ATCTAGCCGAAGAAGGAGGC 559 Outer membrane protein T
ompT-R CCCGGGTCATAGTGTTCATC
Allele I’-F* CTACTATAGTTCATGCTCAGGTC 479 P-fimbriae, papG adhesin allele I’
Allele I’-R CTGCATCCTCCACCATTATCGA
Allele I-F* TCGTGCTCAGGTCCGGAATTT 461 P-fimbriae, papG adhesin allele I
Allele I-R TGGCATCCCCCAACATTATCG
Iss-F CAGCAACCCGAACCACTTGATG 323 Increased serum survival protein
Iss-R AGCATTGCCAGAGCGGCAGAA
Kii-F GCGCATTTGCTGATACTGTTG 272 Group 2/II capsule, except K2
Kii-R CATCCAGACGATAAGCATGAGCA
papC-F GTGGCAGTATGAGTAATGACCGTTA           205 P-fimbriae, subunit C
PapC-R ATATCCTTTCTGCAGGGATGCAATA                                       
*if positive for allele I’ and/or allele I, repeated in separate simplex PCRs to identify allele
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Primer Mix 4 Sequence (5’-3’) Product Size (bp) Target Reference
gafD-F TGTTGGACCGTCTCAGGGCTC  952 G-fimbriae (Johnson and Stell, 

2000) updated protocol 
(2010)

gafD-R CTCCCGGAACTCGCTGTTACT

K5-F GCCACCAACTGTCGCAAAA 809 K5 capsule (Srinivasan et al. 2003)
K5-R TGTCGCCCAAACAAAAAGATT
cvaC-F CACACACAAACGGGAGCTGTT 679 Colicin V plasmid (Johnson and Stell, 

2000) updated protocol 
(2010)

cvaC-R CTTCCCGCAGCATAGTTCCAT

cdtB-F GAAAATAAATGGAACACACATGTCCG 466 Cytolethal distending toxin (Toth et al. 2003)
cdtB-F’ GAAAGTAAATGGAATATAAATGTCCG
cdtB-R AAATCTCCTGCAATCATCCAGTTA  
cdtB-R’ AAATCACCAAGAATCATCCAGTTA
focG-F CAGCACAGGCAGTGGATACGA 364 F1C-fimbriae, adhesin (Johnson and Stell, 

2000) updated protocol 
(2010)

focG-R GAATGTCGCCTGCCCATTGCT
traT-F GGTGTGGTGCGATGAGCACAG 290 traT serum resistance protein
traT-R CACGGTTCAGCCATCCCTGAG
Allele II-F GGGATGAGCGGGCCTTTGAT 190 P-fimbriae, papG adhesin allele II
Allele II-R CGGGCCCCCAAGTAACTCG
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Primer Mix 5 Sequence (5’-3’) Product Size (bp) Target Reference
G allele 123-F CTGTAATTACGGAAGTGATTTCTG P-fimbriae, papG adhesin 

alleles 1, 2 & 3
(Johnson and Stell, 
2000) updated protocol 
(2010)

G allele 1-R TCCAGAAATAGCTCATGTAACCCG 1140
G allele 2&3-R ACTATCCGGCTCCGGATAAACCAT 1070
iha-F CTGGCGGAGGCTCTGAGATCA 829 Iha adhesin
iha-R TCCTTAAGCTCCCGCGGCTGA
afa-F GGCAGAGGGCCGGCAACAGGC 594 Afimbrial adhesin
afa-R CCCGTAACGCGCCAGCATCTC
hlyF-F TCGTTTAGGGTGCTTACCTTCAAC 444 Avian haemolysin (Morales et al. 2004)
hlyF-R TTTGGCGGTTTAGGCATTCC
tsh-F CCGTACACAAATACGACGG 300 Temperature-sensitive haemagglutinin Johnston, B. & Menard, 

M., 2010. Unpublished.tsh-R GGATGCCCCTGCAGCGT
sfaS-F GTGGATACGACGATTACTGTG 244 S-fimbriae (Johnson and Stell, 

2000) updated protocol 
(2010)

sfaS-R CCGCCAGCATTCCCTGTATTC
K1-F TAGCAAACGTTCTATTGGTGC 153 K1 capsule
K1-R (Kii-R) CATCCAGACGATAAGCATGAGCA
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Primer Mix 6 Sequence (5’-3’) Product Size (bp) Target Reference
sat-F GCAGCTACCGCAATAGGAGGT   937 Secreted autotransporter toxin (Johnson and Stell, 

2000) updated protocol 
(2010)

sat-R CATTCAGAGTACCGGGGCCTA

clbN-F GTTTTGCTCGCCAGATAGTCATTC 733 Pks PAI marker clbN (Nougayrede et al.
2006)clbN-R CAGTTCGGGTATGTGTGGAAGG

F17-F CGGAGCTAATACTGCATCAACC 615 F17 fimbriae (Johnson and Stell, 
2000) updated protocol 
(2010)

F17-R TGTTGATATTCCGTTAACCGTAC
kpsII-F (Kii-F) GCGCATTTGCTGATACTGTTG 570 Type II capsule
kpsII-R AGGTAGTTCAGACTCACACCT   
uidA-F GCGTCTGTTGACTGGCAGGTGGTGG 508 Beta-D-glucuronidase
uidA-R GTTGCCCGCTTCGAAACCAATGCCT
usp-F ACATTCACGGCAAGCCTCAG 440 Uropathogenic-specific protein
usp-R AGCGAGTTCCTGGTGAAAGC
clpG-F GGGCGCTCTCTCCTTCAAC 384 CS31A adhesin
clpG-R CGCCCTAATTGCTGGCGAC
afaE8-F CTAACTTGCCATGCTGTGACAGTA 302 Afimbrial adhesin VIII
afaE8-R TTATCCCCTGCGTAGTTGTGAATC
astA-F CCATCAACACAGTATATCCG 100 EAST1 toxin
astA-R GGTCGCGAGTGACGGCTTTG
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C13 ExPEC Pathogenicity Islands
Primer Sequence  (5’-3’) Product Size (bp) Target Reference
CFT073 I-F GGACATCCTGTTACAGCGCGCA 930 malX (Johnson and Stell, 

