

An assessment of the effects of neurokinin1 receptor antagonism against nausea and vomiting: Relative efficacy, sites of action and lessons for future drug development.

Manuscript ID	RU-00469-23.R1
Manuscript Type:	Review Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Andrews, Paul; St George's University of London, Biomedical Sciences Golding, John; Univ Westminster, Sanger, Gareth; Queen Mary University of London - Whitechapel Campus, Blizard Institute
Key Words:	Neuropharmacology, Gastroenterology, Translational Research
Abstract:	A 'broad-spectrum' anti-vomiting effect of neurokinin1 receptor antagonists (NK1RA), shown in preclinical animal studies, has been supported by a more limited range of clinical studies in different indications. However, this review suggests that compared with vomitin the self-reported sensation of nausea is less affected or possibly unaffected by NK1 receptor antagonism, a common finding for 'anti- emetics'. The stimulus-independent effects of NK1RAs against vomiting are explicable by actions within the central pattern generator (CPG; ventra brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g highly emetogenic chemotherapy). The CPG and NTS neurones are multifunctional so the notable lack of obvious effects of NK1RAs on oth reflexes mediated by the same neurones suggests that their anti- vomiting action is dependent on the activation state of the pathway leading to vomiting. Nausea requires activation of cerebral pathways by projection of information from the NTS. Although NK1 receptors are present in cerebral nuclei implicated in nausea, and imaging studies show very hi receptor occupancy at clinically used doses, the variable or limited abil of NK1RAs to inhibit nausea emphasises (a) our inadequate understanding of the mechanisms of nausea and (b) that classification a drug as an "anti-emetic" gives a false impression of efficacy against nausea versus vomiting. We discuss the potential mechanisms for the differential efficacy of NK1RA and the implications for future development of drugs which can

1 2	
3	
4	SCHOLARONE [™]
5 6	Manuscripts
7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
17	
19	
20 21	
21	
23	
24 25	
25 26	
27	
28 29	
30	
31	
32 33	
34	
35	
36 37	
38	
39	
40 41	
42	
43 44	
44 45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58	
59	

2		
3		
4	1	An assessment of the effects of neurokinin ₁ receptor antagonism against
5		
6	2	nausea and vomiting: Relative efficacy, sites of action and lessons for future
7 8	2	indiced and voluments. Relative enreacy, sites of decion and ressons for ratare
9		
10	3	drug development.
11		
12		
13	4	Paul L.R. Andrews ^{*1*} , John F. Golding ² , Gareth J. Sanger ³
14		
15	5	
16	0	
17	~	
18	6	¹ Division of Biomedical Sciences, St George's University of London, London, United Kingdom.
19 20		
20	7	² University of Westminster, London, United Kingdom.
22		
23	8	³ Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United
24	0	bizard institute, i actity of medicine and Dentistry, Queen Mary Oniversity of London, Onited
25	9	Kingdom.
26	5	Tranguorn.
27		
28	10	
29		
30	11	Conflict of Interest: PLRA has no conflict of interest; JFG advises DefenderPharma; GJS advises
31 32		
33	12	BYOMass and Neurix.
34	13	Funding: There was no specific funding for the publication.
35		
36	14	Data availability statement: Not applicable.
37		
38	15	Ethical approval: Not required.
39	16	*Corresponding author: Prof. PL.R. Andrews, St George's University of London, Cranmer
40	10	corresponding author. From FLM. Andrews, St George's oniversity of London, cranmer
41	17	Terrace, Tooting, London, SW17 ORE, UK. Email: pandrews@sgul.ac.uk
42		
43 44	18	Key words: Anti-cancer chemotherapy, gastroparesis, motion sickness, nausea, neurokinin ₁ ,
45	10	
46	19	substance P, tradipitant, vomiting.
47	20	Abbreviations:
48	20	
49	21	AP: Area postrema
50		
51	22	AVP: Arginine vasopressin
52	23	CB ₁ : Cannabinoid ₁ receptor
53	25	
54 55	24	CCK: Cholecystokinin
56		
57	25	CI: Confidence Interval
58	26	substance P, tradipitant, vomiting. Abbreviations: AP: Area postrema AVP: Arginine vasopressin CB ₁ : Cannabinoid ₁ receptor CCK: Cholecystokinin CI: Confidence Interval CINV: chemotherapy-induced nausea and vomiting
59	20	Chive. Chemotherapy-induced hausea and voiniting
60	27	CPG: central pattern generator for vomiting
		· - ·

2		
3 4	28	CUNV: Chronic Unexplained Nausea and Vomiting
5 6	29	D ₂ : dopamine ₂ receptor
7	30	EC: Enterochromaffin cell
8 9	31	EEC: Enteroendocrine cell
10 11	32	GABA: Gamma amino butyric acid
12 13	33	GABA _B : Gamma amino butyric acid B receptor
14 15	34	GCSI: Gastroparesis Clinical Symptom Index
16 17	35	GDF15: Growth differentiation factor 15
18	36	GLP-1: Glucagon like peptide 1
19 20	37	5-HT: 5-Hydroxytryptamine
21 22	38	5-HT _{1A} : 5-Hydroxytryptamine _{1A} receptor
23 24	39	5-HT ₃ : 5-Hydroxytryptamine ₃ receptor
25 26	40	HEC: Highly emetogenic chemotherapy
27 28	41	H ₁ : Histamine ₁ receptor
29 30	42	ICC: interstitial cells of Cajal
31	43	i.v.: Intravenous
32 33	44	MSSS: motion sickness severity scale
34 35	45	mACh: Muscarinic acetylcholine receptor
36 37	46	mNTS: medial nucleus tractus solitarius
38 39	47	MRI: Magnetic resonance imaging
40 41	48	NA: Nucleus ambiguus
42	49	NK ₁ RA: Neurokinin ₁ receptor antagonist
43 44	50	NN: no nausea
45 46	51	NSN: no significant nausea
47 48	52	NTS: Nucleus tractus solitarius
49 50	53	PET: Positron emission tomography
51 52	54	p.o.: Per oral
53	55	PONV: post-operative nausea and vomiting
54 55		
56 57	56	PSC: prodromal sign centre
58 59	57	RGC: Retrograde giant contraction
60	58	RR: Risk ratio

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
55	
55 56	
57	
58	
59	
60	

59

62

64

60 VRG: Ventral respiratory group

SP: Substance P

61 VIMS: Visually-induced motion sickness

63 Author contribution. All authors made an equivalent contribution.

65 Abstract

A 'broad-spectrum' anti-vomiting effect of neurokinin₁ receptor antagonists (NK₁RA), shown
in preclinical animal studies, has been supported by a more limited range of clinical studies in
different indications. However, this review suggests that compared with vomiting, the selfreported sensation of nausea is less affected or possibly unaffected by NK₁ receptor
antagonism, a common finding for 'anti-emetics'.

The stimulus-independent effects of NK₁RAs against vomiting are explicable by actions within the central pattern generator (CPG; ventral brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The CPG and NTS neurones are multifunctional so the notable lack of obvious effects of NK₁RAs on other reflexes mediated by the same neurones suggests that their anti-vomiting action is dependent on the activation state of the pathway leading to vomiting.

Nausea requires activation of cerebral pathways by projection of information from the NTS.
Although NK₁ receptors are present in cerebral nuclei implicated in nausea, and imaging
studies show very high receptor occupancy at clinically used doses, the variable or limited
ability of NK₁RAs to inhibit nausea emphasises (a) our inadequate understanding of the

 82 mechanisms of nausea and (b) that classification of a drug as an "anti-emetic" gives a false 83 impression of efficacy against nausea *versus* vomiting.

We discuss the potential mechanisms for the differential efficacy of NK₁RA and the implications for future development of drugs which can effectively treat nausea, an area of unmet clinical need.

1. Introduction

Drugs treating nausea and vomiting as disease symptoms or as adverse effects of therapy are usually classified as 'anti-emetics'. However, the term 'emetic' refers to a substance which causes vomiting (or retching). Emesis does not mean nausea. Further, increasing evidence indicates differential efficacy of 'anti-emetic' drugs against nausea versus vomiting. Seifert & Alexander (2022) proposed a "rational drug class terminology" based on a drug's pharmacological actions rather than its therapeutic orientation (e.g., anti-emetic). Applying this terminology to nausea and vomiting means that the term 'anti-emetic' must be written in inverted commas to denote the fact that efficacy against nausea and vomiting should not be assumed to be the same (Sanger & Andrews, 2022). Here, we emphasise the importance of differentiating between nausea, a self-reported aversive sensation involving cortical and sub-cortical brain regions (Napadow et al., 2013; Farmer et al., 2015; Ruffle et al., 2019; Varangot-Reille et al., 2023) and the mechanical events of retching and vomiting involving multiple brainstem nuclei (Stern et al., 2011).

The introduction of NK₁ receptor antagonists (NK₁RAs) further improved control of (chemotherapy-induced nausea and vomiting' (CINV) and 'post-operative nausea and vomiting' (PONV) (Sanger & Andrews, 2018). In addition, a potential expansion of indications

1		5
2 3 4	105	may be appropriate, to include, for example, motion sickness (Polymeropoulos et al., 2020).
5 6 7	106	If confirmed, this would point towards a relatively wide spectrum of 'anti-emetic' activity for
7 8 9	107	the NK ₁ RAs in humans, as suggested by animal studies (see below). However, originating
10 11 12	108	primarily from studies of CINV including the earliest clinical studies of NK $_1$ RAs (e.g., Navari et
12 13 14	109	al., 1999) there has been a concern that nausea is less well treated than vomiting (Andrews
15 16	110	& Sanger, 2014) and this concern persists, as reflected in the comment by Aapro (2018, p.57)
17 18 19	111	that "Perhaps the greatest unmet need in CINV is the lack of complete nausea control".
20 21	112	Accordingly, in an attempt to understand the nausea versus vomiting question in relation to
22 23 24	113	NK_1RAs , from both clinical and basic science perspectives, we identified five key questions:
25 26	114	1. Has the broad spectrum of activity of NK $_1$ RAs suggested by animal studies of vomiting
27 28 29	115	translated to humans?
30 31	116	2. Where do NK ₁ RAs act to inhibit vomiting?
32 33 34	117	3. To what extent do NK ₁ RAs inhibit nausea as compared to vomiting?
35 36	118	4. If NK ₁ RAs have a differential effect against nausea compared to vomiting, what is the
37 38 39	119	explanation?
40 41	120	5. What are the implications of the answers to the above questions in terms of patient
42 43	121	satisfaction and for future development of drugs to treat nausea?
44 45 46 47 48 49 50 51	122	Different emetic stimuli signal to the brain via different routes. This is why it is first necessary
	123	to determine if the broad-spectrum ability of NK $_1$ RAs to prevent vomiting in animals
	124	translates to humans in a similar manner; such a profile directs the discussion on potential
52 53 54	125	mechanism of action against vomiting and nausea. Accordingly, we begin by briefly describing
54 55 56 57 58 59	126	the NK ₁ RA studies in animals and then review the effects of NK ₁ RAs against vomiting and
60		

2	
3	
4	
5	
5 6	
7	
, 0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
20	
21	
22	
23	
24	
25	
26	
27	
27 20	
20	
29	
30	
31 32 33	
32 33	
34 35 36 37	
24	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49 5 0	
50	
51	
52	
53	
54	
55	
50	
57	
58	
59	
60	

127 nausea in different clinical indications (see below for selection criteria), identifying
128 differences in efficacy between these different indications.

129 **2.** Animal studies: Spectrum of NK₁RA effects against vomiting and nausea-like behaviours

130 In this section we consider only data from species with a vomiting reflex (ferret dog, cat, 131 House musk shrew [*Suncus murinus*] and Least shrew [*Cryptotis parva*]). To simplify 132 comparisons between species and between the effects of drugs on vomiting and nausea, we 133 have not considered 'nausea-like' behaviour data from rodents, which cannot vomit (Sanger 134 et al., 2011; Horn et al., 2013).

2.1. Vomiting. Studies in multiple animal species (Table 1) have demonstrated 'broad
spectrum' effects of NK₁RAs, markedly reducing/blocking retching and/or vomiting induced
by diverse stimuli acting via three key inputs to the brainstem (Figure 1) (Stern et al., 2011;
Sanger & Andrews, 2018 for references).

2.2. 'Nausea-like behaviours.' Administration to animals of substances inducing nausea and 139 vomiting in humans evoke behavioural changes (often referred to as 'nausea-like'), but their 140 significance and relevance to the human sensation of nausea is contentious (Stern et al., 2011, 141 142 Chapter 11; Andrews & Sanger, 2014). In summary, and in contrast to the clear effects of NK₁RA on vomiting, effects on 'nausea-like behaviours' are absent or inconsistent 143 (Supplementary Table 1). Given this lack of clarity and since the relevance of these behaviours 144 145 to the human experience is unknown, they will not be considered further (Stern et al., 2011, 146 Chapter 11; Andrews & Sanger, 2014, for detailed discussion).

147 **3.** Human studies: Spectrum of NK₁RA effects against vomiting and nausea.

148 It is important to determine if the broad-spectrum ability of NK₁RAs to prevent vomiting in
 0
 149 animals translates to the vomiting and nausea of humans. Accordingly, we searched either

the name of individual antagonists and/or the therapeutic area (e.g., motion sickness, CINV, PONV, gastroparesis, and cyclical vomiting syndrome). For CINV and PONV where there has been more extensive investigation of NK₁RAs 'anti-emetic' efficacy we initially reviewed systematic reviews/meta-analyses and then analysed data in selected original papers. As our focus was on the relative efficacy of NK₁RAs against nausea and vomiting we included papers where data on *both* vomiting and nausea was presented and in particular where adequate information was provided in the methods about how each was quantified, with data presented in a form allowing comparison. We note that few studies have given an NK₁RA alone, 'N' values can be small (e.g., in PONV the N value for 7 studies of aprepitant included in a meta-analysis ranged from 30-55; Cavaye et al., 2021) and some studies are uncontrolled. Nausea is often a secondary outcome with methodological variations in its assessment complicating inter-study comparisons (see below). Sections 3.1 to 3.6 describe the results of studies investigating the effects of NK₁RAs against different emetic challenges. Section 3.7 then provides an overview of the spectrum of efficacy against nausea and vomiting. **3.1. Motion sickness (MS).** Studies in humans are limited as ethical considerations usually

dictate that vomiting endpoints cannot be used in laboratory-based studies inducing motion sickness in healthy human volunteers. Two laboratory-based studies employed the well proven method of highly provocative whole-body rotational motion with head movements to induce motion sickness (so-called "Cross-coupled motion"). These studies showed no significant efficacy of an NK₁RA (GR205171 [vofopitant]; L758,298) using the degree of motion exposure tolerated before onset of nausea as the endpoint; this suggests no efficacy against nausea (Reid et al., 1998; Reid et al., 2000). A study of healthy human volunteers using

British Pharmacological Society

1		8
2 3 4	173	inescapable motion at sea investigated the NK $_1$ RA tradipitant (VLY-686/ LY686017)
5 6 7	174	(Polymeropoulos et al., 2020) and unlike laboratory-based trials, it was possible to measure
7 8 9	175	both vomiting and nausea. Tradipitant was significantly effective (placebo comparator) in
10 11 12	176	protecting against vomiting, but less effective against nausea, using the motion sickness
12 13 14	177	severity scale (MSSS) as an index (Figure 2). Only for selected data obtained during rough seas
15 16	178	did the NK ₁ RA provide any protection against nausea compared to vomiting in this sub-group
17 18 19	179	(Figure 2). By contrast, well proven muscarinic acetylcholine (ACh) receptor antagonists such
20 21	180	as scopolamine (hyoscine), provided protection against both nausea (Golding et al., 1997;
22 23 24	181	2018) and vomiting (Golding et al., 2017). More detailed studies are now required,
25 26	182	investigating for example, the effects of NK ₁ RA on the physiological changes accompanying
27 28 29 30 31	183	motion sickness such as the reduced gastric antral contractile activity (Faas et al., 2001), a
	184	pathway of potential relevance to understanding the effects of NK_1RAs in gastrointestinal
32 33	185	conditions associated with nausea, such as gastroparesis (see below).
34 35 36	186	From these very limited data, we tentatively conclude that NK ₁ RAs are effective against
37 38 39	187	vomiting induced by abnormal motion but are less effective against nausea.
40 41	188	3.2 Chemotherapy-induced nausea and vomiting . We focus on NK ₁ RA use in the acute and
42 43 44	189	delayed phases of highly emetogenic chemotherapy (HEC) discussing their effects against
45 46	190	vomiting before effects against nausea.
47 48 49	191	A study of CINV in seven patients given CP-122,721 <i>alone</i> showed that in the acute phase (first
50 51	192	24h) of HEC five patients had ≤2 episodes v. 7 episodes of "emesis" in an historic control group
52 53 54	193	and in the delayed phase, 6 had no emesis (Kris et al., 1997). A larger study with L-758, 298
54 55 56	194	(the prodrug for the NK ₁ RA, aprepitant [L-754,030]) showed that 37% of patients (n=30) had
57 58	195	no vomiting or retching in the acute phase, compared with 52% of patients in an ondansetron
59 60	_00	

(5-HT₃RA) group (n=23; not significantly different) (Cocquyt et al., 2001). However, confining analysis to the first 8h following cisplatin showed 37% of patients had no vomiting or retching in the NK₁RA group compared to 83% in the 5-HT₃RA group (*P*=0.001) but in the delayed phase 72% of patients were without vomiting or retching in the NK₁RA group vs 30% in the ondansetron group (P=0.005) (Cocquyt et al., 2001). This study suggests a shift in the relative involvement of 5-hydroxytryptamine₃ (5-HT₃) and NK₁ receptors driving retching and vomiting between the acute and delayed phases following cisplatin, a finding confirmed by detailed time course analysis of the efficacy of aprepitant, L-758, 298, ondansetron and granisetron in treatment of CINV (Hesketh et al., 2003). Recent meta-analyses demonstrate additional protection against vomiting when NK₁RAs are given with a 5-HT₃RA and dexamethasone during both acute and delayed phases in HEC (~15-20% more complete protection), with a greater effect in the delayed phase (Jordan et al., 2016; Yokoe et al., 2019; Qiu et al., 2020). Overall, and despite an ability of NK₁RAs to further reduce the incidence of vomiting during the acute phase when combined with a 5-HT₃RA and dexamethasone, the incidence of nausea is not further reduced during this phase. For example, an initial study with L-754,030 showed a clear additional effect on vomiting in the acute phase following cisplatin when added to a 5-HT₃RA/dexamethasone regimen (Kris et al., 1997), but no difference in the median nausea score. An analysis of the Phase III studies of NK₁RAs added to a 5-HT₃RA and dexamethasone regime in HEC, found no consistent evidence for an improvement in the incidence of "no significant nausea" (NSN) or "no nausea" (NN) in the acute phase (Bošnjak et al., 2017). For example, the percentage of patients experiencing "no nausea" in the NK₁RA arm v. placebo in the acute phase was 53.6% v. 52% (Roila et al., 2014), 65% v. 66% (Schwartzberg et al.,

2015), 68% vs 61% (Study 2, Rapoport et al., 2015; statistically significant) and 73% vs 68% (Study 1, Rapoport et al., 2015). A pooled analysis of studies with rolapitant showed a small but statistically significant increase in the percentage of patients reporting NN (respectively, 64% and 70%) in the acute phase of HEC (Bošnjak et al., 2017). Saito et al., (2013) found a tendency for the incidence of NSN to increase (90.2% v 84.9%) when using intravenous fosaprepitant (150mg+granisetron/dexamethasone) in patients receiving high-dose cisplatin, although the difference was not statistically significant and the NN incidence was unchanged (67.6% vs. 67.5%) compared to placebo.

Some, but not all, studies reported that during the delayed phase the addition of an NK₁RA significantly increased the percentage of patients reporting NN or NSN. In the initial study with L-754,030 (±placebo+ granisetron/dexamethasone; Navari et al., 1999) the median nausea score was reduced on a 100mm VAS (higher score indicating more severe nausea) from 19mm to 1mm on day 2 and over days 2-5 from 10mm to 1mm. Similarly, others reported that the percentage of patients experiencing NN in the NK₁RA arm vs placebo in the delayed phase increased significantly: 52.7% v. 39.9% (Poli-Bigelli et al., 2003), 53% v. 42% (Study 1, Rapoport et al., 2015) and 58% v. 47% (Study 2, Rapoport et al., 2015). However, some showed no statistically significant change in NN (e.g., 43.9% vs 49.1%, Roila et al., 2014; 71.4% v. 73%, Roila et al., 2015; 48% v. 45%, Schwartzberg et al., 2015). A pooled analysis of studies using rolapitant showed a significant 12% increase in the NN percentage (44% v. 56%) in the delayed phase (Bošnjak et al., 2017).

A recent meta-analysis investigated the addition of aprepitant to a 5-HT₃RA/dexamethasone regimen in patients (only 258 in the final analysis) receiving HEC treatments for lung cancer (He et al., 2021). While the overall complete response rate (no vomiting/no rescue British Journal of Clinical Pharmacology

1 2			
3 4	242	medicatio	n) was significantly better when aprepitant was given, the NN rate was not
5 6 7	243	statisticall	y significantly different (although significant in two of the studies included in the
7 8 9	244	analysis; D	Pupuis et al., 2020; Yokoe et al., 2019).
9 10			
10 11 12	245	In summa	ry, there is insufficient data to compare different NK $_1$ RAs, but it is possible to draw
13 14 15	246	general co	nclusions about their efficacy in HEC:
16 17	247	i)	$\rm NK_1RAs$ further reduce the incidence of vomiting during the acute phase when
18 19 20	248		combined with a 5-HT ₃ RA and dexamethasone, but the effect is more marked in
21 22 23	249		the delayed phase of HEC.
23 24 25	250	ii)	When added to a 5-HT ₃ RA/dexamethasone regime, any ability of NK ₁ RAs to further
26 27	251		reduce the incidence of nausea appears inconsistent and in one meta-analysis the
28 29 30	252		NN rate was not statistically significant.
31 32 33	253	3.3. Post-o	operative nausea and vomiting.
34 35 36	254	Table 2 su	mmarises the effects of NK $_1$ RAs in PONV using the outcome from studies reporting
37 38	255	nausea an	d vomiting separately to illustrate the efficacy differences. Overall, several NK $_1$ RAs
39 40 41	256	show effic	acy against post-operative <i>vomiting</i> in a proportion of patients but the block is not
42 43	257	complete	in all patients and, the efficacy against <i>nausea</i> is inconsistent (e.g., small changes in
44 45 46	258	incidence,	inconsistent change in intensity, Table 2) and lower than against vomiting. A
40 47 48	259	Cochrane	meta-analysis examined the efficacy of diverse pharmacological agents in treating
49 50	260	vomiting i	n the first 24h (Weibel et al., 2020) and concluded that single NK_1RAs were as
51 52 53	261	effective a	is other <i>drug combinations</i> . The analysis did not compare efficacy against nausea.
54 55 56	262	Assessmer	nt of the overall efficacy of NK ₁ RAs against PONV is complicated by the variety of
57 58	263	types or s	urgery (e.g., open abdomen, laparoscopic) and anaesthesia/analgesia protocols. A
59 60	264	further iss	ue is that in studies where a range of doses has been investigated the relationship

between NK₁RA dose and efficacy against either nausea or vomiting is not always clear (e.g.,
casopitant, Singla et al., 2010; rolapitant, Gan et al., 2011; vestepitant, Kranke et al., 2015).

3.4. Cyclical vomiting syndrome. An open-label uncontrolled trial of aprepitant in a paediatric
population refractory to conventional treatment showed reduction in the number of cyclic
vomiting episodes/year and number of vomits/h (Cristofori et al., 2014). Although nausea is
a feature of CVS it was not assessed in this study.

3.5. Paediatric patients with life-limiting conditions.

A case series showed aprepitant (2.0-2.5mg/kg, i.v.) was effective in complete resolution of nausea (parental reports of impact on mobility and feeding used as proxy efficacy markers) in paediatric patients receiving palliative care, with different diagnoses and unresponsive to at least two drugs classified as 'anti-emetics' (e.g., cyclizine, ondansetron, metoclopramide, levomepromazine; Patel et al., 2021). Additionally, aprepitant increased the ability to tolerate feeds as might be expected from the proposal that food refusal in children could be used as a surrogate marker for nausea (Richards & Andrews, 2004), although NK₁RA-induced changes in gastric accommodation (Jacob et al., 2017) offers an alternative explanation.

2 280

3.6. Gastric distension induced sensations and gastroparesis.

In healthy human volunteers a single dose of aprepitant (80 or 125mg) had no effect on gastric
compliance or sensitivity to distension (Ang et al., 2013). Also, in healthy volunteers,
aprepitant (125mg p.o. day 1 + 80mg p.o. days 2-5) did not affect gastric emptying of liquids
or solids, intestinal or colonic transit (Madsen & Fuglsang, 2008). Using the same repeat
dosing schedule but following a 'dyspeptogenic' meal, Jacob et al. (2017) confirmed no
change in gastric emptying with aprepitant but found a modest increase in fasting (~10%),
postprandial (~9%) and gastric accommodation (~5%) volumes, and a tendency to increase

maximal tolerated volume (~25%). Interestingly, the aggregate symptoms, nausea, and pain scores (but not bloating or fullness) increased significantly following the 'dyspeptogenic' meal in the aprepitant group compared to placebo (median 36 v. 4).

A four-week placebo-controlled study of aprepitant (125mg/day, p.o.) involving 126 patients failed to demonstrate an improvement in the primary outcome measure of nausea (Pasricha et al., 2018), in a population with 57% gastroparesis patients and the remainder with Chronic Unexplained Nausea and Vomiting (CUNV). The study also used the Gastroparesis Clinical Symptom Index (GCSI; Revicki et al., 2004) to assess symptom severity as a secondary outcome and this showed significant reductions in overall symptom score (1.3 v. 0.7), vomiting (1.6 v. 0.5 [69% decrease]) and nausea (1.8 v. 1 [44% decrease]). The number of hours per day when nausea was experienced, was reduced and the proportion of nausea-free days increased (~ twofold).

A placebo-controlled trial of 152 patients with idiopathic or diabetic gastroparesis and moderate-to-severe nausea, investigated tradipitant (85mg orally) twice daily (daily total 170mg) for 4 weeks (Carlin et al., 2020). The trial met the primary outcome measure of a reduction in average daily diary nausea score measured using the GCSI Daily Diary with a difference in score reduction between placebo and tradipitant of ~10%. Nausea severity appeared to begin decreasing by week 2 and this was statistically significant by week 3. Additionally, tradipitant increased secondary outcomes of nausea free days (~14%>placebo) and nausea response rate (~21%>placebo). Patients who responded to tradipitant with a reduction in nausea also had improved early satiety, excessive fullness, bloating and upper abdominal pain, compared to placebo. Two case reports involving single patients with

gastroparesis report stoppage of previously intractable nausea (Fahler et al., 2012) or vomiting (Chong & Dhatariya, 2009) on administration of aprepitant. A recent systematic review and network meta-analysis of drugs used to treat gastroparesis showed that NK₁RAs were efficacious (RR=0.69) using global symptom score. When individual symptoms were assessed tradipitant was more effective than placebo in treating nausea (tradipitant RR=0.77; 95% CI 0.65-0.91) (Ingrosso et al., 2023). By contrast, a recent phase III trial of tradipitant in gastroparesis showed no difference from placebo in the intensity of nausea over a 12 week period (Vanda, 2022). 3.7. Overview of clinical efficacy against nausea versus vomiting. Summarising sections 3.1 to 3.6, NK₁RAs can block vomiting induced by HEC (± 5HT₃RA and dexamethasone) and PONV, and with much more limited evidence perhaps also the vomiting associated with CVS and motion-induced vomiting. NK₁RAs do not block vomiting in all patients/subjects exposed to a given stimulus and for CINV the efficacy may depend on the phase (potentially, delayed>acute). When nausea is assessed, several studies report no significant benefit although there is some evidence that even if not completely blocking nausea NK₁RAs may reduce its intensity (e.g., see PONV data, **Table 2**). Overall, however, the NK₁RAs are less efficacious or have more variable efficacy against nausea than vomiting over the same range of stimuli but more quantitative data are needed. We now attempt to explain this differential effect by a detailed analysis of the sites at which NK₁RAs could act to affect vomiting (section 4) and nausea (section 5).

4. Potential site(s) of action of NK₁RA against retching and vomiting (Figure 3).

The sites at which NK₁RA block retching and vomiting have been investigated in animals (primarily dog and ferret). The findings of these studies are included here because the afferent, integrative and motor pathways responsible for vomiting are comparable between animals (e.g., dog, ferret; Onishi et al., 2007) and humans (Stern et al., 2011). For each potential site of action, we will consider whether it could account for a 'broad spectrum' effect against vomiting or whether it can only explain an action against vomiting induced by a specific stimulus or pathway. This analysis also provides an essential background for understanding the differential effects against nausea.

4.1.1. Vestibular system. The vestibular system is essential for induction of nausea and vomiting caused by abnormal body motion. From an evolutionary perspective the vestibular system is considered a component of the mechanisms protecting the body against ingested toxins (see Treisman 1977, Money & Cheung, 1983, Oman, 2012; Lackner, 2014). Although sensitivity to motion sickness is a predictive factor for both CINV and PONV (Gan, 2006; Warr, 2014) there is no evidence that the vestibular system (including vestibular nuclei) is directly implicated in the induction of either. During motion sickness, the motor pathways for vomiting are activated via projections of the vestibular nuclei to the medial and caudal nucleus tractus solitarius (NTS) (studies in the cat; Yates et al., 1994; Sugiyama et al., 2011). There is no evidence that NK₁RAs affect transmission in the pathway between the vestibular system, the vestibular nuclei and the NTS, to block induction of vomiting. This contrasts with the actions on this pathway of H_1 and mACh ($M_{3/}M_5$) receptor antagonists, used to treat motion sickness (Soto & Vega, 2010; Golding & Stott, 1997; Golding et al., 2018). An action of

NK₁RAs within the NTS or at a site(s) deeper in the brainstem is therefore the most likely site for effects against motion-induced vomiting.

4.1.2. Area postrema (AP). The AP projects to neurones in the medial NTS (mNTS) which can be activated by emetic stimuli applied to the AP (e.g., apomorphine, L-glutamate) and by vagal afferent stimulation (dog studies; Koga & Fukuda, 1992). However, the evidence that NK₁ receptors occur within the AP is weak, and their functional relevance uncertain. For example, low levels of [³H]-substance P binding displaced by CP-99,994 (0.1nm-100nM) were found in the ferret AP, as compared to the NTS (particularly subnucleus gelatinosus) (Watson et al., 1995). Ariumi et al. (2000) reported dense ³H-substance P binding in the AP and NTS of ferret but displacement by an NK₁RA was not studied. Comparable evidence is available for *Suncus* murinus and rat (Maubach et al., 1997; Andrews & Rudd, 2004). Iontophoretic application of substance P (SP) activated ~50% of AP neurones tested (dog; Carpenter et al., 1988), but although assumed to play a role during vomiting induced by intravenously-administered SP (dog; Carpenter et al., 1984), the receptor type activated by the applied concentration of SP and the link between activation and vomiting was not identified. In the ferret, application of SP to the AP can evoke vomiting (Andrews & Rudd, 2004) but microinjection studies (Gardner et al., 1994) suggest that this response was probably due to SP penetration to the subjacent NTS as the blood-brain barrier between these two areas may have some permeability. A similar explanation of leak into the NTS may account for the block in morphine (s.c.) and reduction in copper sulphate (intragastric) induced vomiting in the ferret by administration of CP-99,994 or HSP-117 into the AP (Ariumi et al. 2000).

It is a possibility that NK₁ receptors in the AP could be activated if SP (or other tachykinins) are released from gut enteroendocrine cells (EEC; Rezzani et al., 2022) to enter the blood

circulation in addition to acting more locally. However, the evidence for this possibility in response to emetic stimuli is weak. Thus, in patients undergoing chemotherapy, the elevation of serum concentrations of SP during the delayed phase of vomiting was inconsistent (Higa et al., 2006, 2012; Matsumoto et al., 1999; Park et al., 2020; Takahashi et al., 2011) although this is the phase during which NK₁RA are most effective (see above).

Another possibility is that SP could arise from neurones intrinsic to the AP following direct activation by endogenous or exogenous emetic substances or by abdominal vagal afferents projecting to the AP. However, SP-like immunoreactivity (SP-Li) was absent in the AP of a human infant (Rikard-Bell et al., 1990), consistent with the absence of SP-Li cell bodies in the AP of adult cat, rat (Newton et al., 1985) and ferret (Boissonade et al., 1996). Previously, extraction studies in humans found some SP in the AP (Zettler & Schlosser, 1955; Cooper et al., 1981) and radioligand binding showed a "moderate" uptake of an NK₁RA by the human AP (Hietala et al., 2005). Sparse SP-Li nerve fibres have been found in the AP (cat, rat) but their origin is most likely from either vagal nerve afferents terminating there or from the NTS (Newton et al., 1985); this is consistent with the finding of high-densities of SP immunoreactive fibres in lateral borders of the AP in the ferret (Boissonade et al., 1996). However, in the least shrew SP-Li fibres and puncta were present at a "moderate" level in the AP (Ray & Darmani, 2007).

Finally, it is worth noting that the concept of the AP as a site at which systemic agents act to induce nausea and vomiting was originally derived from studies showing abolition of vomiting induced by apomorphine (a dopamine D₂ receptor agonist), following surgical ablation of the AP including in humans (Lindstom & Brizzee, 1962; Borison & Wang, 1953). Similarly, other exogenously administered agents (e.g., morphine, loperamide, cisplatin) can induce emesis

via the AP (Borison, 1989; Bhandari et al., 1992; Percie du Sert et al., 2009). However, there is only limited evidence that systemic endogenous agents which can induce vomiting (e.g., adrenaline, cholecystokinin [CCK], GDF15, vasopressin), act via the AP, with alternative sites of action suggested (Borison, 1989; Borner et al., 2020; Makwana et al., 2022). The above discussion suggests that SP, acting via NK₁ receptors in the AP should be added to the list of systemic endogenous emetic agents. 4.1.3. Abdominal vagal afferents. There are two sites at which vagal afferent activation by emetic stimuli could be affected by an NK₁RA; they are not mutually exclusive (Figure 3). 4.1.3.1. The peripheral transduction mechanism. A potential ability of SP from enterochromaffin cells (ECs) to induce vomiting by acting on vagal afferents was hypothesised >30 years ago (Andrews et al., 1988; for details see Andrews & Rudd, 2004). Potentially, such a mechanism would be similar to that for 5-HT, which is released from ECs in response to chemotherapeutic agents (e.g., cisplatin) and other emetic stimuli (e.g., rotavirus), causing vomiting by stimulating and sensitizing abdominal vagal afferent terminals via 5-HT₃ receptor activation (Andrews & Rudd, 2015; Sanger and Andrews, 2018; for reviews). In rats, treatment with methotrexate or cisplatin increased the number of SP-containing ECs within the intestine, 24h after administration (Machida et al., 2017; Obara et al., 2018) but studies have not yet looked for local release of SP from ECs in response to anti-cancer chemotherapeutic agents or other emetic stimuli. By analogy with 5-HT (see above), any release of SP might be expected to activate vagal nerve terminals. Recently, SP (1µM)-induced depolarisation of human isolated vagus was shown to be blocked by aprepitant (Smith et al., 2021). However, the authors used a concentration ($10\mu M$) at least 10000x the human NK₁ receptor binding

IC₅₀, at or above the concentrations examined for selectivity of action (Tattersall et al., 2000), and now understood to also activate the mechanosensitive two-pore domain potassium channel, TRAAK (encoded by the KCNK4 gene) (McCoull et al., 2022). Interestingly, recordings from abdominal vagal afferents of ferrets show an interaction between 5-HT and SP (Minami et al., 2001) and 'cross talk' has been demonstrated between NK₁ and 5-HT₃ receptors in relation to the 'anti-emetic' effect of palonosetron (Rojas et al., 2014).

4.1.3.2. Vagal afferent to NTS transmission. Abdominal vagal afferents terminate in the mNTS (Fukuda & Koga, 1992). There is evidence that SP is a transmitter from vagal afferents to NTS neurones (cat, Baude et al., 1989; dog, Shiroshita et al., 1997) and for activation of NTS neurones by iontophoretically applied SP (ferret, Saito et al., 1998; rat, Maubach & Jones, 1997). However, any action of NK₁RA on vagal to NTS transmission must be selective for afferents involved in induction of vomiting as NK₁RAs do not block the gag reflex, the cardiac or respiratory components of the von Bezold-Jarisch reflex or apnoea induced by cervical vagal afferent stimulation (Watson et al., 1995; Fukuda et al., 1999). Additionally, while systemic administration of the NK₁RA, CP-99,994 in the anaesthetised ferret blocked licking, swallowing and retching induced by electrical stimulation of the abdominal vagal afferents, the accompanying rise in blood pressure was unaffected (Watson et al., 1995). This makes it unlikely that vagal to NTS transmission per se is blocked and suggests that the block is either within the NTS integrative pathways which initiate vomiting or on the output side of the system in the 'central pattern generator' (CPG) for vomiting located in the reticular formation dorsomedial to the retrofacial nucleus (Bötzinger complex) in the region of the NA (compact region) and the associated 'prodromal sign centre' (PSC in the semi-compact area of the nucleus ambiguus (Fukuda & Koga, 1991, 1992; Fukuda et al., 2003). Further support for a specific activity on some but not all vagal functions comes from studies in the decerebrate

dog where the NK1RA, GR-205171 (i.v.) blocked fictive retching, the accompanying antral
contractile response (most likely the extension of the Retrograde Giant Contraction (RGC) that
originates in the small intestine and immediately precedes the onset of retching mediated by
vagal efferents; see Lang et al., 1986; Lang, 1990), and reduced the hypersalivation (mediated
by PSC) evoked by vagal afferent stimulation, but not the accompanying vagal efferent
mediated relaxation of the proximal stomach (Furukawa et al., 1998).

It is self-evident that blockade of vagal afferent activation at a peripheral site or vagal afferent
transmission to the mNTS would only contribute to the anti-vomiting effects of NK₁RAs when
the primary stimulus activates the vagus (e.g., acute phase of CINV, possibly gastroparesis;
Sanger & Andrews, 2023). Therefore, a vagal site of action would not account for block of
stimuli acting only either via the AP or the vestibular system so additional site(s) of action
need to be considered.

