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ABSTRACT 

Aim: We have recently developed electrophysiological recordings of human visceral afferent 

(HVA) activity in isolated gastrointestinal tissues. The aim of the this study was 1) test the 

mechano- and chemosensitivity of HVAs, 2) characterise subpopulations of HVAs based on 

their response to mechanical stimuli, 3) test the effect of drugs that have/are in clinical trials 

on the mechanosensitivity (von Frey hair (VFH) probing and appendix distension) of HVAs. 

Methods: All experiments were performed in accordance with UK human ethics regulations 

[NREC09/H0704/2]. Surgically resected human ileum, colon, and appendix were obtained from 

consenting patients undergoing bowel resection. Tissues were pinned in a tissue bath, or 

cannulated (appendix), and superfused with carbongenated Krebs buffer, at 6ml/min, 32-34°C. 

Mesenteric nerve bundles were carefully dissected and afferent activity was recorded using 

suction electrodes. Tissues were tested for mechanosensitivity (VFHs, stretching, mucosal 

stroking, distension) and chemosensitivity (bradykinin (BK), ATP (adenosine trisphosphate), 

PGE2 (prostaglandin E2), serotonin (aka 5-hydroxytryptamine (5-HT)), histamine, adenosine). 

The receptors involved in the activation of HVAs by BK, or ATP were also investigated. The 

response of HVAs to VFH probing or distension was tested before and after the application of 

tegaserod, STa endotoxin, or a transient receptor potential vanilloid 4 (TRPV4) agonist 

(GSK1016790A) or antagonist (HC067047).  Results and Conclusion: HVAs were characterised 

as mesenteric, serosal, muscular, or muscular-mucosal. HVAs were chemosensitive to all 

mediators. Bradykinin B2 receptors are the most important receptors involved in the 

activation of HVAs by BK. P2Y receptors may play an important role in the activation of HVAs 

by ATP. Application of tegaserod, HC067047 or STa endotoxin reduced the HVA response to 

mechanical stimuli. HVA recordings are feasible and practical and are suitable for both basic 

scientific mechanistic studies, and could potentially be used as a pre-clinical model, in 

conjunction with animal experiments, to help predict the efficacy of novel compounds before 

clinical trials. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 ABDOMINAL PAIN IN GASTROINTESTINAL DISEASES 

Abdominal pain is one of the commonest symptoms upon presentation to a gastroenterologist 

(Shaheen et al., 2006), and is a feature of many organic (e.g. inflammatory bowel disease (IBD)) 

and functional gastrointestinal disorders (FGID) (e.g. irritable bowel syndrome (IBS)). In many 

of these diseases pain is the cause of substantial morbidity, impacting negatively on quality of 

life indicators such as fatigue, sleep, anxiety and depression (Wang et al., 2012, Greenley et al., 

2013, Walter et al., 2013). Many functional and organic bowel disorders have been outlined by 

specialist authorities as a significant encumbrance on the healthcare system (Spiller, 2007).   

IBS is one such functional bowel disorder that is characterised by abdominal 

discomfort and pain, which is associated with altered bowel habits, and not accompanied by 

abnormal structural changes in the gut (Longstreth et al., 2006, Hughes et al., 2013). The 

diagnostic criteria for IBS as set out most recently in the Rome III criterion is defined by; 

abdominal pain or discomfort, which is associated with either, improvement with defecation, 

associated with a change in the frequency or appearance of stool, that is recurring at least 3 

days per month in the last 3 months, with the onset of symptoms beginning at least 6 months 

prior to diagnosis. There are also a number of supportive symptoms which help classify IBS into 

its subtypes, which occur with similar prevalence, diarrhoea predominant IBS (IBS-D), 

constipation predominant IBS (IBS-C) or alternating/mixed IBS (IBS-A/IBS-M) and un-subtyped 

IBS (IBS-U) (Longstreth et al., 2006, Camilleri et al., 2012). Additionally, IBS which has 

developed after a bout of gastroenteritis, may be categorised as post infectious IBS (PI-IBS) 

(Ohman and Simren, 2013).  

It is estimated that 10-20% of adults, predominantly women, have intestinal symptoms 

consistent with IBS (Saito et al., 2002, Gwee, 2005), leading to diminished quality of life as a 
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consequence of disruption to work and sleep (Wang et al., 2012), and exerting a significant 

healthcare and economic burden in society (Sandler et al., 2002). Despite the prevalence and 

impact of IBS, its disease pathophysiology is still not understood, but hypothesises include 

dysfunction of information processing between the brain and the gut, low grade inflammation 

of the bowel, changes in the gut microbiota, and enhanced stress signalling particularly in the 

context of negative early life events (Camilleri et al., 2012).  

By contrast, IBD represents a group of chronic lifelong organic gastrointestinal 

diseases, the most common of which are Crohn’s disease (CD) and ulcerative colitis (UC) (Yen 

and Pardi, 2012). IBD is characterised by relapses and remission of inflammation 

predominantly of the small and large intestine. The commonest symptoms on presentation are 

a triad of abdominal pain, blood in the faeces/altered bowel habit, usually diarrhoea, and 

weight loss (Sobczak et al, 2014). IBD has a major impact on the patient’s quality of life and 

ability to work, and by extension is a considerable economic burden on society (Busch et al., 

2014). 

CD can affect any part of the GI tract but is usually found in the ileocaecal region 

leading to a predominance of patients reporting right sided abdominal pain on presentation to 

a physician. The inflammation in CD affects the full thickness of the bowel wall leading to 

swelling and thickening of the smooth muscle, fibrosis and structuring, and in some patients 

fistulising disease (Cassinotti et al., 2008, Fakhoury et al., 2014). Consistent with the presence 

of small bowel disease it is common for CD patients to suffer from nutritional deficiencies due 

to the impact of inflammation on the  absorption of nutrients in the intestine (Fakhoury et al., 

2014). Overall CD has a slightly greater prevalence in women than men, with the average age 

of onset being 20-30 years old (Cosnes et al., 2011). It is most prevalent in North America, and 

Northern Europe, where the highest reported incidence rates varies between 19.2-

24.3/100,000 (Molodecky et al., 2012).  
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By contrast UC is restricted to the rectum and colon, and is characterised by 

inflammation and ulcerations which is restricted to the mucosa and submucosa layers of the 

gut (Sobczak et al., 2014). Despite this pain is still one of the primary symptoms reported by UC 

patients on presentation is normally found in the lower left flank of the abdomen. UC patients 

experience significant rectal bleeding, diarrhoea, and weight loss (Fakhoury et al., 2014). UC 

affects more men than women, with the average age of onset being 30-40 years old (Cosnes et 

al., 2011). The highest reported incidence of UC varies between 12.7-20.2/100,000 in Europe 

and North America, where it is most prevalent (Molodecky et al., 2012). 

The causes of pain in IBD are not fully understood, but are thought to involve the 

activation and sensitisation of pain sensing nerves which innervate the gastrointestinal (GI) 

tract by inflammatory mediators (Hughes et al., 2013). The innervation of the gut is complex 

with both extrinsic nerves projecting from and to the brain and spinal cord as part of the 

afferent and efferent limbs of the autonomic nervous system (ANS) , and intrinsic neurones 

found within the enteric nervous system (ENS) innervating the GI tract. From a sensory 

perspective the extrinsic nerves are responsible for the transmission of both noxious (pain) 

and non-noxious (physiological) information about the gut to the central nervous system 

(CNS). Intrinsic nerves may also indirectly modulate the transmission of noxious information 

from the gut by regulating secretomotor functions, which can contribute to a noxious event. 

The functional anatomy of these systems is described below.   

1.2 OVERVIEW OF THE EXTRINSIC INNERVATION OF THE GASTROINTESTINAL TRACT 

1.2.1 Overview 

The GI tract is a group of organs involved in the ingestion, digestion and subsequent 

absorption of food and the defecation of waste products (Knowles and Aziz, 2009). The gut is 

unique in that it is innervated by both intrinsic (via the ENS) and extrinsic nerves (via the ANS). 

Together these 2 nervous systems  act in concert to control the subconscious physiological 
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functions of the gut, while harnessing the potential to consciously communicate noxious 

stimuli (Knowles and Aziz, 2009). Extrinsically the gut is innervated by both parasympathetic 

and sympathetic divisions of the ANS, which consists of both sensory and motor nerves. 

Although for clarity it is now common for the afferent sensory innervation to be described by 

the nerves through which they connect to the central nervous system. Hence parasympathetic 

afferent fibres are referred to as vagal or pelvic afferents with reference to their projection 

with respective vagus or pelvic nerves. Similarly sympathetic afferent fibres may be referred to 

as splanchnic afferents with reference to the splanchnic nerves which innervates much of the 

gut. However, it is more common for these to be called spinal afferents, particularly with 

reference to the target organ innervated, for within colonic spinal afferents or gastric spinal 

afferents. Additionally pelvic afferents may also be referred to as pelvic spinal afferents to 

reflect the projection of pelvic nerves to the spinal cord. For this thesis we have adopted a 

nomenclature that refers to pelvic afferents as pelvic spinal afferents and sympathetic 

afferents as splanchnic spinal afferents. The motor efferent  innervation by the ANS is still 

referred to as parasympathetic or sympathetic and is provided by the sacral and vagal 

parasympathetic nerves and sympathetic prevertebral ganglia (PVG) nerves (Ratcliffe et al., 

2011).  

1.2.2 Vagal afferents 

Vagal afferents predominantly transmit physiological information such as fullness, satiety and 

sphincter control to the CNS (Ramkumar and Schulze, 2005, Berthoud, 2008, Goyal and 

Chaudhury, 2008), but can, in some vagal fibres communicate pain signals (Cervero, 1994, 

Lennerz et al., 2007, Blackshaw, 2014). Over 90% of the vagal nerve fibres are sensory 

(Berthoud and Neuhuber, 2000). Vagal afferents innervating the intestine have their cell 

bodies in the inferior vagal ganglion in humans (nodose ganglia in murine species). Vagal 

afferents project to the nucleus tractus solitarius (NTS) and area postrema in the brainstem. 

From the NTS vagal afferent input is relayed via direct projections mainly to the parabrachial 
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nucleus, nucleus ambiguus, dorsal vagal motor nucleus and ventrolateral brain stem, although 

a smaller number of fibres also project directly to the hypothalamus, locus coeruleus, 

amygdala, insular cortex and peri-aquaductal grey (PAG). Projections to the parabrachial 

nucleus are further relayed to the PAG, hypothalamus, amygdala, insular cortex and other 

limbic structures  and are thought to influence emotional and behavioural responses to 

information from the gut (Berthoud et al., 2004, Knowles and Aziz, 2009) (figure 1.01). The 

innervation of the gut by vagal afferent endings is densest in upper GI tract and diminished 

moving oral to anal. The distal colon is not typically considered to be significantly innervated 

by the vagus (Berthoud et al., 1991, Berthoud and Neuhuber, 2000, Blackshaw et al., 2007). At 

the level of the gut 3 distinct types of ending have been attributed to vagal afferents, mucosal 

endings, intramuscular arrays (IMA), and intraganglionic laminar endings (IGLE) (table 1.01). 

These are described in greater detail below. 

1.2.3 Spinal afferents 

Spinal visceral afferents are important in the transmission of noxious pathophysiological and 

physiological information from the gut. The spinal afferent innervation of the intestine is 

largely derived through splanchnic nerves although the final third of the distal colon receives 

an overlapping innervation by splanchnic and pelvic nerves with the rectum innervated by 

pelvic spinal afferents. Approximately 10-30% of fibres in these 2 nerves are sensory afferent 

fibres (Blackshaw and Grundy, 1989, Blackshaw and Gebhart, 2002). Splanchnic and pelvic 

afferents have their cell bodies in the dorsal root ganglion (DRG) and terminate in the dorsal 

horn of the spinal cord at the thoracolumbar and sacral levels, respectively. Within the spinal 

cord they synapse with second order neurons within lamina I, V and X of the dorsal horn, and 

activate projection neurons either directly or indirectly by interneuron relays which relay input 

to the CNS via spinoreticular, spinohypothalamic, spinomesencephalic and spinothalamic 

tracts (Grundy, 2002, Almeida et al., 2004). The relay of inputs from the spinothalamic tract to 

the somatosensory cortex, the anterior cingulate cortex together with the insula by the 
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thalamus, is important for the localisation and intensity of, and the emotional response to, 

pain, respectively (Almeida et al., 2004, Anand et al., 2007) (figure 1.01). In addition to 

terminating within the spinal cord splanchnic and pelvic afferents may also send collateral 

projections as they pass through prevertebral ganglia. These projections synapse on the cell 

bodies of preganglionic sympatheic efferents within the ganglia and thereby act to regulate 

the effect of sympathetic motor nerves innervating the GI tract (Green and Dockray, 1988, 

Holzer et al., 2001). Spinal afferents have endings in all layers of the gut wall  (Grundy, 2002). 

Based on the location of receptive fields and their response characteristics to mechanical 

stimuli (probing, stretching and stroking) it is possible to characterise spinal afferents into 5  

distinct subtypes termed mesenteric, serosal, muscular, muscular-mucosal, and mucosal 

afferents (table 1.02). These subtypes are described in more detail below.
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Spinal: Thalamus
Anterior Cingulate Cortex
Insula
Amygdala
Hypothalamus
Cortex

Brainstem
Inferior Vagal Ganglia

Vagal: NTS
Thalamus
Locus Coeruleus
Periaqueductal Gray
Amygdala
Cortex Thalamus

Cortex

Dorsal Root Ganglia
(Thoracolumbar Levels)

Dorsal Root Ganglia
(Lumbosacral Levels)

Splanchnic Nerve

Pelvic Nerve

Vagal Nerve
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Figure 1.01: Extrinsic afferent innervation of the gut. Vagal afferents (blue) have their cell 

bodies in the inferior vagal ganglion in humans, and have denser innervation in the upper 

gastrointestinal tract and proximal colon. They mainly project to the nucleus tractus solitarius 

(NTS) in the brainstem, with a smaller number of fibres projecting to the hypothalamus, locus 

coeruleus, amygdala and peri-aquaductal grey, and the thalamus, where some projections are 

relayed to the cortex. Spinal visceral afferents innervate the GI tract through the splanchnic 

and pelvic nerves. Splanchnic (brown) and pelvic (orange) afferents have their cell bodies in 

the DRGs and terminate in the dorsal horn of the thoracolumbar and sacral spinal cord, 

respectively. Here they synapse with second order neurons, which ultimately project to the 

anterior cingulate cortex, the insula, amygdala, hypothalamus and thalamus and onto the 

somatosensory cortex. 
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Table 1.01: Outlines the location of the cell body, and the central and peripheral projections 

for vagal, splanchnic and pelvic afferents.   

 

  

Afferent 
Type

Cell Body Central Projections Peripheral Endings in the Gut

Vagal Inferior Vagal 
Ganglion

Brainstem (NTS), PAG, 
Hypothalamus, LC, 
Amygdala,

Intramuscular arrays, Intra 
Ganglionic Laminar Endings, Mucosal

Splanchnic Dorsal Root 
Ganglion

Thoracolumbar Spinal 
Cord

Mesenteric, Serosal, Muscular, 
Mucosal

Pelvic Dorsal Root 
Ganglion

Sacral Spinal Cord Serosal, Muscular, Muscular-
mucosal, Mucosal
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1.2.4 Subtypes of vagal and spinal afferents innervating the gut 

A number of methods have been employed to attempt to characterise extrinsic afferent 

neurons innervating the small and large intestine. These include but are not limited to receptor 

expression, neurotransmitters used, basal firing rate, conduction velocity, activation 

thresholds etc. (Brookes et al., 2013).  For reference we will predominantly focus on the 

mucosal surface up, flat sheet characterisation method develop by Lynn and Blackshaw in rat 

(1999) and later refined in Brierley et al. This has been adopted by several groups in the field 

and is based on the characterisation of extrinsic afferents into subtypes using their response 

profile to probing of the gut wall and mesentery with calibrated von Frey hairs (VFH), 

stretching of the gut wall, and stroking of the mucosal surface. Mesenteric and serosal 

afferents respond to VFH probing of their receptive fields, and to high intensity stretch, but not 

to mucosal stroking, muscular afferents respond to low levels of stretch and VFH probing, but 

not to mucosal stroking, muscular-mucosal afferents respond to all 3 stimuli, and mucosal 

afferents only response to mucosal stroking. Multiple studies have used this type of afferent 

characterisation, although many are from the same group (Lynn and Blackshaw, 1999, Hicks et 

al., 2002, Brierley et al., 2004, Page et al., 2004, Page et al., 2005, Brierley et al., 2005b, Jones 

et al., 2005, Brierley et al., 2008, Brierley et al., 2009, Hughes et al., 2009a, Feng and Gebhart, 

2011). A summary of the spinal subtypes described using this method can be found in figure 

1.02, and table 1.02. 

1.2.4.1 Vascular afferents 

1.2.4.1.1 Splanchnic and pelvic 

The term vascular afferents has been suggested to encompass both serosal and mesenteric 

afferents since they terminate predominantly on the vasculature and display similar response 

profiles to mechanical stimuli for example they respond to VFH probing of their receptive fields 

but not tissue stretching (up to 5g) or mucosal stroking (Song et al., 2009) (figure 1.02). More 
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recently it has been speculated that subgroups of vascular afferents may exist e.g. “silent” 

afferents (Brookes et al., 2013). The terms are used interchangeably here. The first “vascular” 

afferent was described in 1966, as a movement receptor, responding to light probing of areas 

surrounding the mesenteric artery. These afferents also responded to distortion of the 

mesentery and to balloon distension of the bowel to ~30 mm Hg (Bessou and Perl, 1966). 

Indeed, the first study to employ a myriad of mechanical stimuli to characterise splanchnic 

afferents in the mucosal surface up flat sheet preparation from the rat colon developed by 

Blackshaw, described serosal afferents as responsive to “firm blunt probing” of the mucosa, to 

circumferential stretch (0-10mm) but adapted rapidly to the stimulus, and to lighter than firm 

probing of the serosal surface, were considered serosal afferents However, the authors noted 

that a mucosa-up orientation of the tissue made serosal probing difficult and not always 

possible (Lynn and Blackshaw, 1999). Another study on splanchnic fibres innervating the flat 

sheet rat colon also identified serosal afferents, but these only responded to probing  and not 

tissue stretch (0-8 mm)  (Hicks et al., 2002). Additionally in this report, mesenteric afferents 

with receptive fields in the mesentery were also described (Hicks et al., 2002). In the mucosa 

up flat sheet preparation from the mouse colon, the splanchnic nerve also contains both 

serosal afferents and mesenteric afferents which are sensitive only to probing of their 

respective receptive fields i.e. serosa vs. mesentery (Brierley et al., 2004). The sensitivity of 

serosal units to tissue stretch appears to be linked to the intensity and nature of the applied 

stretch. For example responsiveness of serosal afferents to high intensity distension 

(>50mmHg) when kept as a tubular preparation and circumferential stretch (>5g) when 

applied by a claw attached to a cantilever system has recently been reported (Brierley et al., 

2008, Brierley et al., 2009). Although stretching of the entire flat sheet by way of a clip 

attached the length of the tissue up to a force  equivalent of ~17 grams (0.170 newtons over 

34 seconds) has been reported to have no effect on serosal afferents (Feng et al., 2012b). In 

the studies from the Blackshaw lab using a claw and cantilever system to deliver a more focal 

stretch, the highest stretch used, 11g, was enough to activate 80% of serosal afferents (Hughes 
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et al., 2009a). It would seem likely that the gradual application of the stretching stimulus may 

account for these discrepancies, whereby slow application of stretch, even to potentially 

noxious levels, does not activate serosal afferents. 

In both rat and mouse, these vascular afferents make up more than 80% of the 

afferent fibres in the splanchnic nerve reflecting a role for splanchnic spinal afferents in the 

detection of noxious stimuli in the colon (Hicks et al., 2002, Brierley et al., 2004). By contrast in 

the mouse colon, pelvic afferents do not contain mesenteric afferents, but only serosal 

afferents, which constitute only about a third of the afferent fibre population. (Brierley et al., 

2004, Hughes et al., 2009a, Feng and Gebhart, 2011).  

Serosal and mesenteric afferents (or vascular afferents) have been implicated as the 

principle pathway by which visceral pain is transduced and relayed to the CNS, due to their 

role as high threshold mechanoreceptors, and hence restricted response to only noxious levels 

of mechanical stimuli (Knowles and Aziz, 2009). Serosal and mesenteric afferents are also 

chemosensitive to a vast range of noxious or inflammatory mediators including capsaicin, 5-

HT, BK, histamine, ATP etc. (Berthoud et al., 2001, Hicks et al., 2002, Brierley et al., 2005a). 

1.2.4.2 “Silent” afferents 

Another subtype of afferents termed either “silent” or “mechanically insensitive afferents” 

(MIAs) have been identified in a number of species. Their first description in visceral afferents 

was in cat urinary bladder (Habler et al., 1988, Habler et al., 1990). However, methodological 

issues in these studies such as restricted levels of pre-inflammation distension, to pressures 

which barely reached the activation threshold for high threshold mechanoreceptors, may be a 

contributing factor to their apparent mechanoinsensitivity in normal tissue (Cervero, 1994). 

“Silent” afferents have subsequently been reported in both pelvic and splanchnic afferent 

nerves (Lynn and Blackshaw, 1999, Feng and Gebhart, 2011). It has been report that up to 33% 

of splanchnic and 23% of pelvic afferents may be MIAs (Feng and Gebhart, 2011). However, 
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since electrically stimulating the axons peripherally may also stimulate sympathetic efferent 

fibres, there may have been an overestimation of the proportion of MIAs (Brookes et al., 

2013).  

“Silent” afferents are unresponsive to any mode of mechanical stimuli until sensitised 

by inflammatory mediators, such as BK, 5-HT, histamine, PGE2, and capsaicin (usually given as 

an inflammatory soup) after which they respond to probing stimuli, but not stretching of the 

tissue or stroking of the mucosa (Lynn and Blackshaw, 1999, Feng and Gebhart, 2011). Hence, 

the majority of “silent” afferents are likely to have vascular endings. “Silent” afferents are 

proposed to be functionally distinct to other visceral afferents, focused more on injury and 

inflammation (Cervero, 1994).  However, whether they truly represent a functionally distinct 

subtype of afferent fibre is still unclear. For example, these fibres could represent a population 

of very high threshold vascular afferents that are not activated by the levels of noxious stimuli 

present in the viscera. Inflammation and subsequent sensitisation, acute and long term 

(changes in gene expression) may reduce their activation threshold and increasing their 

excitability. Hence their functionality may be similar to that of other high threshold vascular 

afferents (Cervero, 1994, Brookes et al., 2013). 

1.2.4.3 Muscular afferents 

1.2.4.3.1 Vagal  

IMAs are located in the circular and longitudinal muscle of the gut wall and in the myenteric 

plexus and are more prevalent in the upper GI tract, especially in the fundus and pyloric 

sphincters (Berthoud and Neuhuber, 2000, Wang and Powley, 2000). IMAs consist of long 

axons tracking parallel to the respective muscle layer, with shorter perpendicular branches. 

IMAs may transmit information on muscle stretch and length but are unlikely to be important 

in nociception (Phillips and Powley, 2000, Powley and Phillips, 2002, Knowles and Aziz, 2009) 

(figure 1.02).  
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IGLEs terminate as numerous flattened endings that together with the connective 

tissue encapsulate the myenteric plexus (Nonidez, 1946). They have endings parallel to the 

muscle fibres in the wall of the intestine, with fine branching endings that extend into the 

myenteric plexus, allowing them to respond in-series to mechanical tension (Brookes et al., 

2013) (figure 1.02). IGLEs are also present in the submucosal plexus in smaller numbers 

(Castelucci et al., 2003). IGLEs are low threshold slowly adapting mechanosensors, sensing 

physiological levels of sheering forces as the smooth muscle of the GI tract contracts 

(Neuhuber, 1987, Zagorodnyuk and Brookes, 2000, Lynn et al., 2003). IGLEs are found in the 

upper GI tract, the small intestine and to a lesser extent in the proximal colon (Berthoud et al., 

1997, Fox et al., 2000). IGLEs can also sense chemical mediators such as ATP, the relevance of 

which is unknown (Page et al., 2002, Zagorodnyuk et al., 2003). There is no established role for 

IGLEs in nociception (Knowles and Aziz, 2009). 

1.2.4.3.2 Splanchnic and pelvic  

Afferents responsive to circumferential stretch, which adapted slowly, but were not responsive 

to mucosal stroking, were classified as muscular afferents (figure 1.02). These were initially 

described in the splanchnic innervation of the rat colon (Lynn and Blackshaw, 1999, Hicks et 

al., 2002), but have since been described in both the splanchnic and pelvic innervation of the 

mouse colon (Brierley et al., 2004). Muscular afferents constitute up to a fifth of splanchnic 

afferents, and up to a quarter of pelvic afferents. There is a dearth of evidence linking either 

splanchnic or pelvic muscular afferents to any nociceptor activity. Instead they are likely to 

signal physiological information about tension, length and contraction of the muscle (Knowles 

and Aziz, 2009).  

1.2.4.3.2.1 rIGLEs 

Pelvic afferents can have endings between the smooth muscle layers of the gut wall. These 

endings are similar structure, although smaller and less complex, to vagal IGLEs displaying 
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flattened laminar endings surrounding the myenteric plexus (Lynn et al., 2003). They have only 

been demonstrated in rectum, and are so called rectal IGLEs (rIGLE). rIGLEs are reported to be 

low threshold, slowly adapting tension receptors responding to both rectal distension and 

contraction (Lynn et al., 2003). It is likely that rIGLEs arise from pelvic afferents originating 

from sacral DRGs, and that they have physiological rather than nociceptive roles (Lynn et al., 

2003).  

1.2.4.4 Mucosal Afferents 

1.2.4.4.1 Vagal 

Vagal mucosal afferents were first reported in the cat in 1957 and responded to compression 

of the intestine but not to distension (Paintal, 1957). Subsequently they have been described 

in the oesophagus, stomach, or small intestine of the ferret (Page and Blackshaw, 1998), cat 

(Iggo, 1957), rat (Clarke and Davison, 1978) rabbit (Andrews and Andrews, 1971), mouse (Page 

et al., 2002) and sheep (Harding and Leek, 1972) where they respond to light stroking of the 

mucosa but not to circumferential stretch or distension. Vagal mucosal afferents also display a 

range of chemosensitivity, including responsiveness to 5-HT, the P2X receptor agonist α, β 

methylene ATP (meATP), cayenne pepper (transient receptor potential vanilloid 1 (TRPV1) 

agonist), mustard oil (transient receptor potential ankyrin 1 (TRPA1) agonist), organic and 

inorganic acids, H20, casein hydrolysate etc. (Paintal, 1954, Clarke and Davison, 1978).  

Mediators such as cholecystokinin and peptide YY can activate vagal mucosal afferents to help 

regulate satiety (Smith et al., 1981, Blackshaw and Grundy, 1990, Abbott et al., 2005). Mucosal 

afferents compose up to 2/3s of the vagal afferent pathway (Page and Blackshaw, 1998, 

Berthoud et al., 2001). A number of vagal mucosal endings have been described, some 

spanning the length of the villi others terminating before they enter the villi (Powley and 

Phillips, 2002) (figure 1.02).   
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1.2.4.4.2 Splanchnic and Pelvic 

Mucosal afferents also exist in the splanchnic and pelvic pathways of the spinal nerve in 

murine species (figure 1.02). These afferents are responsive to stroking of the mucosal surface 

with a 10mg VFH, and to probing but not to circumferential stretch (Lynn and Blackshaw, 1999, 

Hicks et al., 2002, Brierley et al., 2004, Feng and Gebhart, 2011). Mucosal afferents are 

relatively rare in mouse splanchnic pathways (1-4%), but constitute up to a quarter of pelvic 

afferents in mice (e.g. (Brierley et al., 2004, Feng and Gebhart, 2011). There is evidence for the 

reverse in rats, splanchnic pathways comprising 14-24% of afferent fibres, while 6% of pelvic 

afferents respond to stroking of the mucosa (Sengupta and Gebhart, 1994, Lynn and 

Blackshaw, 1999, Hicks et al., 2002). Spinal mucosal afferents respond to a variety of chemical 

mediators such as 5-HT and capsaicin (Lynn and Blackshaw, 1999, Hicks et al., 2002), 

suggesting a potential role in chemonociception (Knowles and Aziz, 2009).  

1.2.4.5 Muscular-mucosal 

1.2.4.5.1 Vagal tension-mucosal and pelvic muscular-mucosal afferents 

Recordings from the vagal innervation the ferret oesophagus revealed a subtype of afferent 

fibre that was responsive to both stroking of the mucosa and to circumferential stretch (Page 

and Blackshaw, 1998). A similar subtype of afferent was described in pelvic afferents 

innervating the mouse colon. These were responsive to blunt probing of the mucosa, 

stretching of the colon wall, and to 10mg stroking of the mucosal surface and were termed 

muscular-mucosal afferents (Brierley et al., 2004) (figure 1.02, table 1.02). The location of 

these vagal tension-mucosal and pelvic muscular-mucosal afferent terminals is unclear. It has 

been suggested that the muscularis externa, and the lamina propria in the mucosa both 

contain muscular-mucosal terminals (Page and Blackshaw, 1998, Blackshaw and Gebhart, 

2002, Brierley et al., 2004). However, it has also been speculated that endings at 1 site in the 

subepithelial plexus is enough to sense both modes of mechanical stimuli (Zagorodnyuk et al., 
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2010, Brookes et al., 2013). Overall, tension-mucosal afferents phenotype has been suggested 

to contribute to approximately ~16% of vagal afferents innervating the oesophagus (Page and 

Blackshaw, 1998). Similarly, muscular-mucosal afferent make up about 1 quarter of the pelvic 

innervation of the mouse colon (Brierley et al., 2004, Hughes et al., 2009a, Feng and Gebhart, 

2011). Although the function of these afferents is unclear, they have been proposed to play a 

role in sensing movement of material in the GI tract, considering their responsiveness to light 

mucosal stroking (Brookes et al., 2013).  
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Figure 1.02: Spinal and vagal afferent terminals in the gut. Shows 5 subtypes of spinal afferent 

terminals in the gut; mesenteric, serosal, muscular, muscular-mucosal, and mucosal afferents, 

and 3 types of vagal afferent terminals, intra ganglionic laminar endings (IGLEs), Intra muscular 

arrays (IMAs), and mucosal afferents. Mesenteric and serosal afferents have terminals in the 

mesentery and serosa, respectively, both closely associated with blood vessels (red). Spinal 

muscular afferents have terminals in the longitudinal and circular muscle. Vagal IGLEs 

terminate as numerous flattened endings that together with the connective tissue encapsulate 

the myenteric plexus. They also have endings parallel to the muscle fibres in the wall of the 

intestine, with fine branching endings that extend into the myenteric plexus. Vagal IMAs have 

long axons that run parallel to the respective muscle layer, and have shorter perpendicular 

branches. The location of muscular mucosal afferent terminals is not fully understood but they 

are thought to have their terminals in either the muscularis externa, and the laminar propria, 

or the subepithelial plexus. Vagal and spinal mucosal afferents terminate in the mucosa of the 

gut.  
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Table 1.02: Outlines each spinal afferent subtype and which mechanical stimuli they respond 

to. (*) Activated at very high levels of stretch 

 

  

Afferent Subtype Von Frey Hair Muscular Stretch Mucosal Stroking

Mesenteric  * 

Serosal  * 

Muscular   

Muscular-mucosal   

Mucosal   
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1.3 OVERVIEW OF THE ENTERIC NERVOUS SYSTEM 

1.3.1 Overview 

The ENS provides the postganglionic efferent innervation of the parasympathetic component 

of the ANS and a major final effector pathway for the action of postganglionic sympathetic 

efferent fibres, in addition to containing its own intrinsic populations of sensory and 

interneurons (Sasselli et al., 2012). The ENS is arranged as a complex network of glial cells and 

neurons, approximately 108 neurons, a number comparable to the spinal cord, that extend the 

entire length of the GI tract (Furness and Costa, 1979, Grundy and Schemann, 2007). It is 

organised into 2 plexuses, the myenteric plexus, located between the circular and longitudinal 

smooth muscle layers, and the submucosal plexus, between the circular muscle and the 

mucosa (Gershon, 2011). In humans, the submucosal plexus is divided into 3 layers, the outer, 

intermediate and inner plexus, the latter located just below the muscularis mucosae (Hoyle 

and Burnstock, 1989, Schemann and Neunlist, 2004). 

The ENS consists of many different types of neurons including, intrinsic primary 

afferent neurons (IPAN), motor neurons, interneurons, vasomotor neurons, secretory neurons, 

rectospinal, and intestinofugal afferent neurons (IFAN) (Costa et al., 2000, Furness, 2000) 

(figure 1.03). The ENS, with limited contribution from the CNS, can regulate motility, via 

control of the smooth muscle, and mucosal secretion into the lumen of the GI tract (Goyal and 

Hirano, 1996, Costa et al., 2000, Furness, 2000, Grundy and Schemann, 2007). ENS neurons use 

a multitude of neurotransmitters including acetylcholine, nitric oxide, substance P, vasoactive 

intestinal polypeptide (VIP), ATP, dopamine, Neuropeptide Y, and 5-HT (Benarroch, 2007).  

IPANs are contained in both plexuses and exhibit considerable branching, extending to 

the lamina propria of the mucosa, lying below the epithelial lining. Enteroendocrine cells such 

as enterochromaffin cells (EC) can sense mechanical stimuli such as distension of the gut wall, 

and mucosal deformation. In response they release 5-HT into the lamina propria, which 

subsequently can activate IPANs. Similarly, ECs can sense the chemical contents of the gut 
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lumen including nutrients such as glucose and toxins, and subsequently activate IPANs via a 

similar 5-HT dependent mechanism (Gershon, 2000, Gershon, 2003, Raybould et al., 2003). 

Hence mechanical and chemical stimuli indirectly activate IPANs (Gershon, 2005). IPANs 

transmit this information to ascending and descending interneurons, which synapse with the 

excitatory (oral side of IPAN) and inhibitory motor neurons (aboral side IPAN), that control the 

contraction and relaxation of the gut, respectively, through their interaction with the 

interstitial cells of Cajal, which regulate smooth muscle contractility (Costa et al., 2000, 

Furness, 2000, Benarroch, 2007).  This coordinated oral contraction and aboral relaxation is 

the basis of peristaltic movement in the human GI tract (Schemann and Neunlist, 2004).  

IPANs and enteroendocrine cells are involved in the detection of noxious stimuli in gut 

lumen (Furness, 2006). Toxins such as cholera or E. coli stimulate the release of 5-HT and/or 

peptides from EC cells or other enteroendocrine cells (Lundgren, 2002). These mediators 

activate IPANs, which in turn may alter motility and increase mucosal secretion through their 

interactions with interneurons and motor neurons, resulting in diarrhoea to promote expulsion 

of the toxins (Furness, 2006).  

Secretory motor neurons are located in both the myenteric and the submucosal 

ganglia, where they are much more abundant, and project to the mucosa. Vasomotor neurons 

are restricted to the submucosa and project to the mucosa and to blood vessels in the local 

environment (Costa et al., 2000). They receive inputs from myenteric and submucosal IPANs, 

which regulate the secretory motor and vasomotor reflexes that control mucosal secretion and 

absorption as well as dilation of local blood vessels (Furness, 2000, Benarroch, 2007). These 

reflexes are influenced centrally by extrinsic sympathetic neurons, with which they synapse 

(Costa et al., 2000, Furness, 2000). IPANs themselves can act as secretory motor neurons via 

their mucosal terminations (Furness et al., 2004).  

Interneurons project either orally (ascending) or anally (descending) forming chains as 

they link between different ENS neurons (Kunze and Furness, 1999). Different subtypes of 

interneurons can be characterised based on the specific groups of neurotransmitters they 
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possess. Interneurons can exert an inhibitory or excitatory effect upon neurons with which 

they synapse (Furness, 2000).  

Another distinct type of intrinsic neuron has been identified in the rectum of rats 

(Doerffler-Melly and Neuhuber, 1988). These intrinsic neurons, termed rectospinal neurons, 

have their cell bodies within the myenteric plexus and project to the dorsal horn of the spinal 

cord. They are the only type of intrinsic neuron that directly project to the CNS. However, their 

distribution is restricted to the distal rectum, and to date they have only been identified in rats 

(Doerffler-Melly and Neuhuber, 1988, Neuhuber et al., 1993, Suckow and Caudle, 2008).  

Similar to rectospinal neurones but far more numerous and widespread in their 

distribution IFANs also have cell bodies located in the myenteric plexus and project beyond the 

gut. However, unlike rectospinal neurones IFANs only project as far as the sympathetic PVG, 

where they synapse on postganglionic neurones and can help regulate autonomic function 

(Crowcroft et al., 1971, Szurszewski et al., 2002). In addition, IFANs are also reported to send 

projections within the gut that synapse with IPANs (Costa et al., 2000, Furness, 2000). IFANs 

are mechanoreceptors that respond to stretch not tension (Weems and Szurszewski, 1978). 

Paravertebral sympathetic post ganglionic neurones receive excitatory synaptic input from 

IFANs following activation by distension triggering a sympathetically mediated reduction in gut 

motility and secretion (Costa and Furness, 1984, Messenger and Furness, 1993, Miller and 

Szurszewski, 1997, Suckow and Caudle, 2008). This reflex is believed to control the inherent 

tendency of gastrointestinal smooth muscle to contract upon luminal filling. IFANs thereby 

facilitate the physiological stretching of the gut by preventing large increases intraluminal 

pressure (Szurszewski et al., 2002).  

Enteric glia also play a vital role in enteric function. Enteric glia greatly out number 

neurons in the ENS and are located in the myenteric and submucosal plexi, where they 

surround axonal bundles (Wedel et al., 1999, Ruhl, 2005). Glial processes are in close contact 

not only with enteric neurones (which are often partially enveloped by flattened glial end 

feet), but also other cell types within the gut such epithelial cells, endothelial cells and smooth 
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muscle cells (Ruhl, 2005). Enteric glia contain many of the chemical precursors to various 

neurotransmitters, and express their receptors, which helps regulate neurotransmission (Ruhl, 

2005, Benarroch, 2007). Glia may also influence blood flow, epithelial cell permeability and 

immunity in the GI tract (Ruhl, 2005). 
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Figure 1.03: Overview of the enteric nervous system. Intrinsic primary afferent neurons 

(IPANs) (orange) have their cell bodies in the submucosal or myenteric plexus and project to 

the mucosa. Here they can detect both mechanical and chemical stimuli. IPANs have oral 

projections, which synapse with ascending interneurons (light grey) and ascending excitatory 

motor neurons (dark grey) that control the contractile peristaltic reflex. IPANs also have anal 

projections, which synapse with descending interneurons (red) and descending inhibitory 

motor neurons (dark green) and control the inhibitory reflex and resultant smooth muscle 

relaxation. Secretory motor (light green) and vasomotor neurons (pink) have projections to the 

mucosa. They receive inputs from myenteric and submucosal IPANs, which regulate the 

secretory motor and vasomotor reflexes that control mucosal secretion and absorption as well 

as dilation of local blood vessels. Intestinofugal afferent neurons (IFANs) (blue) cell bodies are 

located in the myenteric plexus. They have projections outside the gut wall to the sympathetic 

prevertebral ganglion (PVG). IFANs can sense stretch of the smooth muscle and send 

excitatory signals to the PVG, which in turn provide extrinsic input to the smooth muscle 

inhibiting motility and mucosal secretion, and controlling contractility of the smooth muscle in 

the wall of the gut. IFANs project to IPANs within the gut wall.  
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1.4 NERVE FUNCTION 

1.4.1 Ionotropic and metabotropic signalling 

Ion channels are porous transmembrane proteins that allow the passage of ions across the 

plasma membrane based on their reception of certain stimuli. Ion channels are selectively 

permeable to ions based on their size and charge. Typically ion channels are gated, whereby 

certain stimuli cause a conformation change in the channel structure, which can cause the ion 

channel to open or close (Purves, 2012). For example mechanically gated ion channels are 

regulated by mechanical stimuli such as stretch, ligand gated ion channels open and close in 

response to neurotransmitters, voltage gated ion channels are responsive to changes in the 

membrane potential and a number of “stimulus transducing” channels are gated by exogenous 

chemicals in the microenvironment.  The opening of ion channels and subsequent flux of ions 

through the channel leads to fast changes in membrane potential and is the major pathway of 

stimulus transduction in sensory nerves  There are also resting ion channels that are not gated 

and are generally open at rest, contributing the resting membrane potential (Kandel, 2012). 

Metabotropic receptors are transmembrane proteins, whose intracellular domains are 

linked to effector proteins, which when activated initiate downstream signalling cascades. 

Thus metabotropic receptors modulate nerve excitability indirectly causing changes in the 

activity of other proteins and ultimately ion channel function. The most common metabotropic 

receptors are G-protein coupled receptors (GPCRs) which consist of 7 transmembrane 

spanning domains, and are linked intracellularly to GTP-proteins (G-proteins). Classically G-

proteins have 3 subunits, α, β, and γ (Kandel, 2012). The α G protein subunit is separate from 

the β, and γ subunits. However, upon binding of a guanosine-5’-diphosphate (GDP) molecule, 

the α subunit binds to the β, and γ subunits to form an inactive G-protein trimer. When a 

metabotropic receptor is activated by its ligand, the subsequent conformational changes 

facilitates the replacement of GDP with Guanosine-5’-triphosphate (GTP) which in turn enables 
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the  dissociation of the alpha subunit and its translocation into the cytoplasm which in turn 

leads either to 1) direct alterations of ion channel permeability  or 2) activation of effector 

proteins e.g. adenylate cyclase, which in turn can stimulate second messenger systems e.g. 

cyclic adenosine mono phosphate (cAMP), causing downstream signalling cascades that can 

alter ion channel conductivity, neuronal metabolism and regulate gene transcription and 

protein expression (Kingsley, 2000).  

There are different types of G-proteins, which are linked with distinct effector proteins 

and second messengers. G stimulatory proteins (Gs proteins) stimulate the activity of 

adenylate cyclase thereby increasing the production of cAMP, which in turns activates PKA, 

which can phosphorylate target proteins altering their function. In contrast, G inhibitory 

proteins (Gi/o proteins) inhibit the activity of adenylate cyclase, resulting in a decreased 

production of cAMP and reduction in PKA activity (Purves, 2012). Gq/11 proteins utilise a 

different intracellular pathway, stimulating the activity of phospholipase C, which in turn 

hydrolyses membrane phosphoinositides resulting in the formation of inositol phosphates and 

diacylglycerol (DAG), which can then cause Ca2+ release and activate the  protein kinase C (PKC) 

pathway, respectively (Nichols and Nichols, 2008). 

Enzyme linked receptors are a separate type of metabotropic receptors. Their 

intracellular domains are linked to enzymes, most notably protein kinases e.g. tyrosine kinase. 

The activity of the linked enzyme is regulated by the binding of chemical mediators to the 

receptors extracellular binding site. Upon activation, protein kinases can phosphorylate target 

proteins facilitating the binding of further signalling molecules and enzymes to the receptor, 

which in turn triggers their intracellular signalling cascades (Purves, 2012).  

1.4.2 Membrane potential  

The resting membrane potential of a neuron arises from the difference in the concentration 

and movement of charged ions between the intracellular cytoplasmic side of the cell 
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membrane and the extracellular matrix. Typically in DRGs the resting membrane potential is 

approximately -55 to -50 millivolts (mV). Intracellular concentrations of ions such as potassium 

(K+), sodium (Na+), chloride (Cl-) and calcium (Ca2+) and there movement through respective ion 

channels open at the resting membrane potential (so called “leak currents”) dictate the resting 

membrane potential of the cell. In addition the activity of the sodium/potassium ATPase 

pump, which pumps a ratio of 3K+:2Na+ into versus out of the cell helps set the resting 

membrane potential. As a consequence of the pump’s activity potassium ions are more 

concentrated inside the cell, sometimes being 30 times higher than the external concentration. 

By contrast, sodium, chloride and calcium ions are more highly concentrated outside the cell 

(Alberts, 2008, McCormick, 2008). 

1.4.3 Generation of action potentials in sensory nerves 

The generation of action potentials (AP) in sensory nerves begins with a stimulus, for 

example mechanical, chemical, or thermal stimuli. These stimuli are transduced via different 

receptors on the nerve terminal. These receptors can either be ionotropic ion channels, or 

metabotropic G protein coupled receptors, which when activated depolarise the neuron by 

allowing the entry of cations into the cell (ionotropic) or by releasing stores of intracellular 

calcium or altering the activity of other receptors (metabotropic) (Siegelbaum, 2000). This 

stimulus evoked depolarisation is referred to as a “generator potential”.  If the generator 

potential produced by a given stimulus is large enough to depolarise the membrane potential 

to the threshold for action potential generation (~-30mV in DRGs), then voltage gated Na+ 

channels (VGSC) involved in the action potential up-stroke will open causing an influx of Na+ 

ions down their electrochemical gradient (Alberts, 2008).  The influx of these positive charged 

Na+ ions depolarises the membrane potential further, thereby opening additional voltage 

gated Na+ channels resulting in more Na+ ion entry. This feedback loop continues until the 

membrane potential reaches ~+30mV, close to Na+ equilibrium potential (McCormick, 2008). 

At this point the voltage gated Na+ channels  inactivation is such that the net influx of positive 
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Na+ ions into the cell begins to fall, and continues to decline until the influx of sodium return to 

baseline levels. At the same time voltage gated K+ channels also open in response to the 

depolarisation of the membrane potential, however they exhibit much slower activation 

kinetics. Once opened, K+ flows out of the cell down its electrochemical gradient. The 

combination of the cessation of Na+ entry and the rapid outflow of K+ ions decreases the 

permeability of the cell membrane to Na+ relative to K+ and quickly brings the membrane 

potential of the neuron back towards resting levels (Alberts, 2008). Indeed the rapid efflux of 

K+ ions causes the neuron to hyperpolarise falling below its resting membrane potential. 

Hyperpolarisation quickly equilibrates as voltage gated K+ channels close and inwardly 

rectifying K+ channels open allowing K+ ions to flow back into the cell, restoring the resting 

membrane potential (McCormick, 2008). When voltage gated Na+ channels are completely 

inactivated, no stimulus regardless of strength can induce an AP. This is called the absolute 

refractory period and it occurs from depolarisation until hyperpolarisation (Alberts, 2008, 

McCormick, 2008).During hyperpolarisation a period exists where a stronger than normal 

stimulus is required to generate an AP. This is called the relative refractory period (Alberts, 

2008, McCormick, 2008).  

1.5 VISCERAL PAIN 

Visceral pain is the commonest pain produced by disease, and is a major symptom of both IBS 

and IBD. The characteristics of visceral pain differ to that of pain originating in somatic 

structures (Robinson and Gebhart, 2008). Despite this, the majority of information about pain 

comes from experiments on somatic, non-visceral systems, and as a result our understanding 

of the mechanisms involved in visceral pain is less extensive compared to those of somatic 

pain (Grundy, 2004, Robinson and Gebhart, 2008). In response to peripheral disease, visceral 

pain arises from the activation of the pain sensitive nerves that innervate the gut. These 

signals are then relayed to the spinal cord, where they may be amplified as part of a process 

referred to as central sensitisation or inhibited by descending inhibitory input from the CNS. 
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Responses to the spinal cord are then relayed to a number of brain regions (e.g. thalamus, 

limbic system, somatosensory cortex and prefrontal cortex) collectively known as the pain 

processing matrix, where the conscious perception of pain including the discriminatory, 

emotional, and cognitive aspects occur.  

As pain is a conscious complex experience it is difficult to measure even in clinical 

studies. As a result, it is common to measure the activation of pain processing pathways 

instead, for example in conscious animal studies, behavioural responses such as paw 

withdrawal may be used as a surrogate for pain. While in in vitro studies it is common to 

measure electrical activity in nerves thought to be involved in the processing of pain. The term 

nociception was developed to describe these experiments in which the activation of sensory 

pathways by noxious (tissue damaging) stimuli is studied rather than pain itself, and 

nociceptors for sensory nerve endings, which respond to noxious stimuli. 

1.5.1 Mechanisms of visceral pain 

Transduction of mechanical stimuli is essential for the normal GI functioning, e.g. bolus 

sensation and peristalsis. This is normally a subconscious process, controlled by the ENS with 

inputs from vagal and spinal extrinsic nerves that signal to the CNS (Furness, 2006). Vagal 

nerve endings in the mucosa and in the muscle layers of the gut, IMAs and IGLEs, are 

predominantly low threshold afferents sensing physiological levels of mechanical and chemical 

stimuli (Powley and Phillips, 2002, Lynn et al., 2003). Spinal nerve endings in the serosa, 

mesentery, and mucosa tend to be tonic, high threshold or “silent” afferents signalling noxious 

stimuli, hence have been implicated in visceral pain (Cervero, 1994). In uninflamed conditions, 

noxious mechanical, chemical and thermal stimuli are thought to be sensed by transducing 

channels, such as transient receptor potential (TRP) channels, acid sensing ion channels (ASIC) 

and  purinoceptors, expressed on afferent nerves (Knowles and Aziz, 2009). As discussed above 

the activation of these channels leads to the formation of generator potentials and ultimately 
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the firing of an action potential (Knowles and Aziz, 2009). During inflammation, conditions 

under which pain signals are transduced are altered. 

1.5.1.1 Peripheral sensitisation 

Peripheral visceral afferent hypersensitivity is an established mechanism causing GI 

pain (Bueno and Fioramonti, 2002). A myriad of inflammatory chemical mediators have been 

suggested to play a role in visceral peripheral sensitisation. These mediators can exert their 

effects by direct activation of visceral afferents, sensitisation of visceral afferents with 

concomitant alteration of visceral afferent phenotype, or inducing neurogenic inflammation 

(Kirkup et al., 2001). Upon insult or injury, e.g. mechanical stimuli, toxins etc., cells become 

damaged causing a migration of inflammatory cells to the area. Cells such as mucosal epithelial 

cells, enteroendocrine cells, enterochromaffin cells, macrophages, degranulating mast cells 

and other immune cells release mediators such as ATP, BK, 5-HT, histamine, PGE2, NGF etc. 

These mediators have been shown to directly activate visceral afferents; for example 

adenosine (Kirkup et al., 2001), ATP (Wynn and Burnstock, 2006), BK (Brunsden and Grundy, 

1999, Brierley et al., 2005b), histamine (Kreis et al., 1998), and 5-HT (Hicks et al., 2002). These 

mediators, through activation of their receptors, GPCRs, and ligand gated ion channels ,recruit 

a range of intracellular signalling pathways such as PLC, PKA, PKC, mitogen activated protein 

kinases (MAPK), pERK, adenylate cyclase (Woolf and Ma, 2007). These signalling pathways can 

subsequently modulate, frequently by phosphorylation, existing tonic inhibitions, activation, 

kinetics, internalisation and trafficking of receptors e.g. TRP channels, P2X receptors, and ion 

channels e.g. VGSC, and under chronic inflammatory conditions can cause longer term changes 

in gene transcription and expression (McMahon, 2004, Zhang et al., 2005) (figure 1.04). These 

changes describe the plasticity of visceral afferents, which can result in sensitisation of the 

nerve (Knowles and Aziz, 2009). 
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Indeed, the expression of a number of channels/receptors is increased by 

inflammation; ASICs, voltage gated sodium channel (NaV) 1.8 and NaV1.9, TRPV1, P2X3, which 

may influence sensitisation (Yiangou et al., 2001a, Yiangou et al., 2001d, Yiangou et al., 2001c, 

Yiangou et al., 2001b). Changes in the distribution and size of nociceptor endings may also 

contribute to the peripheral sensitisation of afferent nerves (Bueno and Fioramonti, 2002). 

Together, this results in prolonged nerve stimulation, lowering of the threshold for activation 

of afferent nerves including nociceptors, and causing a greater activation of afferents in 

response to a given stimulus (McMahon, 2004). The activation of afferents by normally non-

noxious stimuli to activate the pain pathway is called allodynia (Woolf and Ma, 2007). 