2000) updated protocol 
(2010)

CFT073 I-R TCGCCACCAATCACAGCGAAC

CFT073 II-F ATGGATGTTGTATCGCGC 400 ORF38 – ORF39 of CFT073 II, GenBank 
accession no. AF447814

(Sabate et al. 2006)
CFT073 II-R ACGAGCATGTGGATCTGC
J96 I-F TCGTGCTCAGGTCCGGAATTT 461 papGI allele I (Johnson and Stell, 

2000) updated protocol 
(2010)

J96 I-R TGGCATCCCACATTATCG

J96 II-F ATGAAAACATGGTTAATGGG 2300-2412 hlyD and cnf1 fragment (Sabate et al. 2006)
J96 II-R GATATTTTTGTTGCCATTGGTTAC
536 I-F TAATGCCGGAGATTCATTGTC 1800 1.9 and 1.10 (Dobrindt, 2002) (Dobrindt et al. 2002)
536 I-R AGGATTTGTCTCAGGGCTTT
536 II-F CATGTCCAAAGCTCGAGCC 1000 Orf1 up and orf1 down (Dobrindt, 2002) (Dobrindt et al. 2002)
536 II-R CTACGTCAGGCTGGCTTTG
536 III-F CGGGCATGCATCAATTATCTTTG 162-200 sfaA (Sabate et al. 2006)
536 III-R TGTGTAGATGCAGTCACTCCG
536 IV-F AAGGATTCGCTGTTACCGGAC 287-300 Irp2 (Karch et al. 1999)
536 IV-R TCGTCGGGCAGCGTTTCTTCT
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C14 Plasmid replicon typing 
Primer Sequence (5’-3’) Product Size (bp) Target Reference
HI1-F GGAGCGATGGATTACTTCAGTAC 471 parA-parB (Carattoli et al. 2005)
HI1-R TGCCGTTTCACCTCGTGAGTA
HI2-F TTTCTCCTGAGTCACCTGTTAACAC 644 iterons (Carattoli et al. 2005)
HI2-R GGCTCACTACCGTTGTCATCCT
I1-F CGAAAGCCGGACGGCAGAA 139 RNAI (Carattoli et al. 2005)
I1-R TCGTCGTTCCGCCAAGTTCGT
X-F AACCTTAGAGGCTATTTAAGTTGCTGAT 376 ori γ (Carattoli et al. 2005)
X-R TGAGAGTCAATTTTTATCTCATGTTTTAGC
L/M-F GGATGAAAACTATCAGCATCTGAAG 785 repA, B, C (Carattoli et al. 2005)
L/M-R CTGCAGGGGCGATTCTTTAGG
N-F GTCTAACGAGCTTACCGAAG 559 repA (Carattoli et al. 2005)
N-R GTTTCAACTCTGCCAAGTTC
FIA-F CCATGCTGGTTCTAGAGAAGGTG 462 iterons (Carattoli et al. 2005)
FIA-R GTATATCCTTACTGGCTTCCGCAG
FIB-F GGAGTTCTGACACACGATTTTCTG 702 repA (Carattoli et al. 2005)
FIB-R CTCCCGTCGCTTCAGGGCATT
W-F CCTAAGAACAACAAAGCCCCCG 242 repA (Carattoli et al. 2005)
W-R GGTGCGCGGCATAGAACCGT
Y-F AATTCAAACAACACTGTGCAGCCTG 765 repA (Carattoli et al. 2005)
Y-R GCGAGAATGGACGATTACAAAACTTT
P-F CTATGGCCCTGCAAACGCGCCAGAAA 534 iterons (Carattoli et al. 2005)
P-R TCACGCGCCAGGGCGCAGCC
FIC-F GTGAACTGGCAGATGAGGAAGG 262 repA2 (Carattoli et al. 2005)
FIC-R TTCTCCTCGTCGCCAAACTAGAT
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Primer Sequence (5’-3’) Product Size (bp) Target Reference
A/C-F GAGAACCAAAGACAAAGACCTGGA 465 repA (Carattoli et al. 2005)
A/C-R ACGACAAACCTGAATTGCCTCCTT
T-F TTGGCCTGTTTGTGCCTAAACCAT 750 repA (Carattoli et al. 2005)
T-R CGTTGATTACACTTAGCTTTGGAC
K/B-F GCGGTCCGGAAAGCCAGAAAAC 160 RNAI (Carattoli et al. 2005)
K-R TCTTTCACGAGCCCGCCAAA
K/B-F GCGGTCCGGAAAGCCAGAAAAC 159 RNAI (Carattoli et al. 2005)
B/O-R TCTGCGTTCCGCCAAGTTCGA
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Appendix D

Microarray Targets

Target Group Array target Target name, host (if applicable)
Controls E. coli

Controls
gad Glutamate decarboxylase
ihfA Integration host factor, subunit A (various sp.)
gapA Glyceraldehydes-3-phosphate (various sp.)