4.1.4. Brainstem integrative mechanism and the drive to the visceral and somatic motor **outputs**. The selective effects of NK₁RA on reflex responses to vagal afferent stimulation (as above) show that actions of NK_1RA within the brain stem integrative pathways (i.e. NTS, CPG, ventral respiratory group [VRG]) are selective to neurones involved in the 'vomiting motor programme' occurring as a result of reconfiguration of the pattern of activity in the multifunctional respiratory neurones (Grélot & Bianchi, 1997; Grélot & Miller, 1997) (c.f. cough, yawn, sneeze). These same sets of neurones can also be driven to evoke vomiting by stimuli acting on the vestibular system and the AP (Figure 4). Thus, the effects of NK₁RAs on the brainstem pathways are 'state dependent' and this can explain the selectivity of effects against vomiting; when the brainstem is involved in baseline respiration and some respiratory

reflexes there is little dependence on SP as a transmitter but when the pathway reconfigures and is highly active as occurs for vomiting then it becomes critically dependent on SP. Overall, there is evidence for either the presence of SP positive neurones and/or NK₁ receptors in the key brainstem sites implicated in vomiting. 4.1.4.1. Nucleus tractus solitarius. SP-like immunoreactive neurones are present in the human NTS, particularly subnucleus gelatinosus (mNTS) and this is consistent with studies in both the cat and ferret (Leslie, 1985; Boissonade et al., 1996). A human brain PET study using a fluorine-18 labelled NK₁RA reported 'moderate' uptake in the NTS, the nucleus ambiguus and "other nuclei of the vagus" (not specified) (Hietala et al., 2005). A site of action within the NTS is supported by studies showing microinjection of CP-99,994 in the "region of the NTS" inhibited, but did not completely block, cisplatin-induced acute retching and vomiting in the ferret (Gardner et al., 1994; Tattersall et al., 1996). An important point is that the NK₁RA was injected after retching/vomiting began showing that the antagonist was blocking a pathway driven by ongoing NK₁ receptor activation. The peptide NK₁RA, GR-82334 was infective against cisplatin-induced retching/vomiting when given intravenously but was effective (77% reduction) when given into the NTS (Gardner et al., 1994). Rupniak et al (1997) correlated anti-emetic activity against cisplatin in the ferret with central penetration using a range of NK₁RAs with differing brain penetration. These studies argued strongly that central penetration (at least to the NTS) is required for the acute anti-emetic effect of an NK₁RA. Further support for an action of NK₁RA in the NTS comes from inhibition of SP (1µM)-induced discharge in NTS slices by the NK₁RA HSP-117 (10µM), without affecting baseline spontaneous neuronal discharge (ferret, Saito et al., 1998).

4.1.4.2. Dorsal motor vagal nucleus. NK₁ receptors are present in the dorsal motor vagal nucleus (DMVN; ferret, Watson et al., 1995), the site of origin of vagal efferents supplying the upper digestive tract and regulating the proximal gastric relaxation and RGC prior to the onset of retching and vomiting (Lang, 1990). In the rat, neurones in the DMVN responsive to gastric distension±24h post-cisplatin had their baseline activity altered by CP-99,994 (5µM) (Sun et al., 2017) but the results should be interpreted with caution as the efferent projection (e.g., the stomach) of the neurones was not identified (e.g., using antidromic collision, Andrews et al., 1980) and the effects of CP-99,994 were not controlled for by using its less potent 2R, 3R enantiomer, CP-100,263 (Watson et al., 1995). Although these studies show that the DMVN is a potential target for NK₁RA it should be noted that preventing the gastric relaxation and RGC will not block retching and vomiting as they can occur even in the absence of the stomach (Magendie, 1813) and when the RGC is blocked by atropine (Lang et al., 1986). An action of NK₁RA on the DMVN is therefore unlikely to explain their anti-vomiting action. **4.1.4.3. Ventral brainstem.** Neurophysiological studies of fictive emesis in the dog implicate

nuclei in the ventral brainstem (Fukuda & Koga, 1991, 1992; Fukuda et al., 2003; Onishi et al., 2007). When administered systemically, the NK₁RA, GR-205171 reduces vagal afferent activation (via the mNTS) of the CPG for vomiting and/or in the pathway linking the NTS to the CPG via the PSC (Fukuda & Koga, 1991, 1992); immunohistochemistry has demonstrated the presence of NK₁ receptors in both regions of the dog ventral brainstem (Fukuda et al., 2003). The CPG connects with the VRG, the location of the neurones driving the phrenic and abdominal motor neurones involved in normal respiration as well as retching and vomiting (Figure 4).

Total block of transmission at either the NTS or CPG is probably not required to stop induction of vomiting; a *reduction* in transmission at either site is likely to be sufficient as triggering vomiting requires a higher frequency stimulus which also lasts for an extended time (e.g., ~20s of vagal afferent stimulation is required in dog [Koga & Fukuda, 1992] and ferret [Andrews et al., 1990]), presumably to prevent inappropriate triggering. It is particularly notable that NK₁RAs prevent the 'wind-up' of CPG neurones induced by vagal afferent stimulation and blunts the rise in firing frequency when continuous vagal afferent stimulation is used, preventing the CPG reaching a threshold for induction of the oscillatory activity required for retching and vomiting (Fukuda et al., 1999, 2003) (Figure 5). 4.1.5. Overview of site(s) of action against vomiting The clinically used NK₁RAs are brain penetrant so when given systemically they can act at both the central and peripheral neuronal sites involved in retching and vomiting: i) For vomiting induced by abnormal motion, the brainstem integrative pathways (NTS, CPG) are the most likely site of action. For stimuli involving abdominal vagal afferents it is possible that NK₁RA can a) ii) block effects of any SP released from EEC cells onto NK1 receptors on the peripheral afferent nerve terminals (Minami et al., 2001); b) reduce tachykininergic transmission between vagal afferents and the NTS (Fukuda et al., 2003; Andrews & Rudd, 2004); c) modulate the brainstem integrative pathways (NTS, CPG) sufficiently to disrupt the signals encoding induction of vomiting (Fukuda et al., 1999, 2003; Fukuda & Koga, 1991, 1992; Watson et al., 1995). At present, the evidence for (b) and (c) is stronger.

iii) For stimuli acting on the AP via the circulation (or cerebrospinal fluid) including exogenous emetics and endogenous substances released for example from the digestive tract because of damage/inflammation (e.g., during the delayed phase of CINV and chronic phases of infection) (Sanger & Andrews, 2018; Andrews et al., 2021, 2023 for references), the brainstem integrative mechanisms (NTS, CPG) are the most likely sites at which vomiting is affected as there is little evidence for an action within the AP itself.

The NTS and CPG sites of action of NK₁RA are common to all stimuli inducing vomiting. However, for stimuli where abdominal vagal afferent activation occurs two additional sites of action are implicated which, if operational, would block vagal afferent input and thereby make it unnecessary for NK₁RA to act within the NTS and CPG. However, although the NK₁RA are highly effective against vomiting in a number of clinical settings, NK₁ receptors are not the only receptors involved in all of the pathways and this may explain why they may not always be fully effective in all patients. For example, SP is likely to co-transmit with a non-peptide (e.g., glutamate) with the former likely to be released by a higher frequency or different pattern of nerve firing (Svensson et al., 2019). Further, glutamate has been implicated in abdominal vagal afferent to mNTS transmission as NBQX blocked vagal afferent-induced retching in dog and ferret and the resulting mNTS activation in the dog (Furukawa et al., 2001; Onishi et al., 2007). Nevertheless peptides, as co-transmitters, are known to be involved in network reconfiguration with release determined by both neuronal firing pattern and time (Cropper et al., 2018). Variations in the predominant transmitters in the nausea and vomiting pathways, possibly as a response to disease, especially if chronic (e.g., in chronic visceral pain NK₁ receptor availability is downregulated; Jarcho et al., 2013), may also contribute to NK₁RAs spectrum of clinical efficacy.

559 5. The potential site(s) of NK₁RA action against nausea

⁵⁶⁰ 'Anti-emetics' must not be assumed to equally affect both nausea and vomiting (Sanger & ⁵⁶¹ Andrews, 2022). Accordingly, we discuss the relative effects of NK₁RA against nausea and ⁵⁶² vomiting by considering specific questions about the pathways involved; this also informs ⁵⁶³ directions for development of novel drugs (section 6). Direct experimental data is not ⁵⁶⁴ available to answer all the questions raised, so some answers are speculative and hypothetical ⁵⁶⁵ but experimentally testable.

5.1. What information reaches the mNTS from the abdominal vagal afferents in the 567 presence of NK₁RAs?

This question is relevant to both CINV and gastroparesis where abdominal vagal afferents are implicated in genesis of nausea and vomiting (Sanger and Andrews, 2018, 2023). Regardless of whether NK₁RAs reduce vagal afferent firing by acting peripherally (e.g., Minami et al., 2001) or centrally (e.g., Fukuda et al., 2003), the degree of activation, and the pattern, frequency and duration of abdominal vagal afferent activity required for induction of nausea as compared to vomiting is unknown. It is, nevertheless, a reasonable assumption that nausea requires less intense activation of afferent pathways than vomiting (see Horn 2014 for discussion in relation to the vagus). The effects of NK₁RAs on vagal afferent activity evoked by a wide range of stimulus intensities, ± substances which may sensitise the afferents (e.g., 5-HT, prostaglandins), need to be investigated directly to answer the above question. The development of vagal afferent recording techniques in humans may eventually allow direct testing of this hypothesis (Ottaviani et al., 2020).

580 5.2. Do differential effects of NK₁RAs on the NTS account for the differential effects against
 58
 59 581 nausea and vomiting?

582 NK₁RA modulation of the vagal afferent drive to the mNTS and/or transmission within the NTS 583 (vagal, AP and vestibular inputs) could contribute to a *reduction* in nausea *intensity* by 584 decreasing the drive from the NTS to supra-medullary structures implicated in the sensation 585 of nausea. However, the evidence for such an action is poor, as discussed below.

586 5.3. Are NK₁ receptors in the mid-brain and cerebral hemispheres involved in potential anti 587 nausea effects of NK₁RA?

In contrast to vomiting, the brain pathways responsible for nausea are not well defined. The majority of brain imaging studies are in subjects reporting nausea induced by illusory-self motion (vection; visually-induced motion sickness, VIMS), with only single studies using 'real' motion or a pharmacological challenge (see Varangot-Reille et al., 2023) making it difficult to assess whether the findings have general applicability. Cortical and sub-cortical areas consistently showing an increase in activity in healthy volunteers reporting nausea include the frontal lobe (e.g., anterior cingulate cortex), occipital lobe (e.g., posterior cingulate cortex), temporal lobe (e.g., amygdala, part of the 'limbic cortex') and basal ganglia (e.g., putamen) (Varangot-Reille et al., 2023).

NK₁RA binding in the human brain using PET shows NK₁ receptors in several brain areas implicated in nausea. For example, aprepitant has receptor occupancy of 50% in the caudate and 90% in the putamen (basal ganglia) at plasma concentrations of ~2x10⁻⁹ M and ~2x 10⁻⁸ M respectively (Bergstrom et al., 2004). Based on the striatal occupancy levels, the authors concluded that the recommended 'anti-emetic' aprepitant regime of 125mg on day 1 and 80mg on the subsequent two days in CINV would result in an occupancy of >90% (Bergstrom) et al., 2004). Hietala et al., (2005) using the same radioligand confirmed the highest uptake in the caudate and putamen and levels ~50% in regions of the occipital lobe (e.g., posterior

cingulate cortex), temporal lobe (e.g., amygdala [forms the 'limbic cortex' with the
hippocampus]) and frontal lobe (anterior cingulate cortex) all of which have been implicated
in nausea in brain imaging studies (Varangot-Reille et al., 2023).

Pharmacological MRI studies provide additional unexpected insights. Using fosaprepitant (pro-drug of aprepitant) the NK₁ receptor distribution profile identified in the above PET studies was confirmed but in addition identified activation of brain areas (e.g., cerebellum, red nucleus) where there were thought to not be any NK₁ receptors, an effect attributed to "downstream pharmacodynamic effects" (Borsook et al., 2012, Fig. 2; Upadhyay et al., 2011). Such effects demonstrate that in identifying brain sites of drug action we should not only consider regions which have their activity inhibited; activation of a pathway which itself is inhibitory on the function under consideration should not be overlooked. Brain imaging studies in nausea have identified areas with both increased and decreased activity (Farmer et al., 2015).

618 Although we focus on areas directly implicated in nausea, as nausea involves heightened 619 anxiety, the potential anxiolytic effects of NK_1RA (Hoppe et al., 2018) could indirectly 620 contribute to reducing nausea scores especially in chronic conditions (e.g., gastroparesis).

Overall, NK₁RAs do not appear to have a consistent ability to reduce nausea induced by multiple stimuli despite high levels of NK₁RA binding in many of the relevant brain areas. Therefore, it is reasonable to conclude that NK₁ receptors do not have a major role in transmission in the 'higher' brain regions currently implicated in nausea. We note that NK₁RA efficacy in depression (e.g., Keller et al., 2006; Ratti et al., 2013), panic disorder (Fujimura et al., 2009), pain (Boorsook et al., 2012) and anxiety (Hoppe et al., 2018) are also variable and less than might be anticipated from NK₁ receptor distribution.

628	5.4. Do NK ₁ RA reduce vasopressin secretion?
-----	--

Relatively high plasma concentrations of arginine vasopressin (AVP) are associated with nausea induced by stimuli activating the vestibular system, AP and abdominal vagal afferents (Makwana et al., 2022). A causal link between AVP and nausea is not proven, but a credible possibility in at least some clinical scenarios involves the actions of low concentrations of AVP on gastric pacemaker activity (the interstitial cells of Cajal; ICC), synergising with actions of other nauseagenic stimuli to disrupt motility and hence, initiate vagal afferent discharge; the demonstration of synergy between two different nauseagenic stimuli (adrenaline + AVP) was used to argue that antagonism of one alone (e.g., the effects of vasopressin) might reduce but not prevent the symptom of nausea (Makwana et al., 2022). In dogs, following cisplatin administration, the NK₁RA maropitant was without significant effect on the peak [AVP] or the area under the curve whereas both were significantly reduced by ondansetron (Kenward et al., 2017). In human patients treated with cisplatin the acute rise in [AVP] was blocked by ondansetron (Barreca et al., 1996) as in the dog, but as far as we are aware similar patient studies have not been performed with an NK₁RA.

643 5.5. Do NK₁RA have a role in treating nausea by gastric motility modulation?

The presence of SP in the digestive tract in nerve terminals and EEC (Sanger, 2004) and of NK₁ receptors on smooth muscle cells and Interstitial cells of Cajal (ICCs) (Lavin et al., 1998; Faussone-Pellegrini, 2006; Cheng et al., 2007; Liu & Rudd, 2023) makes the digestive tract a potential target for NK₁RA. However, an ability of NK₁RAs to affect nausea by a direct effect on gastric motility is unlikely. Thus, in healthy volunteers there is little evidence for an effect of NK₁RA on digestive tract motility (assessed by gastric emptying or compliance, or small and large bowel propulsion) (Madsen & Fuglsang 2008; Ang et al., 2013; Jacob et al., 2017; Khanna

et al., 2022). Interestingly, after a dyspeptogenic meal, aprepitant (125 mg on day 1, then 80 mg on days 2–5) increased fasting, postprandial, and accommodation gastric volume but increased aggregate symptoms, nausea, and pain scores after ingestion of the maximum tolerated volume; the authors suggested that differences between these studies may be dependent on what is measured and on the application of acute- or longer-term dosing with aprepitant (Jacob et al., 2017) but activation of TRAAK channels (see above) should also be considered.

Dysrhythmic gastric electrical activity has been associated with nausea in disorders including gastroparesis, CUNV, functional dyspepsia, gastro-oesophageal reflux disease, all linked with loss of ICCs (Koch 2014; O'Grady et al., 2021). Thus, any ability of NK₁RAs to affect ICC functions (see above) could, in theory, have an influence on *induction* of nausea although an effect on vagal afferent signalling or the NTS seems more likely based on current knowledge.

6. Concluding comments.

Irrespective of the stimulus, the effects of NK₁RA against *vomiting* are explicable by a central action on the NTS and CPG in the brain stem with potential additional peripheral effects on vagal afferent activity when activated by an emetic stimulus (e.g., HEC, some ingested toxins). NK₁RAs are not always 100% effective against vomiting in humans (c.f., pre-clinical studies, Table 1) implicating other transmitter/receptor systems and explaining why optimal anti-vomiting therapy may require drug combinations (e.g., netupitant + palonosetron + dexamethasone) in treating complex situations such as HEC. An additional role for other neurotransmitters/co-transmitters (e.g., glutamate) has not yet been fully explored. A reduction in the projection of information from the NTS to the higher brain regions by

suppression of NTS pathways and the drive from the abdominal vagal afferents is likely to

contribute to any reduction of nausea by NK₁RAs, no matter how sub-optimal the current
evidence suggests. It could be argued that the distribution of NK₁ receptors in cortical and
subcortical structures implicated in nausea may predict efficacy against nausea, but it is also
possible these receptors are coupled to non-nauseagenic pathways, such as those involved in
fear and/ or anxiety (which nonetheless may contribute to the overall sensation of nausea).

Mechanistically, vomiting is well understood and studies with NK₁RAs show that targeting the NTS/CPG in the brainstem is a valid approach and adverse effects on the respiratory, cardiovascular and digestive systems all regulated from the brainstem appear to be avoided. The apparent specificity of NK₁RA blockade of vomiting likely reflects the functional reconfiguration of the neural network to coordinate retching/vomiting where tachykininergic signalling becomes critical (state dependence; see Doi & Ramirez 2010 for a study of NK₁ receptors and state dependent functions of pre-Bötzinger complex respiratory neurones). The NTS and CPG need investigating in emetic species using neurophysiological studies similar to those in rodents showing complex interaction between NK₁ receptor activation, glutamate and GABA release (Bailey et al., 2004) to understand how NK₁RAs are 'functionally specific' for vomiting.

Nausea remains a challenge as there are major gaps in knowledge of the cerebral pathways involved and hence in identifying potential receptor targets to identify 'broad spectrum' antinausea drugs. As the insular cortex is the "highest" cortical region consistently activated in subjects reporting nausea (Varangot-Reille et al., 2023) this would be a logical place to target a drug to block nausea although the associated physiological changes (e.g., regional cold sweating, AVP secretion) may not be blocked as they involve 'lower' brain regions. An alternative approach is to selectively suppress transmission of 'nauseagenic' signals from the

NTS to the mid-brain with consideration being given to the parabrachial nucleus as a potential target. Whilst this might be achieved by a combination of receptor antagonists the use of agonists (e.g., GABA_B, CB₁, 5-HT_{1A}, ghrelin, opioid) may provide a more fruitful approach as this makes fewer assumptions about the nature of the nauseagenic stimulus (Sanger & Andrews, 2006). A gastric inhibitory polypeptide-1 receptor agonist has been shown to block the acute vomiting induced by the chemotherapeutic agent cisplatin in the ferret (Borner et al., 2023), further extending the list of receptor agonists with 'anti-emetic' potential. The electroceutical approaches to treatment of gastrointestinal symptoms, including nausea (Horn et al., 2019; Ramadi et al., 2020), may provide a route by which this system may be controlled but further study is needed to determine the pathways and cell types involved. A final approach is to target the abdominal vagal afferents at a peripheral site but this would only be applicable when a peripheral release of SP has been demonstrated and when the original signal originates from disordered upper digestive tract function (e.g., gastroparesis; Sanger & Andrews, 2023). Research into the development of anti-nausea drugs is further hampered by the paucity of human volunteer studies using stimuli other than motion. Studies of 'anti-emetics' have been undertaken in humans using apomorphine, ipecacuanha and morphine as challenges (Proctor et al., 1978; Minton et al., 1993; Soergel et al., 2014) and a wider range of challenges could be identified from the side effect profile of licenced drugs (e.g., GLP-1 receptor agonists). The final issue is quantification of nausea. The assessment tools widely used in clinical trials rely on an accurate classification of nausea by the subject, an assumption that subjects are reporting the same sensation and reliable recollection as data may only be collected daily giving data with a low temporal resolution (see Varangot-Reille et al., 2023, Suppl. files). The heterogeneity of nausea assessment instruments was identified as an issue in a recent US, F.D.A. review of endpoints in CINV and PONV studies which identified

1		32
2 3 4	721	nausea assessment as an "opportunity for continued research and development" (Gabby et
5 6 7	722	al., 2021). A reliable, subject independent method for assessing nausea in real time is needed
8 9	723	to ensure an accurate assessment of candidate drug efficacy (Andrews & Sanger, 2014).
10 11 12	724	We close by dedicating this review to a colleague and friend Wes Miner who died while we
13 14	725	were drafting this review. Wes was co-author of the first paper demonstrating the remarkable
15 16 17	726	anti-emetic effect of a 5-HT $_3$ receptor antagonist (Miner & Sanger, 1986) and spent his career
18 19	727	in the pharmaceutical industry. In a note to one of the authors (PLRA) in January 1999 Wes
20 21 22	728	made the following insightful comment of relevance to this review regarding the Navari et al.,
23 24	729	1999 paper reporting some of the earliest clinical data on NK ₁ RA: " <i>results are very, very good</i>
25 26 27	730	and I think this will just about wrap it up for pharmaceutical company interest in the N+V area
28 29	731	for the next 20 years." As Wes predicted, there have indeed been no major advances in the
30 31 32	732	development in drugs affecting vomiting and especially nausea in the last 20 plus years and
33 34	733	as this review shows the accepted dogma that 'anti-emetics' equally affect nausea and
35 36	734	vomiting requires challenging; a view with which we are sure Wes would concur.
37 38 39	735	
40 41		
42	736	References
43 44	737	Aapro, M. (2018). CINV: still troubling patients after all these years. Supportive Care in
45 46	738	Cancer, 26(Suppl 1), 55-59.
47 48 49	739	
50 51	740	Andrews, P.L.R., Cai, W., Rudd, J.A., & Sanger, G.J. (2021). COVID-19, nausea and vomiting.
52 53	741	Journal of Gastroenterology and Hepatology,36, 646-656.
54 55 56	742	
57 58	743	Andrews, P.L.R., Davis, C.J., Bingham, S., Davidson, H.I.M., Hawthorn, J., & Maskell, L. (1990)
59	744	The abdominal visceral innervation and the emetic reflex: pathways, pharmacology and
60	745	plasticity. Canadian Journal of Physiology and Pharmacology, 68, 325-345.

2		
3	746	
4 5		
6	747	Andrews, P.L.R., Fussey, I.V., & Scratcherd, T. (1980) The spontaneous discharge in
7 8	748	abdominal vagal efferents in the dog and ferret. <i>Pflügers Archives</i> , 387, 55-60.
9	740	
10 11	749	
12 13 14 15 16 17	750	Andrews, P. L. R., Kovacs, M. & Watson, J. W. (2001). The anti-emetic action of the
	751	neurokinin(1) receptor antagonist CP-99,994 does not require the presence of the area
	752	postrema in the dog. <i>Neuroscience Letters</i> , 314, 102-104.
18 19 20	753	
21	754	Andrews, P. L. R., Okada, F., Woods, A. J., Hagiwara, H., Kakaimoto, S., Toyoda, M., &
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	755	Matsuki, N. (2000). The emetic and anti-emetic effects of the capsaicin analogue
	756	resiniferatoxin in Suncus murinus, the house musk shrew. British Journal of
	757	Pharmacology,130, 1247-1254.
	758	
	759	Andrews, P.L.R., Rapeport, W.G.,& Sanger, G.J. (1988). Neuropharmacology of emesis
	760	induced by anti-cancer therapy. Trends in Pharmacological Science, 9, 334-341.
	761	
	762	Andrews, P.L.R., & Rudd, J.A. (2004). The role of tachykinins and the tachykinin NK $_{ m 1}$ receptor
	763	in nausea and emesis. In P. Holzer, Handbook of Experimental Pharmacology, pp.359-440.
	764	Berlin: Springer-Verlag.
	765	
	766	Andrews, P.L.R., & Rudd, J. A. (2015). The physiology and pharmacology of nausea and
	767	vomiting induced by anti-cancer chemotherapy in humans. In: Navari, R. M. (Ed)
	768	Management of chemotherapy-induced nausea and vomiting: New agents and new uses of
	769	current agents.pp.5-44
	770	
	771	Andrews, P.L.R., & Sanger, G.J. (2014). Nausea and the quest for the perfect anti-emetic.
	772	European Journal of Pharmacology, 722, 108-121
60	773	

1		
2 3 4	774	Andrews, P.L.R., Williams, R.S.B., & Sanger, G.J. (2023). Anti-emetic effects of thalidomide:
5 6 7	775	evidence, mechanism of action, and future directions. Current Research in Pharmacology
7 8 9	776	and Drug Discovery,3, 100138
10 11	777	
12	///	
13 14	778	Ang D, Pauwels A, Akyuz F, Vos R, & Tack J. (2013) Influence of a neurokinin-1 receptor
15 16	779	antagonist (aprepitant) on gastric sensorimotor function in healthy volunteers.
17 18	780	Neurogastroenterology and Motility, 25, e830–e838, 2013.
19 20 21	781	
22 23	782	Ariumi, H., Saito, R., Nago, S., Hyakusoku, M., Takanon, Y., & Kamiya, H-o. (2000). The role of
24 25	783	tachykinin NK-1 receptors in the area postrema of ferrets in emesis. Neuroscience Letters,
26 27	784	286, 123-126.
28 29 30 31	785	
32 33	786	Bailey, C.P., Maubach, K.A., & Jones, R.S.G. (2004). Neurokinin-1 receptors in th rat nucleus
34	787	tractus solitarius: Pre- and postsynaptic modulation of glutamate and GABA release.
35 36 37	788	Neuroscience, 127, 467-479.
38 39 40	789	
41 42	790	Barreca, T., Corsini, G., Cataldi, A., Garibaldi, A., Cianciosi, P., Rolandi, E., & Franceschini, R.
43 44	791	(1996). Effect of the 5-HT3 receptor antagonist ondansetron on plasma AVP secretion: a study
45 46	792	in cancer patients. Biomedicine & Pharmacotherapy, 50, 512-514.
47 48 49	793	
50 51	794	Baude, A., Lanoir, J., Vernier, P., Puizillout, J.J. (1989) Substance P-immuno-reactivity in the
52 53	795	dorsal medial region of the medulla in the cat: effects of nodosectomy. Journal of Chemical
54 55	796	Neuroanatomy, 2, 67-81.
56 57 58 59 60	797	

3	798	Beresford, I.J.M., Birch, P.J., Hagan, R.M., & Ireland, S.J. (1991). Investigation into species
4 5	799	variants in tachykinin NK1 receptors by use of the non-peptide antagonist, CP-96,345. British
6 7	800	Journal of Pharmacology, 104, 292-293.
8 9 10	801	
11 12	802	Bergstrom, M., Hargreaves, R.J., Burns, H.D., Goldberg, M.R., Sciberaras, D., Reines, S.A.,
13 14	803	Petty, K.J., Ögren, M., Antoni, G., Längström, B., Eskola, O., Scheinin, M., Solin, O.,
15 16	804	Majumdar, A.K., Constnazer, M.L., Battisti, W.P., Bradstreet, T.E., Gargano, C. & Hietala, J.
17	805	(2004). Human positron emission tomography studies of brain neurokinin 1 receptor
18 19 20	806	occupancy by aprepitant. Biological Psychiatry, 55, 1007-1012.
20 21 22	807	
23 24	808	Bhandari, P., Bingham, S., & Andrews, P.L.R. (1992). The neuropharmacology of loperamide-
25 26	809	induced emesis in the ferret: The role of the area postrema, vagus, opiate and 5-HT $_{ m 3}$
27 28	810	receptors. <i>Neuropharmacology</i> , 31, 735-742.
29 30	811	
31 32	812	Boissonade, F.M., Davison, J.S., & Egizii, R. (1996) The dorsal vagal complex of the ferret:
33 34	813	anatomical and immunohistochemical studies. Neurogastroenterology and Motility, 8, 255-
35 36	814	272.
37 38 39 40	815	
41 42	816	Borison, H.L. (1989). Area postrema: Chemoreceptor circumventricular organ of the medulla
43 44	817	oblongata. Progress in Neurobiology, 32, 351-390.
45 46	818	
47 48	819	Borison, H.L., & Wang, S.C. (1953). Physiology and pharmacology of vomiting. Pharmacology
49 50	820	<i>Reviews,</i> 5, 193-230.
51 52 53	821	
54 55	822	Borner, T., Reiner, B.C., Crist, R.C., Furst, C.D., Doebley, S.A., Halas, J.G., Al, M., Samma, R.J.,
56	823	De Jonghe, B.C., & Hayes, M.R. (2023). GIP receptor agonism blocks chemotherapy-induced
57 58 59	824	nausea and vomiting. <i>Molecular Metabolism</i> , 73, 101743.
60	825	

1 2		
3 4 5	826	Borner, T., Shaulson, E.D., Ghidewon, M.Y., Barnet, A.B., Horn, C.C., Doyle, R.P., Grill, H.J.,
	827	Hayes, M.R. & De Jonghe, B.C. (2020). GDF15 Induces anorexia through nausea and emesis.
6 7	828	Cell Metabolism, 31, 351-362.
8 9 10	829	
11 12	830	Borsook, D., Upadhay, J., Klimas, M., Schwarz, A.J., Coimbra, A., Baumgartner, R., George, E.,
13 14	831	Potter, W.Z., Large, T., Bleakman, D., Eveloch, J., Iyengar, S., Becerra, L., & Hargreaves, R.J.
15 16	832	(2012). Decision-making using fMRI in clinical drug development: revisiting NK-1 receptor
17	833	antagonists for pain. Drug Discovery Today 17: 964-973.
18 19 20	834	
21 22	835	Bošnjak, S.M., Gralla, R.J., & Schwartzberg, L. (2017). Prevention of chemotherapy-induced
23 24	836	nausea: the role of neurokinin-1 (NK ₁) receptor antagonists. Supportive Care in Cancer, 25,
25 26 27	837	1661-1671.
27 28 29	838	
30 31	839	Carlin, J.L., Lieberman, V.R., Dahal, A., Keefe, M.S., Xiao, C., Birznieks, G., Abell, T.L., Lembo,
32	840	A., Parkman, H., & Polymeropoulos, M.H. (2020). Efficacy and safety of tradipitant in patients
33 34	841	with diabetic and idiopathic gastroparesis in a randomized, placebo-controlled trial.
35 36 37	842	Gastroenterology,160, 76-87.
38 39 40	843	
41	844	Carpenter, D.O., Briggs, D.B., & Strominger, N. (1984). Peptide-induced emesis in dogs.
42 43	845	Behavioural Brain Research, 11, 277-281.
44 45		
46 47	846	
48 49	847	Carpenter, D.O., Briggs, D.B., Knox, A.P., & Strominger, N. (1988). Excitation of Area Postrema
50	017	
51 52 53	848	neurons by transmitters, peptides, and cyclic nucleotides. Journal of Neurophysiology, 59,
54 55	849	358-369.
56 57 58 59 60	850	

Cavaye, J., Dai, B., Gurunathan, K., Weir, R.M., Yerkovich, S., & Gurunathan, U. (2021). NK1 receptor antagonists versus other antiemetics in the prevention of postoperative nausea and vomiting following laparascopic surgical procedures: a systematic review and meta-analysis. Journal of Anesthesiology Clinical Pharmacology, 38, 35-37. Chen, Y., Saito, H., & Matsuki, N. (1997). Ethanol-induced emesis in the house musk shrew, Suncus murinus. Life Sciences, 60, 253-261. Chen, H., Redelman, D., Ro, S., Ward, S. M., Ordög, T., Sanders, S. (2007). Selective labelling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. American Journal of Physiology, Cell Physiology, 292, C497-507. Chong, K., & Dhatariya, K. (2009). A case of severe, refractory diabetic gastroparesis managed by prolonged use of aprepitant. Nature Reviews of Endocrinology, 5, 285–288. Claude, A.K., Dedeaux, A., Chiavaccini, L. & Hinz, S. (2014). Effects of maropitant citrate or acepromazine on the incidence of adverse events associated with hydromorphone premedication in dogs. Journal of Veterinary Internal Medicine, 28, 1414-1417. Cocquyt, V., Van Belle, S., Reinhardt, R.R., Decramer, M.L.A., O'Brien, M., Schellens, J. H.M., Borms, M., Verbeke, L., Van Aelst, F., De Smet, M., Carides, A.D., Eledridge, K. & Gertz, B.J. (2001). Comparison of L-758,298, a prodrug for the selective neurokinin-1 antagonist, L-754,030, with ondansetron for the prevention of cisplatin-induced emesis. European Journal

of Cancer, 37, 835-842.

1		
2 3 4	876	Conder, G.A., Sedlacek, H.S., Boucher, J.F., & Clemence, R.G. (2008) Efficacy and safety of
5	877	maropitant, a selective neurokinin 1 receptor antagonist, in to randomized clinical trials for
6 7	878	prevention of vomiting due to motion sickness in dogs. Journal of Veterinary
8 9	879	Pharmacological Therapy, 31, 528-532.
10 11 12	880	
13 14	881	Cooper, P.E., Fernstrom, M.H., Rorstad, O.P., Leeman, S.E., & Martin, J.B. (1981). The
15 16	882	regional distribution of somatostatin, substance P and neurotensin in human brain. Brain
17 18	883	Research, 218, 219-232.
19 20	884	
21 22 23	885	Cristofori, F., Thapar, N., Saliakellis, E., Kumaraguru, N., Elawad, M., Kiparissi, F.,
24 25	886	Köglmeier, J., Andrews, P., Lindley, K.J., & Borrelli, O. (2014) Efficacy of the neurokinin-1
26 27 28	887	receptor antagonist aprepitant in children with cyclical vomiting syndrome.
29 30	888	Alimentary Pharmacology and Therapeutics, 40, 309-317.
31 32 33	889	
34 35 26	890	Cropper, E. C., Jing, J., Vilim, F.S., & Weiss, K.R. (2018). Peptide cotransmitters as dynamic,
36 37 29	891	intrinsic modulators of network activity. Frontiers in Neural Circuits, 12, 78.
38 39 40 41	892	
42 43	893	Darmani, N.A., Chebolu, S., Amos, B., & Alkam, T. (2011). Synergistic antiemetic interactions
44 45	894	between serotonergic 5-HT $_3$ and tachykininergic NK $_1$ -receptor antagonists in the least shrew
46 47	895	(Cryptotis parva). Pharmacology Biochemistry and Behaviour, 99, 573-579.
48 49 50	896	
51 52	897	De la Puente-Redondo, V. A., Tilt, Rowan, T.G., & Clemence, R.G. (2007). Efficacy of
53	898	maropitant for treatment and prevention of emesis caused by intravenous infusion of
54 55 56	899	cisplatin in dogs. American Journal of Veterinary Research, 68, 48-56.
57 58 59 60	900	

Diemunsch, P., Schoeffler, P., Bryssine, B., Cheli-Muller, L.E., Lees, J., McQuade, B.A., &
Spraggs, C.F. (1999). Antiemetic activity of the NK₁ receptor antagonist GR205171 in the
treatment of established postoperative nausea and vomiting after major gynaecological
surgery. *British Journal of Anaesthesia*, 82, 274-276.

Diemunsch, P., Gan, T.J., Philip, B.K., Girao, M.J., Eberhart, L., Irwin, M.G., Pueyo, J., Chelly,
J.E., Carides, A.D., Reiss, T., Evans, J.K., & Lawson, F.C. for the Aprepitant-PONV Protocol 091
International Study Group. (2007). Single-dose aprepitant *vs* ondansetron for the prevention
of postoperative nausea and vomiting: a randomized, double -blind Phase III trial in patients
undergoing open abdominal surgery. *British Journal of Anaesthesia*, 99, 202-211.

25 911

P12 Doi, A., & Ramirez, J-M. (2010). State -dependent interactions between excitatory
 P13 neuromodulators in the neuronal control of breathing. *Journal of Neuroscience*, 30, 8251 P14 8262.

Duffy, R.A., Morgan, C., Naylor, R., Higgins, G.A., Varty, G.B., Lachowicz, J.E. & Parker, E.M. (2012). Rolapitant (SCH 619734): a potent, selective and orally active neurokinin NK1 receptor antagonist with centrally -mediated antiemetic effects in ferrets. *Pharmacology* Biochemistry and Behaviour, 102, 95-100.

44 920

46 921 Dupuis, L.L., Tomlinson, G.A., Pong, A., Sung, L., & Bickham, K. (2020). Factors associated
 47
 48 922 with chemotherapy-induced vomiting control in pediatric patients receiving moderately or
 49
 50 923 highly emetogenic chemotherapy: A pooled analysis. *Journal of Clinical Oncology*, 38, 2499 51 924 2509.

Faas, H., Feinle, C., Enck, P., Grundy, D.G., & Boesiger, P. (2001). Modulation of gastric motor
 activity by centrally acting stimulus, circular vection, in humans. *American Journal of Physiology*, 280, G850-857.

1		
2 3	929	
4 5	525	
6 7	930	Fahler, J., Wall, G. C., & Leman, B. I. (2012) Gastroparesis-associated refractory nausea treated
, 8 9	931	with aprepitant. Annals of Pharmacotherapy, 46, e38.
10 11 12	932	
13 14	933	Farmer, A.D., Ban, V.F., Coen, S.J., Sanger, G.J., Barker, G.J., Gresty, M.A., Giampietro, V.P.,
15 16	934	Williams, S.C., Webb, D.L., Hellström, P.M., Andrews, P.L.R., & Aziz, Q. (2015). Visually
17 18	935	induced nausea causes characteristic changes in cerebral, autonomic and endocrine
19	936	function in humans. Journal of Physiology, 593, 1183-1196.
20 21 22 23	937	
24 25	938	Faussone-Pellegrini, M-S. (2006). Relationships between neurokinin receptor -expressing
26	939	interstitial cells of Cajal and tachykininergic nerves in the gut. Journal of Cellular and
27 28	940	Molecular Medicine, 10, 20-32.
29 30 31	941	
32 33	942	Fujimura, Y., Yasuno, F., Farris, A., Liow, JS., Geraci, M., Drevets, W., Pine, D.S., Ghose, S.,
34 35	943	Lerner, A., Hargreaves, R., Burns, H.D., Morese, C., Pike, V.W., & Innis, R.B. (2009).
36 37	944	Decreased neurokinin-1 (substance P) receptor binding in patients with panic disorder:
38 39	945	positron emission tomography study with {18F]SPA-RQ. <i>Biological Psychiatry,</i> 66,94-97.
40 41 42	946	
43 44	947	Fukuda, H., & Koga, T. (1991). The Bötzinger complex as the pattern generator for retching
45 46	948	and vomiting in the dog. <i>Neuroscience Research</i> , 12, 471-485.
47 48 49	949	
50 51	950	Fukuda, H. & Koga, T. (1992). Non-respiratory neurons in the Bötzinger complex exhibiting
52 53	951	appropriate firing patterns to generate the emetic act in dogs. Neuroscience Research, 14,
54 55 56	952	180-194.
57 58 59 60	953	

Fukuda, H., Koga, T., Furukawa, N., Nakamura, E., Shiroshita, Y. (1999). The tachykinin NK1 receptor antagonist GR205171 abolishes the retching activity of neurones comprising the central pattern generator for vomiting in dogs. *Neuroscience Research*, 33, 25-32.

Fukuda, H., Koga, T., Furukawa, N., Nakamura, E., Hatano, M. and Yanagihara, M. (2003). The
site of the antiemetic action of NK1 receptor antagonists. In J. Donnerer (ed.) *Antiemetic Therapy* (pp. 33-77). Basel: Karger.

Furukawa, N., Fukuda, H., Hatano, M., Koga, T., & Shiroshita,Y. (1998). A neurokinin-1
receptor antagonists reduce hypersalivation and gastric contractility related to emesis in
dogs. *American Journal of Physiology*, 275, G1193-1201.

Furukawa, N., Hatano, M. & Fukuda, H. (2001). Glutaminergic vagal afferents may mediate
both retching and gastric adaptive relaxation in dogs. *Autonomic Neuroscience: Basic and Clinical*, 93, 21-30.

Furukawa, T.Y., Nakayama, H., Kikuchi, A., Imazumi, K., Yamakuni, H., Sogabe, H., Yamasaki,
S., Takeshita, K., Matsuo, M., Manda, T.& Uchida, W. (2013). Antiemetic effects of a potent
and selective neurokinin-1 receptor antagonist, FK886, on cisplatin- and apomorphineinduced emesis in dogs. *Biology Pharmacology Bulletin* 36: 974-979.

49 974

Gabby, M.E., Bugin, K., & Lyons, E. (2021). Review article: the evolution of endpoint assessments for chemotherapy-induced nausea and vomiting and post-operative nausea and vomiting—a perspective from the US Food and Drug Administration. *Alimentary* Pharmacology and Therapeutics, 54, 7-13.