Additionally, responses to noxious stimuli can be exaggerated, known as hyperalgesia (Anand 

et al., 2007). Collectively the occurrence of these 2 phenomena is referred to as 

hypersensitivity.  

1.5.1.1.1 Neurogenic inflammation and sensitisation 

The milieu of mediators released during an inflammatory event, especially biogenic 

amines e.g. histamine and 5-HT, can stimulate nerves to release neuropeptides such as 

calcitonin gene related peptide (CGRP) and substance P. These in turn promote the release of 

nerve growth factor (NGF) from immune cells such as lymphocytes and mast cells (Barouch et 

al., 2000). The release of NGF in turn augments mast cell degranulation and stimulates the 

release of the neuropeptides substance P and CGRP from neurons, which in turn promote the 

release of more NGF, hence exhibiting a self-sustaining loop (Bueno and Fioramonti, 2002). 

CGRP and substance P are expressed by neurons in the ENS. It is conceivable that enteric 

neurons can release these neuropeptides in response to noxious stimuli, hence augmenting 

neurogenic inflammation (Knowles and Aziz, 2009). A summary of peripheral sensitisation can 

be found in figure 1.04. 
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1.5.1.1.2 Potential causes of peripheral sensitisation in bowel diseases 

Peripheral sensitisation is a contributing factor to the visceral pain reported by IBS and 

IBD patients. Changes in the microbiota of the gut are thought to be a contributing factor in 

the pathogenesis of IBS (Ohman and Simren, 2013). Indeed, probiotic formulas, which included 

either lactobacilli or bifidobacteria, aimed at restoring healthy microbiota were analgesic in IBS 

patients (Halpern et al., 1996, O'Mahony et al., 2005, McKernan et al., 2010). Proteins and 

products released by bacteria can activate afferent nerves in the colon, which may also 

activate both the innate and adaptive immune responses (Liu et al., 2005a, Xu et al., 2009, 

Ochoa-Cortes et al., 2010).  

Similarly, a compromised intestinal epithelial barrier in the lumen of the gut, which is 

evident in IBS patients (Dunlop et al., 2006, Aerssens et al., 2008, Zhou et al., 2009, Gecse et 

al., 2012), may allow easier access of the contents of the gut to the wall of the intestine. This in 

turn promotes activation of the immune system and the development of inflammation, which 

can activate and alter the sensitivity of afferent nerves as described above (Hughes et al., 

2013).    

In IBS, the role of the innate immune system (mast cells, macrophages, dendritic cells 

etc.) has been studied more extensively than the adaptive immune system (T cells, B cells). 

Mast cells are of particular interest, with studies in IBS patients, with studies showing either 

increased or no change in mast cell numbers e.g. (O'Sullivan et al., 2000, Barbara et al., 2004, 

Barbara et al., 2007, Park et al., 2006, Braak et al., 2012). Of importance are the reports of 

mast cells, which are in closer proximity to the terminals of afferent nerves in the colon of IBS 

patients (Barbara et al., 2004). Moreover, in IBS, mucosal mast cells release excessive amounts 

of mediators (histamine, 5-HT and tryptase) which activate ENS neurons and extrinsic sensory 

neurons, and produce hypersensitivty (Bueno et al., 1997, Vergnolle et al., 2003, Barbara et al., 

2006). Similarly, cytokines released by immune cells can sensitise colonic afferents (Xia et al., 
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1999, Ibeakanma and Vanner, 2010, O'Malley et al., 2011). Taken together this demonstrates a 

role for microbiota, and a dysfunctional epithelium in the activation of the immune system 

which can subsequently cause sensitisation of peripheral nerves, a likely mechanism for 

abdominal pain in IBS.  

 1.5.1.1.3 “Silent” nociceptors in peripheral sensitisation 

The existence of a separate class of unmyelinated visceral afferents that only respond 

to stimuli during inflammation, and not under normal conditions, has been speculated 

(Cervero and Janig, 1992). These “silent” (aka MIAs) nociceptors are proposed to be 

functionally distinct to other visceral afferents, focused more on injury and inflammation 

(Cervero, 1994). Evidence for the existence of these “silent” nociceptors comes from the 

observation that only a small proportion of sacral afferents responded to colonic distension, 

suggesting some redundancy in the system (Janig and Koltzenburg, 1991). Furthermore, a 

subset of afferents only responded to mechanical stimuli following the induction of 

inflammation (Habler et al., 1988, Habler et al., 1990). However, methodological issues such as 

restricted levels of pre-inflammation distension pressures, just reaching activation threshold 

for high threshold mechanoreceptors, make a definitive conclusion impossible (Cervero, 1994). 

For example, these fibres could represent a population of very high threshold afferents not 

activated by the levels of noxious stimuli present in the viscera. Inflammation and subsequent 

sensitisation may reduce their activation threshold and increasing their excitability. Hence 

their functionality may be similar when compared to other high threshold afferents (Cervero, 

1994). “Silent” nociceptors are discussed further in chapter 2 part 1.  
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Figure 1.04: Overview of peripheral sensitisation. Persistent noxious stimuli, such as the 

release of algogenic mediators or noxious distension, leads to activation of ionotropic and 

metabotropic channels and continued action potential firing. Ionotropic channels allow the 

release of cations into the cell increasing neuron excitability. Metabotropic receptors activate 

downstream intracellular kinase signalling pathways through second messenger systems e.g. 

protein kinase C, mitogen activated protein kinase. These kinases can alter gene transcription, 

control the trafficking of receptors to the membrane, and alter activation and kinetics of 

transducer channels all leading to a change to a more excitable neuronal phenotype. The 

release of neuropeptides such as calcitonin gene related peptide and substance P is 

stimulation by kinase signalling pathways. These in turn activate mast cells which release 

bioamines and growth factors e.g. bradykinin, prostaglandin E2, and nerve growth factor. 

These mediators subsequently activate metabotropic channels, leading to the activation of 

kinase signalling pathways, hence creating a self-sustaining loop. 
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1.5.1.2 Central sensitisation 

Central sensitisation is a process where afferent signalling is modified and augmented 

in the spinal cord and brain, to produce a greater perception of pain (Vermeulen et al., 2014). 

Central sensitisation is thought to contribute to the visceral pain reported by IBS and IBD 

patients. Briefly the sensitisation of visceral afferents in the periphery is thought to trigger an 

increase in action potential firing sufficient to cause the release of excess neurotransmitters 

such as glutamate, substance P,  at their  central terminals in addition to enhancing 

prostaglandin production and other trophic factors such as brain derived neurotrophic factor 

(BDNF) (Vermeulen et al., 2014). The excess of mediators leading to  activation of N-methyl-D-

aspartate (NMDA), α-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid (AMPA), kainate 

receptors, mGlu receptors, tyrosine kinase receptors and neurokinin receptors, which in turn 

causes significant elevation of intracellular Ca2+ levels, and hence amplified activation of 

signalling pathways PKA and PKC and additional downstream events in post-synaptic neurons 

(Kawasaki et al., 2004). The NMDA glutamate receptor in particular is thought to play a pivotal 

role in central sensitisation. As a result of prolonged activation within the dorsal horn the 

NMDA receptor undergoes aberrant phosphorylation, releasing the properties of its voltage 

dependent magnesium block, and increasing its activity to future synaptic glutamate (Woolf 

and Ma, 2007). In addition, the trafficking and insertion of the AMPA glutamate receptor may 

be augmented, increasing the responsiveness of neurons to glutamate (Galan et al., 2004).  

Blockade of inhibitory influences can also contribute to sensitisation. For example, 

prostaglandin E2 (PGE2) can block the transmission of glycinergic neurons, which in turn 

removes the inhibitory control these neurons have on nociceptors in the dorsal horn 

(Vermeulen et al., 2014). In addition, centrally sensitised neurons can induce secondary 

hyperalgesia, whereby adjacent neurons are affected leading to hypersensitivity in uninvolved 

areas of the periphery (Knowles and Aziz, 2009). Alterations in the levels of transcription of 

certain proteins e.g. substance P in DRGs can also contribute to long lasting central 
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sensitisation (Neumann et al., 1996, Anand et al., 2007). Furthermore, in IBS, impairment of 

the ability of the descending pathways to exert their inhibitory effects on sensory pathways, 

may contribute to central afferent sensitisation (Mayer et al., 2005). 

Psychosocial factors may also contribute to central sensitisation. A particular stressful 

life event, or negative past experience such as childhood or sexual abuse can lead to the 

development of chronic hypervigilance to normal physiological stimuli, and the development 

of allodynia and hyperalgesia (Anand et al., 2007). Indeed, this is the case in IBS and other FGID 

patients, who demonstrate long term hypervigilance of the viscera (Labus et al., 2004). 

Symptoms of IBS often develop in personally stressful times (Mertz, 2002, Dickhaus et al., 

2003). Consistent with these clinical observations, animal models of stress have reported 

visceral hypersensitivity to colorectal distension (CRD) paradigms (Stam, 1996, Coutinho, 2002, 

Schwetz, 2004). Excess cortisol, released through activation of the hypothalamic-pituitary-

adrenal (HPA) axis, during stress, is likely to play a role in visceral hypersensitivity (Lembo et 

al., 1996, Lechner et al., 1997). Mast cell degranulation (stress), 5-HT3 receptors and 

prostaglandins may also be involved, although a thorough understanding of the mechanisms 

remains elusive (Gue et al., 1997, Botella et al., 1998). A summary of central sensitisation can 

be found in figure 1.05. 
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Figure 1.05: Overview of central sensitisation. Increased action potential firing in presynaptic 

neurons leads to increase neurotransmitter release e.g. glutamate, substance P, and brain 

derived neurotrophic factor (BDNF). The subsequent activation of ionotropic and metabotropic 

receptors leads to increased intracellular calcium, the activation of kinase signalling pathways, 

and the phosphorylation of intracellular tyrosines, all of which lead to increased neuronal 

excitability. The phosphorylation and subsequent release of the magnesium block in N-methyl-

D-aspartate (NMDA) receptors, and the increase trafficking of α-amino-3-hydroxy-5methyl-4-

isoxazolepropionic acid (AMPA) receptors to the membrane result in an increase sensitivity to 

synaptic glutamate. Long term central sensitisation can occur when continued activation of 

these channels leads to alterations in gene transcription. The activation of EP receptors by 

prostaglandin E2, can lead to a blockade of glycinergic neurons, and the subsequent removal of 

their inhibitory influence on nociceptors in the dorsal horn. Centrally sensitised neurons can 

induce secondary hyperalgesia, whereby adjacent neurons are affected leading to 

hypersensitivity in uninvolved areas of the periphery. 
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1.6 TRANSLATION 

Treating visceral pain will address one of the primary symptoms of both IBS and IBD, and 

significantly improve the quality of life of patients. Recently, considerable investment has been 

expended in an attempt to develop novel compounds for the treatment of visceral pain (Mayer 

et al., 2008). Although some effective compounds were developed e.g. alosetron and 

tegaserod, many other compounds failed to show efficacy in clinical trials, notably the kappa 

opioid agonist fedotozine, and the neurokinin 3 receptor (NK3-R) and M3 muscarinic receptor 

antagonists talnetant and darifenacin respectively (Mayer et al., 2008, Blackshaw, 2014). 

Indeed, unwanted side effects from both alosetron and tegaserod meant they were 

subsequently withdrawn from the market. Given the vast incidence of abdominal pain, this 

area represents a great unmet clinical need, which also has substantial economic impact 

(Blackshaw, 2014).  

 One reason for the failure of these novel analgesics is a lack of translation studies that 

can bridge the gap between our findings from animal studies and human disease 

pathophysiology prior to embarking on clinical trials. Although, the use of animal models has 

clearly facilitated our understanding of the pathogenesis of many diseases, the ability of 

animal experiments to forecast the efficacy of novel treatments in the human condition is a 

contentious issue (Hackam and Redelmeier, 2006, Hackam, 2007, Perel et al., 2007). For 

example several putative visceral analgesics that have failed in clinical trials have shown 

efficacy in animal experiments.   

There are many possible explanations for this poor translation such as imperfect 

clinical trial design, lax methodologies in animal studies and publication bias (van der Worp et 

al., 2010). However, perhaps the most fundamental reason is the biological species difference 

between animals and humans. For example there are clear genetic, physiological and 

phenotypic differences between mice and humans that must be taken into consideration. 
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These include differences in the regulation of gene transcription (Odom et al., 2007), 

physiological parameters such as heartbeat, and body size. Indeed, the differential expression 

of mediators and use of distinct transduction pathways and signalling cascades in various 

species underlies the translational problems between animal and man (Schemann, 2011). 

Collectively, these translational issues highlight the potential usefulness for human pre-clinical 

models of disease. 

Bringing a compound all the way from pre-clinical studies to the marketplace is a long 

and complicated process. To identify a compound with potential, hundreds of thousands of 

others may first need to be tested (Chaplan et al., 2010). This is confounded by the estimated 

90% failure rate of these identified compounds during the 3 main phases of clinical trials. 

Furthermore, this process is extremely expensive, with the current estimated cost of between 

US $800 million and US $1.7 billion for getting a drug to the market (DiMasi et al., 2003, Adams 

and Brantner, 2006, Collier, 2009). Expenditure on clinical trials is a significant portion of this 

sum (Chaplan et al., 2010). The main reasons for the failure of a drug in clinical trials are; 

clinical safety; human pharmacokinetics, and poor efficacy (Fredheim et al., 2008, Hermann 

and Ruschitzka, 2009). Indeed, as mentioned, a number of drugs for visceral pain have 

succumbed to this fate, e.g. talnetant (Houghton et al., 2007). 

The selection of novel targets as potential treatments for visceral pain has largely 

focused on either centrally modulating the pain pathway itself (central) or blocking mediator 

driven activation of visceral nociceptors (Bulmer and Grundy, 2011). Compounds targeting 

central mechanisms can be more efficacious compared to peripheral targets, but generally 

cause more side effects hindering their progression in clinical trials. Recently there has been 

more focus on modulating receptors and ion channels, on visceral afferent endings 

themselves, potentially combining the advantages of central and peripheral based targets 

(Bulmer and Grundy, 2011).  
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1.6.1 A pre-clinical model of visceral pain 

The translational limitations of animal research can be addressed by using isolated human 

tissue, in which potential therapeutics, and disease mechanisms may be studied in a 

physiologically relevant model. Isolated human tissue approaches are widely used in 

gastroenterology to study motility, secretion and more recently the enteric nervous system, 

with great success (Cox and Tough, 2002, Banks et al., 2005, Schemann et al., 2005, Buhner et 

al., 2009, Broad et al., 2012, Broad and Sanger, 2013, Cirillo et al., 2013). A pre-clinical human 

model of visceral pain directly focused on afferents innervating the intestines has been 

recently pioneered (Peiris et al., 2011). This preliminary report describes the 

electrophysiological recording of spontaneous afferent activity from human appendix and 

colon (Peiris et al., 2011). Chemical mediators and novel compounds can be applied to this 

preparation to assess their effect on human visceral afferent (HVA) nerves. The report 

describes increased afferent activity in appendix preparations treated with an inflammatory 

soup of chemical mediators ATP, adenosine, BK, histamine, 5-HT and PGE2 or with capsaicin. 

Colonic afferent responded to blunt probing with a 0.8 mm VFH. Another brief study, 

demonstrated spontaneous activity and HVA responses to capsaicin (Jiang et al., 2011). In 

addition, this study reported HVA responses to mechanical stimuli, including, VFHs, 

circumferential and longitudinal stretch and mucosal stroking.  

These findings demonstrate the feasibility of recording from afferent nerves in human 

viscera. This pre-clinical human model of visceral pain could be used to help test the 

pharmacokinetic properties and the efficacy of potential therapeutics in humans, many years 

before they are entered into costly clinical trials (Peiris et al., 2011). Sensory GI specific side 

effects could be tested for drugs not intended for GI diseases, examining their capability to 

alter extrinsic visceral afferent firing patterns (Schemann, 2011). Furthermore, this model 

could be used to elucidate the signal transduction mechanisms in human tissue and the 

properties of ionotropic and metabotropic receptors in human GI nociception (Peiris et al., 
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2011, Jiang et al., 2011). Alterations in these mechanisms could then be identified in diseased 

states (Schemann, 2011). However, a robust characterisation of this model is of foremost 

importance. Splanchnic and pelvic afferents from murine models have been characterised 

according to their response to different mechanical stimuli, VFH probing, mucosal stoking, and 

circumferential stretch. Five types of colonic afferents were reported; mesenteric, serosal, 

muscular, muscular/mucosal, and mucosal (Lynn and Blackshaw, 1999, Brierley et al., 2004). 

Serosal and mesenteric afferent terminals have also been described as one subset of afferent 

terminals termed vascular afferents (Zagorodnyuk et al., 2010). The HVA model requires 

similar characterisation in these terms. Indeed, preliminary mechanical characterisation has 

been reported although with low n numbers (Jiang et al., 2011). The mechanical thresholds of 

these populations of terminals also need to be delineated. 

The responses to inflammatory mediators in visceral afferents in animal models are 

well characterised in murine models e.g. (Haupt et al., 1983, Kreis et al., 1998, Lynn and 

Blackshaw, 1999, Brunsden and Grundy, 1999, Hicks et al., 2002, Brierley et al., 2005a, Wynn 

and Burnstock, 2006, Song et al., 2009). Preliminary characterisation of HVA responses to an 

inflammatory soup and to capsaicin has been demonstrated (Peiris et al., 2011, Jiang et al., 

2011). Of importance is the characterisation of the responses of HVAs to individual 

inflammatory mediators, and their respective receptor involvement (Schemann, 2011). In 

addition, examination of the application of inflammatory mediators or transducer channels 

(e.g. TRP channels) agonists and antagonist on the subsequent responsiveness of HVAs to 

mechanical and chemical stimuli will be possible.  
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1.7 AIMS 

 Develop a model of human visceral pain 

o Characterise functional subtypes of HVAs based on their response to 

mechanical and chemical stimuli. Particular emphasis will be put on identifying 

the subtypes of HVAs involved in the processing of pain, termed visceral 

nociceptors. 

o Develop a chemosensitivity protocol suitable for mechanistic studies and for 

investigating the potential effects of therapeutic drugs on HVA 

chemosensitivity. 

o Additionally, we sought further evidence for a role of these characterised 

visceral nociceptors in pain by examining their response to clinically effective 

visceral analgesics. 

 

 

 

 

 

 

 

 

Note: This project was funded by the Dr. Hadwen trust for humane research. This organisation 

funds projects that directly aim to reduce or replace animal experiments. The use of animal 

tissue, animal cell lines, human fetal cell lines, embryonic tissues, embryonic cells or cell lines, 

certain monoclonal antibodies and tissue culture serums for experimentation are forbidden. 

Therefore, all experiments carried out in this report are conducted on ethically obtained 

resected human tissue.  
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CHAPTER 2 PART 1: 
CHARACTERISATION OF SUBTYPES OF  
AFFERENTS INNERVATING THE HUMAN  
INTESTINE 

The primary aim of this chapter was to characterise HVAs innervating intestinal flat sheet and 

appendix preparations. Furthermore, the involvement of transient receptor potential vanilloid 

4 (TRPV4) receptors on the mechanosensitivity of HVAs is also examined. This chapter is split 

into 2 parts. Part 1 describes the characterisation of different subtypes of HVAs innervating a 

flat sheet intestinal preparation, based on their response to mechanical stimuli. In addition, 

the role of TRPV4 receptors on response of serosal HVAs to VFH probing is investigated. Part 2 

outlines the characterisation of distension sensitive afferents innervating the human appendix, 

based on their pressure threshold for activation, their firing rate, and the pressure at which the 

firing rate plateaus. The involvement of TRPV4 receptors in the mechanotransduction of 

appendix distension in HVAs is investigated.  

2.1.1 INTRODUCTION 

2.1.1.1 OVERVIEW OF THE EXTRINSIC INNERVATION OF THE GUT 

Chapter 1 describes in detail the different subpopulations of afferents innervating the intestine 

of rodents. Six main functional subtypes of afferent nerves have been described, namely, 

mesenteric, serosal, “silent”, muscular, muscular-mucosal, and mucosal afferents. 

Mesenteric afferents are located in the mesentery, are restricted to the splanchnic 

nerve (not found in the pelvic nerve), and respond to probing of the mesentery and to high 

intensity stretch, which is transduced to the mesentery via longitudinal forces (Hughes et al., 

2009a). Serosal afferents originate from the splanchnic or pelvic nerves and terminate in the 
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serosa. They respond to direct probing, and also to high intensity stretch. Both mesenteric and 

serosal afferents are often found in close association with blood vessels leading some authors 

to refer to them as vascular afferents. In addition a third population of vascular afferents have 

been proposed. “Silent” afferents are normally unresponsive to any mode of mechanical 

stimuli, however, following the release of inflammatory mediators such as BK, PGE2, and 5-HT, 

these afferent fibres become sensitised and may subsequently respond to probing, but not 

mucosal stroking or stretch. Hence, the majority of “silent” afferents are likely to have vascular 

endings.  

Muscular afferents are found in the smooth muscle wall of the gut and are found 

within the vagal, splanchnic and pelvic nerves. Vagal muscular afferents have 2 distinct 

endings, IMAs and IGLEs. IMAs consist of long axons tracking parallel to the respective muscle 

layer, with shorter perpendicular branches and transmit information on muscle stretch and 

length. IGLEs have endings parallel to the muscle fibres in the wall of the intestine, with fine 

branching endings that extend into the myenteric plexus, allowing them to respond in-series to 

mechanical tension (Brookes et al., 2013). Splanchnic and pelvic muscular afferents are 

responsive to stretch and blunt probing of the tissue, but not to mucosal stroking. Pelvic 

afferents may also have endings in the muscle of the rectum, similar to those of IGLEs, which 

respond to distension and contraction and are so called rIGLEs (Lynn et al., 2003). 

Muscular-mucosal afferents can originate from the pelvic nerve, or from the vagal 

nerve (termed tension-mucosal afferents). They are thought to be located in either the 

muscularis externa, and the laminar propria (Page and Blackshaw, 1998, Blackshaw and 

Gebhart, 2002, Brierley et al., 2004) or in the subepithelial plexus (Zagorodnyuk et al., 2010, 

Brookes et al., 2013). They are responsive to stroking of the mucosa and to stretch.  

Mucosal afferents are located in the mucosa of the gut. Vagal mucosal afferents 

respond to mucosal stroking but not distension or stretch, and display chemosensitivity. Spinal 
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mucosal afferents can originate from the splanchnic or pelvic nerve and are responsive to 

mucosal stroking but not stretch. Spinal mucosal afferents are also chemosensitive. Mucosal 

afferents constitute a much higher proportion of afferents in the vagal compared to the spinal 

pathway.  

2.1.1.2 GRADED RESPONSES TO VFH PROBING 

All subtypes of mouse splanchnic and pelvic afferents exhibit graded responses to increasing 

weighted VFHs (Brierley et al., 2004). It has been suggested that splanchnic afferents may 

require a larger stimulus for activation. Indeed, both serosal and muscular pelvic afferents 

demonstrated significantly higher rates of afferent firing in response to each VFH probing 

compared to their respective subtypes in the splanchnic pathway. In addition, although 

comparisons across pathways for each respective afferent subtype, serosal and muscular, 

reveal similar proportions are activated by 0.07g, the lowest weight VFH used, a heavier VFH 

was required to activate 100% of splanchnic serosal or muscular afferents compared to the 

pelvic pathway (Brierley et al., 2004, Brierley et al., 2005b, Brierley et al., 2009, Hughes et al., 

2009a).   

Only 1 study has presented data, allowing comparisons between the mechanical 

sensitivity profiles of serosal and muscular afferents. A lower proportion of serosal afferents 

were activated at each VFH weight, compared to muscular afferents (up to 2g splanchnic and 

1g pelvic, the weight at which 100% of fibres were activated) (Brierley et al., 2004). There was 

no difference in the rate of action potential firing in response to any VFH weight between 

serosal and muscular afferents in the pelvic pathway. In the splanchnic pathway, the response 

rate to VFH probing was similar in serosal and muscular subtypes, except at the heaviest VFH 

(4g) at which serosal afferents displayed higher response rates (Brierley et al., 2004). Taken 

together, the lower responsiveness to lighter VFHs and greater firing rate upon heavier VFH 
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probing may tentatively suggest a greater role for serosal afferents in transmitting noxious 

stimuli, especially in the splanchnic pathway, compared to muscular afferents.  

To date only 1 paper has examined subtypes of visceral afferents innervating the 

human gut (Jiang et al., 2011). This study described 2 serosal, 2 muscular, and 1 muscular-

mucosal afferent innervating the human colon. The aim of the present report is to expand on 

these initial findings, and describe the different subtypes of afferents innervating the human 

intestine based on their response to mechanical stimuli. Furthermore, differences in the 

intensity of the stimulus required for activation of each subtype will be examined.   

2.1.1.3 SPONTANEOUS ACTIVITY 

Spontaneous activity has previously been reported in HVAs (Peiris et al., 2011, Jiang et al., 

2011). Two different types have been described, an irregular firing pattern, and a burst firing 

pattern. The regular firing pattern consists of infrequent firing often combined with long 

periods of quiescence of up to 60 seconds, where no action potential firing was evident (Peiris 

et al., 2011). This type of activity was evident in colon and appendix specimens, with 

comparable firing rates of 2.0 and 2.4 spikes s-1, respectively. The bursting firing pattern was 

evident in HVA recordings and was characterised by bursts of action potentials separated by 

short lag periods of 10-15 seconds (Jiang et al., 2011). The bursting pattern was theorised to be 

related to ongoing contractile activity of the smooth muscle of the gut, since this burst firing 

pattern was only evident in units sensitive to stretch (Jiang et al., 2011). Similar bursting firing 

patterns have been demonstrated in both vagal and spinal pathways and in viscerofugal 

afferents (Page and Blackshaw, 1998, Page et al., 2002, Jiang et al., 2011, Hibberd et al., 2012). 

This bursting pattern was evident in tension-mucosal afferents in the oesophagus of the ferret 

and mouse (Page and Blackshaw, 1998, Page et al., 2002).  

Reports on the proportions of each afferent subtype exhibiting spontaneous activity in 

splanchnic pathway are varied and conflicting, with substantially different proportions 
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described between studies and species. For example, 27%, 37%, 40% of mesenteric, serosal 

and muscular mouse splanchnic afferents, respectively, exhibited spontaneous activity 

(Brierley et al., 2004). However, a study on the same afferent pathway in the same species, by 

the same group some years later stated that no spontaneous activity was evident in any 

afferent subtype (Hughes et al., 2009a). Up to 80% of splanchnic distension sensitive afferents 

have been reported to exhibit spontaneous activity (Haupt et al., 1983), while a number of 

studies have reported a lack of spontaneous activity in all subtypes of splanchnic afferents 

innervating mouse and rat colon (Hicks et al., 2002, Page et al., 2005, Hughes et al., 2009a). 

However, a consensus exists on the spontaneous activity of pelvic afferents.  Afferents of any 

subtype in the pelvic pathway do not exhibit spontaneous activity in murine models (Bahns et 

al., 1987, Janig and Koltzenburg, 1991, Brierley et al., 2004, Hughes et al., 2009a). The only 

exception is pelvic distension sensitive afferents, of which up to 96% are spontaneously active 

(Sengupta and Gebhart, 1994, Su and Gebhart, 1998).  

The proportion of each subtype of vagal afferent exhibiting spontaneous activity, 

although seemingly measured are not often mentioned in the literature.  One study, suggests 

33.3% of mucosal and 64.1% of tension-mucosal vagal afferents displayed spontaneous activity 

(Page et al., 2002). Vagal tension receptors also display spontaneous activity (Page and 

Blackshaw, 1999).  

 The rate of spontaneous activity, when evident in splanchnic nerves is remarkably 

consistent between afferent subtypes. Spontaneous activity is very low in all subtypes ranging 

between 0.1 – 0.7 spikes s-1 in mesenteric, serosal, muscular, mucosal and distension sensitive 

splanchnic afferents (Blumberg et al., 1983, Lynn and Blackshaw, 1999, Brierley et al., 2004).  

Distension sensitive afferents, the only spontaneously active subtype in the pelvic pathway, 

displayed rates of 3-10 spikes s-1, considerably higher than any subtype of splanchnic afferent 

(Janig and Koltzenburg, 1991, Sengupta and Gebhart, 1994). In the vagal pathway, mucosal 

afferents exhibited the lowest spontaneous activity rates, <1 spike s-1. Both tension-mucosal, 



79 
 

~3 spikes s-1, and tension sensitive afferents, 3-10 spikes s-1, displayed higher rates of 

spontaneous activity (Page and Blackshaw, 1999, Page et al., 2002, Zagorodnyuk et al., 2003, 

Page et al., 2005). 

 Many studies have reported a reduction in the spontaneous firing rate immediately 

after the cessation of a mechanical stimulus. A brief inhibition of spontaneous activity was 

evident after the cessation of VFH probing of a receptive field in rat colon (Lynn and 

Blackshaw, 1999). In addition, in HVAs a reduction of the spontaneous firing rate was obvious 

after blunt probing of the mucosa (Jiang et al., 2011). Similarly, following the cessation of 

stretching of the colon wall in rats and humans, by either circumferential or longitudinal 

stretch or distension, spontaneous firing rate was transiently reduced (Lynn and Blackshaw, 

1999, Andrew and Blackshaw, 2001, Zagorodnyuk et al., 2003, Jiang et al., 2011).  These 

studies have not examined the mechanism or importance of this phenomenon.  

2.1.1.4 TRP CHANNELS 

TRP channels are a diverse superfamily of cation channels (Montell and Rubin, 1989, Wong et 

al., 1989, Hardie and Minke, 1992, Zhu et al., 1995). Seven subfamilies of TRP channels have 

now been identified; TRPC (TRP cation channel canonical), TRPV, TRPM (TRP cation channel 

melastatin), TRPA, TRPP (TRP cation channel polycystin), TRPML (TRP cation channel 

mucolipin), TRPN (TRP cation channel no mechanoreceptor potential C) (Montell and Rubin, 

1989, Walker et al., 2000). TRP channels share a similar basic structure consisting of 4 identical 

subunits each with 6 transmembrane (S1-S6) domains. Both the N and C termini are in the 

cytoplasm (Gaudet, 2007). The S5-S6 domains of each subunit face centrally and together form 

the pore and selectivity filter. The pore spans the membrane to form a passage from the 

extracellular matrix to the cytoplasm. The selectivity filter, dictates which ions can pass by its 

electrostatic and stereochemical properties. A gate is formed by the cytoplasmic region of the 

S6 domain. The gate receives its information from the sensor, comprised of S1-S4 domains, 



80 
 

which can sense voltage changes (Gaudet, 2007). A number of protein interaction motifs have 

been identified on both the N and C termini of TRP channels including; ankyrin repeats, 

homology regions, TRP box, PDZ domain, phospholipase-C-interacting kinase, and endoplasmic 

reticulum retention domains. The combination of these cytoplasmic motifs varies considerably 

between TRP subfamilies, often determining sensitivity to various stimuli as well as structural 

properties such as the assembly of subunits into a functional channel (Clapham, 2003, Gaudet, 

2007). 

The majority of TRP channels conduct cations non-selectively with the exception of 

TRPM3a1/4/5 (sodium-selective) and TRPM3a2/TRPV5/6 (calcium-selective) (Wu et al., 2010). 

Therefore, upon activation of TRP channels, cells depolarise, causing a myriad of downstream 

signals. TRPs can be regulated by calcium, phosphatidylinositol 4, 5-bisphosphate (PIP2) and 

phosphorylation (Voets and Nilius, 2007, Wu et al., 2010). Most TRP channels can be activated 

by a variety of means including receptors such as receptor tyrosine kinases and GPCRs, various 

ligands including endogenous and exogenous molecules, calcium and magnesium ions and 

directly by temperature and mechanical stimuli (Ramsey et al., 2006). This polymodality 

suggests a role for TRPs as cell sensors (Clapham, 2003). Furthermore, TRPs are expressed in all 

cell types (Wu et al., 2010). TRP channel sensitivity to stimuli will therefore be within the 

context of a particular cell and its environment, including the concentration of ions, ligands, 

and proteins (Ramsey et al., 2006).  

2.1.1.4.1 TRPV channels 

There are 6 members of the TRPV family, TRPV1-6. TRPV channels are divided into 2 TRPV 

subgroups, TRPV1-4, which are cation channels, marginally selective to calcium, and sensitive 

to small changes in temperature (Caterina et al., 1997, Caterina et al., 1999, Peier et al., 2002, 

Guler et al., 2002), and TRPV5-6, which are cation channels, highly selective for calcium and 

which do not respond to changes in temperature (Vennekens et al., 2000, Yue et al., 2001).  
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2.1.1.4.1.1 TRPV4 channels 

TRPV4, originally called OTRPC4, TRP12, VRL2, or VR-OAC, was first discovered using murine 

cDNA encoding the TRPV channels to search genomic libraries for similar sequences (Liedtke et 

al., 2000, Strotmann et al., 2000). TRPV4 was initially described as an osmosensor, opening 

upon small decreases in osmolarity (Liedtke et al., 2000, Strotmann et al., 2000). It has 

subsequently been demonstrated that TRPV4 exhibits gating promiscuity and can be activated 

by warm temperatures (27-35°C), phorbol compounds, lipid derivatives, metabolites e.g. 5,6-

epoxyeicosatrienoic acid (EET), mechanical stimuli, as well as the small molecule GSK1016790A 

(Guler et al., 2002, Watanabe et al., 2002, Watanabe et al., 2003, Brierley et al., 2008, Jin et al., 

2011).  

TRPV4 is 871 amino acids long and has 40% homology to TRPV1 and TRPV2 (Liedtke et 

al., 2000, Strotmann et al., 2000, Everaerts et al., 2010). TRPV4 shares a basic structure with 

the other TRP channels, consisting of 6 transmembrane domains in each of its 4 subunits that 

combine to form a tetramer. TRPV4 contains 3 ankyrin repeat domains (ARD) on its N terminus 

(Liedtke et al., 2000). A proline rich domain (PRD) resides close to the first ARD. These 2 N 

terminal motifs are thought to be important in TRPV4 formation into a tetramer and its 

mechanical sensitivity respectively (Gaudet, 2007, D'Hoedt et al., 2008, Everaerts et al., 2010). 

A sequence of 6 highly conserved amino acids make up the TRP box located on the C terminus 

of TRPV4. Further C terminal protein interaction motifs are present on TRPV4 including a PDZ 

domain and a calmodulin binding domain, which is critical in the calcium-dependent regulation 

of TRPV4 (Strotmann et al., 2000, Garcia-Elias et al., 2008). TRPV4 is widely expressed in 

tissues including the renal system (Tian et al., 2004), cornea (Pan et al., 2008), skin (Chung et 

al., 2003), DRG (Facer et al., 2007, Cenac et al., 2008), peripheral nerves (Alessandri-Haber et 

al., 2003, Facer et al., 2007) and sensory nerves innervating the gut (Zhang et al., 2005, Brierley 

et al., 2008). Indeed, TRPV4 IR has been demonstrated around serosal vessels in human colon 

(Brierley et al., 2008).  
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2.1.1.4.1.1.1 TRPV4 channels in visceral pain 

There is evidence for the involvement of TRPV4 in various types of somatic pain (Suzuki et al., 

2003, Alessandri-Haber et al., 2003, Alessandri-Haber et al., 2004, Alessandri-Haber et al., 

2005, Alessandri-Haber et al., 2006, Grant et al., 2007). TRPV4 has been shown to be a 

transducer of hypo and hyper-tonicity induced somatic pain in behavioural and 

electrophysiological experiments. Similarly, TRPV4 mediated somatic pain is potentiated by the 

application of inflammatory mediators, suggesting a role for TRPV4 in somatic inflammatory 

pain (Alessandri-Haber et al., 2003, Alessandri-Haber et al., 2005, Alessandri-Haber et al., 

2006). In a paw withdrawal paradigm, intraplantar injection of a PAR-2 agonist induces 

mechanical hyperalgesia in wild type but not TRPV4 KO mice suggesting an involvement of 

TRPV4 in this phenomenon (Grant et al., 2007).  

Recently, TRPV4 has been implicated in visceral pain (Brierley et al., 2008, Cenac et al., 

2008, Sipe et al., 2008, Ceppa et al., 2010, Cenac et al., 2010). Injection of the TRPV4 agonist 4-

a- phorbol 12,13- idecanoate (4αPDD) into the pancreatic duct induced spinal neuron 

activation in TRPV4+/+ mice but not TRPV4-/- mice, as measured by the expression of the 

transcription factor c-Fos (Ceppa et al., 2010). Moreover, TRPV4-/- mice exhibit less painful 

behaviours compared to TRPV4+/+ mice after the induction of pancreatitis by abdominal 

cerulein injections (Ceppa et al., 2010).  

The role of TRPV4 in gut sensation is of particular interest, where sensitivity to 

mechanical stimuli, such as hollow organ distension or traction of the mesentery, is often a 

cause of pain (Brierley et al., 2008). The TRPV4 agonist EET potentiates afferent firing in 

response to VFH probing in a mouse colonic electrophysiological preparation. This potentiation 

is abolished in TRPV4-/- mice (Brierley et al., 2008). Similarly, application of the non-selective 

TRP antagonist ruthenium red (RR) reduced the afferent firing rate in response to VFH probing 

in TRPV4+/+ mice but not TRPV4-/- mice (Brierley et al., 2008, Sipe et al., 2008). In addition, the 
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TRPV4-/- mice demonstrated a reduced afferent firing rate (~50%) in response to VFH probing 

(Sipe et al., 2008). These data suggest a role for TRPV4 in the transduction of intense 

mechanical stimuli in colonic afferents.  

In contrast to these reports, in a behavioural paradigm where VMR are measured 

using electromyography in response to CRD, TRPV4-/- mice and TRPV4+/+ mice have been shown 

to exhibit similar baseline visceral motor response (VMR) to CRD pressures of 15, 30, 45, 60 

mm Hg (Sipe et al., 2008). The authors suggest that this discrepancy may be explained by the 

high threshold nature of serosal afferents. These afferents may respond to high intensity VFH 

probing but may not be activated by the pressures reached during CRD. However, it must be 

noted that 30-60mm Hg are considered noxious pressures, and 60mm Hg is likely enough to 

activate serosal afferents (Cenac et al., 2008). Furthermore, another study found that mice 

pre-treated with inter-vertebral injections of TRPV4 targeted silencing ribonucleic acid (siRNA), 

to eliminate TRPV4 expression, exhibited lower VMR to the noxious 30, 45 and 60 mm Hg CRD 

pressures compared to mice treated with mismatched siRNA. However, there was no 

difference in VMR to the innocuous 15mm Hg stimulus (Cenac et al., 2008). This suggests that 

TRPV4 channels may transduce nociceptive rather than physiological stimuli in gut sensory 

nerves. 

Further evidence implicates TRPV4 channels in the transduction of mechanical stimuli 

in the presence of inflammation or inflammatory mediators. Colonic afferents from TRPV4+/+ 

mice but not TRPV4-/- mice responded to the pro-inflammatory mediator protease activated 

receptor 2 activating peptide (PAR2-AP) (Sipe et al., 2008). In addition, TRPV4+/+ mice that 

underwent intra-colonic administration of the pro-inflammatory PAR2-AP prior to CRD showed 

significantly increased VMR compared to baseline. VMR in TRPV4-/- mice remained unchanged 

(Sipe et al., 2008). These data imply a role for TRPV4 in inflammation induced afferent 

sensitisation to mechanical stimuli. Indeed, a number of studies have suggested a role for 

TRPV4 in the development of hyperalgesia and allodynia, as induced by various inflammatory 
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mediators (Cenac et al., 2008, Sipe et al., 2008, Cenac et al., 2010). Intra-colonic administration 

of the pro-inflammatory PAR-AP produced both allodynia and hyperalgesia in a CRD paradigm 

(Cenac et al., 2008). However, mice pre-treated with TRPV4 targeting siRNA did not develop 

allodynia or hyperalgesia. Similarly, intra-colonic administration of the TRPV4 agonist 4αPDD 

induced allodynia and hyperalgesia in TRPV4+/+ mice, but not in TRPV4-/- mice or mice pre-

treated with TRPV4 targeted siRNA (Cenac et al., 2008). A summary of these findings can be 

found in table 2.01. 

TRPV4 may also mediate hyperalgesia induced by the inflammatory mediators 

histamine and 5-HT. Hyperalgesia to CRD induced by the intra-colonic administration of 

histamine or 5-HT was eliminated by pre-treatment with TRPV4 targeted siRNA. In addition, 5-

HT but not histamine induced allodynia was inhibited in mice pre-treated with TRPV4 targeted 

siRNA (Cenac et al., 2010). Taken together these data indicate a clear role for TRPV4 in 

inflammatory visceral pain.  

  The role of TRPV4 channels in the transduction of mechanical stimuli in human 

afferent nerves innervating the bowel has not been studied, although TRPV4 receptors have 

been shown to be localised around human vessels in the serosa (Brierley et al., 2008). This 

report will investigate the involvement of TRPV4 channels in the transduction of mechanical 

stimuli, both distension of the appendix, and VFH probing of the serosal surface, in afferents 

innervating the human bowel.  
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Table 2.01: Describes recent findings implicating TRPV4 receptors as transducers of 

mechanical stimuli in mouse visceral afferents.  

 

  

Method Result Paper

VFH probing in 
presence/absence of TRPV4 
agonist or TRPV4 antagonist

Increased and decreased response to 
probing in TRPV4+/+ but not TRPV4-/- mice 
in presence of TRPV4 agonist and 
antagonist, respectively

Brierley et al, 
2008

VFH probing in TRPV4+/+

and TRPV4-/- mice
Decreased response to probing in TRPV4-/-

mice
Sipe et al, 
2008

Inter-vertebral injections of 
TRPV4 siRNA or 
mismatched siRNA

Decreased VMR to noxious CRD when mice 
were injected with TRPV4 siRNA but not 
mismatched siRNA

Cenac et al, 
2008

Injection of TRPV4 agonist 
in pancreatic duct

Increased spinal neuron c-fos expression in 
TRPV4+/+ but not TRPV4 -/- mice

Ceppa et al, 
2010
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2.1.1.5 AIMS 

 Examine the sensitivity of HVAs to mechanical stimuli, namely VFH probing, 

circumferential and longitudinal stretch, and mucosal stroking 

 Describe the different subtypes of afferents innervating the human intestine based on 

their response profile to various mechanical stimuli 

o The intensity of the stimulus required for activation of each subtype will also 

be examined  

 Describe the spontaneous activity in each subtype of HVA 

 Ensure repeated VFH probing is reproducible by conducting time matched controls 

 Examine the role of TRPV4 channels in the transduction of mechanical stimuli, 

specifically VFH probing, in human afferent nerves innervating the intestine 
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2.1.2 METHODS 

2.1.2.1 PATIENTS 

All experiments were performed in accordance with human ethics regulations (NREC 

09/H0704/2). Resected human ileum, colon, and rectum were collected after written consent 

from patients undergoing elective surgery for cancer, polyps, familial adenomatous polyposis, 

CD, UC, diverticular disease (DD), trauma, chronic constipation at the Royal London Hospital or 

Whipps Cross University Hospital (London, UK) (figure 2.01). All tissues were cut by a trained 

histopathologist following macroscopic examination. “Normal tissue” was obtained from 

patients with non-obstructive tumours at least 10cm away from the tumour or lymphatic 

drainage field and from patients with diverticular disease or polyps in areas without evidence 

of these pathologies (figure 2.06). Tissue from trauma cases was also considered “normal”. 

Inflamed tissue was collected from patients with UC, CD.  
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Figure 2.01: Outlines the area of tissue resected during 8 of the most common surgeries from which tissue was collected. A) Right-hemicolectomy, B) left-

hemicolectomy, C) anterior resection, D) sigmoid colectomy, E) abdomino perineal of rectum (APER), F) subtotal colectomy, G) panproctocolectomy, H) 

appendicectomy. 
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2.1.2.2 ELECTROPHYSIOLOGY RECORDINGS 

The majority of experiments took place on the day of surgery. However, in some circumstances 

tissues were placed in carbongenated Krebs buffer and stored overnight at 4°C (chapter 5 part 

2). Firstly, the tissue was grossly examined using a stereomicroscope (M5A, Wild Heerbrugg) 

and blood vessel arcades identified. Excess mesentery was removed before the tissue was 

transferred to the tissue bath and pinned out, serosal side up (figure 2.02). The tissue was then 

superfused with carbongenated (95% O2, 5% CO2) Krebs buffer (6ml/min; 32-34°C; pH 7.4; 

124mM NaCl, 4.8mM KCl, 1.3mM NaH2PO4, 1.2mM MgSO4.7H2O, 2.5mM CaCl2, 11.1mM 

Glucose, 25.0mM NaHCO3). Nerves running in close proximity to the blood vessel arcades were 

finely dissected using a microscope (SZ40, Olympus). Nerves were then sucked into a 

boroscilicate glass suction electrode (Harvard Apparatus), which was filled with Krebs buffer 

and neuronal activity recorded using a differential amplifier (headstage and AC/DC amplifier 

(gain 5K) (Neurolog Ltd). The analogue signal was then band pass filtered (100-2000Hz; 

digitally filter using a humbug 50Hz filter(Quest Scientific) following which the resultant signal 

was digitised at a sampling rate of 20KHz using a Micro 1401 MKII (Cambridge Electronic 

Design) and displayed  a desktop computer running Spike2 software in a chart recorder format. 

Data was stored for further off line analysis (Cambridge Electronic Design). Additionally 

neuronal activity was also simultaneously counted from the filtered and amplified signal using 

a spike processor (Digitimer). The threshold for spike counting was set at twice the background 

noise and the output from the spike processor sent to the events channel on the 1401 for 

processing and relay to the desk top computer were it was displayed alongside the raw trace 

on spike 2. Nerve activity was expressed as a rate histogram as either spikes/20s-1, 5s-1, or 1s-1 

(Peiris et al., 2011). The description of electrophysiological recordings given here is consistent 

with the recordings in flat sheet preparations in chapters 2, 3, 4 and 5. 
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Figure 2.02: A) A schematic of an intestinal nerve in yellow being sucked up by a suction electrode. B) Shows a HVA recording from a piece of human colon, 

which is pinned in a tissue bath 
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2.1.2.3 MECHANOSENSITIVITY  

2.1.2.3.1 VFH Probing, circumferential and longitudinal stretch, and mucosal stroking 

Once a viable recording was attained, baseline firing was recorded for 15 minutes. The tissue 

was then unpinned at the proximal end and at both sides to allow access to the mucosal 

surface. To examine the presence of mucosal afferents, a rod, was used to stroke the mucosa 

systematically to activate mucosal afferent endings. Mucosal stroking was repeated twice 

more, each repetition separated by 5 minutes. A stretching protocol consisting of both 

longitudinal (side to side) and circumferential (top to bottom) stretch, was then performed. 

Stretching was performed by holding the tissue with a rounded forceps and applying a 

stretching force. Both longitudinal and circumferential stretch were repeated twice more, with 

5 minutes in between each stimulus. The tissue was then repinned in the tissue bath. Using a 

grid based system a cotton bud was used to probe the serosal surface and mesentery to search 

for a receptive field. Once a receptive area was identified, a 2g VFH (Ugo Basile) was used to 

isolate the receptive field more specifically (figure 2.03). If the receptive field gave a consistent 

response to probing, 2 stimulus response curves, using 0.02g, 0.04g, 0.07g, 0.16g, 0.4g, 0.6g, 

1.0g, 1.4g, 2.0g, 4.0g VFHs, each curve separated by 5 minutes, were generated (figure 2.04). 

Awkward tissue contours or problematic locations of the receptive field (e.g. in the mesentery 

close to the nerve) sometimes hindered the acquisition of consistent responses to probing. A 

number of preparations could not be tested for all mechanical stimuli, but were deemed to be 

serosal based on their sensitivity to very low weight VFHs.  

 A proportion of HVAs were unresponsive to VFH probing. In a small number of 

recordings (n=5), BK (approximate bath concentration (BC) 20nM or 2µM, 20ml of 100nM or 

10uM) was superfused into the tissue bath to sensitise the units to mechanical stimuli. Using a 

grid based system, a 2g VFH was then used to search for any new receptive fields, after the 

cessation of any acute excitatory afferent fibre response to BK.  
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2.1.2.3.2 VFH time matched controls 

To determine to reproducibility and stability of repeated 2g VFH probing’s, time matched 

control experiments were performed. In these experiments, no drug was added, but probing 

continued every 5 minutes as with other experiments. The average of the first 3 sets of probes 

were then compared to average of the subsequent consecutive sets, i.e. sets 4,5,6, sets 5,6,7 

etc.   
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Figure 2.03: Shows the instruments that were used to produce the various modes of 

mechanical stimuli. The cotton bud and VFHs were used as the probing stimuli. The tissue was 

stretched using the curved forceps. The metal rod was used to stroke the mucosa. 

Curved Forceps

Cotton Bud

Metal Rod Von Frey Hair
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Figure 2.04: Flat sheet characterisation protocol 

1) Fifteen minutes of baseline afferent firing is recorded. 

2) The mucosa is stroked using a metal rod. This repeated 3 times with 5 minutes between each stroking. 

3) The tissue is then stretched both circumferentially and longitudinally, each 3 times. Each stretch is separated by 5 minutes.  

4) A cotton bud is then used to search for a receptive field. 

5) If a receptive field is found, 2 stimulus response curves are performed using 0.02g, 0.04g, 0.07g, 0.16g, 0.4g, 0.6g, 1g, 1.4g, 2g, and 4g VFH. Five minutes 

is left between stimulus response curves. 

15 min BL

Mucosal Stroking

5 mins

Alternating Circumferentially & Longitudinally Blunt Probing
VFH Stimulus Response Curves

0.02g 4g 0.02g 4g
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2.1.2.4 MECHANOSENSITIVITY PROTOCOLS 

2.1.2.4.1 VFH probing protocol 

After mechanical characterisation of afferents, atropine (10µM) and nifedipine (10µM) were 

added to the Krebs buffer and given 30 minutes to take effect. Once a receptive field was 

identified and a stimulus responses curve had been attained, the receptive field was probed 

using either a 0.4g or 2.0g VFH, for 3 sets of 3 x 3 second probes, each set separated by 5 

minutes. During TRPV4 experiments, the bath was subsequently superfused with a vehicle 

solution (0.1% DMSO, 10-20ml) or GSK1016790A (TRPV4 agonist, BC 2µM, 10-20ml of 10µM,) 

or HC067047 (TRPV4 antagonist, BC 20µM, 10-20ml of 10 µM). In all experiments this was 

followed with 6-9 sets of 3 x 3 second probes, each set separated by 5 minutes. For analysis, 

the 2 probes with the highest firing rate in each set of 3 probes were averaged. This was done 

as accurate probing of the receptive field can be difficult, and 3/3 direct hits is not always 

achieved. The 3 sets of baseline probes were averaged and compared to the average of the 2 

sets of probes at which the drug is at its highest bath concentration i.e. the average of post 

drug sets 1 and 2 (figure 2.05). The data were analysed using a 2 tailed paired t test, p<0.05. 
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Figure 2.05: TRPV4 VFH probing protocol 

1) Average of the 2 highest 2 second probes in each set are averaged 

2) The average of the 6 probes, 2 from each of the first 3 consecutive sets is used as baseline. 

3) The average of the 4 probes from the first 2 consecutive sets after drug application is then averaged. For drug effect comparisons the average of the 

baseline probes are compared to the average of the 1st and 2nd post drug sets of probing. 

4) For drug vs. washout comparisons the 1st and 2nd post drug sets of probing are compared to the average of the 5th and 6th post drug sets of probing.  

5) In 2 experiments enough probes were done so that washout could also be calculated at 60 mins.  
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Highest 2
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~ 30 mins (sets 5,6)

In 2 preps, washout was
also calculated at ~ 60 mins
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2.1.2.5 OFFLINE WAVEFORM ANALYSIS 

The HVA recordings were often few fibre recordings made up of action potentials with 

different shaped waveforms, each distinctive waveform representing the firing from an 

individual afferent fibre. Using spike 2 waveform analysis software, action potentials that 

passed a set amplitude threshold could be accurately discriminated using waveform templates. 