Staining control biotin Biotin label
Virulence
Factors

Adhesins nfaE Non-fimbrial adhesin
efa1 EHEC factor for adherence (EHEC)
Iha Enterobactin receptor/adhesin (EHEC/UPEC)
Saa STEC autoagglutinating adhesin (STEC)
rpeA Adhesin (rabbit-specific EPEC)
CS31A CS31A adhesin (animal-pathogenic ETEC)
lngA CS21 adhesin (ETEC)

Toxin astA EAST1 (EAEC)
cdtB Cytolethal distending toxin B
cnf1/2/3 Cytotoxic necrotising factor 1, 2 & 3
hlyA Haemolysin A
hlyE Haemolysin E
ipaD Invasive plasmid antigen D (EIEC, Shigella sp.)
ipaH Invasive plasmid antigen H (EIEC, Shigella sp.)
ltcA Heat-labile enterotoxin (Vibrio & Citrobacter sp.) 
Pet Plasmid encoded toxin (EAEC)
senB Enterotoxin (Shigella sp.)
Sta STa, heat-stable enterotoxin (ETEC)
Stb STb, heat-stable enterotoxin (ETEC)
stx1a Shiga-toxin 1 (EHEC/STEC)
stx1b Shiga-toxin 2 (EHEC/STEC)
virF Virulence transcription factor (Shigella sp., EAEC)
subA Subtilase cytotoxin subunit A (EHEC/STEC)
toxB Toxin B (EHEC/STEC)
Tsh Temperature sensitive haemagglutinin (APEC)

Bacteriocin Cba Colicin B
Cda Colicin D
Ccl Cloacin
celB Colicin E lysis gene
Cma Colicin M
mchB/C/F Microcin H47
mcmA Microcin M

Miscellaneous katP Catalase peroxidise (EHEC/STEC)
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Target Group Array 
target

Target name, host (if applicable)

Fimbriae K88 K88 fimbriae (ETEC)
bfpA Bundle forming pilus (EPEC)
cfaC Colonisation factor antigen C
cofA CFA major pilin subunit
F17 F17 fimbriae (animal-pathogenic ETEC)
fanA K99 fimbriae (animal-pathogenic ETEC)
fasA 987P fimbriae (animal-pathogenic ETEC)
fedA F107 fimbriae (animal-pathogenic ETEC)
fedF F18 fimbriae (animal-pathogenic ETEC/STEC)
fim41a F41 fimbriae (animal-pathogenic ETEC)
lngA Longus type IV pilus (ETEC)
perA Plasmid encoded regulator of BFP (EPEC)
prfB P-related fimbriae
sfaS S fimbriae
papB P-fimbriae
lpfA Long polar fimbriae (EHEC/EPEC)

Siderophores/iron 
acquisition

ireA Iron-regulated element
iroN Novel siderophore
hemL Heme biosynthesis gene 

Serum resistance Iss Increased serum survival protein
Type III
Secretion
System (T3SS)
proteins

Cif Cycle inhibiting factor
eaaA Serine protease (commensal E. coli)
eatA Serine protease (ETEC)
epeA Serine protease (EHEC)
espA Serine protease (EHEC/EPEC)
espB Serine protease (EHEC/EPEC)
espC Serine protease (EHEC/EPEC)
espF Serine protease (EHEC/EPEC)
espI Serine protease (EHEC/EPEC)
espJ Serine protease (EHEC/EPEC)
espP Serine protease (EHEC/EPEC)
nleA Non-LEE encoded protein (EHEC/EPEC)
sepA Secreted protein (Shigella & Salmonella sp. E. 

coli)
Vat Vacuolating autotransporter toxin
Pic Protein involved in intestinal colonisation 

(EAEC)
Sat Secreted autotransporter toxin (DAEC)
sigA Serine protease (Shigella sp.)
tccP Tir cytoskeleton coupling protein (EHEC/EPEC)
Tir Translocated Intimin receptor (EHEC/EPEC)
eae Intimin (EHEC/EPEC)

T2SS etpD Serine protease (EHEC/STEC)
Genome DNA fragment IS285 Insertion sequence 285 (Yersinia sp.)
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Target Group Array target Target name, host (if applicable)
Antibiotic
Resistance

Aminoglycosides armA 16S rRNA methyltransferase
npmA 16S rRNA methyltransferase
Grm Gentamicin resistance methylase
rmtA/B/C/D 16S rRNA methyltransferase
Rrs 16S rRNA (mutations conferring resistance)
strA/B Streptomycin resistance protein
aac3I 3’-N-acetyltransferase 
aac3Iva 3’-N-acetyltransferase 
aac3Ia 3’-N-acetyltransferase 
aac3Ib 3’-N-acetyltransferase 
aac3Ic 3’-N-acetyltransferase 
aac3Ie 3’-N-acetyltransferase 
aac6II 6’-N-acetyltransferase 
aac6IIa 6’-N-acetyltransferase 
aac6IIc 6’-N-acetyltransferase 
aac6Ib 6’-N-acetyltransferase 
aac6 6’-N-acetyltransferase 
aac-aph N-Acetyltransferase-O-phosphotransferase
aadA1 3’-O-nucleotidyltransferase
aadA12 3’-O-nucleotidyltransferase
aadA13 3’-O-nucleotidyltransferase
aadA15 3’-O-nucleotidyltransferase
aadA2 3’-O-nucleotidyltransferase
aadA23b 3’-O-nucleotidyltransferase
aadA3 3’-O-nucleotidyltransferase
aadA4 3’-O-nucleotidyltransferase
aadA5 3’-O-nucleotidyltransferase
aadB 2’-O-nucleotidyltransferase
aphA 3’- O-phosphotransferase

Rifampin arr-1 ADP-ribosylating transferase (Mycobacterium
sp.)

arr-4 ADP-ribosylating transferase (Pseudomonas sp.)
arr-5 ADP-ribosylating transferase (Klebsiella sp.)
arr-6 ADP-ribosylating transferase (Pseudomonas sp.)