2 3 4	980	Gan, T.J. (2006). Risk factors for postoperative nausea and vomiting. Anesthesia and
5	981	Analgesia, 102, 1884-1898.
6 7	501	Analysia, 102, 1004 1050.
8 9 10	982	
11 12	983	Gan, T., Gan, J., Singla, N., Chung, F., Pearman, M., Bergese, S., Habib, A.S., Candiotti, K.A.,
13 14	984	Mo, Y., Huyck, S., Creed, M.R., Cantillon, M., & Rolapitant Investigation Group (2011).
15 16	985	Rolapitant for the prevention of postoperative nausea and vomiting: a prospective double-
17 18	986	blinded, placebo controlled randomized trial. Anesthesia and Analgesia, 112, 804-812.
19 20 21	987	
22 23	988	Gardner, C.J., Twissell, D.J., Gale, J.D., Jordan, C.C., Kilpatrick, G.J., Bountra, C., & Ward, P.
24 25	989	(1995). The broad -spectrum anti-emetic activity of the novel non-peptide tachykinin NK_1
26 27	990	receptor antagonist GR203040. British Journal of Pharmacology, 116, 3158-3163.
28 29 30 31	991	
32 33	992	Gardner, C.J., Bountra, C., Bunce, K.T., Dale, T.J., Jordan, C.C., Twissell, D.J. & Ward, P. (1994).
33 34 35	993	Anti-emetic activity of neurokinin NK $_1$ receptor antagonists is mediated centrally in the ferret.
36 37	994	British Journal of Pharmacology, 112, 516P.
38 39 40	995	
41 42	996	Gardner, C., & Perrin, M. (1998). Inhibition of anaesthetic -induced emesis by a NK_1 or 5-HT ₃
43 44	997	receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology, 37,
45 46	998	1643-1644.
47 48 49 50 51	999	
	1000	Gardner, C.J., Twissell, D.J., Dale, T.J., Gale, J.D., Jordan, C.C., Kilpatrick, G.J., Bountra, C., &
52 53	1001	Ward, P. (1995). The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin
54 55 56	1002	NK1 receptor antagonist GR203040. British Journal of Pharmacology, 116, 3158-3163.
57 58 59 60	1003	

3 4	1004	Gardner, C.J., Armour, D.R., Beattie, D.T., Gale, J.D., Hawcock, A.B., Kilpatrick, G.J., Twissell,
5 6	1005	D.J., & Ward, P. (1996). GR205171: a novel antagonist with high affinity for the tachykinin NK ₁
7 8	1006	receptor, a potent broad-spectrum anti-emetic activity. <i>Regulatory Peptides</i> , 65, 45-53.
9 10 11	1007	
12 13	1008	Gesztesi, Z.S., Song, D., White, P.F., Wright, W., Wender, R.H., D'Angelo, R., Black, S., Dalby,
14 15	1009	P.L., & MacLean, D. (1998). Comparison of a new NK-1 antagonist (CP122,721) to ondansetron
16 17 18	1010	in the prevention of postoperative nausea and vomiting. Anesthesia and Analgesia, 86, S32.
19 20 21	1011	
22	1012	Gesztesi, Z., Scuderi, P.E., White, P.F., Wright, W., Wender, R.H., D'Angelo, R., Black, S., Dalby,
23 24	1013	P.L., & MacLean, D. (2000). Substance P (neurokinin-1) antagonists prevents postoperative
25 26 27	1014	vomiting after abdominal hysterectomy procedures. Anesthesiology, 93, 931-937.
28 29 30	1015	
31 32	1016	Golding, J.F., Paillard, A.C., Normand, H., Besnard, S., Denise, P. (2017). Prevalence, predictors
33 34	1017	& prevention of motion sickness in zero-G parabolic flights. Aerospace Medicine & Human
35 36	1018	Performance, 88, 3-9.
37 38 39	1019	
40 41	1020	Golding, J.F., Wesnes, K.A. & Leaker, B.R. (2018) The effects of the selective muscarinic M_3
42 43	1021	receptor antagonist darifenacin, and of hyoscine (scopolamine), on motion sickness, skin
44 45 46	1022	conductance & cognitive function. British Journal of Clinical Pharmacology, 84,1535–1543
47 48 49	1023	
50 51	1024	Golding, J.F., & Stott, J.R.R. (1997). Comparison of the effects of a selective muscarinic
52 53 54	1025	receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and
55 56 57	1026	heart rate. British Journal of Clinical Pharmacology, 43, 633-637.
58 59 60	1027	

1 2		
3 4	1028	Gonsalves, S., Watson, J., & Ashton, C. (1996). Broad spectrum antiemetic effects of CP-
5	1029	122721, a tachykinin NK ₁ receptor antagonist in ferrets. <i>European Journal of Pharmacology</i> ,
6 7 0	1030	305, 181-185.
8 9 10 11	1031	
12 13	1032	Grélot , L. & Bianchi, A.L. (1997). Mutifunctional medullary respiratory neurons. In A.B. Miller,
14 15	1033	A.L. Bianchi and B.P. Bishop (eds.) Neural Control of the Respiratory Muscles (pp. 297304).
16 17	1034	CRC Press, Boca Raton, Florida, USA.
18 19 20	1035	
21 22	1036	Grelot, L., & Miller, A.D. (1997). Neural control of respiratory muscle activation during
23 24	1037	vomiting. In A.B. Miller, A.L. Bianchi and B.P. Bishop (eds.) Neural Control of the Respiratory
25 26	1038	Muscles (pp. 239-248). CRC Press, Boca Raton, Florida, USA.
27 28 29 30	1039	
31 32	1040	Gupta, R.G., Schafer, C., Romaroson, Y., Sciullo, M.G., & Horn, C.C. (2017). Role of the
33 34	1041	abdominal vagus and hindbrain in inhalational anesthesia-induced vomiting. Autonomic
34 35 36	1042	Neuroscience: Basic and Clinical, 202, 114-121.
37 38 39	1043	
40 41	1044	Habib, A.S., Keifer, J.C., Borel, C.O., White, W.D. & Gan, T.J. (2011) A comparison of the
42 43	1045	combination of aprepitant and dexamethasone versus the combination of ondansetron and
44 45	1046	dexamethasone for the prevention of postoperative nausea and vomiting in patients
46 47	1047	undergoing craniotomy. Anesthesia and Analgesia, 112, 813-818.
48 49 50	1048	
51 52	1049	Ham, S.Y., Shim, Y.H., Kim, E.H., Son, M.J., Park, W.S., & Lee, J.S. (2016). Aprepitant for
53 54	1050	antiemesis after laparoscopic gynaecologcial surgery: A randomised controlled trial. European
55 56	1051	Journal of Anesthesiology, 33, 90-95.
57 58 59 60	1052	

Hay-Kraus, B.L. (2014) Efficacy of orally administered maropitant citrate in preventing vomiting associated with hydromorphone administration in dogs. Journal of the American Veterinary *Medicine Association*, 15, 1164-1169. He, M., Xu, R., Liu, M., Zhang, Y., Yi, F., Wei, Y., Liu, Q., & Zhang, W. (2021). Use of dexamethasone and a 5-HT3 receptor antagonist with or without aprepitant to prevent chemotherapy-induced nausea and vomiting among patients with lung cancer who are treated with platinum-based chemotherapy: a systematic review and meta-analysis of randomized controlled trials. Annals of Palliative Medicine, 10, 4308-4318. Hesketh, P.J., Van Belle, S., Aapro, M., Tattersall, F.D., Naylor, R.J., Hargreaves, R., Carides, A.D., Evans, J.K., & Horgan, K.J. (2003). Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis revealed by therapy with specific receptor antagonists. European Journal of Cancer, 39, 1074-1080. Hietala, J., Nyman, M.J., Eskola, O., Laakso, A., Grönroos, T., Oikonen, V., Bergman, J., Haaparanta, M., Forsback, S., Matjamåki, P., Lehikonen, P., Goldberg, M., Burns, D., Hamill, T., Eng, W-S., Coimbra, A., Hargreaves, R., & Solin, O. (2005). Visualization and quantification of neurokinin-1 (NK1) receptors in the huma brain. *Molecular Imaging Biology*, 7, 262-272. Higa, G.M., Auber, M.L., Altahoa, R., Piktel, D., Kurian, S., Hobbs, G., & Landreth, K. (2006). 5-hydroxyindoleacetic acid and substance P profiles in patients receiving emetogenic chemotherapy. Journal of Oncology Pharmacy Practice, 12, 201-209. Higa, G.M., Auber, M.L., & Hobbs, G. (2012). Identification of a novel marker associated with risk for delayed chemotherapy-induced vomiting. Supportive Care in Cancer, 20, 2803-2809.

Page 47 of 160

1 2		
3 4 5 6 7 8 9 10 11 12 13	1080	Holbrook, J.D., Gill, C.H., Zebda, N., Spencer, J.P., Leyland, R., Rance, K.H., Trinh, H., Balmer,
	1081	G., Kelly, F.M., Yusaf, S.P., Courtney, N., Luck, J., Rhodes, A., Modha, S., Moore, S.E., Sanger,
	1082	G.J., & Gunthorpe, M. (2009). Characterization of 5-HT3c, 5-HT3d and 5-HT3e receptor
	1083	subunits: evolution, distribution and function. Journal of Neurochemistry, 108, 384-396.
	1084	
14	1085	Hoppe, J.M., Frick, A., Åhs, F., Linnman, C., Appel, L., Jonasson, M., Lubberink, M.,
15 16	1086	Långstrom, B., Frans, Ö., von Knorring, L., Fredrikson, M., & Furmark, T. (2018). Association
17 18	1087	between amygdala neurokinin-1 receptor availability and anxiety-related personality traits.
19 20	1088	Translational Psychiatry, 8, 168.
21 22 23	1089	
23 24 25	1090	Horn, C.C., Ardell, J.L., & Fisher, L.E. (2019). Electroceutical targeting of the autonomic
26	1091	nervous system. <i>Physiology</i> , 34, 150-162.
 27 28 29 30 31 32 33 34 35 36 37 38 39 	1092	
	1093	Horn, C.C., Meyers, K., Pak, D., Nagy, A., Apfel, C.C., & Williams, B.A. (2012). Post-anesthesia
	1094	vomiting: impact of isoflurane and morphine on ferrets and musk shrews. Physiology &
	1095	Behaviour, 106, 562-568.
	1096	
	1097	Horn, C.C. (2014). Measuring the nausea-to-emesis continuum in non-human animals:
40 41	1098	refocusing on gastrointestinal vagal signaling. <i>Experimental Brain Research</i> , 232, 2471-2481.
42 43 44	1099	
45 46	1100	Horn, C.C., Kimball, B.A., Wang, H., Kaus, J. Dienel, S., Nagy, A., Gathright, G.R., Yates, B.J., &
47 48	1101	Andrews, P.L.R. (2013). Why can't rodents vomit? A comparative behavioral, anatomical,
49 50 51 52	1102	and physiological study. <i>PloS One</i> , 8, e60537.
	1103	
53 54	1104	Horn, C.C., Wallisch, W.J., Homanics, G.E., & Williams, J.P. (2014). Pathophysiology and
55 56	1105	neurochemical mechanism of postoperative nausea and vomiting. European Journal of
57 58	1106	Pharmacology, 722, 55-66.
59 60	1107	

2		
3 4	1108	Ingrosso, M.R., Camilleri, M., Tack, J., Ianiro, G., Black, C.J., & Ford, A.C. (2023) Efficacy and
5 6 7	1109	safety of drugs for gastroparesis: Systematic review and network meta-analysis.
8 9	1110	Gastroenterology, 164, 642-654.
10 11 12	1111	
13 14	1112	Jacob, D., Busciglio, I., Burton, D., Halawi, H., Oduyebo, I., Rhoten, D., Ryks, M., Harmsen, W.S.,
15 16	1113	& Camilleri, M. (2017). Effects of NK ₁ receptors on gastric motor functions and satiation in
17 18	1114	healthy humans: results from a controlled trial with the NK_1 antagonist aprepitant. American
19 20	1115	Journal of Physiology: Gastrointestinal and Liver Physiology, 313, G505–G510.
21 22 23	1116	
24 25	1117	Jarcho, J.M., Feier, N.A., Bert, A., Labus, J.A., Lee, M., Stains, J., Ebrat, B., Groman, S.M.,
26 27	1118	Tillisch, K., Brody, A.L., London, E.D., Mandelkern, M.A. & Mayer, E.A. (2013). Diminsihed
28 29	1119	neurokinin-1 receptor availability in patients with two forms of chronic visceral pain. Pain,
30 31	1120	154, 987-996.
32 33 34	1121	
35 36	1122	Johnson, R.A. (2014). Maropitant prevented vomiting but not gastroesophageal reflux in
37 38	1123	anesthetized dogs premedicated with acepromazine-hydromorphone. Veterinary Anesthesia
39 40 41	1124	and Analgesia, 41, 406-410.
42 43	1125	
44	1126	Jordan, K., Warr, D.G., Hinke, A., Sun, L., & Hesketh, P.J. (2016). Defining the efficacy of
45 46	1127	neurokinin-1 receptor antagonists in controlling chemotherapy -induced nausea and vomiting
47 48 49	1128	in different emetogenic settings- a meta- analysis. Supportive Care in Cancer, 24, 1941-1954.
50 51 52	1129	
53 54	1130	Kan, K.K.W., Jones, R.L., Ngan, M-P., Rudd, J.A., & Wai. M-K. (2003). Action of prostanoids on
55 56	1131	the emetic reflex of Suncus murinus (the house musk shrew). European Journal of
57 58	1132	Pharmacology, 477, 247-251.
59 60	1133	

Kan, K.K.W., Rudd, J.A. & Wai, M.K. (2006). Differential action of anti-emetic drugs on defecation and emesis induced by prostaglandin E2 in the ferret. European Journal of Pharmacology, 544, 153-159. Kanda, T., Toda, C., Morimoto, H., Shimizu, Y., Otoi, T., Furumoto, K., Okamura, Y., & Iwata, E. (2020). Anti-emetic effect of oral maropitant treatment before the administration of brimonidine ophthalmic solution in healthy cats. Journal of Feline Medicine and Surgery, 22,557-563. Kantyka, M.E., Meira, C., Bettschart-Wolfensberger, R., Hartnack, S., & Kutter, A.P.N. (2020). Prospective, controlled, blinded, randomized crossover trial evaluating the effect of maropitant versus ondansetron on inhibiting tranexamic acid-evoked emesis. Journal of Veterinary Emergency Critical Care, 30, 436-441. Keller, M., Montgomery, S., Ball, W., Morrison, M., Snavely, D., Liu, G., Hargreaves, R., Hietala, J., Lines, C., Beebe, K., & Reines, S. (2006). Lack of efficacy of the substance P (neurokinin receptor) antagonist aprepitant in the treatment of major depressive disorder. Biological Psychiatry, 59, 216-223. Kenward, H., Elliott, J., Lee, T., & Pelligrand, L. (2017). Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: a blinded crossover study. BMC Veterinary *Research*, 13, 244. Khanna, L., Zheng, T., Atieh, J., Torres, M., Busciglio, I., Carlin, J.L., Xiao, M., Harmsen, W.S., & Camilleri, M. (2022). Clinical trial: a single-centre, randomised, controlled trial of tradipitant on satiation, gastric functions, and serum drug levels in healthy volunteers. Alimentary *Pharmacology and Therapeutics,* 56, 224–30.

2 3 4 5	1162	
6 7	1163	Koch, K.L. (2014). Gastric dysrhythmias: a potential objective measure of nausea. Exp Brain
8 9	1164	<i>Res</i> 232: 2553–2561.
10 11 12	1165	
13 14	1166	Koga, T. & Fukuda, H. (1992). Neurons in the nucleus of the solitary tract mediating inputs
15 16	1167	from emetic vagal afferents and the area postrema to the pattern generator for the emetic
17 18	1168	act in dogs. Neuroscience Research, 14, 166-179.
19 20 21	1169	
22 23	1170	Koh, R.B., Isaza, N., Xie, H., Cooke, K., & Robertson, S.A. (2014). Effects of maropitant,
24 25	1171	acepromazine, and electroacupuncture on vomiting associated with administration of
26 27 28	1172	morphine in dogs. Journal of the American Veterinary Association, 244, 820-829.
29 30 31	1173	
32 33	1174	Kranke , P., Thompson, J.P., Dalby, P.L., Eberhart, L.H., Novikova, E., Johnson, B.M., Russ, S.F.,
34	1175	Noble, R., & Brigandi, R.A. (2015). Comparison of vestipitant with ondansetron for the
35 36 27	1176	treatment of breakthrough postoperative nausea and vomiting after failed prophylaxis with
37 38 39	1177	ondansetron. British Journal of Anaesthesia,114, 423-429.
40 41 42	1178	
43 44	1179	Kretzing, S., Abraham, G., Seiwert, B., Ungemach, F.R., Krügel, U., Teichert, J., & Regenthal, R.
45 46	1180	(2011). In vivo assessment of antiemetic drugs and mechanism of lycorine -induced nausea
47 48	1181	and emesis. Archives of Toxicology, 85, 1565-1573.
49 50 51	1182	
52 53	1183	Kris, M.G., Radford, J.E., Pizzo, B.A., Inaninet, R., Hesketh, A., & Hesketh, P.J. (1997). Use of an
54 55	1184	NK ₁ receptor antagonist to prevent delayed emesis after cisplatin. Journal of the National
56 57 58	1185	Cancer Institute, 89, 817-818.
58 59 60	1186	

_	-	
E	n	
	U	
	υ	

1 2		
3 4	1187	Lackner, M.R. (2014). Motion sickness: more than nausea and vomiting. Experimental Brain
5 6 7 8 9	1188	Research, 232, 2493-2510.
	1189	
10 11	1190	Lang, I.M., Sarna, S.K., & Condon, R.E. (1986). Gastrointestinal motor correlates of vomiting
12 13	1191	in the dog: Quantification and characterization as an independent phenomenon.
14 15 16	1192	Gastroenterology, 90, 40-47.
17 18 19	1193	
20	1194	Lang, I.M. (1990). Digestive tract motor correlates of vomiting and nausea. Canadian Journal
21 22	1195	of Physiology and Pharmacology, 68, 242-253.
23 24 25 26 27 28 29 30	1196	
	1197	Lau, A.H.Y., Kan, K.K.W., Lai, H.W., Ngan, M-P., Rudd, J.A., Wai, M-K., & Yew, D.T.W. (2005).
	1198	Action of ondansetron and CP-99, 994 to modify behavior and antagonize cisplatin-induced
31 32	1199	emesis in the ferret. European Journal of Pharmacology, 506, 241-247.
33 34 35	1200	
36 37	1201	Lavin, S, T., Southwell, B.R., Murphy, R., Jenkinson, K.M., & Furness J.B. (1998) Activation of
38 39	1202	neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by
40 41	1203	substance P. Histochemistry and Cell Biology, 110, 263–271.
41 42 43 44	1204	
45 46	1205	Leslie, R.A. (1985). Neuroactive substances in the dorsal vagal complex of the medulla
47	1206	oblongata: Nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the
48 49	1207	vagus. Neurochemistry International, 7, 191-211.
50 51 52	1208	
53 54	1209	Lindstrom, P.A., & Brizzee, K.R. (1962). Relief of intractable vomiting from surgical lesion in
55 56	1210	the area postrema. <i>Journal of Neurosurgery</i> , 19, 228-236.
57 58 59 60	1211	

2 3	1212	Liu, J.Y.H & Rudd, J.A. (2023). Predicting drug adverse effects using a new Gastro-Intestinal
4 5		
6	1213	Pacemaker Activity Drug Database (GIPADD). <i>Scientific Reports</i> , 13, Article number: 6935.
7 8 9	1214	
10 11	1215	Liu, M., Zhang, H., Du, B-X., Xu, F-Y., Zou, Z., Sui, B., & Shi, X-Y. (2015). Neurokinin-1 receptor
12 13	1216	antagonists in preventing postoperative nausea and vomiting. A systematic review and meta
14 15	1217	-analysis. <i>Medicine</i> , 94, 1-10.
16 17 18 19	1218	
20 21	1219	Lorenzutti, A.M., Martin-Flores, M., Literio, N.J., Himelfarb, M.A., Invaldi, S.H., & Zarazaga,
22	1220	M.P. (2016). Evaluation of the antiemetic efficacy of maropitant in dogs medicated with
23 24 25	1221	morphine and acepromazine. Veterinary Anesthesia and Analgesia, 43, 195-198.
26 27 28	1222	
29 30	1223	Lorenzutti, A.M., Martin-Flores, M., Literio, N.J., Himelfarb, M.A., Invaldi, S.H., & Zarazaga,
31 32	1224	M.P. (2017). A comparison between maropitant and metoclopramide for the prevention of
33 34	1225	morphine-induced nausea and vomiting in dogs. Canadian Veterinary Journal,58, 35-38.
35 36 37	1226	
38 39	1227	Lucot, J.B., Obach, R.S., McClean, S., & Watson, J.W. (1997). The effect of CP-99994 on the
40 41 42	1228	responses to provocative motion in the cat. British Journal of Pharmacology, 120, 116-120.
43 44	1229	
45 46	1230	Machida, T., Takano, Y. lizuka, K., Machida, M., & Hirafuji, M. (2020). Methotrexate causes
47 48	1231	acute hyperplasia of enterochromaffin cells containing substance P in the intestinal mucosa
49 50 51	1232	of rats. Journal of Pharmacological Science, 133,190–193.
52 53 54	1233	
55 56	1234	Madsen, J.L., & Fuglsang, S. (2008). A randomized, placebo-controlled, crossover, double
57 58	1235	blind trial of the NK1 receptor antagonist aprepitant on gastrointestinal motor functions in
59 60	1236	healthy humans. Alimentary Pharmacology and Therapeutics, 27, 609-615.

1 2		
2 3 4	1237	
5 6	1238	Magendie, F. (1813). Mémoire sur le vomissement, lu à la première classe de l'Institut de
7 8	1239	France. (Ed.1813). Cez Crochard, Libraire, Paris, France. pp48.
9 10	1240	
11	1240	
12 13	1241	Makwana, R., Crawley, E., Straface, M., Palmer, A., Gharibans, A., Deavlia, K., Loy, J., O'Grady,
14 15	1242	G., Andrews, P.L.R., & Sanger, G.J. (2022). Synergistic augmentation of rhythmic myogenic
16 17	1243	contractions of human stomach by [Arg ⁸]-vasopressin and adrenaline: Implications for the
18	1244	induction of nausea. British Journal of Pharmacology, 179, 5305-5322.
19 20 21 22	1245	
23 24	1246	Martin-Flores, M., Sakai, D.M., Learn, M.M., Mastrocco, A., Campoy, L., Boesch, J.M., &
25 26	1247	Gleed, R.D. (2016). Effect of maropitant in cats receiving dexamethasone and morphine.
27	1248	Journal of the American Veterinary Medicine Association, 248, 1257-1261.
28 29 30	1249	
31 32	1250	Matsumoto, S., Kawasaki, Y., Mikami, M., Nakamoto, M., Tokuyasu, H., Kometani, Y.,
33 34	1251	Chikumi, H., Hitsuda, Y., Matsumoto, Y., & Sasaki, T. (1999). [Relationship between cancer
35 36	1252	chemotherapeutic drug-induced delayed emesis and plasma levels of substance P in two
37 38	1253	patients with small cell lung cancer]. Gan To Kagaku Ryoho, 26, 535-538.
39	1254	
40 41	1255	Maubach, K.A., & Jones, R.S. (1997). Electrophysiological characterisation of tachykinin
42 43		receptors in the rat nucleus of the solitary tract and dorsal motor nucleus of the vagus <i>in</i>
44 45	1256	
46	1257	vitro. British Journal of Pharmacology, 122, 1151-1159.
47 48 49	1258	
50 51	1259	McCoull, D., Veale, E.L., Walsh, Y., Byrom, L., Avkiran, T., Large, J.M., Vaitone, E., Gaffey, F.,
52 53	1260	Jerman, J., Mathie, A., & Wright, P.D. (2022). Aprepitant is a novel, selective activator of the
54 55 56	1261	K2P channel TRAAK. Biochemical and Biophysics Research Communications, 588, 41-46.
50 57 58 59 60	1262	

1 2		
3 4 5 6 7	1263	Megens, A.A.H.P., Ashton, D., Vermeire, J.C., Vermote, P.C., Hens, K.A., Hillen, L.C., Fransen,
	1264	J.F., Mahieu, M., Heylen, L., Leysen, J.E., Jurzak, M.R., & Janssens, F. (2002). Pharmacological
	1265	profile of (2r-trans)-4-[1-{3,5-bis(trifluromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-n-
8 9	1266	(2,6-dimethylphenyl)-1-acetamide (s)-hydroxybutanedioate (R116301), an orally and
10 11	1267	centrally active neurokinin-a receptor antagonist. Journal of Pharmacology and
12 13	1268	Experimental Therapeutics, 302, 696-709.
14 15	1269	
16 17	1270	Minami, M., Endo, T., Yokota, H., Ogawa, T., Nemoto, M., Hamaue, N. & Andrews, P.L.R.,
18 19 20 21	1271	(2001). Effects of CP-99, 994, a tachykinin NK1 receptor antagonist, on abdominal afferent
	1272	vagal activity in ferrets: evidence for involvement of NK ₁ and 5-HT ₃ receptors. <i>European</i>
22	1273	Journal of Pharmacology, 428, 215-220.
23 24 25 26	1274	
27	1275	Miner, W.D., & Sanger, G.J. (1986). Inhibition of cisplatin-induced vomiting by selective 5-
28 29 30	1276	hydroxytryptamine M-receptor antagonism. British Journal of Pharmacology, 88, 497-499
31 32	1277	
33 34	1278	Minton, N., Swift, R., Lawlor, C., Mant, T., & Henry, J. (1993). Ipecacuanha-induced emesis: A
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	1279	human model for testing antiemetic drug activity. Clinical Pharmacology and Therapy,54,53-
	1280	57.
	1281	
	1282	Money, K.E., & Cheung, B.S. (1983). Another function of the inner ear: facilitation of the
	1283	emetic response to poisons. Aviation Space and Environmental Medicine, 54, 208–211.
	1284	
	1285	Moon, H.Y., Baek, C.W., Choi, G.J., Shin, H.Y., Kang, S.H., Jung, Y.H., Woo, Y.C., Kim, J.Y., &
	1286	Park, S.G. (2014). Palonosetron and aprepitant for the prevention of postoperative nausea
52 53	1287	and vomiting in patients indicated for laparascopic gynaecological surgery: a double-blind
53 54 55 56 57 58 59 60	1288	randomised trial. BMC Anesthesiology, 14, 68.
	1289	

2		
3 4	1290	Murakami, C., Kakuta, N., Kume, K., Sakai, Y., Kasai, A., Oyama, T., Tanaka, K., & Tsutsumi,
5 6	1291	Y.M. (2017). A comparsion of fosaprepitant and ondansetron for preventing postoperative
7	1292	nausea and vomiting in moderate to high risk patients: A retrospective database analysis.
8 9	1293	BioMed Research International, 217, ID 5703528.
10 11 12	1294	
13 14	1295	Napadow, V., Sheehan, J.D., LaCount, L.T., Park,K., Kaptchuk, T.J., Rosen, B.R., & Kuo, B.,
15 16	1296	(2012). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral
17 18 19	1297	Cortex, 23, 806-813
20	1298	
21 22	1299	Navari, R.M., Reinhardt, R.R., Gralla, R.J., Kris, M.G., Hesketh, P.J., Khojasteh, A., Kindler,H.,
23 24	1300	Grote, T.H., Pendergrass, K., Grunberg, S.M., Carides, A.D., & Gertz, B.J. for the L-754,030
25 26	1301	antiemetic trials group.(1999). Reduction of cisplatin -induced emesis by a selective
27 28	1302	neurokinin -1 receptor antagonist. L-754,030 Antiemetic trials group
29 30 21	1303	New England Journal of Medicine, 340, 190-195.
31 32 33	1304	
34 35	1305	Newton, B.W., Maley, B., & Traurig, H. (1985). The distribution of substance P, enkephalin,
36	1306	and serotonin immunoreactivities in the area postrema of the rat and cat. Journal of
37 38	1307	Comparative Neurology, 234, 87-104.
39 40 41	1308	
42 43	1309	Obara, Y., Machida, T., Takano, Y., Shiga, S., Suzuki, A., Hamaue, N., lizuka, K., & Hirafuji, M.
44 45	1310	(2018). Cisplatin increases the number of enterochromaffin cells containing substance P in rat
46 47	1311	Intestine. Naunyn Schmiedeberg's Archives Pharmacology, 391, 847–858.
48 49	1312	
50 51	1313	Oman, C.M. (2012). Are evolutionary hypotheses for motion sickness "just so stories"?
52 53 54	1314	Journal of Vestibular Research, 22, 117-127.
55 56 57 58 59	1315	
59 60		

Onishi, T., Mori, T., Yanagihara, M., Furukawa, N., & Fukuda, H. (2007). Similarities of the neuronal circuit for the induction of fictive vomiting between ferrets and dogs. Autonomic Neuroscience, 136, 20-30. O'Grady, G., Gharibans, A.A., Du, P., & Huizinga, J.D. (2021). The gastric conduction system in health and disease: a translational review. American Journal of Physiology, 321, G527-42. Ottaviani, M.M., Wright, L., Dawood, T., & Macefield, V.G. (2020). In vivo recordings from the human vagus nerve using ultrasound guided microneurography. Journal of Physiology, 598, 3569-3576. Park, H.S., Won, H.S., An, H.J., Cho, S.S., Kim, H.H., Sun, D.S., Ko, Y.H., & Shim, B.Y. (2020). Elevated serum substance P level as a predictive marker for moderately emetogenic chemotherapy-induced nausea and vomiting: A prospective cohort study. Cancer Medicine, 10, 1057-1065 Pasricha, P.J., Yates, K.P., Sarosiek, I., McCalllum, R.W., Abell, T.L., Koch, K.L., Nguyen, L.A.B., Snape, W.J., Hasler, W.L., Clarke, J.O., Dhalla, S., Stein, E.M., Leee, L.A., Miriel, L.A., Van Natta, M.L., Grover, M., Farrugia, G., Tonascia, J., Hamilton, F.A., & Parkman, H.P., for the NIDDK Gastroparesis Clinical Research Consortium (GpCRC). (2018). Aprepitant has mixed effects on nausea and reduces other symptoms in patients with gastroparesis and related disorders. Gastroenterology, 154, 65-76. Patel, B., Downie, J., Baylis, J., Stephenson, A., & Bluebond-Langer, M. (2021). Long -term daily administration of aprepitant for the management of intractable nausea and vomiting in children with life-limiting conditions: a case series. Journal of Pain and Symptom Management, 62, e225-e231.

1		56
2 3 4 5	1343	
5 6	1344	Percie du Sert, N., Rudd, J.A., Moss, R., & Andrews, P.L.R. (2009). The delayed phase of
7 8	1345	cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral
9 10	1346	innervation in the ferret. Neuroscience Letters, 465, 16-20.
11 12 13	1347	
14	1348	Poli-Bigelli, S., Rodrigues-Pereira, J., Carides, A.D., Julie Ma, G., Eldridge, K., Hipple, A., Evans,
15 16	1349	J.K., Horgan, K.J., & Lawson, F. (2003). Addition of the neurokinin 1 receptor antagonist
17 18	1350	aprepitant to standard antiemetic therapy improves control of chemotherapy-induced
19 20	1351	nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in
21 22	1352	Latin America. <i>Cancer</i> , 97, 3090-3098.
23 24	1353	
25	1354	Polymeropoulos, V. M., Czeisler, M.É., Gibson, M.M., Anderson, A.A., Miglo, J., G, J., Xiao, C.,
26 27 28 29 30 31	1355	Polymeropoulos, C.M., Birznieks, G., & Polymeropoulos, M.H. (2020). Tradipitant in the
	1356	treatment of motion sickness: A randomized, double blind, placebo-controlled study.
	1357	Frontiers in Neurology, 11, 563373.
32 33		
33 34 35 36 37 38	1358	
	1359	Proctor, J.D., Chremos, A.N., Evans, E.F., & Wasserman, A.J. (1978). An apomorphine-induced
39	1360	vomiting model for antiemetic studies. Journal of Clinical Pharmacology, 12, 95-99.
40 41	1201	
42 43	1361	
44 45	1362	Qiu, T., Men, P., Xu, X., Zhai, S., & Cui, X. (2020), Antiemetic regimen with aprepitant in the
46 47	1363	prevention of chemotherapy-induced nausea and vomiting. An updated systematic review
48 49	1364	and meta-analysis. <i>Medicine</i> 99: e21559
50 51 52	1365	
53 54	1366	Ramadi, K.B., Srinivasan, S., & Traverso, G. (2020). Electroceuticals in the gastrointestinal
55 56	1367	tract. Trends in Pharmacological Science, 41, 960-976.
57 58		
50 59 60	1368	
00		

2 3	1200	Dependent D.L. Chessen M.D. Cridelli, C. Linken L. Mediane, M.D. Schnedig, L.D. Deme, A.
4 5 6 7 8	1369	Rapoport, B.L., Chasen, M.R., Gridelli, C., Urban, L., Modiano, M.R., Schnadig, I.D., Poma, A.,
	1370	Arora, S., Kansra, V., Schwartzberg, L.S., & Navari, R.M. (2015). Safety and efficacy of
	1371	rolapitant for prevention of chemotherapy-induced nausea and vomiting after
9	1372	administration of cisplatin-based highly emetogenic chemotherapy in patients with cancer:
10 11	1373	two randomised, active -controlled, double blind, phase 3 trials. Lancet Oncology, 16, 1079-
12 13	1374	1089.
14 15 16	1375	
17 18	1376	Ratti, E., Bettica, P., Alexander, R., Archer, G., Carpenter, D., Evoniuk, G., Gomeni, R.,
19	1377	Lawson, E., Lopez, M., Milns, H., Rabiner, E.A., Trist, D., Trower, M., Zamuner, S. Krishnan,
20 21	1378	R., & Fava, M. (2013). Full central neurokinin-1 receptor blockade is required for efficacy in
22 23	1379	depression: evidence from orvepitant clinical studies. Journal of Psychopharmacology, 27,
24 25	1380	424-434.
26 27 28 29 30 31	1381	
	1382	Rau, S.E., Barber, L.G., & Burgess, K.E. (2010). Efficacy of maropitant in the prevention of
	1383	delayed vomiting associated with administration of doxorubicin in dogs. Journal of
32 33 34	1384	Veterinary Internal Medicine, 24, 1452-1457.
35 36	1385	
37 38	1386	Ray, A.P., & Darmani, N.A. (2007). A histologically derived stereotaxic atlas and substance P
39 40	1387	immunohistochemistry in the brain of the least shrew (<i>Cryptotis parva</i>) support its role as a
40 41 42	1388	model organism for behavioural and pharmacological research. Brain Research, 1156, 99-
42 43 44	1389	111.
45 46	1390	
47 48	1391	Reid, K., Sciberras, D.G., Gertz, B.J., Reinhardt, R.R., Liu, G., Golding, J.F., & Stott, J.R.R.
49 50	1392	(1998). Comparison of a neurokinin-1 antagonist L758,298, and scopolamine with placebo in
51 52	1393	the prevention of motion-induced nausea in man. British Journal of Clinical Pharmacology,
52 53 54	1394	45,282P.
55 56 57 58 59 60	1395	

1		
2 3 4	1396	Reid, K., Palmer, J.L., Wright, R.J., Clemes, S.A., Troakes, C., Somal, H.S., House, F., & Stott,
5	1397	J.R.R. (2000). Comparison of the neurokinin-1 antagonist GR205171, alone and in
6 7	1398	combination with the 5-HT3 antagonist ondansetron, hyoscine and placebo in the
8 9	1399	prevention of motion-induced nausea in man. British Journal of Clinical Pharmacology, 50,
10 11	1400	61-64.
12 13 14	1401	
15 16 17	1402	
18	1403	Revicki, D.A., Rentz, A.M., Dubois, D., Kahrilas, P.,Stanghellini, V., Talley N.J,. & Tack, J. (2004)
19 20	1404	Gastroparesis Cardinal Symptom Index (GCSI): Development and validation of a patient
21 22	1405	reported assessment of severity of gastroparesis symptoms. Quality of Life Research, 13, 833-
23 24	1406	844.
25 26 27	1407	
28 29 30	1408	Rezzani, R., Franco, C., Franceschetti, L., Gianó, M., & Favero, G. (2022). A focus on
31	1409	enterochromaffin cells among the enteroendocrine cells: Localization, morphology, and
32 33 34	1410	role. International Journal of Molecular Science, 23, 3758.
35 36	1411	
37 38	1412	Richards, C. A., & Andrews, P. L. R. (2004). Food refusal: A sign of nausea? Journal of
39 40 41	1413	Pediatric Gastroenterology and Nutrition, 38, 229-230.
41 42 43	1414	
44 45	1415	Rikard-Bell, G.C., Törk, I., Sullivan, C., & Scheibner, T. (1980). Distribution of substance P -
46 47	1416	like immunoreactive fibres and terminals in the medulla oblongata of the human infant.
48 49	1417	<i>Neuroscience,</i> 34, 133-148.
50 51 52	1418	
53 54	1419	Robichaud, A., Tattersall, F.D., Choudry, I., & Rodger, I.W. (1999). Emesis induced by
55 56	1420	inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret.
57 58	1421	Neuropharmacol 38: 289 297.
59 60	1422	

1 2		
3 4 5	1423	Roila, F., Ruggeri, B., Ballatori, E., Del Favero, A., & Tonato, M. (2014). Aprepitant versus
	1424	dexamethasone for preventing chemotherapy-induced delayed emesis in patients with
6 7	1425	breast cancer: a randomized double-blind study. Journal of Clinical Oncology, 32, 101-106.
8 9 10	1426	
11 12	1427	Roila, F., Ruggeri, B., Ballatori, E., Fatigoni, S., Caserta, C., Licitra, L., Mirablile, A., Ionta, M.T.,
13 14	1428	Massidda, B., Cavanna, L., Pallaino, M.A., Tocci, A., Fava, S., Colantonio, I., Angelelli, L.,
15 16	1429	Ciuffreda, L., Fasola, G., & Zerilli, F. (2015). Aprepitant versus metoclopramide, both
17	1430	combines with dexamethasone, for the prevention of cisplatin-induced delayed emesis: a
18 19	1431	randomized, double -blind study. Annals of Oncology, 26, 1248-1253.
20 21 22	1432	
23 24	1433	Rojas, C., Raje, M., Tsukamoto, T., & Slusher, B.S. (2014). Molecular mechanisms of $5-HT_3$
25 26	1434	and tachykinin NK $_1$ receptor antagonists in prevention of emesis. European Journal of
27 28	1435	Pharmacology, 722, 26-37.
29 30 31	1436	
32	1437	Rudd, J.A., Ngan, M.P., & Wai, M.K. (1999). Inhibition of emesis by tachykinin NK1 receptor
33 34	1438	antagonists in <i>Suncus murinus</i> (house musk shrew). European Journal of Pharmacology, 366,
35 36	1439	243-252.
37 38 39	1440	
40 41	1441	Rudd, J.A., Ngan, M.P., Lu, Z., Higgins, G.A., Giuliano, C., Lovati, E., & Pietra, C. (2016). Profile
42 43	1442	of antiemetic activity of netupitant alone or in combination with palonosetron and
44 45	1443	dexamethasone in ferrets and Suncus murinus (House Musk Shrew). Frontiers in
45 46 47	1444	Pharmacology, 7, 263.
48 49	1445	
50 51	1446	Ruffle, J.K., Patel, A., Giampietro, V., Howard, M.A., Sanger, G.J., Andrews, P.L.R., Williams,
52	1447	S.C.R., Aziz, Q., & Farmer, A.D.(2019). Functional brain networks and neuroanatomy
53 54	1448	underpinning nausea severity can predict nausea susceptibility using machine learning.
55 56	1449	Journal of Physiology, 597, 1517–1529.
57 58 59 60	1450	

1 2		
2 3 4	1451	Rupniak, N.M.J., Tattersall, F.D., Williams, A.R., Rycroft, W., Carloson, E.J., Cascieri, M.A.,
5	1452	Sadowski, S., Ber, E., Hale, J.J., Mills, S.G., MacCoss, M., Seward, E., Huscroft, I., Owen, S.,
6 7	1453	Swain, C.J., Hill, R.G., & Hargreaves, R.J. (1997). In vitro and in vivo predictors of the anti-
8 9	1454	emetic activity of tachykinin NK1 receptor antagonists. European Journal of Pharmacology,
10 11	1455	326, 201-209.
12 13 14	1456	
15 16	1457	Saito, R., Suehiro, Y., Ariumi, H., Migita, K., Hori, N., Hashiguchi, T., Sakai, M., Saeki, M., Takano,
17 18	1458	Y., & Kamiya, H-o. (1998). Anti-emetic effects of a novel NK-1 receptor antagonist HSP-117 in
19	1459	ferrets. Neuroscience Letters, 254, 169-172.
20 21 22 23	1460	
24 25	1461	Saito, H., Yoshizawa, H., Yoshimori, K., Katakami, N., Katsumata, N., Kawahara, M., & Eguchi,
26 27	1462	K. (2013). Efficacy and safety of single-dose fosaprepitant in the prevention of chemotherapy-
28 29	1463	induced nausea and vomiting in patients receiving high-dose cisplatin: a multicentre,
30 31	1464	randomised, double blind, placebo-controlled phase 3 trial. Annals of Oncology, 24, 1067-
32 33	1465	1073.
34 35 36	1466	
37 38	1467	Sanger, G.J. (2004). Neurokinin NK_1 and NK_3 receptors as targets for drugs to treat
39 40 41	1468	gastrointestinal motility disorders and pain. <i>British Journal of Pharmacology</i> , 141,1303-1312.
42 43 44	1469	
45	1470	Sanger, G.J., & Andrews, P.L.R. (2006). Treatment of nausea and vomiting: Gaps in our
46 47 48	1471	knowledge. Autonomic Neuroscience: Basic and Clinical, 129, 3-16.
49 50 51	1472	
52 53	1473	Sanger, G.J., & Andrews, P.L.R. (2018). A history of drug discovery for treatment of nausea
54 55 56	1474	and vomiting and the implications for future research. Frontiers in Pharmacology, 9, 913.
57 58 59 60	1475	

Sanger, G.J., & Andrews, P.L.R. (2022). A proposal for rational drug class terminology: A
gastrointestinal perspective. *British Journal of Pharmacology*,179. 5233-5234.
Sanger, G.J., & Andrews, P.L.R. (2023). An analysis of the pharmacological rationale for
selecting drugs to inhibit vomiting or increase gastric emptying during treatment of
gastroparesis. *Alimentary Pharmacology and Therapeutics, online ahead of print*

Sanger, G.J., Holbrook, J.D., & Andrews, P.L.R. (2011). The translational value of rodent
gastrointestinal functions: a cautionary tale. *Trends in Pharmacological Sciences* 32: 402409.