To generate a template, each action potential in the HVA recording was averaged, the DC 

offset from any incurring noise was removed, before it was either assigned to a relevant 

template, used to make a new template, or left unassigned. Waveform analysis was also 

checked by eye by comparing action potentials assigned to different templates together on the 

raw trace to ensure accurate assignment. Parameters could be tweaked and wave-form 

analysis repeated if spikes were not accurately discriminated.  New nerve waveform channels 

were then created with the relevant templates.  All analysis was performed on these 

waveform template channels, allowing for the frequency of individual unit firing to be 

calculated and plotted. Typical parameters were set at 8% for the maximum amplitude change 

for match to a template, and at least 60% for minimum percentage points in the template. All 

analysis was done on a HP Compaq computer running Spike 2 5.03 software. A maximum of 18 

templates could be accommodated by the software; however typical HVA recordings had 1-5 

units, with appendix preparations usually having more than flat sheet preparations. This 

technique has been previously reported (Richards et al., 1996, Hillsley and Grundy, 1998, 

Hillsley et al., 1998). The above protocol has been used when conducting waveform analysis on 

any electrophysiological recording in this thesis. 

2.1.2.6 DRUGS 

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at  20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 



98 
 

and vortexed to mix. GSK1016790A was obtained from Sigma Aldrich (St Louis, MO, USA). 

HC067047 was purchased from Tocris Bioscience (Bristol, UK).  
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 2.1.3 RESULTS 

2.1.3.1 OVERALL TISSUE COLLECTION – FLAT SHEET 

Consent was obtained from 213 patients. 135 tissues were collected, of which, 108 were used 

for electrophysiological recordings. Failure to collect a specimen was usually for one of the 

following reasons; the specimen was put in formalin by theatre staff, the type of operation was 

changed, surgery was cancelled, or there was no tissue available for research (e.g. large 

tumour). In total, electrophysiological recordings were successfully made from 84 resected 

human tissues (95 recordings); ileum (n=15), caecum (n=2), ascending colon (n=8), transverse 

colon (n=4), descending colon (n=4), sigmoid colon (n=53), rectum (n=9) (figure 2.06). A 

summary of how tissues were designated to experiments is shown in figure 2.07. 

  



100 
 

 

Figure 2.06:  A) An example of a colon cancer specimen, cut open along the anti-

mesenteric border and lying mucosa side up. The black arrow indicates the tumour. The 

black boxes indicate where segments of colon were removed for research. Samples are 

always taken at least 10cm away from the tumour. Continuity of the specimen is always 

preserved. B) Shows a segment of colon pinned out in a tissue bath with the serosal side 

up. The white arrow indicates the glass electrode into which the nerve is sucked. C) 

Diagram illustrating the total numbers of patients consented, specimens collected and 

recordings made in flat sheet preparations. The numbers of each tissue type collected is 

also displayed. 
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2.1.3.2 TISSUE – FLAT SHEET CHARACTERISATION 

Twenty-three tissues, 20 normal, 2CD, 1UC, were used for flat sheet characterisation 

experiments, 18 sigmoid colon, 2 rectum, 2 transverse colon, 1 descending colon (M:F 1:0.39, 

median age 64). 

2.1.3.3 TISSUE – TRPV4 VFH PROBING EXPERIMENTS 

Twelve tissues, 10 normal, 2 CD, were used for TRPV4 VFH probing protocols, 6 sigmoid colon, 

2 rectum, 2 ileum, 1 transverse colon, 1 descending colon (M:F 1:1.4, median age 53). Further 

details on the tissues use in each set of experiments can be seen in table 2.02. 
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Table 2.02: Tissue details for each set of experiments described in this report. Age data 

expressed as medians (range in parenthesis). Numbers of each tissue type are expressed in 

each column with an “of which” number in parenthesis, i.e. 4 (of which 1, 1, 1). Colour code; 

Crohn’s disease=RED, ulcerative colitis=GREEN, appendicitis=ORANGE. Other tissues were 

considered “normal”. 
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Figure 2.07: Given the limited supply of human tissue, every effort was made to make the 

most out of each piece. In each preparation, mechanosensitivity of the afferent was tested 

first. If the nerve was mechanosensitive the nerve was characterised based on their response 

to mechanical stimuli. A VFH protocol was then performed if the preparation was deemed 

suitable. If the nerve was not mechanosensitive the nerve was discarded and a new recording 

from a separate nerve was attained. If no other suitable nerves were available or the 3 

consecutive mechanically insensitive nerves were found, a chemosensitivity protocol was 

performed.  
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2.1.3.4 BASIC MECHANOSENSORY PROPERTIES OF HUMAN VISCERAL AFFERENTS 

Of the 95 successful flat sheet recordings, 36 were robustly responsive to either VFH probing, 

circumferential or longitudinal stretch, or mucosal stroking (42 units). Note, many preparations 

were mechanically sensitive, but deemed unsuitable for characterisation or mechanosensitive 

protocols for reasons including, weak response, response was unstable/not reproducible, 

nerve location and position in the electrode was delicate thereby making mechanical 

stimulation impractical. Very few preparations were mechanically insensitive. A response to 

VFH probing of an afferent’s receptive field was characterised by a burst of action potentials 

above that of spontaneous activity, which dissipates immediately after the removal of the 

probing stimulus (figure 2.08). On occasion, and particularly relating to VFHs of high force, the 

responding unit would transiently continue at a higher activity rate even after the cessation of 

the VFH stimulus. The firing rate would usually revert back to pre-stimulus spontaneous 

activity levels within seconds of removing the probe. Responses to circumferential and 

longitudinal stretch exhibited similar qualities.  Upon tissue stretching, an increase in afferent 

firing was evident for the duration of the stimulus (figure 2.08). No adaptation was evident for 

either mode of stretch, although this could be due to the brief stretching period of ~3-5 

seconds used compared to longer stretching stimuli (1 min) previously reported (Brierley et al., 

2004). The increased firing rate disappeared once stretching was stopped. A response to 

mucosal stroking was described by a subtle increase in baseline firing, which upon cessation of 

the stroke quickly subsided.  
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Figure 2.08:  HVAs responded to a variety of mechanical stimuli. A) Probing of receptive fields 

located on the serosal surface of the tissue with different weighted VFHs produced a graded 

stimulus response curve. Some HVAs responded to probing stimuli as low as 0.02g. B) 

Stretching the tissue using curved forceps in a longitudinal or circumferential direction 

produced a marked increase in HVA firing in a separate unit that responded to light VFH 

probing.  
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Of the fibres which displayed mechanosensitivity, 4 subtypes could be identified based 

on their anatomical location and response to different mechanical stimuli.  These were 

mesenteric, serosal, muscular, and muscular mucosal (figure 2.10). In addition, a group of 

“silent” afferents were identified. Each of these subtypes was responsive to 2g von Frey hair 

(VFH) probing. Due to nature of whole nerve recordings, HVAs often had more than 1 

receptive field. Receptive fields were usually small, although occasionally covered a more 

extensive portion of the tissue. Serosal receptive fields were often associated with blood 

vessels on the serosal surface. The strength of the VFH probing required (20mg-4g) to illicit a 

response, the response profile to other mechanical stimuli (circumferential and longitudinal 

stretch, mucosal stroking), and the location of their receptive field were required to 

characterise each subtype. 

Serosal afferents (n=22) had receptive fields in the wall of the intestine. Serosal 

afferents responded in a graded manner to VFH probing starting at very light weight probes 

(min threshold 20mg), but not to circumferential or longitudinal stretch, or mucosal stroking 

(figure 2.10). A proportion of these afferents were not tested with all stimuli, but were 

considered serosal afferents due to their sensitivity to very light VFH probing of the serosal 

surface (<600mg). Eight out of 22 serosal afferents exhibited spontaneous activity (0.8±0.2 

spikes s-1, 36.4%). Muscular afferents (n=20) had focal areas in the wall of the intestine that 

were responsive to strong VFH probing (min threshold 1g). Twelve out of 17 muscular 

afferents tested for both circumferential and longitudinal stretch, responded to both (3 

muscular afferents were not tested for both modes of stretch). Three out of 17 and 2/17 

muscular afferents only responded to circumferential or longitudinal stretch, respectively. All 

muscular afferents failed to respond to mucosal stroking. Sixteen out of 20 muscular afferents 

displayed spontaneous activity (4.2±0.9 spikes 2s-1, 80%). The receptive field of mesenteric 

afferents (n=2) were located in the mesentery attached to the intestinal tissue. These afferents 

responded in a graded fashion to probing of their receptive field with increasing weights of 
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calibrated VFHs (min threshold 20mg). Since the location of these afferents was in the 

mesentery, only 1 of the mesenteric afferents was tested for responsiveness to other 

mechanical stimuli. Comparable to serosal afferents, this mesenteric afferent did not respond 

to circumferential stretch, or to mucosal stroking. One out of 2 mesenteric afferents were 

spontaneously active (0.5 spikes s-1, 50%). A response to mucosal stroking was evident in only 

1/28 preparations tested. This responsive preparation also responded to circumferential and 

longitudinal stretch, and to 1g VFH probing, and may therefore represent the identification of 

a muscular-mucosal afferent (n=1). This muscular-mucosal afferent was spontaneously active 

(1.6 spikes s-1, 100%).  

“Silent” afferent fibres (n=2) initially had no discernible receptive field when probed 

with 2g VFH. However, after the application of BK (20nM or 2µM) a receptive field became 

apparent, which was responsive to either 2g VFH probing or to probing with a cotton bud 

(figure 2.09). “Silent” afferents were not tested for their responsiveness to VFHs under 2g, 

stretch stimuli, or to mucosal stroking. Therefore, no comment can be made on the location of 

“silent” afferent terminals. “Silent” afferents did not demonstrate any spontaneous activity. 
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Figure 2.09: “Silent” afferents were evoked after the application of the algogenic mediator BK (n=2). A) VFH probing before the application of BK did not 

elicit a HVA response. B) Application of BK activated HVAs in 1/2 preparations. C) VFH probing after the application of BK produced a response in HVAs. 
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2.1.3.5 GRADED RESPONSES TO VFH PROBING IN SEROSAL/MESENTERIC AND MUSCULAR 

AFFERENTS 

Graded responses to VFHs of increasing weight were evident in serosal, mesenteric and 

muscular afferents. Serosal and mesenteric afferents will henceforth be combined under the 

term serosal/mesenteric afferents, due to their similar responses to mechanical and chemical 

stimuli and low mesenteric n numbers, as has been done previously (Lynn and Blackshaw, 

1999, Hicks et al., 2002). Different response characteristics were observed when 

serosal/mesenteric afferents were compared to muscular afferents. The minimum threshold 

for activation by VFH probes was lower for serosal/mesenteric afferents compared to muscular 

afferents (20mg vs. 1g VFH probes). Serosal/mesenteric afferents tended to have a higher 

firing rate compared to muscular afferents when probed with 1g (20.4±3.0 vs. 11.5±2.5 

spikes/2s-1), 2g (21.0±2.7 vs. 12.2±4.2 spikes/2s-1), and 4g (24.3±7.3 vs. 11.0±2.0 spikes/2s-1) 

VFHs (figure 2.10). The minimum VFH probe (20mg) excited 12.5% (2/16) of 

serosal/mesenteric afferents. The proportion of serosal/mesenteric afferents that were 

excited by VFH probing increased until 600mg probes, and all subsequent probes (1g, 1.4g, 2g, 

4g), activated 100% of afferents. In contrast, the minimum threshold for activating muscular 

afferents was 1g, which activated 15.4% (2/13) of afferents. The proportion of muscular 

afferents activated by VFH probing increased with VFH weight, however even 4g VFH probes 

only activated 46.2% (6/13) of afferents (figure 2.10). Furthermore, the 1g VFH hair elicited 

similar rates of action potential firing compared to 2g, or 4g (11.5±2.5 vs. 12.2±4.2 vs. 11±2.0 

spikes 2s-1, respectively). A cotton bud, used to find the receptive field, activated 81.3% 

(13/16) of muscular afferents. No receptive field could be located, defined as a lack of 

response to any probing using VFHs or a cotton bud, for 18.7% (3/16) of muscular afferents. 

The identified muscular-mucosal afferent had a minimum activation threshold of 2g VFH. 

“Silent” afferents were only tested with either a 2g VFH probe or a cotton bud; hence their 

activation threshold could not be determined. 
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Figure 2.10: Characterisation of subtypes of HVAs based on their response to mechanical 

stimuli. A) Shows the mechanical response profile of each subpopulation. B) The shapes of the 

respective action potentials, used to discriminate between the different units as analysed by 

waveform analysis software within spike2. C) Displays the number of muscular and serosal 

afferents found in HVA preparations. Mesenteric and muscular-mucosal were not included as 

they were not searched for in every preparation. D) Describes the rate of afferent firing in 

response to VFH probing in serosal/mesenteric and muscular preparations. Serosal/mesenteric 

units responded to lower weight VFHs, and also had a higher firing rate at 1g, 2g, and 4g VFHs 

compared to muscular units. E) Shows the proportion of serosal/mesenteric and muscular 

units that responded to each VFH probe. Muscular units did not respond to VFH probes lower 

than 1g. However, >90% and 100% of serosal/mesenteric units responded to 400mg and 

600mg VFH, respectively, potentially allowing subpopulations to be discriminated by VFH 

probe alone. 
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2.1.3.6 SPONTANEOUS ACTIVITY 

In HVA recordings, spontaneous activity took 2 forms, a regular firing pattern, characterised by 

a continuous firing of single action potentials, and a burst firing pattern, characterised by burst 

of action potentials separated by a lag period. All subtypes of HVAs displayed spontaneous 

activity. Eight out of 22 serosal fibres exhibited spontaneous activity (0.8±0.2 spikes s-1, 36.4%) 

(figure 2.11). All spontaneously active serosal units exhibited a regular firing pattern. Sixteen 

out of 20 muscular afferents displayed spontaneous activity (4.2±0.9 spikes s-1, 80%). Of these 

16 afferents, 5 displayed both burst and regular types of spontaneous activity. The remaining 

11 spontaneously active units had a regular firing pattern. No muscular unit had exclusively 

bursting spontaneous activity. One out of 2 mesenteric afferents was spontaneously active, 

displaying a regular firing rate (0.5 spikes s-1, 50%). The only identified muscular-mucosal 

afferent displayed a regular spontaneous activity rate (1.6 spikes s-1, 100%). The rate of 

spontaneous activity in serosal afferents was significantly lower than exhibited by muscular 

afferents (0.8±0.2 vs. 4.2±0.9 spikes s-1, p<0.05) (figure 2.11). 

In preparations that exhibited baseline spontaneous activity, a transient inhibition or 

abolishment of spontaneous firing was evident immediately after the cessation of mechanical 

stimuli. After removal of the longitudinal or circumferential stretch stimulus, spontaneous 

activity was transiently inhibited (longitudinal: 8/18 preparations; recovery average ± SEM, 

12.3 ±3.3 seconds; range 1.0-27.9 seconds; circumferential: 10/16 preparations; recovery 

average ± SEM 9.7 ± 1.4 seconds; range, 3.4-18.1 seconds) or transiently abolished 

(longitudinal: 1/18 preps; recovery 2.9 seconds, circumferential: 2/16 preparations, recovery 

2.4 seconds). The spontaneous activity of 4 preparations was not changed after the cessation 

of either longitudinal or circumferential stretch. The withdrawal of the last VFH probe in each 

set transiently abolished spontaneous activity in 8/8 preparations that exhibited spontaneous 

activity (average ± SEM; 24.8 ± 5.2 seconds; range 1.0-70.8 seconds). This was evident in both 

serosal and mesenteric afferents. Similarly, the release of luminal pressure in distension 
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preparations transiently abolished spontaneous activity in 19/19 preparations (average ± SEM; 

3.0 ± 0.50 seconds; range 0.1-13.8 seconds). 
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Figure 2.11:  Spontaneous activity in HVAs was evident in the majority of preparations. A) 

Spontaneous activity took 2 forms, a regular firing pattern, characterised by a continuous 

firing of single action potentials, and a burst firing pattern, characterised by burst of action 

potentials separated by a lag period. B) Rates of spontaneous activity differed between the 

subtypes of HVAs. C) Displays the proportion of different HVA subtypes that exhibited 

spontaneous activity. 
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2.1.3.7 VFH TIME MATCHED CONTROLS 

Two out of 2 preparations used for probing time matched control experiments were 

spontaneously active (1.3±0.3 spikes s-1). The HVA responses to 2g VFH probing were very 

similar over a time period of ~60 minutes, with no group of probes differing by more than 11% 

(Baseline probes 1,2,3 100%, probes 4,5,6 105.9%, probes 5,6,7 98.4% (sets of probes normally 

considered post drug probes), probes 6,7,8 93.4%, probes 7,8,9 95.4%, probes 8,9,10 94.7%, 

probes 9,10,11 93.1%, probes 10,11,12 89.4%) (figure 2.12).  
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Figure 2.12: Bar graph showing VFH time matched controls.   The HVA responses to 2g VFH 

probing were very similar over a time period of ~60 minutes. The black bar is the average of 

the baseline probes. The white bar is the average of the probes that are equivalent to the drug 

effect probes normally compared to the baseline probes in drug studies. The grey bar is the 

average of the probes that are equivalent to the washout probes normally compared to the 

baseline probes in drug studies.  
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2.1.3.8 TRPV4 VFH PROBING PROTOCOL 

Considering the significant body of evidence for a role of TRPV4 in the transduction of 

mechanical stimuli in murine colonic afferents (Brierley et al., 2008, Cenac et al., 2008, Sipe et 

al., 2008, Cenac et al., 2010, Ceppa et al., 2010), we investigated the functional role of TRPV4 

in mechanosensitivity in HVAs. Mechanotransduction was examined using VFHs in flat sheet 

intestinal tissue. HVAs responded incrementally to increasing weight VFHs as described. Five 

out of 12 units used for VFH studies exhibited spontaneous activity (1.3±0.8 spikes s-1). Three 

out of 14 serosal HVAs responded directly to the application of GSK1016790A (BC 2µM, 20ml 

of 10µM, average Δ firing rate 18.3±4.1 spikes 20s-1) (figure 2.13). In those fibres that 

responded directly to GSK1016790A, there was a trend for an augmented HVA response to 

VFH probing (17.9±1.4 vs. 21.3±1.8 spikes 2s-1 probe, 19.1%, n=3, p>0.05), but this did not 

reach significance. In afferents that did not respond directly to GSK1016790A, there was no 

augmentation of the HVA response to probing by the TRPV4 agonist. Furthermore, when fibres 

that did not respond directly to GSK1016790A were split into groups based on VFH stimulus, 

HVA responses to both 2g (20.5±4.0 vs. 19.5±1.3 spikes 2s-1 probe, -2.4%, n=2, p>0.05) and 

400mg (21.6±3.7 vs. 20.6±3.0 spikes 2s-1 probe, -2.0%, n=6, p>0.05) remained unaffected. 

In contrast, the potent and selective TRPV4 channel antagonist HC067047 significantly 

attenuated the response of serosal HVAs to VFH probing (22.5±2.9 vs. 17.5±2.7 spikes 2s-1, -

23.9%, n=9, p<0.05) (figure 2.14). After a 30 minute washout of HC067047, all preparations 

failed to return towards baseline mechanosensitivty to VFH probing. However, after a 60 

minute washout 2/5 preparations studied over this period recovered towards baseline 

mechanosensitivity to VFH probing (baseline 25.3±10.8; vs. HC067047 13.8±13.8; vs. washout 

20.5±12.0 spikes 2s-1 probe) (figure 2.14). When experiments were split based on their VFH 

stimulus, HC067047 did not reduce the response of HVAs to 2g (22.0±8.5 vs. 19.8±6.0 spikes 

2s-1 probe, -6.9%, n=2) VFH probing, although this may be an n number issue. However, the 
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response of HVAs to 400mg VFH probing was significantly reduced after HC067047 application 

(22.7±3.3 vs. 16.8±3.2 spikes 2s-1, -28.7%, n=7, p<0.05). 
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Figure 2.13:  The effect of the TRPV4 agonist GSK1016790A on the mechanosensitivity of 

HVAs. A-C) Three out of 14 serosal HVAs responded directly to the application of the TRPV4 

agonist GSK1016790A. A) Shows a rate histogram of an example of the activation of a HVA 

after application of GSK1016790A. B) Displays the number of proportion of afferents that 

responded to GSK1016790A. C) A bar graph demonstrating the average change in afferent 

firing in the 3 activated afferents. D-E) In contrast, GSK1016790A failed to potentiate the 

human serosal afferent response to VFH probing, p>0.05. D) Shows the raw data and rate 

histograms for a set of 3 probes, before the addition of GSK1016790A, a set after the drug has 

been applied, and a set after it has been washed out. E) There was a trend towards a slight 

potentiation of the response to VFH probing in the 3 preparations that also directly responded 

to GSK1016790A; however this did not reach significance. F) In preparations that did not 

respond directly to GSK1016790A, there was no augmentation of the HVA response to VFH 

probing. G-H) When the direct GSK1016790A non-responders are split into experiments based 

on VFH stimulus, HVA responses to both 2g (20.5±4.0 vs. 19.5±1.3 spikes 2s-1 probe, -2.4%, 

n=2, p>0.05) and 400mg (21.6±3.7 vs. 20.6±3.0 spikes 2s-1 probe, -2.0%, n=6, p>0.05) show no 

augmentation. Data was analysed using a 2 tailed paired t test, p<0.05. 
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Figure 2.14:  TRPV4 modulates the transduction of mechanical stimuli in HVAs. A) Shows the 

raw data and rate histograms for a set of 3 probes, before the addition of HC067047, a set 

after the drug has been applied, and a set after it has been washed out. A-B) Application of the 

TRPV4 antagonist HC067047 significantly attenuated the human serosal afferent response to 

VFH probing (22.5±2.9 vs. 17.5±2.7 spikes 2s-1 probe, -23.9%, n=9, p<0.05). C-D) When 

experiments are split based on their VFH stimulus, HC067047 did not reduce the response of 

HVAs to 2g VFH probing (22.0±8.5 vs. 19.8±6.0 spikes 2s-1 probe, -6.9%, n=2), although this 

may be a n number issue, but did significantly reduce the response to 400mg probing 

(22.7±3.3 vs. 16.8±3.2 spikes 2s-1, -28.7%, n=7, p<0.05). Data was analysed using a 2 tailed 

paired t test, p<0.05. 
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2.1.3.9 SUMMARY OF RESULTS 

 HVAs respond to VFH probing of their receptive fields, longitudinal and circumferential 

stretch, and stroking of the mucosa 

 Five subtypes of HVA were characterised based on their response to mechanical 

stimuli, mesenteric, serosal, muscular, muscular-mucosal, and “silent” afferents 

 Spontaneous activity was evident in all subtypes, and was greatest in muscular 

afferents 

 The TRPV4 agonist, GSK1016790A, activated 3/14 HVAs, but failed to augment the HVA 

response to VFH probing.  

 The TRPV4 receptor antagonist HC067047 significantly attenuated the response of 

serosal HVAs to VFH probing.  
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2.1.4 DISCUSSION 

2.1.4.1 MECHANOSENSITIVITY AND HVA CHARACTERISATION  

The present study describes the 5 different subtypes of afferents terminating in the human gut 

based on their sensitivity to specific types and intensities of mechanical stimuli (see table 2.03 

for comparison to animal literature). The first in vitro electrophysiological characterisation of 

colonic afferents in any species, described afferent endings in the serosa, muscle layers and 

mucosa of the rat colon (Lynn and Blackshaw, 1999). The 5 subtypes identified in this study, 

“silent”, mesenteric, serosal, muscular, and muscular-mucosal have been previously identified 

in mouse colonic afferents (Brierley et al., 2004, Page et al., 2004, Page et al., 2005, Brierley et 

al., 2005a, Brierley et al., 2008, Brierley et al., 2009, Hughes et al., 2009a, Hughes et al., 2009b, 

Jones et al., 2005, Jones et al., 2007, Feng et al., 2012b, Feng et al., 2012a, Feng et al., 2013). 

Indeed, these functional subtypes have been described in 2 separate spinal nerve pathways 

innervating the mouse colon, the pelvic and splanchnic nerves (Brierley et al., 2004). Initial 

reports of potential subtypes of HVAs have been previously published (Jiang et al., 2011). This 

study represents the first extensive characterisation of subtypes of afferent terminals in the 

human gut using an in vitro model.  

2.1.4.2 SEROSAL AND MESENTERIC AFFERENTS 

Serosal HVAs were the most abundant subtype of HVAs, comprising 45.8% of the population. 

Serosal afferents  were found in comparable proportions in  both mouse splanchnic and pelvic 

afferents constituting 36-48% and 24-37% , respectively (Brierley et al., 2004, Hughes et al., 

2009a, Feng and Gebhart, 2011) and in rat splanchnic afferents between 51.9-81.4% (Lynn and 

Blackshaw, 1999, Hicks et al., 2002). They are also represented in the cat colon (Blumberg et 

al., 1983, Haupt et al., 1983).  Only 2 human mesenteric units were identified in the present 

investigation. Mesenteric afferents are only found in the murine splanchnic afferent pathway, 

but they constitute up to 50% of these afferents (Brierley et al., 2004, Page et al., 2004, Page et 
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al., 2005, Brierley et al., 2005a, Brierley et al., 2009, Feng and Gebhart, 2011). Mesenteric 

afferents were not systematically looked for due to the inherent technical difficulties, or 

studied in the present report therefore no comparisons can be made. However, an important 

point to consider in the future is the distinct difference in the quantity and composition of the 

mesentery between mice and humans. Human mesentery is fatty, thick, and fibrous due to the 

constituent connective tissue, and the quantity available varies from patient to patient.  

Human serosal afferents were only activated by VFH probing, and were unresponsive 

to both modes of stretch and to mucosal stroking, a finding that is supported by work in both 

mouse and rat serosal afferents (Hicks et al., 2002, Brierley et al., 2004, Feng and Gebhart, 

2011). In animal studies, serosal afferents have been shown to have a role in nociception 

based on their lack of response to innocuous stretch or mucosal stroking, and their 

responsiveness to noxious mediators such capsaicin, BK, ATP etc.  (Maubach and Grundy, 

1999, Hicks et al., 2002, Brierley et al., 2004, Brierley et al., 2005b, Wynn and Burnstock, 2006, 

Feng and Gebhart, 2011). Importantly, serosal afferents can respond to strong or dynamic 

stretching of the gut wall such as the initial phase, or levels of stretch which are supra-

threshold to that required to activate muscular afferents (Blumberg et al., 1983, Haupt et al., 

1983, Lynn and Blackshaw, 1999, Brierley et al., 2008)(Hughes et al., 2009a). Some have 

suggested that this could be accounted for by friction on the serosal caused by the underlying 

bath (Blumberg et al., 1983, Haupt et al., 1983, Lynn and Blackshaw, 1999). The large size, the 

thickness and the orientation, serosal side up, of the human tissues preparations likely 

eliminated the occurrence of this.  

Serosal and mesenteric afferents have previously been shown to sometimes have 

multiple receptive fields, often associated with blood vessels and capillaries (Morrison, 1973, 

Lynn and Blackshaw, 1999, Brierley et al., 2004). Similar observations were made in human 

serosal and mesenteric afferents, although we did not attempt to map their locations. 
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Mapping the location of each receptive field should be a standard procedure in future 

experiments. 

2.1.4.3 MUSCULAR, MUSCULAR-MUCOSAL AND MUCOSAL AFFERENTS 

All human muscular afferents responded to at least 1 mode of stretch, and were activated by 

VFH probing at much greater strengths than serosal afferents (minimum threshold of 1g).  

These response characteristics are comparable with muscular afferents in murine models 

which respond to stretch and VFH probing stimuli Stretch sensitive human muscular afferents 

made up 41.7% of the fibres we recorded from, which even accounting for the absence of a 

systematic assessment for mesenteric afferents is considerably greater than the proportion of 

muscular afferents were found in both mouse (splanchnic 10-12%; pelvic 12-22%) and rat 

(splanchnic 5-19%) visceral afferents (Lynn and Blackshaw, 1999, Hicks et al., 2002, Brierley et 

al., 2004, Hughes et al., 2009a, Feng and Gebhart, 2011). Brierley et al (2004) considered that 

muscular afferents may be under reported in in vitro preparations not utilising both 

circumferential and longitudinal stretch. Every attempt is made to test both modes of stretch 

in HVAs; however, the position of the nerve and electrode, as well as the size of the tissue 

does not always allow this. However, 17/20 muscular afferents were tested for both modes of 

stretch, with ~29% (5/17) of afferents only responding to 1 distinctive mode of stretch 

suggesting that there may be distinct populations of afferent sensitive to a particular direction 

of stretch. The lack of testing both stretch modes in murine models may account for the higher 

proportions of muscular afferents found in HVAs, which may more accurately reflect all the 

muscular populations. However, it must be taken into account that, at least in the mouse 

pelvic pathway, the proportion of stretch sensitive afferents is actually high, ~38-44%, but the 

majority of these were also responsive to mucosal stroking and hence classified as muscular-

mucosal afferents (Brierley et al., 2004, Hughes et al., 2009a, Feng and Gebhart, 2011). We 

have not reported muscular mucosal afferents in great abundance; however this may be due 
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to the serosa up orientation of our preparation. In order to better study mucosal afferents, a 

preparation using a mucosa up orientation may need to be used. 

Despite testing 17 HVAs for responses to mucosal stroking, no mucosal afferents were 

identified. In mouse splanchnic afferents, the number of mucosal afferents was very low at 4-

5%, however in rat splanchnic (14-23%) and mouse pelvic nerves (20-38%), mucosal afferent 

proportions were substantially higher (Lynn and Blackshaw, 1999, Hicks et al., 2002, Brierley et 

al., 2004, Hughes et al., 2009a, Feng and Gebhart, 2011). One human afferent was responsive 

to mucosal stroking, but it was also responsive to both longitudinal and circumferential 

stretch, and a 1g VFH probe. This was deemed to be a human muscular-mucosal afferent. The 

single human muscular-mucosal afferent identified from 17 preparations, is markedly less than 

the 22-26% reported in rodent models (Brierley et al., 2004, Hughes et al., 2009a, Feng and 

Gebhart, 2011). The orientation of the tissue in the bath must be considered when comparing 

the relative proportions of afferents subtypes characterised in human and animal in vitro 

preparations. For example, in the HVA model, the mucosa faces down. Although the tissue is 

partially unpinned to allow for mucosal stroking, a portion of the mucosa remains unavailable 

for stroking. This may lead to the underreporting of human mucosal and muscular-mucosal 

afferents. Human tissue recordings with the mucosa up have previously been reported (Jiang 

et al., 2011), and may reveal a greater innervation of the mucosa by extrinsic afferent fibres. 

Furthermore, characterisation of muscular-mucosal and mucosal in the mouse revealed a 

clustering of these subtypes in the distal colon (Brierley et al., 2004, Hughes et al., 2009a).  

Animal in vitro electrophysiological preparations involve studying the entire, or at least a large 

portion of the colon in 1 experiment. This is not reflected in human studies, where a piece of 

colon wall ~3cm2 from a 1.5 meter colon, represents the entire experimental tissue. 

Furthermore, although the majority of the tissue we used in these experiments was from the 

distal colon, tissue from more proximal intestine was also used. 
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Although the human intestinal tissue is kept in carbongenated Krebs buffer during 

collection and experimentation, some mucosal degradation is possible considering its 

vulnerability to ischaemic damage (Park et al., 1990, Park and Haglund, 1992). This may 

account for the small number of afferents sensitive to mucosal stroking. Therefore, when 

studying these afferents it is important to record from the tissue as soon as possible to ensure 

a healthy mucosa. Furthermore, a mucosa side up orientation, would not only allow greater 

access to the mucosa for stroking, but allow better perfusion of the Krebs buffer over the 

mucosa.  

2.1.4.4 “SILENT” AFFERENTS 

“Silent” afferents, traditionally display no spontaneous activity, and are not responsive to 

mechanical stimuli, until sensitised in inflammatory conditions (Cervero, 1994, Feng and 

Gebhart, 2011). We found 2 mechanically insensitive afferents, which after BK application, 

become responsive to probing of their receptive fields. These data represent the first 

demonstration of “silent” afferents in the human intestine. These may represent an important 

class of human nociceptors, which only become sensitive to mechanical stimuli after 

sensitisation. “Silent” afferents have previously been reported in many species including cat, 

rat, and mouse (Habler et al., 1988, Habler et al., 1990, Janig and Koltzenburg, 1991, Sengupta 

and Gebhart, 1994, Lynn and Blackshaw, 1999). Serosal afferents have been proposed to be 

the main source of “silent” afferents (Brookes et al., 2013). Indeed, after sensitisation “silent” 

afferents only respond to VFH probing and not to circumferential stretch or mucosal stroking 

(Feng and Gebhart, 2011). We only tested HVAs for responses to probing, and so cannot 

comment on the potential location of these “silent” afferents. The minority of “silent” mouse 

colonic afferents (33%) were directly activated by an inflammatory stimulus (a soup of BK, 5-

HT, histamine and PGE2) (Feng and Gebhart, 2011). Similarly, only ½ of HVAs were directly 

activated by the application of BK. However, this may be explained by the relatively low dose 

of BK, 20nM, applied in ½ experiments.    
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Table 2.03: Details reports describing the different subtypes of vagal and spinal afferents 

based on their response to mechanical stimuli using VFH probing, stretching, and mucosal 

stroking in rodent and human tissue.  

  

Paper Species Organ Afferent 
Type

Terminals Identified

Page and Blackshaw, 1998 Ferret Oesophagus, 
Stomach

Vagal Tension, Mucosal, 
Tension-mucosal

Lynn and Blackshaw, 1999 Rat Colon Splanchnic Serosal, Muscular, 
Mucosal

Hicks et al, 2002 Rat Colon Splanchnic Serosal, Muscular, 
Mucosal

Brierley et al, 2004
Either splanchnic or pelvic:
Page et al, 2004; Page et al; 
2005; Brierley et al, 2005b; 
2008; 2009; Jones et al, 
2005; Hughes et al, 2009a, 
Feng and Gebhart, 2011. etc.

Mouse Colon Spinal Splanchnic: 
Mesenteric, Serosal, 
Muscular, Mucosal
Pelvic: Serosal, 
Muscular, Muscular-
mucosal, Mucosal

Jiang et al, 2011 Human Colon Unknown Serosal, Muscular, 
Muscular-mucosal

Present Report Human Ileum, Colon Unknown Mesenteric, Serosal, 
Muscular, Muscular-
mucosal
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2.1.4.5 GRADED RESPONSES TO VFH PROBING 

Only 1 group has produced VFH stimulus response curves in colonic afferents, limiting the 

qualitative comparisons between animal and human preparations (Brierley et al., 2004, Page 

et al., 2004, Brierley et al., 2005a, Page et al., 2005, Brierley et al., 2009, Hughes et al., 2009a). 

Human serosal and mesenteric afferents were the most sensitive to probing, responding to 

VFHs as low as 20mg. This contrasted to the robust minimal probing stimulus ≥1g VFH required 

to activate human muscular afferents. This is in contrast to mouse pelvic and splanchnic 

afferents, which demonstrate similar submaximal stimulus response curves, with up upwards 

of 20% of afferents activated by the lowest VFH probe, 0.07g. Indeed, a heavier VFH probe was 

needed to active 100% of serosal afferents, compared to muscular afferents (Brierley et al., 

2004, Hughes et al., 2009a). This difference is most likely due to the thickness of the human 

tissue, which is many times that of the mouse and hence the activation of deeper muscular 

afferents requires stronger stimuli for excitation. This is supported by the observation that less 

than half of human muscular afferents are activated by the strongest VFH probe (4g), while 1-

2g VFH probes are enough to activate 100% of mouse  pelvic and splanchnic muscular 

afferents, respectively (Brierley et al., 2004, Brierley et al., 2005b, Hughes et al., 2009a).  

Similarly, the thickness of human tissue may also explain the higher firing rates to all 

VFH probes in serosa compared to muscular afferents, whereby lighter VFHs are not sufficient 

to fully activate deeper receptive fields. Firing rates in response to probing across all VFH 

weights is substantially higher in mouse colonic afferents compared to human afferents 

(Brierley et al., 2004, Brierley et al., 2008, Brierley et al., 2009, Hughes et al., 2009a). Again this 

may reflect the relatively thin mouse colonic tissue, whereby each VFH weight represents a 

greater relative stimulus. On the other hand, mouse colonic afferents tend to exhibit higher 

spontaneous firing frequencies compared to HVAs, which may account for the seemingly 

increased response to VFH probing (Brierley et al., 2004, Brierley et al., 2005b).  



132 
 

 A greater sensitivity of human serosal afferents is evident when compared to mouse 

serosal afferents in both pathways. One hundred percent of human serosal afferents are 

activated by 600mg VFHs, considerably lighter than the required stimulus, 1-2g, to activate all 

mouse pelvic and splanchnic serosal afferents, respectively. The greater sensitivity displayed 

by human serosal afferents may reflect the serosa side up orientation of the preparation, 

compared to mucosa side up in mouse experiments. Indeed, a number of studies have 

reported an increased sensitivity of serosal afferents to VFH probing when the experiment was 

performed with the serosa up, allowing direct access to the receptive field (Lynn and 

Blackshaw, 1999, Berthoud et al., 2001, Hicks et al., 2002). Considering this, the generation of 

serosal stimulus response curves in murine tissue by probing the mucosal surface, as 

demonstrated by a number of groups, is likely to be different to those generated in human 

tissue. 

 The use of isolated segments of human gut, from the ileum to the rectum, 

means our HVA recordings could potentially be from vagal, splanchnic, or pelvic nerves and 

represents a limitation of this model. Using distinct areas of intestine in future experimental 

sets can go some way to addressing this issue. The majority of studies performed in this report 

were on sigmoid colon, by far the most abundant type of tissue available. Hence using only 

sigmoid colon would be the most experimentally feasible idea to pursue in the future.  

Furthermore, as with all electrophysiological recordings from intestinal afferents, the 

possibility that some fibres may be enteric viscerofugal neurons cannot be ruled out.  

Advantages of pinning the tissue mucosal side up include, allowing the mucosa access 

to the nutrients, oxygen and pH of the Krebs buffer, thereby optimising the protection of its 

integrity, allowing stroking of the mucosa and hence identification of mucosal afferents, and 

even allowing for improved quality of HVA recordings (Jiang et al., 2011). However, while the 

former 2 points have merit, the latter theory is contradicted by the high signal to noise ratios 

evident in the HVA recordings in this report. A serosa up orientation allows for superior access 
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to all parts of the mesentery, and indeed the serosal surface, and is therefore more amenable 

to accurate identification of serosal and mesenteric afferents, and generation of meaningful 

stimulus response curves in these afferent subtypes. 

A number of studies report that afferents responsive to mucosal stroking are also 

sensitive to blunt probing of the mucosa (Lynn and Blackshaw, 1999, Hicks et al., 2002, Brierley 

et al., 2004, Feng and Gebhart, 2011). Indeed, this report demonstrates a response to 1g 

probing in a purposed muscular-mucosal afferent. In thick human colonic tissue, it is perhaps 

unlikely that a 1g VFH could directly activate a distinct site in the mucosa following application 

to the serosa. This may suggest that the ending of some muscular-mucosal afferents which 

respond to mucosal stroking may terminate in deeper layers of the gut than the mucosa. 

Indeed, is has previously been postulated that some muscular-mucosal afferents may 

terminate in the muscularis externa (Page and Blackshaw, 1998, Blackshaw and Gebhart, 2002, 

Brierley et al., 2004). Alternatively agitation of the mucosal surface by the tissue bath during 

probing may account for the response to a 1g VFH. 

2.1.4.6 SPONTANEOUS ACTIVITY 

The present study found 2 types of spontaneous activity in HVAs, regular and burst firing. 

Bursting spontaneous activity was evident in 31% of spontaneous active muscular units, 

consistent with previous reports in muscular, and in tension-mucosal afferents in the human, 

ferret and mouse GI tract, but never in any stretch insensitive afferents (Page and Blackshaw, 

1999, Page et al., 2002, Jiang et al., 2011). Indeed, in the current study no burst like 

spontaneous activity was evident in any other HVA subtype. It is possible that ongoing 

contractile activity in the muscle drives this burst like activity, as has been previously 

suggested (Jiang et al., 2011). A muscular involvement is supported by the restriction of 

bursting spontaneous activity to stretch-sensitive afferents. Indeed, some cases of burst firing 

in tension-mucosal receptors was induced by excessive stretching of the tissue during pinning. 
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Furthermore, the authors comment on the co-incidence of burst like spontaneous activity with 

contractions in the muscularis-mucosae (Page and Blackshaw, 1999). However, any contractile 

activity would have to overcome the presence of both atropine and nifedipine in the krebs 

buffer.  Burst firing may also represent firing from injured nerve fibres as previously suggested 

by Lord Adrian.  

Spontaneous activity was evident in a proportion of each HVA subtype; mesenteric 

(1/2, 50%), serosal (8/22, 36.4%), muscular (16/20, 80%), muscular-mucosal (1/1, 100%). The 

proportion of serosal fibres displaying spontaneous activity is similar to previous reports in 

mice (Brierley et al., 2004).  However, muscular HVAs were more likely to be spontaneously 

active compared to previous studies; HVAs 80% vs. 40% mouse models (Brierley et al., 2004). 

Nociceptors in the skin do not exhibit spontaneous activity, until they have been challenged by 

a noxious stimulus (Burgess, 1973, Cervero, 1994). Similarly in the heart it has been argued 

that nociceptors exhibit no spontaneous activity, and it was postulated that this may extend to 

all viscera (Malliani, 1989). However, without direct evidence, visceral nociceptors, in animal or 

humans, cannot be identified by a lack of spontaneous activity, as has been proven in 

cutaneous nociceptors (Cervero, 1994). Indeed, it is not necessarily true that every action 

potential from a primary afferent will activate a second order neuron in the spinal cord 

(Sengupta and Gebhart, 1994). Furthermore, it is possible that spontaneous activity in 

nociceptors is not physiological, and is caused by factors such as trauma during 

surgery/excision and ischemia (Cervero and Sann, 1989, Longhurst et al., 1991).   

Rates of spontaneous activity in serosal afferents was lower (0.8±0.2 spikes s-1), 

compared with muscular afferents (4.2±0.9 spikes s-1), consistent with a putative noxious and 

non-noxious role for these 2 different fibre types.  Low levels of spontaneous activity in HVAs 

have been previous reported, with both appendix (2.4±0.6 spikes s-1) and colon (2.0±0.4 spikes 

s-1) preparations displaying similar rates (Peiris et al., 2011). The spontaneous activity rates of 

both serosal and mesenteric afferents are very similar to those reported in mice, rat and cat 
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splanchnic afferent pathways, HVA: 0.5 and 0.8 spikes s-1 vs. animal 0.5 and 0.38 spikes s-1, 

respectively (Lynn and Blackshaw, 1999, Brierley et al., 2004). In contrast, the spontaneous 

activity rates of muscular and muscular-mucosal HVAs are more similar to those reported in 

tension and tension-mucosal afferents in vagal afferent pathways; HVAs 4.2 and 1.6 spikes s-1 

vs. animal 10 and 3 spikes s-1 (Page and Blackshaw, 1999, Page et al., 2002, Zagorodnyuk et al., 

2003).  

Spontaneous activity rates tended to vary in long HVA experiments. This event has 

been previously reported to be 5-HT3 mediated, at least in vagal mucosal afferents (Blackshaw 

and Grundy, 1993, Hillsley et al., 1998). Further study of this phenomenon in HVAs is 

warranted.    

 This project reports a transient cessation of spontaneous activity after the removal of a 

mechanical stimulus, i.e. VFH probing, circumferential and longitudinal stretch, and distension. 

Indeed, the withdrawal of any of these stimuli can cause a temporary interruption of 

spontaneous activity in a number of animal models (Lynn and Blackshaw, 1999, Andrew and 

Blackshaw, 2001, Zagorodnyuk et al., 2003) and in HVAs (Jiang et al., 2011). This was not 

studied in depth however, an enteric occult reflex described recently (Dickson et al., 2007) has 

been theorised to play a role in this phenomenon (Schemann, 2011). This reflex describes the 

release of nitric oxide from descending interneurons, which subsequently causes muscle 

relaxation on the anal side, which may affect the action potential discharge from any adjacent 

afferent fibres (Dickson et al., 2007, Schemann, 2011). This theory could be investigated in 

HVAs using nitric oxide synthase inhibitors such as L-NG-Nitroarginine Methyl Ester (L-NAME).  

2.1.4.7 TRPV4 

This report has demonstrated a role for TRPV4 in the transduction of mechanical stimuli. Only 

serosal and mesenteric HVAs were used in flat sheet studies, identified by their response to 

<1g VFH probes. TRPV4 has previously been implicated as a transducer of noxious mechanical 
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stimuli specifically in mouse serosal and mesenteric afferents (Brierley et al., 2008). The results 

presented in this report corroborate the putative role of TRPV4 as a transducer of mechanical 

stimuli, likely to include noxious stimuli, given the location of the terminals in the serosa and 

mesentery. Responses in muscular afferents in flat sheet preparations were not tested.  

Application of GSK1016790A increased activity in 3 serosal afferents. Although this 

may be a direct effect on the afferents, an indirect action, whereby GSK1016790A activates 

another cell type, which subsequently releases another mediator that then excites the afferent 

nerves cannot be ruled out. These responding afferents also exhibited a trend towards 

increased mechanosensitivty to VFH probing after GSK1016790A application, with percentage 

increases of 5.2%, 13.7%, and 38.5%, although this did not reach significance. Furthermore, 

with the exception of the latter afferent, both positive and negative percentage changes in 

mechanosensitivity occur to a similar degree in afferents that did not directly respond to 

GSK1016790A. The former 2 values are within, or close to, the natural variance exhibited by 

VFH time matched controls (figure 2.12). Therefore, the significance of the percentage changes 

in the former 2 afferents is minimal. GSK1016790A also did not alter mechanosensitivity in 

afferents that did not respond to GSK1016790A.  An excitation of intestinal afferents has not 

previously been demonstrated in rodent models. This may reflect the use of alternative 

agonists such as EET and 4αPDD, the latter of which may not be a true TRPV4 agonist 

(Alexander et al., 2013).   

In contrast, consistent with mouse data the TRPV4 antagonist HC067047 significantly 

reduced the HVA response to VFH probing, an effect which showed partial recovery in a 

proportion of preparations. To explain this result, after the first 4 experiments it was 

postulated that a 2g VFH was an excessive stimulus, allowing no room for system redundancy 

and hence reducing the potential for GSK1016790A to augment the response to probing, but 

preserving the inhibitory potential of HC067047. However, the remaining experiments using a 

400mg VFH, which elicits a substantially lower HVA response, produced similar results.  
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High levels of constituent activation of TRPV4 channels in human intestinal afferents 

could potentially explain the lack of effect GSK1016790A had on afferent mechanosensitivity, 

despite the clear reduction induced by the antagonist, HC067047. However, this is difficult to 

explain given the role TRPV4 receptors play as cell sensors, transducing various stimuli. The 

specificity of HC067047 must be considered, as high doses have been shown to antagonise the 

hERG and TRPM8 receptors, which could be potentially contributing to the reduced 

mechanosensitivity exhibited in this report. However, these receptors are not generally 

considered transducers of mechanical stimuli, although there is very limited somatic evidence 

for some involvement in mechanosensitivity (Brignell et al., 2008, Angus et al., 2011).   

In this report no distinction was made between vagal, pelvic and splanchnic nerves. 

Previous reports in mice, have demonstrated augmented responses to VFHs in serosal and 

mesenteric afferents from the splanchnic nerve and serosal afferents in the pelvic nerve 

(Brierley et al., 2008). However, TRPV4 receptors seemed to have no role in the 

mechanotransduction of mechanical stimuli in splanchnic, pelvic or vagal muscular, muscular-

mucosal, or mucosal afferents. Indeed, vagal afferents may be present in certain regions of the 

human intestinal tissue used in these experiments especially in the ileum, but do not 

constitute a proportion of serosal afferents.  
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2.1.5 CONCLUSION 

The subtypes of colonic afferents innervating the mouse colon have only recently been 

elucidated (Brierley et al., 2004). This report represents the expansion of the preliminary 

characterisations of human visceral afferents described by Jiang et al (2011). Our data 

demonstrates the existence of subtypes of afferents that terminate in the mesentery, serosa, 

muscle and muscular-mucosal layers. Each subtype responds to a distinct subset of mechanical 

stimuli, with specific activation thresholds. Examination of the role of these subtypes in normal 

conditions and in disease states is warranted. 

Intestinal nociceptors have been postulated to terminate in the serosa and the 

mesentery, both of which have been characterised in this HVA model. Further confirmation of 

their role in nociception will be examined in the next chapter. “Silent” nociceptors that are 

only responsive to mechanical stimuli after sensitisation by inflammatory mediators have also 

been described.  

This report has demonstrated a higher spontaneous activity firing rate in muscular 

compared to other HVA subtypes. This may reflect may reflect a greater role in transmitting 

physiological information to the CNS. An enteric occult reflex may explain the transient 

inhibition of spontaneous activity following the cessation of a mechanical stimulus, which 

could be examined in the future.  

A proportion of fibres responded directly to the TRPV4 agonist GSK1016790A. In these 

afferents there was a trend towards an augmented response to VFH probing, although this 

wasn’t significant. There was no alteration in mechanosensitivity to VFH probing after 

GSK1016790A in afferents that did not respond directly to the drug. The TRPV4 antagonist 

HC067047 attenuated the response of HVAs to VFH probing, specifically in experiments using 

400mg VFHs. This indicates a role for TRPV4 in the transduction of mechanical stimuli in HVAs, 

as has been previously demonstrated in mice.  
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CHAPTER 2 PART 2:  
CHARACTERISATION 
OF SUBTYPES OF AFFERENTS  
INNERVATING THE HUMAN APPENDIX 

2.2.1 INTRODUCTION 

2.2.1.1 DISTENSION SENSITIVE AFFERENTS  

The stimulus that best represents perceived sensation, both physiological and nociceptive is a 

rise in intraluminal pressure of the colon (Lipkin and Sleisenger, 1958, Ness and Gebhart, 

1990). Indeed, distension of the colon by raising intraluminal pressure is a classical stimulus to 

investigate the function of extrinsic afferent fibres (Janig and Koltzenburg, 1991). Experiments 

from cats, rats and mice, demonstrate that distension of the gut wall can activate splanchnic, 

pelvic and vagal afferents (Blumberg et al., 1983, Ness and Gebhart, 1987, Ness and Gebhart, 

1988a, Ness and Gebhart, 1988b, Janig and Koltzenburg, 1991, Sengupta and Gebhart, 1994, 

Brooks and Tracey, 2005).  

Different types of distension responses have been reported including rapidly adapting, 

an initial burst of activity followed by a complete adaptation, and slowly adapting, a gradual 

adaptation to a tonic level of distension induced activity (Blumberg et al., 1983, Janig and 

Koltzenburg, 1991). Similarly, afferents have also been characterised based on their threshold 

of activation (Sengupta and Gebhart, 1994). Splanchnic nerves innervating the ferret 

gallbladder, the oesophagus of the opossum, and the colon of the cat, and pelvic nerves 

innervating the mouse bladder, cat bladder, and rat colon, have all been shown to have both 

low threshold (LT) and high threshold (HT) afferent fibres (Cervero, 1982, Blumberg et al., 

1983, Sengupta et al., 1990, Habler et al., 1990, Sengupta and Gebhart, 1994, Sengupta et al., 

1999, Rong et al., 2002). LT afferents have low thresholds for activation and tend to saturate at 
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low distension pressures. HT afferents are not activated until higher pressures are reached, 

and continue to signal into the noxious range of distension pressures. However, the threshold 

pressure for LT and HT afferents are not equivocally defined, with LT being defined as 3 to 

<25mm Hg, and HT as >20 to ≥33mm Hg, although these differences are partially explained by 

the different pressures required to produce pain in different species (Sengupta and Gebhart, 

1994). Furthermore, some studies have demonstrated the existence of WDR units, which have 

low thresholds for activation, but continue to signal into the noxious range of distension 

pressures, in addition to LT and HT fibres (Sengupta et al., 1990, Rong et al., 2004). 