Erythromycin Mrx Macrolide inactivation operon protein
Mph Macrolide phosphotransferase
ereA Erythromycin esterase A
ereB Erythromycin esterase B
ermB Erythromycin rRNA methyltransferase

Streptogramin vatE Streptogramin acetyltransferase
Sph Streptomycin phosphotransferase

Chloramphenicol catB Chloramphenicol acetyltransferase
cmlA1 Chloramphenicol efflux pump 
floR Florphenicol exporter protein
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Target Group Array target Target name, host (if applicable)
Antibiotic 
Resistance

Trimethoprim & 
Sulfamethoxazole 

Dfr Dihydrofolate reductase (trimethoprim)
Sul Dihydropteroate synthase (sulfamethoxazole)

Tetracycline Tet Tetracycline resistance protein
Quinolones qepA Quinolone efflux pump

qnrB DNA gyrase/topoisomerase IV protection 
protein

qnrD DNA gyrase/topoisomerase IV protection 
protein

qnrS DNA gyrase/topoisomerase IV protection 
protein

Glycopeptides Ble Bleomycin resistance protein
Broad-spectrum 
penicillins 
(Beta-lactamase)

tem1 Beta-lactamase TEM-1
oxa Beta-lactamase OVA variants
shv1 Beta-lactamase SHV-1
LAP-1 Beta-lactamase LAP-1
OKP Beta-lactamase (Klebsiella & Serratia sp.)
CTX-M gp 1 Extended-spectrum beta-lactamase
CTX-M gp 2 Extended-spectrum beta-lactamase
CTX-M gp 8 Extended-spectrum beta-lactamase
CTX-M gp 9 Extended-spectrum beta-lactamase
CTX-M gp 26 Extended-spectrum beta-lactamase
CTX-M gp 64 Extended-spectrum beta-lactamase
veb1 Extended-spectrum beta-lactamase VEB-1
pse1 Extended-spectrum beta-lactamase PSE-1
per2 Extended-spectrum beta-lactamase PER
len1 Extended-spectrum beta-lactamase 

(Klebsiella)
ges1 (Pseudomonas sp.)
carb Extended-spectrum beta-lactamase CARB
Cep Beta-lactamase (Aeromonas sp.)
kluc Extended-spectrum beta-lactamase KLUC

Broad-spectrum 
penicillins 
(AmpC beta-
lactamase)

cmy AmpC beta-lactamase CMY
acc1/2 AmpC beta-lactamase ACC-1 & ACC-2
act1 AmpC beta-lactamase ACT-1
mox AmpC beta-lactamase, MOX family
Fox AmpC beta-lactamase, FOX family
dha1 AmpC beta-lactamase DHA-1
Mir AmpC beta-lactamase MIR

Broad-spectrum 
penicillins 
(Metallo beta-
lactamase)

KHM-1 Metallo beta-lactamase (Citrobacter sp.)
Gim1 Metallo beta-lactamase, German-origin
IMP Metallo beta-lactamase
VIM Metallo beta-lactamase
KPC Metallo beta-lactamase
Sfh1 Metallo beta-lactamase (Serratia sp.)
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Target Group Array target Target name, host (if applicable)
Broad-spectrum 
penicillins 
(Carbapenemase)

sme1 Carbapenemase (Serratia sp.)
spm1 Carbapenemase, Brazil-origin
imi3 Carbapenemase IMI

Antibiotic 
Resistance

Integrons intI1 Class I integrase
intI2 Class II integrase

dnaE dnaE DNA polymerase III alpha-subunit
Serotype Flagellin (fliC 

gene)
H01 H1-antigen
H02 H2-antigen
H04 H4-antigen
H05 H5-antigen
H06 H6-antigen
H07 H7-antigen
H08 H8-antigen
H09 H9-antigen
H10 H10-antigen
H11 H11-antigen
H12 H12-antigen
H14 H14-antigen
H15 H15-antigen
H16 H16-antigen
H18 H18-antigen
H19 H19-antigen
H20 H20-antigen
H21 H21-antigen
H23 H23-antigen
H24 H24-antigen
H25 H25-antigen
H26 H26-antigen
H27 H27-antigen
H28 H28-antigen
H28/46 H28/46-antigen
H29 H29-antigen
H30 H30-antigen
H31 H31-antigen
H32 H32-antigen
H33 H33-antigen
H34 H34-antigen
H37 H37-antigen
H38 H38-antigen
H39 H39-antigen
H41 H41-antigen
H42 H42-antigen
H43 H43-antigen
H45 H45-antigen
H46 H46-antigen
H48 H48-antigen
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Target Group Array target Target name, host (if applicable)
Serotype Flagellin (fliC 

gene)
H49 H49-antigen
H51 H51-antigen
H52 H52-antigen
H56 H56-antigen

O-antigen flipase 
(wzx) & 
polymerase (wzy)

O103 O103-antigen flipase & polymerase
O104 O104-antigen flipase & polymerase
O111 O111-antigen flipase & polymerase
O113 O113-antigen flipase & polymerase
O114 O114-antigen flipase & polymerase
O121 O121-antigen flipase & polymerase
O128 O128-antigen flipase & polymerase
O15 O15-antigen flipase & polymerase
O157 O157-antigen flipase & polymerase
O172 O172-antigen flipase & polymerase
O26 O26-antigen flipase & polymerase
O55 O55-antigen flipase & polymerase
O6 O6-antigen flipase & polymerase
O7 O7-antigen flipase & polymerase
O79 O79-antigen flipase & polymerase
O8 O8-antigen flipase & polymerase
O86 O86-antigen flipase & polymerase
O9 O9-antigen flipase & polymerase
O91 O91-antigen flipase & polymerase

Other fl-H40 H40-antigen 
fl-H-NM H-antigen non-motile
fljA Phase-1 flagellin repressor
flkA-H03 H3 flagellin, non-fliC locus
flkA-H53 H53 flagellin, non-fliC locus
flmA-H54 H54 flagellin, non-fliC locus
isla29-O145 O145 genomic island
rfbE-O157 O157 ABC transporter
rfbU-O157 O157 glycosyltransferase
sil1-O157 O157 silver resistance gene
sil-inv-O145 O145 silver resistance gene
wbdA-O9 O9 mannosyltransferase gene
wbdA-O9a O9a mannosyltransferase  gene
wbd-O111 O111 glycosyltransferase gene
wbd-O79 O79 glycosyltransferase gene
wzm-O52 O52 ABC transporter
wz-O101 O101 O-antigen alternative gene
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Appendix E

Microarray isolates

No. Study 
No.