26 1486

Schwartzberg, L. S., Modiano, M.R., Rapoport, B.L., Chasen, M.R., Gridelli, C., Urban, L., Poma, A., Arora, S., Navari, R.M., & Schnadig, I.D. (2015). Safety and efficacy of rolapitant for prevention of chemotherapy-induced nausea and vomiting after administration of moderately emetogenic chemotherapy or anthracycline and cyclophosphamide regimens in patients with cancer: a randomised, active controlled, double -blind, phase 3 trial. Lancet Oncology, 16, 107-1078.

Sedlacek, H.S., Ramsy, D.S., Boucher, J.F., Eagleson, J.S., Conder, G.A., & Clemence, R.G. (2008). Comparative efficacy of maropitant and selected drugs in preventing emesis induced by centrally or peripherally acting emetogens in dogs. Journal of Veterinary Pharmacology and Therpaeutics, 31, 533-537.

Seifert, R., Alexander, S. (2022). Perspective article: A proposal for rational drug class
 terminology. *British Journal of Pharmacology*,179, 4311-4314.

Page 63 of 160

1 2		
3 4 5 6 7 8 9 10 11	1502	Shiroshita , Y., Koga, T., & Fukuda, H. (1997). Capsaicin in the 4 th ventricle abolishes retching
	1503	and transmission of emetic vagal afferents to solitary nucleus neurons. European Journal of
	1504	Pharmacology, 339, 183-192.
	1505	
12	1506	Shishido, Y., Wakabayashi, H., Koike, H., Ueno, N., Nukui, S., Yamagishi, T., Murata, Y.,
13 14	1507	Naganeo, F., Mizutani, M., Shimida, K., Fujiwara, Y., Sakakibara, A., Suga, O., Kusano, R.,
15 16 17 18	1508	Ueda, S., Kanai, Y., Tsuchiya, M. & Satake, K. (2008). Discovery and stereoselective synthesis
	1509	of the novel isochroman neurokinin-1 receptor antagonist CJ-17,493. Bioorganic Medicinal
19 20	1510	Chem 16: 7193-7205.
21 22	1511	
23 24 25 26 27 28	1512	Sinha, A.C., Singh, P.M., Williams, N.W., Ochroch, E.A., & Goudra, B.G. (2014). Aprepitant's
	1513	prophylactic efficacy in decreasing postoperative nausea and vomiting in morbidly obese
	1514	patients undergoing bariatric surgery. Obesity Surgery, 24, 225-231.
29 30 31	1515	
32	1516	Singla, N.K., Singla, S.K., Chung, F., Kutsogiannis, D.J., Blackburn, L., Lane, S.R., Levin, J.,
33 34	1517	Johnson, B. & Pergolizzi, J.V. (2010). Phase II study to evaluate the safety and efficacy of the
35 36 37 38 39 40 41	1518	oral neurokinin-1 receptor antagonist casopitant (GW679769) administered with
	1519	ondansetron for the prevention of postoperative and post discharge nausea and vomiting in
	1520	high-risk patients. Anesthesiology, 113, 74-82.
41 42 43	1521	
44	1522	Smith, J.A., Harle, A., Dockry, R., Holt, K., Russell, P., Molassiotis, A., Yorke, J., Robinson, R.,
45 46 47 48 49 50	1523	Birrell, M.A., Belvisi, M.G., & Blackhall, F. (2021). Aprepitant for cough in lung cancer: A
	1524	randomised placebo-controlled trial and mechanistic insights. American Journal of
	1525	Respiratory Critical Care Medicine, 203, 737-745.
51 52 53 54	1526	
55	1527	Soergel, D.G., Subach, R.A., Burnham, N., Lark, M.W., James, I.E., Sadler, B.M., Skobieranda,
56 57	1528	F., Violoin, J.D., & Webster, L.R. (2014). Biased agonism of the μ -opioid receptor by TRV130
58 59 60	1529	increases analgesia and reduces on-target adverse effects versus morphine: A randomized,

1 2		
3	1530	double blind, placebo-controlled, crossover study in healthy volunteers. Pain, 155, 1829-
4 5	1531	1835.
6 7		
8 9	1532	
10 11	1533	Soto, E., & Vega, R. (2010). Neuropharmacology of vestibular system disorders. Current
12 13	1534	Neuropharmacology, 8, 26-40.
14 15 16 17	1535	
18	1536	Steinbach, J.R., MacGuire, J., Chang, S., Dierks, E., & Roble, G.S. (2018). Assessment of pre-
19 20	1537	operative maropitant citrate use in macaque (Macaca fascicularis & Macaca mulatta)
21 22	1538	neurosurgical procedures. Journal of Medical Primatology, 47, 178-184.
23 24		
25 26	1539	
27 28 29	1540	Stern, R.M., Koch, K.L., & Andrews, P.L.R. (2011). Nausea: Mechanisms and Management.
	1541	Oxford University Press, New York, USA. pp. 462.
30 31	1341	
32 33	1542	
33 34 35 36	1543	Sugiyama, Y., Suzuki, T., DeStefino, V.J., & Yates, B.J. (2011). Integrative responses of
	1544	neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular
37 38	1545	stimulation in vertical planes. American Journal of Physiology Regulatory Integrative
39 40 41 42 43	1546	Comparative Physiology, 301, R 1380-R1390.
	1547	
44 45	1548	Sun, X., Xu, L., Guo, F., Luo, W., Gao, S., & Luan, X. (2017). Neurokinin-1 receptor blocker CP-
46	1549	99994 improved emesis induced by cisplatin via regulating the activity of gastric distension
47 48	1550	responsive neurons in the dorsal motor nucleus of vagus and enhancing gastric motility in
49 50	1551	rats. Neurogastroenterology and Motility, 29, e13096.
51 52 53	1552	
54 55	1553	Svensson, E., Apergis-Schoute, J., Burnstock, G., Nusbaum, M.P., Parker, D., & Schiöth. (
56	1554	2019). General principles of neuronal co-transmission: Insights from multiple model
57 58 59 60	1555	systems. Frontiers in Neural Circuits, 12, 117.

	64
1556	
1557	Takahashi, T., Nakamura, Y., Tsuya, A., Murakami, H, Endo, M. & Yamamoto, N. (2011).
1558	Pharmacokinetics of aprepitant and dexamethasone after administration of
1559	chemotherapeutic agents and effects of plasma substance P concentration on chemotherapy-
1560	induced nausea and vomiting in Japanese cancer patients. Cancer Chemotherapy and
1561	Pharmacology, 68, 653-659.
1562	
1563	Tattersall, F.D., Rycroft, W., Marmont, N., Cascieri, M., Hill, R.G., & Hargreaves, R.J. (1995).
1564	Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus
1565	murinus) by the neurokinin1 (NK1) receptor antagonist CP-99, 994. Neuropharmacology, 34,
1566	1697-1699.
1567	
	Tattersall, F.D., Rycroft, W., Francis, B., Pearce, D., Merchant, K., MacLeod, A.M.,
	Ladduwahetty, T., Keown, L., Swain, C., Baker, R., Cascieri, M., Ber, E., Metzger, J., MacIntyre,
	D.E., Hill, R.G. & Hargreaves, R.J. (1996). Tachykinin NK ₁ receptor antagonists act centrally to
	inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets.
1572	Neuropharmacology, 35, 1121-1129.
1573	
1574	Tattersall, F.D., Rycroft, W., Cumberbatch, M., Mason, G., Tye, S., Williamson, D.J., Hale, J.J.,
1575	Mills, S.G., Finke, P.E., MacCoss, M., Sadowski, S., Ber, E., Cascieri, M., Hill, R.G., MacIntyre,
1576	D.E., & Hargreaves, R.J. (2000). The novel NK $_1$ receptor antagonist MK-0869 (L-754,030) and
1577	its water soluble phosphoryl prodrug, L-758,298, inhibit acute and delayed cisplatin-induced
1578	emesis in ferrets. <i>Neuropharmacology</i> , 39, 652-663
1579	
1580	Treisman, M. (1977). Motion sickness: an evolutionary hypothesis. Science, 197, 493–495.
1581	
1582	Tsuchiya, M., Fujiwara, Y., Kanai, Y., Mizutani, M., Shimada, K., Suga, O., Ueda, O., Watson,
1583	J.W. & Nagahia, A. (2002). Anti-emetic activity of the novel nonpeptide tachykinin NK1
	 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1570 1570 1571 1572 1573 1574 1575 1576 1576 1575 1576 1576 1577 1578 1579 1580 1581 1582

3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30 31 23 34 35 36 37	1584	receptor antagonist ezlopitant (CJ-11,974) against acute and delayed cisplatin-induced emesis
	1585	in the ferret. Pharmacology, 66, 144-152.
	1586	
	1587	Upadhay, J., Anderson, J., Schwarz, A. J., Coimbra, A., Baumgartner, R., Pendse, G., George,
	1588	E., Nutile, L., Wallin, D., Bishop, J., Neni, S., Maier, G., Iyyengar, S., Evelhoch, J.L., Bleakman,
	1589	D., Hargreaves, R., Becerra, L., & Boorsook, D. (2011). Imaging of drugs with and without
	1590	clinical efficacy. Neuropsychopharmacology, 36, 2659-2673.
	1591	
	1592	Vail, D.M., Rodabaugh, H.S., Conder, G.A., Boucher, J.F., & Mathur, S. (2007). Efficacy of
	1593	injectable maropitant (Cerenia) in a randomized clinical trial for prevention and treatment
	1594	of cisplatin-induced emesis in dogs presented as veterinary patients. Veterinary
	1595	Comparative Oncology, 5, 38-46.
	1596	
	1597	Vallejo, M.C., Phelps, A.L., Ibinson, J.W., Barnes, L.R., Milord, P.J., Romeo, R.C., Williams,
	1598	B.A., & Sah, N. (2012). Aprepitant plus ondansetron compared with ondansetron alone in
	1599	reducing postoperative nausea and vomiting in ambulatory patients undergoing plastic
	1600	surgery. <i>Plastic Reconstructive Surgery</i> , 129, 519-526.
38 39	1601	
40 41	1602	Vanda (2022). Phase III study of tradipitant in gastroparesis fails to meet prespecified
41 42 43 44 45	1603	primary endpoint. https://www.nasdaq.com/articles/vanda-%3A-phase-iii-study-of-
	1604	tradipitant-ingastroparesis-fails-to-meet-prespecified-primary. 2022.
46 47	1605	
48 49 50 51 52 53 54 55 56 57 58	1606	Varangot-Reille, C., Sanger, G.J., Andrews, P.L.R., Herranz-Gomez, A., Suso-Martí, L., de la
	1607	Nava, J., & Cuenca-Martínez, F. (2023). Neural Networks involved in Nausea in Adult
	1608	Humans: A Systematic Review. Autonomic Neuroscience: Basic and Clinical, 245, 103059
	1609	
	1610	Warr, D. (2014). Prognostic factors for chemotherapy induced nausea and vomiting.
59 60	1611	European Journal of Pharmacology, 722, 192-196.

Watson, J.W., Gonsalves, S.F., Fossa, A.A., McLean, S., Seeger, T., Obach, S., & Andrews, P.L.R. (1995). The anti-emetic effects of CP-99,994 in the ferret and the dog: Role of NK_1 receptors. British Journal of Pharmacology, 115, 84-94. Weibel, S., Rücker, G., Eberhart, L.H., Pace, N.L., Hartl, H.M., Jordan, O.L., Mayer, D., Riemer, M., Schaefer, M.S., Raj, D., Backhaus, I., Helf, A., Schlesinger, T., Kienbaum, P., & Kranke, P. (2020). Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis. Cochrane Database Systematic Review, 10, CD012859. Yalcin, E & Keser, G.O. (2016). Comparative efficacy of metoclopramide, ondansetron and maropitant in preventing parvoviral enteritis-induced emesis in dogs. Journal of Veterinary Pharmacology and Therapeutics, 40, 599-603. Yates, B.J., Grelot, L., Kerman, I.A., Balaban, C.D., Jakus, J. and Miller, A.D. (1994). Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 267, R974-983 Yokoe, T., Hayashida, T., Nagayama, A., Nakasho, A., Meda, H., Seki, T., Takahashi, M., Takano, T., Abe, T., & Kitagawa, Y. (2019). Effectiveness of anti-emetic regimens for highly emetogenic chemotherapy-induced nausea and vomiting: A systematic review and network meta-analysis. The Oncologist, 24, e347-e357. Zaman, S., Woods, A. J., Watson, J. W., Reynolds, D. J. M., & Andrews, P. L. R. (2000). The effect of the NK1 receptor antagonist CP-99,994 on emesis and c-fos protein induction by loperamide in the ferret. *Neuropharmacology*, 39, 316-323.

1		67
2 3		
4	1640	
5 6	1641	Zettler, G. & Schlosser, L. (1955). Über die Verteilung von Substanz P und Cholinacetylase im
7 8	1642	Gehirn. Naunyn-Schmiedeberg's Exp Pathol Pharmakol 224: 159-175.
9 10 11	1643	
12 13	1644	Zhong, W., Chebolu, S., & Darmani, N.A. (2018). Intracellular emetic signaling evoked by the
14	1645	L-type Ca ²⁺ channel agonist FPL64176 in the least shrew (<i>Cryptotis parva</i>). European Journal
15 16	1646	of Pharmacology, 834, 157-168.
17 18 19	1647	
20 21	1648	Zhong, W., Chebolu, S., & Darmani, N.A. (2019). Intracellular emetic signaling cascades by
22 23	1649	which the selective neurokinin type 1 (NK $_1$ R) agonist GR73632 evokes vomiting in the least
24 25	1650	shrew (Cryptotis parva). Neurochemistry International, 122, 106-119.
26	1651	
27 28		
29 30	1652	Figure legends
31 32	1653	Figure 1. A summary of the major pathways implicated in the motor events of vomiting and
33 34 35	1654	the sensation of nausea. The diagram shows the major inputs (vestibular system, abdominal
36 37	1655	vagal afferents, area postrema) to the nucleus tractus solitarius (NTS) in the brainstem by
38 39	1656	which both nausea and vomiting are evoked. The mechanical events of vomiting only
40 41 42	1657	require activation of brainstem and spinal cord nuclei. Most notable are the dorsal motor
43 44	1658	vagal nucleus (DMVN) projecting vagal efferents to the digestive tract to induce gastric
45 46	1659	relaxation and intestinal retrograde giant contraction, and the ventral respiratory group
47 48 49	1660	(VRG) of neurones driving the spinal phrenic nerve nucleus (PNN) responsible for
50 51	1661	contraction of the costal diaphragm which together with the anterior abdominal muscles
52 53 54	1662	(not shown) provides the main force compressing the stomach and leading to forceful oral
55 56	1663	ejection of contents. Nausea requires activation of cerebral structures and is associated with
57 58	1664	the secretion of high concentrations vasopressin (AVP) from the hypothalamic /pituitary axis
59 60		
00		

but other hormones are also released (e.g., cortisol). The main sympathetic motor outputs associated with nausea are shown in the right-hand red rectangle and are a consequence of descending pathways from the "visceromotor cortex" activating the pre-sympathetic nuclei (PSN) in the brainstem which in turn drive the pre-ganglionic sympathetic neurones in the spinal cord (ILH). For details and references see text. Adapted and modified from Varangot-Reille et al., 2023. Figure 2. The effects of the NK₁ receptor antagonist (NK₁RA) tradipant versus placebo on motion sickness signs and symptoms, are shown for Vomiting (left diagram) and for Nausea (right diagram). Motion sickness was provoked by motion at sea. Voyages inevitably varied in terms of the weather and roughness of waves, consequently the data are presented in terms of all data (i.e. all voyages combined) and split by lower wave motion 'calm seas' and higher wave motion 'rough seas'. Vomiting is shown as % incidence. Nausea is shown as the mean sickness rating scale, with higher scores indicating more severe nausea. Note the differences in levels of statistical significance for the different comparisons. Data were adapted from Polymeropoulos et al, 2020. Figure 3. A diagrammatic summary of the central and peripheral sites at which NK₁RA could act to reduce nausea and vomiting. Abbreviations: AP= Area Postrema; CPG= Central pattern Generator for vomiting; DMVN=Dorsal Motor Vagal Nucleus EC=Enterochromaffin cell; EEC=Enteroendocrine Cell; EP=Epithelial cell; HPV= Hepatic Portal Vein; ICC= Interstitial Cells of Cajal; NK₁RA= Neurokinin₁ receptor antagonist; NTS= Nucleus Tractus Solitarius; VNN= Vestibular Nerve Nucleus. In the periphery, NK₁ receptors located on the gastric smooth muscle, the enteric neurones and possibly the ICCs could modulate motility contributing to a reduction in nausea when disordered motility is implicated (e.g., gastroparesis). NK₁RA can prevent activation/sensitisation of both muscle

mechanoreceptors and epithelial 'chemoreceptive' vagal afferents driving nausea and vomiting by locally released SP. The latter are particularly implicated in nausea and vomiting induced by anti-cancer chemotherapy, gastric irritant and some infections (e.g., rotavirus). NK receptors are also implicated in inflammation the reduction of which by NK RA could also contribute to reducing afferent drive. The sites at which vomiting can be blocked all reside in the brainstem (particularly the NTS and CPG) although it is unclear if the AP is a site of action other than when vomiting is induced by an NK, receptor agonist. Induction of nausea requires activation of 'higher' brain regions and although NK₁ receptors are present at multiple sites in the mid-brain and cerebral hemispheres the data implicating them in anti-nausea effects is circumstantial. See text for details and references. Figure 4 A-D. Diagrammatic representation of a longitudinal section through the brainstem showing the key nuclei and pathways implicated in retching, vomiting and nausea. Abbreviations: AP=area postrema; CPG= Central Pattern Generator responsible for the generation of the oscillatory pattern of activity driving the somato-motor pathways for retching and vomiting in the VRG; DMVN= Dorsal Motor Nucleus of the Vagus, origin of pre-ganglionic efferents to the digestive tract; NTS= Nucleus Tractus Solitarius; VRG= Ventral Respiratory Group of neurones; Ph= Phrenic nerve nucleus in cervical (C3-C-5) spinal cord; Ab= Abdominal muscle motor neurones in ventrolateral thoracic and lumbar spinal cord. See text for further explanation and references. A: Resting state; B: Low level of activation of pathways inputting to the NTS resulting in activation of NTS and ascending pathways inducing nausea including secretion of anti-diuretic hormone (ADH/AVP) from the posterior pituitary; C= More intense activation of the inputs results in more intense nausea and proximal gastric relaxation, a preparatory action to accommodate refluxed material resulting from the Retrograde Giant Contraction originating in the small intestine when the input is sufficient to exceed the threshold for induction of retching and vomiting when the phrenic and abdominal motor neurones are activated. Note that The CPG and the DMV outputs must be coordinated (dotted arrow) as retching does not begin until the RGC reaches the gastric antrum.

1 2		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1720	Figure 5. Diagrammatic representation of the neuronal discharge pattern in the medial
	1721	nucleus tractus solitarius (mNTS) and the Central pattern Generator (located in the compact
	1722	part of the nucleus ambiguus, cAMB) in response to electrical stimulation of infra-cardia
	1723	vagal afferents based on neurophysiological studies in the dog reported in Koga & Fukuda,
	1724	(1992), Fukuda et al., (2003), and Onishi et al., (2007). Vagal afferent stimulation results in a
	1725	uniform increase in NTS firing frequency which ceases at the end of stimulation. NTS
	1726	activation results in CPG activation after a lag period and is followed by a progressive
	1727	increase in frequency which is due to 'wind-up'. The CPG firing frequency reaches at
	1728	threshold at which the pattern becomes oscillatory with the output driving the ventral
20	1729	respiratory group of neurones (VRG) which in turn drive the phrenic and abdominal motor
21 22 23 24 25 26	1730	neurones responsible for the mechanical events of retching a vomiting. The CPG oscillations
	1731	causing retching are shorter and smaller magnitude than the ultimate burst of activity
	1732	resulting in vomiting and continue beyond the period of vagal afferent stimulation showing
27 28	1733	a protracted effect of the initial stimulation.
29 30	1734	
31 32 33	1735	
34 35	1736	
36 37	1737	
38 39		
40		
41 42		
42		
44 45		
45 46		

British Pharmacological Society

2		
3	1	An assessment of the effects of neurokinin ₁ receptor antagonism against
4 5	Т	An assessment of the effects of heurokining receptor antagonism against
6		
7	2	nausea and vomiting: Relative efficacy, sites of action and lessons for future
8		
9	3	drug development.
10 11	0	
12		
13	4	Paul L.R. Andrews ^{*1*} , John F. Golding ² , Gareth J. Sanger ³
14		
15 16	5	
17		
18	6	¹ Division of Biomedical Sciences, St George's University of London, London, United Kingdom.
19		
20	7	² University of Westminster, London, United Kingdom.
21 22		
23	8	³ Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United
24	U	Dizara metalo, radally of medicine and Deniedy, Queen mary envelopy of zenden, enited
25	9	Kingdom.
26 27		
28	10	
29		
30		
31 32	11	Conflict of Interest: PLRA has no conflict of interest; JFG advises DefenderPharma; GJS advises
33	12	BYOMass and Neurix.
34	13	Funding: There was no specific funding for the publication.
35	1 4	Dete eveilebility statements Net explicitle
36 37	14	Data availability statement: Not applicable.
38	15	Ethical approval: Not required.
39	10	*Concernenting outhout Duck DL D. Andrews St Coores's University of London. Cronmer
40	16	*Corresponding author: Prof. PL.R. Andrews, St George's University of London, Cranmer
41 42	17	Terrace, Tooting, London, SW17 0RE, UK. Email: pandrews@sgul.ac.uk
43	10	
44	18	Key words: Anti-cancer chemotherapy, gastroparesis, motion sickness, nausea, neurokinin ₁ ,
45	19	substance P, tradipitant, vomiting.
46 47	20	Abbrevistioner
48	20	Abbreviations:
49	21	AP: Area postrema
50	22	
51 52	22	AVP: Arginine vasopressin
53	23	CB ₁ : Cannabinoid ₁ receptor
54	24	
55	24	CCK: Cholecystokinin
56 57	25	CI: Confidence Interval
58	26	key words: Anti-cancer chemotherapy, gastroparesis, motion sickness, nausea, neurokinin ₁ , substance P, tradipitant, vomiting. Abbreviations: AP: Area postrema AVP: Arginine vasopressin CB ₁ : Cannabinoid ₁ receptor CCK: Cholecystokinin CI: Confidence Interval CINV: chemotherapy-induced nausea and vomiting
59	26	CINV: chemotherapy-induced nausea and vomiting
60	27	CPG: central pattern generator for vomiting

1		2
2 3	28	CUNV: Chronic Unexplained Nausea and Vomiting
4 5	29	D_2 : dopamine ₂ receptor
6 7	30	EC: Enterochromaffin cell
8 9	31	EEC: Enteroendocrine cell
10 11	32	GABA: Gamma amino butyric acid
12 13	33	GABA _B : Gamma amino butyric acid B receptor
14 15	34	GCSI: Gastroparesis Clinical Symptom Index
16 17	35	GDF15: Growth differentiation factor 15
18	36	GLP-1: Glucagon like peptide 1
19 20	37	5-HT: 5-Hydroxytryptamine
21 22	38	5-HT _{1A} : 5-Hydroxytryptamine _{1A} receptor
23 24	39	5-HT ₃ : 5-Hydroxytryptamine ₃ receptor
25 26	40	HEC: Highly emetogenic chemotherapy
27 28	41	H ₁ : Histamine ₁ receptor
29 30	42	ICC: interstitial cells of Cajal
31 32	43	i.v.: Intravenous
33 34	44	MSSS: motion sickness severity scale
35 36	45	mACh: Muscarinic acetylcholine receptor
37	46	mNTS: medial nucleus tractus solitarius MRI: Magnetic resonance imaging NA: Nucleus ambiguus NK1RA: Neurokinin1 receptor antagonist NN: no nausea NSN: no significant nausea NTS: Nucleus tractus solitarius PET: Positron emission tomography p.o.: Per oral PONV: post-operative nausea and vomiting PSC: prodromal sign centre RGC: Retrograde giant contraction RR: Risk ratio
38 39	47	MRI: Magnetic resonance imaging
40 41	48	NA: Nucleus ambiguus
42 43	49	NK ₁ RA: Neurokinin ₁ receptor antagonist
44 45	50	NN: no nausea
46 47	51	NSN: no significant nausea
48 49	52	NTS: Nucleus tractus solitarius
50 51	53	PET: Positron emission tomography
52 53	54	p.o.: Per oral
54 55	55	PONV: post-operative nausea and vomiting
56 57	56	PSC: prodromal sign centre
58	57	RGC: Retrograde giant contraction
59 60	58	RR: Risk ratio
		British Pharmacological Society

 SP: Substance P

VRG: Ventral respiratory group

VIMS: Visually-induced motion sickness

Author contribution. All authors made an equivalent contribution.
Author contribution. All authors made an equivalent contribution.
Abstract
A 'broad-spectrum' anti-vomiting effect of neurokinin₁ receptor antagonists (NK₁RA), shown
in preclinical animal studies, has been supported by a more limited range of clinical studies in

in preclinical animal studies, has been supported by a more limited range of clinical studies in
different indications. However, this review suggests that compared with vomiting, the selfreported sensation of nausea is less affected or possibly unaffected by the different
NK₁receptor antagonismRAs, a common finding for 'anti-emetics'.

The stimulus-independent effects of NK₁RAs against vomiting are explicable by actions within the central pattern generator (CPG; ventral brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The CPG and NTS neurones are multifunctional so the notable lack of obvious effects of NK₁RAs on other reflexes mediated by the same neurones suggests that their anti-vomiting action is dependent on the activation state of the pathway leading to vomiting.

Nausea requires activation of cerebral pathways by projection of information from the NTS.
Although NK₁ receptors are present in cerebral nuclei implicated in nausea, and imaging
studies show very high receptor occupancy at clinically used doses, the variable or limited
ability of NK₁RAs to inhibit nausea emphasises (a) our inadequate understanding of the

mechanisms of nausea and (b) that classification of a drug as an "anti-emetic" gives a false impression of efficacy against nausea versus vomiting. We discuss the potential mechanisms for the differential efficacy of NK₁RA and the implications for future development of drugs which can effectively treat nausea, an area of unmet clinical need. 1. Introduction Drugs treating nausea and vomiting as disease symptoms or as adverse effects of therapy are usually classified as 'anti-emetics'. However, -the term 'emetic' refers to a substance which causes vomiting (or retching). Emesis does not mean nausea. Further, increasing evidence indicates with little recognition of differential efficacy of 'anti-emetic' drugs against nausea versus vomiting. Seifert & Alexander (2022) proposed a "rational drug class terminology" based on a drug's pharmacological actions rather than its therapeutic orientation (e.g., antiemetic). Applying this terminology to nausea and vomiting means that In view of this the term_z 'anti-emetic' is used must be written in inverted commas to denote the fact that efficacy against nausea and vomiting should not be assumed to beare probably not the same (Sanger & Andrews, 2022). Here, and throughout we emphasise the Here we also avoid using 'anti-emetic' and re-state the argument (Sanger & Andrews, 2022) that it is importance oft not to blur the clinical distinction differentiating between nausea, a self-reported aversive sensation involving cortical and sub-cortical brain regions (Napadow et al., 2013; Farmer et al., 2015; Ruffle et al., 2019; Varangot-Reille et al., 2023) and the mechanical events of retching and vomiting involving multiple brainstem nuclei (Stern et al., 2011).

British Pharmacological Society

1 2		
3 4	104	The introduction of NK ₁ receptor antagonists (NK ₁ RAs) further improved control of
5 6 7	105	'chemotherapy-induced nausea and vomiting' (CINV) and 'post-operative nausea and
7 8 9	106	vomiting' (PONV) (Sanger & Andrews, 2018). In addition, a potential expansion of indications
10 11	107	may be appropriate, to include, for example, motion sickness (Polymeropoulos et al., 2020).
12 13 14	108	If confirmed, this would point towards a relatively wide spectrum of 'anti-emetic' activity for
15 16	109	the NK ₁ RAs in humans, as suggested by animal studies (see below). <u>However, oOriginating</u>
17 18 19	110	primarily from studies of CINV including the earliest clinical studies of NK ₁ RAs (e.g., Navari et
20 21	111	al., 1999) there has been a concern that nausea is less well treated than vomiting (Andrews
22 23	112	& Sanger, 2014) and this concern -persists, as reflected in the comment by Aapro (2018, p.57)
24 25 26	113	that "Perhaps the greatest unmet need in CINV is the lack of complete nausea control".
27 28	114	Accordingly, in an To attempt to understand resolve the nausea versues vomiting question in
29 30 31	115	relation to NK1-RAs, from both aclinical and basic sciencemechanistic perspectives, we
32 33	116	identified five5 key questions:
34 35 36	117	<u>1.</u> Has the broad spectrum of activity of NK ₁ RAs suggested by animal studies of vomiting
37 38	118	translated to humans?
39 40 41	119	1.2and-Wwhere do NK1RAs act to inhibit vomiting?
42 43	120	2.3. To what extent do NK ₁ RAs inhibit nausea as compared to vomiting?
44 45	121	3.4. If NK ₁ RAs have a <u>differential effect against nausea compared to vomiting</u> , what is the
46 47 48	122	explanation?
49 50 51	123	4.5. What are the implications of the answers to the above questions in terms of patient
52 53	124	satisfaction and for future development of drugs to treat nausea?
54 55 56	125	Different emetic stimuli signal to the brain via different routes. This is why it is first necessary
57 58 59	126	to determine if the broad-spectrum ability of NK ₁ RAs to prevent vomiting in animals
59 60		

59

60

127	translates to humans in a similar manner; such a profile directs the discussion on poten
128	mechanism of action against vomiting and nausea. Accordingly, To answer these questi
129	wWe begin by briefly describing the NK ₁ RA studies in animals and then review (see below
130	selection criteria) the effects of NK1RAs against vomiting and nausea in different clin
131	indications (see below for selection criteria), and identifying any differences in effic
132	between the se <u>clinical different</u> indications.
133	2. <u>Animal studies:</u> Spectrum of NK ₁ RA effects against vomiting and fnausea-like behavior
134	In this section only data from species with a vomiting reflex (i.e. not rodents) are included
135	In this section we consider illustrate the 'anti-emetic' effects of NK₁RAs against diverse stir
136	in a range of animal species only data from species with a vomiting reflex (ferret dog,
137	House musk shrew [Suncus murinus] and Least shrew [Cryptotis parva]). To simp
138	comparisons between species and between the effects of drugs on vomiting and nausea,
139	have not considered 'nausea-like' behaviour data from rodents, which cannot vomit (San
140	<u>et al., 2011; Horn et al., 2013).</u>
141	2.1. Vomiting. Studies in multiple animal species (Table 1) have demonstrated 'brown
142	spectrum' effects of NK ₁ RAs, markedly reducing/blocking retching and/or vomiting indu
143	by diverse stimuli acting via three key inputs to the brainstem (Figure 1) : the vestibular sys t
144	(e.g., abnormal motion); the area postrema (e.g., systemic morphine or apomorphine,
145	the delayed phase of cisplatin CINV); and abdominal vagal afferents (e.g., acute phase
146	cisplatin CINV, intragastric copper sulphate, electrical stimulation of abdominal va
147	afferents)-(Stern et al., 2011; Sanger & Andrews, 2018 for references).
148	2.2. 'Nausea-like behaviours .'- Administration to animals of substances inducing nausea

vomiting in humans evoke behavioural changes (often referred to as 'nausea-like'), but their

significance and relevance to the human sensation of nausea is contentious (Stern et al., 2011,
Chapter 11; Andrews & Sanger, 2014).

In reviewing the effects of NK₁RAs on 'nausea-like behaviours' we only include data obtained using species capable of vomiting (ferret dog, cat, House musk shrew [Suncus murinus] and Least shrew [Cryptotis parva]) (Supplementary Table 1). This enables direct comparison, where possible, with effects on vomiting. Rodents (e.g., rats, mice) are unable to vomit and, compared with species able to vomit, exhibit anatomical and functional differences including: brain stem neuroanatomy (Horn et al., 2013); digestive tract anatomy/physiology (Sanger et al., 2011); subtype composition of the 5-hydroxytryptamine₃ (5-HT₃) receptor (a ligand-gated ion channel; Holbrook et al., 2009); binding affinity of different NK₁RAs (Beresford et al., 1991; Andrews & Rudd , 2004). In summary, and in contrast to the clear effects of NK₁RA on vomiting, any effects on 'nausea-like behaviours' are absent or inconsistent (Supplementary Table 1). Given this lack of clarity and since the relevance of these behaviours to the human experience is unknown, they will not be considered further (Stern et al., 2011, Chapter 11; Andrews & Sanger, 2014, for detailed discussion).

3. <u>Human studies:</u> Spectrum of NK₁RA effects against vomiting and nausea.

166 It is important to determine if the broad-spectrum ability of NK₁RAs to prevent vomiting in
animals translates to the vomiting and nausea of humans. Accordingly, we searched either
168 the name of individual antagonists and/or the therapeutic area (e.g., motion sickness, CINV,
169 PONV, gastroparesis, and cyclical vomiting syndrome). For CINV and PONV where there has
170 been more extensive investigation of NK₁-RAs 'anti-emetic' efficacy we initially reviewed
171 systematic reviews/meta-analyses and then analysed data in selected original papers. As our
172 focus was on the relative efficacy of NK₁-RAs against nausea and vomiting we included papers

3 4	173	where data on both vomiting and nausea was presented and in particular where adequate
5 6 7	174	information was provided in the methods about how each was quantified, with data
, 8 9	175	presented in a form allowing comparison. Here the aim is not to identify optimal treatment
10 11 12	176	regimens but to assess the relative efficacies of NK ₁ RAs against nausea and vomiting.
12 13 14	177	However, <u>W</u> we should note that few studies have given an NK ₁ RA <i>alone</i> , 'N' values can be
15 16	178	small (e.g., in PONV the N value for 7 studies of aprepitant included in a meta-analysis ranged
17 18 19	179	from 30-55; Cavaye et al., 2021) and some studies are uncontrolled. <u>NAdditionally, nausea is</u>
20 21	180	not always measured and is often a secondary outcome with methodological variations in its
22 23 24	181	assessment complicating inter-study comparisons (see below).
25 26	182	Sections 3.1 to 3.6 describes the results of studies investigating the effects of NK ₁ -RAs against
27 28 29	183	different emetic challenges. Section 3.7 then provides an overview of the spectrum of efficacy
30 31 32	184	against nausea and vomiting.
33 34	185	3.1. Motion sickness (MS). Studies in humans are limited as ethical considerations usually
35 36 37	186	dictate that vomiting endpoints cannot be used in laboratory- <u>based studies inducing motion</u>
38 39	187	sickness in healthy human volunteers studies. Two laboratory-based studies employed the
40 41 42	188	well proven method of highly provocative whole-body rotational motion with head
43 44	189	movements to induce motion sickness (so-called "Cross-coupled motion"). These studies
45 46 47	190	showed no significant efficacy of an NK $_1$ RA (GR205171 [vofopitant]; L758,298) using the degree
48 49	191	of motion exposure tolerated before onset of nausea as the endpoint; this suggests no
50 51 52	192	efficacy against nausea (Reid et al., 1998; Reid et al., 2000). A study of healthy human
52 53 54	193	volunteers using inescapable motion at sea investigated the NK ₁ RA tradipitant (VLY-686/
55 56	194	LY686017) (Polymeropoulos et al., 2020) and unlike laboratory-based trials, it was possible to
57 58 59 60	195	measure both vomiting and nausea. Tradipitant was significantly effective (placebo

comparator) in protecting against vomiting, but less effective against nausea, using the motion sickness severity scale (MSSS) as an index (Figure 2). Only for selected data obtained during rough seas did the NK₁RA provide any protection against nausea protection compared to, albeit at a much lower statistical significance than the equivalent vomiting protection for in this sub-group (Figure 2). By contrast, well proven muscarinic acetylcholine (ACh) receptor antagonists such as scopolamine (hyoscine), provided protection against both nausea (Golding et al., 1997; 2018) and vomiting (Golding et al., 2017). More detailed studies with tradipitant are now required, investigating for example, the effects of NK₁RA on the physiological changes accompanying motion sickness such as the reduced gastric antral contractile activity (Faas et al., 2001), a pathway of potential relevance to understanding the effects of NK₁RAs in gastrointestinal conditions associated with nausea, such as gastroparesis (see below). From these very limited data, we tentatively conclude that NK₁RAs are effective against

vomiting induced by abnormal motion but are less effective against *nausea*.