Most studies dividing distension sensitive afferents between LT and HT report a higher 

proportion of LT fibres (2/3 to 3/4), with high threshold afferents making up the rest. Other 

studies, for example, Rong et al, (2004) reported very high proportions of WDR afferents (67%) 

compared to LT (14%) or HT (19%) when recording from mesenteric nerves innervating the 

jejunum of the mouse, although these included recordings from both spinal and vagal fibres. 

Furthermore, when considering just the threshold for activation, LT fibres may still constitute 

the majority of afferents. It is only when the saturation point of afferent firing is considered do 

LT and WDR afferents differentiate, a concept not applied across all papers reporting just LT 

and HT fibres. 

In the colon, LT fibres tended to respond with higher firing rates than HT fibres to all 

distension pressures (Sengupta and Gebhart, 1994). The threshold of afferent nerves in the 

splanchnic and pelvic pathways is likely to be affected by the location of their terminals in the 

colon wall. Indeed, muscular, and muscular-mucosal afferents tend to have lower distension 

thresholds compared to serosal afferents e.g. (Zagorodnyuk and Spencer, 2011). 

 To date, the thresholds and characteristics of distension sensitive human afferents 

have not been investigated. This report aims to examine the different types of distension 
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sensitive afferents innervating the human appendix, based on their response threshold and 

firing frequency to luminal distension.  

2.2.1.2 TRPV4 

TRPV4 channels and their involvement in the transduction of mechanical stimuli are discussed 

in chapter 2 part 1. The aim of this report was to examine the role of TRPV4 receptors in the 

transduction of mechanical stimuli, specifically luminal distension of the appendix. 
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2.2.1.3 AIMS 

 Examine the effect of luminal distension of the appendix on HVAs 

 Examine the different types of distension sensitive afferents innervating the human 

appendix, based on their response threshold to luminal distension, their firing rate and 

the pressure at which the firing rate plateaus  

 Ensure repeated luminal distension are reproducible by conducting time matched 

controls 

 Examine the role of TRPV4 channels in the transduction of mechanical stimuli, 

specifically luminal distension of the appendix, in human afferent nerves  
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2.2.2 METHODS 

2.2.2.1 PATIENTS 

Resected human appendix were collected after written consent from patients undergoing 

elective surgery for cancer, polyps, CD, UC, DD, trauma, chronic constipation, or appendicitis at 

the Royal London Hospital or Whipps Cross University Hospital (London, UK). Normal 

appendices were usually collected from right hemicolectomies, undertaken as an intervention 

for colon cancer. Acutely inflamed appendices were collected from appendicitis cases. 

Furthermore, appendices from subtotal colectomies, and panproctocolectomies, undertaken 

as an intervention for IBD were also collected. Appendices were returned to the pathology 

department after experimentation. 

2.2.2.2 APPENDIX DISTENSION  

The majority of experiments took place on the day of surgery. However, in some circumstances 

tissues were placed in carbongenated Krebs buffer and stored overnight at 4°C (see chapter 5 

part 2). Firstly, the tissue was grossly examined using a stereomicroscope (M5A, Wild 

Heerbrugg) and blood vessel arcades identified. The lumen of appendix preparations was 

flushed using Krebs buffer. Excess mesentery was removed before the tissue was transferred 

to the tissue bath and cannulated. The tissue was then superfused with carbongenated (95% 

O2, 5% CO2) Krebs buffer (6ml/min; 32-34°C; pH 7.4; 124mM NaCl, 4.8mM KCl, 1.3mM 

NaH2PO4, 1.2mM MgSO4.7H2O, 2.5mM CaCl2, 11.1mM Glucose, 25.0mM NaHCO3), 

supplemented with atropine (10µM) and nifedipine (10µM). Nerves running in close proximity 

to the blood vessel arcades were finely dissected using a microscope (SZ40, Olympus). Nerves 

were then sucked into a boroscilicate glass suction electrode (Harvard Apparatus), which was 

filled with Krebs buffer and neuronal activity recorded using a differential amplifier (headstage 

and AC/DC amplifier (gain 5K) (Neurolog Ltd). The analogue signal was then band pass filtered 

(100-2000Hz; digitally filter using a humbug 50Hz filter(Quest Scientific) following which the 
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resultant signal was digitised at a sampling rate of 20KHz using a Micro 1401 MKII (Cambridge 

Electronic Design) and displayed  a desktop computer running Spike2 software in a chart 

recorder format. Data was stored for further off line analysis (Cambridge Electronic Design). 

Additionally neuronal activity was also simultaneously counted from the filtered and amplified 

signal using a spike processor (Digitimer). The threshold for spike counting was set at twice the 

background noise and the output from the spike processor sent to the events channel on the 

1401 for processing and relay to the desk top computer were it was displayed alongside the 

raw trace on spike 2. Nerve activity was expressed as a rate histogram as either spikes/20s-1, 

5s-1, or 1s-1 (Peiris et al., 2011).  

Cannulated appendix preparations were distended using a mechanical driven 

perfusion pump (Genie Touch, Kent Scientific Corporation), which delivered 1 or 1.5ml/min of 

Krebs buffer into a sealed system, depending on the size of the appendix, to ensure distension 

from 0 to 60mm Hg took 80-100 seconds (figure 2.15).  
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Figure 2.15: A perfusion pump and pressure transducer were used to luminally distend 

appendices. 
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Pressure Transducer
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2.2.2.2.1 Characterisation of distension sensitive afferents 

 The 3 baseline distensions from each preparation were used to characterise distension 

sensitive afferents based on their threshold for activation, their firing rate, and the pressure at 

which their firing plateaus. Firstly, single units were identified using waveform analysis, as 

previously described in chapter 2 part 1. The response of each unit to each of the 3 baseline 

distensions, at pressure points, 10, 20, 30, 40, 50, 60 mm Hg were recorded. The responses at 

each of these pressure points were then averaged, i.e. the 3 values at 10mm Hg were averaged 

etc. These values at each pressure point were then used to characterise the distension 

sensitive units (figure 2.16).  
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Figure 2.16: Distension characterisation protocol 

1) Single units identified. 

2) Responses at pressure point, in 10mm Hg increments, were measured. 

3) The responses at each pressure point were then averaged across the 3 distension i.e. response at 10mm Hg at distension 1, 2 and 3 were averaged.  

4) The averages were then plotted on a graph and used to characterise the distension sensitive afferents.  
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2.2.2.2.2 Distension Time Matched Controls 

To investigate the reproducibility and stability of repeated appendix distensions, time matched 

control experiments were performed. This involved appendix distension every 10 minutes as 

normal, but no drug was perfused into the tissue bath or through the lumen. The average of 

the responses to the first 3 distensions were then compared to the average of the subsequent 

2 consecutive distensions i.e. distensions 4, 5 distension 5, 6 etc. at each 10 mm Hg pressure 

point. These were then compared using a 2 way ANOVA, p<0.05.  

2.2.2.3 APPENDIX DISTENSION PROTOCOLS 

Three distensions, each separated by 10 minutes, were used as baseline responses. 

Drugs were added immediately after the 3rd baseline distension. For TRPV4 experiments either 

GSK1016790A (BC 2µM, 20ml of 10µM) or HC067047 (BC 20µM, 20ml of 100µM) was 

subsequently superfused into the bath. In a subset of experiments HC067047 was superfused 

into the bath and through the lumen (BC 20µM, 100ml of 20µM, 20ml of 20µM luminal 

perfusion). In all the experiments, distensions were continued every 10 minutes after the 3 

baseline distensions (figure 2.17). For analysis, firing frequency (spikes 5s-1) was measured at 

each 10 mm Hg pressure increments up to 60mm Hg. The firing frequency at each pressure 

point was averaged across the 3 baseline distensions. These baseline values at each pressure 

point were then compared to their respective pressures in distensions performed when the 

concentration of the drug in the bath was at its highest, i.e. the 1st post drug distension for low 

volume experiments (20ml), and the 2nd post drug distension for high volume experiments 

(100ml). Responses were analysed using a 2 way ANOVA, p<0.05. 
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Figure 2.17: TRPV4 distension protocol 

1) The Δ in firing rate at each 10mm Hg pressure point was averaged for the 3 baseline distensions. 

2) In experiments with low drug volumes (20ml, dotted line), the 1st post drug distension is then compared to the average of the baseline distensions. The 

2nd post drug distension was compared to the average of the baseline distensions in experiments using higher drug volumes (100ml, dotted + solid line). 

3) For drug vs. washout comparisons, the 1st (20ml) or the 2nd (100ml) post drug distensions were compared to the 5th post drug distension.
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2.2.2.4 DRUGS 

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at 20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 

and vortexed to mix. GSK1016790A was obtained from Sigma Aldrich (St Louis, MO, USA). 

HC067047 was purchased from Tocris Bioscience (Bristol, UK).  
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2.2.3 RESULTS 

2.2.3.1 OVERALL TISSUE COLLECTION – APPENDIX 

Eighty-three appendix tissues were collected from surgery. Of these, 66 were used for 

electrophysiological recordings. Fifty of these appendices were cannulated; although not all 

were suitable for distension protocols (figure 2.18). A summary of how appendices were 

assigned experiments is in figure 2.19.  
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Figure 2.18: A) Shows an appendix and attached mesentery. The white arrows indicate the 

blood vessel arcades, with which the nerves track (Peiris et al, 2011). B) A diagram of the 

human colon indicating the number of appendices collected for used in research. C) Details the 

number of appendices collected, and subsequently used for electrophysiology, as well as the 

number that were cannulated during experimentation.  
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2.2.3.2 TISSUE – DISTENSIONS SENSITIVE AFFERENT CHARACTERISATION 

Twenty appendices, 12 normal, 4 CD, 2 UC, 2 appendicitis, were used for distension sensitive 

afferent characterisation (M:F 1:1.22, median age 51).  

2.2.3.3 TISSUE – TRPV4 DISTENSION EXPERIMENTS 

Nine appendices, 4 normal, 2 CD, 2 UC, 1 appendicitis, were used for TRPV4 distension 

experiments (M:F 1:0.5, median age 34). Further details on the tissues use in each set of 

experiments can be seen in table 2.02. 
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Figure 2.19: Given the limited supply of human tissue, every effort was made to make the 

most out of each piece. In each preparation, mechanosensitivity of the afferent was tested 

first by distending the appendix. If the nerve was mechanosensitive the nerve was 

characterised based on its threshold for response to luminal distension. If the preparation was 

deemed suitable, a distension protocol was then performed. If the nerve was not 

mechanosensitive, or deemed unsuitable, the nerve was discarded and a new recording from a 

separate nerve was attained. If no other suitable nerves were available or the 3 consecutive 

unsuitable nerves were found, a chemosensitivity protocol was performed.  
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2.2.3.4 DISTENSION SENSITIVE AFFERENTS 

Distension sensitive afferents responded in a graded manner to rising intra-luminal pressures 

in the appendix. This could begin at pressures as low as 10mmHg and continued well into 

noxious pressures (60 mm Hg). Twenty appendices were used for characterisation from which 

46 discriminated units were identified. Three different types of distension sensitive units could 

be identified based on the pressure threshold at which they start responding to distension, 

their firing frequency, and the pressure at which their firing starts to plateau (figure 2.10, table 

2.04). Thirteen distension sensitive units were classified as low threshold units (28.3%), based 

on their high firing rate, in response to a small rise in luminal pressure, starting at 10mm Hg 

(>20 spikes /5s-1), the lowest pressure measured. These units generally reached peak firing rate 

at around 30mm Hg, after which the firing rate saturated despite increasing luminal pressure. 

Twenty-seven distension sensitive units were classified as wide dynamic range units (WDR) 

(58.7%) based on their gradually increasing response to incremental luminal pressure. This 

started at low pressures 10mm Hg, with a moderate firing rate (<20 spikes/5s-1) and usually 

continuing to increase up to 60 mm Hg. Six distension sensitive units were classified as high 

threshold units (13.0%) based on their lack of response to distension at 10mm Hg, and low 

firing rate (<10 spikes/5s-1) to distension at 20 mm Hg. These units tended to responded 

incrementally to pressures of 30 to 60 mm Hg (figure 2.20). Of note, low threshold (0/4 BK, 0/4 

ATP, 1/2 capsaicin mediators elicited a response), wide dynamic range (1/1 BK, 1/1 capsaicin) 

and high threshold (0/2 BK, 1/1 ATP) distension sensitive afferents were chemosensitive to 

bath application of BK, ATP or capsaicin.    

 The firing rate of low threshold units in response to luminal distension were 

significantly higher at all pressures compared to WDR or high threshold units (p<0.001). The 

firing rates of WDR and high threshold units in response to distension were similar between 

30-60 mm Hg luminal pressure range (p>0.05). The average change in afferent firing rate in 
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response to each pressure for low threshold, WDR, and high threshold units are shown in table 

2.04.
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Figure 2.20: Characterisation of distension sensitive HVAs. Three different types of distension 

sensitive HVAs were identified based on their pressure threshold for activation, A) low 

threshold (LT), B) wide dynamic range (WDR), C) high threshold (HT). D) shows the mean firing 

rates of each of these units over the pressure range. LT units had a higher firing rate in 

response to distension at all pressures, compared to WDR and HT units (see table 2.04). E) 

displays the proportion of each subtype of distension sensitive afferent. WDR units were the 

most prevalent, making up 58% of distension sensitive afferents. 
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Table 2.04: Table showing average firing rates (spikes 5s-1) at pressures 10-60 mm Hg for low 

threshold, wide dynamic range, and high threshold distension sensitive afferents.  

  

Pressure (mm Hg) Low Threshold WDR High Threshold

10 14.1 ± 3.6 3.3 ± 0.6 0.5 ± 1.1

20 30.3 ± 4.0 9.5 ± 0.8 2.3 ± 1.9

30 46.0 ± 4.3 14.8 ± 1.4 11.3 ± 3.7

40 49.0 ± 5.8 16.9 ± 1.7 18.0 ± 6.6

50 47.4 ± 6.0 17.5 ± 2.0 17.8 ± 4.7

60 45.0 ± 6.5 18.4 ± 2.2 23.6 ± 6.4
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2.2.3.5 DISTENSION TIME MATCHED CONTROLS 

Distension time matched control experiments were firstly analysed as whole nerve recordings. 

The line graph produced over pressure 10-60 mm Hg for the first 3 baseline distensions closely 

matched the line graphs representing the subsequent sets of consecutive distensions (n=2, 

figure 2.21). Furthermore, when these experiments were analysed using individual units, there 

was no significant change in the HVA response to distension between the first 3 baseline 

distensions compared to any subsequent set of 2 consecutive distensions in WDR units (n=3, 

p>0.05, figure 2.21). One LT unit was also identified with no obvious variations in HVA 

response to luminal distension across the pressure ranges between baseline and subsequent 

sets of distensions.  
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Figure 2.21: Distension time matched controls. Repeated luminal distension of the appendix every 10 

minutes produced consistent HVA responses over an 80-90 minute period. A-B) Shows an example of 

repeated whole nerve (A) and wide dynamic range (WDR) (B) HVA responses to luminal distension of the 

appendix in rate histogram form. C) Shows the pressure curve for each distension.  D, E, F) Displays the 

whole nerve (n=3) (D), WDR (n=2) (E), and low threshold (n=1) (LT) (F) line graphs for each set of 

distensions. Baseline distensions in WDR units were not significantly different to any subsequent set of 2 

consecutive distensions at any pressure, p>0.05 
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2.2.3.6 TRPV4 DISTENSION PROTOCOL 

GSK1016790A (n=4) did not activate any HVAs.  Bath superfusion of GSK1016790A did not alter 

the whole nerve HVA response to luminal distension, at any pressure point, or across the 

pressure ranges (n=4, p>0.05). Similarly, when the recordings were analysed as individual 

units, GSK did not change the response of WDR afferents (n=3, p>0.05, figure 2.22). One LT 

unit was also identified, but more of these units are needed before comment can be made.  

 Bath superfusion of HC067047 did not alter the whole nerve HVA response to luminal 

distension at any pressure point or across the pressure range (n=6, p>0.05). HC067047 did not 

alter the mechanosensitivity of the 4 WDR units identified in these whole nerve recordings 

(n=4, p>0.05, figure 2.23). Two LT units were also identified, but their pressure line graphs 

almost completely overlaid those of baseline. 

 Combined bath superfusion (higher volume, lower dose than previous experiments) 

and luminal perfusion of HC067047 failed to alter the response of whole nerve HVAs to luminal 

distension, at any pressure point or across the pressure range (n=5, p>0.05). In addition, there 

was no change in the response of WDR units to distension after combined bath and luminal 

application of HC067047 (n=8, p>0.05, figure 2.23). The data was also pooled for analysis 

regardless of drug application method, however, HC067047 did not significantly alter the 

whole nerve (n=11), WDR (n=12) or LT (n=3) HVA response to luminal distension at any 

pressure (data not shown in figure form, p>0.05). 
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Figure 2.22: Application of the TRPV4 agonist GSK1016790A did not alter the HVA response to 

luminal distension. A-B) Shows an example of repeated whole nerve (A) and WDR (B) HVA 

responses to luminal distension of the appendix in rate histogram form. GSK1016790A 

application is noted by the solid black line. C) Shows the pressure curve for each distension. D-

E) Bath application of GSK1016790A did not alter the whole nerve (n=4) (D) or WDR (n=3) (E) 

HVA response to distension, p>0.05. F) One LT units was also identified in these recordings. 

Data were analysed using a 2 way ANOVA, p<0.05. 
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Figure 2.23: Application of the TRPV4 antagonist HC067047 did not change the HVA response 

to luminal distension. A-B) Shows an example of repeated whole nerve (A) and wide dynamic 

range (WDR) (B) HVA responses to luminal distension of the appendix in rate histogram form. 

HC067047 addition to the bath is marked by the dotted line, while its application to the bath 

and lumen in together is the dotted and solid line together. C) Shows the pressure curve for 

each distension. D-E) Bath application of HC067047 did not alter the whole nerve (n=6) (D) or 

WDR (n=4) (E) HVA response to distension, p>0.05. F) Two low threshold (LT) units were also 

identified in these recordings, and seemed to be unaffected by bath application of HC067047. 

G) Combined bath and luminal application of HC067047 also failed to change the whole nerve 

(n=5) (G) or WDR (n=8) (H) HVA response to distension, p>0.05. Data were analysed using a 

2 way ANOVA, p<0.05. 
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2.2.3.7 SPONTANEOUS ACTIVITY  

All distension sensitive afferents, regardless of threshold for activation displayed spontaneous 

activity. LT distension sensitive afferents had a higher spontaneous activity rate compared to 

WDR and HT afferents (11.3±3.6 vs. 3.1±0.6 vs. 6.3±4.0 spikes s-1) (figure 2.24).  
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Figure 2.24: A) Spontaneous activity in the different subtypes of distension sensitive afferents. 

Low threshold (LT) afferents had higher spontaneous activity than wide dynamic range (WDR) 

units and high threshold units (11.3±3.6 vs. 3.1±0.6 vs. 6.3±4.0 spikes s-1). B) All distension 

sensitive afferents, regardless of their subtype, displayed spontaneous activity.  
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2.2.3.8 SUMMARY OF RESULTS 

 HVAs innervating the appendix were sensitive to luminal distension of the appendix 

 Three subtypes of distension sensitive afferents could be characterised based on their 

threshold to luminal distension, their firing frequency, and the pressure point at which 

afferent firing saturates. These subtypes are low threshold, wide dynamic range, and 

high threshold afferents. 

 Repeated luminal distension elicits reproducible responses in whole nerve and WDR 

units.  

 The mechanosensitivity of whole nerve HVAs was not altered by bath application of 

GSK1016790A. Furthermore, GSK1016790A did not change the WDR HVA response to 

luminal distension.  

 Neither bath application of HC067047 alone or in combination with luminal application 

of HC067047 alters the response of whole nerve HVAs to distension. In addition, the 

mechanosensitivity of WDR units was not altered by either treatment.  
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2.24 DISCUSSION 

2.2.4.1 DISTENSION SENSITIVE AFFERENTS  

This report demonstrates the presence of 3 functionally distinct distension sensitive afferent 

fibres, 2 of which are characterised by their threshold for activation, LT, <10mm Hg, and HT 

>20mm Hg. A further subgroup of WDR distension sensitive afferents also have low thresholds, 

10mm Hg, but exhibit an incremental afferent discharge into the noxious distension range. The 

majority of human distension sensitive afferents are LT/WDR, ~87%, with HT making up the 

remaining ~13%. This is consistent with previously reported values in animal studies where LT 

afferents are more prevalent than HT afferents, constituting 66-75% of fibres in the rat colonic 

pelvic nerves, cat colonic splanchnic nerves, and mesenteric nerves innervating the mouse 

jejunum (Blumberg et al., 1983, Sengupta and Gebhart, 1994, Rong et al., 2004, Rong et al., 

2007). LT HVAs exhibited a significantly higher firing rate at all pressures compared to WDR 

and HT afferents. Similarly, LT afferents are the fastest firing afferents innervating the rat colon 

(Sengupta and Gebhart, 1994). 

 Whether HT afferents are involved in nociception is a contentious issue. In this report 

the term HT may be considered a relative rather than a descriptive term, since human pain 

threshold to distension of the colon has been estimated at between 40-60mm Hg (Lipkin and 

Sleisenger, 1958, Ness et al., 1990), while HVA HT afferents started to respond at 30mm Hg. 

However, previous studies have characterised afferents as HT when they responded to 

pressures as low as 20 mm Hg (Cervero, 1982, Blumberg et al., 1983, Sengupta et al., 1990, 

Habler et al., 1990, Sengupta and Gebhart, 1994, Sengupta et al., 1999, Rong et al., 2002, Rong 

et al., 2004). Furthermore, given the small size of the appendix in relation to the colon, it is 

possible that lower pressures may be noxious. Indeed, in the rat colon, which is a similar size 

to the human appendix, distension of 30-40 mm Hg produces pain related behaviours (Ness 

and Gebhart, 1988a). Pain threshold may be more related to species than the size of the tissue 
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being distended. However, since HT HVAs respond in a graded manner into high distension 

pressure, they are likely to transmit noxious information, at least to the spinal cord. Here it is 

the coding and processing of the signal that may ultimately decide if it contributes to pain 

(Sengupta and Gebhart, 1994). Similarly, WDR HVAs responded in a graded manner into high 

distension pressures, and are potentially nociceptive. LT HVAs are unlikely to transmit 

nociceptive information, since their firing tends to plateau around 30mm Hg. A caveat in 

recording from human distension sensitive afferents is the inability to distinguish between 

afferents from different pathways e.g. vagal vs. splanchnic. This limits the ability to define the 

role of each afferent pathway in disease mechanisms or drug efficacy. However, the general 

physiology of afferents that are likely to be nociceptors can be studied. Future studies using 

appendix distension preparations may need to control for the use of different threshold units.  

2.2.4.2 TRPV4 IN DISTENSION SENSITIVE AFFERENTS 

Whole nerve, LT, or WDR HVA responses to appendix distension to any pressure were not 

altered by simple superfusion of the bath with GSK1016790A or HC067047. The human 

appendix is substantially thicker than rodent colon, and remains cannulated for distension 

preparations. Therefore it was postulated that bath applied drugs were not able to penetrate 

to the terminals of distension sensitive afferents, some of which may be deep in the muscular 

layers of the appendix wall. To examine this hypothesis, a combined bath and luminal 

application of HC067047 was also tested (n=8), thereby allowing easy access to mucosal 

afferents, and allowing permeation from 2 sides of the appendix. However, bath and luminal 

application of HC067047 did not alter whole nerve or WDR HVA responses to distension at any 

pressure. Considering luminal and serosal exposure, and the longer drug perfusion time in this 

subset of experiments it is unlikely that poor tissue penetration could account for the lack 

HC067047 effect. Future studies should examine a small concentration range of HC067047 and 

GSK1016790A.  
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 HVA distension sensitive afferents used for TRPV4 studies are likely to have terminals 

in either the serosa or gut musculature. Indeed, there were no HT distension sensitive 

afferents in any appendix preparation used for TRPV4 experiments, which means the inclusion 

of any serosal afferents is unlikely, since they, at least in animal models, require high 

distension pressures to be activated (Brierley et al., 2008). In contrast, in VFH probing 

protocols, only serosal and mesenteric afferents were tested. Therefore the type of 

methodology used in an experiment, e.g. distension vs. VFH probing, will determine the 

subtype of afferents studied, which in turn could influence the efficacy of the drug. The data in 

this report suggests that TRPV4 antagonism reduces mechanosensitivity of serosal afferents 

(VFH experiments), but not WDR distension sensitive units, which are likely to muscular 

afferents. Similarly, in animal studies, TRPV4 receptors were not involved in the transduction 

of mechanical stimuli in muscular afferents (Brierley et al., 2008). Furthermore, 1 study 

reported no difference in the VMR to CRD between TRPV4 -/- and TRPV4+/+ mice, even at low 

pressures. However, in mice in which expression of TRPV4 was eliminated by siRNA, there was 

a reduced VMR response to CRD starting at the lowest pressure measured, 15mm Hg (Cenac et 

al., 2008). The low pressure at which the TRPV4 siRNA takes effect suggests the afferents are 

muscular, or muscular-mucosal. 

2.2.4.3 SPONTANEOUS ACTIVITY 

HVAs from appendix specimens have previously been shown to exhibit spontaneous activity 

(2.4 spikes s-1). This report outlines the spontaneous activity of distension sensitive afferents 

based on their thresholds for activation, their firing rate, and the pressure at which their firing 

rate plateaus. LT afferents exhibited the highest rates of spontaneous activity, considerably 

higher than muscular units found in flat sheet preparations (11.3±3.6 vs. 4.2±0.9 spikes s-1). 

Spontaneous activity in WDR units was most similar to muscular afferents (3.1±0.6 vs. 4.2±0.9   

spikes s-1). LT and WDR distension sensitive units as well as muscular HVAs had a significantly 

higher spontaneous firing rate compared to serosal afferents (p<0.01). Spontaneous activity of 
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HT units and serosal afferents was significantly different (p>0.05), although this is likely due to 

low numbers of HT fibres. This is concurrent with the literature, which generally reports higher 

spontaneous firing rates in afferents responding to stretch of the gut wall, at least in pelvic and 

vagal pathways.  

The higher spontaneous activity rate may reflect a greater role in transmitting 

physiological information to the CNS. However, it is important not to draw too many 

conclusions, given the myriad of conditions that likely contribute to the rate of spontaneous 

activity, e.g. temperature, ischaemic time of the tissue, trauma during surgery, tension on the 

tissue upon pinning etc. 
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2.2.5 CONCLUSION 

Subtypes of distension sensitive afferents have been described in murine models of 

colonic distension, based on their distension threshold for activation. This report describes 3 

different subtypes of distension sensitive HVAs from appendix specimens, LT, HT, and WDR, 

the latter being the most prevalent. Although briefly mentioned in this report, further research 

needs to be done on the chemosensitivity of these different subtypes of HVA.  

Bath application of GSK1016790A did not alter the whole nerve or WDR HVA response 

to distension at any pressure. Similarly, bath perfusion of HC067047 alone or in combination 

with luminal application did not reduce the whole nerve or WDR HVA response to distension at 

any pressure. TRPV4 receptors may have a greater role as mechanotransducer channels in 

serosal HVAs.  
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CHAPTER 3 PART 1: CHEMOSENSITIVITY  
OF HUMAN VISCERAL AFFERENTS TO 
ALGOGENIC MEDIATORS 

The primary aim of the studies described in chapter 3 was to investigate the chemosensitivity 

of the different subtypes of HVAs characterised in chapter 2 part 1. Furthermore, this report 

aimed to develop chemosensitivity protocols suitable for mechanistic studies and for 

investigations into therapeutic approaches to treating visceral pain. This chapter is divided into 

2 parts. In part 1, the noxious inflammatory mediators BK, and ATP were used to delineate the 

role of serosal and muscular afferents in visceral nociception. In addition, the responses of 

whole nerves to BK, ATP, and capsaicin, and the development of a repeated mediator 

application protocol are described. Part 2 examines the chemosensitivity of whole nerves to 

mediators involved in IBS, 5-HT, histamine, and PGE2. 

3.1.1 INTRODUCTION 

3.1.1.1 MEDIATORS 

During inflammation chemical mediators including BK, ATP, 5-HT, and histamine can be 

released by a myriad of cells, including mast cells, mucosal epithelial cells, and neurons 

themselves, leading to the direct activation of afferent nerves (Kreis et al., 1998, Brunsden and 

Grundy, 1999, Hicks et al., 2002, Brierley et al., 2005a, Wynn and Burnstock, 2006). Mediators 

such as ATP can also be released in large amounts by intestinal epithelial cells during noxious 

distension of the gut (Burnstock, 2001). These mediators through activation of their receptors 

recruit a range of intracellular signalling pathways such as PKA, PKC and adenylate cyclase, 

which in turn modulate, often through phosphorylation, the activation, kinetics, and trafficking 

of receptors and ion channels, and under chronic inflammatory conditions, gene transcription 

and expression. This peripheral sensitisation leads to a greater activation of afferents in 
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response to a certain stimulus (McMahon, 2004). It is therefore of interest to investigate these 

mediators in the context of nociception.  

3.1.1.2 BRADYKININ 

BK, kallidin, and T-kinin are a group of blood derived peptides 9-11 amino acids long, 

collectively known as kinins (Marceau et al., 1998, Couture et al., 2001). Kinins can be rapidly 

broken down into their metabolites by a number of enzymes present in human tissues 

(Couture et al., 2001). Kinins and their metabolites stimulate endothelial cell release of nitric 

oxide and other factors, as well as relaxing arterial and contracting venous smooth muscle cells 

in the peripheral circulation to induce vasodilation and venoconstriction, respectively (Regoli 

and Barabe, 1980, Gaudreau et al., 1981). In addition, kinins promote cell migration into tissue 

from the bloodstream (Bhoola et al., 1992).  

There are 2 kinin receptors, known as BK B1 (B1), and BK B2 (B2) (Regoli and Barabe, 

1980). Kinins have higher affinity for B2, while their active metabolites des-Arg9-bradykinin 

(des-Arg9-BK) and des-Arg10-kallidin (des-Arg10-K) exhibit higher affinity for B1 (Marceau et 

al., 1998). The human B1 and B2 receptors are 353 and 364 amino acids long, respectively. 

Interestingly, there is only 36% homology between the 2 human receptors (Menke et al., 

1994). BK receptors are members of the rhodopsin superfamily of GPCRs, each with 7 

transmembrane domains (Burch and Axelrod, 1987). B1 receptors can couple with Gi/o or Gq/11 

proteins (Austin et al., 1997), while B2 receptors can couple to all types of G proteins, Gi/o, Gq/11 

or Gs proteins e.g. (Ewald et al., 1989). 

B2 is widely and constituently expressed in human tissues (Marceau et al., 1998). In 

contrast, B1 is not expressed under normal conditions, but is inducible by infection, treatment 

with toxins or certain cytokines and upon tissue injury (Marceau et al., 1998, Siebeck et al., 

1998). The BK receptors have markedly different internalisation profiles. Ligand activation of 

human B1 receptors in a Chinese hamster ovary (CHO) cells resulted in minimal receptor 
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internalisation. In contrast, significant B2 receptor internalisation and sequestering was 

evident resulting in reduced ligand binding at the membrane (Austin et al., 1997). These 

profiles describe a quickly desensitising B2 response to B2 agonists, with B1 exhibiting far less 

desensitisation (Marceau et al., 1998). 

3.1.1.2.1 Bradykinin in visceral pain 

BK is a potent algogenic inflammatory mediator produced during tissue injury and 

inflammation. The activation of B2 by BK, and B1 by its metabolites des-Arg9-BK and des-

Arg10-K have been implicated in inflammatory visceral pain. The rapid desensitisation and 

down-regulation profile of B2 suggests it’s involvement in the acute inflammatory phase 

(Marceau et al., 2001). Since B1 does not readily desensitise, it is likely to be more important in 

chronic inflammatory pain states. Furthermore, the long half-life of B1s endogenous ligands, 

des-Arg9-BK and des-Arg10-BK, facilitate B1 upregulation and contribution to inflammatory 

pain (Dray and Perkins, 1993, Dray, 1997, Austin et al., 1997). 

B1 and B2 receptors are expressed on visceral afferent neurons and small diameter 

nociceptive DRGs (Steranka et al., 1988, Vellani et al., 2004). Higher quantities of BK are found 

in injured tissues (Leme et al., 1978). BK receptor mRNA is upregulated in DRGs from a mouse 

model of caerulein induced painful acute pancreatitis (Takemura et al., 2011). Similarly, 

intestinal inflammation induced by indomethacin in rats upregulates B2 receptors (Stadnicki, 

2011). Furthermore, in patients with IBD, both B1 and B2 receptor expression and localisation 

was altered in surgically resected inflamed colonic tissue compared to healthy controls 

(Stadnicki et al., 2004). These expression data suggest a role for BK receptors in visceral pain. 

A number of electrophysiological studies have demonstrated the ability of BK to 

directly activate visceral afferent nerves (Longhurst et al., 1984, Lew and Longhurst, 1986, 

Longhurst and Dittman, 1987, Tjen-A-Looi et al., 1998), including intestinal and colonic 

afferents (Haupt et al., 1983, Maubach and Grundy, 1999, Brunsden and Grundy, 1999, 
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Brierley et al., 2005b). However, electrophysiological evidence of direct BK stimulation of 

human colonic afferents is lacking. In the mouse colon, BK excited a higher proportion of 

splanchnic serosal afferents and to a greater degree compared to pelvic serosal afferents 

(Brierley et al., 2005b). The response to BK in serosal afferents from rat jejunum was blocked 

by the B2 antagonist HOE140. However, the B1 antagonist [Des Arg10] HOE140 had no effect 

on jejunal serosal afferent firing (Maubach and Grundy, 1999). 

A number of studies using a visceral pain model have reported reduced writhings in 

response to acetic acid in B2 KO mice, but not B1 KO mice (Cayla et al., 2012). Furthermore, 

the B2 antagonist HOE140 reduced abdominal constrictions in response to intraperitoneal 

acetic acid administration (Heapy et al., 1993). However, in both of these studies, the 

inhibition was incomplete, suggesting that there may still be a role for B1 receptors in acute 

visceral pain. 

BK can stimulate endothelial cells, mast cells, immune cells and afferent nerve endings 

to release other algogenic mediators such as 5-HT, histamine, NGF, CGRP, and substance P 

(Dray and Perkins, 1993, Kennedy and Leff, 1995, Purcell and Atterwill, 1995, Geppetti, 1993). 

As a result, afferent nerve endings become sensitised and demonstrate visceral allodynia and 

hyperalgesia (Bueno and Fioramonti, 2002). Indeed, B2 receptor knockout mice do not develop 

thermal or mechanical hyperalgesia induced by carrageenan injection into the hindpaw (Boyce 

et al., 1996, Rupniak et al., 1997).  

B1 receptors have yet to be conclusively linked to acute visceral pain. For example, the 

B1 receptor agonists des-Arg-9-BK and des-Arg-10-K, failed to depolarise cultured rat DRGs 

under control or acute inflammatory conditions (Davis et al., 1996). Furthermore, the B1 

antagonist, des-Arg9-[Leu8]-BK, did not suppress the response of afferent fibres to the 

application of BK in a dog testis-spermatic nerve preparation (Mizumura et al., 1990). 

However, there is evidence for the involvement of B1 receptors in persistent inflammatory 
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visceral pain (Jaggar et al., 1997, Couture et al., 2001). In a rat cystitis model of inflammatory 

visceral pain, B1 antagonists only demonstrated analgesic properties after an extended period 

of inflammation (Jaggar et al., 1997). Indeed, the expression ratio of B1 to B2 receptors 

increases in the colon of IBD patients, a chronic inflammatory disease, compared to healthy 

controls (Stadnicki et al., 2004). B1 may therefore be important in chronic visceral 

inflammatory pain (Dray and Perkins, 1993). 

3.1.1.3 PURINES AND PYRIMIDINES 

ATP, adenosine 5’ diphosphate (ADP), adenosine 5’-monophosphate (AMP), and adenosine 

belong to a group of endogenous purines. Uridine 5’-triphosphate (UTP), uridine 

5’diphosphate (UDP), and UDP-sugars, belong to a group of endogenous pyrimidines (Ralevic 

and Burnstock, 1998, Abbracchio et al., 2006). ATP consists of an adenine attached to the 

sugar ribose at 1’ carbon. This sugar is connected to 3 phosphate groups at the 5’ carbon. 

Uridine forms the backbone of UTP, in an otherwise comparable structure to that of ATP. ATP 

and UTP are rapidly hydrolysed by a group of enzymes known as ectonucleotidases to produce 

ADP, AMP, adenosine, and UDP, UMP and uracil (Zimmermann, 2006). Purinergic signalling is 

involved in neurotransmission in both the CNS and PNS (Burnstock, 2007). Hence, purinergic 

signalling has a multitude of functions including a role in inflammatory pain in the viscera 

(McMahon, 2004, Burnstock, 2006).  

There are 3 receptor subtypes through which purines and pyrimidines exert their 

effects, P1, P2X and P2Y receptors. Adenosine is the endogenous ligand for the 4 P1 receptors, 

A1, A2a, A2b, and A3. P1 receptors are GPCRs with 7 transmembrane domains, an extracellular 

N terminus and an intracellular C terminus (Ralevic and Burnstock, 1998). Human P1 receptors 

are between 318-409 amino acids in length, demonstrating 40-61% homology between 

subtypes (Fredholm et al., 2011). A1 and A3 receptor subtypes are linked with Gi/o proteins, 

while A2a and A2b signal through Gs proteins (Londos et al., 1980). P1 receptors exhibit a 
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broad expression profile, including in the CNS, heart, and on sensory nerves in the viscera 

(Pierce et al., 1992, Kirkup et al., 1998). The evidence for the involvement of P1 receptors in 

visceral pain will be discussed (Sawynok, 1998).  

P2X receptors are ligand gated cation channels, exhibiting greatest permeability to 

Ca2+ (Abbracchio and Burnstock, 1994). P2X receptors form trimers from 7 distinct subunits 

each encoded by a separate gene and named P2X1-7 (Nicke et al., 1998, North, 2002, Roberts et 

al., 2006). P2X1-5 and P2X7 can form homotrimers, while there are 7 other heterotrimer 

combinations (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6 and P2X4/7) (Roberts et al., 2006, Guo 

et al., 2007). P2X receptor subunits have between 379-472 amino acids sharing 30-50% 

sequence homology (Ralevic and Burnstock, 1998). P2X receptors are activated by 

ATP>ADP>AMP>adenosine (Fredholm et al., 1994). Upon activation, a flow of cations through 

the channel pore depolarises the cell membrane. A secondary influx of Ca2+ through voltage 

gated Ca2+ channels is initiated by this depolarisation, which in the case of neurons, increases 

the likelihood of action potential firing (Bean, 1992, Ralevic and Burnstock, 1998). Neural cells 

express every P2X subunit with the exception of P2X7, however P2X2/3 and P2X3 are the 

predominant forms in sensory neurons, and have been strongly implicated in pain pathways 

(Burnstock, 2007, Abbracchio et al., 2009).  

P2Y receptors are metabotropic GPCRs containing 7 transmembrane domains and 308-

377 amino acids (Abbracchio et al., 2006). There are 8 human P2Y receptors, P2Y1, 2, 4, 6, 11, 12, 

13 and P2Y14 (Abbracchio et al., 2003). P2Y receptors can be classified into 2 subgroups based 

on their phylogenetics, amino acid sequences and the type of G protein with which they are 

coupled (Abbracchio et al., 2003, Abbracchio et al., 2009). P2Y1, 2, 4, 6, and P2Y11 coupled with 

Gq/11 proteins (Verkhratsky, 2005, Abbracchio et al., 2009). P2Y12, 13 and P2Y14 are linked to Gi/o 

proteins. Through their respective signalling pathways P2Y receptors can regulate the activity 

of ion channels (Abbracchio et al., 2003). P2Y receptors are widely expressed in the human 

body, from bone to brain (Bowler et al., 1995, Schachter et al., 1996). P2Y receptors are 
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expressed on sensory neurons, with P2Y1 and P2Y2 evident in small diameter nociceptive 

neurons (Gerevich and Illes, 2004). P2Y receptor involvement in visceral pain will be discussed.  

3.1.1.3.1 Purines and pyrimidines in visceral pain 

3.1.1.3.1.1 P1 receptors in visceral pain 

ATP can be rapidly broken down to adenosine by endogenous ectonucleotidases. Adenosine 

can activate P1 receptors which are present on peripheral nerve endings (Sohn et al., 2008). 

The involvement of adenosine receptors in somatic pain is complex. Activation of A1 on 

peripheral nerve terminals has an analgesic effect, while A3 stimulation produced nociception 

(Sawynok, 1998). However, in somatic pain models, activation of A2a and A2b reveal 

differential functions, algesic or analgesic, depending on the dose and location, nerve 

terminals vs. spinal cord, of agonist application (Sawynok, 1998).  

There is limited data on adenosine receptors in visceral pain. Adenosine receptors are 

coupled to sodium channels in visceral afferent terminals (Bueno and Fioramonti, 2002). 

Adenosine itself can activate mesenteric afferent innervating the rat jejunum (Kirkup et al., 

1998). Altered expression of A1, A2 and A3 receptors has been demonstrated in animal models 

of GI inflammation (Sundaram et al., 2003, Guzman et al., 2006). One study induced colitis by 

injecting zymosan into anesthesised rats (Sohn et al., 2008). They then administered an A1-A2 

agonist, 5’-N-ethylcarboxyamidoadenosine (NECA), an A1 agonist, R(-)-N6-(2- phenylisopropyl)-

adenosine (R-PIA) or an A2a agonist CGS 21680 hydrochloride (CGS 21680) either 

subcutaneously or intrathecally and examined their effects on the visceromotor reflex (VMR) 

response to colorectal distension (CRD) in their hyperalgesic rats. Each agonist attenuated the 

VMR response to CRD, indicating an analgesic function for adenosine receptors A1 and A2 in 

visceral pain (Sohn et al., 2008). In contrast, in rat mesenteric afferents innervating the 

jejunum intravenous administration of NECA or the A1 agonist GR 79236 increased afferent 

activity (Kirkup et al., 1998). In addition, activation of A1 and A2 adenosine receptors excites 
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cardiac afferents in dogs (Dibner-Dunlap et al., 1993, Huang et al., 1995). The site of action 

may therefore determine the effect of adenosine receptor agonist on nociception. In visceral 

afferents, activation of A1 and A2 receptors seems to be nociceptive.  

3.1.1.3.1.2 P2X receptors in visceral pain 

With the exception of P2X7 all P2X subunit proteins are expressed in sensory neurons. 

However, P2X3 and P2X2/3 are the main P2X receptor subtypes implicated in visceral pain 

(Burnstock, 2007, Abbracchio et al., 2009). P2X3 and P2X2/3 receptors are mainly expressed on 

a subpopulation of small diameter, IB4+, visceral nociceptors (Bradbury et al., 1998). Indeed, in 

a rat model of TNBS induced colitis, DRGs supplying the colorectum exhibited enhanced P2X3 

immunoreactivity (IR) (Wynn et al., 2004). Similarly, immunohistochemistry (IHC) on colonic 

tissue from pain predominant IBD patients, revealed increased P2X3 IR compared to controls 

(Yiangou et al., 2001a). This suggests a role for P2X3 in inflammatory pain in humans. 

A theory for the purinergic transduction of mechanical stimuli in the viscera has been 

proposed (Burnstock, 1996). Mechanosensory epithelial cells sense mechanical stimuli and 

release ATP. This ATP subsequently activates P2X3 and P2X2/3 receptors on the extrinsic 

afferents, which terminate nearby (Burnstock, 1996). Furthermore, noxious distension of 

hollow organs such as the gut would lead to large amounts of ATP release and increased 

activation of extrinsic afferent P2X3 and P2X2/3 receptors (Burnstock, 2001). Indeed, ATP is 

released in proportion to extent of bladder distension in mice (Vlaskovska et al., 2001). 

Furthermore, in P2X3 KO mice, the pelvic afferent nerve response to bladder distension even at 

noxious pressures was significantly reduced (Vlaskovska et al., 2001). The addition of ATP or 

the P2X1, 2/3, 3 agonist α, β methylene ATP (meATP) augmented the WT but not P2X3 KO mouse 

pelvic afferent response to bladder distension. Another study also showed a reduced pelvic 

afferent nerve response to bladder distension in P2X3 KO mice. However, this study also 

showed an inhibition of distension related pelvic afferent firing, even at noxious pressures, in 
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P2X2 and also P2X2/3 double KO mice (Cockayne et al., 2005). These data together suggest a 

role for P2X2, 3, and P2X2/3 receptors in the ATP mediated activation of afferent nerves to 

distension, even at noxious pressures.  

Inflammatory mediators can augment the response of cells to ATP application. This 

interaction can arise during inflammation. The co-application of ATP with capsaicin, 5-HT or 

protons increased rat colonic afferent nerve firing by more than ATP alone (Wynn and 

Burnstock, 2006). Substance P can sensitise the effect of ATP application on small diameter 

DRGs (Hu and Li, 1996). ATP induced currents in P2X expressing Xenopus oocytes, are 

potentiated by a range of mediators including 5-HT, adenosine, BK, CGRP, and substance P 

(Wildman et al., 1997, Paukert et al., 2001). Injection of the hindpaw of rats with PGE2 or 

carrageenan potentiated the time spent with the hindpaw lifted after the application of 

meATP (Hamilton et al., 1999). These data suggest a role for P2X receptors, especially the 

P2X2/3, P2X3 subtypes in inflammation induced visceral nociception.  

P2X2/3 receptors are sensitive to changes in pH (Stoop et al., 1997). Indeed, an acidic 

environment can augment the response of rat sensory neurons to ATP application. This 

suggests a role for P2X2/3 receptors in proton induced sensitisation during inflammation (Li et 

al., 1996). Indeed, pH can drop to 5.5 in an inflammatory environment (Reeh and Steen, 1996). 

Taken together, these reports have spurred interest in P2X3 and P2X2/3 antagonism for the 

treatment of pain. Indeed, P2X3, P2X2/3 antagonist compounds such as A-317491 (Abbott 

Laboratories), RO3 (Roche Palo Alto) and AF219 (Afferent Pharmaceuticals) have been 

developed, the latter 2 compounds are currently in clinical trials (Abbracchio et al., 2009, Shi et 

al., 2012). 

In humans, ATP has been shown to activate isolated peripheral sural nerve 

preparations (Lang et al., 2002). However, the effect of ATP on HVA firing has not yet been 

demonstrated in an electrophysiological preparation. Studies have suggested that P2X3 may be 
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important in signalling pain in the viscera. Electrophysiological studies in murine models have 

shown that ATP can directly activate visceral afferents from organs such as the bladder (Rong 

et al., 2002), small intestine (Kirkup et al., 1999, Rong et al., 2009) and the colon (Wynn and 

Burnstock, 2006). Indeed, the P2X1, 2/3, 3 agonist meATP and P2X1, 2/3, 3 antagonist 2’ 3’ –O-

trinitrophenyl- ATP (TNP-ATP) have been shown to potentiate and reduce afferent firing 

induced by innocuous and noxious levels of bladder distensions, respectively (up to 60mm Hg) 

(Namasivayam et al., 1999, Rong et al., 2002). In a rat in vitro model, noxious distension of the 

colorectum caused mucosal epithelial ATP release. In addition, sensory nerve firing during this 

distension (50mm Hg) increased when ATP or meATP was applied. The P2X antagonists TNP-

ATP or PPADS reduced the response to colorectal distension (Wynn et al., 2004). These effects 

were not replicated in another study on normal mouse jejunal afferents (Rong et al., 2009). 

However, after recovery from inflammation, PPADS significantly attenuated the afferent 

response to distension (Rong et al., 2009). Similarly, the effects of purinergic ligands on 

distension responses were augmented in a hypersensitive colitis model (Wynn et al., 2004), 

suggesting a role for P2X signalling in visceral hypersensitivity. The response evoked in pelvic 

afferent nerves from rat bladder by ATP, was abolished by PPADS (Yu and de Groat, 2008). 

Furthermore, meATP can activate both splanchnic and pelvic afferents innervating the mouse 

colon, an effect blocked by PPADS (Brierley et al., 2005a). Similarly, the P2X antagonist PPADS 

inhibited the activation of rat jejunal afferents by meATP in vivo (Kirkup et al., 1999). These 

data suggests a role for P2X3 and P2X2/3 receptors in mechanosensory transduction and 

nociception in the viscera. 

Recently, another highly potent P2X receptor antagonist has been discovered, RO-4 

(aka AF353) (Gever et al., 2010). It has been shown to block Ca2+ signals evoked by the 

application of meATP in CHO-K1 cells transfected with the human P2X3 and P2X2/3 receptors 

(Gever et al., 2010). Indeed, one study suggests that RO-4 may be analgesic when 

administered to rats with bone cancer (Kaan et al., 2010). Similarly, RO-4 attenuated the 
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activation of nociceptive pathways in rat bladder spinal cord neurons (Munoz et al., 2012). This 

compound has not been tested on colonic afferents. The aim of this report was to test the 

involvement of P2X receptors in the activation of HVAs by ATP. The P2X antagonists, PPADS 

and RO-4 will be tested.  

3.1.1.3.1.3 P2Y receptors in visceral pain 

Sensory nerves express P2Y receptors. P2Y1 and P2Y2 receptors, while expressed on medium 

and large diameter neurons, exhibited greater IR in small diameter sensory neurons (Ruan and 

Burnstock, 2003). Interestingly, co-localisation studies on rat DRG revealed that P2Y1 receptors 

were co-expressed with both P2X3 and TRPV1 in 80% of small diameter neurons, the latter 

considered a marker for nociceptive afferents (Gerevich et al., 2004). Similarly, P2Y2 mRNA was 

co-expressed with TRPV1 mRNA in a considerable number of neurons in rat DRG (Moriyama et 

al., 2003). However, the same study reported only 1.6% co-expression of P2Y1 mRNA in TRV1 

mRNA positive rat DRGs (Moriyama et al., 2003). The expression of a number of P2Y receptors 

including P2Y1, 2, 4, 6 are altered in hypersensitive rats induced by TNBS (Guzman et al., 2006).  

The application of the P2Y1, 12, and P2Y13 agonist adenosine 5’ –O-(2-thiodiphosphate) 

(ADP-β-S) to nociceptive rat DRGs (small diameter, IB4+), induced release of intracellular Ca2+, 

which was antagonised by the P2Y1 antagonist MRS 2179 (Borvendeg et al., 2003). This 

indicates a role for P2Y1 receptors in the activation of nociceptive neurons. However, signalling 

through P2Y receptors may also have an analgesic function. The application of UTP, ADP, or 

ATP on cultured small diameter rat DRGs has been shown to inhibit voltage gated Ca2+ 

channels, which are important in pain transmission (Gerevich et al., 2004). The ADP induced 

inhibition was mediated through P2Y1, and is likely to act on central sensory afferent terminals 

to reduce neurotransmitter release (Gerevich and Illes, 2004).  

P2Y receptors may be involved in the sensitisation of nociceptive signals through other 

transducer channels. Patch clamp recordings of human embryonic kidney cells (HEK293) 
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demonstrated the potentiation of capsaicin evoked currents by ATP, ADP, and 2-methythio 

ATP (2-meSATP) acting through the P2Y receptors, particularly P2Y1 (Tominaga et al., 2001). 

Furthermore, ATP lowered the temperature activation of TRPV1 receptors, via 

phosphorylation, from the noxious 42°C to 35°C. This suggests TRPV1 could be activated and 

can produce pain at body temperature when P2Y receptors are activated by ATP, such as 

during inflammation (Tominaga et al., 2001, Gerevich and Illes, 2004). However, in another 

study the potentiating effect of ATP on capsaicin induced currents in WT and P2Y1 KO mouse 

DRGs were similar, indicating the lack of P2Y1 involvement (Moriyama et al., 2003).  