Specimen Type/source Age 
(years)

Sex Setting Phylo. Serogroup ST VF
PCR

1 002 Blood GU 73 M HAI A O162 NK Y
2 008 Blood NK 25 M HAI A NT NK
3 190 Blood GU 90 F CAI B2 O25 131 Y
4 192 Urine COMP 90 F CAI B2 O25 131 Y
5 218 Urine COMP 83 M CAI A NT NK Y
6 219 Blood GU 83 M CAI A NT NK Y
7 295 Blood CHEST 80 M CAI D O31 NK Y
8 348 Blood GU 88 M CAI B2 O25 131 Y
9 349 Urine COMP 88 M CAI B2 O25 131 Y
10 445 Blood GIT 61 M HAI A NT NK Y
11 520 Blood NK 77 M HAI B2 O25 131
12 561 Blood GIT 55 M HAI A O8 NK Y
13 025 Urine COMP 22 F CAI D O44 69 Y
14 026 Blood GU 22 F CAI D O44 69 Y
15 090 Blood GU 88 F CAI D NT 1405 Y
16 091 Urine COMP 88 F CAI D NT 1405 Y
17 152 Urine COMP 87 F CAI D O7 62 Y
18 153 Blood GU 87 F CAI D O7 62 Y
19 187 Urine COMP 52 F CAI B2 NT 405 Y
20 188 Blood GU 52 F CAI B2 NT 405 Y
21 189 Blood GU 81 M CAI B2 O2 95 Y
22 197 Urine COMP 81 M CAI B2 O2 95 Y
23 230 Urine COMP 69 F HAI B2 O2 73 Y
24 231 Blood GU 69 F HAI B2 O2 73 Y
25 293 Blood GU 44 F CAI D NT 405 Y
26 294 Urine COMP 44 F CAI D NT 405 Y
27 366 Urine COMP 32 F CAI B2 O75 404 Y
28 367 Blood GU 32 F CAI B2 O75 404 Y
29 494 Blood GU 63 M HAI B2 O6 127 Y
30 495 Urine COMP 63 M HAI B2 O6 127 Y
31 536 Blood GU 88 F CAI B2 O6 73 Y
32 537 Urine COMP 88 F CAI B2 O6 73 Y
33 538 Blood GU 31 F CAI D O125ab 69 Y
34 539 Urine COMP 31 F CAI D O125ab 69 Y
35 542 Blood GU 31 F HAI D O11 69 Y
36 543 Urine COMP 31 F HAI D O11 69 Y
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No. Study 
No.

Specimen Type/source Age 
(years)

Sex Setting Phylo. Serogroup ST VF 
PCR

37 548 Blood GU 27 F CAI B2 O18ac 14 Y
38 549 Urine COMP 27 F CAI D O153 354 Y
39 566 Urine COMP 26 F CAI B2 NK 95 Y
40 567 Blood GU 26 F CAI B2 NK 95 Y
41 3352 Blood GU 87 F CAI D NK NK
42 3381 Blood NK 33 F CAI B2 NK 95 Y
43 3403 Blood GIT 21 F CAI B2 O1 95
44 3413 Blood NK 63 M HAI B2 O16 NK
45 3437 Blood GU 26 F CAI B2 NK 95
46 3456 Blood GU 88 F CAI B2 NK 73
47 3465 Blood GU 35 F CAI B2 NK 95
48 3487 Blood NK 31 F HAI D NK NK
49 3497 Blood GU 57 F CAI B2 NK 73
50 3517 Blood GU 25 F CAI B2 O1 95
51 3544 Blood NK 43 F CAI B2 NT 95
52 3566 Blood GU 88 F CAI B2 O25 131
53 3713 Blood NK 81 M CAI B2 O25 131
54 3856 Blood NK 69 F HAI B2 O25 131
55 007 Blood NK 39 M CAI B1 NK NK
56 156 Urine COMP 44 F CAI B2 O6 NK Y
57 302 Urine COMP 56 M CAI D NT NK Y
58 384 Urine COMP 54 F CAI A O12 NK Y
59 020 Urine COMP 75 F HAI A O135 NK
60 113 Urine COMP 79 M HAI A O1 NK Y
61 463 Urine COMP 23 M HAI B2 NK NK Y
62 065 Urine ABU 18 F CAI A O5 NK Y
63 100 Urine ABU 24 F CAI B1 O8 NK
64 226 Urine ABU 64 F CAI D NT NK
65 354 Urine ABU 30 F CAI B1 NT NK
66 370 Urine ABU 24 F CAI B2 NK NK Y
67 049 Urine UC 77 F HAI B2 NT NK
68 058 Urine UC 26 F CAI B1 NT NK
69 108 Urine UC 32 F CAI B1 O8 NK
70 122 Urine COMP 61 M CAI B1 O8 NK
71 017 Urine COMP 6 F CAI D O17 69
72 024 Urine UC 3 F CAI D O86 NK
73 085 Urine UC 6 F CAI D O135 NK Y
74 109 Urine UC 7 F CAI B2 NT NK
75 125 Urine COMP 8 F HAI B2 O7 NK
76 014 Urine UC 98 F CAI D O102 NK
77 107 Urine UC 99 F CAI B2 O4 NK Y
78 285 Urine COMP 90 M HAI B2 O25 131
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No. Study 
No.