3.2 Chemotherapy-induced nausea and vomiting. We focus on NK₁RA use in the acute and
delayed phases of highly emetogenic chemotherapy (HEC) discussing their effects against
vomiting before effects against nausea.

A study of CINV in seven patients given CP-122,721 *alone* showed that in the acute phase (first 24) 24) of HEC five patients had ≤ 2 episodes v_{SV} . 7 episodes of "emesis" in an historic control group and in the delayed phase, 6 had no emesis (Kris et al., 1997). A larger study with L-758, 298 (the prodrug for the NK₁RA, aprepitant [L-754,030]) showed that 37% of patients (n=30) had no vomiting or retching in the acute phase, compared with 52% of patients in an ondansetron (5-HT₃RA) group (n=23; not significantly different) (Cocquyt et al., 2001).

However, confining analysis to the first 8h following cisplatin showed 37% of patients had no vomiting or retching in the NK₁RA group compared to 83% in the 5-HT₃RA group (P=0.001) but in the delayed phase 72% of patients were without vomiting or retching in the NK₁RA group <u>vsv.</u> 30% in the ondansetron group (P=0.005) (Cocquyt et al., 2001). This study suggests a shift in the relative involvement of 5-hydroxytryptamine₃ (5-HT₃) and NK₁ receptors driving retching and vomiting between the acute and delayed phases following cisplatin, a finding confirmed by detailed time course analysis of the efficacy of aprepitant, L-758, 298, ondansetron and granisetron in treatment of CINV (Hesketh et al., 2003). Recent meta-analyses demonstrate additional protection against vomiting when NK₁RAs are given with a 5-HT₃RA and dexamethasone during both acute and delayed phases in HEC (~15-20% more complete protection), with a greater effect in the delayed phase (Jordan et al., 2016; Yokoe et al., 2019; Qiu et al., 2020). Overall, and despite an ability of NK₁RAs to further reduce the incidence of vomiting during the acute phase when combined with a 5-HT₃RA and dexamethasone, the incidence of nausea is not further reduced during this phase. For example, an initial study with L-754,030 showed a clear additional effect on vomiting in the acute phase following cisplatin when added to a 5-HT₃RA/dexamethasone regimen (Kris et al., 1997), but no difference in the median nausea score. An analysis of the Phase III studies of NK₁RAs added to a 5-HT₃RA and dexamethasone regime in HEC, found no consistent evidence for an improvement in the incidence of "no significant nausea" (NSN) or "no nausea" (NN) in the acute phase (Bošnjak et al., 2017). For example, the percentage of patients experiencing "no nausea" in the NK₁RA arm v. placebo in the acute phase was 53.6% v. 52% (Roila et al., 2014), 65% v. 66% (Schwartzberg et al., 2015), 68% v. 61% (Study 2, Rapoport et al., 2015; statistically significant) and 73% v. 68%

 (Study 1, Rapoport et al., 2015). A pooled analysis of studies with rolapitant showed a small
but statistically significant increase in the percentage of patients reporting NN (respectively,
64% and 70%) in the acute phase of HEC (Bošnjak et al., 2017). Saito et al., (2013) found a
tendency for the incidence of NSN to increase (90.2% v. 84.9%) when using intravenous
fosaprepitant (150mg+granisetron/dexamethasone) in patients receiving high-dose cisplatin,
although the difference was not statistically significant and the NN incidence was unchanged
(67.6% v. 67.5%) compared to placebo.

Some, but not all, studies reported that during the delayed phase the addition of an NK₁RA significantly increased the percentage of patients reporting NN or NSN. In the initial study with L-754,030 (±placebo+ granisetron/dexamethasone; Navari et al., 1999) the median nausea score was reduced on a 100mm VAS (higher score indicating more severe nausea) from 19mm to 1mm on day 2 and over days 2-5 from 10mm to 1mm. Similarly, others reported that the percentage of patients experiencing NN in the NK₁RA arm $\frac{1}{VSV}$, placebo in the delayed phase increased significantly: 52.7% vsv. 39.9% (Poli-Bigelli et al., 2003), 53% vsv. 42% (Study 1, Rapoport et al., 2015) and 58% vsv. 47% (Study 2, Rapoport et al., 2015). However, some showed no statistically significant change in NN (e.g., 43.9% +5v 49.1%, Roila et al., 2014; 71.4% vsv. 73%, Roila et al., 2015; 48% vsv. 45%, Schwartzberg et al., 2015). A pooled analysis of studies using rolapitant showed a significant 12% increase in the NN percentage (44% vsv. 56%) in the delayed phase (Bošnjak et al., 2017).

A recent meta-analysis investigated the addition of aprepitant to a 5-HT₃RA/dexamethasone regimen in patients (only 258 in the final analysis) receiving HEC treatments for lung cancer (He et al., 2021). While the overall complete response rate (no vomiting/no rescue medication) was significantly better when aprepitant was given, the NN rate was not

	2
· I	,

1		12
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	265	statistically significantly different (although significant in two of the studies included in the
	266	analysis; Dupuis et al., 2020; Yokoe et al., 2019).
	267	In summary, there is insufficient data to compare different NK $_1$ RAs, but it is possible to draw
	268	general conclusions about their efficacy in HEC:
	269	i) NK_1RAs further reduce the incidence of vomiting during the acute phase when
	270	combined with a 5-HT $_3$ RA and dexamethasone, but the effect is more marked in
	271	the delayed phase of HEC.
21 22 23	272	ii) When added to a 5-HT ₃ RA/dexamethasone regime, any ability of NK ₁ RAs to further
23 24 25	273	reduce the incidence of nausea appears inconsistent and in one meta-analysis <u>the</u>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	274	NN rate was not statistically significant.
	275	3.3. Post-operative nausea and vomiting.
	276	In contrast to CINV the mechanisms responsible for PONV are considerably less well
	277	understood, contributed to by the lack of a robust animal model (see Gardner & Perrin, 1998;
	278	Horn et al., 2012, 2014; Gupta et al., 2017).
	279	Table 2 summarises the effects of NK $_1$ RAs in PONV using the outcome from studies reporting
42 43	280	nausea and vomiting separately to illustrate the efficacy differences. Overall, several NK $_1$ RAs
44 45 46	281	show efficacy against post-operative <i>vomiting</i> in a proportion of patients but the block is not
47 48	282	complete in all patients and, the efficacy against <i>nausea</i> is inconsistent (e.g., small changes in
49 50 51	283	incidence, inconsistent change in intensity, Table 2) and lower than against vomiting. A
52 53	284	Cochrane meta-analysis examined the efficacy of diverse pharmacological agents in treating
54 55 56	285	vomiting in the first 24h (Weibel et al., 2020) and concluded that single NK ₁ RAs were as
57 58	286	effective as other <i>drug combinations</i> . The analysis did not compare efficacy against nausea.
59 60		

Assessment of the overall efficacy of NK₁RAs against PONV is complicated by the variety of types or surgery (e.g., open abdomen, laparoscopic) and anaesthesia/analgesia protocols. A further issue is that in studies where a range of doses has been investigated the relationship between NK₁RA dose and efficacy against either nausea or vomiting is not always clear (e.g., casopitant, Singla et al., 2010; rolapitant, Gan et al., 2011; vestepitant, Kranke et al., 2015). **3.4. Cyclical vomiting syndrome.** An open-label uncontrolled trial of aprepitant in a paediatric population refractory to conventional treatment showed reduction in the number of cyclic vomiting episodes/year and number of vomits/h (Cristofori et al., 2014). Although nausea is a feature of CVS it was not assessed in this study. 3.5. Paediatric patients with life-limiting conditions. A case series showed aprepitant (2.0-2.5mg/kg, i.v.) was effective in complete resolution of nausea (parental reports of impact on mobility and feeding used as proxy efficacy markers) in paediatric patients receiving palliative care, with different diagnoses and unresponsive to at least two drugs classified as 'anti-emetics' (e.g., cyclizine, ondansetron, metoclopramide, levomepromazine; Patel et al., 2021). Additionally, aprepitant increased the ability to tolerate feeds as might be expected from the proposal that food refusal in children could be used as

303 a surrogate marker for nausea (Richards & Andrews, 2004), although NK₁RA-induced changes

in gastric accommodation (Jacob et al., 2017) offers an alternative explanation.

3.6. Gastric distension induced sensations and gastroparesis.

In healthy human volunteers a single dose of aprepitant (80 or 125mg) had no effect on gastric
 compliance or sensitivity to distension (Ang et al., 2013). Also, in healthy volunteers,
 aprepitant (125mg p.o. day 1 + 80mg p.o. days 2-5) did not affect gastric emptying of liquids
 or solids, intestinal or colonic transit (Madsen & Fuglsang, 2008). Using the same repeat

dosing schedule but following a 'dyspeptogenic' meal, Jacob et al. (2017) confirmed no change in gastric emptying with aprepitant but found a modest increase in fasting (~10%), postprandial (~9%) and gastric accommodation (~5%) volumes, and a tendency to increase maximal tolerated volume (~25%). Interestingly, the aggregate symptoms, nausea, and pain scores (but not bloating or fullness) increased significantly following the 'dyspeptogenic' meal in the aprepitant group compared to placebo (median 36 vsv 4). These seemingly unexpected observations may be consistent with the recent identification of an additional ability of aprepitant to activate the mechanosensitive two pore domain potassium channel, TRAAK (McCoull et al., 2022), which if expressed by abdominal vagal nerve terminals may also cause some reduction in the ability of aprepitant to reduce nausea and vomiting in other clinical scenarios.

A four-week placebo-controlled study of aprepitant (125mg/day, p.o.) involving 126 patients failed to demonstrate an improvement in the primary outcome measure of nausea (Pasricha et al., 2018), in a population with 57% gastroparesis patients and the remainder with Chronic Unexplained Nausea and Vomiting (CUNV). The study also used the Gastroparesis Clinical Symptom Index (GCSI; Revicki et al., 2004) to assess symptom severity as a secondary outcome and this showed significant reductions in overall symptom score (1.3 ψ sv. 0.7), vomiting (1.6 <u>vsv.</u> 0.5 [69% decrease]) and nausea (1.8 <u>vsv.</u> 1 [44% decrease]). The number of hours per day when nausea was experienced, was reduced and the proportion of nausea-free days increased (~ twofold).

A placebo-controlled trial of 152 patients with idiopathic or diabetic gastroparesis and moderate-to-severe nausea, investigated tradipitant (85mg orally) twice daily (daily total 170mg) for 4 weeks (Carlin et al., 2020). The trial met the primary outcome measure of a

reduction in average daily diary nausea score measured using the GCSI Daily Diary with a difference in score reduction between placebo and tradipitant of ~10%. Nausea severity appeared to begin decreasing by week 2 and this was statistically significant by week 3. Additionally, tradipitant increased secondary outcomes of nausea free days (~14%>placebo) and nausea response rate (~21%>placebo). Patients who responded to tradipitant with a reduction in nausea also had improved early satiety, excessive fullness, bloating and upper abdominal pain, compared to placebo. Two case reports involving single patients with gastroparesis report stoppage of previously intractable nausea (Fahler et al., 2012) or vomiting (Chong & Dhatariya, 2009) on administration of aprepitant.

A recent systematic review and network meta-analysis of drugs used to treat gastroparesis showed that NK₁RAs were efficacious (RR=0.69) using global symptom score. When individual symptoms were assessed tradipitant was more effective than placebo in treating nausea (tradipitant RR=0.77; 95% CI 0.65-0.91) (Ingrosso et al., 2023). By contrast, a recent phase III trial of tradipitant in gastroparesis showed no difference from placebo in the intensity of nausea over a 12 week period (Vanda, 2022).

3.7. Overview of clinical efficacy against nausea *versuss* vomiting.

Summarising sections 3.1 to 3.6, NK₁RAs can block vomiting induced by HEC (\pm 5HT₃RA and dexamethasone) and PONV, and with much more limited evidence perhaps also the vomiting associated with CVS and motion-induced vomiting. NK₁RAs do not block vomiting in all patients/subjects exposed to a given stimulus and for CINV the efficacy may depend on the phase (potentially, delayed>acute). When nausea is assessed, several studies report no significant benefit although there is some evidence that even if not completely blocking

2		
3 4	356	nausea NK ₁ RAs may reduce its intensity (e.g., see PONV data, Table 2). Overall, however, the
5 6 7	357	NK ₁ RAs are less efficacious or have more variable efficacy against nausea than vomiting over
8 9	358	the same range of stimuli but more quantitative data are needed.
10 11 12	359	We now attempt to explain this differential effect by a detailed analysis of the sites at which
13 14 15	360	NK ₁ RAs could act to affect vomiting (section 4) and nausea (section 5)
16 17 18	361	
19 20 21	362	4. Potential site(s) of action of NK ₁ RA against retching and vomiting (Figure 3).
22 23	363	The sites at which NK_1RA block retching and vomiting have been investigated in animals
24 25 26	364	(primarily dog and ferret). The findings of these studies are included here because the
27 28	365	afferent, integrative and motor pathways responsible for vomiting are comparable between
29 30 31	366	animals (e.g., dog, ferret; Onishi et al., 2007) and humans (Stern et al., 2011). For each
32 33	367	potential site of action, we will consider whether it could account for a 'broad spectrum'
34 35 36	368	effect against vomiting or whether it can only explain an action against vomiting induced by
30 37 38	369	a specific stimulus or pathway. This analysis also provides an essential background for
39 40 41	370	understanding the differential effects against nausea.
42 43	371	4.1.1. Vestibular system. The vestibular system is essential for induction of nausea and
44 45 46	372	vomiting caused by abnormal body motion. From an evolutionary perspective the vestibular
47 48	373	system is considered as a component of the mechanisms protecting the body against ingested
49 50 51	374	toxins (see Treisman 1977, Money & Cheung, 1983, Oman, 2012; Lackner, 2014). Although
52 53	375	sensitivity to motion sickness is a predictive factor for both CINV and PONV (Gan, 2006; Warr,
54 55 56	376	2014) there is no evidence that the vestibular system (including vestibular nuclei) is directly
56 57 58	377	implicated in the induction of either. During motion sickness, the motor pathways for
59 60	378	vomiting are activated via projections of the vestibular nuclei to the medial and caudal

nucleus tractus solitarius (NTS) (studies in the cat; Yates et al., 1994; Sugiyama et al., 2011). There is no evidence that NK₁RAs affect transmission in the pathway between the vestibular system, the vestibular nuclei and the NTS, to block induction of vomiting. This contrasts with the actions on this pathway of H_1 and mACh ($M_{3/}M_5$) receptor antagonists, used to treat motion sickness (Soto & Vega, 2010; Golding & Stott, 1997; Golding et al., 2018). An action of NK₁RAs within the NTS or at a site(s) deeper in the brainstem is therefore the most likely site for effects against motion-induced vomiting.

4.1.2. Area postrema (AP). The AP projects to neurones in the medial NTS (mNTS) which can be activated by emetic stimuli applied to the AP (e.g., apomorphine, L-glutamate) and by vagal afferent stimulation (dog studies; Koga & Fukuda, 1992). However, the evidence that NK₁ receptors occur within the AP is weak, and their functional relevance uncertain. For example, low levels of [³H]-substance P binding displaced by CP-99,994 (0.1nm-100nM) were found in the ferret AP, as compared to the NTS (particularly subnucleus gelatinosus) (Watson et al., 1995). Ariumi et al. (2000) reported dense ³H-substance P binding in the AP and NTS of ferret but displacement by an NK₁RA was not studied. Comparable evidence is available for Suncus murinus and rat (Maubach et al., 1997; Andrews & Rudd, 2004). Iontophoretic application of substance P (SP) activated ~50% of AP neurones tested (dog; Carpenter et al., 1988), but although assumed to play a role during vomiting induced by intravenously-administered SP (dog; Carpenter et al., 1984), the receptor type activated by the applied concentration of SP and the link between activation and vomiting was not identified. In the ferret, application of SP to the AP can evoke vomiting (Andrews & Rudd, 2004) but microinjection studies (Gardner et al., 1994) suggest that this response was probably due to SP penetration to the subjacent NTS as the blood-brain barrier between these two areas may have some permeability. A similar explanation of leak into the NTS may account for the block in morphine (s.c.) and

reduction in copper sulphate (intragastric) induced vomiting in the ferret by administration
of CP-99,994 or HSP-117 into the AP (Ariumi et al. 2000).

It is a possibility that NK₁ receptors in the AP could be activated if SP (or other tachykinins) are released from gut enteroendocrine cells (EEC; Rezzani et al., 2022) to enter the blood circulation in addition to acting more locally. However, the evidence for this possibility in response to emetic stimuli is weak. Thus, in patients undergoing chemotherapy, the elevation of serum concentrations of SP during the delayed phase of vomiting was inconsistent (Higa et al., 2006, 2012; Matsumoto et al., 1999; Park et al., 2020; Takahashi et al., 2011) although this is the phase during which NK₁RA are most effective (see above).

Another possibility is that SP could arise from neurones intrinsic to the AP following direct activation by endogenous or exogenous emetic substances or by abdominal vagal afferents projecting to the AP. However, SP-like immunoreactivity (SP-Li) was absent in the AP of a human infant (Rikard-Bell et al., 1990), consistent with the absence of SP-Li cell bodies in the AP of adult cat, rat (Newton et al., 1985) and ferret (Boissonade et al., 1996). Previously, extraction studies in humans found some SP in the AP (Zettler & Schlosser, 1955; Cooper et al., 1981) and radioligand binding showed a "moderate" uptake of an NK₁RA by the human AP (Hietala et al., 2005). Sparse SP-Li nerve fibres have been found in the AP (cat, rat) but their origin is most likely from either vagal nerve afferents terminating there or from the NTS (Newton et al., 1985); this is consistent with the finding of high-densities of SP immunoreactive fibres in lateral borders of the AP in the ferret (Boissonade et al., 1996). However, in the least shrew SP-Li fibres and puncta were present at a "moderate" level in the AP (Ray & Darmani, 2007).

Finally, it is worth noting that the concept of the AP as a site at which systemic agents act to induce nausea and vomiting was originally derived from studies showing abolition of vomiting induced by apomorphine (a dopamine D₂ receptor agonist), following surgical ablation of the AP including in humans (Lindstom & Brizzee, 1962; Borison & Wang, 1953). Similarly, other exogenously administered agents (e.g., morphine, loperamide, cisplatin) can induce emesis via the AP (Borison, 1989; Bhandari et al., 1992; Percie du Sert et al., 2009). However, there is only limited evidence that systemic endogenous agents which can induce vomiting (e.g., adrenaline, cholecystokinin [CCK], GDF15, vasopressin), act via the AP, with alternative sites of action suggested (Borison, 1989; Borner et al., 2020; Makwana et al., 2022). The above discussion suggests that SP, acting via NK₁ receptors in the AP should be added to theis list of systemic endogenous emetic agents. -

4.1.3. Abdominal vagal afferents.

There are two sites at which vagal afferent activation by emetic stimuli could be affected by
an NK₁RA; they are not mutually exclusive (Figure 3).

4.1.3.1. The peripheral transduction mechanism. A potential ability of SP from enterochromaffin cells (ECs) to induce vomiting by acting on vagal afferents was hypothesised >30 years ago (Andrews et al., 1988; for details see Andrews & Rudd, 2004). Potentially, such a mechanism would be similar to that for 5-HT, which is released from ECs in response to chemotherapeutic agents (e.g., cisplatin) and other emetic stimuli (e.g., rotavirus), causing vomiting by stimulating and sensitizing abdominal vagal afferent terminals via 5-HT₃ receptor activation (Andrews & Rudd, 2015; Sanger and Andrews, 2018; for reviews). In rats, treatment with methotrexate or cisplatin increased the number of SP-containing ECs within the intestine, 24h after administration (Machida et al., 2017; Obara et al., 2018) but studies have

not yet looked for local release of SP from ECs in response to anti-cancer chemotherapeutic agents or other emetic stimuli. By analogy with 5-HT (see above), any release of SP might be expected to activate vagal nerve terminals. Recently, SP $(1\mu M)$ -induced depolarisation of human isolated vagus was shown to be blocked by aprepitant (Smith et al., 2021). However, the authors used a concentration (10 μ M) at least 10000x the human NK₁ receptor binding IC_{50} , at or above the concentrations examined for selectivity of action (Tattersall et al., 2000), and now understood to also activate the mechanosensitive two-pore domain potassium channel, TRAAK (encoded by the KCNK4 gene) (McCoull et al., 2022). Interestingly, recordings from abdominal vagal afferents of ferrets show an interaction between 5-HT and SP (Minami et al., 2001) and 'cross talk' has been demonstrated between NK₁ and 5-HT₃ receptors in relation to the 'anti-emetic' effect of palonosetron (Rojas et al., 2014).

4.1.3.2. Vagal afferent to NTS transmission. Abdominal vagal afferents terminate in the mNTS (Fukuda & Koga, 1992). There is evidence that SP is a transmitter from vagal afferents to NTS neurones (cat, Baude et al., 1989; dog, Shiroshita et al., 1997) and for activation of NTS neurones by iontophoretically applied SP (ferret, Saito et al., 1998; rat, Maubach & Jones, 1997). However, any action of NK₁RA on vagal to NTS transmission must be selective for afferents involved in induction of vomiting as NK₁RAs do not block the gag reflex, the cardiac or respiratory components of the von Bezold-Jarisch reflex or apnoea induced by cervical vagal afferent stimulation (Watson et al., 1995; Fukuda et al., 1999). Additionally, while systemic administration of the NK₁RA, CP-99,994 in the anaesthetised ferret blocked licking, swallowing and retching induced by electrical stimulation of the abdominal vagal afferents, the accompanying rise in blood pressure was unaffected (Watson et al., 1995). This makes it unlikely that vagal to NTS transmission *per se* is blocked and suggests that the block is either within the NTS integrative pathways which initiate vomiting or on the output side of the

system in the 'central pattern generator' (CPG) for vomiting located in the reticular formation dorsomedial to the retrofacial nucleus (Bötzinger complex) in the region of the NA (compact region) and the associated 'prodromal sign centre' (PSC in the semi-compact area of the nucleus ambiguus (Fukuda & Koga, 1991, 1992; Fukuda et al., 2003). Further support for a specific activity on some but not all vagal functions comes from studies in the decerebrate dog where the NK₁RA, GR-205171 (i.v.) blocked fictive retching, the accompanying antral contractile response (most likely the extension of the Retrograde Giant Contraction (RGC) that originates in the small intestine and immediately precedes the onset of retching mediated by vagal efferents; see Lang et al., 1986; Lang, 1990), and reduced the hypersalivation (mediated by PSC) evoked by vagal afferent stimulation, but not the accompanying vagal efferent mediated relaxation of the proximal stomach (Furukawa et al., 1998).

It is self-evident that blockade of vagal afferent activation at a peripheral site or vagal afferent
transmission to the mNTS would only contribute to the anti-vomiting effects of NK₁RAs when
the primary stimulus activates the vagus (e.g., acute phase of CINV, possibly gastroparesis;
Sanger & Andrews, 2023). Therefore, a vagal site of action would not account for block of
stimuli acting either <u>only</u> via the AP or the vestibular system so additional site(s) of action
need to be considered.

489 4.1.4. Brainstem integrative mechanism and the drive to the visceral and somatic motor
490 outputs. The selective effects of NK₁RA on reflex responses to vagal afferent stimulation (as
491 above) show that actions of NK₁RA within the brain stem integrative pathways (i.e. NTS, CPG,
492 ventral respiratory group [VRG]) are selective to neurones involved in the 'vomiting motor
493 programme' occurring as a result of reconfiguration of the pattern of activity in the
494 multifunctional respiratory neurones (Grélot & Bianchi, 1997; Grélot & Miller, 1997) (c.f.

cough, yawn, sneeze). These same sets of neurones can also be driven to evoke vomiting by stimuli acting on the vestibular system and the AP (Figure 4). Thus, the effects of NK₁RAs on the brainstem pathways are 'state dependent' and this can explain the selectivity of effects against vomiting; when the brainstem is involved in baseline respiration and some respiratory reflexes there is little dependence on SP as a transmitter but when the pathway reconfigures and is highly active as occurs for vomiting then it becomes critically dependent on SP. <u>Overall, t</u> there is evidence for either the presence of SP positive neurones and/or NK₁ receptors in the key brainstem sites implicated in vomiting. 4.1.4.1. Nucleus tractus solitarius. SP-like immunoreactive neurones are present in the human NTS, particularly subnucleus gelatinosus (mNTS) and this is consistent with studies in both the cat and ferret (Leslie, 1985; Boissonade et al., 1996). A human brain PET study using a fluorine-18 labelled NK₁RA reported 'moderate' uptake in the NTS, the nucleus ambiguus and "other nuclei of the vagus" (not specified) (Hietala et al., 2005). A site of action within the NTS is supported by studies showing microinjection of CP-99,994 in the "region of the NTS" inhibited, but did not completely block, cisplatin-induced acute retching and vomiting in the ferret (Gardner et al., 1994; Tattersall et al., 1996). An important point is that the NK₁RA was injected after retching/vomiting began showing that the antagonist was blocking a pathway driven by ongoing NK₁ receptor activation. The peptide NK₁RA, GR-82334 was infective against cisplatin-induced retching/vomiting when given intravenously but was effective (77% reduction) when given into the NTS (Gardner et al., 1994). Rupniak et al (1997) correlated anti-emetic activity against cisplatin in the ferret with central penetration using a range of NK₁RAs with differing brain penetration. These studies argued strongly that central penetration (at least to the NTS) is required for the acute anti-

emetic effect of an NK₁RA. Further support for an action of NK₁RA in the NTS comes from
inhibition of SP (1µM)-induced discharge in NTS slices by the NK₁RA HSP-117 (10µM), without
affecting baseline spontaneous neuronal discharge (ferret, Saito et al., 1998).
4.1.4.2. Dorsal motor vagal nucleus. NK₁ receptors are present in the dorsal motor vagal

nucleus (DMVN; ferret, Watson et al., 1995), the site of origin of vagal efferents supplying the upper digestive tract and regulating the proximal gastric relaxation and RGC prior to the onset of retching and vomiting (Lang, 1990). In the rat, neurones in the DMVN responsive to gastric distension±24h post-cisplatin had their baseline activity altered by CP-99,994 (5µM) (Sun et al., 2017) but the results should be interpreted with caution as the efferent projection (e.g., the stomach) of the neurones was not identified (e.g., using antidromic collision, Andrews et al., 1980) and the effects of CP-99,994 were not controlled for by using its less potent 2R, 3R enantiomer, CP-100,263 (Watson et al., 1995). Although these studies show that the DMVN is a potential target for NK₁RA it should be noted that preventing the gastric relaxation and RGC will not block retching and vomiting as they can occur even in the absence of the stomach (Magendie, 1813) and when the RGC is blocked by atropine (Lang et al., 1986). An action of NK₁RA on the DMVN is therefore unlikely to explain their anti-vomiting action.

43 534 4.1.4.3. Ventral brainstem. Neurophysiological studies of fictive emesis in the dog implicate
535 nuclei in the ventral brainstem (Fukuda & Koga, 1991, 1992; Fukuda et al., 2003; Onishi et al.,
536 2007). When administered systemically, the NK₁RA, GR-205171 reduces vagal afferent
537 activation (via the mNTS) of the CPG for vomiting and/or in the pathway linking the NTS to
538 the CPG via the PSC (Fukuda & Koga, 1991, 1992); immunohistochemistry has demonstrated
539 the presence of NK₁ receptors in both regions of the dog ventral brainstem (Fukuda et al.,
540 2003). The CPG connects with the VRG, the location of the neurones driving the phrenic and

2 3		
4	541	abdominal motor neurones involved in normal respiration as well as retching and vomiting
5 6 7	542	(Figure 4).
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	543	Total block of transmission at either the NTS or CPG is probably not required to stop induction
	544	of vomiting; a reduction in transmission at either site is likely to be sufficient as triggering
	545	vomiting requires a higher frequency stimulus which also lasts for an extended time (e.g.,
	546	\sim 20s of vagal afferent stimulation is required in dog [Koga & Fukuda, 1992] and ferret
	547	[Andrews et al., 1990]), presumably to prevent inappropriate triggering. It is particularly
	548	notable that NK ₁ RAs prevent the 'wind-up' of CPG neurones induced by vagal afferent
	549	stimulation and blunts the rise in firing frequency when continuous vagal afferent stimulation
	550	is used, preventing the CPG reaching a threshold for induction of the oscillatory activity
	551	required for retching and vomiting (Fukuda et al., 1999, 2003) (Figure 5).
	552	4.1.5. Overview of site(s) of action against vomiting
	553	The clinically used NK $_1$ RAs are brain penetrant so when given systemically they can act at both
36 37 38	554	the central and peripheral neuronal sites involved in retching and vomiting:
39 40	555	i) For_ motion_induced vomiting <u>induced by abnormal motion</u> , the brainstem
41 42 43	556	integrative pathways (NTS, CPG) are the most likely site of action.
44 45	557	ii) For stimuli involving abdominal vagal afferents it is possible that NK ₁ RA can a)
46 47	558	block effects of any SP released from EEC cells onto NK_1 receptors on the
48 49 50	559	peripheral afferent nerve terminals <u>(Minami et al., 2001)</u> ; b) reduce
51 52	560	tachykininergic transmission between vagal afferents and the NTS <u>(Fukuda et</u>
53 54 55	561	al., 2003; Andrews & Rudd, 2004); c) modulate the brainstem integrative
56 57	562	pathways (NTS, CPG) sufficiently to disrupt the signals encoding induction of
58 59 60		

1		25
2 3 4	563	vomiting (Fukuda et al., 1999, 2003; Fukuda & Koga, 1991, 1992; Watson et al.,
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	564	<u>1995-)</u> . At present, the evidence for (b) and (c) is stronger.
	565	iii) For stimuli acting on the AP via the circulation (or cerebrospinal fluid) including
	566	exogenous emetics and endogenous substances released for example from the
	567	digestive tract because of damage/inflammation (e.g., during the delayed
	568	phase of CINV and chronic phases of infection) (Sanger & Andrews, 2018;
	569	Andrews et al., 2021, 2023 for references), the brainstem integrative
	570	mechanisms (NTS, CPG) are the most likely sites at which vomiting is affected
	571	as there is little evidence for an action within the AP itself.
	572	The NTS and CPG sites of action of NK ₁ RA are common to all stimuli inducing vomiting.
	573	However, for stimuli where abdominal vagal afferent activation occurs two additional sites of
	574	action are implicated which, if operational, would block vagal afferent input and thereby
	575	make it unnecessary for NK $_1$ RA to act within the NTS and CPG. However, although the NK $_1$ RA
	576	are highly effective against vomiting in a number of clinical settings, NK $_1$ receptors are not the
	577	only receptors involved in all of the pathways and this may explain why they may not always
40 41	578	be fully effective in all patients. For example, SP is likely to co-transmit with a non-peptide
42 43 44	579	(e.g., glutamate) with the former likely to be released by a higher frequency or different
45 46	580	pattern of nerve firing (Svensson et al., 2019). Further, glutamate has been implicated in
47 48 49	581	abdominal vagal afferent to mNTS transmission as NBQX blocked vagal afferent-induced
50 51	582	retching in dog and ferret and the resulting mNTS activation in the dog (Furukawa et al., 2001;
52 53 54	583	Onishi et al., 2007)Nevertheless, peptides, as co-transmitters, are known to be involved in
55 56	584	network reconfiguration with release determined by both neuronal firing pattern and time
57 58	585	(Cropper et al., 2018). Variations in the predominant transmitters in the nausea and vomiting
59 60	586	pathways, possibly as a response to disease, especially if chronic (e.g., in chronic visceral pain

1 2		
3 4	587	NK ₁ receptor availability is downregulated; Jarcho et al., 2013), may also contribute to NK ₁ RAs
5 6 7	588	spectrum of clinical efficacy.
8 9	589	5. The potential site(s) of NK ₁ RA action against nausea
10 11 12	590	'Anti-emetics' must not be assumed to equally affect both nausea and vomiting (Sanger &
13 14 15	591	And rews, 2022). Accordingly, we discuss the relative effects of NK ₁ RA against nausea and
16 17	592	vomiting by considering specific questions about the pathways involved; this also informs
18 19 20	593	directions for development of novel drugs (section 6). Direct experimental data is not
21 22	594	available to answer all the questions raised, so some answers are speculative and hypothetical
23 24 25	595	but experimentally testable.
26 27 28	596	5.1. What information reaches the mNTS from the abdominal vagal afferents in the
29 30	597	presence of NK ₁ RAs?
31 32 33	598	This question is relevant to both CINV and gastroparesis where abdominal vagal afferents are
34 35	599	implicated in genesis of nausea and vomiting (Sanger and Andrews, 2018, 2023). Regardless
36 37 38	600	of whether NK ₁ RAs reduce vagal afferent firing by acting peripherally (e.g., Minami et al.,
39 40	601	2001) or centrally (e.g., Fukuda et al., 2003), the degree of activation, and the pattern,
41 42 43	602	frequency and duration of abdominal vagal afferent activity required for induction of nausea
44 45	603	as compared to vomiting is unknown. It is, nevertheless, a reasonable assumption that nausea
46 47 48	604	requires less intense activation of afferent pathways than vomiting (see Horn 2014 for
49 50	605	discussion in relation to the vagus). The effects of NK_1RAs on vagal afferent activity evoked by
51 52 53	606	a wide range of stimulus intensities, ± substances which may sensitise the afferents (e.g., 5-
54 55	607	HT, prostaglandins), need to be investigated directly to answer the above question. The
56 57 58	608	development of vagal afferent recording techniques in humans may eventually allow direct
59 60	609	testing of this hypothesis (Ottaviani et al., 2020).

5.2. Do differential effects of NK₁RAs on the NTS account for the differential effects against nausea and vomiting?

NK₁RA modulation of the vagal afferent drive to the mNTS and/or transmission within the NTS
(vagal, AP and vestibular inputs) could contribute to a *reduction* in nausea *intensity* by
decreasing the drive from the NTS to supra-medullary structures implicated in the sensation
of nausea. However, the evidence for such an action is poor, as discussed below.

5.3. Are NK₁ receptors in the mid-brain and cerebral hemispheres involved in potential anti nausea effects of NK₁RA?

In contrast to vomiting, the brain pathways responsible for nausea are not well defined. The majority of brain imaging studies are in subjects reporting nausea induced by illusory-self motion (vection; visually-induced motion sickness, VIMS), with only single studies using 'real' motion or a pharmacological challenge (see Varangot-Reille et al., 2023) making it difficult to assess whether the findings have general applicability. Cortical and sub-cortical areas consistently showing an increase in activity in healthy volunteers reporting nausea include the frontal lobe (e.g., anterior cingulate cortex), occipital lobe (e.g., posterior cingulate cortex), temporal lobe (e.g., amygdala, part of the 'limbic cortex') and basal ganglia (e.g., putamen) (Varangot-Reille et al., 2023).

 7 627 NK₁RA binding in the human brain using PET shows NK₁ receptors in several brain areas 9 628 implicated in nausea. For example, aprepitant has receptor occupancy of 50% in the caudate 1 629 and 90% in the putamen (basal ganglia) at plasma concentrations of ~2x10⁻⁹ M and ~2x 10⁻⁸ 630 M respectively (Bergstrom et al., 2004). Based on the striatal occupancy levels, the authors 631 concluded that the recommended 'anti-emetic' aprepitant regime of 125mg on day 1 and 80mg on the subsequent two days in CINV would result in an occupancy of >90% (Bergstrom

et al., 2004). Hietala et al., (2005) using the same radioligand confirmed the highest uptake in the caudate and putamen and levels ~50% in regions of the occipital lobe (e.g., posterior cingulate cortex), temporal lobe (e.g., amygdala [forms the 'limbic cortex' with the hippocampus]) and frontal lobe (anterior cingulate cortex) all of which have been implicated in nausea in brain imaging studies (Varangot-Reille et al., 2023). Pharmacological MRI studies provide additional unexpected insights. Using fosaprepitant (pro-drug of aprepitant) the NK₁ receptor distribution profile identified in the above PET studies was confirmed but in addition identified activation of brain areas (e.g., cerebellum, red nucleus) where there were thought to not be any NK₁ receptors, an effect attributed to "downstream pharmacodynamic effects" (Borsook et al., 2012, Fig. 2; Upadhyay et al., 2011). Such effects demonstrate that in identifying brain sites of drug action we should not only consider regions which have their activity inhibited; activation of a pathway which itself is inhibitory on the function under consideration should not be overlooked. Brain imaging studies in nausea have identified areas with both *increased* and *decreased* activity (Farmer et al., 2015). Although we focus on areas directly implicated in nausea, as nausea involves heightened anxiety, the potential anxiolytic effects of NK₁RA (Hoppe et al., 2018) could indirectly contribute to reducing nausea scores especially in chronic conditions (e.g., gastroparesis). Overall, NK₁RAs do not appear to have a consistent ability to reduce nausea induced by multiple stimuli despite high levels of NK₁RA binding in many of the relevant brain areas. Therefore, it is reasonable to conclude that that NK₁ receptors do not have a major role in transmission in the 'higher' brain regions currently implicated in nausea. We note that NK₁RA

efficacy in depression (e.g., Keller et al., 2006; Ratti et al., 2013), panic disorder (Fujimura et

al., 2009), pain (Boorsook et al., 2012) and anxiety (Hoppe et al., 2018) are also variable and 657 less than might be anticipated from NK_1 receptor distribution.

5.4. Do NK₁ RA reduce vasopressin secretion?

Relatively high plasma concentrations of arginine vasopressin (AVP) are associated with nausea induced by stimuli activating the vestibular system, AP and abdominal vagal afferents (Makwana et al., 2022). A causal link between AVP and nausea is not proven, but a credible possibility in at least some clinical scenarios involves the actions of low concentrations of AVP on gastric pacemaker activity (the interstitial cells of Cajal; ICC), synergising with actions of other nauseagenic stimuli to disrupt motility and hence, initiate vagal afferent discharge; the demonstration of synergy between two different nauseagenic stimuli (adrenaline + AVP) was used to argue that antagonism of one alone (e.g., the effects of vasopressin) might reduce but not prevent the symptom of nausea (Makwana et al., 2022). In dogs, following cisplatin administration, the NK₁RA maropitant was without significant effect on the peak [AVP] or the area under the curve whereas both were significantly reduced by ondansetron (Kenward et al., 2017). In human patients treated with cisplatin the acute rise in [AVP] was blocked by ondansetron (Barreca et al., 1996) as in the dog, but as far as we are aware similar patient studies have not been performed with an NK_1RA .