The P2Y2 and P2Y4 agonist UTP augmented the capsaicin induced current to a similar 

extent as ATP. However, the P2 antagonist suramin, which blocks P2Y2 but not P2Y4 receptors, 

inhibited any potentiation by UTP, suggesting the effect was meditated through P2Y2 receptors 

(Moriyama et al., 2003). In cultured rat sensory neurons, ATP and UTP augmented the release 

of the neuropeptides CGRP and substance P, involved in neurogenic inflammation, by capsaicin 

through P2Y receptors (Huang et al., 2003). UTP can also evoke depolarisation and cause AP 

firing in rat sensory neurons (Molliver et al., 2002). There is also evidence for UTP induced, 

P2Y2 mediated, CGRP release from rat DRG neurons (Sanada et al., 2002). Taken together 

these data indicate an important role for P2Y1 and P2Y2 in nociceptive signalling. 

3.1.1.4 CAPSAICIN  

Capsaicin is a natural pungent compound found in chilli peppers. It is the natural ligand to 

TRPV1, a member of the TRPV family of cation channels. TRPV1 consists of 4 identical subunits 

each with 6 transmembrane (S1-S6) domains, which form the pore and selectivity filter for 

cations as well as a sensor detecting changes in voltage. Both the N and C termini are in the 

cytoplasm (Gaudet, 2007). TRPV1 channels are also sensitive to temperature >43°C, low pH <6 

and a number of spices (Caterina et al., 1997, Holzer, 2008).  
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 Capsaicin is expressed mainly on small and medium diameter DRGs, and historically 

has been suggested to be a marker for nociceptive neurons (Holzer, 1991). Indeed, a large 

proportion of pelvic (40-50%) and splanchnic (~80%) spinal afferents express TRPV1 receptors 

(Berthoud et al., 1995, Robinson et al., 2004, Christianson et al., 2006), however they are also 

expressed on up to 40+% of non-nociceptive vagal afferents (Patterson et al., 2003).  

Expression of TRPV1 receptors are often altered in disease models and in patients with 

painful bowel disorders. TNBS induced colitis leads to upregulation of TRPV1 receptors and 

mRNA in both thoracolumbar and lumbarsacral DRGs (Miranda et al., 2007, De Schepper et al., 

2008). TRPV1 receptor expression and mRNA content have been shown to be upregulated in 

mucosal nerve fibres from IBD patients (Yiangou et al., 2001b). In addition, in mucosal biopsies 

from patients with quiescent UC but ongoing abdominal pain, TRPV1 receptor expression and 

mRNA remained upregulated compared to patients without pain and correlated with 

abdominal pain scores (Akbar et al., 2010, Keszthelyi et al., 2013). Similarly, higher levels of 

TRPV1 immunoreactivity and mRNA have been demonstrated in mucosal biopsies from 

patients with IBS (Akbar et al., 2008, Keszthelyi et al., 2013). This implicates TRPV1 as a 

potential contributor to abdominal pain and hypersensitivity in both IBD and IBS patients. 

However, these findings are not universal. A recent study did not find upregulation of either 

TRPV1 receptors or mRNA in mucosal biopsies from patients with IBS, even in those that 

exhibited hypersensitivity to rectal distension (van Wanrooij et al., 2014). Furthermore, TRPV1 

expression levels did not correlate with IBS symptoms.  

In the gut TRPV1 KO mice exhibit a reduced VMR to CRD at all pressures, indicating a 

role for TRPV1 in both physiological and noxious mechanotransduction (Jones et al., 2005). 

There is substantial evidence describing a role for TRPV1 in inflammation and hypersensitivity 

in a number of viscera including the pancreas, oesophagus, and gut (Rong et al., 2004, Winston 

et al., 2007). For example in the gut, when neonatal mice are sensitised with a low dose of 

acetic acid, they demonstrate chronic visceral hypersensitivity to CRD. This was attenuated by 
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the TRPV1 antagonist SB-366791, when applied before the acetic acid administration or after 

the development of hypersensitivity (Winston et al., 2007). Similarly, the development of 

hypersensitivity to CRD induced by water-avoidance stress could be prevented by 

intraperitoneal injection of the TRPV1 antagonist capsazepine (Hong et al., 2009). Indeed, it 

has been established that a variety of inflammatory and hyperalgesic mediators e.g. BK, ATP, 

5-HT can sensitise TRPV1 receptors, increasing their likelihood of firing due to thermal and 

other stimuli and causing pain (Holzer, 2008).  

 Capsaicin can excite extrinsic afferent nerves from animal models and from human 

tissue. Approximately 30% of tension, mucosal and tension/mucosal vagal afferents 

innervating the stomach, oesophagus, and duodenum were directly activated by capsaicin 

(Blackshaw et al., 2000). About 50% of both splanchnic and pelvic serosal afferents were 

activated by capsaicin. Capsaicin also evoked activity in MIAs in the spinal pathways (Brierley 

et al., 2005a). Slightly higher proportions (~67%) of splanchnic afferents responded to 

capsaicin in vivo (Longhurst et al., 1984). Capsaicin has also been shown to activate HVAs in 

from colon and appendices (Peiris et al., 2011, Jiang et al., 2011). Capsaicin activated muscular 

and muscular-mucosal HVAs but not serosal afferents, although only 1 application was tested 

(Jiang et al., 2011).  
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3.1.1.5 AIMS 

 To investigate the chemosensitivity of the different subtypes of HVAs identified in 

Chapter 2, Part 1, in order to delineate their role in nociception 

 To examine the chemosensitivity of whole nerve HVAs to BK, ATP and capsaicin 

 To develop repeated mediator application protocols using BK, and ATP, which may be 

used for mechanistic studies and for investigations using potential  

visceral analgesics. 

 To study the receptor pharmacology involved in BK and ATP activation of single unit 

HVAs using the repeated mediator application protocol 
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3.1.2 METHODS 

3.1.2.1 CHEMOSENSITIVITY OF MECHANICALLY CHARACTERISED AFFERENTS 

After afferents had been characterised based on their response to mechanical stimuli, atropine 

(10µM) and nifedipine (10µM) were added to the krebs buffer and given 30 minutes to take 

effect. Drugs were applied to the tissue bath by superfusion of a 20ml volume: BK (BC 2µM, 

20ml of 10µM), ATP (BC 2mM, 20ml of 10mM), adenosine (BC 200µM, 20ml of 1mM), or 

capsaicin (BC 2µM, 20ml of 10µM). An effort was made to keep the mediator applications in 

the same order in each preparation. If a mediator failed to elicit a response, the next mediator 

was added 30 minutes later. If an effect was evident, a washout period of 60 minutes was 

observed.  

3.1.2.2 CHEMOSENSITIVITY OF NON-MECHANICALLY CHARACTERISED AFFERENTS 

All preparations were tested for mechanosensitivity. Given the limited supply of tissue 

available, and the occurrence of some HVAs that were mechanically insensitive, or that were 

deemed unsuitable for mechanical characterisation and mechanical protocols, 

chemosensitivity protocols were performed to ensure the tissue was used to some degree. 

After testing for mechanosensitivty, atropine (10µM) and nifedipine (10µM) were added to the 

krebs buffer and given 30 minutes to take effect. Drugs were then applied to the tissue bath by 

superfusion of a 20ml volume to make up the final bath concentrations of: BK (BC 2µM, 20ml 

of 10µM), ATP (BC 2mM, 20ml of 10mM), adenosine (BC 200µM, 20ml of 1mM), or capsaicin 

(BC 2µM, 20ml of 10µM). An effort was made to keep the mediator applications in the same 

order in each preparation. If a mediator failed to elicit a response, the next mediator was 

added 30 minutes later, otherwise a washout period of 60 minutes was observed.  
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3.1.2.3 MEDIATOR PHARMACOLOGY 

For repeat application protocols, either BK (BC 2µM, 20ml of 10µM), ATP (BC 2mM, 20ml of 

10mM) was superfused into the bath 3 times consecutively, with a washout  period of 60 

minutes between applications (figure 3.01). For pharmacological protocols involving BK and 

ATP, the first application of the mediator was superfused as normal. The preparation was then 

pre-treated by superfusion of an antagonist before the second application of the mediator. 

These were antagonists to the B1 receptor (R715, 300nM, 100ml), or the B2 receptor (HOE140, 

300nM, 100ml or 1µM, 100ml) for BK or antagonists to the P2X1, 2, 3, 5 receptors (PPADS, 

30µM, 100ml) or P2X2/3, 3 receptors (RO4, 10µM, 100ml) or adenosine receptors (CGS 15943, 

10µM, 100ml) for ATP. A second application of the appropriate mediator was superfused with 

the last 20ml of the antagonist. This was followed by a 60 minute washout period before the 

third application of the mediator was superfused into the bath. The HVA response to the 

second and third mediator applications were then compared using a 2 tailed paired t test, 

p<0.05 (figure 3.01). To test if activation of P2Y receptors could activate HVAs, the P2Y1, 12 and 

P2Y2, 4, 6 receptor agonists ADP (2mM), and UTP (2mM), respectively, were superfused in the 

tissue bath. If both agonists were given in the same experiment a washout period of at least 60 

minutes was observed between applications. Data were analysed using a 2 tailed paired t test, 

p<0.05.
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Figure 3.01: Repeat mediator application and chemosensitivity protocol 

A) 1. The first application of the mediator (↓) e.g. BK is superfused into the bath. 

2. An hour later the second application of the mediator (↓) is applied. 

3. After another hour the third application of the mediator (↓) is added. 

B) 1. The first application of the mediator (↓) e.g. BK is superfused into the bath. 

2. An hour later the antagonist (―) to a specific receptor subtype is added e.g. HOE140 

B2 receptor antagonist.  

3. The second application of the mediator is added in the presence of the antagonist.  

4. An hour later the third and final application of the mediator is added.  
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3.1.2.4 DRUGS 

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at -20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 

and vortexed to mix. Bradykinin, ATP, ADP, UTP, and Capsaicin were obtained from Sigma 

Aldrich (St Louis, MO, USA). HOE140, R715, PPADS, and CGS 15943, were purchased from 

Tocris Bioscience (Bristol, UK). RO4 was a gift from Neusentis (Cambridge, UK).  
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3.1.3 RESULTS 

3.1.3.1 TISSUES – BK PHARMACOLOGY 

3.1.3.1.1 Repeat BK Applications  

Six tissues, 4 normal, 1CD, 1 appendicitis, were used for repeat BK application experiments, 2 

ileum, 2 sigmoid colon, 1 appendix, 1 transverse colon, (M:F 1:2, median age 57).  

3.1.3.1.2 B1 antagonist (R715) 

Six tissues, all normal, were used for B1 antagonist studies, 2 appendix, 2 sigmoid colon, 1 

ascending colon, 1 rectum (M:F 1:0.2, median age 77). 

3.1.3.1.3 B2 antagonist (HOE140) 

Ten tissues, 9 normal, 1 UC, were used for B2 antagonist studies, 5 sigmoid colon, 3 appendix, 

1 descending colon, 1 rectum (M:F 1:0.25, median age 62).  

3.1.3.2 TISSUES – ATP PHARMACOLOGY 

3.1.3.2.1 Repeat ATP Applications 

Five tissues, 2 normal, 1 CD, 1 UC, 1 appendicitis, were used for repeat ATP application 

experiments, 2 appendix, 2 sigmoid colon, 1 ileum (M:F 1:0.66, median age 39). 

3.1.3.2.2 P2X antagonist (PPADS and RO4) 

Nine tissues, all normal, were used for P2X antagonist experiments, 4 sigmoid colon, 2 

appendix, 2 rectum, 1 descending colon (M:F 1:0, median age 64).   
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3.1.3.2.3 P1 antagonist (CGS 15943) 

Six tissues, 4 normal, were used for P1 antagonist studies, 4 sigmoid colon, 2 appendices (M:F 

1:1, median age 51.5). Further details on the tissues use in each set of experiments can be 

seen in table 2.02. 

3.1.3.3 CHEMOSENSITIVITY IN CHARACTERISED HUMAN VISCERAL AFFERENTS 

BK and ATP were applied to a proportion of HVAs, after they had been mechanically 

characterised. Serosal afferents responded to the application of the chemical mediators BK (BC 

2µM, 6/14 responded, 43%, Δ firing rate 40.3 spikes 20s-1) and ATP (2mM, 4/10 responded, 

40%, Δ firing rate 42.8 spikes 20s-1) (figure 3.02). In contrast, muscular afferents did not 

respond to the application of BK (2µM, 0/11 responded) (figure 3.03) and responded with 

much less frequency to the application of ATP (2mM, 1/10 responded, 10%, Δ firing rate 45.8 

spikes 20s-1) (figure 3.02). Two out of 8 (25%) serosal afferents responded to both BK and ATP. 

The mesenteric afferent that was challenged with chemical mediators was co-sensitive to both 

BK and ATP. In contrast, no muscular afferent was sensitive to both mediators. The identified 

muscular-mucosal unit responded to the application of ATP but not BK. “Silent” units, became 

responsive to either 2g VFH or cotton bud probing, after the application of BK (BC 20nM or 

2µM), with 1/2 (50%) preparations responding directly to the mediator (figure 3.02).  
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Figure 3.02: Chemosensitivity in characterised HVAs in flat sheet preparations. A-B) Bradykinin 

(BK) responds in a proportion of serosal afferents (6/14) (A), but does not respond in any 

muscular afferents (0/11). C) Displays the average change in serosal HVA firing in response to 

BK. D-E) Adenosine trisphosphate (ATP) responds with much more regularity in serosal HVAs 

(4/10) (D) compared to muscular HVAs (1/10) (E). F) Shows the average change in serosal and 

muscular HVA firing in response to the bath application of ATP.     
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Figure 3.03: Subtypes of HVAs can be characterised based on their response to mechanical and 

chemical stimuli. Serosal and mesenteric afferents respond to light VFH probing <1g, but not to 

circumferential or longitudinal stretch. Muscular afferents do not respond to VFHs of <1g 

weight, but respond to circumferential and longitudinal stretch. Furthermore, serosal and 

mesenteric afferents are much more likely to respond to chemical mediators such as 

bradykinin, or adenosine trisphosphate (ATP) compared to muscular afferents. 
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3.1.3.4 CHEMOSENSITIVITY IN WHOLE NERVE RECORDINGS 

The algogenic mediators BK, ATP, and capsaicin caused robust action potential firing in 

flat sheet whole nerve HVA recordings, BK (BC 2µM, 35/66 responded, 53.0%, Δ firing rate 

69.7±14.2 spikes 20s-1), ATP (BC 2mM, 31/43 responded, 72.1%, Δ firing rate 68.4±7.8 spikes 

20s-1), capsaicin (BC 2µM, 19/35 responded, 54.3%, Δ firing rate 100.5±21.3 spikes 20s-1) 

(figure 3.04). A subset of ATP responses were biphasic in that they exhibited 2 peaks, as has 

been previously described in rat mesenteric afferents in vivo (Kirkup et al., 1999). Responses to 

capsaicin were fast to peak and were generally shorter in duration that other mediators.  

Flat sheet whole nerve preparations exhibited polymodality to chemical mediators. 

Fourteen out of 24 whole nerves (58.3%) were responsive to >1 mediator when at least 2 

mediators were tested (BK, ATP, or capsaicin). Indeed, in preparations in which all 3 mediators, 

BK, ATP, and capsaicin, were added, 4/12 (33.3%) responded to all 3. 

BK, ATP, and capsaicin were also added to appendix whole nerve preparations; BK 

(2µM, 11/18 responded, 61.1%, Δ firing rate 178.8±44.8 spikes 20s-1), ATP (2mM, 13/16 

responded, 81.25%, Δ firing rate 179.5±43.7 spikes 20s-1), capsaicin (2µM, 10/13 responded, 

76.9%, Δ firing  rate 36.1±38.6 spikes 20s-1).  

Whole nerve recordings from appendices exhibited polymodality to chemical 

mediators. Eight out of 18 whole nerves (44.4%) were responsive to >1 mediator when at least 

2 mediators were tested (BK, ATP, or capsaicin). In addition, in appendix preparations in which 

all 3 mediators, BK, ATP, and capsaicin, were added, 4/5 (80.0%) responded to all 3. 
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Figure 3.04: Flatsheet whole nerve HVAs respond to the application of bradykinin, adenosine 

trisphosphate (ATP), or capsaicin. A, C, E) Shows an example of a HVA response to BK (A), ATP 

(C), and capsaicin (E) in rate histogram form. B, D, F) Displays the proportion of whole nerve 

BK 

ATP

Capsaicin

5 mins

Firin
g R

ate
 

(Sp
ike

s 2
0

s
-1)

90

Firin
g R

ate
 

(Sp
ike

s 2
0

s
-1)

90

Firin
g R

ate
 

(Sp
ike

s 2
0

s
-1)

90

G

FE

C D

A B



202 
 

recordings that responded to BK (B), ATP (D) or capsaicin (F) application. G) A bar graph 

indicating the average change in HVA firing rate after the application of BK, ATP, or capsaicin. 
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3.1.3.5 BK PHARMACOLOGY 

Six out of 6 units (6 preparations) responded repeatedly to the application of BK (figure 3.05). 

Responses to the first application of BK tended to be larger than the subsequent applications, 

as has been previously reported (Δ firing rate 1st 37.5±11.6, normalised 100%, vs. 2nd 20.5±5.8, 

65.2%±9.3%, vs. 3rd 19.3±5.2 spikes 20s-1, 61.1%±9.9%, n=6) (Brunsden and Grundy, 1999). The 

responses to the second and third applications of BK were the same (p>0.05). This 

demonstrates the suitability of the HVA model for pharmacological manipulation studies, 

whereby the second application of a mediator, after the pre-treatment with a compound of 

interest, is compared to the third application of a mediator. This type of experiment has been 

previously used in animal models (Maubach and Grundy, 1999, Brunsden and Grundy, 1999). 

Pre-treatment before the second application of BK with the selective B2 receptor antagonist 

HOE140 (300nM) significantly attenuated the HVA response to the second BK application 

compared to the third BK application, given after an hour washout (Δ firing rate; treatment 

22.9 ± 6.2 spikes 20s-1 vs. washout 44.0 ± 7.9 spikes 20s-1, n=6, p<0.05) (figure 3.06). When the 

change in afferent firing rate in response to BK was normalised to the first BK application, and 

the treatment and washout BK responses compared, antagonism by HOE140 (300nM) was also 

significant (baseline BK 100%, treatment BK 27.2%±6.2% vs. washout BK 57.6%±9.0%, p<0.05). 

An even greater antagonism was evident after pre-treatment with a higher dose of HOE140 

(1µM) (Δ firing rate; treatment 0.5±1.4 spikes 20s-1 vs. washout 22.8±7.3 spikes 20s-1, n=4, 

p>0.05). Once responses were normalised to the baseline BK application and the treatment 

and washout BK responses compared, antagonism by HOE140 (1µM) was significant (baseline 

BK 100%, treatment 9.3%±8.6% vs. 85.4%±12.1%, p<0.01) (figure 3.06). 

In contrast, the selective B1 antagonist R715 had no effect on HVA response to BK (Δ 

firing rate treatment 33.1 ± 1.7 spikes 20s-1 vs. washout 29.7 ± 1.5 spikes 20s-1, n=6, p>0.05). 

When responses were normalised to the baseline BK application, there was still no effect of 
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R715 application (baseline BK 100%, treatment 81.6%±14.9% vs. washout 69.1%±8.4%, p>0.05) 

(figure 3.06). 

3.1.3.6 ATP PHARMACOLOGY 

Repeat applications of ATP, produced repeated responses in 4/5 Units (5 preparations) (figure 

3.05). One unit did not respond to the second application of ATP.  Responses to the first 

application of ATP tended to be larger than the subsequent applications comparable (average 

Δ firing rate 1st 55.2±12.1, normalised 100%, vs. 2nd 33.9±12.6, 53.8%±12.3%, vs. 3rd 28.4±8.9 

spikes 20s-1, 47.7%±10.1%, n=4). HVA responses to the second and third applications of ATP 

were not different (p>0.05). The P2X1, 2, 3, 5 antagonist PPADS, when given before the second 

application of ATP, modestly attenuated the HVA response, compared to the third ATP 

application give an hour later, however this did not reach significance (treatment 50.1 ± 14.8 

spikes 20s-1 vs. washout 56.2 ± 14.7 spikes 20s-1, n=6, p=0.060)(figure 3.07). When the change 

in afferent firing was normalised to the baseline ATP application, PPADS still did not have a 

significant effect (baseline 100%, treatment 65.1%±3.5% vs. washout 76.6%±7.7%, p=0.095). 

The P2X2/3, 3 antagonist RO4, when applied before the second application of ATP, did not 

significantly alter the response of HVAs to ATP, compared to the third application of ATP given 

after an hour washout period (treatment 20.4±6.5 vs. washout 21.4±9.7 spikes 20s-1, n=3, 

p>0.05). When the response was normalised to the baseline ATP application, there was still no 

effect of RO4 (baseline 100%, treatment 100.7%±39.7% vs. washout 106.5%±55.6%, p>0.05) 

(figure 3.07).  

 To examine the theory that ATP was being degraded to adenosine by ATP-

endonucleotidases, and subsequently activating HVAs, we first applied adenosine to confirm 

its ability to activate HVAs. Application of adenosine caused an increase in action potential 

firing in whole nerve HVA recordings (BC 200µM, 2/9 responded, 22.2%, Δ firing rate 66.7±51.9 

spikes 20s-1). To continue this investigation we used a similar repeat ATP application protocol 
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as described above. HVAs pre-treated before the second application of ATP with the pan 

adenosine receptor antagonist CGS 15943, did not reduce the response to the second ATP 

compared to the post washout ATP application (treatment 61.5 ± 14.2 spikes 20s-1 vs. washout 

61.5 ± 17.1 spikes 20s-1, n=6, p>0.05) (figure 3.07). Similarly, when the response to ATP was 

normalised to the first ATP application, CGS 15943, had no effect on the HVA response to ATP 

(baseline 100%, treatment 81.8%±10.6% vs washout 75.8%±12.0%, p>0.05). 

 To demonstrate that activation of P2Y receptors could augment afferent firing in HVAs 

the P2Y1, 12 and P2Y2, 4, 6 agonists ADP and UTP, respectively, were applied to preparations. 

ADP activated 13/18 (72.2%) preparations, from which 14 responding single units could be 

discriminated (average Δ firing rate 32.0.1±5.9 spikes 20s-1) (figure 3.08). UTP activated 10/20 

(50.0%) preparations, from which 19 responding units could be discriminated (average Δ firing 

rate 50.4±6.1 spikes 20s-1) (figure 3.08). Eight out of 14 (57.1%) units were co-sensitive to both 

ADP and UTP. Three out of 4 units responded to both ADP and ATP, while 4/4 responded to 

both UTP and ATP. Two units were tested for co-sensitivity to ADP, UTP and ATP, from which 1 

responded to all 3 mediators. 
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Figure 3.05: HVAs responded to repeated applications of bradykinin (BK) and adenosine 

trisphosphate (ATP). A-B) Shows the reproducibility of repeat BK responses, both as a rate 

histogram on the left (A), and displayed as a bar graph (B), which has been normalised to the 

1st BK application, on the right (n=6). C-D) Shows the equivalent panels for ATP (n=4). This 

suggests the HVA model is suitable for pharmacological manipulation studies targeting the 

second application of these mediators. Data were analysed using a 2 tailed paired t test, 

p<0.05.
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Figure 3.06: The HVA response to bradykinin (BK) is mediated by B2 receptors, with limited B1 

involvement. A-B) The HVA response to BK was not attenuated when a bradykinin B1 receptor 

antagonist R715 was used (n=6, p>0.05), as shown here as a rate histogram (A) and a bar graph 

(B). C-D) Pre-treatment before the second application of BK with the selective B2 bradykinin 

receptor antagonist, HOE140 (300nM), significantly attenuated the HVA response to BK 

application compared to the BK application given after an hour of washout (n=6, p<0.05). E-F) 

When the second BK application was pre-treated with a higher dose of HOE140 (1μM), the 

response to BK was abolished, but recovers after an hour of washout (n=4, p<0.01). This 

suggests that in HVAs, BK signals through the B2 receptor, with seemingly limited involvement 

of the bradykinin B1 receptors. Data were analysed using a paired 2 tailed t test, p<0.05.
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Figure 3.07: The HVA response to adenosine trisphosphate (ATP) is not altered by pre-

treatment with the P2X antagonist PPADS or RO4, or the adenosine antagonist CGS 15493. A-

B) Pre-treatment with the pan adenosine antagonist CGS 15943 before the second application 

of ATP did not attenuate the HVA response when compared to the ATP application after an 

hour of washout (n=6, p>0.05), as shown here as a histogram (A), and a bar graph (B). C-D) Pre-

treatment before the second application of ATP with the P2X1, 2, 3 and 5 antagonist PPADS 

(30μM)  did not alter the HVA response to ATP compared to the ATP application given after an 

hour of washout (n=6, p>0.05). E) Similarly, pre-treatment with RO4 a P2X2/3, 3 antagonist 

(10µM) did not significantly change the HVA response to ATP (n=3, p>0.05). Data were 

analysed using a paired 2 tailed t test, p<0.05. 
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Figure 3.08: A) HVAs responded to the application of the P2Y1, 12 receptor agonist ADP and C) 

the P2Y2, 4, 6 agonist uridine trisphosphate (UTP), supporting a potential role for P2Y receptors 

in the mediation of HVA activation by adenosine trisphosphate (ATP). An example of an 

adenosine diphosphate (ADP) (A) and a UTP (C) response are illustrated in rate histogram form. 

B, D) Displays the proportions of HVAs that responded to UTP (10/20) (B) and ADP (13/18) (D). 

E) Shows the average change in afferent firing elicited by each agonist.  
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3.1.3.7 SUMMARY OF RESULTS 

 Human serosal afferents are considerably more likely to respond to the algogenic 

mediators BK, or ATP compared to muscular afferents and represent a population of 

human visceral nociceptors 

 Whole nerve HVA recordings are sensitive to a number of chemical stimuli, namely BK, 

ATP, and capsaicin 

 Repeated applications of BK, or ATP produce reproducible responses in HVAs and 

represent a potentially useful experimental protocol 

 B2 receptors are responsible for the BK induced activation of HVAs  

 Adenosine can activate HVAs. A P1 adenosine receptor antagonist (CGS 15493) did not 

attenuate the HVA response to ATP 

 Two separate P2X antagonists, PPADS and RO4, did not significantly reduce the HVA 

response to ATP 

 The P2Y1, 12 receptor agonist ADP, and the P2Y2, 4,  6 receptor agonist UTP excited HVAs  
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3.1.4 DISCUSSION 

3.1.4.1 SEROSAL/MESENTERIC VS. MUSCULAR CHEMOSENSITIVITY 

We have demonstrated that human mesenteric and serosal afferents respond to the algogenic 

mediators BK and ATP, with more frequency than afferents terminating in the muscle layers 

(BK, 43% vs. 0%, ATP, 40% vs. 10%). Previous reports from animal studies have suggested that 

mesenteric and serosal afferents are the main nociceptive afferents innervating the gut 

(Blackshaw and Gebhart, 2002, Knowles and Aziz, 2009). The finding in this report that human 

mesenteric and serosal afferents are very responsive to the algogenic mediators BK, and ATP, 

implies certain functional roles and substantiates the evidence that suggests these afferents 

are nociceptive. Furthermore, the limited sensitivity of muscular afferents to painful mediators 

suggests that the majority of these afferents are not nociceptive, at least chemo-nociceptive.  

However, a small proportion of muscular and distension sensitive afferents did 

respond to chemical mediators. Indeed, the response of some muscular and distension 

sensitive afferents to the application of chemicals has been previously reported in animals 

(Sengupta and Gebhart, 1994, Lynn and Blackshaw, 1999). Responses were taken to be directly 

activating muscular afferent fibres due to a lack of accompanying muscular contraction. 

Similarly, our human tissue preparations are treated with the calcium channel blocker, 

nifedipine, before the application of any mediators, inhibiting muscle contractions. Taken 

together, these results suggest that the response evident in muscular afferents is direct, and 

implies the ability of a small proportion of muscular afferents to transduce noxious chemical 

stimuli.  

3.1.4.2 BK AND ATP IN CHARACTERISED AFFERENTS  

Nearly half of human serosal afferents responded to the application of BK. This 

compares to 11% and 66% of serosal afferents from the pelvic and splanchnic pathways in the 
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mouse, respectively (Brierley et al., 2005b). The HVA model does not discriminate between 

pelvic and splanchnic afferents. Spinal pathways taken together, BK activates ~48% of mouse 

serosal afferents (Brierley et al., 2005b), which is comparable to HVAs. However the potential 

to record from vagal fibres in HVA recordings, especially in small intestine, must not be 

overlooked. In contrast, all rat serosal afferents were activated by BK (Maubach and Grundy, 

1999). The marked differences in responders could reflect a fundamental species difference. 

Rat experiments involved removing the serosa and studying it in isolation, which may also 

account for these discrepancies when compared to full thickness human preparations.  

This study represents one of the only times ATP has been applied to fully characterised 

serosal afferents in any species. Half of human serosal afferents were activated by ATP. This is 

higher than the 32% of mouse splanchnic serosal afferents activated by the P2X3 receptor 

agonist meATP (Brierley et al., 2005a).  ATP activated 1/5 distension sensitive units. However, 

when analysed for single units, 0/4 LT units, and 1/1 HT units respond to the application of ATP 

suggesting a functional afferent subtype split in ATP sensitivity, although clearly more work is 

needed. Indeed, ATP has been previously been shown to activate vagal and pelvic distension 

sensitive afferents innervating the rodent GI tract and bladder (Rong et al., 2002, Zagorodnyuk 

et al., 2003). 

 It has been postulated that, organ distension releases ATP which activates afferent 

nerves giving rise to distension sensation and nociception (Burnstock, 1996). This report 

certainly, demonstrates the activation of serosal and HT distension sensitive units to ATP. The 

addition of either BK or ATP activated around half of serosal afferents. The activation of serosal 

afferents by these algogenic mediators supports the proposed notion that serosal afferents are 

nociceptors, signalling noxious information in the human gut. Indeed, the lack of response to 

BK and the lower proportion that were responsive to ATP (10%) suggests muscular afferents 

play a smaller role in nociception.  
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3.1.4.3 CHEMOSENSITIVITY IN WHOLE NERVE RECORDINGS 

This report has demonstrated that a variety of chemical mediators including, BK, ATP, 

adenosine, and capsaicin activate whole nerve HVAs from both flat sheet preparations of small 

intestine and colon, and from cannulated appendices. This is the first time that individual 

mediators have been shown to activate HVAs with the exception of capsaicin (Peiris et al., 

2011, Jiang et al., 2011).  

Whole nerve preparations often responded to multiple mediators, with upwards of 

58.3% and 44.4% of flat sheet and appendix preparations responding to >1 mediators, 

respectively. Nerve bundles containing multiple HVAs are clearly responsive to multi chemical 

stimuli. HVA bundles are almost always responsive to at least 1 mediator, 80.8% and 92.3% in 

flat sheet and appendix preparations, respectively. Indeed, HVA bundles are likely to contain a 

proportion of nociceptors given their response to a least 1, and often multiple, algogenic 

mediators. Indeed, a proportion of mesenteric and serosal afferents are chemosensitive and 

have been shown to respond to mediators such as capsaicin, 5-HT, BK and histamine (Berthoud 

et al., 2001, Coldwell and Blackshaw, 2002, Hicks et al., 2002, Brierley et al., 2005b, Feng and 

Gebhart, 2011).  

The concentration of mediators used in this report is similar to those used in animal 

studies examining intestinal afferent activation. The approximate final bath concentration of 

BK (2µM) is similar to the concentrations used in animal studies (1µM) (Brunsden and Grundy, 

1999, Maubach and Grundy, 1999, Brierley et al., 2005b). ATP has been used in rodent 

intestinal and colonic afferent preparations at concentrations up to 1mM (Wynn and 

Burnstock, 2006, Rong et al., 2009), similar to the 2mM final bath concentration of ATP used in 

this study. Furthermore, ATP can be stored in nerves and other cells at millimolar 

concentrations (Hamilton and McMahon, 2000). 5-HT has been used up to 1mM in animal 

afferent preparations, although 100µM was enough to activate almost 100% of preparations 
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(Hicks et al., 2002, Coldwell et al., 2007). This is similar to the 200µM final bath concentration 

used in this report. Doses of histamine up to 1mM, was administered in a cat intestinal 

afferent preparation (Akoev et al, 1996). This is comparable to the 600µM final bath 

concentration used in this report. In addition, the application of 20µM PGE2 final bath 

concentration to HVAs in this report is a similar concentration to that used in a rat pelvic nerve 

preparation (Su and Gebhart, 1998) and previously in an inflammatory soup applied to HVAs 

(Peiris et al., 2011). A 2µM dose of capsaicin was applied to HVAs in this study, which is 

comparable to that given to a mouse colonic afferent preparation 3µM, (Brierley et al., 2005a) 

and previously in a HVA preparation 10µM (Peiris et al., 2011).  

3.1.4.4 BK PHARMACOLOGY 

This report has shown that reproducible responses to repeated applications of certain 

mediators in HVAs, establishing the model’s suitability for pharmacological manipulation 

studies targeting the second mediator application. This type of experiment has previously been 

used by a number of studies e.g. (Brunsden and Grundy, 1999). Using this protocol, we have 

demonstrated that BK acts through B2 receptors, with a seemingly limited involvement of B1 

receptors. The HVA response to BK was only partly abolished by 300nM HOE140. However, 

when a higher dose, 1µM, was used, HOE140 abolished the HVA response to BK. However, 

10nM of HOE140 was enough to almost eliminate the response splanchnic afferents to BK in 

mice and rats, although this was against a lower dose of BK, 1µM (Maubach and Grundy, 1999, 

Brierley et al., 2005b). This may suggest a greater potency in murine afferents over human 

afferents.  

The present study corroborates previous work in animal models reporting B2 

receptors as the main receptor involved in bradykinin signalling in colonic and other visceral 

afferents (Rangachari et al., 1993, Pan et al., 1994, Maubach and Grundy, 1999, Brierley et al., 

2005b). The B1 receptor antagonist [Des-Arg10] HOE140 had no effect on the response of rat 
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serosal afferents. Similarly, the B1 antagonist R715 did not affect the response of HVAs to BK. 

This represents the first data implicating B2 receptors as the main mediators of BK signalling in 

HVAs from normal tissue.  

3.1.4.5 ATP PHARMACOLOGY 

Using a similar protocol, we have shown a modest attenuation of the ATP response in 

the presence of the P2X antagonist PPADS, although this did not reach significance. Similarly, 

the P2X antagonist RO4 did not have a significant effect on the HVA response to ATP. In 

contrast, the response to ATP was abolished in rat pelvic balder afferents by treatment with 

the same dose of PPADS (30µM) (Yu and DeGroat, 2008). However, another study used 100µM 

of PPADS on colonic afferents in order to block the response to meATP (1mM) (Brierley et al., 

2005a). Given that the inhibitory effect of 30µM of PPADS on the HVA response to ATP came 

close to significance (p=0.067), a higher dose may have been effective. Indeed, meATP can 

activate both splanchnic and pelvic afferents innervating the mouse colon, and rat jejunal 

afferents, effects that are blocked by PPADS, again demonstrating a role for P2X receptors in 

murine afferent signalling (Kirkup et al., 1999, Brierley et al., 2005a). meATP was not tested in 

HVAs, mainly due to the prohibitive expense. For this experiment to be feasible, the drug 

would have to be applied locally to the receptive field, using a metal ring. The present study is 

the first to show a potential P2X involvement in HVAs. Delineation of specific P2X receptors 

involved is warranted in future studies, but will require methods to reduce the volume of drug 

needed in order to be economically feasible e.g. ring application, or reduced bath volume.  

ATP responses in murine afferent nerves (Kirkup et al., 1999) and in HVAs in this report 

are sometimes biphasic, exhibiting 2 peaks. This report hypothesised that ATP was activating 

P1 receptors after it had been broken down to adenosine by endogenous ATP-

endonucleotidases, and was responsible for the second peak. Indeed, this report has 

demonstrated the activation of HVAs by adenosine. However, the P1 receptor antagonist CGS 
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15943 had no effect on the response of HVAs to ATP, suggesting that adenosine receptors are 

not involved in the activation of HVAs by ATP.  

This report demonstrates that UTP and ADP, agonists to P2Y2, 4, 6 and P2Y1, 12 

receptors, respectively, activate HVAs. P2Y antagonists were deemed not to be suitably 

efficacious for study in HVAs. This is the first study to show that ADP and UTP can activate 

afferent nerves. Indeed, the co-sensitivity of a single unit HVAs to ATP and either ADP (3/4 

units) or UTP (4/4 units) or to all 3 mediators (1/3 units) demonstrates that a number of P2Y 

receptors are expressed on ATP sensitive afferents. This suggests a role for P2Y signalling in 

HVAs. Indeed, more efficacious P2Y antagonists will allow the elucidation of the involvement 

of P2Y receptors in the activation of HVAs by ATP. 
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3.1.5 CONCLUSION 

Serosal HVAs are much more likely to respond to the algogenic mediators BK, and ATP. This 

substantiates the evidence for serosal afferents playing a nociceptive role in HVAs. 

Furthermore, the uncommon nature of responses to painful mediators in muscular units 

suggests that these mediators may be useful in confirming the location of an afferent terminal, 

in addition to confirming its role in nociception. This report also describes the broad 

chemosensitivity of HVAs, demonstrating whole nerve and single unit HVA responses to BK, 

ATP, adenosine and capsaicin. 

 In HVAs, BK exerts it’s activation through the B2 receptor as demonstrated by blockade 

of HVA firing in response to BK by a B2 receptor antagonist HOE140. Multiple receptors are 

likely to be involved in the activation of HVAs by ATP, including P2Y receptors and even P2X 

receptors, but with limited involvement of P1 receptors.  
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CHAPTER 3 PART 2: CHEMOSENSITIVITY 
OF HUMAN VISCERAL AFFERENTS TO  
DISEASE MEDIATORS 

3.2.1 INTRODUCTION 

3.2.1.1 SEROTONIN  

5-HT is a monoamine neurotransmitter and hormone. It is synthesised from its precursor L-

tryptophan, in a 2-step process involving the enzymes tryptophan hydroxylase (TpH1 and 

TpH2) and aromatic amino acid decarboxylase. Serotonin is subsequently degraded by various 

isoforms of the monoamine oxidase enzyme (Nichols and Nichols, 2008). Serotonin has a role 

in a myriad of physiological processes such as appetite, sleep, gastrointestinal function, and 

pain (Nichols and Nichols, 2008). Indeed, most of the 5-HT in the body is found in the 

intestines (Gershon and Tack, 2007). 

There are 14 different 5-HT receptors, encoded by 14 separate genes, and have been 

grouped into 7 families, 5-HT1-7 (Hoyer et al., 1994). All but the 5-HT3, are part of the rhodopsin 

superfamily of GPCRs, exhibiting 7 transmembrane domains, displaying 3 intracellular and 3 

extracellular loops, with a cytosolic carboxy terminal and extracellular amino group (Baez et 

al., 1995). Ligand binding induces conformational changes in the heteromeric G proteins and 

subsequent involvement in downstream signalling pathways (Gray and Roth, 2001). The 5-HT 

receptor families are linked to different types of G proteins, Gi/0, Gq/11 or, Gs, which govern 

their effects on cell signalling.  

The 5-HT3 receptor is a ligand gated cation channel, which upon activation 

unselectively allows the entry of monovalent cations and also Ca2+ to varying degrees, which is 

dependent on the receptor subunit composition (Lambert et al., 1989, Sugita et al., 1992, 
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Yang, 1990, Yang et al., 1992, Davies et al., 1999). The current report will focus on 5-HT2, 5-HT3 

and 5-HT4 receptor families. 

3.2.1.1.1 5-HT2 RECEPTORS 

The 5-HT2 receptor family is comprised of 3 distinct receptors, 5-HT2A, 5-HT2B, and 5-HT2C, 

which display 42-57% homology (Hoyer et al., 2002). They range in length, between 458-481 

amino acids, and exhibit individual expression patterns. All 5-HT2 receptors are linked to Gq/11 

proteins, which upon activation result in membrane phosphoinositide hydrolysis and the 

formation of signalling molecules such as inositol phosphates and diacylglycerol (DAG), which 

can then alter downstream signalling pathways e.g. PKC pathway (Nichols and Nichols, 2008). 

5-HT2A receptors are 471 amino acids in length (Stam et al., 1992) and are expressed 

throughout peripheral and central tissues including the heart, the dorsal horn of the spinal 

cord and DRG (Andrade, 2014).  They are involved in a number of processes including the 

contraction of smooth muscle and regulation of mood (Gray and Roth, 2001, Andrade, 2014). 

5-HT2A receptors undergo desensitisation, interestingly this occurs upon agonism and 

antagonism (Gray and Roth, 2001). 

5-HT2B receptors are comprised of 481 amino acids (Andrade, 2014), and exhibit a 

scattered expression pattern. It is found in central areas such as the cerebellum and 

hypothalamus and in most viscera and endothelial cells in the periphery (Duxon et al., 1997, 

Andrade, 2014). 5-HT2B receptors are involved in the contractile and relaxatory properties of 

the stomach and blood vessels (Andrade, 2014).   

The 5-HT2C receptor is made up of 458 amino acids and its expression is mainly 

restricted to the CNS and choroid plexus, although their presence has been demonstrated on 

rat DRGs (Pierce et al., 1996, Andrade, 2014). There are 14 known distinct isoforms of the 5-

HT2C receptor, which are produced by RNA editing. These isoforms have different receptor 
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activation and desensitisation kinetics, suggesting a multiple roles for the 5-HT2C receptor 

subtypes (Burns et al., 1997, Fitzgerald et al., 1999). 5-HT2C has a role in a number of 

physiological processes including regulation of sleep (Frank et al., 2002) and food intake (Fone 

et al., 1998), as well as anxiety (Bagdy et al., 2001) and nociception (Chojnacka-Wojcik et al., 

1994). As mentioned, dimerization is required for a functional 5-HT2C receptor (Herrick-Davis et 

al., 2005).   

3.2.1.1.2 5-HT3 RECEPTORS 

5-HT3 receptors are the only ionotropic receptors in the 5-HT receptor family. They 

unselectively allow the passage of monovalent cations, as well as the divalent Ca2+ ion 

(Humphrey et al., 1993, Hoyer et al., 1994). 5-HT3 receptors are comprised of 5 

transmembrane subunits organised around a central pore region (Boess et al., 1995). Each 

subunit consists of a large N terminus and short C terminus, both of which are extracellular, 

and are separated by 4 transmembrane domains, which are connected by 1 extracellular and 2 

intracellular loops (Nichols and Nichols, 2008). The diversity of the 5-HT3 receptor is only 

beginning to be understood. To date, 5 distinct 5-HT3 subunits have been discovered; 5-HT3A, 

3B, 3C, 3D, and 5-HT3E (Barnes, 2014). The hetero-pentamer of the 5-HT3A/5-HT3B (ratio 2:3) 

subunits is currently the only known combination that grants full 5-HT receptor functionality 

(Dubin et al., 1999, Hanna et al., 2000). Single nucleotide polymorphisms (SNPs) and 

alternative splicing of 5-HT receptor subunits can influence functionality and hence further 

augment diversity (Nichols and Nichols, 2008). 5-HT3 receptors are expressed in various brain 

regions as well as on peripheral nerves, including sensory neurons innervating the gut (Bufton 

et al., 1993, Holbrook et al., 2009). 

3.2.1.1.3 5-HT IN VISCERAL PAIN 

5-HT has distinct functions peripherally compared to centrally. Intrathecal 

administration of 5-HT can be analgesic (Bardin et al., 1997, Bardin et al., 2000). However, in 
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the periphery 5-HT is involved in inflammatory processes and diseases, such as IBS, and can 

activate intestinal afferent nerves (Hillsley and Grundy, 1998, Coldwell et al., 2007, Cremon et 

al., 2011). 5-HT is found in and released by EC cells and ENS neurons in close proximity to 5-HT 

sensitive mucosal extrinsic afferents, which are unlikely to be nociceptive. However, 5-HT can 

also activate splanchnic afferents, which are involved in nociception (Coldwell et al., 2007). 

This report will concentrate on peripheral actions of 5-HT.  

In a guinea-pig TNBS model of colitis, used as a model for visceral hypersensitivity, EC 

cell numbers, the primary source of 5-HT in the gut, were increased along with a twofold 

increase in 5-HT levels. This was coupled with the decreased expression of, and mRNA 

transcripts for, the serotonin transporter (SERT), which removes 5-HT from the interstitial 

space (Linden and El-Fakahany, 2002). Alterations in the presence of 5-HT are also described 

during painful diseases of the bowel, such as IBS and IBD. 5-HT immunoreactivity in the 

myenteric plexus of patient’s with CD was shown to be higher than in controls (Sakurai-

Yamashita et al., 2000). However, when rectal mucosal biopsies from UC and IBS patients were 

compared to controls, 5-HT content and EC cell numbers were reduced. SERT mRNA and 

immunoreactivity were also decreased (Coates et al., 2004). Although 5-HT levels were 

decreased, the simultaneous decrease in SERT and hence a reduced capability to remove 5-HT 

from the interstitial space or synapse may lead to an increased activation of 5-HT receptors. In 

contrast a number of other studies have demonstrated increased mucosal 5-HT levels and 5-

HT positive mast cells in the intestines (Kerckhoffs et al., 2008, Cremon et al., 2011). 

Furthermore, mucosal release of 5-HT was 10 fold higher in IBS patients compared to controls. 

Indeed, the amount of mucosal 5-HT release was correlated with abdominal pain scores 

(Cremon et al., 2011). These alternations in 5-HT could play a role in visceral hypersensitivity 

(Grundy, 2008). Indeed, in somatic tissue elevated levels of 5-HT have been associated with 

allodynia and increased pain (Kopp, 1998, Ernberg et al., 1999). Similarly, the addition of 5-HT 

with other mediators to cultured DRG enhanced a proton induced current, whereas 5-HT alone 
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had no effect (Kress et al., 1997). Taken together, this evidence suggests a major role for 5-HT 

in the pathophysiology of disease such as IBS. 

The ability of 5-HT to activate vagal afferents innervating the jejunum, demonstrate 

the involvement of 5-HT in physiological sensory signalling (Hillsley and Grundy, 1998). 

However, it has also been demonstrated in electrophysiological experiments that 5-HT can 

activate splanchnic afferent fibres innervating the rat colon, which constitute the principle 

pathway in colonic nociception (Hicks et al., 2002, Coldwell et al., 2007). Furthermore, the 

percentage of nerves that respond to 5-HT increases, the response is larger and the EC50 is 

reduced following the acute and recovery phase of inflammation induced by DSS, suggesting a 

greater role for 5-HT during inflammation (Coldwell et al., 2007).  

3.2.1.1.3.1 5-HT2 Receptors in Visceral Pain 

5-HT2 receptors are expressed on sensory apparatus.  5-HT2A, 2B and 5-HT2C receptor mRNA has 

been found on lumbar DRGs suggesting they are expressed on afferent nerves (Pierce et al., 

1996, Nicholson et al., 2003). Indeed, 5-HT2A receptors are found on afferents innervating rat 

skin (Carlton and Coggeshall, 1997). There is no IHC data on the expression of 5-HT2 receptors 

on afferents innervating the viscera. However, there is some functional evidence for 5-HT2 

receptors in hyperalgesia in the somatic and visceral nociceptive pathways. Co-administration 

of various 5-HT2 agonists increased pain behaviours in response to injection of PGE2 or 

noreadrenaline into the paw of a rat. Similarly the pain behaviour response to 5-HT and PGE2 

or a 5-HT2 agonist, α-methyl-5-HT and PGE2, was antagonised by the 5-HT antagonist 

ketanserin (Abbott et al., 1996). Similarly, the 5-HT2 antagonists ketanserin and sarpogrelate 

reduced pain behaviours to the injection of formalin (Abbott et al., 1997, Obata et al., 2000).  

 The role of 5-HT2 receptors in mediating visceral pain, is complex, evoking questions 

on the involvement of different 5-HT2 subunits, if they exert nociceptive or analgesic effects 

and, whether these effects are peripherally or centrally mediated. For example, peripheral 
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administration of the 5-HT antagonist ketanserin augmented the anti-nociceptive effect of 

imipramine, a tricyclic antidepressant and analgesic agent, on VMR to CRD in rats (Ilkaya et al., 

2014). Similarly, peripheral 5-HT2 receptors may be involved in nociception caused by chemical 

stimuli. For example, the antinociceptive effect of the selective serotonin reuptake inhibitor 

(SSRI) paroxetine on intraperitoneal acetic acid application was potentiated by the 5-HT2 

antagonist ketanserin (Kesim et al., 2005). However, when administered intrathecally 

(centrally), 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) a 5-HT2 agonist reduces the 

VMR  and vigorous pressor response (VPR) to CRD in rats either on its own or by augmenting 

the anti-nociceptive effect of other analgesics e.g. the α2 adrenergic agonist clonidine 

(Danzebrink and Gebhart, 1991b, Danzebrink and Gebhart, 1991a). Therefore it seems that the 

site of administration, peripheral vs. central determines the role of 5-HT2 receptors in visceral 

nociception.  

 5-HT2B receptors have been implicated in visceral hypersensitivity. A number of studies 

have demonstrated that peripheral or central administration of the 5-HT2B antagonist RS-

127445 reduced visceral hypersensitivity, both noxious pressure threshold and number of pain 

behaviours, induced by either TNBS or restraint stress or in a hypersensitive strain of rats 

(Wistar Kyoto) (Ohashi-Doi et al., 2010, O'Mahony et al., 2010). However, RS-127445 had no 

effect in reducing visceral sensitivity in normal rats (Ohashi-Doi et al., 2010). In addition, 

activation of 5-HT2C receptors may be involved in the central antinociceptive effects of fear and 

other adverse emotions (Baptista et al., 2012). Taken together these data suggests role for 5-

HT2 receptors in nociception in the periphery, whereby antagonism of these receptors 

produces or augments visceral analgesia to both mechanical and chemical stimuli.  

3.2.1.1.3.2 5-HT3 Receptors in Visceral Pain 

5-HT3 receptors are present on ganglia from both vagal and spinal pathways and on their 

related extrinsic afferents innervating the gut (Rosenberg et al., 1997, Hicks et al., 2002, 
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Raybould et al., 2003). However, the vagal nodose ganglia express considerably more than 

spinal DRGs, suggesting a greater physiological role for 5-HT3 receptors (Peeters et al., 2006). 

Indeed, 5-HT has been shown to activate mesenteric vagal afferents innervating the jejunum of 

anesthetised rats. When 5-HT was administered intravenously, afferent firing rates increased. 

This activation was abolished by the 5-HT3 antagonist granisetron (Hillsley et al., 1998, Hillsley 

and Grundy, 1998). Moreover, intravenous administration of the 5-HT3 agonist 2-methyl-5-HT 

mimicked this afferent activation (Hillsley et al., 1998).  

5-HT3 is clearly involved in vagal afferent signalling in the small intestine. Although 

vagal afferents are likely to play a small role in nociception, they are not considered part of the 

major pain signalling pathway (Grundy, 2008). However, 5-HT3 is also involved in the 

transduction of nociceptive signals in the major pain pathway. Application of the 5-HT3 agonist 

2-methyl 5-HT activates splanchnic afferent nerves innervating the rat colon (Hicks et al., 

2002). Furthermore, the 5-HT3 receptor antagonist alosetron inhibited the response to 5-HT by 

about a 1/2 to 2/3s in rat colonic splanchnic nerves in 2 separate studies (Hicks et al., 2002, 

Coldwell et al., 2007). Taken together these data suggest a major role for 5-HT3 receptors in 5-

HT signalling in the main nociceptive pathway in the colon. However, this incomplete inhibition 

suggests that other 5-HT receptor subtypes are also involved, at least in splanchnic afferents. 

5-HT3 receptors may contribute to visceral pain in IBS, a hallmark of the disease. 