Specimen Type/source Age 
(years)

Sex Setting Phylo. Serogroup ST VF 
PCR

79 425 Urine COMP 93 F HAI B2 NK NK
80 478 Urine COMP 91 M CAI B2 O25 131
81 087 Urine ABU 29 F CAI B2 O6 NK Y
82 150 Urine UC 59 F CAI B1 NT NK
83 157 Urine COMP 60 M CAI B2 O18ac NK
84 193 Urine UC 23 F CAI A NT NK
85 420 Urine COMP 63 F CAI D NK NK
86 182 Urine ABU 26 F CAI A O62 NK
87 201 Urine COMP 37 F CAI B2 O39 NK
88 240 Urine COMP 56 M CAI B2 NT NK
89 316 Urine COMP 46 M CAI B2 O25 NK
90 422 Urine ABU 35 F CAI B2 NK NK Y
91 028 Urine UC 40 F CAI A O93 NK
92 122 Urine COMP 61 M CAI B1 O8 NK
93 253 Urine COMP 57 M CAI A O20 NK Y
94 356 Urine UC 34 F CAI A NT NK Y
95 374 Urine UC 74 F CAI B2 NK NK Y
96 25922 Control NA NA NA NA NA NA NA
NA, not applicable; NK, unknown; NT, non-typeable; GU, genitourinary source; GIT, gastrointestinal 

source; CSF, cerebral spinal fluid source; CHEST, respiratory tract source; LINE, intravenous line 

source; SSTI, skin and soft tissue infection source; ABU, asymptomatic bacteruria; UC, uncomplicated 

cystitis; COMP, complicated cystitis/pyelonephritis; CAI, community-associated infection; HAI, 

hospital-associated infection; VF PCR, isolates also analysed for virulence factors using the six 