5.5. Do NK₁RA have a role in treating nausea by gastric motility modulation?

The presence of SP in the digestive tract in nerve terminals and EEC (Sanger, 2004) and of NK₁ receptors on smooth muscle cells and <u>Interstitial Cells of Cajal (</u>ICCs) (Lavin et al., 1998; Faussone-Pellegrini, 2006; Cheng et al., 2007; Liu & Rudd, 2023) makes the digestive tract a potential target for NK₁RA. However, an ability of NK₁RAs to affect nausea by a direct effect on gastric motility is unlikely. Thus, in healthy volunteers there is little evidence for an effect

of NK₁RA on digestive tract motility (assessed by gastric emptying or compliance, or small and large bowel propulsion) (Madsen & Fuglsang 2008; Ang et al., 2013; Jacob et al., 2017; Khanna et al., 2022). Interestingly, after a dyspeptogenic meal, aprepitant (125 mg on day 1, then 80 mg on days 2–5) increased fasting, postprandial, and accommodation gastric volume but increased aggregate symptoms, nausea, and pain scores after ingestion of the maximum tolerated volume; the authors suggested that differences between these studies may be dependent on what is measured and on the application of acute- or longer-term dosing with aprepitant (Jacob et al., 2017) but activation of TRAAK channels (see above) should also be considered. Dysrhythmic gastric electrical activity has been associated with nausea in disorders including gastroparesis, CUNV, functional dyspepsia, gastro-oesophageal reflux disease, all linked with loss of ICCs (Koch 2014; O'Grady et al., 2021). Thus, any ability of NK₁RAs to affect ICC functions (see above) could, in theory, have an influence on *induction* of nausea although an effect on vagal afferent signalling or the NTS seems more likely based on current knowledge. 6. Concluding comments. Irrespective of the stimulus, the effects of NK₁RA against *vomiting* are explicable by a central action on the NTS and CPG in the brain stem with potential additional peripheral effects on vagal afferent activity when activated by an emetic stimulus (e.g., HEC, some ingested toxins). NK₁RAs are not 100% effective against vomiting in humans (c.f., pre-clinical studies, **Table 1**) implicating other transmitter/receptor systems and explaining why optimal anti-vomiting therapy may require drug combinations (e.g., netupitant + palonosetron + dexamethasone) in treating complex situations such as HEC. An additional role for other neurotransmitters/co-

transmitters (e.g., glutamate) has not yet been fully explored.

A reduction in the projection of information from the NTS to the higher brain regions by suppression of NTS pathways and the drive from the abdominal vagal afferents is likely to contribute to any reduction of nausea by NK₁RAs, no matter how sub-optimal and disappointing the current evidence suggests. It could be argued that the distribution of NK₁ receptors in cortical and subcortical structures implicated in nausea may predict efficacy against nausea, but it is also possible these receptors are coupled to non-nauseagenic pathways, such as those involved in fear and/ or anxiety (which nonetheless may contribute to the overall sensation of nausea).

Mechanistically, vomiting is well understood and studies with NK₁RAs show that targeting the NTS/CPG in the brainstem is a valid approach and adverse effects on the respiratory, cardiovascular and digestive systems all regulated from the brainstem appear to be avoided. The apparent specificity of NK₁RA blockade of vomiting likely reflects the functional reconfiguration of the neural network to coordinate retching/vomiting where tachykininergic signalling becomes critical (state dependence; see Doi & Ramirez 2010 for a study of NK1 receptors and state dependent functions of pre-Bötzinger complex respiratory neurones). The NTS and CPG need investigating in emetic species using neurophysiological studies similar to those in rodents showing complex interaction between NK₁ receptor activation, glutamate and GABA release (Bailey et al., 2004) to understand how NK₁RAs are 'functionally specific' for vomiting.

721 Nausea remains a challenge as there are major gaps in knowledge of the cerebral pathways
 722 involved and hence in identifying potential receptor targets to identify 'broad spectrum' anti 723 nausea drugs. As the insular cortex is the "highest" cortical region consistently activated in
 724 subjects reporting nausea (Varangot-Reille et al., 2023) this would be a logical place to target

a drug to block nausea although the associated physiological changes (e.g., regional cold sweating, AVP secretion) may not be blocked as they involve 'lower' brain regions. An alternative approach is to selectively suppress transmission of 'nauseagenic' signals from the NTS to the mid-brain with consideration being given to the parabrachial nucleus as a potential target. Whilst this might be achieved by a combination of receptor antagonists the use of agonists (e.g., $GABA_B$, CB_1 , 5-HT_{1A}, ghrelin, opioid) may provide a more fruitful approach as this makes fewer assumptions about the nature of the nauseagenic stimulus (Sanger & Andrews, 2006). A gastric inhibitory polypeptide-1 receptor agonist has been shown to block the acute vomiting induced by the chemotherapeutic agent cisplatin in the ferret (Borner et al., 2023), further extending the list of receptor agonists with 'anti-emetic' potential. The electroceutical approaches to treatment of gastrointestinal symptoms, including nausea (Horn et al., 2019; Ramadi et al., 2020), may provide a route by which this system may be controlled but further study is needed to determine the pathways and cell types involved. A final approach is to target the abdominal vagal afferents at a peripheral site but this would only be applicable when a peripheral release of SP has been demonstrated and when the original signal originates from disordered upper digestive tract function (e.g., gastroparesis; Sanger & Andrews, 2023). Research into the development of anti-nausea drugs is further hampered by the paucity of human volunteer studies using stimuli other than motion. Studies of 'anti-emetics' have been undertaken in humans using apomorphine, ipecacuanha and morphine as challenges (Proctor et al., 1978; Minton et al., 1993; Soergel et al., 2014) and a wider range of challenges could be identified from the side effect profile of licenced drugs (e.g., GLP-1 receptor agonists). The final issue is quantification of nausea. The present assessment tools widely used in clinical trials rely on an accurate classification of nausea by the subject, an assumption that subjects are reporting the same sensation and reliable

recollection as data may only be collected daily giving data with a low temporal resolution (see Varangot-Reille et al., 2023, Suppl. files). The heterogeneity of nausea assessment instruments was identified as an issue in a recent US, F.D.A. review of endpoints in CINV and PONV studies which identified nausea assessment as an "opportunity for continued research and development" (Gabby et al., 2021). A reliable, subject independent method for assessing nausea in real time is needed to ensure an accurate assessment of candidate drug efficacy (Andrews & Sanger, 2014). We close by dedicating this review to a colleague and friend Wes Miner who died while we were drafting this review. Wes was co-author of the first paper demonstrating the remarkable 'anti-emetic' effect of a 5-HT₃ receptor antagonist (Miner & Sanger, 1986) and spent his career in the pharmaceutical industry. In a note to one of the authors (PLRA) in January 1999 Wes made the following insightful comment of relevance to this review regarding the Navari et al., 1999 paper reporting some of the earliest clinical data on NK₁RA: "results are very, very good and I think this will just about wrap it up for pharmaceutical company interest in the N+V area for the next 20 years." As Wes predicted, there have indeed been no major advances in the development in drugs affecting vomiting and especially nausea in the last 20 plus years and as this review shows the accepted dogma that 'anti-emetics' equally affect nausea and vomiting requires challenging; a view with which we are sure Wes would concur.

References

Aapro, M. (2018). CINV: still troubling patients after all these years. Supportive Care in *Cancer*, 26(Suppl 1), 55-59.

1		
2 3 4	772	Andrews, P.L.R., Cai, W., Rudd, J.A., & Sanger, G.J. (2021). COVID-19, nausea and vomiting.
5	773	Journal of Gastroenterology and Hepatology,36, 646-656.
6 7 8	774	
9 10	775	Andrews, P.L.R., Davis, C.J., Bingham, S., Davidson, H.I.M., Hawthorn, J., & Maskell, L. (1990)
11	776	The abdominal visceral innervation and the emetic reflex: pathways, pharmacology and
12 13 14	777	plasticity. Canadian Journal of Physiology and Pharmacology, 68, 325-345.
15 16 17	778	
18	779	Andrews, P.L.R., Fussey, I.V., & Scratcherd, T. (1980) The spontaneous discharge in
19 20 21	780	abdominal vagal efferents in the dog and ferret. <i>Pflügers Archives</i> , 387, 55-60.
22	781	
23 24 25	782	Andrews, P. L. R., Kovacs, M. & Watson, J. W. (2001). The anti-emetic action of the
26	783	neurokinin(1) receptor antagonist CP-99,994 does not require the presence of the area
27 28 29	784	postrema in the dog. <i>Neuroscience Letters</i> , 314, 102-104.
30 31 32	785	
33	786	Andrews, P. L. R., Okada, F., Woods, A. J., Hagiwara, H., Kakaimoto, S., Toyoda, M., &
34 35	787	Matsuki, N. (2000). The emetic and anti-emetic effects of the capsaicin analogue
36	788	resiniferatoxin in Suncus murinus, the house musk shrew. British Journal of
37 38	789	Pharmacology,130, 1247-1254.
39 40 41	790	
42	791	Andrews, P.L.R., Rapeport, W.G.,& Sanger, G.J. (1988). Neuropharmacology of emesis
43 44 45	792	induced by anti-cancer therapy. Trends in Pharmacological Science, 9, 334-341.
46 47 48	793	
48 49	794	Andrews, P.L.R., & Rudd, J.A. (2004). The role of tachykinins and the tachykinin NK ₁ receptor
50 51	795	in nausea and emesis. In P. Holzer, Handbook of Experimental Pharmacology, pp.359-440.
52 53	796	Berlin: Springer-Verlag.
54 55 56	797	
57 58	798	Andrews, P.L.R., & Rudd, J. A. (2015). The physiology and pharmacology of nausea and
58 59 60	799	vomiting induced by anti-cancer chemotherapy in humans. In: Navari, R. M. (Ed)

2		
3 4	800	Management of chemotherapy-induced nausea and vomiting: New agents and new uses of
5 6	801	current agents.pp.5-44
7 8	802	
9 10	803	Andrews, P.L.R., & Sanger, G.J. (2014). Nausea and the quest for the perfect anti-emetic.
11 12 13	804	European Journal of Pharmacology, 722, 108-121
14 15 16	805	
17 18 19 20 21	806	Andrews, P.L.R., Williams, R.S.B., & Sanger, G.J. (2023). Anti-emetic effects of thalidomide:
	807	evidence, mechanism of action, and future directions. Current Research in Pharmacology
22 23 24	808	and Drug Discovery,3, 100138
24 25 26	809	
27 28	810	Ang D, Pauwels A, Akyuz F, Vos R, & Tack J. (2013) Influence of a neurokinin-1 receptor
29 30	811	antagonist (aprepitant) on gastric sensorimotor function in healthy volunteers.
31 32	812	Neurogastroenterology and Motility, 25, e830–e838, 2013.
33 34 35	813	
36 37	814	Ariumi, H., Saito, R., Nago, S., Hyakusoku, M., Takanon, Y., & Kamiya, H-o. (2000). The role of
38 39	815	tachykinin NK-1 receptors in the area postrema of ferrets in emesis. Neuroscience Letters,
40 41 42	816	286, 123-126.
43 44	817	
45 46	818	Bailey, C.P., Maubach, K.A., & Jones, R.S.G. (2004). Neurokinin-1 receptors in th rat nucleus
47 48	819	tractus solitarius: Pre- and postsynaptic modulation of glutamate and GABA release.
49 50 51	820	Neuroscience, 127, 467-479.
52 53 54	821	
55	822	Barreca, T., Corsini, G., Cataldi, A., Garibaldi, A., Cianciosi, P., Rolandi, E., & Franceschini, R.
56 57	823	(1996). Effect of the 5-HT3 receptor antagonist ondansetron on plasma AVP secretion: a study
58 59 60	824	in cancer patients. Biomedicine & Pharmacotherapy, 50, 512-514.

1		50	
2			
3 4	825		
5			
6 7	826	Baude, A., Lanoir, J., Vernier, P., Puizillout, J.J. (1989) Substance P-immuno-reactivity in the	
8 9	827	dorsal medial region of the medulla in the cat: effects of nodosectomy. Journal of Chemical	
10 11	828	Neuroanatomy, 2, 67-81.	
12 13	829		
14 15	830	Beresford, I.J.M., Birch, P.J., Hagan, R.M., & Ireland, S.J. (1991). Investigation into species	
16 17	831	variants in tachykinin NK1 receptors by use of the non-peptide antagonist, CP-96,345. British	
18 19	832	Journal of Pharmacology, 104, 292-293.	
20 21	833		
22 23 24	834	Bergstrom, M., Hargreaves, R.J., Burns, H.D., Goldberg, M.R., Sciberaras, D., Reines, S.A.,	
24 25	835	Petty, K.J., Ögren, M., Antoni, G., Längström, B., Eskola, O., Scheinin, M., Solin, O.,	
26 27	836	Majumdar, A.K., Constnazer, M.L., Battisti, W.P., Bradstreet, T.E., Gargano, C. & Hietala, J.	
28 29	837	(2004). Human positron emission tomography studies of brain neurokinin 1 receptor	
30 31	838	occupancy by aprepitant. Biological Psychiatry, 55, 1007-1012.	
32 33	839		
34 35	840	Bhandari, P., Bingham, S., & Andrews, P.L.R. (1992). The neuropharmacology of loperamide-	
36 37	841	induced emesis in the ferret: The role of the area postrema, vagus, opiate and 5-HT $_{ m 3}$	
38 39	842	receptors. <i>Neuropharmacology</i> , 31, 735-742.	
40 41 42	843		
43 44	844	Boissonade, F.M., Davison, J.S., & Egizii, R. (1996) The dorsal vagal complex of the ferret:	
45	845	anatomical and immunohistochemical studies. Neurogastroenterology and Motility, 8, 255-	
46 47 48	846	272.	
49 50 51	847		
52 53	848	Borison, H.L. (1989). Area postrema: Chemoreceptor circumventricular organ of the medulla	
54 55	849	oblongata. Progress in Neurobiology, 32, 351-390.	
56 57 58 59 60	850		

3 4	851	Borison, H.L., & Wang, S.C. (1953). Physiology and pharmacology of vomiting. Pharmacology
5	852	Reviews, 5, 193-230.
6 7	853	
8 9		<u>Z</u> .
10 11 12 13	854	Borner, T., Reiner, B.C., Crist, R.C., Furst, C.D., Doebley, S.A., Halas, J.G., Al, M., Samma, R.J.,
	855	De Jonghe, B.C., & Hayes, M.R. (2023). GIP receptor agonism blocks chemotherapy-induced
13 14	856	nausea and vomiting. Molecular Metabolism, 73, 101743.
15 16 17	857	
18 19 20	858	Borner, T., Shaulson, E.D., Ghidewon, M.Y., Barnet, A.B., Horn, C.C., Doyle, R.P., Grill, H.J.,
	859	Hayes, M.R. & De Jonghe, B.C. (2020). GDF15 Induces anorexia through nausea and emesis.
21 22	860	Cell Metabolism, 31, 351-362.
23 24 25	861	
26 27	862	Borsook, D., Upadhay, J., Klimas, M., Schwarz, A.J., Coimbra, A., Baumgartner, R., George, E.,
28 29	863	Potter, W.Z., Large, T., Bleakman, D., Eveloch, J., Iyengar, S., Becerra, L., & Hargreaves, R.J.
30	864	(2012). Decision-making using fMRI in clinical drug development: revisiting NK-1 receptor
31 32	865	antagonists for pain. Drug Discovery Today 17: 964-973.
33 34 35	866	
36 37	867	Bošnjak, S.M., Gralla, R.J., & Schwartzberg, L. (2017). Prevention of chemotherapy-induced
38 39	868	nausea: the role of neurokinin-1 (NK ₁) receptor antagonists. Supportive Care in Cancer, 25,
40 41	869	1661-1671.
42 43 44	870	
45	871	Carlin, J.L., Lieberman, V.R., Dahal, A., Keefe, M.S., Xiao, C., Birznieks, G., Abell, T.L., Lembo,
46 47	872	A., Parkman, H., & Polymeropoulos, M.H. (2020). Efficacy and safety of tradipitant in patients
48 49	873	with diabetic and idiopathic gastroparesis in a randomized, placebo-controlled trial.
50 51 52	874	Gastroenterology, 160, 76-87.
52 53 54 55	875	
55 56 57	876	Carpenter, D.O., Briggs, D.B., & Strominger, N. (1984). Peptide-induced emesis in dogs.
57 58 59 60	877	Behavioural Brain Research, 11, 277-281.

1		
2 3	878	
4 5		
6 7	879	Carpenter, D.O., Briggs, D.B., Knox, A.P., & Strominger, N. (1988). Excitation of Area Postrema
8 9 10	880	neurons by transmitters, peptides, and cyclic nucleotides. Journal of Neurophysiology, 59,
11 12 13	881	358-369.
14 15 16	882	
17 18	883	Cavaye, J., Dai, B., Gurunathan, K., Weir, R.M., Yerkovich, S., & Gurunathan, U. (2021). NK1
19 20	884	receptor antagonists versus other antiemetics in the prevention of postoperative nausea and
21	885	vomiting following laparascopic surgical procedures: a systematic review and meta-analysis.
22 23	886	Journal of Anesthesiology Clinical Pharmacology, 38, 35-37.
24 25		
26 27	887	
28 29	888	Chen, Y., Saito, H., & Matsuki, N. (1997). Ethanol-induced emesis in the house musk shrew,
30 31	889	Suncus murinus. Life Sciences, 60, 253-261.
32		
33 34	890	
35 36	891	Chen, H., Redelman, D., Ro, S., Ward, S. M., Ordög, T., Sanders, S. (2007). Selective labelling
37 38	892	and isolation of functional classes of interstitial cells of Cajal of human and murine small
39 40	893	intestine. American Journal of Physiology, Cell Physiology, 292, C497-507.
41 42	804	
43	894	
44 45	895	Chong, K., & Dhatariya, K. (2009). A case of severe, refractory diabetic gastroparesis managed
46 47 48	896	by prolonged use of aprepitant. <i>Nature Reviews of Endocrinol</i> ogy, 5, 285–288.
49 50	897	
51 52	898	Claude, A.K., Dedeaux, A., Chiavaccini, L. & Hinz, S. (2014). Effects of maropitant citrate or
53 54	899	acepromazine on the incidence of adverse events associated with hydromorphone
55 56	900	premedication in dogs. Journal of Veterinary Internal Medicine, 28, 1414-1417.
57 58 59 60	901	

Cocquyt, V., Van Belle, S., Reinhardt, R.R., Decramer, M.L.A., O'Brien, M., Schellens, J. H.M., Borms, M., Verbeke, L., Van Aelst, F., De Smet, M., Carides, A.D., Eledridge, K. & Gertz, B.J. (2001). Comparison of L-758,298, a prodrug for the selective neurokinin-1 antagonist, L-754,030, with ondansetron for the prevention of cisplatin-induced emesis. European Journal of Cancer, 37, 835-842. Conder, G.A., Sedlacek, H.S., Boucher, J.F., & Clemence, R.G. (2008) Efficacy and safety of maropitant, a selective neurokinin 1 receptor antagonist, in to randomized clinical trials for prevention of vomiting due to motion sickness in dogs. *Journal of Veterinary* Pharmacological Therapy, 31, 528-532. Cooper, P.E., Fernstrom, M.H., Rorstad, O.P., Leeman, S.E., & Martin, J.B. (1981). The regional distribution of somatostatin, substance P and neurotensin in human brain. Brain Research, 218, 219-232. Cristofori, F., Thapar, N., Saliakellis, E., Kumaraguru, N., Elawad, M., Kiparissi, F., Köglmeier, J., Andrews, P., Lindley, K.J., & Borrelli, O. (2014) Efficacy of the neurokinin-1 receptor antagonist aprepitant in children with cyclical vomiting syndrome. Alimentary Pharmacology and Therapeutics, 40, 309-317. Cropper, E. C., Jing, J., Vilim, F.S., & Weiss, K.R. (2018). Peptide cotransmitters as dynamic, intrinsic modulators of network activity. *Frontiers in Neural Circuits*, 12, 78. Darmani, N.A., Chebolu, S., Amos, B., & Alkam, T. (2011). Synergistic antiemetic interactions between serotonergic 5-HT₃ and tachykininergic NK₁-receptor antagonists in the least shrew (Cryptotis parva). Pharmacology Biochemistry and Behaviour, 99, 573-579.

1		40
2 3		
4	928	
5 6	929	De la Puente-Redondo, V. A., Tilt, Rowan, T.G., & Clemence, R.G. (2007). Efficacy of
7 8	930	maropitant for treatment and prevention of emesis caused by intravenous infusion of
9 10	931	cisplatin in dogs. American Journal of Veterinary Research, 68, 48-56.
11 12 13	932	
14 15	933	Diemunsch, P., Schoeffler, P., Bryssine, B., Cheli-Muller, L.E., Lees, J., McQuade, B.A., &
16 17	934	Spraggs, C.F. (1999). Antiemetic activity of the NK_1 receptor antagonist GR205171 in the
18 19	935	treatment of established postoperative nausea and vomiting after major gynaecological
20 21	936	surgery. British Journal of Anaesthesia, 82, 274-276.
22 23 24	937	
25 26	938	Diemunsch, P., Gan, T.J., Philip, B.K., Girao, M.J., Eberhart, L., Irwin, M.G., Pueyo, J., Chelly,
27 28	939	J.E., Carides, A.D., Reiss, T., Evans, J.K., & Lawson, F.C. for the Aprepitant-PONV Protocol 091
29 30	940	International Study Group. (2007). Single-dose aprepitant vsv ondansetron for the prevention
31	941	of postoperative nausea and vomiting: a randomized, double -blind Phase III trial in patients
32 33 34	942	undergoing open abdominal surgery. British Journal of Anaesthesia, 99, 202-211.
35 36 37	943	
38 39	944	Doi, A., & Ramirez, J-M. (2010). State -dependent interactions between excitatory
40 41	945	neuromodulators in the neuronal control of breathing. Journal of Neuroscience, 30, 8251-
42 43	946	8262.
44 45 46	947	
47	948	Duffy, R.A., Morgan, C., Naylor, R., Higgins, G.A., Varty, G.B., Lachowicz, J.E. & Parker, E.M.
48 49	949	(2012). Rolapitant (SCH 619734): a potent, selective and orally active neurokinin NK1
50 51	950	receptor antagonist with centrally -mediated antiemetic effects in ferrets. Pharmacology
52 53	951	Biochemistry and Behaviour, 102, 95-100.
54 55	952	
56 57	953	Dupuis, L.L., Tomlinson, G.A., Pong, A., Sung, L., & Bickham, K. (2020). Factors associated
58 59 60	954	with chemotherapy-induced vomiting control in pediatric patients receiving moderately or

2 3	055	highly amataganic chamatherany, A needed analysis Journal of Clinical Oncology, 28, 2400
4 5	955	highly emetogenic chemotherapy: A pooled analysis. <i>Journal of Clinical Oncology</i> , 38, 2499-
6	956	2509.
7 8 9	957	
10	958	Faas, H., Feinle, C., Enck, P., Grundy, D.G., & Boesiger, P. (2001). Modulation of gastric motor
11 12	959	activity by centrally acting stimulus, circular vection, in humans. American Journal of
13 14 15	960	Physiology, 280, G850-857.
16 17 18	961	
19	962	Fahler, J., Wall, G. C., & Leman, B. I. (2012) Gastroparesis-associated refractory nausea treated
20 21 22	963	with aprepitant. Annals of Pharmacotherapy, 46, e38.
23 24 25	964	
26 27	965	Farmer, A.D., Ban, V.F., Coen, S.J., Sanger, G.J., Barker, G.J., Gresty, M.A., Giampietro, V.P.,
28 29	966	Williams, S.C., Webb, D.L., Hellström, P.M., Andrews, P.L.R., & Aziz, Q. (2015). Visually
30 31	967	induced nausea causes characteristic changes in cerebral, autonomic and endocrine
32 33	968	function in humans. Journal of Physiology, 593, 1183-1196.
34 35 36	969	
37 38	970	Faussone-Pellegrini, M-S. (2006). Relationships between neurokinin receptor -expressing
39 40	971	interstitial cells of Cajal and tachykininergic nerves in the gut. Journal of Cellular and
41 42	972	Molecular Medicine, 10, 20-32.
43 44	973	
45 46	974	Fujimura, Y., Yasuno, F., Farris, A., Liow, JS., Geraci, M., Drevets, W., Pine, D.S., Ghose, S.,
47 48	975	Lerner, A., Hargreaves, R., Burns, H.D., Morese, C., Pike, V.W., & Innis, R.B. (2009).
49 50	976	Decreased neurokinin-1 (substance P) receptor binding in patients with panic disorder:
51 52	977	positron emission tomography study with {18F]SPA-RQ. <i>Biological Psychiatry</i> , 66,94-97.
53 54 55	978	
56	979	Fukuda, H., & Koga, T. (1991). The Bötzinger complex as the pattern generator for retching
57 58 59 60	980	and vomiting in the dog. <i>Neuroscience Research</i> , 12, 471-485.

1 2		
3 4	981	
5		
6 7	982	Fukuda, H. & Koga, T. (1992). Non-respiratory neurons in the Bötzinger complex exhibiting
8 9	983	appropriate firing patterns to generate the emetic act in dogs. Neuroscience Research, 14,
10 11	984	180-194.
12 13 14	985	
15 16	986	Fukuda, H., Koga, T., Furukawa, N., Nakamura, E., Shiroshita, Y. (1999). The tachykinin NK1
17 18	987	receptor antagonist GR205171 abolishes the retching activity of neurones comprising the
19 20	988	central pattern generator for vomiting in dogs. <i>Neuroscience Research</i> , 33, 25-32.
21 22 23	989	
24 25	990	Fukuda, H., Koga, T., Furukawa, N., Nakamura, E., Hatano, M. and Yanagihara, M. (2003). The
26 27	991	site of the antiemetic action of NK1 receptor antagonists. In J. Donnerer (ed.) Antiemetic
28 29	992	Therapy (pp. 33-77). Basel: Karger.
30		
31 32	993	
33 34	994	Furukawa, N., Fukuda, H., Hatano, M., Koga, T., & Shiroshita, Y. (1998). A neurokinin-1
35 36	995	receptor antagonists reduce hypersalivation and gastric contractility related to emesis in
37 38	996	dogs. American Journal of Physiology, 275, G1193-1201.
39 40		
41	997	
42 43	998	Furukawa, N., Hatano, M. & Fukuda, H. (2001). Glutaminergic vagal afferents may mediate
44 45		
46	999	both retching and gastric adaptive relaxation in dogs. Autonomic Neuroscience: Basic and
47 48	1000	<i>Clinical,</i> 93, 21-30.
49 50 51	1001	
52 53	1002	Furukawa, T.Y., Nakayama, H., Kikuchi, A., Imazumi, K., Yamakuni, H., Sogabe, H., Yamasaki,
54 55	1003	S., Takeshita, K., Matsuo, M., Manda, T.& Uchida, W. (2013). Antiemetic effects of a potent
56	1004	and selective neurokinin-1 receptor antagonist, FK886, on cisplatin- and apomorphine-
57 58 59	1005	induced emesis in dogs. <i>Biology Pharmacology Bulletin</i> 36: 974-979.
60		

2 3 4	1006	
5 6 7	1007	Gabby, M.E., Bugin, K., & Lyons, E. (2021). Review article: the evolution of endpoint
8	1008	assessments for chemotherapy-induced nausea and vomiting and post-operative nausea and
9 10	1009	vomiting—a perspective from the US Food and Drug Administration. Alimentary
11 12 13 14 15 16 17 18 19	1010	Pharmacology and Therapeutics, 54, 7-13.
	1011	
	1012	Gan, T.J. (2006). Risk factors for postoperative nausea and vomiting. Anesthesia and
20 21	1013	Analgesia, 102, 1884-1898.
22 23 24 25	1014	
25 26	1015	Gan, T., Gan, J., Singla, N., Chung, F., Pearman, M., Bergese, S., Habib, A.S., Candiotti, K.A.,
27 28	1016	Mo, Y., Huyck, S., Creed, M.R., Cantillon, M., & Rolapitant Investigation Group (2011).
 29 30 31 32 33 34 35 36 37 38 39 	1017	Rolapitant for the prevention of postoperative nausea and vomiting: a prospective double-
	1018	blinded, placebo controlled randomized trial. Anesthesia and Analgesia, 112, 804-812.
	1019	
	1020	Gardner, C.J., Twissell, D.J., Gale, J.D., Jordan, C.C., Kilpatrick, G.J., Bountra, C., & Ward, P.
	1021	(1995). The broad -spectrum anti-emetic activity of the novel non-peptide tachykinin NK_1
40 41 42	1022	receptor antagonist GR203040. British Journal of Pharmacology, 116, 3158-3163.
43 44 45	1023	
46 47	1024	Gardner, C.J., Bountra, C., Bunce, K.T., Dale, T.J., Jordan, C.C., Twissell, D.J. & Ward, P. (1994).
48	1025	Anti-emetic activity of neurokinin NK_1 receptor antagonists is mediated centrally in the ferret.
49 50 51	1026	British Journal of Pharmacology, 112, 516P.
52 53 54	1027	
55 56	1028	Gardner, C., & Perrin, M. (1998). Inhibition of anaesthetic -induced emesis by a NK_1 or 5-HT ₃
57 58	1029	receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology, 37,
59 60	1030	1643-1644.

1 2 3		**
4	1031	
5 6	1032	Gardner, C.J., Twissell, D.J., Dale, T.J., Gale, J.D., Jordan, C.C., Kilpatrick, G.J., Bountra, C., &
7 8 9 10 11	1033	Ward, P. (1995). The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin
	1034	NK1 receptor antagonist GR203040. British Journal of Pharmacology, 116, 3158-3163.
12 13 14	1035	
15 16	1036	Gardner, C.J., Armour, D.R., Beattie, D.T., Gale, J.D., Hawcock, A.B., Kilpatrick, G.J., Twissell,
17 18	1037	D.J., & Ward, P. (1996). GR205171: a novel antagonist with high affinity for the tachykinin NK $_{ m 1}$
19 20 21	1038	receptor, a potent broad-spectrum anti-emetic activity. <i>Regulatory Peptides</i> , 65, 45-53.
22 23	1039	
24 25	1040	Gesztesi, Z.S., Song, D., White, P.F., Wright, W., Wender, R.H., D'Angelo, R., Black, S., Dalby,
26 27 28 29 30	1041	P.L., & MacLean, D. (1998). Comparison of a new NK-1 antagonist (CP122,721) to ondansetron
	1042	in the prevention of postoperative nausea and vomiting. Anesthesia and Analgesia, 86, S32.
31 32 33	1043	
34	1044	Gesztesi, Z., Scuderi, P.E., White, P.F., Wright, W., Wender, R.H., D'Angelo, R., Black, S., Dalby,
 35 36 37 38 39 40 41 42 	1045	P.L., & MacLean, D. (2000). Substance P (neurokinin-1) antagonists prevents postoperative
	1046	vomiting after abdominal hysterectomy procedures. <i>Anesthesiology</i> , 93, 931-937.
	1047	
43 44	1048	Golding, J.F., Paillard, A.C., Normand, H., Besnard, S., Denise, P. (2017). Prevalence, predictors
45 46	1049	& prevention of motion sickness in zero-G parabolic flights. Aerospace Medicine & Human
40 47 48	1050	Performance, 88, 3-9.
49 50 51	1051	
52 53	1052	Golding, J.F., Wesnes, K.A. & Leaker, B.R. (2018) The effects of the selective muscarinic M_3
54 55	1053	receptor antagonist darifenacin, and of hyoscine (scopolamine), on motion sickness, skin
56 57	1054	conductance & cognitive function. British Journal of Clinical Pharmacology, 84,1535–1543
58 59 60	1055	

2		
3 4 5	1056	Golding, J.F., & Stott, J.R.R. (1997). Comparison of the effects of a selective muscarinic
5 6 7	1057	receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and
, 8 9	1058	heart rate. British Journal of Clinical Pharmacology, 43, 633-637.
10 11 12 13	1059	
14	1060	Gonsalves, S., Watson, J., & Ashton, C. (1996). Broad spectrum antiemetic effects of CP-
15 16	1061	122721, a tachykinin NK ₁ receptor antagonist in ferrets. <i>European Journal of Pharmacology,</i>
17 18 19	1062	305, 181-185.
20 21 22	1063	
23 24	1064	Grélot , L. & Bianchi, A.L. (1997). Mutifunctional medullary respiratory neurons. In A.B. Miller,
25 26	1065	A.L. Bianchi and B.P. Bishop (eds.) Neural Control of the Respiratory Muscles (pp. 297304).
27 28	1066	CRC Press, Boca Raton, Florida, USA.
29 30 31	1067	
32 33	1068	Grelot, L., & Miller, A.D. (1997). Neural control of respiratory muscle activation during
34 35	1069	vomiting. In A.B. Miller, A.L. Bianchi and B.P. Bishop (eds.) Neural Control of the Respiratory
36 37	1070	Muscles (pp. 239-248). CRC Press, Boca Raton, Florida, USA.
38 39 40 41	1071	
42	1072	Gupta, R.G., Schafer, C., Romaroson, Y., Sciullo, M.G., & Horn, C.C. (2017). Role of the
43 44 45 46 47 48 49 50	1073	abdominal vagus and hindbrain in inhalational anesthesia-induced vomiting. Autonomic
	1074	Neuroscience: Basic and Clinical, 202, 114-121.
	1075	
51 52	1076	Habib, A.S., Keifer, J.C., Borel, C.O., White, W.D. & Gan, T.J. (2011) A comparison of the
53 54	1077	combination of aprepitant and dexamethasone versus the combination of ondansetron and
55	1078	dexamethasone for the prevention of postoperative nausea and vomiting in patients
56 57		
58	1079	undergoing craniotomy. Anesthesia and Analgesia, 112, 813-818.

1		
2 3 4	1081	Ham, S.Y., Shim, Y.H., Kim, E.H., Son, M.J., Park, W.S., & Lee, J.S. (2016). Aprepitant for
5	1082	antiemesis after laparoscopic gynaecologcial surgery: A randomised controlled trial. European
6 7	1083	Journal of Anesthesiology, 33, 90-95.
8 9 10 11	1084	
12 13	1085	Hay-Kraus, B.L. (2014) Efficacy of orally administered maropitant citrate in preventing vomiting
14 15	1086	associated with hydromorphone administration in dogs. Journal of the American Veterinary
16 17	1087	Medicine Association, 15, 1164-1169.
18 19 20	1088	
21	1089	He, M., Xu, R., Liu, M., Zhang, Y., Yi, F., Wei, Y., Liu, Q., & Zhang, W. (2021). Use of
22 23	1090	dexamethasone and a 5-HT3 receptor antagonist with or without aprepitant to prevent
24 25	1091	chemotherapy-induced nausea and vomiting among patients with lung cancer who are treated
26 27	1092	with platinum-based chemotherapy: a systematic review and meta-analysis of randomized
28 29	1093	controlled trials. Annals of Palliative Medicine, 10, 4308-4318.
30 31 32	1094	
33 34	1095	Hesketh, P.J., Van Belle, S., Aapro, M., Tattersall, F.D., Naylor, R.J., Hargreaves, R., Carides,
35	1096	A.D., Evans, J.K., & Horgan, K.J. (2003). Differential involvement of neurotransmitters
36 37	1097	through the time course of cisplatin-induced emesis revealed by therapy with specific
38 39	1098	receptor antagonists. European Journal of Cancer, 39, 1074-1080.
40 41 42	1099	
43 44	1100	Hietala, J., Nyman, M.J., Eskola,O., Laakso, A., Grönroos, T., Oikonen,V., Bergman, J.,
45	1101	Haaparanta, M., Forsback, S., Matjamåki, P., Lehikonen, P., Goldberg, M., Burns, D., Hamill,
46 47	1102	T., Eng, W-S., Coimbra, A., Hargreaves, R.,& Solin, O. (2005). Visualization and quantification
48 49	1103	of neurokinin-1 (NK1) receptors in the huma brain. <i>Molecular Imaging Biology</i> , 7, 262-272.
50 51 52	1104	
53 54	1105	Higa, G.M., Auber, M.L., Altahoa, R., Piktel, D., Kurian, S., Hobbs, G., & Landreth, K. (2006). 5-
55	1106	hydroxyindoleacetic acid and substance P profiles in patients receiving emetogenic
56 57 58	1107	chemotherapy. Journal of Oncology Pharmacy Practice, 12, 201-209.
59 60	1108	

3 4	1109	Higa, G.M., Auber, M.L., & Hobbs, G. (2012). Identification of a novel marker associated with
5 6	1110	risk for delayed chemotherapy-induced vomiting. <i>Supportive Care in Cancer</i> , 20, 2803-2809.
7 8	1111	
8 9	1111	
10 11	1112	Holbrook, J.D., Gill, C.H., Zebda, N., Spencer, J.P., Leyland, R., Rance, K.H., Trinh, H., Balmer,
12 13	1113	G., Kelly, F.M., Yusaf, S.P., Courtney, N., Luck, J., Rhodes, A., Modha, S., Moore, S.E., Sanger,
14 15	1114	G.J., & Gunthorpe, M. (2009). Characterization of 5-HT3c, 5-HT3d and 5-HT3e receptor
15 16 17	1115	subunits: evolution, distribution and function. <i>Journal of Neurochemistry</i> , 108, 384-396.
18 19 20	1116	
21	1117	Hoppe, J.M., Frick, A., Åhs, F., Linnman, C., Appel, L., Jonasson, M., Lubberink, M.,
22 23	1118	Långstrom, B., Frans, Ö., von Knorring, L., Fredrikson, M., & Furmark, T. (2018). Association
24 25	1119	between amygdala neurokinin-1 receptor availability and anxiety-related personality traits.
26 27	1120	Translational Psychiatry, 8, 168.
28 29 30	1121	
31	1122	Horn, C.C., Ardell, J.L., & Fisher, L.E. (2019). Electroceutical targeting of the autonomic
32 33	1123	nervous system. Physiology, 34, 150-162.
34 35 36	1124	
37 38	1125	Horn, C.C., Meyers, K., Pak, D., Nagy, A., Apfel, C.C., & Williams, B.A. (2012). Post-anesthesia
39 40	1126	vomiting: impact of isoflurane and morphine on ferrets and musk shrews. Physiology &
41 42	1127	Behaviour, 106, 562-568.
43 44	1128	
45 46 47	1129	Horn, C.C. (2014). Measuring the nausea-to-emesis continuum in non-human animals:
47 48 49	1130	refocusing on gastrointestinal vagal signaling. Experimental Brain Research, 232, 2471-2481.
50 51	1131	
52 53	1132	Horn, C.C., Kimball, B.A., Wang, H. , Kaus, J. Dienel, S., Nagy, A., Gathright, G.R., Yates, B.J., &
54 55	1133	Andrews, P.L.R. (2013). Why can't rodents vomit? A comparative behavioral, anatomical,
56 57	1134	and physiological study. PloS One, 8, e60537.
58 59 60	1135	

1		от- То
2 3 4	1136	Horn, C.C., Wallisch, W.J., Homanics, G.E., & Williams, J.P. (2014). Pathophysiology and
5	1137	neurochemical mechanism of postoperative nausea and vomiting. European Journal of
6 7 8	1138	Pharmacology, 722, 55-66.
9 10	1139	
11 12 13	1140	Ingrosso, M.R., Camilleri, M., Tack, J., Ianiro, G., Black, C.J., & Ford, A.C. (2023) Efficacy and
14 15	1141	safety of drugs for gastroparesis: Systematic review and network meta-analysis.
16 17 19	1142	Gastroenterology, 164, 642-654.
18 19 20 21	1143	
21 22	1144	Jacob, D., Busciglio, I., Burton, D., Halawi, H., Oduyebo, I., Rhoten, D., Ryks, M., Harmsen, W.S.,
23 24 25 26 27 28 29 30 31 32	1145	& Camilleri, M. (2017). Effects of NK ₁ receptors on gastric motor functions and satiation in
	1146	healthy humans: results from a controlled trial with the NK $_1$ antagonist aprepitant. American
	1147	Journal of Physiology: Gastrointestinal and Liver Physiology, 313, G505–G510.
	1148	
33	1149	Jarcho, J.M., Feier, N.A., Bert, A., Labus, J.A., Lee, M., Stains, J., Ebrat, B., Groman, S.M.,
34 35	1150	Tillisch, K., Brody, A.L., London, E.D., Mandelkern, M.A. & Mayer, E.A. (2013). Diminsihed
36 37 38 39 40 41 42 43	1151	neurokinin-1 receptor availability in patients with two forms of chronic visceral pain. Pain,
	1152	154, 987-996.
	1153	
44	1154	Johnson, R.A. (2014). Maropitant prevented vomiting but not gastroesophageal reflux in
45 46 47 48 49	1155	anesthetized dogs premedicated with acepromazine-hydromorphone. Veterinary Anesthesia
	1156	and Analgesia, 41, 406-410.
50 51	1157	
52 53	1158	Jordan, K., Warr, D.G., Hinke, A., Sun, L., & Hesketh, P.J. (2016). Defining the efficacy of
54	1159	neurokinin-1 receptor antagonists in controlling chemotherapy -induced nausea and vomiting
55 56 57	1160	in different emetogenic settings- a meta- analysis. Supportive Care in Cancer, 24, 1941-1954.
58 59 60	1161	

Kan, K.K.W., Jones, R.L., Ngan, M-P., Rudd, J.A., & Wai. M-K. (2003). Action of prostanoids on
the emetic reflex of *Suncus murinus* (the house musk shrew). *European Journal of Pharmacology*, 477, 247-251.
Kan, K.K.W., Rudd, J.A. & Wai, M.K. (2006). Differential action of anti-emetic drugs on

defecation and emesis induced by prostaglandin E2 in the ferret. *European Journal of Pharmacology*, 544, 153-159.