Supernatants generated from mucosal biopsies from IBS patients, activated both DRGs, and 

mesenteric afferents innervating the terminal jejunum in rats, while no effect was evident 

when using control supernatants (Barbara et al., 2007). Granisetron attenuated this IBS 

supernatant activation of rat mesenteric afferent by ~20%. Indeed, a number of 5-HT3 

antagonist,  such as granisetron, ramosetron, cilansetron, alosetron, have demonstrated 

antinociceptive effects in preclinical models (Kozlowski et al., 2000, Barbara et al., 2007, Hirata 

et al., 2008, Cremon et al., 2011). For example, treatment with alosetron, ramosetron or 
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cilansetron increased the nociceptive threshold to CRD in rats. Furthermore, these compounds 

also significantly inhibited the hypersensitivity to CRD induced by stress (Hirata et al., 2008).  

Clinical trials have demonstrated the efficacy of the 5-HT3 anatagonists, ramosetron, 

cilansetron, alosetron in treating visceral pain associated with IBS (Camilleri et al., 1999, 

Matsueda et al., 2008a, Matsueda et al., 2008b). For example, a number of randomised, 

double blind, placebo controlled trials have demonstrated the efficacy of a 5-HT3 antagonist 

alosetron in reducing abdominal pain. A greater proportion of IBS patents reported adequate 

pain relief with oral alosetron compared to a placebo control (Camilleri et al., 1999, Camilleri 

et al., 2000, Camilleri et al., 2001). In addition, another clinical trial described an increased 

proportion of pain free days in IBS patients treated with alosetron vs. placebo (Bardhan et al., 

2000). Furthermore, when compared to the antispasmotic, smooth muscle relaxant, 

mebeverine, a great proportion of IBS patients treated with alosetron reported adequate pain 

relief (Jones et al., 1999). However, these clinical trials offer no evidence for a direct effect of 

5-HT3 antagonists on sensory nerves. A relief of IBS symptoms including abdominal pain may 

be due to the effects of these compounds on motility, transit time, bloating etc. However, the 

electrophysiological data presented in this report suggests that 5-HT3 antagonists have some 

function at the site of afferent terminals. All these data together implicate 5-HT3 receptors in 

visceral pain associated with diseases such as IBS. 

 5-HT4 receptors are discussed in Chapter 4, Part 1.  

3.2.1.2 HISTAMINE 

Histamine is a biogenic amine and exerts its effects through 4 receptors H1, H2, H3 and H4, all of 

which are members of the 7 transmembrane domain containing rhodopsin-family of GPCRs 

(Bongers et al., 2010). H1 receptors are linked to Gq/11 proteins, H2 receptors are linked to Gs 

proteins, and H3 and H4 receptors are linked to Gi/o proteins (Bongers et al., 2010). Histamine is 

involved in the development of visceral hypersensitivity and neurogenic inflammation. 
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Histamine receptors are widely expressed on cells in the intestine including endocrine cells, 

immune cells and nerves (Repka-Ramirez, 2003). Canine DRGs contain mRNA for each of the 

histamine receptors (Rossbach and Baumer, 2014). H1 receptor mRNA are expressed on a 

proportion of nociceptive DRGs in guinea pigs (Kashiba et al., 1999). Furthermore, intestinal 

biopsies from IBS patients had higher levels of histamine receptor expression compared to 

controls (Sander et al., 2006).  

 Histamine can directly activate enteric nerves from animals (Tamura and Wood, 1992) 

and humans (Breunig et al., 2007). Histamine can also activate extrinsic afferent neurons 

innervating the thoracic and abdominal viscera. Histamine injected into the left atrium 

activated cat cardiac spinal afferents. The injection of a H1 agonist also activated these spinal 

afferents. The H1 antagonist but not H2 or H3 antagonists attenuated the cardiac spinal afferent 

response to histamine (Fu et al., 1997). Similarly, intra-arterial administered histamine can 

activate mesenteric afferents innervating cat intestines. Antagonists to either H1 or H2 

receptors antagonised the intestinal afferent response to histamine (Akoev et al., 1996). 

Another group demonstrated jejunal afferent activation after intravenous application of 

histamine (Kreis et al., 1998, Kreis et al., 2002). Again, a H1 antagonist, pyrilamine, but not a H2 

or H3 antagonist attenuated the excitation of jejunal afferents by histamine.  

 H1 receptors are also involved in visceral hypersensitivity. A recent study induced 

colitis in rats with rectally administered TNBS (Deiteren et al., 2014). After recovery, mast cell 

numbers and histamine release were increased, and rats demonstrated hypersensitive VMR 

responses to CRD. These enhanced VMR responses were inhibited by either the H1 antagonist 

levocetirizine or the H4 antagonist JNJ7777120 (Deiteren et al., 2014). Similarly, the H1 

antagonists fexofenadine and ebastine were effective in reducing the augmented VMR 

response to CRD in rats stressed by maternal separation and water avoidance (Stanisor et al., 

2013). These studies demonstrate a role for both mast cells, but specifically histamine in 

visceral hypersensitivity.  
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Mediators released by mast cells, which are the main source of histamine in the gut 

(Buhner and Schemann, 2012), can activate afferent nerves. Intraluminal injections of a mast 

cell degranulator 48/80 activated mesenteric nerves innervating rat intestine in vivo. Indeed, 

these afferent responses could be blocked by the H1 agonist clemastine (Nozdrachev et al., 

1999). This suggests that degranulating mast cells can activate extrinsic sensory nerves by 

releasing histamine.  Indeed, the ~90% of intestinal mucosal mast cells are touching or in very 

close proximity to nerves in the intestine, and can release histamine upon degranulation 

(Stead et al., 1989, Stead, 1992, Metcalfe et al., 1997). Furthermore, in IBS, elevated levels of 

histamine and tryptase were released by the markedly increased numbers of degranulating 

mast cells, which correlated to abdominal pain scores (Barbara et al., 2004). Similarly, 

supernatants generated from mucosal biopsies from IBS patients with visceral hypersensitivity 

contain more mediators released by mast cells, such as histamine and proteases (Buhner et al., 

2012).  Indeed, 2 clinical trials demonstrated the effectiveness of the mast cell stabilizers and 

H1 antagonists ketotifen and ebastin in improving abdominal pain and other IBS symptoms 

(Klooker et al., 2010, van Wanrooij et al., 2014). These data taken together clearly establish a 

role for histamine and its receptors in visceral pain and hypersensitivity in diseases such as IBS.  

3.2.1.3 PGE2  

PGE2 is a pro-inflammatory lipid metabolite produced when arachidonic acid goes through the 

cyclooxygenase (COX) pathway. PGE2 is a key mediator in both somatic and visceral 

inflammation and hypersensitivity at both peripheral and central levels (Lin et al., 2006). 

Indeed, non-steroidal anti-inflammatories (NSAIDS), which block COX enzymes, are the most 

widely used analgesics (Lin et al., 2006). PGE2 has 4 GPCRs, EP1, 2, 3, and EP4 each containing 7 

transmembrane domains (Kawabata, 2011). EP1 receptors are linked to Gq/11 proteins, EP2 and 

EP4 receptors are linked to Gs proteins and depending on the splice variant EP3 receptors can 

couple with Gs or Gi proteins (Lin et al., 2006). This suggests that EP3 receptors may actually 
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have analgesic effects, by inhibiting the production of cAMP synthesis, and indeed there is 

some evidence for this e.g. (Natura et al., 2013).    

All EP receptors are expressed on DRGs (Southall and Vasko, 2001, Natura et al., 2013). 

EP receptors are likely expressed on visceral afferents, since the application of PGE2 can 

activate intestinal afferents, including those from nociceptive pathways (Longhurst and 

Dittman, 1987, Haupt et al., 2000). In addition, PGE2 can sensitise nociceptive afferent nerves 

innervating the intestines, such that their subsequent response to algesic mediators such as BK 

is enhanced (Longhurst and Dittman, 1987, Maubach and Grundy, 1999, Brunsden and Grundy, 

1999). There is some evidence that PGE2 can sensitise subsequent responses of pelvic afferents 

to colorectal distension in vitro (Su and Gebhart, 1998). However, in this case PGE2 was applied 

as part of an inflammatory soup, which also contained BK, histamine, 5-HT and KCl, all of which 

may have contributed to this sensitisation. Similarly, PGE2, as part of an inflammatory soup, 

can activate afferents innervating the human intestine (Peiris et al., 2011). PGE2 alone can 

depolarise trunks of isolated human visceral vagus nerve (Belvisi et al., 2008, Maher et al., 

2009). In addition, PGE2 can activate mesenteric afferents innervating the small intestine of the 

cats (Akoev et al., 1996). Similarly, PGE2 and EP1 (17-phenyl-ω-trinor-PGE2) and 2 (misoprostol) 

agonists caused activation of rat jejunal afferents in vivo (Haupt et al., 2000). The EP2 receptor 

seemed to be involved in a gradual increase in afferent activity, while EP1 receptor agonists 

caused an early peak response. 

 PGE2 is involved in visceral hyperalgesia. PGE2 levels are elevated in patients with IBS 

or IBD (Jones et al., 1982, Hommes et al., 1996). Noxious events such colonic distension to 

painful pressures releases large quantities of PGE2 (Roza and Reeh, 2001), which may sensitise 

afferents to subsequent mechanical events. In patch clamping experiments colonic DRGs are 

sensitised by PGE2, such that their threshold for activation is reduced, and upon excitation 

more action potentials are fired (Gold and Traub, 2004). Furthermore, EP receptors, 

specifically EP1 may mediate the behavioural response to nociceptive chemical stimuli since 
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EP1 KO mice demonstrated a reduced number of writhings in response to intraperitoneal 

injection of acetic acid (Stock et al., 2001).  

Application of an EP antagonist, ZD6416, inhibits hyperalgesia in the upper oesophagus 

as a result of lower oesophageal acid infusion (Sarkar et al., 2003). This suggests a role for PGE2 

in human visceral hyperalgesia. Importantly, PGE2 may also be involved in the modulation of 

TTX resistant (TTX-R) sodium channels in hyperalgesia. The application of PGE2 induced a quick 

increase in sodium current and altered the biophysical properties of the TTX-R sodium 

channels in both splanchnic and pelvic rat colonic DRGs (Gold et al., 2002). Taken together, this 

data suggests an involvement of PGE2 in visceral hyperalgesia and pain in disease such as IBS.  
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3.2.1.4  AIMS 

 To further examine the chemosensitivity of whole nerve HVAs to a number of 

mediators implicated in IBS, i.e. 5-HT, histamine, PGE2 

 Determine if 5-HT and histamine are suitable for using in repeat mediator application 

protocols, by examining the reproducibility of the response to repeated applications of 

these mediators 

 Examine the receptor pharmacology underlying HVA activation by 5-HT 
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3.2.2 METHODS 

3.2.2.1 CHEMOSENSITIVITY 

After any mechanical characterisation protocols, atropine (10µM) and nifedipine (10µM) were 

added to the Krebs buffer and given 30 minutes to take effect. Some preparations were used 

solely for chemosensitivity protocols. Drugs were applied to the tissue bath by superfusion of a 

20ml volume to make up the final bath concentrations of: 5-HT (BC 200µM, 20ml of 1mM), 

histamine (BC 600µM, 20ml of 3mM), PGE2 (BC 20µM, 20ml of 100 µM). An effort was made to 

keep the mediator applications in the same order in each preparation. If a mediator failed to 

elicit a response, the next mediator was added 30 minutes later, otherwise a washout period 

of 60 minutes was observed.  

3.2.2.2 MEDIATOR PHARMACOLOGY 

For repeat application protocols, either 5-HT (BC 200µM, 20ml of 1mM) or histamine (BC 

600µM, 20ml of 3mM) was superfused into the bath 3 times consecutively, with a washout 

period of 60 minutes between applications (figure 3.09). Pharmacological protocols using 5-HT 

and specific 5-HT receptor ligands were also performed. A selective agonist for either the 5-HT2 

(α-methyl-5-HT maleate, BC 20µM, 20ml of100µM) or 5-HT3 (methyl-chlorophenylbiguanide 

hydrochloride, BC 20µM, 20ml of 100µM) receptor was superfused into the bath. If given in 

the same preparation, a washout period of at least 60 minutes was observed between the 

applications of the 5-HT receptor agonists. Data were analysed using a 2 tailed paired t test, 

p<0.05.
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Figure 3.09: Repeat mediator application protocol 

1) The first application of the mediator (↓) e.g. 5-HT is superfused into the bath. 

2) An hour later the second application of the mediator (↓) is applied. 

3) After another hour the third application of the mediator (↓) is added. 

1 2 3

10 mins
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3.2.2.3 DRUGS 

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at 20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 

and vortexed to mix. 5-HT and histamine were obtained from Sigma Aldrich (St Louis, MO, 

USA). Prostaglandin E2, α-methyl-5-HT maleate, and methyl-chlorophenylbiguanide 

hydrochloride were purchased from Tocris Bioscience (Bristol, UK).  
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3.2.3 RESULTS 

3.2.3.1 TISSUES – 5-HT PHARMACOLOGY 

3.2.3.1.1 Repeat 5-HT applications  

Three tissues, all normal, were used for repeat 5-HT application experiments, 1 ascending 

colon,, 1 transverse colon, 1 sigmoid colon, (M:F 1:0.05, median age 24).  

3.2.3.1.2 5-HT2 agonist (α-methyl-5-HT maleate) 

Seven tissues, 6 normal, 1 UC, were used for 5-HT2 agonist experiments 2 descending colon, 2 

sigmoid colon, 2 rectum, 1 ascending colon (M:F 1:1.33, median age 57).  

3.2.3.1.3 5-HT3 agonist (methyl-chlorophenylbiguanide hydrochloride) 

Seven tissues, 4 normal, 2 UC, 1CD, were used for 5-HT3 agonist experiments, 2 sigmoid colon, 

2 appendix, 1 ileum, 1 transverse colon, 1 descending colon (M:F 1:0.75, median age 39).  

3.2.3.2 TISSUES – HISTAMINE  

3.2.3.2.1 Repeat histamine applications 

Two tissues, 1 normal, 1 appendicitis, were used for histamine repeat experiments, 1 sigmoid 

colon, 1 appendix (M:F 1:1, median age (43.5). Further details on the tissues use in each set of 

experiments can be seen in table 2.02. 

3.2.3.3 CHEMOSENSITIVITY IN WHOLE NERVE HVA RECORDINGS 

The disease mediators 5-HT, histamine, and PGE2 activated flat sheet whole nerve HVAs, 5-HT 

(BC 200µM, 7/15, 46.7%, Δ firing rate 42.2±23.4 spikes 20s-1), histamine (BC 600µM, 13/17, 

76.5%, Δ firing rate 30.5±6.4), PGE2 (BC 20µM, 7/8, 87.5%, Δ firing rate 41.0±14.8 spikes 20s-1). 

Responses to PGE2 were generally gradual, HVA activity increasing over a period of time (figure 
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3.10). 5-HT (BC 200µM, 2/6, 33.3%, Δ firing rate 84.0±32.8 spikes 20s-1), histamine (BC 600µM, 

3/4, 75.0%, Δ firing rate 55.6±16.1 spikes 20s-1), and PGE2 (BC 20µM, 2/3 -, 66.6%, Δ firing rate 

spikes 48.2±3.0 20s-1) also activated whole nerve HVA innervating the appendix. 

3.2.3.4 5-Hydroxytryptamine 

Repeat applications of 5-HT produced repeated responses in 2/4 units (3 preparations) (figure 

3.11). The responding units only responded to 2 applications of 5-HT. The response to the first 

addition was considerably larger than the response to the second (Δ firing rate 1st 116.5±23.1, 

normalised 100%, vs. 2nd 48.0±11.0 spikes 20s-1, 44.8%). The 5-HT3 agonist methyl-

chlorophenylbiguanide hydrochloride was applied to 8 preparations from which 17 single units 

could be identified. No activation of HVAs was evident. A gradual decrease was evident in 10 

/17 units (58.8%), whereby activity had been reduced by at least 20% 45 minutes after 5-HT3 

agonist application (p<0.05). Four out of 17 and 7/17 demonstrated reduced activity (min. 

20%) at 15 and 30 minutes post 5-HT3 agonist application, respectively (p<0.05). Seven 

preparations were treated with the 5-HT2
 α-methyl-5-HT maleate, from which 13 single units 

could be distinguished. Two out of 13 units (15.4%) responded to the 5-HT2 agonist (average Δ 

firing rate 16.7±4.3 spikes 20s-1) (figure 3.11).  

3.2.3.5 HISTAMINE 

Repeat applications of histamine produced repeated responses in 1/3 units (2 preparations) 

(figure 3.11). The responding unit only responded to 2 applications of histamine. The response 

to the first addition was considerably larger than the response to the second (Δ firing rate 1st 

58, normalised 100%, vs. 2nd 33 spikes 20s-1, 56.9%).  
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Figure 3.10: Wholenerve HVAs respond to the application of serotonin (5-HT), histamine and 

prostaglandin E2 (PGE2). A, C, E) Shows an example of a HVA response to 5-HT (A), histamine 

(C), and PGE2 (E), in the form of a rate histogram. B, D, F) Displays the proportion of 

wholenerve recordings that responded to 5-HT (B), histamine (D) or PGE2 (F). G) A bar graph 

indicating the average change in HVA firing after the application of 5-HT, histamine or PGE2. 
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Figure 3.11: Application of 5-hydroxytryptamine or histamine desensitise HVAs to subsequent 

applications of the same mediator. A) HVAs were activated by the 1st and 2nd applications of 5-

HT in 2/4 preparations tested. There was no response to the third 5-HT application. B) A robust 

HVA response was evident after the 1st and 2nd application of histamine in 1/3 units tested. 

However, this preparation then failed to respond to the third application of histamine. C-D) A 

small proportion of HVAs responded to the 5-HT2 agonist α-methyl-5-HT maleate (2/13, 

15.4%). An example of this activation is shown as a rate histogram (C), with the average rate of 

activation presented as a bar graph (D). E-F) The addition of the 5-HT3 agonist methyl-

chlorophenylbiguanide hydrochloride reduced afferent firing in 10/17 units (58.8%)  (p<0.05 at 

15, 30 and 45 mins). An example reduction is shown as a rate histogram (E), with the average 

reduction over 15, 30 and 45 minutes shown with a bar graph (F). Values are normalised to 

baseline firing. Data were analysed using a paired 2 tailed t test, p<0.05. 

  

α-methyl-
5-HT 20µM

5 mins

85

m-chlorophenylbiguanide
20µM

45

Firin
g R

ate
(Sp

ikes 2
0

s
-1)

Firin
g R

ate
(Sp

ikes 2
0

s
-1)

*

*
*

A

E F

C D

B



238 
 

3.2.3.6 SUMMARY OF RESULTS 

 Whole nerve recordings are sensitive to a number of chemical stimuli, namely 5-HT, 

histamine, and PGE2 

 Application of 5-HT, or histamine desensitised afferents to subsequent applications, 

and are therefore not suitable for repeated mediator application protocols, at least 

using this dose and drug application method.  

 A small proportion of HVAs responded to the 5-HT2 agonist α-methyl-5-HT maleate 

 The 5-HT3 agonist methyl-chlorophenylbiguanide hydrochloride gradually reduced HVA 

firing 
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3.2.4 DISCUSSION 

3.2.4.1 SEROTONIN PHARMACOLOGY 

This report has demonstrated the response of HVAs to 5-HT. In a subset of preparations, these 

mediators responded to a second application, but not a third. Pharmacological manipulation 

studies were therefore not attempted. This could be revisited in the future using lower 

concentrations of the mediators using different application methods as discussed in chapter 6. 

Instead selective 5-HT agonists were tested.  

A small proportion of afferents ~15% responded to the application of the 5-HT2 

receptor agonist, α-methyl-5-HT. There is no animal electrophysiological data available for 

comparison. However, the role of 5-HT2 receptors in visceral nociception, at least when applied 

peripherally, suggests that agonism is pro-nociceptive (Kesim et al., 2005, Ohashi-Doi et al., 

2010, O'Mahony et al., 2010), to which our results concur. The addition of the 5-HT3 agonist, 

methyl-chlorophenylbiguanide hydrochloride, actually gradually reduced the HVA firing rate in 

nearly 60% of units, with some units exhibiting a 20% reduction in firing as early as 15 minutes 

after application. In contrast, the 5-HT3 agonist 2-methyl-5-HT (me5-HT) can activate both 

vagal and splanchnic afferents innervating rat intestine (Hillsley et al., 1998, Hillsley and 

Grundy, 1998, Hicks et al., 2002). Similarly, the activation of these afferents by 5-HT can be 

reduced by antagonising the 5-HT3 receptor (Hicks et al., 2002, Coldwell et al., 2007). 

Furthermore, antagonism of the 5-HT3 receptor has been shown to be anti-nociceptive in IBS 

patients exhibiting abdominal pain symptoms (Camilleri et al., 1999, Caras et al., 2001, 

Matsueda et al., 2008b). Although 5-HT has different effects centrally and peripherally, in the 

periphery evidence supports an analgesic effect upon 5-HT3 antagonism. The results shown in 

this report are therefore hard to explain. No vehicle effect was observed since the drug was 

dissolved in distilled H2O, which constituted just 0.1% of the final drug volume added to the 

tissue bath. A suitable time matched control would involve allowing a unit to fire as regular 



240 
 

Krebs buffer was being perfused for the same time as the protocol, ~1 hour. This was done 

often to allow the preparation to rest or after a protocol has finished, with no evident 

reduction in HVA firing in the preparation as seen in methyl-chlorophenylbiguanide 

hydrochloride experiments.  Methyl-chlorophenylbiguanide hydrochloride has a similar affinity 

at the 5-HT3 receptor as the more commonly used me5-HT (pki 5.4-5.8) (Alexander, 2011). It 

would be of interest to try me5-HT on HVAs to investigate if the same reduction in activity 

occurs.  

In afferents innervating the rat small bowel and the upper GI tract of ferrets, 5-HT3 

antagonism reduced spontaneous activity, indicating a role for 5-HT in ongoing afferent 

discharge (Blackshaw and Grundy, 1993, Hillsley et al., 1998). However, 5-HT3 antagonism did 

not have an effect on the spontaneous activity in rat colonic afferents. The authors suggested 

this was potentially due to low rates of existing spontaneous activity (Hicks et al., 2002). HVA 

preparations often exhibit spontaneous activity. It would be interesting to examine the role of 

endogenous 5-HT in this spontaneous activity using specific 5-HT receptor subtype antagonists.  

Investigating the sensitising effect of the various mediators used in this report on the 

HVA response to chemical and mechanical stimuli would be of interest. These mediators given 

as an inflammatory soup (Su and Gebhart, 1998) or individually e.g. PGE2 or histamine 

(Brunsden and Grundy, 1999) can sensitise rodent intestinal afferents to subsequent 

mechanical and chemical stimuli. Indeed, the sensitising effects of 5-HT and histamine have 

been shown to be mediated by TRPV4 receptors (Cenac et al., 2010). It would be interesting to 

examine this concept further in HVAs using, 5-HT, histamine, and other sensitising mediators.  

3.2.4.2 Histamine 

This report has demonstrated the activation of HVAs by histamine. This is the first time 

histamine alone has been shown to activate HVAs. Histamine as part of an inflammatory soup 

activated HVAs innervating the human colon (Peiris et al, 2011). Histamine can activate visceral 
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afferents including cat spinal afferents innervating the heart (Fu et al, 1997) and mesenteric 

afferents innervating the jejunum of the rat (Kreis et al, 1998; 2002). The latter study 

concluded that the effect of histamine was likely a direct effect on visceral afferents. Indeed, 

histamine can modulate muscle contractility which could indirectly activate HVA (Sakai, 1979). 

However, muscle contractility was inhibited in this report through the presence of atropine, a 

muscarinic acetylcholine antagonist, and nifedipine, an L type calcium channel blocker, in the 

Krebs buffer. Therefore it is likely that histamine is directly activating HVAs, although the 

release of other mediators from cells in response to histamine application, which subsequently 

activate HVAs cannot be ruled out.  

 The responses to histamine in jejunal mesenteric rat afferents have been shown to be 

mediated by the H1 receptor (Kreis et al, 1998). The lack of reproducible responses to repeat 

histamine applications did not allow for further evaluation of histamine pharmacology in HVAs 

using the dose and drug application method described in this report. Indeed, a desensitisation 

of the response to repeated histamine application was evident in in vivo recordings from rat 

jejunal afferents (Kreis et al, 1998; 2000). Altering the drug concentration and/or the 

application method of histamine may allow for evaluation of histamine pharmacology.  

3.2.4.3 PGE2  

This report demonstrates the activation of HVAs by PGE2. PGE2 has previously been shown to 

activate HVAs as part of an inflammatory soup (Peiris et al, 2011), however this represents the 

first time that PGE2 alone can activate HVAs. Repeated applications of PGE2 were not 

attempted. PGE2 can activate visceral afferents (Akoev et al, 1996; Haupt et al, 2000) and 

sensitise them to subsequent other mediators such as BK (Maubach and Grundy, 1999; 

Brunsden and Grundy, 1999). Furthermore, prostaglandins have been shown to be important 

in the activation of rat jejunal afferents by BK (Maubach and Grundy, 1999; Brunsden and 

Grundy, 1999). In the future it would be interesting to examine the role of PGE2 and other 

prostaglandins in the activation and sensitising of HVAs to other mediators.   
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3.2.5 CONCLUSION 

This report describes the broad chemosensitivity of HVAs, demonstrating responses to the 

disease mediators 5-HT, histamine, PGE2, which is in addition to responses to BK, ATP, 

adenosine and capsaicin that have been shown in chapter 3 part 1. In contrast to BK and ATP, 

5-HT and histamine are not suitable for the described repeated mediator application protocol; 

however, this could be revisited in the future using different doses and/or application 

methods. Furthermore responses to a 5-HT2 receptor agonist, α-methyl-5-HT maleate, have 

been demonstrated in HVAs. The decrease in afferent firing induced by the 5-HT3 agonist 

methyl-chlorophenylbiguanide hydrochloride application requires further investigation.  
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CHAPTER 4 PART 1: THE EFFECT OF 
TEGASEROD ON THE 
MECHANOSENSITIVITY OF HUMAN  
VISCERAL AFFERENTS 

This chapter utilises drugs that have shown both preclinical and clinical efficacy in reducing 

nociception or pain (tegaserod), drugs that mimic the effects of another drug currently in 

clinical trials clinical trials (STa – Linaclotide),  or drugs targeting the same receptor as another 

drug currently in clinical trials (ICI 204, 448 – kappa opioid receptor). The primary aim of this 

chapter was to examine the effects of these drugs on the transduction of mechanical stimuli in 

HVAs. This chapter is split into 3 parts. Each part examines the effect of a different drug, 

tegaserod (part 1), STa (part 2), and ICI 204, 448 (part 3) on the HVA responses to VFH probing, 

and/or luminal distension of the appendix.  

4.1.1 INTRODUCTION 

4.1.1.1 TEGASEROD  

4.1.1.1.1 5-HT4 receptors 

Serotonin receptor families have previously been introduced in chapter 2. Briefly, 5-HT4 

receptors are G protein coupled receptors, 387 amino acids in length (Andrade, 2014). They 

couple to Gs proteins that enhance the production of cAMP from ATP by stimulating the 

enzyme adenylate cyclase, which then acts as a signalling molecule for subsequent cellular 

events. They have been shown to be expressed in various tissues including the heart, many 

regions of the brain and the smooth muscle and myenteric plexus of the intestine (Andrade, 

2014). The 5-HT4 receptor is constitutively expressed as a dimer, with 8 distinct splice variants 

(Bockaert et al., 2004, Maillet et al., 2005), different combinations of which may determine the 
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biological effect of the receptor upon activation (Berthouze et al., 2007). 5-HT4 has a myriad of 

functions including stimulation of peristalsis and the relaxation and contraction of the small 

intestine and colon (Andrade, 2014). 

4.1.1.1.1.1 5-HT4 receptors in visceral pain 

5-HT4 receptors are expressed on both nodose and dorsal root ganglia, albeit to a lesser extent 

than other 5-HT receptors such as 5-HT3 (Grundy, 2008). During inflammation, 5-HT4 mRNA 

may be upregulated, as reported in rat DRGs after inflammation of the hindpaw (Bockaert et 

al., 2004). 5-HT4 receptors are also expressed on pre-synaptic cholinergic IPANs, and upon 

activation stimulate the release of acetylcholine from intrinsic nerves. This augments the 

amplitude of fast excitatory postsynaptic potentials strengthening the transmission of synaptic 

signals and promoting smooth muscle contractions, which has an overall pro-kinetic effect on 

the bowel (Pan et al., 1994, Galligan et al., 2003, Galligan and Vanner, 2005, Liu et al., 2005b). 

Indeed, 5-HT4 agonists exhibit prokinetic effects e.g. tegaserod, cisapride, prucalopride etc. 

However, the role of 5-HT4 receptors in visceral pain is more controversial.  

Tegaserod, a partial 5-HT4 agonist, is one of the most studied 5-HT4 agonists, and will 

be the focus of this 5-HT4 section. Tegaserod is also a 5-HT2B receptor antagonist, with a similar 

pKi to 5-HT4 receptors (7.5-8) (Beattie et al., 2004).Tegaserod may act as a partial agonist, or 

alternatively by antagonising the effects of endogenous 5-HT on the 5-HT4, or the 5-

HT2Breceptor (Bockaert et al., 2004). Therefore, whether analgesia is induced by the activation 

or inhibition of the 5-HT4 receptor is controversial. For example, activation of 5-HT4 receptors 

modulates tetrodotoxin – resistant (TTX-R) sodium channels, increasing the excitability of 

nociceptive like neurons (Cardenas et al., 2001). However, the majority of studies report 

analgesia upon 5-HT4 activation. For example, treatment with tegaserod for 8 days has been 

shown to reduce nociception in response to slow rectal distensions in healthy women (Coffin 

et al., 2003). The same authors went on to demonstrate a similar effect in women with IBS-C 
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(Sabate et al., 2005). The analgesic effect of tegaserod is also evident in animal experiments. 

Tegaserod increases pain threshold, as evident by a reduced number of abdominal 

contractions, to CRD in rats (Coelho et al., 2000). Similarly, intraperitoneal administration of 

tegaserod reduced the VMR response to CRD in both normal and TNBS treated rats. This 

analgesic effect was inhibited by a 5-HT4 antagonist (Greenwood-Van Meerveld et al., 2006). In 

addition, the reduction of VMR responses to CRD evident after intracolonic administration of 

tegaserod or the 5-HT4 agonist naronapridem was inhibited by the 5-HT4 antagonist GR113808 

(Hoffman et al., 2012). Indeed, activation of 5-HT4 receptors using full 5-HT4 agonists, such as 

mosipride citrate, naronapride and prucalopride, produce analgesic effects in both animal 

experiments (Seto et al., 2011, Lee et al., 2012, Hoffman et al., 2012), and in clinical trials 

(Camilleri, 2008, Quigley et al., 2009, Tack, 2009). These results taken together strongly 

suggest that 5-HT4 agonism is analgesic.  

The efficacy of tegaserod has been examined in a large number of clinical trials, both 

randomised controls trials (RCT) (Lefkowitz, 1999, Muller-Lissner et al., 2001, Novick et al., 

2002, Kellow et al., 2003, Nyhlin et al., 2004, Tack et al., 2005, Chey et al., 2008), and open 

labelled trials (Bardhan et al., 2004, Layer et al., 2005, Muller-Lissner et al., 2005). These trials 

have mainly been performed on IBS-C patients with some studies including patients with 

alternating IBS. Generally, the primary end point used was a global relief of IBS symptoms in all 

or most weeks during the treatment period. Of importance to this report, secondary endpoints 

included relief from abdominal pain and discomfort.  

The majority of RCTs reported a statistically significant reduction in abdominal pain 

and discomfort during tegaserod treatment (Lefkowitz, 1999, Muller-Lissner et al., 2001, 

Novick et al., 2002, Kellow et al., 2003, Tack et al., 2005). Symptoms returned quickly after 

cessation of treatment with tegaserod (Novick et al., 2002). In contrast, in some clinical trials 

no relief from abdominal pain was reported (Nyhlin et al., 2004, Chey et al., 2008). Similarly, 

open labelled trials reported a significant reduction in abdominal pain, which returned after 
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cessation of tegaserod treatment (Bardhan et al., 2004, Layer et al., 2005, Muller-Lissner et al., 

2005). Indeed, abdominal pain was again relieved after retreatment with tegaserod (Muller-

Lissner et al., 2005). Taken together these clinical trials demonstrated the effectiveness of 

tegaserod in reducing abdominal pain. 

However, tegaserod, and indeed another 5-HT4 receptor agonist cisapride, were taken 

off the market due to a small number of cardiovascular (CV) side effects (De Maeyer et al., 

2008). These adverse CV events may not be related to the 5-HT4 receptor, since both 

tegaserod (5-HT1, 5-HT2) and cisapride (5-HT2, 5-HT3) have affinity for other 5-HT receptors (De 

Maeyer et al., 2008). This has raised the possibility that a more selective 5-HT4 agonist, which 

does not have cardiovascular side effects, may be useful clinically. Of these compounds, the 

most work has been done on prucalopride, which has so far demonstrated efficacy in 

normalising bowel function and reducing symptoms including abdominal pain scores in 

chronically constipated patients (Camilleri, 2008, Quigley et al., 2009, Tack, 2009).  

The prokinetic effects of 5-HT4 agonists raise the question of whether the relief of 

abdominal pain symptoms in IBS-C, and chronic constipation patients treated with tegaserod is 

direct on extrinsic afferents or simply due to improved bowel function, and the concomitant 

decrease in bloating and abdominal discomfort. A study on pelvic afferents innervating the cat 

rectum demonstrates 5-HT4 activity nerve terminals. Afferent action potential discharge in 

response to distension of the rectum in conscious cats was inhibited by the intravenous 

application of tegaserod. This inhibition was partially inhibited by the 5-HT4 antagonist 

SB203186 (Schikowski et al., 2002). These studies together with the analgesic effects 

demonstrated in both animal and human experiments utilising colorectal distension paradigms 

(Coelho et al., 2000, Coffin et al., 2003, Greenwood-Van Meerveld et al., 2006) indicate that 5-

HT4 receptors can acutely and directly exert analgesic effects, which does not require 

improved bowel functioning. 
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In summary, tegaserod is clinically effective in relieving abdominal pain. This may be 

due to agonism of the 5-HT4 receptor, rather than a competitive antagonist effect on 

endogenous 5-HT on the 5-HT4 receptor, although an effect due to 5-HT2B antagonist cannot be 

ruled out. Similarly, the analgesia produced is likely to be independent of the associated 

changes in motility. Indeed, tegaserod can inhibit afferent discharge in response to rectal 

distension in cats (Schikowski et al., 2002). The direct effect of tegaserod on the response of 

human afferents to mechanical stimuli has not been previously investigated. This report aims 

to examine the effect of tegaserod on the HVA response to both VFH probing and distension of 

the human appendix. Furthermore, these experiments will also reveal the effectiveness of a 

clinically efficacious visceral analgesic on directly reducing activity in HVAs, thus testing the 

model’s capacity to provide insight into the likely efficacy of drugs before they enter clinical 

trials. 
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4.1.1.2 AIMS 

 Examine the effects of tegaserod on the transduction of mechanical stimuli  

o VFH probing 

o Luminal distension of the appendix 
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4.1.2 METHODS 

4.1.2.1 VFH PROBING PROTOCOL 

The VFH probing protocol has been previously described in chapter 2, part 1. Briefly, after the 

initial baseline 1g VFH probes, 3 sets of 3 x 3 second probes, each set separated by 5 minutes, 

were attained, the bath was superfused with tegaserod (30µM, 100ml).  In all experiments this 

was followed with 6-9 sets of 3 x3 second probes, each set separated by 5 minutes (figure 

4.01). Data were analysed using a 2 tailed paired t test, p<0.05. 

4.1.2.2 APPENDIX DISTENSION PROTOCOL 

The appendix distension protocol has been previously described in chapter 2, part 2. Briefly, 

after the initial 3 baseline distensions (0-60 mm Hg), the bath was superfused with tegaserod 

(30µM, 100ml, or 30µM, 100ml superfusion, 20ml luminal perfusion). In all the experiments, 

distensions were continued every 10 minutes after the 3 baseline distensions (figure 4.02). 

Data were analysed using a 2 way ANOVA, p<0.05. 

4.1.2.3 DRUGS 

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at -20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 

and vortexed to mix. Tegaserod was purchased from Tocris Bioscience (Bristol, UK).  
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Figure 4.01: Tegaserod VFH probing protocol 

1) Average of the 2 highest 2 second probes in each set are averaged 

2) The average of the 6 probes, 2 from each of the first 3 consecutive sets is used as 

baseline. 

3) The average of the 4 probes from 2 consecutive sets after tegaserod application is 

then averaged. For drug effect comparisons the average of the baseline probes are 

compared to the average of the 2nd and 3rd post tegaserod sets of probing. 

4) For drug vs. washout comparisons the 2nd and 3rd post tegaserod sets of probing are 

compared to the average of the 8th and 9th post tegaserod sets of probing.  
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Figure 4.02: Tegaserod distension protocol 

1) The Δ in firing rate at each 10mm Hg pressure point was averaged for the 3 baseline distensions. 

2) For analysis the 2nd post tegaserod distension was compared to the average of the baseline distensions. 

3) For tegaserod vs. washout comparisons the 2nd post drug distensions were compared to the 5th post drug distension. 
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4.1.3 RESULTS 

4.1.3.1 TISSUE – TEGASEROD EXPERIMENTS 

Six tissues, all normal, were used for tegaserod probing experiments, 4 sigmoid colon and 2 

rectum (M:F 1:0.5, median age 57.5). Six appendices, 3 normal, 2 CD, 1 appendicitis, were used 

for tegaserod distension experiments (M:F 1:1, median age 38). Further details on the tissues 

use in each set of experiments can be seen in table 2.02. 

4.1.3.2 TEGASEROD VFH PROTOCOL 

Tegaserod, a selective partial 5HT4 agonist, has been shown to be anti-nociceptive against 

mechanical stimuli in both in vitro and in vivo pre-clinical experiments (Schikowski et al., 2002, 

Coffin et al., 2003, Yan et al., 2012) and in clinical trials (Muller-Lissner et al., 2001, Novick et 

al., 2002). In view of these findings, we aimed to investigate the efficacy of tegaserod in 

reducing mechanosensitivity in our HVAs, a potential target for their anti-nociceptive 

properties, and to use them as clinical standards for the validation of our model. A 

mechanosensation protocol using flat sheet VFH probes was used, as described previously. 

Tegaserod did not directly activate any serosal units (n=6). Three out of 6 units used for 

tegaserod VFH studies exhibited spontaneous activity (1.1±0.4 spikes s-1). Tegaserod 

significantly reduced HVA firing in response to 1g VFH probing (24.1±4.0 vs. 19.3±3.6 spikes 2s-

1, -20.8%, n=6, p<0.05) (figure 4.03). After a washout of at least 20 minutes, 

mechanosensitivity to VFH probing returned towards baseline in 3/6 preparations (baseline 

19.1±6.7; vs. tegaserod 13.1±7.1; vs. washout 16.1±5.3 spikes 2s-1 probe). 
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Figure 4.03: Tegaserod significantly reduces the HVA response to 1g VFH probing (n=6). A) 

Shows a set of 3 probes before the application of tegaserod (1), while tegaserod was in the 

tissue bath (2), and after it had been washout (3). B) Displays the firing rate of serosal HVAs in 

response to VFH probing before and after the application of tegaserod. Data were analysed 

using a 2 tailed paired t test, p<0.05. 
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4.1.3.3 TEGASEROD DISTENSION PROTOCOL 

Tegaserod (n=7) did not directly activate any HVA units. Bath superfusion of tegaserod did not 

alter the whole nerve HVA response to luminal distension, at any pressure point, or across the 

pressure ranges (n=4, p>0.05). Similarly, when the recordings were analysed as individual 

units, the pressure response line graphs produced by LT (n=2) and WDR (n=1) units were very 

similar before and after bath application of tegaserod (figure 4.04). Similarly, the pressure 

response line graphs from whole nerve recordings were comparable before and after the 

combined bath and luminal application of tegaserod (n=2). When bath and luminal perfusion 

recordings were analysed as individual units, tegaserod did not alter the response of WDR 

HVAs to distension at any pressure compared to pre tegaserod distensions (n=3, p>0.05). One 

LT unit was also identified and is shown in figure 4.04. The data was also pooled for analysis 

regardless of drug application method, however, tegaserod did not significantly alter the 

whole nerve (n=6), WDR (n=4) or LT (n=3) HVA response to luminal distension at any pressure 

(data not shown in figure form, p>0.05). 
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Figure 4.04: Tegaserod does not alter the HVA response to luminal distension. A-B) Shows an 

example of repeated whole nerve (A) and wide dynamic range (WDR) (B) HVA responses to 

luminal distension of the appendix in rate histogram form. Tegaserod application is marked by 

the solid black line. C) Shows the pressure curve for each distension. D) Bath application of 

Tegaserod did not alter the whole nerve HVA response to distension (n=4, p>0.05). E-F) 

Similarly, pressure response line graphs are similar before and after bath application of 

tegaserod in WDR (N=1) and LT (n=2) units. G, I) Pressure response line graphs were also 

similar in whole nerve recordings (n=2) and low threshold units (n=1) before and after the 

combined application of tegaserod into the bath and the lumen of the appendix. H) In 

addition, combined bath and luminal tegaserod application did not alter the response of WDR 

HVAs to distension at any pressure (n=3, p>0.05). Data were analysed using a 2 way ANOVA, 

p<0.05. 
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4.1.3.4 SUMMARY OF RESULTS 

 Tegaserod significantly reduced HVA firing in response to VFH probing  

 Tegaserod did not reduce the HVA firing rate in response to luminal distension of the 

appendix at low, medium, or high pressures 
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4.1.4 DISCUSSION 

4.1.4.1 TEGASEROD 

This report demonstrates that administration of tegaserod can reduce mechanosensitivity in 

HVAs. This is the first report to demonstrate the efficacy of tegaserod specifically in serosal 

afferents in any species and is consistent with the analgesic effect of tegaserod treatment 

reported in humans undergoing barostat balloon distension of the rectum (Coffin et al., 2003, 

Sabate et al., 2005). 

Despite this observation in serosal units there was no effect of tegaserod on whole nerve 

or single unit HVA (LT and WDR) responses to distension of the human appendix at any 

pressure. One possible explanation for this observation is that we have only studied the 

activation of LT or WDR units in these appendix preparations. We were unable to discriminate 

any HT units which are likely to be comparable to the serosal units studied in the flat sheet 

intestinal preparations due to their activation by higher levels of stretch (Brierley et al., 2009, 

Hughes et al., 2009a). Serosal like HT units in appendix preparations may be difficult to activate 

given the thickness of the appendix and its tough fibrous outer layers. These features may 

potentially reduce the stretch on the tissue at higher distension pressures used in this report, 

hence reducing stretch on the serosa and as a consequence reduced activation of serosal 

afferents. Luminal distension protocols may therefore be biased towards the activation of LT 

and WDR afferents, which contrasts the flat sheet VFH protocol which targets serosal 

afferents, likely to be comparable to HT appendix afferents.  

Consistent with the hypothesis that tegaserod’s effects are restricted to serosal or HT 

afferents,  tegaserod inhibited cat pelvic afferent responses to rectal distension at pressures 

consistent with that seen for HT units in our appendix preparations  (30mm Hg) (Schikowski et 

al., 2002). Similarly, a range of behavioural animal studies using pain surrogates such as VMR, 

pain behaviours in response to colorectal distension are reduced after the administration of 
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tegaserod, especially at higher distension pressures consistent with the activation of HT units 

(Coelho et al., 2000, Greenwood-Van Meerveld et al., 2006, Hoffman et al., 2012). 

The innervation of the type of colonic tissue used in VFH experiments and in the 

appendices used in distension preparations must be considered. Appendices are mainly 

innervated by splanchnic and vagal afferent pathways. In contrast, the vast majority of VFH 

tegaserod studies were conducted in the distal bowel, mainly sigmoid colon, which is 

predominantly supplied by splanchnic and pelvic pathways. This means that pelvic afferents 

may have constituted a portion of the recordings used for VFH probing protocols, but not in 

distension preparations, and vice versa for vagal afferents.    

One further technical explanation for the lack of efficacy of tegaserod in the appendix 

preparations is that a difficulties penetrating into the deeper layers of the relatively thick 

human appendix (especially by comparison with rodent tissue) prevented the drug from 

reaching the endings of LT and WDR fibres. To help counter this we examined the effects of 

tegaserod after combined bath and luminal perfusion to allow diffusion from both surfaces of 

the appendix, however no effect of tegaserod was evident in these preparations. Furthermore 

excitatory responses were seen following bath application of capsaicin or BK in LT or WDR 

populations of appendix afferents suggesting tissue penetration is not an issue.  

 Tegaserod is not a selective drug possessing antagonist activity at 5-HT2B receptors 

and agonist activity at 5-HT1A receptors. Further experiments are now warranted to determine 

the receptor subtype mediating the effects of tegaserod on human serosal afferent fibre 

mechanosensitivity 
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4.1.5 CONCLUSION 

The 5-HT4 partial agonist, tegaserod, significantly reduced the serosal HVA response to VFH 

probing. In contrast, tegaserod did not affect whole nerve or single unit (LT, WDR) HVA 

response to distension at any pressure. Potential explanations for the lack of effect in appendix 

preparations include 1) a lack of HT fibre activation following appendix distension, 2) a 

potential difference in the afferent pathways studies i.e. splanchnic and vagal in distension 

preparations vs. splanchnic and pelvic in VFH experiments 3) reduced diffusion of tegaserod 

into the muscle and mucosa layers of the appendix sufficient to inhibit activity in LT and WDR 

units.  
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CHAPTER 4 PART 2: THE EFFECT OF STa  
ENDOTOXIN ON THE  
MECHANOSENSITIVITY OF HUMAN  
VISCERAL AFFERENTS 

4.2.1 INTRODUCTION 

4.2.1.1 STa ENDOTOXIN AND GUANYLATE CYCLASE-C SIGNALLING 

Guanylate cyclase-C (GC-C) is a transmembrane receptor, predominantly expressed on 

the apical surface of epithelial cells in the intestine (Hannig et al., 2014). It was first identified 

as the receptor to STa, a heat stable enterotoxin, which is produced by various bacteria 

including Escherichia coli (E. coli) (Lin et al., 2010). The endogenous ligands to GC-C were 

subsequently identified as guanylin and uroguanylin, members of the guanylin family of 

peptide hormones (Bryant et al., 2010, Busby et al., 2010, Hannig et al., 2014). Guanylin and 

uroguanylin are secreted as pro-peptides and are subsequently proteolytically cleaved into 

their active form, which act as agonists to the GC-C receptor (Martin et al., 1999, Moss et al., 

2008). In this sense, STa is a super agonist to the GC-C receptor, having a similar structure, but 

10-100 times the affinity compared to guanylin and uroguanylin (Potter, 2011). Upon 

activation, GC-C catalyses the breakdown of guanosine triphosphate (GTP) to cGMP in the 

cytosol of the cell (Lucas et al., 2000, Vaandrager, 2002). cGMP accumulates in these intestinal 

epithelial cells and exerts its effect through interaction with proteins linked to different 

signalling pathways, the most common of which are the c-GMP dependent protein kinases 

(Sager, 2004). For example, the accumulation of cGMP activates the cGMP-dependent protein 

kinase II (PKG-II), which controls the activity of the ion channel cystic fibrosis transmembrane 

conductance regulator (CFTR) through phosphorylation (Pfeifer et al., 1996, Vaandrager et al., 

1998, Schlossmann et al., 2005). Upon activation CFTR secretes chloride and bicarbonate into 
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the lumen of the gut. Simultaneous direct inhibition of isoform 3 of the sodium hydrogen 

exchanger by cGMP leads to intracellular sodium and excess water secretion into gut (Fawcus 

et al., 1997, Vaandrager et al., 1997, Forte, 1999, Vaandrager et al., 2000, Vaandrager, 2002). 

Through this mechanism, guanylin and uroguanylin control fluid and electrolyte homeostasis 

(Pfeifer et al., 1996). In contrast, the release of STa by bacteria is pathologic, causing massive 

supra-physiological accumulation of cGMP, which subsequently releases excess quantities of 

water and electrolytes into the lumen of the gut causing diarrhoea (Brierley, 2012). However, 

the exploitation of the GC-C signalling pathway could potentially be useful in treating diseases 

such as IBS-C and constipation, given the potential pro-motility and pro-secretory 

characteristics of these agonists.  

4.2.1.2 LINACLOTIDE  

Linaclotide is a synthetic peptide 14 amino acids long and has a similar structure to 

guanylin and uroguanylin (Bryant et al., 2010). Linaclotide is a GC-C agonist, which upon 

binding activates downstream signalling cascades as described for the other guanylin peptides, 

controlling fluid and electrolyte secretion. It was postulated that linaclotide may be a potential 

treatment for the symptoms of IBS-C and chronic constipation, including bloating, 

constipation, discomfort and abdominal pain (Cada et al., 2013). Linaclotide has been shown to 

increase gastrointestinal transit rates in pre-clinical rodent models, in a cGMP dependent 

manner, since the effect was abolished in GC-C KO mice (Bryant et al., 2010, Busby et al., 

2010). Correspondingly, clinical trials have demonstrated the effectiveness of linaclotide in 

increasing frequency of bowel movements, decreasing time to first bowel movement, changing 

stool consistency, and easing of passage in both healthy controls and IBS-C patients(Currie et 

al., 2005, Andresen et al., 2007, Johnston et al., 2010). Furthermore, in patients with chronic 

constipation, linaclotide reduced straining and the severity of constipation while increasing 

spontaneous complete bowel movements and stool consistency (Johnston et al., 2009, Lembo 

et al., 2010).  
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In some of these clinical trials linaclotide also demonstrated analgesic potential, 

reducing abdominal pain and discomfort in both patients with chronic constipation (Johnston 

et al., 2009, Lembo et al., 2010, Lembo et al., 2011) and those with IBS-C (Johnston et al., 

2010). However, whether analgesia is a result of improved bowel function or due to a direct 

effect on afferent nerves is unclear and has recently become a topic of interest (Brierley, 

2012). Indeed, linaclotide has been shown to reduce VMR responses to CRD in rats with 

visceral hyperalgesia induced by either restraint stress, or by TNBS induced colonic 

inflammation (Eutamene et al., 2010). In an additional model, rats with water stress induced 

visceral hyperalgesia exhibited reduced EMG responses to CRD after linaclotide treatment. 