multiplex PCR assays; Y, yes
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Virulence factor PCR isolates
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1 U ABU 32 F CAI B2 O25 131 •
2 U ABU 18 F CAI A O5 NK • Y
3 U ABU 29 F CAI B2 O6 NK • • • • • Y
4 U ABU 23 F CAI D NT NK •
5 U ABU 26 F CAI D NT 69
6 U ABU 35 F CAI D O77 69 •
7 U ABU 20 F CAI B2 O119 NK • •
8 U ABU 22 F CAI B2 O158 73 • • • • •
9 U ABU 31 F CAI B2 O25 131 • •
10 U ABU 29 F CAI D O17 69 • •
11 U ABU 38 F CAI D NT 69
12 U ABU 29 F CAI D NK 69 •
13 U ABU 34 F CAI B2 O6 127 • • • • • • •
14 U ABU 24 F CAI B2 NK NK • • • Y
15 U ABU 37 F CAI B2 NK NK
16 U ABU 32 F CAI B2 NK NK • • • •
17 U ABU 35 F CAI B2 NK NK • Y
18 U ABU 41 F CAI D NK NK •
19 U ABU 22 F CAI D NK NK • •
20 U ABU 35 F CAI A O141 NK
21 U ABU 19 F CAI D NK NK •
22 U ABU 20 F CAI B2 NK NK •
23 U ABU 35 F CAI A NK NK
24 U ABU 29 F CAI B2 NK NK •
25 U ABU 31 F CAI B2 O6 127 • • • •
26 U ABU 26 F CAI D NK NK •
27 U ABU 27 F CAI A NK NK
28 U ABU 29 F CAI A NK NK
29 U ABU 37 F CAI B2 NK NK • • • • •
30 U ABU 29 F CAI B2 NK NK • • • •
31 U COMP 75 M CAI A O150 NK
32 U COMP 79 M HAI A O1 NK Y
33 U COMP 41 M CAI B2 O2 73 • • • •
34 U COMP 37 F CAI D O73 69
35 U COMP 44 F CAI B2 O6 NK • • • Y
36 U COMP 80 M HAI B2 O22 73 • • • • •
37 U COMP 27 F CAI B2 O25 95 • • •
38 U COMP 54 M HAI B2 O1 95 • • •
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39 U COMP 48 F HAI B2 O25 127 • • •
40 U COMP 57 M CAI A O20 NK • Y
41 U COMP 67 M CAI B2 NT 127 • • • • • •
42 U COMP 56 M CAI D NT NK • Y
43 U COMP 49 F CAI B2 NK NK • • • • •
44 U COMP 71 F CAI B2 NK NK • • •
45 U COMP 54 F CAI A O12 NK • Y
46 U COMP 50 F CAI A O135 NK •
47 U COMP 62 F CAI B2 O25 131 • •
48 U COMP 61 M CAI B1 O8 NK
49 U COMP 79 F CAI B2 NK NK • • •
50 U COMP 65 M HAI B2 O25 131 • •
51 U COMP 52 F CAI B2 NT 95 • •
52 U COMP 36 M HAI D O153 69 • •
53 U COMP 23 M HAI B2 NK NK • Y
54 U COMP 1 F CAI B2 O2 95 • • •
55 U COMP 27 F CAI B2 NK NK • • •
56 U COMP 73 M CAI B2 O6 127 • • • • •
57 U COMP 80 F HAI B2 NK NK • • • •
58 U COMP 23 F CAI B2 NK NK •
59 U COMP 82 M CAI B2 NK NK •
60 U COMP 84 F CAI D NK NK •
61 U COMP 22 F CAI D O44 69 • Y
62 U COMP 88 F CAI D NT 1405 • Y
63 U COMP 87 F CAI D O7 62 • Y
64 U COMP 52 F CAI B2 NT 405 • • Y
65 U COMP 90 M CAI B2 O25 131 • • • • • Y
66 U COMP 81 F CAI B2 O2 95 • • Y
67 U COMP 83 M CAI A NT 617 • • Y
68 U COMP 69 F HAI B2 O2 73 • • • • Y
69 U COMP 44 F CAI D NT 405 • • Y
70 U COMP 88 M CAI B2 NT 131 • • • Y
71 U COMP 32 F CAI B2 O75 404 • • Y
72 U COMP 63 M HAI B2 O6 127 • • • • • Y
73 U COMP 88 F CAI B2 O6 73 • • • Y
74 U COMP 31 F CAI D O125ab 69 • • Y
75 U COMP 31 F HAI D O11 69 • Y
76 U COMP 27 F CAI D O153 354 • Y
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77 U COMP 26 F CAI B2 O4 95 • • • • Y
78 U UC 35 F HAI B2 O4 73 • • •
79 U UC 25 F HAI D O77 69
80 U UC 65 F CAI B2 O6 73 • • • • • •
81 U UC 33 F CAI D O77 69 •
82 U UC 49 F CAI A O87 NK
83 U UC 56 F CAI B2 O4 95 • • • • •
84 U UC 6 F CAI D O135 NK Y
85 U UC 99 F CAI B2 O4 NK • Y
86 U UC 29 F CAI B2 O18ac NK • • •
87 U UC 40 F CAI A O78 NK • •
88 U UC 36 F CAI D NT 69 •
89 U UC 32 F CAI B2 O6 73 • • •
90 U UC 35 F CAI D O77 69 •
91 U UC 7 F CAI A NT NK •
92 U UC 18 F CAI B2 O75 NK • •
93 U UC 5 F CAI B1 NT NK •
94 U UC 40 F CAI B2 O18ac 95 • • •
95 U UC 9 F CAI D O153 69 •
96 U UC 23 F CAI A O8 NK •
97 U UC 34 F CAI A NT NK • Y
98 U UC 74 F CAI B2 NK NK • Y
99 U UC 78 F CAI A O7 NK
100 U UC 10 F CAI A O20 NK
101 U UC 50 F HAI B2 NK NK • •
102 U UC 27 F CAI D NK NK •
103 U UC 46 F CAI D NK NK •
104 U UC 21 F CAI D NK NK
105 U UC 70 F CAI B2 NK NK • • •
106 U UC 8 F CAI A NK NK •
107 U UC 28 F CAI A NK NK •
108 B GU 73 M HAI A O162 NK • • • Y
109 B GIT 43 M HAI B2 O22 NK • • • •
110 B CHEST 76 M HAI B2 NT NK •
111 B CHEST 80 M CAI D O31 NK • • Y
112 B GIT 75 M CAI D O31 NK • •
113 B GIT 61 M HAI A NT NK • Y
114 B GIT 55 M HAI A O8 NK Y
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115 B CSF 0 M HAI B2 NK 95 • • •
116 B CHEST 99 F CAI D NK NK •
117 B GU 83 M CAI D NK NK • •
118 B GIT 60 F CAI B2 O25 131 • • •
119 B LINE 43 M HAI B2 NK 95 • • • • •
120 B NK 33 F CAI B2 NK 95 • • • • • Y
121 B GIT 91 F HAI B2 NK 95 • • •
122 B LINE 54 F CAI B2 O25 131 • • • • •
123 B GU 52 M CAI B2 O25 131 • • •
124 B LINE 19 M HAI B2 NK 127 •
125 B CHEST 35 M HAI B2 O25 131 • • •
126 B SSTI 45 F CAI B2 NK NK • • • •
127 B GIT 78 M CAI D NK NK
128 B SSTI 88 F HAI B2 NK NK • • •
129 B GIT 64 F HAI B2 O2 73 • • • •
130 B GIT 64 M CAI B2 O27 127 • • • • • •
131 B LINE 55 M HAI A O36 69
132 B SSTI 90 F CAI A O11 69 •
133 B CHEST 98 M CAI B2 NK NK • • •
134 B LINE 98 F CAI D NK NK • •
135 B NK 60 M CAI B2 O25 131 • • •
136 B LINE 59 F HAI B2 O6 73 • • • •
137 B SSTI 73 M HAI B2 O18ab NK • • •
138 B GU 22 F CAI D O44 69 • Y
139 B GU 88 F CAI D NT 1405 • • Y
140 B GU 87 F CAI D O7 62 • Y
141 B GU 52 F CAI B2 NT 405 • • Y
142 B GU 81 F CAI B2 O2 95 • • Y
143 B GU 90 M CAI B2 O25 131 • • • • • Y
144 B GU 83 M CAI A NT 617 • • Y
145 B GU 69 F HAI B2 O2 73 • • • • Y
146 B GU 44 F CAI D NT 405 • • Y
147 B GU 88 M CAI B2 NT 131 • • • • Y
148 B GU 32 F CAI B2 O75 404 • • Y
149 B GU 63 M HAI B2 O6 127 • • • • • Y
150 B GU 88 F CAI B2 O6 73 • • • Y
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151 B GU 31 F CAI D O125ab 69 • Y
152 B GU 31 F HAI D O11 69 • Y
153 B GU 27 F CAI B2 O18ac 14 • • • Y
154 B GU 26 F CAI B2 O4 95 • • • • Y

B, bloodstream isolate; U, urinary isolate; NK, unknown; NT, non-typeable; GU, genitourinary source; 

GIT, gastrointestinal source; CSF, cerebral spinal fluid source; CHEST, respiratory tract source; LINE, 

intravenous line source; SSTI, skin and soft tissue infection source; ABU, asymptomatic bacteruria; 

UC, uncomplicated cystitis; COMP, complicated cystitis/pyelonephritis; CAI, community-associated 

infection; HAI, hospital-associated infection; Array, isolates also analysed by microarray; Y, yes
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1 B CHEST 76 M HAI B2 NT NK fyuA