 Kanda, T., Toda, C., Morimoto, H., Shimizu, Y., Otoi, T., Furumoto, K., Okamura, Y., & Iwata, E.
(2020). Anti-emetic effect of oral maropitant treatment before the administration of
brimonidine ophthalmic solution in healthy cats. *Journal of Feline Medicine and Surgery*,
22,557-563.

Kantyka, M.E., Meira, C., Bettschart-Wolfensberger, R., Hartnack, S., & Kutter, A.P.N. (2020).
 Prospective, controlled, blinded, randomized crossover trial evaluating the effect of
 maropitant versus ondansetron on inhibiting tranexamic acid-evoked emesis. *Journal of Veterinary Emergency Critical Care*, 30, 436-441.

41 1179

Keller, M., Montgomery, S., Ball, W., Morrison, M., Snavely, D., Liu, G., Hargreaves, R.,
Hietala, J., Lines, C., Beebe, K., & Reines, S. (2006). Lack of efficacy of the substance P
(neurokinin receptor) antagonist aprepitant in the treatment of major depressive disorder. *Biological Psychiatry*, 59, 216-223.

51 <u>1184</u>

Kenward, H., Elliott, J., Lee, T., & Pelligrand, L. (2017). Anti-nausea effects and
 pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin
 model of nausea and vomiting in the dog: a blinded crossover study. *BMC Veterinary Research*, 13, 244.

1		50
2 3 4 5 6	1189	
	1190	Khanna, L., Zheng, T., Atieh, J., Torres, M., Busciglio, I., Carlin, J.L., Xiao, M., Harmsen, W.S., &
7 8	1191	Camilleri, M. (2022). Clinical trial: a single-centre, randomised, controlled trial of tradipitant
9 10	1192	on satiation, gastric functions, and serum drug levels in healthy volunteers. Alimentary
10 11 12	1193	Pharmacology and Therapeutics, 56, 224–30.
 13 14 15 16 17 18 19 20 21 22 23 24 	1194	
	1195	Koch, K.L. (2014). Gastric dysrhythmias: a potential objective measure of nausea. Exp Brain
	1196	Res 232: 2553–2561.
	1197	
24 25	1198	Koga, T. & Fukuda, H. (1992). Neurons in the nucleus of the solitary tract mediating inputs
26 27	1199	from emetic vagal afferents and the area postrema to the pattern generator for the emetic
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	1200	act in dogs. Neuroscience Research, 14, 166-179.
	1201	
	1202	Koh, R.B., Isaza, N., Xie, H., Cooke, K., & Robertson, S.A. (2014). Effects of maropitant,
	1203	acepromazine, and electroacupuncture on vomiting associated with administration of
	1204	morphine in dogs. Journal of the American Veterinary Association, 244, 820-829.
	1205	
43	1206	Kranke , P., Thompson, J.P., Dalby, P.L., Eberhart, L.H., Novikova, E., Johnson, B.M., Russ, S.F.,
44 45	1207	Noble, R., & Brigandi, R.A. (2015). Comparison of vestipitant with ondansetron for the
46 47	1208	treatment of breakthrough postoperative nausea and vomiting after failed prophylaxis with
48 49	1209	ondansetron. British Journal of Anaesthesia, 114, 423-429.
50 51 52 53	1210	
54 55	1211	Kretzing, S., Abraham, G., Seiwert, B., Ungemach, F.R., Krügel, U., Teichert, J., & Regenthal, R.
55 56 57	1212	(2011). In vivo assessment of antiemetic drugs and mechanism of lycorine -induced nausea
57 58 59 60	1213	and emesis. Archives of Toxicology, 85, 1565-1573.

1214	
1215	Kris, M.G., Radford, J.E., Pizzo, B.A., Inaninet, R., Hesketh, A., & Hesketh, P.J. (1997). Use of an
1216	NK ₁ receptor antagonist to prevent delayed emesis after cisplatin. Journal of the National
1217	Cancer Institute, 89, 817-818.
1218	
1219	Lackner, M.R. (2014). Motion sickness: more than nausea and vomiting. Experimental Brain
1220	Research, 232, 2493-2510.
1221	
1222	Lang, I.M., Sarna, S.K., & Condon, R.E. (1986). Gastrointestinal motor correlates of vomiting
1223	in the dog: Quantification and characterization as an independent phenomenon.
1224	Gastroenterology, 90, 40-47.
1225	
1226	Lang, I.M. (1990). Digestive tract motor correlates of vomiting and nausea. Canadian Journal
1227	of Physiology and Pharmacology, 68, 242-253.
1228	
1229	Lau, A.H.Y., Kan, K.K.W., Lai, H.W., Ngan, M-P., Rudd, J.A., Wai, M-K., & Yew, D.T.W. (2005).
1230	Action of ondansetron and CP-99, 994 to modify behavior and antagonize cisplatin-induced
1231	emesis in the ferret. European Journal of Pharmacology, 506, 241-247.
1232	
1233	Lavin, S, T., Southwell, B.R., Murphy, R., Jenkinson, K.M., & Furness J.B. (1998) Activation of
1234	neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by
1235	substance P. Histochemistry and Cell Biology, 110, 263–271.
1236	
	1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1227 1228 1229 1230 1231 1231 1232

-	2
5	,
-	~

1		52
2 3 4	1237	Leslie, R.A. (1985). Neuroactive substances in the dorsal vagal complex of the medulla
5	1238	oblongata: Nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the
6 7 8	1239	vagus. Neurochemistry International, 7, 191-211.
9 10	1240	
11 12	1241	Lindstrom, P.A., & Brizzee, K.R. (1962). Relief of intractable vomiting from surgical lesion in
13 14	1242	the area postrema. Journal of Neurosurgery, 19, 228-236.
15 16 17	1243	
18 19	1244	Liu, J.Y.H & Rudd, J.A. (2023). Predicting drug adverse effects using a new Gastro-Intestinal
20 21	1245	Pacemaker Activity Drug Database (GIPADD). <i>Scientific Reports</i> , 13, Article number: 6935.
22 23 24	1246	
25 26	1247	Liu, M., Zhang, H., Du, B-X., Xu, F-Y., Zou, Z., Sui, B., & Shi, X-Y. (2015). Neurokinin-1 receptor
27 28	1248	antagonists in preventing postoperative nausea and vomiting. A systematic review and meta
29 30 31	1249	-analysis. <i>Medicine</i> , 94, 1-10.
32 33	1250	
34 35	1251	Lorenzutti, A.M., Martin-Flores, M., Literio, N.J., Himelfarb, M.A., Invaldi, S.H., & Zarazaga,
36 37	1252	M.P. (2016). Evaluation of the antiemetic efficacy of maropitant in dogs medicated with
38 39 40	1253	morphine and acepromazine. Veterinary Anesthesia and Analgesia, 43, 195-198.
41 42 43	1254	
44 45	1255	Lorenzutti, A.M., Martin-Flores, M., Literio, N.J., Himelfarb, M.A., Invaldi, S.H., & Zarazaga,
46 47	1256	M.P. (2017). A comparison between maropitant and metoclopramide for the prevention of
47 48 49	1257	morphine-induced nausea and vomiting in dogs. Canadian Veterinary Journal,58, 35-38.
50 51 52	1258	
53 54	1259	Lucot, J.B., Obach, R.S., McClean, S., & Watson, J.W. (1997). The effect of CP-99994 on the
55 56 57	1260	responses to provocative motion in the cat. British Journal of Pharmacology, 120, 116-120.
57 58 59 60	1261	

2 3	1262	Machida, T., Takano, Y. lizuka, K., Machida, M., & Hirafuji, M. (2020). Methotrexate causes
4 5	1263	acute hyperplasia of enterochromaffin cells containing substance P in the intestinal mucosa
6 7 8	1264	of rats. Journal of Pharmacological Science, 133,190–193.
9 10 11	1265	
12 13	1266	Madsen, J.L., & Fuglsang, S. (2008). A randomized, placebo-controlled, crossover, double
14 15	1267	blind trial of the NK1 receptor antagonist aprepitant on gastrointestinal motor functions in
16 17	1268	healthy humans. Alimentary Pharmacology and Therapeutics, 27, 609-615.
18 19 20	1269	
21 22	1270	Magendie, F. (1813). Mémoire sur le vomissement, lu à la première classe de l'Institut de
23 24	1271	France. (Ed.1813). Cez Crochard, Libraire, Paris, France. pp48.
25 26	1272	
27 28	1273	Makwana, R., Crawley, E., Straface, M., Palmer, A., Gharibans, A., Deavlia, K., Loy, J., O'Grady,
29 30	1274	G., Andrews, P.L.R., & Sanger, G.J. (2022). Synergistic augmentation of rhythmic myogenic
31 32	1275	contractions of human stomach by [Arg ⁸]-vasopressin and adrenaline: Implications for the
33 34 35	1276	induction of nausea. <i>British Journal of Pharmacology</i> , 179, 5305-5322.
36 37	1277	
38 39	1278	Martin-Flores, M., Sakai, D.M., Learn, M.M., Mastrocco, A., Campoy, L., Boesch, J.M., &
40 41	1279	Gleed, R.D. (2016). Effect of maropitant in cats receiving dexamethasone and morphine.
42 43	1280	Journal of the American Veterinary Medicine Association, 248, 1257-1261.
44 45 46	1281	
47 48	1282	Matsumoto, S., Kawasaki, Y., Mikami, M., Nakamoto, M., Tokuyasu, H., Kometani, Y.,
49	1283	Chikumi, H., Hitsuda, Y., Matsumoto, Y., & Sasaki, T. (1999). [Relationship between cancer
50 51	1284	chemotherapeutic drug-induced delayed emesis and plasma levels of substance P in two
52 53	1285	patients with small cell lung cancer]. Gan To Kagaku Ryoho, 26, 535-538.
54 55 56 57 58 59 60	1286	

1 2		
2 3 4	1287	Maubach, K.A., & Jones, R.S. (1997). Electrophysiological characterisation of tachykinin
5	1288	receptors in the rat nucleus of the solitary tract and dorsal motor nucleus of the vagus in
6 7	1289	vitro. British Journal of Pharmacology, 122, 1151-1159.
8 9 10 11 12 13 14	1290	
12	1291	McCoull, D., Veale, E.L., Walsh, Y., Byrom, L., Avkiran, T., Large, J.M., Vaitone, E., Gaffey, F.,
14	1292	Jerman, J., Mathie, A., & Wright, P.D. (2022). Aprepitant is a novel, selective activator of the
15 16	1293	K2P channel TRAAK. Biochemical and Biophysics Research Communications, 588, 41-46.
17 18 19 20	1294	
21 22	1295	Megens, A.A.H.P., Ashton, D., Vermeire, J.C., Vermote, P.C., Hens, K.A., Hillen, L.C., Fransen,
23 24	1296	J.F., Mahieu, M., Heylen, L., Leysen, J.E., Jurzak, M.R., & Janssens, F. (2002). Pharmacological
24 25 26 27 28 29 30 31	1297	profile of (2r-trans)-4-[1-{3,5-bis(trifluromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-n-
	1298	(2,6-dimethylphenyl)-1-acetamide (s)-hydroxybutanedioate (R116301), an orally and
	1299	centrally active neurokinin-a receptor antagonist. Journal of Pharmacology and
	1300	Experimental Therapeutics, 302, 696-709.
32 33	1301	
34 35	1302	Minami, M., Endo, T., Yokota, H., Ogawa, T., Nemoto, M., Hamaue, N. & Andrews, P.L.R.,
36 37 38 39	1303	(2001). Effects of CP-99, 994, a tachykinin NK1 receptor antagonist, on abdominal afferent
	1304	vagal activity in ferrets: evidence for involvement of NK ₁ and 5-HT ₃ receptors. <i>European</i>
40 41	1305	Journal of Pharmacology, 428, 215-220.
42 43 44	1306	
45 46	1307	Miner, W.D., & Sanger, G.J. (1986). Inhibition of cisplatin-induced vomiting by selective 5-
47	1308	hydroxytryptamine M-receptor antagonism. British Journal of Pharmacology, 88, 497-499
48 49 50	1309	
51 52	1310	Minton, N., Swift, R., Lawlor, C., Mant, T., & Henry, J. (1993). Ipecacuanha-induced emesis: A
53 54	1311	human model for testing antiemetic drug activity. Clinical Pharmacology and Therapy,54,53-
55 56	1312	57.
57 58 59 60	1313	

1		
2 3 4	1314	Money, K.E., & Cheung, B.S. (1983). Another function of the inner ear: facilitation of the
5	1315	emetic response to poisons. Aviation Space and Environmental Medicine, 54, 208–211.
6 7 8 9	1316	
10	1317	Moon, H.Y., Baek, C.W., Choi, G.J., Shin, H.Y., Kang, S.H., Jung, Y.H., Woo, Y.C., Kim, J.Y., &
11 12	1318	Park, S.G. (2014). Palonosetron and aprepitant for the prevention of postoperative nausea
13 14	1319	and vomiting in patients indicated for laparascopic gynaecological surgery: a double-blind
15 16	1320	randomised trial. BMC Anesthesiology, 14, 68.
17 18 19	1321	
20 21	1322	Murakami, C., Kakuta, N., Kume, K., Sakai, Y., Kasai, A., Oyama, T., Tanaka, K., & Tsutsumi,
22 23	1323	Y.M. (2017). A comparsion of fosaprepitant and ondansetron for preventing postoperative
24 25	1324	nausea and vomiting in moderate to high risk patients: A retrospective database analysis.
26	1325	BioMed Research International, 217, ID 5703528.
27 28 29 30	1326	
31	1327	Napadow, V., Sheehan, J.D., LaCount, L.T., Park,K., Kaptchuk, T.J., Rosen, B.R., & Kuo, B.,
32 33	1328	(2012). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral
34 35	1329	Cortex, 23, 806-813
36 37 38	1330	
39 40	1331	Navari, R.M., Reinhardt, R.R., Gralla, R.J., Kris, M.G., Hesketh, P.J., Khojasteh, A., Kindler,H.,
41 42	1332	Grote, T.H., Pendergrass, K., Grunberg, S.M., Carides, A.D., & Gertz, B.J. for the L-754,030
43	1333	antiemetic trials group.(1999). Reduction of cisplatin -induced emesis by a selective
44 45	1334	neurokinin -1 receptor antagonist. L-754,030 Antiemetic trials group
46 47	1335	New England Journal of Medicine, 340, 190-195.
48 49 50	1336	
51 52	1337	Newton, B.W., Maley, B., & Traurig, H. (1985). The distribution of substance P, enkephalin,
53 54	1338	and serotonin immunoreactivities in the area postrema of the rat and cat. Journal of
55 56	1339	Comparative Neurology, 234, 87-104.
57 58 59 60	1340	

1 2		
- 3 4 5 6	1341	Obara, Y., Machida, T., Takano, Y., Shiga, S., Suzuki, A., Hamaue, N., Iizuka, K., & Hirafuji, M.
	1342	(2018). Cisplatin increases the number of enterochromaffin cells containing substance P in rat
0 7 8	1343	Intestine. Naunyn Schmiedeberg's Archives Pharmacology, 391, 847–858.
9 10	1344	
11 12	1345	Oman, C.M. (2012). Are evolutionary hypotheses for motion sickness "just so stories"?
13 14	1346	Journal of Vestibular Research, 22, 117-127.
15 16 17 18 19	1347	
	1348	Onishi, T., Mori, T., Yanagihara, M., Furukawa, N., & Fukuda, H. (2007). Similarities of the
20 21	1349	neuronal circuit for the induction of fictive vomiting between ferrets and dogs. Autonomic
22 23	1350	Neuroscience, 136, 20-30.
24 25 26	1351	
27 28	1352	O'Grady, G., Gharibans, A.A., Du, P., & Huizinga, J.D. (2021). The gastric conduction system in
20 29 30	1353	health and disease: a translational review. American Journal of Physiology, 321, G527–42.
31 32 33	1354	
34 35	1355	Ottaviani, M.M., Wright, L., Dawood, T., & Macefield, V.G. (2020). In vivo recordings from the
36 37 38 39 40 41 42 43	1356	human vagus nerve using ultrasound guided microneurography. Journal of Physiology, 598,
	1357	3569-3576.
	1358	
44	1359	Park, H.S., Won, H.S., An, H.J., Cho, S.S., Kim, H.H., Sun, D.S., Ko, Y.H., & Shim, B.Y. (2020).
45 46	1360	Elevated serum substance P level as a predictive marker for moderately emetogenic
47 48	1361	chemotherapy-induced nausea and vomiting: A prospective cohort study. Cancer Medicine,
49 50	1362	10, 1057-1065
51 52 53 54	1363	
55 56	1364	Pasricha, P.J., Yates, K.P., Sarosiek, I., McCalllum, R.W., Abell, T.L., Koch, K.L., Nguyen, L.A.B.,
57	1365	Snape, W.J., Hasler, W.L., Clarke, J.O., Dhalla, S., Stein, E.M., Leee, L.A., Miriel, L.A., Van Natta,
58 59 60	1366	M.L., Grover, M., Farrugia, G., Tonascia, J., Hamilton, F.A., & Parkman, H.P., for the NIDDK

Gastroparesis Clinical Research Consortium (GpCRC). (2018). Aprepitant has mixed effects on nausea and reduces other symptoms in patients with gastroparesis and related disorders. Gastroenterology, 154, 65-76. Patel, B., Downie, J., Baylis, J., Stephenson, A., & Bluebond-Langer, M. (2021). Long -term daily administration of aprepitant for the management of intractable nausea and vomiting in children with life-limiting conditions: a case series. Journal of Pain and Symptom Management, 62, e225-e231. Percie du Sert, N., Rudd, J.A., Moss, R., & Andrews, P.L.R. (2009). The delayed phase of cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral innervation in the ferret. Neuroscience Letters, 465, 16-20. Poli-Bigelli, S., Rodrigues-Pereira, J., Carides, A.D., Julie Ma, G., Eldridge, K., Hipple, A., Evans, J.K., Horgan, K.J., & Lawson, F. (2003). Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in Latin America. Cancer, 97, 3090-3098. Polymeropoulos, V. M., Czeisler, M.É., Gibson, M.M., Anderson, A.A., Miglo, J., G, J., Xiao, C., Polymeropoulos, C.M., Birznieks, G., & Polymeropoulos, M.H. (2020). Tradipitant in the treatment of motion sickness: A randomized, double blind, placebo-controlled study. Frontiers in Neurology, 11, 563373. Proctor, J.D., Chremos, A.N., Evans, E.F., & Wasserman, A.J. (1978). An apomorphine-induced vomiting model for antiemetic studies. *Journal of Clinical Pharmacology*, 12, 95-99.

1 2		
2 3 4	1394	Qiu, T., Men, P., Xu, X., Zhai, S., & Cui, X. (2020), Antiemetic regimen with aprepitant in the
5	1395	prevention of chemotherapy-induced nausea and vomiting. An updated systematic review
6 7	1396	and meta-analysis. Medicine 99: e21559
8 9 10 11	1397	
12 13	1398	Ramadi, K.B., Srinivasan, S., & Traverso, G. (2020). Electroceuticals in the gastrointestinal
14 15 16	1399	tract. Trends in Pharmacological Science, 41, 960-976.
17 18 19	1400	
20 21	1401	Rapoport, B.L., Chasen, M.R., Gridelli, C., Urban, L., Modiano, M.R., Schnadig, I.D., Poma, A.,
22	1402	Arora, S., Kansra, V., Schwartzberg, L.S., & Navari, R.M. (2015). Safety and efficacy of
23 24	1403	rolapitant for prevention of chemotherapy-induced nausea and vomiting after
25 26	1404	administration of cisplatin-based highly emetogenic chemotherapy in patients with cancer:
27 28	1405	two randomised, active -controlled, double blind, phase 3 trials. Lancet Oncology, 16, 1079-
29 30	1406	1089.
31 32 33	1407	
34	1408	Ratti, E., Bettica, P., Alexander, R., Archer, G., Carpenter, D., Evoniuk, G., Gomeni, R.,
35 36	1409	Lawson, E., Lopez, M., Milns, H., Rabiner, E.A., Trist, D., Trower, M., Zamuner, S. Krishnan,
37 38	1410	R., & Fava, M. (2013). Full central neurokinin-1 receptor blockade is required for efficacy in
39 40	1411	depression: evidence from orvepitant clinical studies. <i>Journal of Psychopharmacology</i> , 27,
41 42	1412	424-434.
43 44 45	1413	
46 47	1414	Rau, S.E., Barber, L.G., & Burgess, K.E. (2010). Efficacy of maropitant in the prevention of
48	1415	delayed vomiting associated with administration of doxorubicin in dogs. Journal of
49 50	1416	Veterinary Internal Medicine, 24, 1452-1457.
51 52 53	1417	
54 55	1418	Ray, A.P., & Darmani, N.A. (2007). A histologically derived stereotaxic atlas and substance P
56 57	1419	immunohistochemistry in the brain of the least shrew (Cryptotis parva) support its role as a
58	1420	model organism for behavioural and pharmacological research. Brain Research, 1156, 99-
59 60	1421	111.

1 2		
2 3 4	1422	
5	1 4 2 2	Daid K. Saibarras D.C. Cartz D.L. Dainbardt D.D. Liv, C. Caldina J.E. & Statt J.D.D.
6 7 8	1423	Reid, K., Sciberras, D.G., Gertz, B.J., Reinhardt, R.R., Liu, G., Golding, J.F., & Stott, J.R.R.
8 9	1424	(1998). Comparison of a neurokinin-1 antagonist L758,298, and scopolamine with placebo in
10	1425	the prevention of motion-induced nausea in man. British Journal of Clinical Pharmacology,
11 12	1426	45,282P.
13 14 15	1427	
16 17	1428	Reid, K., Palmer, J.L., Wright, R.J., Clemes, S.A., Troakes, C., Somal, H.S., House, F., & Stott,
18	1429	J.R.R. (2000). Comparison of the neurokinin-1 antagonist GR205171, alone and in
19 20 21 22 22	1430	combination with the 5-HT3 antagonist ondansetron, hyoscine and placebo in the
	1431	prevention of motion-induced nausea in man. British Journal of Clinical Pharmacology, 50,
23 24	1432	61-64.
25 26 27	1433	
28 29	1434	
30 31	1435	Revicki, D.A., Rentz, A.M., Dubois, D., Kahrilas, P.,Stanghellini, V., Talley N.J,. & Tack, J. (2004)
32 33 34 35 36 37 38 39 40	1436	Gastroparesis Cardinal Symptom Index (GCSI): Development and validation of a patient
	1437	reported assessment of severity of gastroparesis symptoms. Quality of Life Research, 13, 833-
	1438	844.
	1439	
41 42	1440	Rezzani, R., Franco, C., Franceschetti, L., Gianó, M., & Favero, G. (2022). A focus on
43 44	1441	enterochromaffin cells among the enteroendocrine cells: Localization, morphology, and
45 46 47	1442	role. International Journal of Molecular Science, 23, 3758.
48 49	1443	
50 51	1444	Richards, C. A., & Andrews, P. L. R. (2004). Food refusal: A sign of nausea? Journal of
52 53	1445	Pediatric Gastroenterology and Nutrition, 38, 229-230.
54 55 56 57 58 59 60	1446	

1 2			50
2 3 4 5 6 7 8	1447	Rikard-Bell, G.C., Törk, I., Sullivan, C., & Scheibner, T. (1980). Distribution of substance P -	
	1448	like immunoreactive fibres and terminals in the medulla oblongata of the human infant.	
	1449	Neuroscience, 34, 133-148.	
8 9 10 11	1450		
12	1451	Robichaud, A., Tattersall, F.D., Choudry, I., & Rodger, I.W. (1999). Emesis induced by	
13 14	1452	inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret.	
15 16	1453	Neuropharmacol 38: 289 297.	
17 18 19 20 21 22 23	1454		
	1455	Roila, F., Ruggeri, B., Ballatori, E., Del Favero, A., & Tonato, M. (2014). Aprepitant versus	
22 23	1456	dexamethasone for preventing chemotherapy-induced delayed emesis in patients with	
24 25	1457	breast cancer: a randomized double-blind study. Journal of Clinical Oncology, 32, 101-106.	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1458		
	1459	Roila, F., Ruggeri, B., Ballatori, E., Fatigoni, S., Caserta, C., Licitra, L., Mirablile, A., Ionta, M.T	<i>,</i>
	1460	Massidda, B., Cavanna, L., Pallaino, M.A., Tocci, A., Fava, S., Colantonio, I., Angelelli, L.,	
	1461	Ciuffreda, L., Fasola, G., & Zerilli, F. (2015). Aprepitant versus metoclopramide, both	
	1462	combines with dexamethasone, for the prevention of cisplatin-induced delayed emesis: a	
	1463	randomized, double -blind study. Annals of Oncology, 26, 1248-1253.	
	1464		
	1465	Rojas, C., Raje, M., Tsukamoto, T., & Slusher, B.S. (2014). Molecular mechanisms of 5-HT $_3$	
42 43	1466	and tachykinin NK ₁ receptor antagonists in prevention of emesis. European Journal of	
44 45	1467	Pharmacology, 722, 26-37.	
46 47 48	1468		
49 50	1469	Rudd, J.A., Ngan, M.P., & Wai, M.K. (1999). Inhibition of emesis by tachykinin NK1 receptor	
51	1470	antagonists in Suncus murinus (house musk shrew). European Journal of Pharmacology, 360	6,
52 53	1471	243-252.	
54 55 57 58 59 60	1472		

1473	Rudd, J.A., Ngan, M.P., Lu, Z., Higgins, G.A., Giuliano, C., Lovati, E., & Pietra, C. (2016). Profile
1474	of antiemetic activity of netupitant alone or in combination with palonosetron and
1475	dexamethasone in ferrets and Suncus murinus (House Musk Shrew). Frontiers in
1476	Pharmacology, 7, 263.
1477	
1478	Ruffle, J.K., Patel, A., Giampietro, V., Howard, M.A., Sanger, G.J., Andrews, P.L.R., Williams,
1479	S.C.R., Aziz, Q., & Farmer, A.D.(2019). Functional brain networks and neuroanatomy
1480	underpinning nausea severity can predict nausea susceptibility using machine learning.
1481	Journal of Physiology, 597, 1517–1529.
1482	
1483	Rupniak, N.M.J., Tattersall, F.D., Williams, A.R., Rycroft, W., Carloson, E.J., Cascieri, M.A.,
1484	Sadowski, S., Ber, E., Hale, J.J., Mills, S.G., MacCoss, M., Seward, E., Huscroft, I., Owen, S.,
1485	Swain, C.J., Hill, R.G., & Hargreaves, R.J. (1997). In vitro and in vivo predictors of the anti-
1486	emetic activity of tachykinin NK1 receptor antagonists. European Journal of Pharmacology,
1487	326, 201-209.
1488	
1489	Saito, R., Suehiro, Y., Ariumi, H., Migita,K., Hori, N., Hashiguchi, T., Sakai, M., Saeki, M., Takano,
1490	Y., & Kamiya, H-o. (1998). Anti-emetic effects of a novel NK-1 receptor antagonist HSP-117 in
1491	ferrets. Neuroscience Letters, 254, 169-172.
1492	
1493	Saito, H., Yoshizawa, H., Yoshimori, K., Katakami, N., Katsumata, N., Kawahara, M., & Eguchi,
1494	K. (2013). Efficacy and safety of single-dose fosaprepitant in the prevention of chemotherapy-
1495	induced nausea and vomiting in patients receiving high-dose cisplatin: a multicentre,
1496	randomised, double blind, placebo-controlled phase 3 trial. Annals of Oncology, 24, 1067-
1497	1073.
1498	
1499	Sanger, G.J. (2004). Neurokinin NK_1 and NK_3 receptors as targets for drugs to treat
1500	gastrointestinal motility disorders and pain. British Journal of Pharmacology, 141,1303-1312.

1		02
2 3	1501	
4 5	1001	
6 7	1502	Sanger, G.J., & Andrews, P.L.R. (2006). Treatment of nausea and vomiting: Gaps in our
, 8 9	1503	knowledge. Autonomic Neuroscience: Basic and Clinical, 129, 3-16.
9 10		
11 12	1504	
13 14	1505	Sanger, G.J., & Andrews, P.L.R. (2018). A history of drug discovery for treatment of nausea
15	1506	and vomiting and the implications for future research. <i>Frontiers in Pharmacology</i> , 9, 913.
16 17		
18 19	1507	
20 21	1500	Sangar C. L. & Androws P. D. (2022). A proposal for rational drug class terminology.
22	1508	Sanger, G.J., & Andrews, P.L.R. (2022). A proposal for rational drug class terminology: A
23 24	1509	gastrointestinal perspective. British Journal of Pharmacology, 179. 5233-5234.
25 26	1510	
27 28		
29	1511	Sanger, G.J., & Andrews, P.L.R. (2023). An analysis of the pharmacological rationale for
30 31	1512	selecting drugs to inhibit vomiting or increase gastric emptying during treatment of
32 33	1513	gastroparesis. Alimentary Pharmacology and Therapeutics, online ahead of print
34 35 36	1514	
37		
38 39	1515	Sanger, G.J., Holbrook, J.D., & Andrews, P.L.R. (2011). The translational value of rodent
40 41	1516	gastrointestinal functions: a cautionary tale. Trends in Pharmacological Sciences 32: 402-
42 43	1517	409.
44 45	1518	
46 47	1519	Schwartzberg, L. S., Modiano, M.R., Rapoport, B.L., Chasen, M.R., Gridelli, C., Urban, L.,
48	1520	Poma, A., Arora, S., Navari, R.M., & Schnadig, I.D. (2015). Safety and efficacy of rolapitant for
49 50	1521	prevention of chemotherapy-induced nausea and vomiting after administration of
51 52	1522	moderately emetogenic chemotherapy or anthracycline and cyclophosphamide regimens in
53 54	1523	patients with cancer: a randomised, active controlled, double -blind, phase 3 trial. Lancet
55 56	1524	Oncology, 16, 107-1078.
57 58 59 60	1525	

2		
3 4	1526	Sedlacek, H.S., Ramsy, D.S., Boucher, J.F., Eagleson, J.S., Conder, G.A., & Clemence, R.G.
5 6	1527	(2008). Comparative efficacy of maropitant and selected drugs in preventing emesis induced
7	1528	by centrally or peripherally acting emetogens in dogs. Journal of Veterinary Pharmacology
8 9	1529	and Therpaeutics, 31, 533-537.
10 11 12	1530	
13 14	1531	Seifert, R., Alexander, S. (2022). Perspective article: A proposal for rational drug class
15 16	1532	terminology. British Journal of Pharmacology,179, 4311-4314.
17 18 19	1533	
20	1534	Shiroshita , Y., Koga, T., & Fukuda, H. (1997). Capsaicin in the 4 th ventricle abolishes retching
21 22	1535	and transmission of emetic vagal afferents to solitary nucleus neurons. European Journal of
23 24	1536	Pharmacology, 339, 183-192.
25 26 27	1537	
28 29	1538	Shishido, Y., Wakabayashi, H., Koike, H., Ueno, N., Nukui, S., Yamagishi, T., Murata, Y.,
30 31	1539	Naganeo, F., Mizutani, M., Shimida, K., Fujiwara, Y., Sakakibara, A., Suga, O., Kusano, R.,
32	1540	Ueda, S., Kanai, Y., Tsuchiya, M. & Satake, K. (2008). Discovery and stereoselective synthesis
33 34	1541	of the novel isochroman neurokinin-1 receptor antagonist CJ-17,493. Bioorganic Medicinal
35 36 37	1542	Chem 16: 7193-7205.
38 39	1543	
40 41	1544	Sinha, A.C., Singh, P.M., Williams, N.W., Ochroch, E.A., & Goudra, B.G. (2014). Aprepitant's
42 43	1545	prophylactic efficacy in decreasing postoperative nausea and vomiting in morbidly obese
44 45	1546	patients undergoing bariatric surgery. <i>Obesity Surgery</i> , 24, 225-231.
46 47	1547	
48 49	1548	Singla, N.K., Singla, S.K., Chung, F., Kutsogiannis, D.J., Blackburn, L., Lane, S.R., Levin, J.,
50 51	1549	Johnson, B. & Pergolizzi, J.V. (2010). Phase II study to evaluate the safety and efficacy of the
52 53	1550	oral neurokinin-1 receptor antagonist casopitant (GW679769) administered with
54	1551	ondansetron for the prevention of postoperative and post discharge nausea and vomiting in
55 56	1552	high-risk patients. Anesthesiology, 113, 74-82.
57 58 59 60	1553	

0	British Journal of Clinical Pharmacology
	64
Smith, J.A., F	larle, A., Dockry, R., Holt, K., Russell, P., Molassiotis, A., Yorke, J., Robinson, R.,
Birrell, M.A.,	Belvisi, M.G., & Blackhall, F. (2021). Aprepitant for cough in lung cancer: A
randomised	placebo-controlled trial and mechanistic insights. American Journal of
Respiratory C	Critical Care Medicine, 203, 737-745.
Soergel, D.G.	, Subach, R.A., Burnham, N., Lark, M.W., James, I.E., Sadler, B.M., Skobieranda,
F., Violoin, J.	D., & Webster, L.R. (2014). Biased agonism of the μ -opioid receptor by TRV130
increases and	algesia and reduces on-target adverse effects versus morphine: A randomized,
double blind	, placebo-controlled, crossover study in healthy volunteers. Pain, 155, 1829-
1835.	

24 25 26 27 28	1564			
	1565	Soto, E., & Vega, R. (2010). Neuropharmacology of vestibular system disorders. Current		
29	1566	Neuropharmacology 9, 26,40		

Neuropharmacology, 8, 26-40.

Steinbach, J.R., MacGuire, J., Chang, S., Dierks, E., & Roble, G.S. (2018). Assessment of pre-operative maropitant citrate use in macaque (*Macaca fascicularis & Macaca mulatta*) neurosurgical procedures. Journal of Medical Primatology, 47, 178-184.

Stern, R.M., Koch, K.L., & Andrews, P.L.R. (2011). Nausea: Mechanisms and Management.

Oxford University Press, New York, USA. pp. 462.

Sugiyama, Y., Suzuki, T., DeStefino, V.J., & Yates, B.J. (2011). Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes. American Journal of Physiology Regulatory Integrative

Comparative Physiology, 301, R 1380-R1390.

Sun, X., Xu, L., Guo, F., Luo, W., Gao, S., & Luan, X. (2017). Neurokinin-1 receptor blocker CP-99994 improved emesis induced by cisplatin via regulating the activity of gastric distension responsive neurons in the dorsal motor nucleus of vagus and enhancing gastric motility in rats. Neurogastroenterology and Motility, 29, e13096.

Svensson, E., Apergis-Schoute, J., Burnstock, G., Nusbaum, M.P., Parker, D., & Schlöth. (2019). General principles of neuronal co-transmission: Insights from multiple model systems. Frontiers in Neural Circuits, 12, 117.

Takahashi, T., Nakamura, Y., Tsuya, A., Murakami, H, Endo, M. & Yamamoto, N. (2011). Pharmacokinetics of aprepitant and dexamethasone after administration of chemotherapeutic agents and effects of plasma substance P concentration on chemotherapy-induced nausea and vomiting in Japanese cancer patients. Cancer Chemotherapy and *Pharmacology*, 68, 653-659.

Tattersall, F.D., Rycroft, W., Marmont, N., Cascieri, M., Hill, R.G., & Hargreaves, R.J. (1995). Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus murinus) by the neurokinin1 (NK1) receptor antagonist CP-99, 994. Neuropharmacology, 34, 1697-1699.

Tattersall, F.D., Rycroft, W., Francis, B., Pearce, D., Merchant, K., MacLeod, A.M., Ladduwahetty, T., Keown, L., Swain, C., Baker, R., Cascieri, M., Ber, E., Metzger, J., MacIntyre, D.E., Hill, R.G. & Hargreaves, R.J. (1996). Tachykinin NK₁ receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets. *Neuropharmacology*, 35, 1121-1129.

Tattersall, F.D., Rycroft, W., Cumberbatch, M., Mason, G., Tye, S., Williamson, D.J., Hale, J.J., Mills, S.G., Finke, P.E., MacCoss, M., Sadowski, S., Ber, E., Cascieri, M., Hill, R.G., MacIntyre,

2		
3 4	1608	D.E., & Hargreaves, R.J. (2000). The novel NK ₁ receptor antagonist MK-0869 (L-754,030) and
5 6	1609	its water soluble phosphoryl prodrug, L-758,298, inhibit acute and delayed cisplatin-induced
7	1610	emesis in ferrets. Neuropharmacology, 39, 652-663
8 9 10	1611	
11 12	1612	Treisman, M. (1977). Motion sickness: an evolutionary hypothesis. Science, 197, 493–495.
13 14 15	1613	
16 17	1614	Tsuchiya, M., Fujiwara, Y., Kanai, Y., Mizutani, M., Shimada, K., Suga, O., Ueda, O., Watson,
17 18 19 20 21 22	1615	J.W. & Nagahia, A. (2002). Anti-emetic activity of the novel nonpeptide tachykinin NK1
	1616	receptor antagonist ezlopitant (CJ-11,974) against acute and delayed cisplatin-induced emesis
	1617	in the ferret. <i>Pharmacology,</i> 66, 144-152.
23 24 25	1618	
26	1619	Upadhay, J., Anderson, J., Schwarz, A. J., Coimbra, A., Baumgartner, R., Pendse, G., George,
27 28 29 30	1620	E., Nutile, L., Wallin, D., Bishop, J., Neni, S., Maier, G., Iyyengar, S., Evelhoch, J.L., Bleakman,
	1621	D., Hargreaves, R., Becerra, L., & Boorsook, D. (2011). Imaging of drugs with and without
31 32	1622	clinical efficacy. Neuropsychopharmacology, 36, 2659-2673.
33 34 35	1623	
36 37	1624	Vail, D.M., Rodabaugh, H.S., Conder, G.A., Boucher, J.F., & Mathur, S. (2007). Efficacy of
38	1625	injectable maropitant (Cerenia) in a randomized clinical trial for prevention and treatment
39 40	1626	of cisplatin-induced emesis in dogs presented as veterinary patients. Veterinary
41 42	1627	Comparative Oncology, 5, 38-46.
43 44 45	1628	
46 47	1629	Vallejo, M.C., Phelps, A.L., Ibinson, J.W., Barnes, L.R., Milord, P.J., Romeo, R.C., Williams,
48 49	1630	B.A., & Sah, N. (2012). Aprepitant plus ondansetron compared with ondansetron alone in
50	1631	reducing postoperative nausea and vomiting in ambulatory patients undergoing plastic
51 52	1632	surgery. Plastic Reconstructive Surgery, 129, 519-526.
53 54 55	1633	
56 57	1634	Vanda (2022). Phase III study of tradipitant in gastroparesis fails to meet prespecified
58 59	1635	primary endpoint. https://www.nasdaq.com/articles/vanda-%3A-phase-iii-study-of-
60	1636	tradipitant-ingastroparesis-fails-to-meet-prespecified-primary. 2022.