However, linaclotide did not affect the number of abdominal contractions in normal, control 

rats (Eutamene et al., 2010). Two further studies demonstrate that linaclotide or uroguanylin 

can indirectly alter the mechanosensitivity of afferent fibres (Castro et al., 2013, Feng et al., 

2013). Application of linaclotide or uroguanylin reduced splanchnic serosal afferent responses 

to VFH probing in healthy mice and to a greater extent in mice with visceral hypersensitivity 

(Castro et al., 2013). The same study reported reduced levels of pERK positive neurons in the 

dorsal horn of the spinal cord in regions projecting to the gut in response to CRD after 

intracolonic administration of linaclotide (Castro et al., 2013). Uroguanylin has also been 

shown to inhibit the response of both muscular and muscular-mucosal pelvic afferents to 

stretch, when applied to their receptive fields (Feng et al., 2013). However, this study reported 

no changes in pelvic serosal afferent or mucosal afferent sensitivity to VFH probing after 

uroguanylin application (Feng et al., 2013). This seemingly contradictory finding when 

compared with Castro et al (2013) may be explained by the use of pelvic and splanchnic nerves 

in these studies, respectively. These studies together suggest that guanylin peptides, such as 

linaclotide and uroguanylin may reduce sensitivity to mechanical stimuli in normal and 

especially in sensitised afferents, by a mechanism which directly involves the nerves, and 

which is unrelated to the improvement of bowel function. 
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4.2.1.3 cGMP AS A MECHANISM OF ACTION OF GC-C AGONISTS 

Stimulation of the production of cGMP, its release from the basolateral side of 

intestinal epithelial cells and its subsequent interaction with extrinsic afferent nerves is the 

likely mechanism by which linaclotide and uroguanylin exert their effects (Castro et al., 2011, 

Castro et al., 2012, Feng et al., 2013). The application of cGMP to splanchnic serosal afferents 

reduces their response to VFH probing, similar to the effect exerted by the guanylin peptides 

(Castro et al., 2011). Similarly, cGMP applied to low threshold or high threshold muscular or 

muscular-mucosal afferents reduces their response to stretch (Feng et al., 2013). These studies 

demonstrate that cGMP can have the same effect as linaclotide or uroguanylin on the 

mechanosensitivity of extrinsic afferents. Evidence that the effects of linaclotide and 

uroguanylin are mediated by cGMP, come from the use of probenecid, an inhibitor to the 

cGMP transporter. Two studies have shown that probenecid blocks the inhibitory effect of 

linaclotide and uroguanylin on afferent mechanosensitivity (Castro et al., 2013, Feng et al., 

2013). Furthermore, when the mucosa, the source of cGMP, was stripped from the mouse 

colon preparation prior to the experiment, the ability of linaclotide to reduce 

mechanosensitivity was greatly impaired (Castro et al., 2013). Taken together these results 

indicate cGMP as the mediator of the inhibitory effect of linaclotide and uroguanylin on 

afferent mechanosensitivity, by directly acting on the extrinsic nerve terminals. Investigating 

the effect of GC-C signalling and cGMP release on mechanosensitivity of human afferent 

nerves is of great interest, since cGMP producing drugs reduce visceral pain in the clinic. This 

report aims to examine the effect of GC-C signalling on the mechanosensitivity of extrinsic 

afferents innervating the human appendix, using the enterotoxin STa to release cGMP from 

the lumen.  
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4.2.1.4 AIMS 

 Examine the effects of STa endotoxin on the transduction of mechanical stimuli  

o Luminal distension of the appendix 
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4.2.2 METHODS 

4.2.2.1 APPENDIX DISTENSION PROTOCOL 

The appendix distension protocol has been previously described in chapter 1 part 2. Briefly, 

after the initial 3 baseline distensions, the bath was superfused with STa endotoxin (100nM, 

120ml superfusion, 20ml luminal perfusion. In all the experiments, distensions were continued 

every 10 minutes after the 3 baseline distensions (figure 4.05). Data were analysed using a 2 

way ANOVA, p<0.05. 

4.2.2.2 DRUGS  

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at -20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 

and vortexed to mix. STa endotoxin was a gift from Ironwood Pharmaceuticals. 
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Figure 4.05: STa Distension Protocol 

1) The Δ in firing rate at each 10mm Hg pressure point was averaged for the 3 baseline distensions. 

2) For analysis the 2nd post STa distension was compared to the average of the baseline distensions in experiments  

3) For STa vs. washout comparisons, the 2nd (120ml) post drug distensions were compared to the 5th post drug distension.
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4.2.3 RESULTS 

4.2.3.1 TISSUE – STa ENDOTOXIN EXPERIMENTS 

Seven appendices, 5 normal, 1CD, 1 appendicitis, were used for STa luminal distension 

experiments (M:F 1:1.33, median age 50). Further details on the tissues use in each set of 

experiments can be seen in table 2.02. 

4.2.3.2 STa ENDOTOXIN DISTENSION PROTOCOL 

STa endotoxin can release cGMP from the mucosa of the gut, which may subsequently reduce 

the sensitivity of extrinsic afferent fibres to mechanical stimuli (Castro et al., 2011, Castro et 

al., 2012, Feng et al., 2013). Indeed, linaclotide, a drug that works in a similar way has shown 

efficacy in reducing abdominal pain in clinical trials (Johnston et al., 2009, Johnston et al., 

2010, Lembo et al., 2010, Lembo et al., 2011). In this report, the effect of STa endotoxin on the 

HVA response to distension of the appendix was tested. The combined application of STa to 

the bath and lumen of the appendix produced a significant reduction in whole nerve activity to 

distension across the pressure range (n=7, p<0.05), although no significant difference was seen 

for individual pressure. When the recordings was analysed as single units, luminal and bath 

application of STa failed to change the response in LT (n=4) or HT (n=4) HVAs to distension at 

any pressure (p>0.05). No WDR range units could be discriminated in this study (figure 4.06). 

 



270 
 

A

ED F

B

C

* NS NS



271 
 

Figure 4.06: STa inhibits the whole nerve HVA response to luminal distension. A-B) Shows an 

example of repeated whole nerve (A) and high threshold (HT) (B) HVA responses to luminal 

distension of the appendix in rate histogram form. Combined STa application into the bath and 

through the lumen is marked by the solid black line. C) Shows the pressure curve for each 

distension. D) Simultaneous application of STa into the bath and through the lumen of the 

appendix significantly reduced the whole nerve afferent response to distension across the 

pressure range (n=7, p<0.05). E-F) When single units were analysed separately, low threshold 

(LT) (n=4) (E), or HT (n=4) (F) HVA response to distension was not altered by STa (p>0.05). Data 

were analysed using a 2 way ANOVA, p<0.05. 
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4.2.3.3 SUMMARY OF RESULTS 

 Bath and luminal perfusion of STa inhibited the whole nerve HVA response to 

distension of the appendix across the pressure range although no effect was seen in 

discriminated populations of  LT or HT units 
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4.2.4 DISCUSSION 

4.2.4.1 STa ENDOTOXIN 

Combined bath and luminal application of the GC-C receptor superagonist STa 

significantly reduced the whole nerve afferent response to distension across the pressure 

range. When characterised by activation threshold, neither discriminated populations of LT nor 

HT units were inhibited by STa. 

Consistent with whole nerve data presented in this report previous studies have also 

demonstrated the efficacy of another GC-C receptor agonist, linaclotide, in reducing the VMR 

to CRD across the range of pressures tested (stating at the lowest measured pressure, 15 mm 

Hg, and continuing up to the highest pressure 60 mm Hg), in mice with hyperalgesia 

(Eutamene et al., 2010). Similarly, the response of pelvic afferents to colonic distension is 

inhibited by the application of cGMP, the molecule released after STa and linaclotide binding 

to GC-C (Feng et al., 2013, Silos-Santiago et al., 2013). 

In the present report, HT units were not inhibited by STa. Similarly, there was no effect 

on the response of pelvic serosal afferents to probing after cGMP application, which are likely 

to be comparable to HT distension sensitive units (Feng et al., 2013). However, a recent study 

demonstrated that HT nociceptive splanchnic serosal afferent activity in response to VFH 

probing was inhibited by linaclotide (Castro et al., 2013). One possible explanation for this 

difference may be the concentration of agent used. In the present study, 100nm of STa was 

used, while in the linaclotide study, although efficacy was evident at 100nM of linaclotide, 

greater efficacy was seen at higher doses, either 300nm or 1000nm. Although not the same 

compound, it may be warranted to try a higher dose of STa in HVA distension preparations. 

  Another explanation for the discrepancy may be related to the relative exposure of 

the mucosa to the drug. For example in a previous study in mouse colon, efficacy of linaclotide 
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in reducing mechanosensitivity to VFH probing was seen after 5 minutes of mucosal exposure 

(Castro et al., 2013). Considering the human appendix is much thicker than the mouse colon it 

may require a longer exposure time. Indeed, this report used a 20 minute luminal exposure, 

which is likely to be enough time to compensate for the thicker nature of human tissue.  

 In addition, studies have also reported a greater efficacy of linaclotide during 

inflammation (Eutamene et al., 2010, Castro et al., 2013). The current study used mainly 

normal, uninflamed appendix, although 1 appendix was removed due to appendicitis, and 

another as part of a CD resection. However, it is not known if these latter 2 appendices were 

inflamed. In the future, appendices with proven inflammation should be tested to determine 

the effects of STa in inflamed states. This could be achieved by collection of appendix tissue 

supernatants prior to HVA recordings, and their subsequent content analysis for markers of 

inflammation, such as IL-8.  

A final difference is that the current study did not examine the effect of STa on the 

responsiveness of HVAs to VFH probing, and so it would be important to examine the effect of 

STa on serosal afferents using a VFH protocol, since evidence in this report suggests that they 

are involved in visceral nociception in the human gut. In the flat sheet preparations, were the 

mucosa is pinned downwards in the bath, it would be necessary to make sure the mucosa was 

exposed to the STa agonist. Finally, to confirm the mechanism of action, the effect of cGMP on 

afferent mechanosensitivity should also be investigated, and in addition, the effect of 

probenecid on the efficacy of STa. 
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4.2.5 CONCLUSION 

Bath and luminal perfusion of the GC-C agonist STa inhibited the whole nerve HVA response to 

distension of the appendix across the pressure range. This effect was not observed in 

discriminated populations of LT or HT units. Further studies are needed using higher doses of 

STa on specific HT units innervating the appendix, which likely represent the nociceptor 

population, to confirm a role for STa in modulating nociceptor activity. The effects of STa on 

distension in appendices with proven inflammation should also be investigated. Additional 

work confirming cGMP production as the mechanism of action of GC-C agonists on HVA 

mechanosensitivity is also warranted. 
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CHAPTER 4 PART 3: THE EFFECT OF ICI  
204, 448 ON THE  
MECHANOSENSITIVITY OF HUMAN  
VISCERAL AFFERENTS 

4.3.1 INTRODUCTION 

4.3.1.1 OPIOID RECEPTORS 

To date, 4 opioid receptors, mu (µ), kappa (κ), delta (δ), and nociceptin receptor, have been 

identified (Waldhoer et al., 2004). Opioid receptors are GPCRs, with 7 transmembrane 

domains and are usually linked intracellularly with Gi/o proteins, which inhibit calcium 

channels, activate potassium channels and inhibit the production of cAMP, which combined 

serve to reduce neuronal excitability (Jordan and Devi, 1998, Waldhoer et al., 2004). Opioid 

receptors are expressed on a number of neuronal types including extrinsic afferents 

innervating the intestines (Danzebrink et al., 1995, Sengupta et al., 1996, Su et al., 1997). 

Opioid receptors can be activated by both endogenous and exogenous opiates, the latter 

producing remarkable analgesia (Hughes and Kosterlitz, 1983). Indeed, opiates, especially µ-

opioid receptor agonists such as morphine are used for reducing severe pain, and in palliative 

care (Gebhart et al., 1999). The effects of opioid receptor agonists can be mediated centrally 

or peripherally. However, the central actions of many of these drugs cause unwanted side 

effects including respiratory depression, tolerance and dependence, which limits their use to 

certain types of pain (Mangel and Hicks, 2012). Indeed, morphine and other µ-opioid receptor 

agonists have been shown to be effective visceral analgesics, reducing pain indicators in 

various animal models of visceral pain, but are not usually used for the treatment of 

abdominal pain in disease such as IBS (Ness and Gebhart, 1988a, Danzebrink et al., 1995, 
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Harada et al., 1995, Borgbjerg et al., 1996). Peripherally restricted opioid receptor agonists are 

therefore sought after. 

4.3.1.1.1 Kappa opioid receptors in visceral pain 

Indeed κ opioid receptor agonists have shown some promise in this sense. Early κ 

agonists did not show side effects such as addiction and constipation, but were centrally active 

and caused dysphoria and sedation (Riviere, 2000). This led to the creation of further 

generations of κ opioid receptor agonists which had fewer side effects (Riviere, 2004). A 

number of in vivo experiments reported that systemic but not intrathecal administration of κ-

opioid receptor agonists reduced VMR to CRD in conscious rats, suggesting that their site of 

analgesic action is in the periphery (Langlois et al., 1994, Danzebrink et al., 1995, Harada et al., 

1995, Burton and Gebhart, 1998). In contrast, both µ and δ opioid receptor agonists were 

effective in reducing nociceptive behaviours after intrathecal injection.  Furthermore, in vitro 

pelvic afferent electrophysiological studies, containing only the peripheral aspects of sensory 

pathways, revealed that, µ and δ opioid receptor agonists have no effect on the afferent 

response to CRD (Sengupta et al., 1996, Su et al., 1997). In contrast, a number of κ opioid 

receptor agonists, including EMD 61, 753 (asimadoline), were effective in reducing the afferent 

response to noxious CRD, demonstrating the efficacy of κ opioid receptor agonists in reducing 

surrogates of visceral nociception mediated through peripherally based sites of action 

(Sengupta et al., 1996, Su et al., 1997). Furthermore, in humans the κ opioid receptor agonist 

fedotozine relieved the hypersensitivity to colonic distension in patients with IBS, without any 

central effects (Delvaux et al., 1999). This report will focus on the peripherally restricted κ 

opioid receptor agonist ICI 204, 448.  

A number of selective κ opioid receptor agonists exist, including ICI 204, 448 and 

asimadoline, which have low permeability across the blood brain barrier, and thus are 

peripherally restricted. ICI204, 448 and asimadoline demonstrates analgesic potential in 



278 
 

preclinical animal models of visceral pain (Sengupta et al., 1996, Su et al., 1997, Burton and 

Gebhart, 1998, Sengupta et al., 1999, Joshi et al., 2000). Intravenous injection of ICI 204, 448 

asimadoline, reduced the VMR to CRD in normal conscious rats, rats with acute colonic 

inflammation induced by acetic acid injection, and rats with chronic inflammation induced by 

TNBS (Burton and Gebhart, 1998, Sengupta et al., 1999). Furthermore, asimadoline but not ICI 

204, 448 exhibited a greater potency in reducing the VMR response in the chronically inflamed 

TNBS treated rats (Sengupta et al., 1999).  

In addition, a number of studies using in vivo electrophysiological recordings made 

from pelvic nerves innervating the colon, devoid of any central sensory input, showed a 

reduced pelvic afferent nerve response to CRD in normal rats after pre-treatment with 

asimadoline (Sengupta et al., 1996, Su et al., 1997, Sengupta et al., 1999). In addition, the 

inhibitory effect was greater in the presence of acute (acetic acid) or chronic (TNBS) 

inflammation. ICI 204, 448 had no effect in normal rats, but reduced the afferent response to 

CRD in acutely and chronically inflamed rats (Sengupta et al., 1999). Furthermore, the 

inhibitory effect of asimadoline on either the VMR or the afferent response to CRD in TNBS 

treated rats was inhibited by pre-treatment with naloxone, an opioid receptor antagonist 

(Sengupta et al., 1999). These results suggest the upregulation of κ opioid receptors in the 

periphery during inflammation. 

One study conducted in vivo electrophysiological experiments on pelvic nerve of rats 

that underwent intrathecal administration of antisense oligodeoxynucleotides, to knock down 

the expression of κ opioid receptors (Joshi et al., 2000). This experiment demonstrated the 

effectiveness of asimadoline in reducing the afferent response to CRD even in rats in which the 

central κ opioid receptor was not present. This suggested that there is a distinct peripherally 

expressed κ opioid receptor, localised to the colon, through which asimadoline can exert its 

effects (Joshi et al., 2000, Camilleri, 2008). 
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Of note, kappa receptor antagonists, at high doses, can inhibit sodium channels (Su et 

al., 2002). This is unlikely to contribute to the efficacy of asimadoline in reducing surrogates of 

visceral pain, since it is 500-1000 times less potent at sodium channels compared to the κ 

opioid receptor (Joshi et al., 2003). Additionally, ICI 204, 448 has no activity on sodium 

channels, and therefore is a suitable compound to use in experiments (Su et al., 2009). 

Taken altogether, these studies indicate that asimadoline and ICI 204, 448 are effective 

in reducing surrogate visceral pain responses to noxious mechanical stimuli, specifically 

colorectal distension, especially under inflammatory or post inflammatory conditions. 

Furthermore, the inhibitory effects of asimadoline and ICI 204, 448 are mediated by opioid 

receptors expressed on peripheral afferent nerves innervating the colon (Camilleri, 2008).  

4.3.1.2 CLINICAL EFFICACY OF A PERIPHERALLY RESTRICTED Κ RECEPTOR AGONIST  

Preclinical studies on human subjects also demonstrate the efficacy of κ agonists, 

especially asimadoline in reducing visceral pain. The effectiveness of 1 dose of asimadoline on 

pain intensity ratings in response to stepwise colonic distension was examined in IBS patients 

with proven visceral hyperalgesia (Delvaux et al., 2004). Asimadoline reduced the area under 

the curve ratings of pain intensity at each distension step, and increased the pain threshold, 

although this did not quite reach significance (Delvaux et al., 2004). Another study was 

performed on healthy subjects, receiving asimadoline twice daily for 9 days (Delgado-Aros et 

al., 2003). Subjects on the lowest dose of asimadoline showed decreased pain across all 

distension pressures although this was only significant at the lowest pressure (Delgado-Aros et 

al., 2003). In contrast, higher doses of asimadoline increased pain scores in healthy subjects at 

low and moderate pressures, the reason for which remains unclear (Delgado-Aros et al., 2003). 

The results of these studies are in line with the preclinical animal studies, suggesting an 

increased efficacy of asimadoline after sensitisation.  
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Based on the efficacy of asimadoline in preclinical animal and human experiments, 

asimadoline was tested in clinical trials (Szarka et al., 2007, Mangel et al., 2008, Mangel and 

Williams, 2010). A small, short term study examined the effect of 1mg of asimadoline taken as 

needed up to 4 times a day for 4 weeks in 100 IBS-D, IBS-C or IBS-M female patients (Szarka et 

al., 2007). Most patients had moderate abdominal pain based on a visual analogue scale on at 

least 4 out of 14 days at baseline. This study failed to show any improvement on the primary 

endpoint, the average reduction in severity of pain 2 hours after asimadoline, or on any of the 

secondary endpoints, including adequate relief from pain and discomfort (Szarka et al., 2007). 

IBS-M patients seemed to respond better to treatment. The authors note that the study design 

and sample size, are best suited to hypothesis generation rather than hypothesis testing 

(Szarka et al., 2007). In a larger, longer double blind, placebo controlled trial, 595 patients with 

IBS-C, IBS-D or IBS-M, were randomised to placebo or asimadoline at 1 of 3 doses, b.i.d 

0.15mg, 0.5mg and 1mg, for 12 weeks (Mangel et al., 2008). The primary endpoint was the 

number of months with adequate relief from IBS pain and discomfort, while a number of other 

pain related endpoints were also evaluated (Mangel et al., 2008). In contrast to Szarka et al 

(2007), when IBS-D patients with at least moderate levels of abdominal pain were analysed as 

a subgroup, asimadoline treatment, 0.5mg, caused a significant improvement in the primary 

endpoint, and in pain scores, pain free days, adequate relief from the symptoms of IBS, 

urgency, and stool frequency (Mangel et al., 2008). These results highlight the potential of 

asimadoline for treating abdominal pain in IBS-D, and warrants further clinical trials. Indeed, 

based on the results of the latter clinical trial, a further phase 3, 12 week, double blind, 

randomised, placebo controlled clinical trial in IBS-D patients has been completed with using 

b.i.d 0.5mg asimadoline. However, the results have yet to be published.  
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4.3.1.3  AIMS 

 Examine the effects of ICI 204, 448 on the transduction of mechanical stimuli  

o VFH Probing 
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4.3.2 METHODS 

4.3.2.1 VFH PROBING PROTOCOL 

The VFH probing protocol has been previously described in chapter 1 part 2. Briefly, after the 

initial baseline 1g VFH probes, 3 sets of 3 x 3 second probes, each set separated by 5 minutes, 

were attained, the bath was superfused with ICI 204, 448 (300nM, 100ml).  In all experiments 

this was followed with 6-9 sets of 3 x3 second probes, each set separated by 5 minutes (figure 

4.07). Data were analysed using a 2 tailed paired t test, p<0.05. 

4.3.2.2 DRUGS  

Drugs in powder form were made up using the recommended solutions, aliquoted and frozen 

at -20°C. When needed, aliquots were diluted in Krebs to make the final working concentration 

and vortexed to mix. ICI 204, 448 was purchased from Tocris Bioscience (Bristol, UK).  



283 
 

 

Figure 4.07: ICI 204, 448 probing protocol 

1) Average of the 2 highest 2 second probes in each set are averaged 

2) The average of the 6 probes, 2 from each of the first 3 consecutive sets is used as baseline. 

3) The average of the 4 probes from 2 consecutive sets after drug application is then averaged. For drug effect comparisons the average of the baseline 

probes are compared to the average of the 2nd and 3rd post ICI 204, 448 sets of probing. 

4) For ICI 204, 448 vs. washout comparisons the 2nd and 3rd post drug sets of probing are compared to the average of the 8th and 9th post drug sets of 

probing.  

5 mins

ICI 204, 488

Highest 2
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Highest 2
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Highest 2
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4.3.3 RESULTS 

4.3.3.1 TISSUE - ICI 204, 448 VFH PROBING EXPERIMENTS 

Three tissues, all normal, were used for ICI 204, 448 probing protocols, 2 sigmoid colon, 1 

rectum (M:F 1:2, median age 51). Further details on the tissues use in each set of experiments 

can be seen in table 2.02. 

4.3.3.2 ICI 204, 448 VFH PROTOCOL 

ICI 204,448 is a peripherally acting selective κ opioid receptor agonist, which demonstrates 

analgesic potential in preclinical animal models (Sengupta et al., 1996, Su et al., 1997, Burton 

and Gebhart, 1998, Sengupta et al., 1999, Joshi et al., 2000). Two out of 3 units used for ICI 

204, 448 VFH studies exhibited spontaneous activity (0.8±0.5 spikes s-1 probe). The application 

of ICI 204, 448 reduced the response of HVAs to 1g VFH probing, but this did not reach 

significance (17.9±4.5 vs. 12.9±1.5 spikes 2s-1, 21.8%, n=3, p>0.05) (figure 4.08). 
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Figure 4.08: The effect of ICI 204, 448 on the mechanosensitivity of HVAs. A-B) ICI 204, 448 did 

not reduce the response of HVAs to 1g VFH probing of the serosa (n=3, p>0.05). However there 

was a trend for reduced mechanosensitivity. A) Shows a set of 3 probes before the application 

of ICI 204, 448 (1), while ICI 204, 448 was in the tissue bath (2), and after it had been washout 

(3). B) Displays the firing rate of serosal HVAs in response to VFH probing before and after the 

application of ICI 204, 448. Data were analysed using a 2 tailed paired t test, p<0.05. 
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4.3.3.3 SUMMARY OF RESULTS 

 ICI 204, 448 did not alter serosal HVA firing in response to VFH probing 
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4.3.4 DISCUSSION 

4.3.4.1 ICI 204, 448 

The HVA response to VFH probing was not reduced by ICI 204, 448. However there was a trend 

for reduced mechanosensitivity that requires further investigation. Previous studies in animals 

using surrogates for pain such as VMR to CRD have demonstrated the efficacy of ICI 240, 488 in 

reducing response to mechanical stimuli (Burton and Gebhart, 1998). All recordings used for 

ICI 204, 448 probing protocols were made from normal tissue collected from the uninvolved 

part of non-inflammatory conditions. Previous studies using in vivo recordings from pelvic 

afferents innervating the rat colon reported no effect of IC 204, 488 on reducing the afferent 

response to colonic distension in uninflamed tissues. However, in colonic afferents from rats in 

which inflammation had been induced either acutely (acetic acid) or chronically (TNBS), ICI 

204, 448 significantly reduced firing in response to colonic distension (Sengupta et al., 1999). 

This suggests ICI 204, 448 and other κ agonists may be more efficacious in inflammatory 

conditions. This would be consistent with suggestions that k opioid receptors are upregulated 

in the periphery during inflammation (Sengupta et al., 1999).  

 In the current report, only a small preliminary sample size of 3 units was used for ICI 

204, 448 probing protocols, due to the limitation of tissue availability. However, the results of 

this report suggest that further studies using ICI 204, 448 are warranted, both in normal 

uninflamed tissues, and also in tissues from patients with both acute and chronic colonic 

inflammation. Furthermore, ICI 204, 448 should be tested using a HVA appendix distension 

preparation. 
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4.3.5 CONCLUSION 

The kappa peripherally restricted selective κ opioid agonist ICI 204, 448 did not significantly 

alter the response of serosal HVAs to VFH probing, although a trend was evident. Further 

studies using ICI 204, 448 are warranted in HVAs from both normal and inflamed human 

intestinal tissue.  
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CHAPTER 5 PART 1: POST HOC  
ANALYSIS: THE EFFECTS OF  
INFLAMMATORY DISEASE ON THE  
MECHANOSENSITIVITY AND  
CHEMOSENSITIVITY OF HUMAN  
VISCERAL AFFERENTS 

Data collected as part of the studies described in chapters 2-4 was pooled and analysed post 

hoc to determine trends in the response profile to mechanical and chemical stimuli based on 

1) the presence of inflammatory disease in the tissue (inflammatory bowel disease and 

appendicitis) (Part 1) or 2) the overnight cold storage of tissue (Part 2). It should be stressed 

that these studies were performed post-hoc and therefore study protocols have not been 

optimised to produce definitive experiments. Instead these data sets provide pilot data to 

inform and guide future detailed studies in these areas, and will be discussed in that context. 

5.1.1 INTRODUCTION 

Colonic inflammation is known to cause abdominal pain and hypersensitivity. However, the 

exact role of extrinsic afferents in this hypersensitivity is not fully understood (Feng et al., 

2012b). There is evidence that colonic inflammation can affect the sensitivity of extrinsic 

colonic nerves to mechanical and chemical stimuli.  

5.1.1.1 MECHANOSENSITIVITY 

IBD is characterised by chronic recurring inflammation that causes among other things 

abdominal pain (Srinath et al., 2012). This pain may be caused by hypersensitivity of extrinsic 

afferents to mechanical and chemical stimuli. A number of studies have demonstrated that 

during active UC, patients sense rectal distension earlier and exhibit lower maximal distension 
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pressures compared to controls or UC patients in remission (Rao et al., 1987, Rao and Read, 

1990, Drewes et al., 2006). In contrast, another study reported that patients with UC exhibiting 

mild on-going inflammation demonstrated less sensitivity to colorectal distension presenting in 

higher distension pressure required to elicit pain (Chang et al., 2000). Furthermore, UC 

patients in remission exhibit decrease rectal sensitivity to distension (Rao and Read, 1990). 

Patients with CD where inflammation is only in the ileum, exhibit a lower sensitivity to rectal 

distension (Jehle et al., 1993, Bernstein et al., 1996). Together, this evidence from colorectal 

balloon distension paradigms in patients with IBD and controls suggest that factors such as the 

type of IBD, CD vs. UC, and the duration, degree and current state of inflammation may 

determine the effect of inflammation on colonic nerve sensitivity (De Schepper et al., 2008). 

The mechanosensitivity of all subtypes of afferents in both spinal pathways during the 

acute and recovery phases of inflammation, induced by a number of methods, has been 

studied in rodent models. There was no change in proportion of afferents activated by 

mechanical stimuli in either the splanchnic or pelvic nerve after the induction of inflammation 

by TNBS (Hughes et al., 2009a, Feng et al., 2012b). However another study from one of the 

same groups reported a significant increase in pelvic serosal afferents after zymosan treatment 

in mice and attributed this to a recruitment of previously “silent” MIAs or “silent” afferents, as 

the increase in pelvic serosal afferents occurred with a decrease in the number of MIAs (Feng 

et al., 2012a). The mechanosensitivity of splanchnic afferents during acute inflammation (7 

days) and after recovery from inflammation (28 days) induced by TNBS has been studied in 

mice (Hughes et al., 2009a). The authors reported reduced thresholds for activation and an 

increased firing rate in response to VFH probing in splanchnic serosal and mesenteric afferents 

during both acute inflammation and recovery. Moreover, the activation threshold was reduced 

and rate of firing enhanced in response to stretching of the gut wall in splanchnic serosal 

afferents after recovery from inflammation, but not in the acute phase. However, another 

study found that neither the threshold for activation nor the firing rate upon VFH probing were 
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altered in splanchnic afferents after colitis induced by (dextran sulphate sodium) DSS in rats, 

suggesting that the mechanism by which colitis is induced experimentally may be important 

(Coldwell et al., 2007).  

Additionally the spinal afferent pathway studied may be important. Pelvic afferents 

were not sensitised to any mechanical stimulus during acute inflammation, but serosal 

afferents exhibited reduced activation thresholds and increased firing rates to VFH probing 

after recovery from inflammation induced by TNBS (Hughes et al., 2009a).  In contrast, another 

study on the mechanosensitivty of the subtypes of afferents in the mouse pelvic pathway 

reported a reduction in both the response rate to VFH probing at 14 days post TNBS induced 

inflammation, and an increased activation threshold to a 0.4g VFH at day 14 and 28 post 

inflammation (Feng et al., 2012b). The increased activation threshold at 0.4g was also evident 

in mice recovering from zymosan induced inflammation, from the same lab (Feng et al., 

2012a). In addition, pelvic muscular afferents exhibited augmented responses to high intensity 

stretch at post inflammation day 14 (Feng et al., 2012b). However, the same group report no 

changes in the responsiveness of pelvic muscular afferents to stretch in mice after treatment 

with zymosan (Feng et al., 2012a).  Pelvic muscular-mucosal afferent did show augmented 

responses to stretch.  

Other in vitro studies have demonstrated sensitisation of rat pelvic serosal afferents to 

distension after the induction of inflammation by TNBS (Wynn et al., 2004). Indeed, similar 

results were attained from in vivo recordings of pelvic afferents in rats undergoing colorectal 

distension (De Schepper et al., 2008). However, this concept is far from clear cut, as a study of 

in vivo recordings from rat in pelvic nerves has previously demonstrated a lack of sensitisation 

to colorectal distension by TNBS induced inflammation in rats (Sengupta et al., 1999). Similarly, 

the response to stretch was unaltered in mice treated with zymosan to induced colonic 

inflammation (Jones et al., 2007).  
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A simpler model of sensitisation, in which the effect of individual algogenic and 

inflammatory mediators on mechanosensitivity is tested, has also been studied. Indeed, a 

number of mediators including BK, ATP etc. have been shown to sensitise afferent fibres to 

mechanical stimuli (Wynn et al., 2004, Brierley et al., 2005b). A 2 minute application of 1µM of 

BK to the receptive field (mucosal side) of a splanchnic serosal afferent sensitised the 

subsequent response to a 2g VFH (Brierley et al., 2005b). Similarly serosal application of ATP 

increased responsiveness of pelvic afferents to in vivo luminal distension of the colorectum. 

This augmentation was even greater in TNBS treated rats (Wynn et al., 2004).   

5.1.1.2 CHEMOSENSITIVITY 

Inflammation can sensitise afferent nerves innervating many areas, increasing their response 

to chemical stimuli (Kocher et al., 1987, Habler et al., 1990).  Indeed, inflammation can also 

sensitise spinal afferents innervating the gut to chemical mediators. For example, in rats, an 

increased proportion of splanchnic serosal and mesenteric afferents responded to 5-HT, and 

fired at a higher rate, after acute inflammation induced by DSS and during recovery (Coldwell 

et al., 2007). The response to ATP in pelvic nerves on the other hand was not augmented in 

rats, in which inflammation had been induced by TNBS (Wynn et al., 2004). Individual 

mediators have also been shown to sensitive intestinal afferents to subsequent chemical 

stimuli. For example, in a rat mesenteric nerve preparation, PGE2, histamine, and adenosine 

were shown to sensitise the afferent response to subsequent application of BK (Brunsden and 

Grundy, 1999).  

The spontaneous activity of murine splanchnic nerves seems to be unchanged after 

the induction of inflammation by either TNBS or DSS (Coldwell et al., 2007, Hughes et al., 

2009a). In addition a number of studies have reported no change in either the proportion or 

rate of spontaneously active pelvic nerves in rodent models after the induction of 

inflammation, either TNBS or zymosan (Hughes et al., 2009a, Feng et al., 2012a). However, 
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there is also evidence for an increased proportion of spontaneous active pelvic afferents, 

which also fire at a higher rate after inflammation induced by TNBS (Sengupta et al., 1999, 

Wynn et al., 2004, De Schepper et al., 2008).  
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5.1.1.3 AIMS 

 Compare the responsiveness of HVA from normal and inflamed tissues (CD, UC, 

appendicitis) to a range of mechanical (VFH probing, luminal distension) and chemical 

(BK, ATP) stimuli. 

 

  



296 
 

5.1.2 METHODS 

5.1.2.1 PROTOCOLS 

Protocols included in this chapter have been previously described, VFH probing (chapter 2, 

part 1), distension (chapter 2, part 2), and chemosensitivity (chapter 3, part 1). 

5.1.2.1 NORMAL VS. DISEASE 

To examine whether different diseases affected the chemosensitivity (proportion of 

responders, change in firing rate) or mechanosensitivity (change in firing rate) of HVAs, the 

response functions to the application of chemical (BK, ATP) and mechanical (VFH probing, and 

distension) stimuli were compared between “normal” and diseased tissues (CD, UC, 

appendicitis). No distinction was made between overnight storage, age, or gender. 

Chemosensitivity data were analysed using a paired t-test, p<0.05. Distension data were 

analysed using a 2 way ANOVA, p<0.05. 
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5.1.3 RESULTS 

5.1.3.1 TISSUE – VFH PROBING 

Sixteen tissues, 14 normal, 2 CD, were used for disease VFH analysis, 10 sigmoid colon, 2 ileum, 

2 rectum, 1 ascending colon, 1 descending colon (M:F 1:1, median age 54).  

5.1.3.2 TISSUE – DISTENSION 

Nineteen appendices, 12 normal, 3 CD, 2 UC, 2 appendicitis, were used for disease distension 

analysis (M:F 1:1.1, median age 52). 

5.1.3.3 TISSUE – CHEMOSENSITIVITY 

Eighty-six tissues, 65 normal and 19 inflamed (8 CD, 6 UC, 5 appendicitis) were used for disease 

chemosensitivity analysis, 35 sigmoid colon, 22 appendix, 8 rectum, 7 ileum, 6 ascending 

colon, 4 transverse colon, 2 descending colon, 2 “unspecified colon” (M:F 1:0.76, median age 

60). Further details on the tissues use in each set of experiments can be seen in table 2.02. 

5.1.3.4 NORMAL VS. DISEASE 

5.1.3.4.1 Mechanosensitivity 

Whole nerve recordings from IBD appendices (n=5) had a significantly reduced response to 

luminal distension across the pressure range and at the individual pressures 40, 50, and 60 mm 

Hg compared to normal appendices (n=12) (p<0.05). Comparable with the whole nerve 

response a trend towards a reduced afferent to distension was also observed in WDR units 

discriminated from IBD appendices (n=4) compared with WDR units discriminated from normal 

appendices (n=5), although this did not reach significance at any pressure (p>0.05) (no LT or HT 

units were discriminated from normal or inflamed appendix). Similarly, there was a trend for 

serosal afferents from CD patients (n=2) to have lower responses to VFH probing compared to 

serosal afferents from normal tissue (n=14), although n numbers were too small for statistical 
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analysis. In contrast, whole nerve recordings from appendices collected from appendicitis 

cases (n=2) tended to have a greater response to luminal distension of the appendix compared 

to normal appendices (n=12) (figure 5.01).  

5.1.3.4.2 Chemosensitivity 

HVAs from IBD tissues (6/12, 50.0%) were as likely to respond to BK compared to normal 

(35/59, 59.3% tissues. In addition, the proportion of HVAs from IBD tissues (5/9, 55.6%) that 

responded to ATP was lower compared to normal (34/42, 81%) tissues, but this may reflect 

low n numbers. Similar HVA responses were observed in single unit recordings, distinguished 

from whole nerve flat sheet preparations, after the application of BK or ATP, whether the 

tissue was normal or from patients with IBD (BK IBD 35.9±6.3 (n=13) vs. normal 24.5±17.5 

spikes 20s-1 (n=3), p>0.05; ATP IBD 51.3±6.1 (n=9) vs. normal 55.8±26.8 (n=2) spikes 20s-1) 

(figure 5.01).  
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Figure 5.01: Comparison of mechano- and chemosensitivity of HVAs from inflamed and 

uninflamed tissue. A) Whole nerve recordings from inflammatory bowel disease appendices 

(n=5) had a significantly reduced response to luminal distension across the pressure range, and 

at the individual pressures 40, 50, and 60 mm Hg, compared to normal appendices (n=12) 

(p<0.05). B) When these recordings were analysed for single units, it was found that wide 

dynamic range (WDR) units from IBD appendices (n=4) also exhibited a trend for reduced 
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mechanosensitivity compared to WDR units from normal appendices (n=5), but this did not 

reach significance at any pressure (p>0.05). C) In contrast, whole nerve recordings from 

appendices collected from appendicitis cases (n=2) exhibited a trend for hypersensitivity to 

luminal distension of the appendix compared to normal appendices (n=12). D) Shows a trend 

for hyposensitivity of Crohn’s disease serosal afferents (n=2) to VFH probing compared to 

normal serosal afferents (n=14). E) Similar increases in HVA firing rates in response to 

bradykinin were evident between normal (n=13, 35.9±6.3 spikes 20s-1) and IBD tissue (n=3, 

24.5±17.5 spikes 20s-1, p>0.05). F-G) HVAs from IBD tissues (6/12, 50.0%) were as likely to 

respond to BK compared to normal (35/59, 59.3% tissues. H) Similarly, adenosine 

trisphosphate (ATP) caused a comparable increases in HVA firing in normal (n=9, 51.3±6.1 

spikes 20s-1) and IBD tissues (n=2, 55.8±26.8). I-J) The proportion of HVAs from IBD tissues 

(5/9, 55.6%) that responded to ATP was lower compared to normal (34/42, 81%), but may 

reflect the low IBD n numbers. VFH #s 1=20mg, 2=40mg, 3=70mg, 4=160mg, 5=400mg, 

6=600mg, 7=1g, 8=1.4g, 9=2g, 10=4g. Chemosensitivity data were analysed using a paired t-

test, p<0.05. Distension data were analysed using a 2 way ANOVA, p<0.05. 
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5.1.3.5 SUMMARY OF RESULTS 

 Whole nerve recordings from IBD appendices exhibited a significantly reduced firing 

rate in response to distension at 40, 50, and 60 mm Hg compared to normal 

appendices 

 There was a trend for hyposensitivity to VFH probing  in HVAs from CD patients 

compared to HVAs from normal tissue, but further study is needed 

 Similar proportions of HVAs from IBD tissues responded to BK compared to normal 

tissues 

 Although the proportions of IBD tissues that responded to ATP was lower compared to 

normal tissue, this may reflect low IBD tissue n numbers. More study on the 

chemosensitivity of HVAs from inflamed tissues is therefore needed.   
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5.1.4 DISCUSSION 

5.1.4.1 DISEASE 

This report has presented preliminary evidence for reduced HVA mechanosensation in tissues 

from IBD patients. Responses in whole nerve HVAs to luminal distension were significantly 

reduced across the pressure range and at the individual pressures, 40, 50, and 60 mm Hg in 

IBD appendices compared to normal appendices. Consistent with this observation, there was a 

trend for reduced response to VFH probing in serosal units from CD compared with normal 

tissues. This corroborates previously published data showing that patients with CD exhibit 

reduced responses to balloon distension of the rectum (Jehle et al., 1993, Bernstein et al., 

1996). Indeed, patients with UC have also demonstrated a reduced sensitivity to rectal 

distension (Rao and Read, 1990, Chang et al., 2000).  

There was no change in the proportion of HVAs responding to BK in tissues from IBD 

patients compared to normal tissues. ATP did respond less often in IBD tissues; however more 

study is need before definitive conclusion can be made. In addition, a similar magnitude of 

HVA activation was seen in IBD and normal tissues. The concept that mediators applied 

afferents from inflamed tissues would respond more often and to a greater degree than 

afferents from normal tissue has some logic, given the sensitisation of afferents in 

inflammatory states. Indeed, the responsiveness of a proportion of splanchnic serosal and 

mesenteric afferents to 5-HT was potentiated in rats after DSS induced colitis in rats (Coldwell 

et al., 2007). However, this sensitisation is not always reported, for example, response to ATP 

in pelvic nerves was not altered by colitis induced by TNBS in rats (Wynn et al., 2004). The data 

in this report shows no increase in proportion of responders to BK or ATP, or in the magnitude 

of response to these mediators. Indeed, chronic inflammatory conditions may lead to the 

downregulation of receptors response to prolonged exposure to inflammatory mediators. This 
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may act to counter the effect of this prolonged exposure to mediators on afferent nerve fibres 

and may explain the findings in this study.  

Studies using balloon distension paradigms in patients with IBD highlight the influence 

of current inflammatory state, i.e. remission vs. on-going inflammation, on mechanosensitivity 

to distension (Rao et al., 1987, Rao and Read, 1990, Chang et al., 2000, Drewes et al., 2006). 

Indeed, the current inflammatory state in the tissues used in this report is not known. This 

could be done by collecting clinical data on each patient. Indeed, gathering as much clinical 

data on each patient will allow for more accurate comparisons between diseases and disease 

states, and should become part of the standard operating procedure when carrying out HVA 

experiments in the future. In addition, to further confirm the immediate inflammatory state of 

the tissue, supernatants could be generated from the inflamed tissues in order to measure 

inflammatory markers.   

 Many animal models have been developed to study colitis including inflammation 

induced by TNBS, DSS, or zymosan. The specificity of these types of colitis to human diseases 

such as IBD is uncertain. There is a spread of these experimentally induced colitis models 

across the literature. In addition, there are inconsistencies between studies on the definition 

of terms such as acute inflammation, and recovery from inflammation. This makes 

comparisons between animal studies, and between studies using patients with disease such as 

IBD difficult to compare. A more simplistic and potentially more useful paradigm for 

investigating the effects of inflammation in animals is examining the effects of individual 

inflammatory mediators on responses of spinal nerves to mechanical stimuli. Indeed, it would 

be of interest to test this kind of paradigm in HVAs. This has previously been done in a rat 

model, where the application of PGE2, histamine, or adenosine could sensitisation the 

subsequent mesenteric afferent responses to BK (Brunsden and Grundy, 1999). 
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5.1.5 CONCLUSION 

Preliminary evidence has been presented for a hyposensitivity of HVAs to mechanical 

stimuli in patients with CD. Responses in whole nerve HVAs to luminal distension were 

significantly reduced across the pressure range and at the individual pressures, 40, 50, and 60 

mm Hg in IBD appendices compared to normal appendices. There was also a trend for a 

reduced response to VFH probing in HVAs from CD tissues. Indeed, this compliments both in 

vivo human data using colonic distension paradigms, and the clinical experience. This 

mechanical hyposensitivity should be investigated further. The magnitude of the response and 

proportion of responders to BK was similar between IBD and normal tissues. The proportion 

responders to ATP, was lower in IBD tissues, but this may reflect the low number of studies in 

this report. This report presents a post hoc analysis data from experiments to investigate 

another question. The availability of resected human intestine that has a specific disease 

warrants the use of these tissues in specifically designed experiments.  
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CHAPTER 5 PART 2: POST HOC  
ANALYSIS: THE EFFECT OF COLD TISSUE 
STORAGE ON THE 
MECHANOSENSITIVITY AND  
CHEMOSENSITIVITY OF HUMAN  
VISCERAL AFFERENTS 

5.2.1 INTRODUCTION 

5.2.1.1 COLD STORAGE 

The development of successful organ transplantation encouraged scientists and clinicians to 

investigate how to progress the field. Preservation solutions, to keep the organ healthy, for as 

long as possible were of keen interest (Voigt and DeLario, 2013). The first effective solution 

was developed in 1969 (Collins et al., 1969). Since, then a number of organ specific 

physiological solutions, have been developed including the University of Wisconsin (UW) 

solution, and the Histidine-tryptophan-ketoglutarate (HTK)/Custodiol solution. In addition, to 

slow down metabolism, organs are cold stored at 4°C. Tissues stored for prolonged length of 

time are subject to cell swelling, acidosis, the activation of caspases in the apoptotic pathway, 

and reduced function after transplantation (Salahudeen et al., 2004). Indeed, transplant failure 

rates are higher when using kidneys stored for >24 hours (Ojo et al., 1997, Salahudeen et al., 

2004).  

  Taking the kidney as an example, the average cold storage is ~21 hours, according to 

the United Network of Organ Sharing registry (Salahudeen et al., 2004). The vast majority of 

cadaveric kidneys are cold stored for 10-30 hours, although ~15% of the kidneys are cold 

stored for 30-50 hours (Salahudeen et al., 2004). The survival time of the transplanted kidneys 

was not significantly worse (p=0.79) between the 0-10 hours and 11-20 hours cold storage 
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time, but was significant at >30 hours (p=0.011). Taken together, this data suggests it is 

desirable to minimise the cold storage time. However, it also suggests that kept under the right 

condition, tissues are quite viable and can stay healthy and functional for long periods. Less 

information is available on intestinal transplantation, since it is a more recently developed and 

less common surgery. A noteworthy study removed a portion of a dog’s small bowel and 

stored at 5°C in an oxygen free saline solution for 4-5 hours. The bowel was then anastomosed 

back into the dog. The dogs were allowed to recover and were subsequently sacrificed. At 

autopsy, all bowel remained viable (Lillehei et al., 1959). This study demonstrates the 

extraordinary viability of the bowel. 

Electrophysiology requires healthy, functional tissue; hence in the past experiments 

were performed on the day of tissue collection, once tissue was back in the lab. However, the 

nature of experimenting on resected human tissue means an irregular supply of specimens. 

Often, tissue will not be available for a few days of the week, followed by a day with a number 

of procedures yielding a significant amount of human intestinal tissue. It is important to 

maximise the use of this tissue. Knowledge concerning the viability of human tissue may allow 

functional electrophysiological experimentation on the day after tissue collection, provided the 

tissue remains healthy. This would allow more experiments to be performed and make the 

HVA model more practical. It would also demonstrate the feasibility of collecting and 

experimenting on tissue from hospitals further away from the laboratory.  

This report aimed to assess the viability of surgically resected human intestinal tissue 

by storing it in favourable conditions overnight before experimentation. The responsiveness of 

tissues to mechanical and chemical stimuli was compared between fresh specimens and those 

stored overnight. To reduce the damaging effects of cold storage, and to maximise the health 

of the tissue, cold storage times were kept to a minimum, usually between 12-16 hours. 

Furthermore, the tissue was stored in a physiological solution, Krebs buffer, which was 

carbongenated for at least 30 minutes prior to cooling.  
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5.2.1.2 AIMS 

 Assess the viability of surgically resected human intestinal tissue 

o Examine responses to mechanical and chemical stimuli after overnight storage 
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5.2.2 METHODS 

5.2.2.1 PROTOCOLS 

Protocols included in this chapter have been previously described, VFH probing (chapter 2, 

part 1), distension (chapter 2, part 2), and chemosensitivity (chapter 3, part 1). 

5.2.2.2 COLD STORAGE 

To investigate the viability of resected human tissue, samples were stored in a 1 litre bottle of 

Krebs buffer and bubbled with carbogen (95% oxygen, 5% carbon dioxide) for 30 minutes. The 

bottle was then stored overnight at 4°C. The next morning electrophysiological recordings 

were attained and the HVAs challenged with a number of chemical (BK, ATP) and mechanical 

stimuli (VFH probing, and distension). Spontaneous activity, chemosensitivity (proportion of 

responders, change in firing rate) and mechanosensitivity (change in firing rate) were then 

compared to HVAs recorded on the same day as surgery. Appendix specimens were not 

included in whole nerve change of firing rate calculations due to their inherent higher firing 

rates. No distinction was made between different diseases, ages, or genders. Chemosensitivity 

data were analysed using a paired t-test, p<0.05. Mechanosensitivity data were analysed using 

a 2 way ANOVA, p<0.05. 
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5.2.3 RESULTS 

5.2.3.1 TISSUE – VFH PROBING 

Sixteen tissues, 12 were used the day of surgery, and 4 were stored overnight and used the 

day after surgery, 10 sigmoid colon, 2 ileum, 2 rectum, 1 ascending colon, 1 descending colon 

(M:F 1:1, median age 54).  

5.2.3.2 TISSUE – DISTENSION 

Fifteen appendices, 9 were used the day of surgery, and 6 were stored overnight and used the 

day after surgery (M:F 1:1.1, median age 52). 

5.2.3.3 TISSUE – CHEMOSENSITIVITY 

Eighty-one tissues, 47 were used the day of surgery, and 34 were stored overnight and used 

the day after surgery, 35 sigmoid colon, 20 appendices, 8 rectum, 7 ileum, 5 ascending colon, 3 

“unspecified colon”, 2 descending colon, 1 transverse colon (M:F 1:1.3, median age 57). 

Further details on the tissues use in each set of experiments can be seen in table 2.02. 

5.2.3.3 COLD STORAGE 

Recording from HVAs was no more difficult the day after (DA) surgery, compared to recording 

the day of (DO) surgery. DO and DA recordings did not differ in their mechanosensitivity. There 

was no difference in the response of HVAs to VFH probing of any weight, or overall between 

DO (n=12) and DA (n=4) tissues (p>0.05). Similarly, in whole nerve recordings, whether the 

experiment was done the day of surgery (n=9) or the day after surgery (n=6), did not change 

the HVA response to distension at any pressure (p>0.05). When these recordings were 

analysed as single units, WDR (DO – n=6, DA – n=2), LT (DO – n=2, DA – n=3), and HT (DO – 

n=1, DA – n=3) pressure response line graphs were similar for tissues that were stored 

overnight or that were recorded from immediately (figure 5.02). 
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The chemosensitivity of HVAs were similar in DO and DA recordings. Single unit 

responses in flat sheet preparations to the algogenic mediators BK and ATP were not different 

between groups (Δ firing rate BK DO (n=22) 36.9±9.3 vs. DA (n=18) 28.7±5.4 spikes 20s-1, 

p>0.05; ATP DO (n=22) 46.1±11.6 vs. DA (n=19) 54.7±7.8 spikes 20s-1, p>0.05; excluding 

appendix preparations). The proportions of HVA responding to BK and ATP was comparable 

between DO and DA recordings; BK 53.7% (22/41) vs. 64.3% (18/28); ATP 78.6% (22/28) vs. 

73.1% (19/26), respectively (figure 5.02).  
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Figure 5.02: Comparison of HVAs from tissues recorded on the day of surgery (DO) or the day 

after surgery (DA) in their sensitivity to mechanical and chemical stimuli. A) There was no 

significant difference in the whole nerve HVA response to distension at any pressure if the 

recording was done on the day of (n=9) surgery or the day after surgery (n=6) (p>0.05). B-D) In 

addition, pressure response line graphs were very similar between DO and DA recordings in 

wide dynamic range (WDR) (B), low threshold (LT) (C), and high threshold (HT) (D) HVAs. E) 

There was no difference in the response of HVAs at any VFH weight, or overall between DO 

(n=12) and DA (n=4) tissues (p>0.05). F) HVAs recorded the DO and the DA surgery exhibited 

comparable firing rates to the application of bradykinin (BK) (DO (n=22) 36.9±9.3 vs. DA (n=18) 

28.7±5.4 spikes 20s-1, p>0.05). A similar proportion of DO (Fi, 22/41) and DA (Fii, 18/28) HVAs 

responded to BK. G) The activation rates of HVAs recorded on the DO and DA surgery were 

similar after the application of Adenosine trisphosphate (ATP) (DO (n=22) 46.1±11.6 vs. DA 

(n=26) 54.7±7.8 spikes 20s-1, p>0.05). In addition, the likelihood of DO (Gi, 22/28) or DA (Gii, 

19/26). HVAs responding to ATP was similar. VFH #s 1=20mg, 2=40mg, 3=70mg, 4=160mg, 

5=400mg, 6=600mg, 7=1g, 8=1.4g, 9=2g, 10=4g. Chemosensitivity data were analysed using a 

paired t-test, p<0.05. Mechanosensitivity data were analysed using a 2 way ANOVA, p<0.05. 
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5.2.3.4 SUMMARY OF RESULTS 

 Whole nerve HVA firing in response to distension did not differ after storage compared 

to same day experimentation. Similarly, pressure response line graphs produced by 

WDR, LT, and HT single units were similar whether the tissue was stored overnight or 

used immediately. There was no difference in HVA responses to individual VFH probes 

of any weight or over the entire range together.  