2 U UC 65 F CAI B2 O6 73 fimH pap sfa/foc iha hlyD sat fyuA iutA iroN 
kpsII usp traT pks malX

3 U UC 49 F CAI A O87 NK fimH sat 

4 U UC 56 F CAI B2 O4 95 fimH pap hra hlyD cnf1 fyuA iroN kpsII usp 
pks malX

5 U UC 6 F CAI D O135 NK fimH EAST1 kpsII

6 U ABU 29 F CAI B2 O6 NK fimH pap sfa/foc hlyD cnf1 fyuA iroN kpsII 
usp ompT pks malX

7 U COMP 79 M HAI A O1 NK fimH

8 U COMP 41 M CAI B2 O2 73 fimH pap sfa/foc iha cdtB hlyD sat fyuA iutA 
iroN usp traT pks malX

9 B GU 90 F CAI B2 O25 131 pap iha cnf1 iutA kpsII ompT iss 

10 U COMP 90 F CAI B2 O25 131 pap afa/dra iha cnf1 iutA kpsII usp ompT iss

11 U COMP 83 M CAI A NT 617 traT

12 B GU 83 M CAI A NT 617 traT

13 U ABU 20 F CAI B2 O119 NK fimH gafD iha sat fyuA iutA kpsII K5 usp malX

14 U COMP 57 M CAI A O20 NK fimH pap bmaE hra cnf1 hlyD fyuA iutA traT 
pks

15 U ABU 22 F CAI B2 O158 73 fimH pap sfa/foc iha cnf1 hlyD fyuA usp traT 
pks malX

16 U UC 5 F CAI B1 NT NK fimH pap iha fyuA iutA kpsII

17 U COMP 67 M CAI B2 NT 127 fimH bmaE hra cnf1 hlyD fyuA kpsII usp pks 
malX

18 B CHEST 80 M CAI D O31 NK fimH fyuA iutA kpsII usp traT malX

19 U ABU 34 F CAI B2 O6 127 fimH pap sfa/foc cnf1 hlyD fyuA iroN usp pks 
malX

20 U UC 9 F CAI D O153 69 fimH pap iha sat fyuA iutA kpsII traT ompT
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21 B GIT 75 M CAI D O31 NK fyuA iutA traT malX

22 U COMP 54 F CAI A O12 NK fimH fyuA kpsII traT

23 U COMP 50 F CAI A O135 NK fimH fyuA kpsIII

24 U COMP 61 M CAI B1 O8 NK fimH pap hlyF iutA iroN traT iss

25 U ABU 41 F CAI D NK NK fimH fyuA traT

26 U COMP 1 F CAI B2 O2 95 fimH pap hlyF fyuA iutA iroN ireA kpsII K1 usp 
traT iss cvaC pks malX

27 U ABU 35 F CAI A NK NK fimH 

28 U COMP 27 F CAI D O153 354 fyuA usp ibeA

29 U ABU 29 F CAI B2 NK NK fimH sfa/foc bmaE hra cnf1 hlyD sat fyuA 
iroN usp traT pks malX

30 B CSF 0 M HAI B2 NK 95 fimH pap sfa/foc cdtB hlyF fyuA iutA iroN 
kpsII K1 usp traT ibeA iss cvaC pks malX

31 B CHEST 99 F CAI D NK NK fimH fyuA

32 B GIT 60 F CAI B2 O25 131 clpG iha sat fyuA iutA usp traT malX

33 B GIT 91 F HAI B2 NK 95 fimH pap hlyF vat fyuA iutA iroN kpsII K1 usp 
traT iss cvaC pks malX

34 B LINE 54 F CAI B2 O25 131 fimH pap iha cnf1 hlyD sat fyuA iutA kpsII usp 
traT iss malX

35 B LINE 19 M HAI B2 NK 127 EAST1 iutA usp traT iss malX

36 B SSTI 45 F CAI B2 NK NK fimH pap sfa/foc afa/dra iha hlyF tsh fyuA 
iutA iroN kpsII K1 usp ibeA iss cvaC pks malX

37 B SSTI 88 F HAI B2 NK NK fimH pap iha fyuA iroN kpsII K1 usp traT ibeA 
iss malX

38 B GIT 64 M CAI B2 O27 127 fimH pap sfa/foc iha cnf1 hlyD tsh fyuA iroN 
usp iss pks malX

39 B LINE 55 M HAI A O36 69 fimH fyuA iroN kpsII usp iss pks

40 B SSTI 90 F CAI A O11 69 pap fyuA iutA iroN kpsII K1 usp traT iss pks

NB. B, bacteraemia; U, urinary tract infection; F, female; M, male; CAI, community-associated 

infection; HAI, hospital-associated infection; NK, unknown; NT, non-typeable; GU, genitourinary 

source; GIT, gastrointestinal source; CSF, cerebral spinal fluid source; CHEST, respiratory tract 

source; LINE, intravenous line source; SSTI, skin and soft tissue infection source; ABU, asymptomatic 

bacteruria; UC, uncomplicated cystitis; COMP, complicated cystitis/pyelonephritis 
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Pathogenicity islands in the Galleria isolates

No. CFT073 I CFT073 II J96 I J96 II 536 I 536 II 536 III 536 IV
1 Y
2 Y Y Y Y Y Y
3
4 Y Y Y Y Y
5
6 Y Y Y Y Y
7
8 Y Y Y Y
9 Y Y Y Y Y
10 Y Y Y Y Y
11 Y Y
12 Y Y
13 Y Y
14 Y
15 Y Y Y Y Y
16 Y
17 Y Y Y Y Y Y
18 Y Y
19 Y Y Y Y Y Y Y
20 Y
21 Y Y
22 Y
23 Y
24
25 Y
26 Y Y Y
27
28 Y
29 Y Y Y Y
30 Y Y Y
31 Y
32 Y Y Y
33 Y Y Y
34 Y Y Y Y Y
35 Y
36 Y Y Y Y
37 Y Y Y
38 Y Y Y Y Y Y
39
40 Y