1 2		
2 3 4	1637	
5 6	1638	Varangot-Reille, C., Sanger, G.J., Andrews, P.L.R., Herranz-Gomez, A., Suso-Martí, L., de la
7	1639	Nava, J., & Cuenca-Martínez, F. (2023). Neural Networks involved in Nausea in Adult
8 9	1640	Humans: A Systematic Review. Autonomic Neuroscience: Basic and Clinical, 245, 103059
10 11	_0.0	
12 13	1641	
14 15	1642	Warr, D. (2014). Prognostic factors for chemotherapy induced nausea and vomiting.
16 17	1643	European Journal of Pharmacology, 722, 192-196.
18 19 20	1644	
21 21 22	1645	Watson, J.W., Gonsalves, S.F., Fossa, A.A., McLean, S., Seeger, T., Obach, S., & Andrews,
23 24	1646	P.L.R. (1995). The anti-emetic effects of CP-99,994 in the ferret and the dog: Role of NK_1
24 25 26	1647	receptors. British Journal of Pharmacology, 115, 84-94.
27 28 29	1648	
30	1649	Weibel, S., Rücker, G., Eberhart, L.H., Pace, N.L., Hartl, H.M., Jordan, O.L., Mayer, D., Riemer,
31 32 33 34	1650	M., Schaefer, M.S., Raj, D., Backhaus, I., Helf, A., Schlesinger,T., Kienbaum, P., & Kranke, P.
	1651	(2020). Drugs for preventing postoperative nausea and vomiting in adults after general
35 36	1652	anaesthesia: a network meta-analysis. Cochrane Database Systematic Review, 10,
37 38	1653	CD012859.
39 40 41	1654	
42 43	1655	Yalcin, E & Keser, G.O. (2016). Comparative efficacy of metoclopramide, ondansetron and
44	1656	maropitant in preventing parvoviral enteritis-induced emesis in dogs. Journal of Veterinary
45 46	1657	Pharmacology and Therapeutics, 40, 599-603.
47 48 49	1658	
50 51	1659	Yates, B.J., Grelot, L., Kerman, I.A., Balaban, C.D., Jakus, J. and Miller, A.D. (1994).
52 53	1660	Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat
55 54 55	1661	brain stem. American Journal of Physiology Regulatory, Integrative and Comparative
55 56 57	1662	Physiology, 267, R974-983
58 59 60	1663	

1 2		
3 4	1664	Yokoe, T., Hayashida, T., Nagayama, A., Nakasho, A., Meda, H., Seki, T., Takahashi, M.,
5 6	1665	Takano, T., Abe, T., & Kitagawa, Y. (2019). Effectiveness of anti-emetic regimens for highly
7	1666	emetogenic chemotherapy-induced nausea and vomiting: A systematic review and network
8 9	1667	meta-analysis. The Oncologist, 24, e347-e357.
10 11 12	1668	
13 14	1669	Zaman, S., Woods, A. J., Watson, J. W., Reynolds, D. J. M., & Andrews, P. L. R. (2000). The
15 16	1670	effect of the NK1 receptor antagonist CP-99,994 on emesis and c-fos protein induction by
17 18	1671	loperamide in the ferret. Neuropharmacology, 39, 316-323.
19 20 21	1672	
22	1673	Zettler, G. & Schlosser, L. (1955). Über die Verteilung von Substanz P und Cholinacetylase im
23 24 25	1674	Gehirn. Naunyn-Schmiedeberg's Exp Pathol Pharmakol 224: 159-175.
26 27	1675	
28 29	1676	Zhong, W., Chebolu, S., & Darmani, N.A. (2018). Intracellular emetic signaling evoked by the
30 31	1677	L-type Ca ²⁺ channel agonist FPL64176 in the least shrew (<i>Cryptotis parva</i>). European Journal
32 33	1678	of Pharmacology, 834, 157-168.
34 35	1679	
36 37	1680	Zhong, W., Chebolu, S., & Darmani, N.A. (2019). Intracellular emetic signaling cascades by
38 39	1681	which the selective neurokinin type 1 (NK $_1$ R) agonist GR73632 evokes vomiting in the least
40 41 42	1682	shrew (Cryptotis parva). Neurochemistry International, 122, 106-119.
43	1683	
44 45 46	1684	Figure legends
47 48 49	1685	Figure 1. A summary of the major pathways implicated in the motor events of vomiting and
50 51	1686	the sensation of nausea. The diagram shows the major inputs (vestibular system, abdominal
52 53	1687	vagal afferents, area postrema) to the nucleus tractus solitarius (NTS) in the brainstem by
54 55 56	1688	which both nausea and vomiting are evoked. The mechanical events of vomiting only
57 58	1689	require activation of brainstem and spinal cord nuclei. Most notable are the dorsal motor
59 60	1690	vagal nucleus (DMVN) projecting vagal efferents to the digestive tract to induce gastric

relaxation and intestinal retrograde giant contraction, and the ventral respiratory group (VRG) of neurones driving the spinal phrenic nerve nucleus (PNN) responsible for contraction of the costal diaphragm which together with the anterior abdominal muscles (not shown) provides the main force compressing the stomach and leading to forceful oral ejection of contents. Nausea requires activation of cerebral structures and is associated with the secretion of high concentrations vasopressin (AVP) from the hypothalamic /pituitary axis but other hormones are also released (e.g., cortisol). The main sympathetic motor outputs associated with nausea are shown in the right-hand red rectangle and are a consequence of descending pathways from the "visceromotor cortex" activating the pre-sympathetic nuclei (PSN) in the brainstem which in turn drive the pre-ganglionic sympathetic neurones in the spinal cord (ILH). For details and references see text. Adapted and modified from Varangot-Reille et al., 2023. Figure 2. The effects of the NK₁ receptor antagonist (NK₁RA) tradipant versus placebo on motion sickness signs and symptoms, are shown for Vomiting (left diagram) and for Nausea (right diagram). Motion sickness was provoked by motion at sea. Voyages inevitably varied in terms of the weather and roughness of waves, consequently the data are presented in terms of all data (i.e. all voyages combined) and split by lower wave motion 'calm seas' and higher wave motion 'rough seas'. Vomiting is shown as % incidence. Nausea is shown as the mean sickness rating scale, with higher scores indicating more severe nausea. Note the differences in levels of statistical significance for the different comparisons. Data were adapted from Polymeropoulos et al, 2020.

Page 141 of 160

Figure 3. A diagrammatic summary of the central and peripheral sites at which NK₁RA could act to reduce nausea and vomiting. Abbreviations: AP= Area Postrema; CPG= Central pattern Generator for vomiting; DMVN=Dorsal Motor Vagal Nucleus EC=Enterochromaffin cell; EEC=Enteroendocrine Cell; EP=Epithelial cell; HPV= Hepatic Portal Vein; ICC= Interstitial Cells of Cajal; NK₁RA= Neurokinin₁ receptor antagonist; NTS= Nucleus Tractus Solitarius; VNN= Vestibular Nerve Nucleus. In the periphery, NK₁ receptors located on the gastric smooth muscle, the enteric neurones and possibly the ICCs could modulate motility contributing to a reduction in nausea when disordered motility is implicated (e.g., gastroparesis). NK₁RA can prevent activation/sensitisation of both muscle mechanoreceptors and epithelial 'chemoreceptive' vagal afferents driving nausea and vomiting by locally released SP. The latter are particularly implicated in nausea and vomiting induced by anti-cancer chemotherapy, gastric irritant and some infections (e.g., rotavirus). NK_1 receptors are also implicated in inflammation the reduction of which by NK_1RA could also contribute to reducing afferent drive. The sites at which vomiting can be blocked all reside in the brainstem (particularly the NTS and CPG) although it is unclear if the AP is a site of action other than when vomiting is induced by an NK₁ receptor agonist. Induction of nausea requires activation of 'higher' brain regions and although NK_1 receptors are present at multiple sites in the mid-brain and cerebral hemispheres the data implicating them in anti-nausea effects is circumstantial. See text for details and references. Figure 4 A-D. Diagrammatic representation of a longitudinal section through the brainstem showing the key nuclei and pathways implicated in retching, vomiting and nausea. Abbreviations: AP=area postrema; CPG= Central Pattern Generator responsible for the generation of the oscillatory pattern of activity driving the somato-motor pathways for retching and vomiting in the VRG; DMVN= Dorsal Motor Nucleus of the Vagus, origin of pre-ganglionic efferents to the digestive tract; NTS= Nucleus Tractus Solitarius; VRG= Ventral Respiratory Group of neurones; Ph= Phrenic nerve nucleus in cervical (C3-C-5) spinal cord; Ab= Abdominal muscle motor neurones in ventrolateral thoracic and lumbar spinal cord. See text for further explanation and references.

A: Resting state; B: Low level of activation of pathways inputting to the NTS resulting in activation of NTS and ascending pathways inducing nausea including secretion of anti-diuretic hormone (ADH/AVP) from the posterior pituitary; C= More intense activation of the inputs results in more intense nausea and proximal gastric relaxation, a preparatory action to accommodate refluxed material resulting from the Retrograde Giant Contraction originating in the small intestine when the input is sufficient to exceed the threshold for induction of retching and vomiting when the phrenic and abdominal motor neurones are activated. Note that The CPG and the DMV outputs must be coordinated (dotted arrow) as retching does not begin until the RGC reaches the gastric antrum.

Figure 5. Diagrammatic representation of the neuronal discharge pattern in the medial nucleus tractus solitarius (mNTS) and the Central pattern Generator (located in the compact part of the nucleus ambiguus, cAMB) in response to electrical stimulation of infra-cardia vagal afferents based on neurophysiological studies in the dog reported in Koga & Fukuda, (1992), Fukuda et al., (2003), and Onishi et al., (2007). Vagal afferent stimulation results in a uniform increase in NTS firing frequency which ceases at the end of stimulation. NTS activation results in CPG activation after a lag period and is followed by a progressive increase in frequency which is due to 'wind-up'. The CPG firing frequency reaches at threshold at which the pattern becomes oscillatory with the output driving the ventral respiratory group of neurones (VRG) which in turn drive the phrenic and abdominal motor neurones responsible for the mechanical events of retching a vomiting. The CPG oscillations causing retching are shorter and smaller magnitude than the ultimate burst of activity resulting in vomiting and continue beyond the period of vagal afferent stimulation showing a protracted effect of the initial stimulation.

Species	Neurokinin ₁ receptor antagonist	Stimulus details	References
		Cytotoxic anti-cancer drugs	5
		Acute phase of cisplatin	
Ferret	CJ-11,974 CJ-17, 493 CP-99,994 CP-122,721 GR203040 L-742,694 L-741,671 Netupitant SCH 619734	Given either i.p or i.v.	Duffy et al., 2012; Lau et al., 2005; Rudd et al., 2016; Rupniak et al., 1997; Shishido et al., 2008; Tattersall et al., 1996 Watson et al.,1995;
Dog	FK886 Maropitant		De la Puente -Redondo et al., 2007; Furukawa et al.,2013; Kenward et al., 2017; Vail et al., 2007
Suncus	GR203040		Gardner et al.,1995
		Doxorubicin emesis (5 days	
Dog	Maropitant	i.v.	Rau et al., 2010
		Delayed phase of cisplatin	
Ferret	CJ-11, 974 Netupitant SCH619734	Given either i.p or i.v.	Duffy et al., 2012; Rudd et al., 2016; Tsuchiya et al., 2002
		Cyclophosphamide	
Ferret	GR203040 GR205171	Given i.p.	Gardner et al., 1995, 1996
		Pharmacological agents	
		Apomorphine	
Dog	CP-99, 994 FK886	Given s.c.	Furukawa et al.,2013; Sedlacek et al., 2008; Watson et al., 1995

	Maropitant		
Ferret	CP-99,994		Duffy et al., 2012; Rudd et al., 2016;
	Netupitant		Tattersall, et al., 1994; Watson et al., 1995.
	SCH619734		
		Brimonidine	
Cat	Maropitant	Sedative given as eye drops	Kanda et al., 2020
		Copper sulphate	
Dog	CP-99,994	Given p.o.	Andrews et al., 2001; Watson et al., 1995
Ferret	CP-99,994	Given p.o.	Rudd et al., 2016; Watson et al., 1995
	Netupitant		
		Ethanol	
Suncus	CP-99,994	Given i.p.	Chen et al., 1997
		FPL64176	
Least shrew	Netupitant	L-type Ca ⁺⁺ channel agonist	Zhong et al., 2018
		GR73632	
Least shrew	CP-99,994	NK ₁ receptor agonist; given i.p.	Darmani et al., 2011
		Halothane/N ₂ O	
Suncus	GR205171	Inhaled	Gardner & Perren, 1998
		Ipecacuanha	
Ferret	CP-99,994	Given p.o.	Gardener et al., 1995, 1996; Gonsalves et al.,
	CP-122,721,		1996; Megens et al., 2002; Watson et al.,
	GR205171,		1995
	GR203040		
	Netupitant		
	R116301		
Dog	GR203040	Given p.o.	Gardner et al., 1995,1996; Sedlacek, et al.,
Dog	GR203040 GR205171	Given p.o.	2008
	Maropitant		2000
		Lycorine	
Dog	Maropitant	Alkaloid from daffodils; given s.c.	Kretzing et al., 2011
005			

		2-methyl 5-hydroxytryptamine	
Least shrew	CP-99,994	5-HT ₃ receptor agonist; given i.p. Note no significant effect of CP-99, 994 given at same dose that blocked NK ₁ agonist (GR73632; see above)	Darmani et al., 2011
		Naloxone	
Suncus	CP-99,994	Given s.c.	Rudd et al.,1999
		Nicotine	
Suncus	CP-99,994 CP-122,721 RP67580	Given s.c.	Rudd et al., 1999; Tattersall et al., 1995
		Opiate receptor agonists	
Ferret	CP-99,994	Loperamide; s.c.	Zaman et al., 1999
Ferret	GR203041	Morphine; s.c.	Gardner et al., 1995
Dog	Maropitant	Morphine; s.c.	Lorenzutti et al., 2016, 2017
Dog	Maropitant	Morphine; s.c.	Koh et al., 2014
Dog	Maropitant	Hydromorphone; i.m.	Claude et al., 2014
Dog	Maropitant	Hydromorphone; i.m.	Hay Kraus 2014
Dog	Maropitant	Hydromorphone; i.m. + acepromazine; i.m.	Johnson, 2014
Cat	Maropitant	Dexmedetomidine +morphine; i.m.	Martin-Flores et al., 2016
		Phosphodieseterase IV Inhibitors	
Ferret	CP-99,994	R-rolipram, CT-2450, RS14203; given p.o.	Robichaud et al., 1999
		Prostaglandin E ₂	
Ferret	CP-99,994	Given i.p.	Kan et al., 2006
		Pyrogallol	
Ferret	CP-99,994	Reactive oxygen species donor; given i.p.	Andrews & Matsuki, unpublished.
		Resiniferatoxin	
Suncus	CP-99,994	Given s.c.	Andrews et al., 2000
		Tranexamic acid	
Dog	Maropitant	Fibrinolytic	Kantyka et al., 2020
		U46619	
Suncus	CP-99,994	TP agonist; given i.p.	Kan et al., 2003

Cat	R116301	Given s.c.	Megens et al., 2000	
		Non- pharmacological stimuli		
		Motion		
Cat	CP-99,994	Ferris Wheel	Lucot et al., 1997	
Dog	Maropitant	Car journey	Conder et al., 2008	
Suncus	GR203041 Netupitant	Horizontal motion	Gardner et al.,1995 Rudd et al., 2016	
		Total Body Radiation		
Ferret	GR203040 GR205171,	X-radiation	Gardner et al., 1995, 1996	
Ferret	CP-99, 994	X-radiation (3 weeks post abdominal vagotomy and greater splanchnic nerve section)	Andrews & Watson, unpublished observations	
	-	Electrical stimulation of vagal afferents		
Dog (decerebrate)	GR205171	Stimulation either at the level of the terminal	Fukuda et al., 1999; Furukawa et al., 1998	
Ferret (urethane anaesthesia)	CP-99,994	thoracic oesophagus or abdomen; fictive emesis measured in the decerebrate dog.	Watson et al., 1995	
		Parvoviral enteritis-induced vomiting		
			Valain 8 Kasan 2016	
	Maropitant		Yaicin & Keser, 2016	
Dog	Maropitant	Post-neurosurgery vomiting	Yalcin & Keser, 2016	

Compound	Efficacy against nausea in PONV	Reference	
Neurokinin ₁ recep	tor antagonist given alone and compared to a placebo or active	comparator	
CP-122,721	In patients undergoing abdominal hysterectomy the maximum nausea	Gesztesi et al., 1998	
(100mg, 200mg, p.o.)	score appeared to be reduced by CP-122, 721 in both dose groups	(abstract), 2000.	
	compared to placebo but any effect was not statistically significant		
	(N=20-24). VAS nausea score did not differ between ondansetron, CP-		
	122, 721 and combination groups (N=52-53).		
Vofopitant	In patients undergoing major gynaecological surgery vofopitant showed	Diemunsch et al., 1999.	
(GR-205171)	superiority compared to placebo (N=18 in both groups) for the		
(25mg, i.v.)	percentage of patients without nausea (2h complete control nausea:		
(23111g, 1.v.)	55% v. 20%) and reduced the severity of nausea over the entire 24h post	h.	
	-operative observation period.	19	
Aprepitant	Peak nausea score distribution (interquartile range) was significantly	Diemunsch et al., 2007.	
(L-754,030)	lower (P <0.05, N=280-293) for both aprepitant groups (40 /125mg) compared to ondansetron (4mg) but the percentage of patients		

(40mg/125, p.o.)	reporting no significant nausea was only significantly higher than that	
	ondansetron for 40mg aprepitant (62% . 53%). For vomiting both doses	
	of aprepitant were superior to ondansetron and blocked vomiting in	
	~85% of patients. Open abdominal surgery.	
	$\Theta_{\mathcal{L}}$	
Aprepitant	In patients undergoing laparascopic gynaecological surgery nausea	Moon et al., 2014
(L-754,030)	intensity was significantly lower with aprepitant compared to	
(20 mg n o)	palonosetron on arrival in the recovery room (11.2 \pm 2.1 v. 19.0 \pm 2.2) and	
(80mg p.o.)	at two hours (9.7 \pm 2.1 v. 19.4 \pm 3.5) but not in the subsequent 46hours.	
	The complete response rate over 48h did not differ (74% v. 77%)	
Aprepitant	In patients undergoing plastic surgery compared to placebo the severity	Vallejo et al., 2012
(L-754,030)	of nausea was lower ($p=0.014$, N=75/arm) in the aprepitant group	
	between 0-48h post-surgery. Vomiting incidence was also significantly	
(40mg p.o.)	lower in the aprepitant group (7/75 v. 22/75, p=0.003).	
Vestepitant	Non-emergency surgery under general anaesthesia in patients failing	Kranke et al., 2015
(4-36mg, i.v.)	prophylaxis with pre-surgery ondansetron. Nausea numerical rating scale	12
	median values did not differ between ondansetron (4mg) alone and any	(a)
	dose of vestepitant (N=7-15/group) given subsequently but overall	4
	vestepitant was superior to ondansetron (10.1-22.9% improvement	

	except at a dose of 18mg when there was a -1.2 % difference.	
Fosaprepitant (150mg, i.v.)	In patients undergoing surgery requiring general anaesthesia the percentage of patients vomiting was significantly lower with fosaprpitant (N=82) than with ondansetron (N=89) at 0-2h (2% v. 17%),0-24h (2% v.28%) and at 0-48h (2% v.29%). However, the percentage of patients reporting nausea in the fosparepitant was higher than for vomiting at all time points (e.g., at 0-2h, nausea 41% v. vomiting 2%).	Murakami et al., 2017
tearonnin receptor	antagonist given in addition to a standard treatment and compare	ed to identify any
Casopitant	additional benefit Only female patients, laparascopic /laparotomic gynecological procedure	
	additional benefit Only female patients, laparascopic /laparotomic gynecological procedure or laparascopic cholecystectomy. All doses of casopitant further reduced the percentage of patients with vomiting at both 0-24h (ondansetron	
Casopitant (GW679769)	additional benefit Only female patients, laparascopic /laparotomic gynecological procedure or laparascopic cholecystectomy. All doses of casopitant further reduced	

Briz: Sh	70.0% v. vomiting 9.3%; 100mg, nausea 63.6% v. vomiting 4.3%; 150mg, nausea 66.4% vs vomiting 7.1%). The intensity of nausea did not differ between the three casopitant doses.	
Aprepitant	Craniotomy patients. No difference between nausea scores, incidence or	Habib et al., 2011
(L-754,030)	significant nausea between aprepitant and ondansetron (4mg) up to 48h	
(40mg, p.o.)	post-surgery but the study may not have been sufficiently powered to see statistical differences at all time points.	
Vestepitant	Given to patients with breakthrough emesis; Nausea scores did not differ	Kranke et al., 2014.
(4-36mg, i.v.)	between patients with either complete response (no vomiting) or treatment failure and between vestepitant and ondansetron groups.	
Aprepitant	In patients undergoing bariatric surgery aprepitant increased the number	Sinha et al., 2014.
(L-754,030) (80mg, p.o.)	of patients without nausea and vomiting (42.18% v. 36.67%) compared to ondansetron alone but this was not significant and nausea scores were unaffected by aprepitant.	5
Aprepitant	Laparaoscopic gynaecological surgery. Significant (p=0.014) additional	Ham et al., 2016.
(L-754,030)	reduction in nausea incidence (24h) when aprepitant was given with ondansetron but no change in severity of nausea or incidence of	
(80mg, p.o.)	ondansetron but no change in sevency of nausea of incluence of	-9

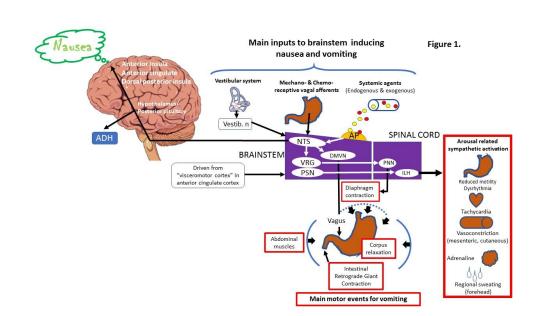


Figure 1. A summary of the major pathways implicated in the motor events of vomiting and the sensation of nausea. The diagram shows the major inputs (vestibular system, abdominal vagal afferents, area postrema) to the nucleus tractus solitarius (NTS) in the brainstem by which both nausea and vomiting are evoked. The mechanical events of vomiting only require activation of brainstem and spinal cord nuclei. Most notable are the dorsal motor vagal nucleus (DMVN) projecting vagal efferents to the digestive tract to induce gastric relaxation and intestinal retrograde giant contraction, and the ventral respiratory group (VRG) of neurones driving the spinal phrenic nerve nucleus (PNN) responsible for contraction of the costal diaphragm which together with the anterior abdominal muscles (not shown) provides the main force compressing the stomach and leading to forceful oral ejection of contents. Nausea requires activation of cerebral structures and is associated with the secretion of high concentrations vasopressin (AVP) from the hypothalamic /pituitary axis but other hormones are also released (e.g., cortisol). The main sympathetic motor outputs associated with nausea are shown in the right-hand red rectangle and are a consequence of descending pathways from the "visceromotor cortex" activating the pre-sympathetic nuclei (PSN) in the brainstem which in turn drive the pre-ganglionic sympathetic neurones in the spinal cord (ILH). For details and references see text. Adapted and modified from Varangot-Reille et al., 2023.

338x190mm (96 x 96 DPI)

Tradipant vs Placebo * p<.05

p<.01

*** p<.001

Calm Seas

Placebo Tradipant

Rough Seas

Nausea rating

All Data

5

4

3

2

1

0

Calm Seas Rough Seas

Figure 2

Vomiting %

**

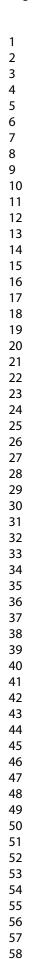
All Data

80

60

40

20

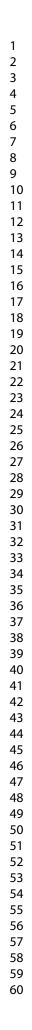

0

Tradipant vs Placebo * p<.05

p<.01

Placebo Tradipant

*** p<.001



59

60

Figure 2. The effects of the NK1 receptor antagonist (NK1RA) tradipant versus placebo on motion sickness signs and symptoms, are shown for Vomiting (left diagram) and for Nausea (right diagram). Motion sickness was provoked by motion at sea. Voyages inevitably varied in terms of the weather and roughness of waves, consequently the data are presented in terms of all data (i.e. all voyages combined) and split by lower wave motion 'calm seas' and higher wave motion 'rough seas'. Vomiting is shown as % incidence. Nausea is shown as the mean sickness rating scale, with higher scores indicating more severe nausea. Note the differences in levels of statistical significance for the different comparisons. Data were adapted from Polymeropoulos et al, 2020.

338x190mm (96 x 96 DPI)

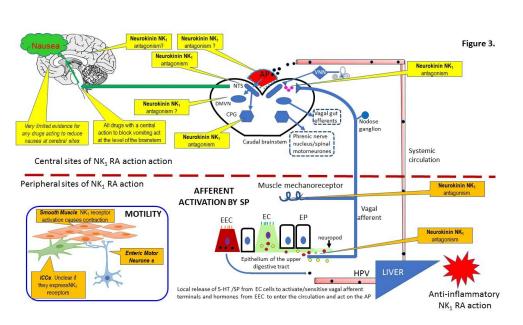
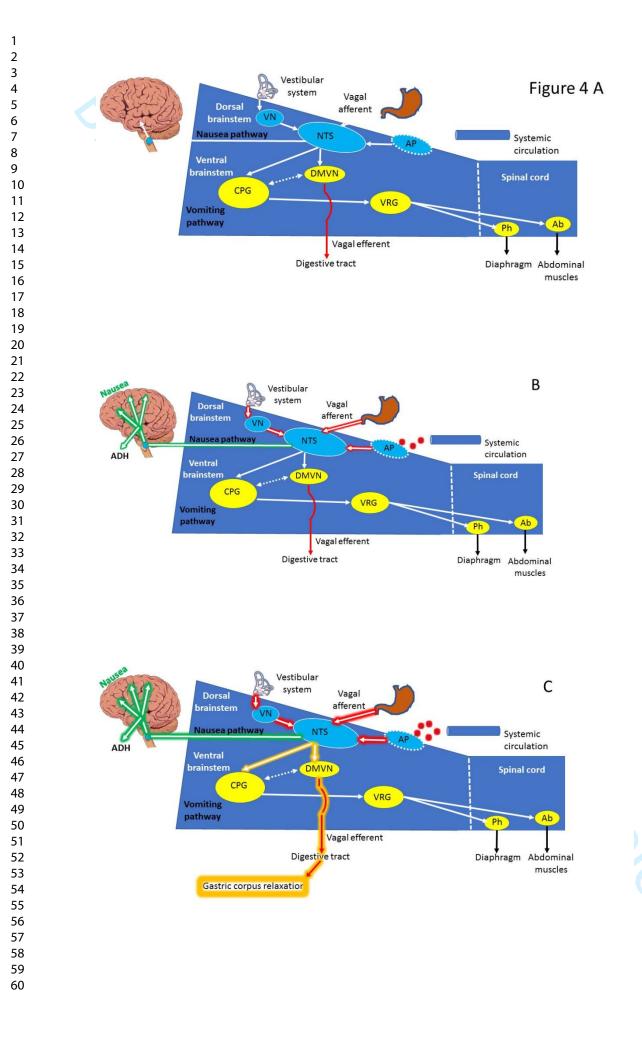
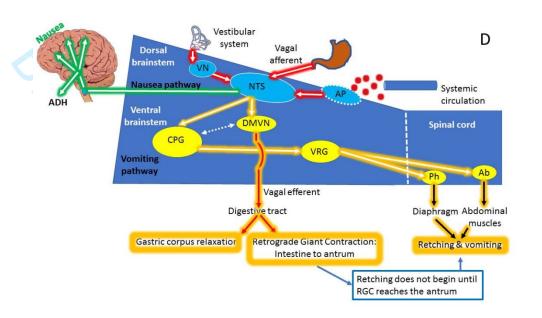




Figure 3. A diagrammatic summary of the central and peripheral sites at which NK1RA could act to reduce nausea and vomiting. Abbreviations: AP= Area Postrema; CPG= Central pattern Generator for vomiting; DMVN=Dorsal Motor Vagal Nucleus EC=Enterochromaffin cell; EEC=Enteroendocrine Cell; EP=Epithelial cell; HPV= Hepatic Portal Vein; ICC= Interstitial Cells of Cajal; NK1RA= Neurokinin1 receptor antagonist; NTS= Nucleus Tractus Solitarius; VNN= Vestibular Nerve Nucleus. In the periphery, NK1 receptors located on the gastric smooth muscle, the enteric neurones and possibly the ICCs could modulate motility contributing to a reduction in nausea when disordered motility is implicated (e.g., gastroparesis). NK1RA can prevent activation/sensitisation of both muscle mechanoreceptors and epithelial 'chemoreceptive' vagal afferents driving nausea and vomiting by locally released SP. The latter are particularly implicated in nausea and vomiting induced by anti-cancer chemotherapy, gastric irritant and some infections (e.g., rotavirus). NK1 receptors are also implicated in inflammation the reduction of which by NK1RA could also contribute to reducing afferent drive. The sites at which vomiting can be blocked all reside in the brainstem (particularly the NTS and CPG) although it is unclear if the AP is a site of action other than when vomiting is induced by an NK1 receptor agonist. Induction of nausea requires activation of 'higher' brain regions and although NK1 receptors are present at multiple sites in the mid-brain and cerebral hemispheres the data implicating them in anti-nausea effects is circumstantial. See text for details and references.

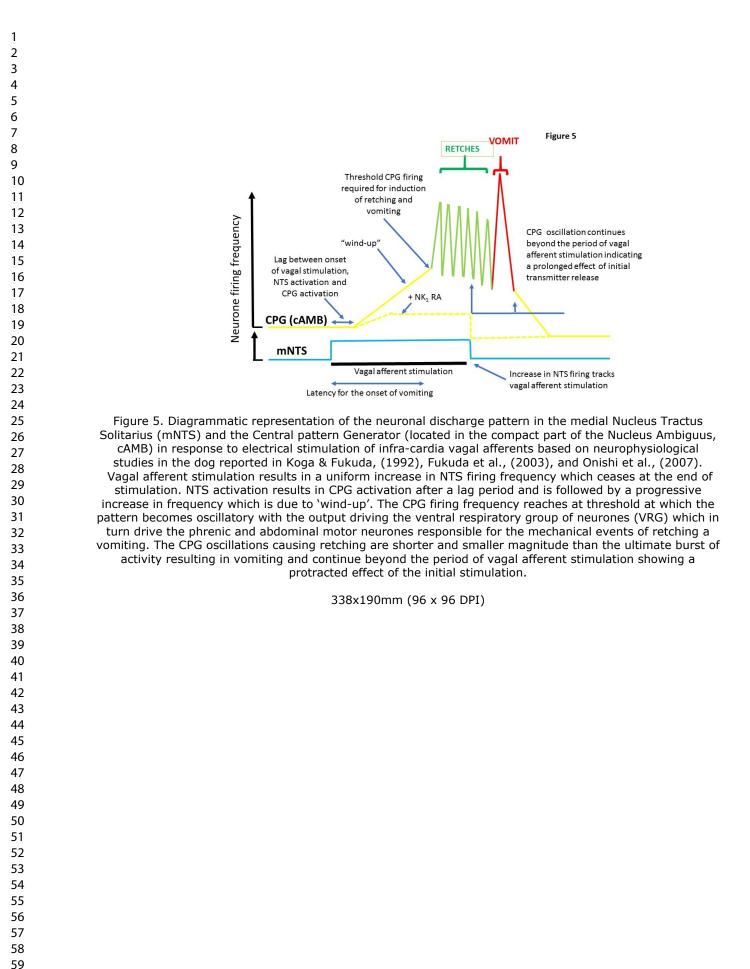

338x190mm (96 x 96 DPI)

Figure 4 A-D. Diagrammatic representation of a longitudinal section through the brainstem showing the key nuclei and pathways implicated in retching, vomiting and nausea. Abbreviations: AP=area postrema; CPG= Central Pattern Generator responsible for the generation of the oscillatory pattern of activity driving the somato-motor pathways for retching and vomiting in the VRG; DMVN= Dorsal Motor Nucleus of the Vagus, origin of pre-ganglionic efferents to the digestive tract; NTS= Nucleus Tractus Solitarius; VRG= Ventral Respiratory Group of neurones; Ph= Phrenic nerve nucleus in cervical (C3-C-5) spinal cord; Ab= Abdominal muscle motor neurones in ventrolateral thoracic and lumbar spinal cord. See text for further explanation and references.

A: Resting state; B: Low level of activation of pathways inputting to the NTS resulting in activation of NTS and ascending pathways inducing nausea including secretion of antidiuretic hormone (ADH/AVP) from the posterior pituitary; C= More intense activation of the inputs results in more intense nausea and proximal gastric relaxation, a preparatory action to accommodate refluxed material resulting from the Retrograde Giant Contraction originating in the small intestine when the input is sufficient to exceed the threshold for induction of retching and vomiting when the phrenic and abdominal motor neurones are activated. Note that The CPG and the DMV outputs must be coordinated (dotted arrow) as retching does not begin until the RGC reaches the gastric antrum.

Species	Neurokinin₁ receptor antagonist (route)	Effect on "nausea- like behaviour" as defined by authors	Behaviour(s) measured	Additional details of stimulus	Comment	Reference
			Cisplatin (low dose)			
Dog	Maropitant (i.v.)	Onset of signs of nausea delayed and VAS scores reduced at three time points between 3.7 and 4.5h post cisplatin but AUC over 7h not significantly reduced.	Composite score of lip licking, lethargy, restlessness or turning /circling signalling that vomiting is imminent.		Also showed that vasopressin secretion was reduced by maropitant.	Kenward et al., 2017
			Doxorubicin (5 days)		•	
Dog	Maropitant (s.c.)	No effect	Appetite, protracted salivation, lip smacking		No effect on appetite	Rau et al., 2010
		0	piate receptor agonists			
Dog	Maropitant (s.c.)	No effect	Ptyalism, lip licking, increased swallowing	Morphine(s.c.)	Salivation incidence unaffected; metaclopra mide also no effect on "nausea - like behaviours"	Lorenzutti et al., 2016, 2017
Dog	Maropitant(s.c.)	No significant effect but reduction in incidence	Excessive lip licking and swallowing, hunched posture	Hydromorphone (i.m.)	No effect on increased panting; maropitant	Claude et al., 2014

	ritish				increased ptyalism- salivation not included in nausea score	
Dog	Maropitant (s.c.)	Significantly decreased with 60 min pre-dose	Salivation, lip-licking	Hydromoprphone (i.m.)	Effect on "N" only seen with 60min pre- dose	Hay Kraus 2014
Cat	Maropitant (s.c.)	No effect	Sialorrhea, lip licking	Dexmedetomidine +morphine (i.m.)		Martin-Flores et al 2016
			Tranexamic acid	•	·	•
Dog	Maropitant (i.v.)	No significant effect on severity	Visual analogue scale	Fibrinolytic		Kantyka et al., 202
			Brimonidine	·		·
Cat	Maropitant(p.o.)	No effect	Sialorrhea, lip licking	α ₂ agonist sedative given as eye drops		Kanda et al., 2020
			Motion		·	
Cat	CP-99,994 (s.c.)	No effect	Suri et al., 1979 symptom scale	Ferris Wheel		Lucot et al., 1997
			Lycorine (s.c.)			
Dog	Maropitant (s.c.)	No effect	Increased salivation, lip licking, frequent/exaggerated swallowing motions, lethargy, restlessness and /or panting	Alkaloid from daffodils		Kretzing et al., 2011

Supplementary Table 1. A summary of the results of preclinical studies reporting the effects of neurokinin₁ receptor antagonists on the "nausea –like behaviours" in response to a range of emetic stimuli in species capable of vomiting.

References

Claude, A.K., Dedeaux, A., Chiavaccini, L. & Hinz, S. (2014). Effects of maropitant citrate or acepromazine on the incidence of adverse events associated with hydromorphone premedication in dogs. *Journal of Veterinary Internal Medicine*, 28, 1414-1417.

Hay-Kraus, B.L. (2014) Efficacy of orally administered maropitant citrate in preventing vomiting associated with hydromorphone administration in dogs. *Journal of the American Veterinary Medicine Association*, 15, 1164-1169.

Kanda, T., Toda, C., Morimoto, H., Shimizu, Y., Otoi, T., Furumoto, K., Okamura, Y., & Iwata, E. (2020). Anti-emetic effect of oral maropitant treatment before the administration of brimonidine ophthalmic solution in healthy cats. *Journal of Feline Medicine and Surgery*, 22,557-563.

Kantyka, M.E., Meira, C., Bettschart-Wolfensberger, R., Hartnack, S., & Kutter, A.P.N. (2020). Prospective, controlled, blinded, randomized crossover trial evaluating the effect of maropitant versus ondansetron on inhibiting tranexamic acid-evoked emesis. *Journal of Veterinary Emergency Critical Care*, 30, 436-441.

Kenward, H., Elliott, J., Lee, T., & Pelligrand, L. (2017). Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: a blinded crossover study. *BMC Veterinary Research*, 13, 244.

Kretzing, S., Abraham, G., Seiwert, B., Ungemach, F.R., Krügel, U., Teichert, J., & Regenthal, R. (2011). In vivo assessment of antiemetic drugs and mechanism of lycorine -induced nausea and emesis. *Archives of Toxicology*, 85, 1565-1573.

Lorenzutti, A.M., Martin-Flores, M., Literio, N.J., Himelfarb, M.A., Invaldi, S.H., & Zarazaga, M.P. (2016). Evaluation of the antiemetic efficacy of maropitant in dogs medicated with morphine and acepromazine. Veterinary Anesthesia and Analgesia, 43, 195-198.

Lorenzutti, A.M., Martin-Flores, M., Literio, N.J., Himelfarb, M.A., Invaldi, S.H., & Zarazaga, M.P. (2017). A comparison between maropitant and metoclopramide for the prevention of morphine-induced nausea and vomiting in dogs. *Canadian Veterinary Journal*, 58, 35-38.

Lucot, J.B., Obach, R.S., McClean, S., & Watson, J.W. (1997). The effect of CP-99994 on the responses to provocative motion in the cat. British Journal of Pharmacology, 120, 116-120.

Martin-Flores, M., Sakai, D.M., Learn, M.M., Mastrocco, A., Campoy, L., Boesch, J.M., & Gleed, R.D. (2016). Effect of maropitant in cats receiving dexamethasone and morphine. Journal of the American Veterinary Medicine Association, 248, 1257-1261.

vomiting ass. Rau, S.E., Barber, L.G., & Burgess, K.E. (2010). Efficacy of maropitant in the prevention of delayed vomiting associated with administration of doxorubicin in dogs. Journal of Veterinary Internal Medicine, 24, 1452-1457.