 Whole nerve responses, and the proportion of nerves responding, in flat sheet 

preparations to the algogenic mediators BK and ATP were not different between 

recordings done on the day tissue was collected or after overnight storage. 
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5.2.4  DISCUSSION 

5.2.4.1 COLD STORAGE 

We have demonstrated that the HVA response to mechanical and chemical stimuli, are 

comparable between DO and DA recordings. In addition, we have demonstrated that the HVA 

response to the chemical mediators BK and ATP is not different between DO and DA 

recordings. This suggests that the tissue remained viable and healthy during overnight storage. 

Indeed, cadaveric organs can be stored for up to 50 hours in preservation medium, although 

with some associated damage and reduced transplantation success rates (Salahudeen et al., 

2004). The bowel is an extremely viable organ, as canine intestinal transplantation studies 

demonstrate, whereby intestines remained viable after 5 hour storage in just a chilled saline 

solution. 

Improved viability may be possible if better preservation mediums are used. This study 

used carbongenated krebs solution chilled to 4°C, which seemed to be suitable. Apart from 

slight mucosal degradation, the human tissue remained macroscopically healthy. Indeed, its 

mechano- and chemosensitivity remained unchanged compared to “fresh” tissue. In the 

future, it would be of interest to test some preservation mediums, e.g. UW medium, used in 

organ transplantation to seem if they increase the longevity of the tissue. This would be useful 

to know for any institution looking to collect human tissue for research purposes from 

hospitals that are not close by. Using the optimal preservation medium during long journeys 

from the hospital to the lab, could help keep the tissue healthy and viable. The observation in 

this report has the potential to increase the yield of human tissue data, both from collecting 

specimens from hospital further away, and making use of tissue that cannot be used on the 

day of research due to researcher commitments, large supply of tissue in 1 day etc. The 

introduction of this storage variable can be avoided by designating certain groups of 
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experiments for same day or next day recordings. Indeed, experiments on mucosal afferents 

should be done on the same day of surgery. 
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5.2.5 CONCLUSION 

The viability of HVAs has been described. Resected colonic tissue remains viable and 

healthy, aside from some mucosal degradation, after overnight storage in a simple 

carbongenated Krebs solution. Other media, normally used to preserve cadaveric organs due 

for transplantation, could be tested in the future. The viability and longevity of human 

intestinal tissue suggests that human tissue can be collected from hospitals further afield of 

the lab. This would allow more tissue to be collected for our lab, and may encourage other 

labs, not in close proximity to a hospital, to collect human tissue, and do electrophysiological 

experiments using HVAs.  
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CHAPTER 6: GENERAL DISCUSSION 
AND CONCLUSIONS 

6.1 GENERAL DISCUSSION 

This report has demonstrated the feasibility and practicality of human visceral afferent 

recordings. There has been a significant improvement in both the collection process and the 

number of tissues collected since the beginning of this project. In the 2nd half of 2011, 13-14 

specimens were collected in each 3 month period. This number has increased to 21-22 in the 

each 3 month period by the end of 2013 (figure App.03 in appendix). Over 130 recordings were 

made from 8 distinct areas of the human GI tract, ileum, appendix, caecum, ascending colon, 

transverse colon, descending colon, sigmoid colon, and rectum. The success rate of HVA 

recordings has dramatically improved, from ~40% in 2011 to over 95% in 2013. These results 

demonstrate the practicality of this technique and the potential to expand it to other 

laboratories.  

 Importantly, this report has demonstrated that HVAs are sensitive to both mechanical 

and chemical stimuli. Indeed, an afferent’s response profiles to these stimuli can help 

determine the location of their terminals. Furthermore, a number of protocols based on these 

stimuli have been developed, including VFH probing protocols, appendix luminal distension 

protocols, and repeat application of chemical mediators. This report tested several drugs or 

their surrogates that have been or are in clinical trials to determine their effects on HVA 

responses to mechanical stimuli. The results of this report also suggest it is feasible to use this 

model to study the mechanisms behind the transduction of both mechanical and chemical 

stimuli, and demonstrates the potential capacity of HVA experiments to substantiate findings 

from animal studies examining the efficacy of novel potentially analgesic compounds.  
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6.1.1 MECHANICAL STIMULI AND THE CHARACTERISATION OF SUBTYPES OF HVAs 

6.1.1.1 Distension 

Pain originating in the bowel can be elicited clinically by traction of the mesentery or noxious 

levels of distension. Indeed, many preclinical studies use rectal, colonic or colorectal distension 

as a physiologically relevant noxious mechanical stimulus. This report demonstrates the 

reproducibility of HVA responses to repeated appendix distension demonstrating the presence 

of three functional subtypes of distension sensitive afferents, LT, WDR, and HT, distinguishable 

by their pressure activation threshold, rate of firing, and the pressure at which their firing 

saturates. This is comparable with studies in animals, which have also shown that repeated 

distensions of the rat or cat colo-rectum in vivo evokes reproducible pelvic afferent responses 

(Blumberg et al., 1983, Sengupta and Gebhart, 1994).  

Importantly, the extrinsic nerves innervating the appendix are embryologically 

identical to those innervating the caecum, being derived from the same nerve and progenitors 

(Peiris et al., 2011). Therefore the appendix distension model may provide a useful insight into 

the mechanisms of pain in the intestine. Additionally, the appendix is a practical resource to 

study both acute inflammatory pain, given the high incidence of appendicitis and subsequent 

appendicectomies, and afferent function under normal conditions, given the large number of 

right hemicolectomy surgeries for colorectal cancer. Furthermore, the lack of any translational 

issues makes this an attractive and useful model.  

6.1.1.2 VFH probing 

VFH probing is another common mechanical stimulus used in preclinical animal studies, and 

involves probing the receptive field with a calibrated nylon or optical glass filaments. This 

stimulus has less physiological relevance in visceral pain than distension, but is very practical 
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and easy to use. VFHs have other limitations, which are important to note. The straight cut end 

of the filament lends itself to a change in surface area in contact with the tissue upon bending, 

hence the pressure applied may change (Bove, 2006). Indeed, how compliant the tissue is to 

probing will also influence the pressure exerted, by determining the indentation depth (Bove, 

2006). This is just one shortcoming, with many others being cited, including, researcher bias 

(Wallas et al., 2003), incorrect filament calibration (Bell-Krotoski and Tomancik, 1987), the rate 

of force development, which is determined by the speed of filament bending (Bove, 2006), and 

both temperature and relative humidity can affect the stiffness and therefore calibration of 

the filament (Andrews, 1993). Nonetheless, VFH filaments are a useful tool in visceral pain 

models, especially when distension or stretching is impractical, as is sometimes the case in 

human intestinal tissue. Indeed, a number of papers recently published in high impact 

journals, have used this methodology e.g. (Brierley et al., 2004, Brierley et al., 2008, Feng et al., 

2012a, Castro et al., 2013).  

 A proportion of HVA receptive fields exhibited desensitisation after prolonged probing 

protocols, but not before 15 sets of x3 probes, as observed throughout various probing 

protocols. This desensitisation has also been reported in guinea pig ileum (Song et al., 2009, 

Brookes et al., 2013). However, VFH probing time matched control experiments in this report 

demonstrates that the majority of HVA receptive fields evoke consistent and reproducible 

responses over a period of 1+ hours, with probing every 5 minutes. Studies in guinea pigs 

report the desensitisation of the receptive field is irreversible (Song et al., 2009). Therefore 

further evidence that the reduction in HVA response to VFH probing after application of 

various drugs (e.g. HC067047) is drug related and not desensitisation is demonstrated by the 

recovery of the response after drug washout in a proportion of the HVAs. Decreasing the 

magnitude of the stimulus would likely extend the life of the receptive field, hence the lowest 

VFH capable of eliciting reproducible responses were chosen for use in the majority of 

experiments. 
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Serosal and mesenteric afferents are thought to be the main nociceptive afferents 

innervating the gut, as they have high distension pressure thresholds, and respond to noxious 

mediators such as BK and ATP (Brierley et al., 2005b, Wynn and Burnstock, 2006, Andresen et 

al., 2007, Johnston et al., 2009, Lin et al., 2010). It was therefore postulated that serosal and 

mesenteric HVAs were also nociceptive, although this is not immediately evident from their 

response to VFH probing. For example, serosal and mesenteric HVAs respond to light weight 

VFHs, sometimes as low as 20mg. A VFH of this weight is certainly not noxious, since it barely 

breaks the fluid tension in the tissue bath. However, a low VFH activation threshold does not 

exclude them from a classification of nociceptor, which are classically high threshold. VFH 

probing represents a non-physiological stimulus and does not mimic any event that happens in 

vivo.  It is possible that these afferents are more prone to activation by direct probing of their 

receptive filed, but require high distension pressures to be activated, a physiological stimulus. 

Indeed, both serosal and mesenteric mouse colonic afferents respond to low VFH probing in 

mouse models, despite only responding to high distension pressures (Brierley et al., 2004, 

Brierley et al., 2008).  This report did not find any response to serosal or mesenteric units in 

response to tissue stretch in our studies suggesting high levels of stretch may be required to 

activate these afferents. In contrast, muscular units are readily activated by tissue stretch.  

Finally, this report confirmed a role for serosal afferents in nociception, by 

demonstrating their responsiveness to noxious inflammatory mediators such as BK and ATP. In 

contrast, muscular afferents had little or no response to these mediators, suggesting they play 

a more physiological role in the gut.  

6.1.1.3 VFH time matched controls 

This report demonstrates the reproducibility of repeated VFH probing over the course of a 

standard protocol of ~60 minutes.  This data suggests that VFH probing is a suitable protocol in 

which to investigate the mechanisms of, and drugs that may affect the transduction of 
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mechanical stimuli. Greater n numbers would be desirable and necessary to consolidate this 

finding. It is important to ensure that the receptive field of the HVA is in a suitable location and 

can be probed repeated without any obstructions e.g. mesentery. It is often the case that the 

receptive field can be probed, but not consistently because of its relatively inaccessible 

location e.g. under a fold in the mesentery. Accessibility can sometimes be improved by 

carefully manipulating, and re-pinning the tissue, while taking care not to interfere with the 

electrode. Early stability in VFH probing is of key importance, and any HVAs with early erratic 

responses should not be used.  These 2 issues make receptive fields fit for purpose hard to 

come by, hence decreasing the number of experiments that can be performed. 

6.1.1.4 Distension time matched controls 

This report demonstrates the reproducibility of repeated luminal distension of the appendix 

over the time course of a standard protocol of 60-80 minutes. This data confirms that appendix 

distension is a suitable protocol in which to investigate the mechanisms of, and drugs that may 

affect the transduction of mechanical stimuli.  However, it is important to ensure the HVAs are 

responding robustly to distension before starting the protocol, as weak responses have a 

tendency to decline after a few distensions. Furthermore, care must be taken to distend the 

appendix to the same pressure each time, as changing the distension pressure mid protocol 

could change the recovery time and hence could affect the HVA response to the next 

distension. 

6.1.1.5 Stretching 

Methods to standardise stretch have been considered. A cantilever system as used previously 

in rodents e.g. (Page and Blackshaw, 1998), may be used, but would require large weights to 

stretch the tissue. Similarly a force transducer attached to a force actuator could be used (Feng 

et al., 2012a). Stretching the tissue, a certain distance as marked by pins in the bath would 

only serve as standardisation if each piece of human tissue was the same size, which is not the 
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case. Standardisation of stretching stimuli is necessary before protocols using this stimulus can 

be carried out.  

6.1.1.6 Comparison of afferent subtypes innervating colonic and appendix  

This report describes 4 distinct subtypes of HVA innervating the intestine based on their 

response to mechanical stimuli; mesenteric, serosal, muscular, and muscular mucosal. Three 

different subtypes of HVAs innervating the appendix based on their distension pressure 

threshold for activation, HT, WDR, and LT, have also been described. High intensity distension, 

~45 mm Hg (Brierley et al., 2008) or stretch, ~ 9-10g (Brierley et al., 2008, Hughes et al., 2009a) 

is required to activate serosal or mesenteric afferents in murine models. The activation of 

mesenteric afferents by distension, despite the absence of terminals in the gut wall, has been 

explained previously as the translation of longitudinal forces onto the mesentery (Hughes et 

al., 2009a).  In contrast, light stretching, ~2g, akin to low distension pressures activates 

muscular afferents (Hughes et al., 2009a). These data suggest that in murine models HT 

distension sensitive afferents are likely to be mesenteric or serosal afferents, while WDR and 

LT afferents are likely to be muscular or muscular mucosal afferents. This could potentially be 

extrapolated to HVAs innervating the human colon and the appendix, given that afferents 

innervating the appendix and right colon are branches of the same nerve and are from the 

same embryological background (Peiris et al., 2011).  

6.1.2 VALUE OF HVA RECORDINGS 

Using electrophysiological recordings of HVAs to add to existing animal data, and establish 

some in vitro human data, on the efficacy of a potential visceral analgesics before they enter 

into clinical trials is seen as an important step in basic drug development research (Schemann, 

2011). This report describes the efficacy of one compound, which has previously been 

approved for clinical use (subsequently withdrawn for safety reasons), tegaserod, a κ agonist, 

ICI 204, 448 used as a replacement for one compound currently in clinical trials (asimadoline), 
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and one compound which mimics the action of linaclotide, a drug currently in clinical trials, STa 

endotoxin. In clinical trials, all three have reduced abdominal pain (asimadoline not ICI 204, 

448 and linaclotide not STa) (Lefkowitz, 1999, Muller-Lissner et al., 2001, Novick et al., 2002, 

Kellow et al., 2003, Tack et al., 2005, Mangel et al., 2008, Johnston et al., 2009, Lembo et al., 

2010, Lembo et al., 2011). In this report tegaserod significantly attenuated the HVA response 

to VFH probing, and STa reduced the whole nerve HVAs to distension of the appendix. ICI 204, 

448 attenuated but not significantly the HVA response to VFH probing even with low n number 

(n=3). Therefore, this report demonstrates the first evidence that this model may be useful in 

pre-clinical trial drug development research as a means to build more confidence on drugs 

showing potential in animal experiments. However, the inability of tegaserod to reduce the 

HVA response to distension of the appendix highlights the need for careful consideration when 

selecting, the methodology, and the area of the gut used in experiments, as this will determine 

both the afferent pathways examined i.e. vagal, splanchnic, and pelvic, and the subtypes of 

afferents used i.e. serosal/mesenteric vs. muscular/muscular-mucosal. Experiments using 

HVAs therefore need to be specific and well designed to reduce the variability and potential 

for false negative or false positive results.  

6.1.3 EXPERIMENTAL DESIGN 

A disadvantage of using human tissue is the inherent variability in the tissue available for 

experimentation, including type of tissue e.g. ascending vs. sigmoid colon, and disease e.g. 

“normal” cancer tissue vs. IBD tissue.  Initially we used all tissue types as the development of 

the HVA recording technique was the key goal. However, it is important to try to reduce these 

variables in future HVA experiments. Multiple projects using different tissue types and 

diseases should be ongoing simultaneously, such that when, for example, a piece of normal 

sigmoid colon is collected, a different experimental protocol is performed than if a piece of 

ascending Crohn’s disease tissue is collected.  
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 In addition, now that the practicality of characterising HVAs has been demonstrated, it 

should be standard procedure to determine the location of the afferent terminal before 

commencing an experiment. This will allow further experimental specificity, whereby, for 

example, only serosal afferents are used for a particular protocol. These measures will reduce 

variability and incite greater confidence in the experimental results.  

6.1.4 IMPROVING THE PROTOCOL 

This report has used a pharmacological intervention, targeting the second application of a 

mediator. There are aspects of this experiment which would benefit from review. These 

experiments lasted up to 4 hours, allowing for at least 60 minutes between mediator 

applications. Although not excessive, this long experimental protocol had negative 

consequences. 1) A gradual change in action potential shape and size, as has been known to 

occur over long recording periods (Berthoud et al., 2001). This can make offline waveform 

analysis more difficult, time consuming and less accurate. 2) Increased attrition rate with 

longer experiments. On occasion, action potential firing from a HVA will substantially drop 

over a period of hours, or activity will cease completely. Although rare, the incidence of this 

phenomenon increases with longer experimental protocols.  

 These problems can be addressed by reviewing the concentration of drugs added and 

their delivery method. The concentration of BK and ATP used in these experiments were 

chosen so that reasonable amount of HVAs would be responsive, whereby lower doses 

activate a small proportion of HVA fibres. Similarly, a 20ml volume allows the mediator to be 

superfused into the bath in ~5 minutes. Changing the concentration of the drug added or the 

application method may shorten the protocol, allowing for reproducible responses with 

shorter washout periods. For example, it is possible that lower final bath concentrations of 

mediators could be used if the addition of the drug was immediate e.g. squirted into the bath 

using a pipette. This could be followed by applying a small volume of the mediator at final bath 
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concentration into the bath to ensure the bath concentration remains stable for a given 

amount of time. This should be explored in the future. Another potential solution would be to 

apply the drugs locally to a receptive field using a metal ring and silicone grease. However, the 

relative number of suitable receptive fields found in HVAs would make this difficult. 

6.1.5 PATIENT DETAILS 

An important issue not addressed in this report is the inherent variability in patients from 

which tissue is collected. Patients differ in the treatment they have received; they may or may 

not have undergone chemotherapy or radiotherapy for cancer, or may or may not have been 

given infliximab, azathioprine, or steroids to treat their IBD, or may have received different 

anaesthetics before surgery. Similarly, some patients may have gut related co-morbidities, for 

example, patients undergoing a colonic resection for cancer may also have chronic 

constipation or another FGID, which is important information when designing an experiment. 

Furthermore, issues such as the time the patient has been suffering the disease, whether the 

disease is active or in remission, as well as ethnicity, gender and age are all factors that require 

consideration.  

Certainly, it is ideal to collect as much information as possible about each patient from 

which tissue is collected. If necessary this information should help dictate which experiments 

the tissues are most suited for, or could be used retrospectively to develop hypothesis about 

or explain erroneous results. However, given that patients and the disease they suffer from are 

inherently heterogeneous, experimentation on heterogeneous tissue may not actually confer 

any disadvantage, rather it may be more applicable to the real life situation. Routine collection 

of this kind of patient information has only begun. Retrospective collection of patient 

information is possible and is planned for the future.   
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6.1.6 USES OF THE HVA MODEL 

Recording the activity of human afferent nerves innervating the gut is useful translational 

model. This report has confirmed the existence of afferent terminals in the human gut that 

have previously only be described in animal models i.e. mesenteric, serosal, muscular, and 

muscular-mucosal, which will allow the study of distinct functional subpopulations of HVAs 

including a population of afferents likely to be human nociceptors. Furthermore, the function 

and importance of various receptors and channels as well as their respected intracellular 

pathways in nociception, previously only described in animal models, could be elucidate in 

human afferents. Alterations in these mechanisms could then be identified in diseased states 

using IBD and appendicitis tissues (Schemann, 2011). For example, this report demonstrates 

the importance of B2 but not B1 receptors in the activation of HVAs by BK in normal tissue. 

However, there is evidence that the expression of B1 receptors is induced during inflammation 

and injury (Stadnicki et al., 2004), and that they may play a role in chronic visceral 

inflammatory pain (Jaggar et al., 1997). Hence, it would be interesting to investigate the role of 

B1 receptors in afferents from diseased (IBD or appendicitis) human tissue.  

 This HVA model allows the study of a number of mechanical stimuli e.g. VFH probing, 

stretch, mucosal stroking, and luminal distension (appendix). Distension of the appendix allows 

the study of stimuli that is likely to be physiological and non-noxious (i.e. low pressures) and 

noxious stimuli, likely to induce pain (high pressures), and to study the receptors, channels, 

mediators and intracellular mechanisms involved. Indeed, the involvement of 

mechanotransducer channels (e.g. TRP channels, ASICs) in afferents from normal and diseased 

tissue could be examined. 

  Similarly, a number of chemical stimuli can be tested in this HVA model e.g. algogenic 

mediators, inflammatory mediators, cytokines etc. Supernatants can be generated from 

normal and diseased tissue (see APP 1.2.1) and applied to HVAs from normal or diseased tissue 
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to test their ability to activate the nerves. Multiplex analysis of the noxious supernatants could 

reveal mediators involved in the supernatant induced activation of nerves hence, 

substantiating evidence of their involvement in visceral pain, or revealing novel mediators and 

potential clinical targets.  

 This report has described a number of protocols that can be used in HVA experiments 

e.g. repeated mediator application, VFH probing, luminal distension of the appendix. 

Furthermore, the present report has described the efficacy of a number of drugs or drug 

surrogates in reducing the mechanosensitivity of HVAs to either VFH probing (tegaserod) or 

luminal distension (STa endotoxin). Indeed, these HVA protocols could be used to substantiate 

animal data on novel therapeutics to increase confidence in their efficacy before they are 

brought forward into clinical trials. Furthermore, the model could be used to help predict 

afferent nerve specific side effects e.g. changes in visceral sensation (Schemann, 2011), from 

other drugs about to enter clinical trials.  

6.1.7 DIFFICULTIES IN HUMAN TISSUE RESEARCH AND USING THE HVA MODEL 

Working with human tissue and particular the HVA model has inherent difficulties. Establishing 

the infrastructure to collect human tissue requires a lot of work. Ethics needs to be obtained, 

which can be a frustrating process. Furthermore successful collection requires the 

commitment of a number of teams, where research is not a priority, for example surgeons, 

theatre staff and pathology staff. A tissue collection and division procedure needs to be 

implemented which can involve some delicate politics between respective labs collecting 

human tissue. Furthermore, if the collection hospital is far away from the lab suitable 

transportation and a storage solution must be used, and agreed on by each collecting group.  

 Human tissue collection is also time consuming, involving consenting the patient, 

collection of the tissue, gathering of patient information, and database generation and 

management. A relatively low number of specimens, compared to animal models where tissue 
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is readily available, means collecting sets of data takes longer, especially when controlling for 

tissue type and disease. Planning experiments can also be made difficult by unpredictable 

surgery schedules, time of surgery, cancellations etc. The initial difficulty of learning the 

preparation is confounded by the limited tissue supply leading to longer training time for new 

scientists hoping to use the technique. Electrophysiological training on animal models prior to 

using human tissue is therefore desirable.  

 The HVA model also has a number of limitations. For example the model is devoid of 

any central processing which is likely to be important in visceral nociception. Furthermore, it is 

not possible to determine exactly which pathway the nerve you are recording from is in i.e. 

splanchnic vs. pelvic vs. vagal. There is also the small possibility of recording from an IFAN. In 

addition, the predictive capacity of the model extends only to the efficacy of drugs reducing 

the signalling of either chemical or mechanical stimuli, or afferent specific side effects. 

Therefore, it does not have a predictive capacity for all drugs.  

6.1.8 FUTURE PLANS 

Continued work is required to improve the HVA model. Stretch responses should be 

standardised such that a given force can be applied to stretch each tissue. Electrical 

stimulation for identification of the receptive fields of “silent” nociceptors is of particular 

interest. Furthermore, electrical stimulation will allow for the characterisation of afferents 

based on their conduction velocity. The lack of mucosal afferents evident in this report could 

be investigated by using a mucosa up orientation of the tissue to allow better access to the 

mucosal receptive fields. A new drug application method, such as metal ring application will 

allow for specific concentration of drugs to be added to specific receptive fields. This will allow 

experiments with expensive compounds as well as opening the door for experimentation on 

multiple afferents with distinct receptive fields from the same human preparation.  
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 Since mesenteric and serosal afferents are of particular interest, due to their putative 

involvement in visceral nociception, increasing the yield of these afferents would be of 

interest. Mesentery only recordings have been postulated and should be attempted in the 

future. In addition studies examining the receptors involved in nociception in both health and 

disease should be continued e.g. B1 vs. B2 BK receptors, the mechanotransducer channels e.g. 

TRPs, ASICs etc. Finally the predictive capacity of this model should be tested further with 

other potential visceral analgesics.  

6.2 GENERAL CONCLUSIONS 

Our data demonstrates the existence of subtypes of afferents that terminate in the mesentery, 

serosa, muscle and muscular-mucosal layers. Each subtype responds to a distinct subset of 

mechanical stimuli, with specific activation thresholds. Indeed, this report has identified a 

likely population of human visceral nociceptors, namely serosal afferents, which have 

previously shown to be nociceptors in mice. Human serosal afferents do not respond to stretch 

at low intensities, but respond to algogenic mediators such as BK and ATP.  

Furthermore, this report has demonstrated evidence for a “silent” nociceptor 

population in HVAs. Three distinct subtypes of distension sensitive afferents, LT, WDR, and HT, 

have also been characterised based on their pressure activation threshold, firing frequency, 

and the pressure at which their afferent activity plateaus. HT afferents are likely comparable to 

serosal afferents, since they require higher pressures for activation. LT and WDR are likely to 

be comparable to stretch sensitive afferents namely muscular and muscular-mucosa afferents, 

given their responsiveness to lower pressures.  

 This report demonstrates the use of two mechanical protocols in HVAs, VFH probing of 

serosal afferents, and luminal distension of the appendix. The TRPV4 antagonist HC067047 

significantly attenuated the HVA response to VFH probing. This suggests that TRPV4 receptors 

are important in the transduction of mechanical stimuli in serosal HVAs, the likely nociceptive 
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population. In contrast, there was no effect on the whole nerve, LT, or WDR HVA response to 

distension after the application of the TRPV4 agonist, GSK1016790A, or antagonist, HC067047. 

Indeed, no HT afferents were discriminated in these experiments, which may explain these 

results. 

 Furthermore, this report demonstrated that application of tegaserod, shown to reduce 

pain in clinical trials, reduced the HVA response to VFH of serosal HVAs. Another compound, 

ICI 204, 448, used as a surrogate for another drug in clinical trials, asimadoline, exhibited a 

trend for a reduced HVA response to VFH probing of the serosa; however this was only a set of 

3 experiments. Furthermore the whole nerve HVA response to distension was reduced after 

application of the GC-C superagonist STa endotoxin, a compound that mimics the effect of 

linaclotide, which is currently in clinical trials. These results suggest that the HVA recordings 

may be useful in substantiating animal data on the pre-clinical efficacy of a drug, before they 

go into clinical trials.  

 This report demonstrates the broad chemosensitivity of HVAs, showing responses to 

BK, ATP, adenosine, capsaicin, 5-HT, histamine, and PGE2. Indeed, a proportion of afferents 

demonstrate responsiveness to a multitude of these mediators. In addition, repeat mediator 

application protocols for BK and ATP have been developed. These protocols have been used to 

show the involvement of B2 receptors in the activation of HVAs by BK, and the lack of a role of 

adenosine P1 receptors in the activation of HVAs by ATP. P2X receptor antagonists failed to 

reduce the HVA response to ATP suggesting it may not play a dominant role in the activation of 

HVAs by ATP.  

 Post hoc analysis of data revealed a potential hyposensitivity of IBD tissues to 

mechanical stimuli such as luminal distension and VFH probing. Furthermore, post hoc analysis 

revealed that there were no differences in the mechano- and chemosensitivity of HVAs 

whether the tissue was stored overnight at 4°C, or used immediately after surgery.  However, 
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some experiments, e.g. studies examining mucosal and muscular-mucosal afferents, may be 

best done on the day of the surgery. 
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APPENDIX PART 1: THE EFFECT OF 
APPENDICITIS SUPERNATANTS ON  
HUMAN VISCERAL AFFERENTS 

APP1.1  INTRODUCTION 

APP 1.1.1 SUPERNATANTS 

Abdominal pain is a major symptom of diseases such as IBS and IBD. However the exact 

mechanism for this abdominal pain is not fully understood in IBS or IBD, but may be due to 

neuronal activation and the induction of hypersensitivity (Drossman et al., 2002). In IBS, 

excessive mucosal mast cells release mediators which activate ENS neurons and extrinsic 

sensory neurons, which lie in close proximity, and subsequently produce hypersensitivty 

(Bueno et al., 1997, Vergnolle, 2003, Barbara et al., 2006). During active IBD pro-inflammatory 

mediators are released from the colon wall, including the mucosa, and can activate extrinsic 

sensory fibres, either directly or through the modulation of other receptors and channels e.g. 

TRP and Nav channels, causing increasing neuronal excitability and hypersensitivity (Ibeakanma 

and Vanner, 2010). Supernatants generated from colonic mucosal biopsies taken from IBS and 

IBD patients, and containing naturally occurring disease mediators, have been investigated for 

their effects on neuronal firing and excitability (Nasser et al., 2014).  

 Using a voltage sensitive dye it was demonstrated that IBS supernatants can activate 

enteric nerves (Buhner et al., 2009, Buhner and Schemann, 2012). IBS supernatants can also 

activate extrinsic afferent nerves. Two separate studies showed that IBS supernatants applied 

to isolated nociceptive DRG neurons mobilised the release of calcium in a calcium imaging 

assay (Barbara et al., 2007, Cenac et al., 2007). In addition, IBS-D supernatants increased action 

potential firing in patch clamped mouse nociceptive DRGs (Valdez-Morales et al., 2013). IBS 

supernatants applied to extrinsic afferent nerves innervating the rat jejunum caused a robust 
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increase in action potential discharge (Barbara et al., 2007). Rat jejunal extrinsic afferents were 

also activated by mucosal 5-HT isolated from IBS colonic mucosal biopsies (Cremon et al., 

2011). Similarly, supernatants generated from patients with active UC increased neuronal 

excitability and spike discharge when applied to isolated DRGs (Ibeakanma and Vanner, 2010). 

This data suggests that mediators released by the mucosa in both IBS and IBD can directly 

activate sensory neurons. Furthermore, intracolonic administration of IBS supernatants 

induced both allodynia and hyperalgesia to colorectal distension in mice (Cenac et al., 2007).  

 To date no studies have examined the effect of supernatants generated from acutely 

inflamed appendices on neuronal activity. Appendicitis is painful and usually represents an 

acute inflammatory event, one which may be governed by separate mechanisms to those 

involved in more chronic visceral pain states associated with IBS and IBD.  
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APP 1.1.2 AIMS 

 Examine the effects of supernatants generated from an acutely inflamed appendix on a 

human afferent nerve recorded from a naïve, uninflamed appendix specimen  
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APP 1.2 METHODS 

APP 1.2.1 GENERATION OF SUPERNATANTS 

Once in the laboratory, the tissue was weighed (EK-600, A & D Instruments Ltd). The tissue was 

then incubated in Krebs buffer (NaCl 124mM, KCl 4.8mM, NaH2PO4 1.3mM, MgSO4.7H20 

1.2mM, CaCl2 2.5mM, Glucose 11.1mM, NaHCO3 25.0mM), 2.5ml for each gram of tissue, at 

37°C for 25 minutes, while being continuously carbongenated (95% O2, 5% CO2) (Raithel et al., 

1999, Barbara et al., 2004, Barbara et al., 2007). The tissue was then removed and the 

supernatants were centrifuged at 2000rpm for 10 minutes, and subsequently decanted into a 

new falcon tube. The supernatants were then aliquoted and stored or stored in the falcon 

tubes, at -80°C until needed. 

APP 1.2.2 APPLICATION OF SUPERNATANTS 

In 1 experiment, human appendicitis supernatants were applied to a “normal” human 

appendix. The limited quantity of appendix supernatants that were available for use restricted 

the volume of supernatant that could be used. The human tissue bath was therefore reduced 

in volume from ~100ml to ~30ml, by pinning a block of styrofoam at either side of the 

appendix in the bath. In flow and out flow tubing was adjusted accordingly. The voltage of the 

inline heater was turned down, and a thermometer was used to ensure an appropriate 

temperature was maintained. The human appendicitis supernatants (6ml) were then 

superfused into the bath. The supernatants were applied to a naïve preparation that had not 

received any prior chemical or mechanical stimuli.  
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APP 1.3 RESULTS 

APP 1.3.1 HUMAN APPENDICITIS SUPERNATANTS 

Supernatants that were generated from a human inflamed appendix were applied to a HVA 

recording made from an appendix removed during colon cancer surgery. These supernatants 

gradually increased the HVA firing rate (average Δ firing rate 15 minutes after application 17.4 

spikes 20s-1 vs. 30 mins 29.0 spikes 20s-1 vs. 45 mins 36.8 spikes 20s-1) (figure App.01).  
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Figure App.01: Human appendicitis supernatants generated from an inflamed appendix 

activate HVAs. Firstly, the bath volume was reduced (to ~30ml). Human appendicitis 

supernatants (6ml) were applied to a HVA recording from a “normal” naïve appendix from a 

cancer resection specimen. The supernatants gradually increased HVA firing. A) A rate 

histogram showing the increase in afferent activity after appendicitis supernatant application. 

B) A bar graph demonstrating the increase in afferent activity over time. 
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APP 1.3.2 SUMMARY OF RESULTS 

 Application of human appendicitis supernatants activated HVAs from a naïve 

uninflamed human appendix  
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APP 1.4  DISCUSSION 

APP 1.4.1 SUPERNATANTS 

This report demonstrates that supernatants generated from acutely inflamed appendices 

gradually increase the activity of HVAs from a naïve uninflamed appendix. To our knowledge 

this is the first time supernatants from appendicitis have been shown to activate extrinsic 

afferent nerves in any species. The gradual increase of HVA activity evident is similar to the 

gradual increasing activity in the plateau phase of the rat jejunal afferent response to PGE2, 

supposedly mediated by the EP2 receptor (Haupt et al., 2000). In addition PGE2 gradually 

increases HVA activity. Appendicitis supernatants may well contain high levels of PGE2, indeed 

PGE2 release is elevated in chronic inflammatory conditions e.g. IBD (Hommes et al., 1996). 

However, the activation of HVAs by appendicitis supernatants is likely to be due to a myriad of 

mediators and cytokines. Determining what is contained in such supernatants would be of 

interest. Supernatants generated from IBD and IBS tissues could also be tested. Furthermore, 

examining effect of these supernatants on the HVA response to mechanical stimuli is 

important.  

 This report has demonstrated the activation of HVAs by supernatants generated from 

an acutely inflamed appendix. The use of supernatants from inflamed human tissue could be a 

useful tool to elucidate the mediators that are upregulated in inflammatory conditions, and 

their direct and sensitising effects on extrinsic afferent nerves innervating the human gut. 

Indeed, it is quite feasible to acquire supernatants from tissues from a variety of diseases 

including UC, CD, IBS, and appendicitis.  
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APP 1.5  CONCLUSION 

Appendicitis supernatants can activate HVAs. Further studies examining the effects of 

supernatants, generated from diseased tissues such as appendicitis, CD, and UC, on HVAs are 

warranted. 
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APPENDIX PART 2: THE EFFECT OF  
TEMPERATURE ON HUMAN VISCERAL  
AFFERENTS 

APP 2.1  INTRODUCTION 

APP 2.1.1 TEMPERATURE 

Afferent fibres from a number of nerves, e.g. vagus, splanchnic, saphenous, have been shown 

to be thermosensitive responding to shifts in both axonal and nerve ending temperature 

(Paintal, 1963, Paintal, 1965b, Paintal, 1965a, Franz and Iggo, 1968, Gurin and Itina, 1992, Li et 

al., 2002). One study demonstrated a distinction between the splanchnic and vagus nerves of a 

cat in their response to in vivo cooling of the gastric mucosa (Gurin and Itina, 1992). The 

spontaneous activity of the splanchnic nerve increased as the temperature of the mucosa 

decreased. Conversely, mucosal cooling led to a decrease in spontaneous discharge from the 

vagus nerve (Gurin and Itina, 1992). In another study, microfiber recordings were made from 

peripheral nerves projecting from excised L4 and L5 rat DRGs in vitro (Li et al., 2002). They 

found that ~95.7% of L4/5 DRG neurons were thermosensitive, with the majority (83.7%), 

responding to a decrease in temperature with a reduced spontaneous firing rate.  A minority 

responded to a reduced temperature with an increase in their spontaneous discharge (12%) (Li 

et al., 2002). This project aimed to determine whether HVAs were responsive to gradual 

changes in tissue bath temperature.   
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APP 2.12 AIMS 

 Examine the effect of temperature on HVA firing 
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APP 2.2  METHODS 

APP 2.2.1 THERMOSENSITIVITY  

To determine if HVAs were sensitive to a change in the temperature of the krebs solution in 

the bath, the in-line heater was turned off and the bath allowed to cool down to close to room 

temperature (24°C). Once the bath had reached 24°C, the inline heater was switched back on. 

The HVA firing rate was recorded at each degree point as the bath temperature decreased and 

while the preparation heated back up to 32°C. A response to temperature was defined as at 

least a 30% change in spontaneous activity rate (spikes s-1) (Xie et al., 1995). The mean firing 

rate per second over the previous 60 seconds was calculated for each unit at each degree 

point.  The means of the highest temperature (30-32°C) and the means of the lowest 

temperature (24°C) were then compared using a paired t-test.  
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APP 2.3  RESULTS 

APP 2.3.1 THERMOSENSITIVITY 

HVAs were sensitive to a change in bath temperature (N=3, n=7). 7/7 units responded to a 

gradual decrease in bath temperature with a decrease in their spontaneous activity rate. The 

highest HVA firing rate was evident at 32°C, 4.72±2.53 spikes s-1. At the lowest temperature, 

24°C, the mean unit firing rate dropped significantly to 1.22±0.91 spikes s-1, p<0.05. 7/7 units 

responded to a gradual return of bath temperature to 32°C with a recovery of their 

spontaneous activity rate back towards baseline levels (before the bath temperature was 

decreased). The peak HVA firing rate after temperature recovery was evident at 32°C, 

3.51±1.90 spikes s-1 (figure App.02).  
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Figure App.02: HVAs were sensitive to changes in Krebs temperature in the tissue bath. A-B) 

The HVA firing rate reduced as the temperature of the Krebs in the tissue bath fell from 32°C 

to 24°C. As the Krebs was heated back up to 32°C the rate of HVA firing rate recovered back to 

baseline, as is evident in the rate histogram (A), and raw trace (B). C) Shows the recovery of 

the HVA firing rate as the temperature increases.  
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APP 2.3.2 SUMMARY OF RESULTS 

 HVAs are sensitive to a change in bath temperature 
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APP 2.4  DISCUSSION 

APP 2.4.1 TEMPERATURE 

This project has demonstrated that HVAs are thermosensitive, and in this report they all fall 

under the previously described category of “warm sensitive” afferents. That is they respond to 

a gradual decrease in tissue bath temperature with a reduction in spontaneous activity rate, 

and vice versa. In rat DRG microfiber recordings a separate population of “cold sensitive” 

afferents were described, with response characteristics opposite to that of “warm sensitive” 

afferents. No “cold sensitive” HVAs were identified. In the present study, the temperature of 

the HVA terminals was reduced. However, “cold sensitive” afferents were identified by cooling 

the somata of rat DRG neurons (Li et al., 2002). However, this may not be an issue since, both 

axons and terminals are both sensitive to changes in temperature (Teliban et al., 2011). It is 

more likely that the low HVAs tested for thermosensitivity (N=3, n=7), and the relative rarity of 

these “cold sensitive” afferents in rat DRG (12%) would account for the lack of “cold sensitive” 

HVAs. 

  TRP channels, including TRPV1 (heat) and TRPA1/TRPM8 (cold) have been implicated 

in the sensing and transduction of thermal stimuli (Caterina et al., 1997, Story et al., 2003). In 

the future, it would be of interest to examine the role of these channels in the transduction of 

thermal stimuli in HVAs.  
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APP 2.5  CONCLUSION 

HVAs respond to changes in bath temperature. In the future, the role of various heat sensitive 

channels on the transduction of thermal stimuli in HVAs could be examined.  
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APPENDIX PART 3: NOTES ON TISSUE  
COLLECTION 

APP 3.1  ETHICS AND DATA STORAGE 

Considerable time and effort goes into collecting human tissue before an experiment can 

begin. A number of procedures need to be in place for the efficient collection and use of 

human tissue from surgery. These range from obtaining ethics approval to collection of surgery 

schedules and tissue disposal. It requires basic understanding and continual communication 

between researchers, surgeons, pathologists and theatre staff. The human tissue act in 2004 

outlined the need for both ethical approval and the patient’s informed consent before tissue 

can be used for research. The patients consent also provides the rights to ownership of the 

data acquired from the tissue from experimentation (Sanger et al., 2013). Researchers should 

ensure that there is no direct link between any particular piece of tissue used during 

experimentation, or any resulting piece of data, and the identity of any patient (Sanger et al., 

2013).  

APP 3.2  OPERATING SCHEDULE 

A fundamental aspect of collecting human tissue is knowledge of operating schedules. Elective 

colo-rectal surgeries operate on a weekly schedule, with most surgeons having 1 list each 

week, some having 1 list every 2 weeks. Operating schedules can be obtained from the NHS 

database by a NHS staff member and passed onto the research team. The operation schedule 

is subject to considerable change throughout the course of a week. Some reasons for changes 

in the operating schedule were, lack of high dependence unit, (HDU) beds, patients cancelling 

their procedures, and patients not being fit for surgery. Where possible, to minimise these 

changes, operating schedules were collected 1 day in advance. Surgical procedures of interest 

include, right and left hemicolectomy, anterior resection, small bowel resection, subtotal 
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colectomy, completion colectomy, proctocolectomy, APER, ileocecal resection, appendectomy 

for cancer, CD, UC, DD, trauma, chronic constipation, appendicitis. The operating schedule was 

then distributed via email to all researchers who hold ethical approval and are interested in 

collecting human tissue. No patient identifiable information was revealed. This gave 

researchers sufficient notice to plan experiments, ready their tissue collection kits and 

organise a party to consent the patient the morning of the surgery. 

APP 3.3  CONSENT 

A rota for consenting patients was adhered to, which included members of each lab interested 

in human tissue collection. Researchers needed to collaborate fully in this sense as each group 

may have a different consent form, meaning multiple consent forms may need to be signed by 

the patient.  Researchers must have obtained a research governance framework certificate 

from the college, and must have shadowed a doctor consenting a number of times, before 

they are deemed fit to consent themselves. Researchers unfamiliar with working in a hospital 

environment may require time before becoming comfortable with interacting with patients 

about to undergo major surgical procedures. In the majority of cases patients were consented 

on the morning of their surgery, as this is when they arrived for surgery. On occasion in-

patients could be consented the day before their surgery.  Patients arrive into a ward at 

around 7am. Researchers aim to visit them by 8am given the first patient on the list is sent for 

by theatres at 8:30am. A basic explanation of the research and the procedure of how we 

obtain tissue after the operation is given and any patient questions answered, before the 

patients decides to whether to consent. After consent, a copy of the consent form as well as an 

information sheet containing a lay explanation of the research is given to the patient.  

APP 3.4 EMERGENCY OPERATIONS 

Tissue was also collected from emergency operations. These are usually restricted to 

suspected appendicitis cases but can include bowel resections. To find out about such 
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operations, researchers must obtain the emergency operating list each morning from theatre 

reception. The process is similar to elective procedures henceforth. However, emergency 

operations are less predictable as more serious cases can be intermittently admitted and given 

higher priority than the procedure of interest. Furthermore, and not to be underestimated is 

the turnover of emergency theatre staff, both from day to day and shift to shift. This means 

unfamiliarity with researcher needs i.e. fresh unfixed tissue, and a higher likelihood of 

forgetting to contact researchers when the tissue has been removed. Researchers must 

intermittently ring theatres to remind them of their interest in a particular procedure. 

APP 3.5 INFORMING THEATRES 

After the patient has given consent, an email is sent to inform the other researchers interested 

in the tissue. At approximately 10am, a phone call is placed to the appropriate theatre. 

Theatre staff are asked to ring researchers on a dedicated “tissue hotline” phone when the 

tissue specimen is ready for collection. It is requested that the specimen is not put into 

formalin prior to ringing researchers. A laminated sign with the “tissue hotline” phone number 

is given to each operating theatre to minimise confusion. Theatre staff and surgeons must be 

aware that the earlier they call after tissue removal the healthier the tissue is likely to be, 

avoiding unnecessary damage due to autolysis, ischemia etc.. Surgeries of interest mainly 

happen in the same theatres each week. This means that the researchers are dealing with the 

same theatre staff each week. The importance of this cannot be understated, since theatre 

staff and researchers get to know each other and their respective requirements. This leads to a 

much more reliable collection procedure, whereby very few specimens are missed or put into 

formalin, which was a considerable problem at the beginning of this project.  

APP 3.6 EVOLUTION OF TISSUE COLLECTION PROCEDURE 

After researchers receive a call on the “tissue hotline”, each lab is called to inform them the 

specimen is ready for collection. Tissue collection used to involve a representative from each 
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research group as well as a research surgeon scrubbing up and visiting theatres. Here, a 

forceps and scissors are borrowed from theatre and the specimen was dissected and divided 

between research groups in the sluice. A surgeon was necessary to cut the tissue as often 

cancers have to be identified and appropriate margins defined. An agreement with the 

pathology department, allowing researchers dissect the tissue in the sluice before the 

specimen reaches the pathologist was in place. On occasions when the cancer could not be 

identified by the research surgeon, the operating surgeon was required to demonstrated what 

portions of specimen can be taken. Again this highlights the communication and 

understanding required between the research team and the surgical team. The specimen is 

then stitched up and placed in formalin. Tissue collection details were filled out on the 

pathology form.  

However, a meeting in late 2012 between pathologists, surgeons and researchers led 

to a change in the tissue collection process. Pathologists wanted to put in place their own 

standard operating procedure to ensure each specimen was dealt with appropriately and 

accordingly based on the type of tissue and the disease in question. All specimens were now to 

go through the core pathology department. Furthermore, pathologist requested photographs 

of some specimens before any tissue was taken, which could only be done using the core 

pathology imaging system. The core pathology department therefore had a much greater role 

in the new (and current) tissue collection procedure.  

Once again, when researchers receive a call on the “tissue hotline” from theatre, each 

lab is called to inform them the specimen is ready for collection. A further call is placed to the 

core-pathology department to notify them of the incoming tissue. One or two representatives 

from the core collection groups then go to theatres to collect the specimen. At theatres the 

researchers stand in a hallway next to the doors that lead to theatres. This hallway does not 

require researchers to be scrubbed, and hence saves time. A member of the theatre staff bring 

the specimen in a labelled pot, along with a completed pathology form, to the researchers in 
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the hallway. The specimen is then brought to pathology, where a member of each research 

group is waiting. A trained biomedical scientist, working in the core-pathology department, 

was on-hand to dissect the tissue. The specimen was macroscopically examined and the area 

where the mesentery was cut from the patient during surgery marked with black ink. On 

occasion a photograph of the specimen was obtained. The specimen was then opened on the 

anti-mesenteric border, and cleaned out with water. The tumour or other disease was then 

identified by the biomedical scientist. Another photograph was taken if necessary. Areas of 

tissue available for research were then identified by the biomedical scientist and cut 

appropriately. Tissue was taken at least 10cm from any tumour. In addition, the specimen had 

to have continuity after tissue was taken, and a margin of about 3-4cm was left intact at either 

side of the tissue. Tissue removed for electrophysiology was taken carefully to ensure the 

mesenteric attachment to the ileum/colon/appendix wall was undisturbed, to ensure intact 

blood vessel arcades. After dissection tissue is placed in ice cold carbongenated Krebs buffer 

and transported to the laboratory on ice.  

Tissue yield was noticeably lower during the first few months of this new collection 

system, however, after the initial slow down, tissue yield return back to normal levels. The new 

system also had the advantage of taking the responsibility of cutting the tissue away from the 

researcher, and returned it to the appropriately trained core-pathology staff. Of note was the 

marked difference between the amount of research tissue received from each biomedical 

scientist. This was due to a number of reasons including the biomedical scientists self-

perceived lack of training/knowledge of the tissue pathology and therefore confidence in 

taking research specimens, especially related to cancer specimens, the researchers level of 

priority in the eyes of the biomedical scientist compared to their other daily tasks, and the 

relationship between the researcher and biomedical scientist. In addition, core pathology 

working hours can sometimes be a limitation to the collection of human tissue. Specimens 

occasionally came out late in the evening i.e. after normal working hours and usually between 



386 
 

17:30-20:00. The core pathology team could sometimes provide cover for these specimens; 

however, in some cases nobody was available to dissect the specimen, leaving the tissue 

uncollected. Communication and a good working relationship helped reduce the number of 

specimens lost for this reason.  

The number of patients consented was consistent for the 1st and 2nd years of 

experimentation, 97 and 93 respectively. Similarly the collection rate was comparable between 

the 1st and 2nd years, 62 (63.9%) and 61 (65.6%) respectively. The last year has seen an increase 

in both the number of patients consented (119) and the number of specimens collected (80), 

and a comparable collection rate to previous years (67.2%) (figure App.03). This is primarily 

due to a focus on collecting more specimens from a second hospital, Whipps Cross University 

hospital, and better communication between researchers and pathologist/biomedical 

scientists regarding research needs.   

APP 3.7 ADVANTAGES OF GETTING SURGEONS ON-BOARD 

Although signing multiple research consent forms is not the ideal situation for a patient about 

to undergo surgery, it is the reality until a combined ethical approval is obtained. An enhanced 

involvement of surgeons in the research environment would be desirable. A more vested 

interest by surgeons could lead to, improved knowledge of operation schedules, including last 

minute changes to the operation schedule, consent of the relevant patients on presentation to 

the surgical clinic, which would reduce patient stress the day of the procedure. Furthermore, a 

greater knowledge of un-tapped emergency cases could be obtained from surgeons sending 

patients for surgery while on-call. Indeed, there has been considerable improvement in co-

operation with surgeons, due mostly to the opening of the National Centre for Bowel Research 

and Surgical Innovation, which houses researchers and surgeons together, in an institute with 

state-of-the-art research labs. Bi-weekly meetings by the heads of each research and surgical 
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group ensure deep understanding of the needs and interest of each group, which inspires 

further co-operation. 

APP 3.8 TISSUE DISPOSAL 

Disposal of human tissue was done in accordance with the human tissue act 2004. After 

experimentation, ileum and colon was fixed in formalin and kept in the fridge. For disposal, 

intestinal tissue was triple contained and placed in biohazard bags for incineration. Appendix 

specimens were returned to pathology after experimentation. A full pathology form must be 

filled out, and the appendix fixed in a special labelled pot of formalin supplied by pathology.  

 

 

 



388 
 

 

Figure App.03: Illustration of numbers of patients consented, tissues collected and recordings 

made over 3 month periods starting from June 2011 to August 2011. A) Demonstrates the 

number of patients consented and the number of specimens successfully collected. B) Tracks 

the percentage of consented patients from which tissue was collected and the percentage of 

successful recordings made from these tissues. C) Shows the number of collected tissues and 

the number of successful recordings made from these tissues. 

A

B
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APPENDIX PART 4: NOTES ON HUMAN 
VISCERAL AFFERENT RECORDINGS 

Recording from HVAs was initially quite difficult and problematic. Twenty-five recordings were 

attained in the first year, a success rate of 57.5%. Furthermore, recordings routinely took 3-5 

hours to attain. Year 2 represented a significant improvement, recordings were made from 45 

tissues (52 recordings), and a success rate of 88.2%. Recordings also became more routine and 

took less time to acquire. This improvement continued into the third year with a 98.7% success 

rate and a total of 80 recordings from 74 tissues. The overall recording rate for 3 years was 

85.5%.  

The gradual refinement of this technique can be largely attributed to better 

identification of the nerve bundles in the mesentery. A general scan of the cut edge of the 

mesentery, mainly in the proximity of blood vessel arcades, was generally a better approach to 

finding a nerve, than immediate dissection. A scan of the mesentery often revealed the tips of 

nerves poking out, made more visible by ensuring a black background behind the relevant area 

of mesentery. Excessive dissection causes fat to be released into the bath, decreasing visibility, 

and liberating strands of connective tissue, which proceed to plot their invasion of your 

electrode. Excess fat was siphoned off by increasing pump speed during dissection. Indeed, the 

location of nerve bundles could be predicted in some tissues. For example, in the appendix, 

nerve bundles were located 3 quarters of the way up the caecal side of the mesentery, beside 

the biggest blood vessel arcade. Dense white spots of tissue near the cut end of the blood 

vessels in the mesentery invariably marked the location of a nerve bundle, and often as many 

as 3-4.   

Initially dissecting a length of nerve was mostly unnecessary. Instead the sheath on the 

visible nerve needed to be removed, by grabbing the top of the nerve and pushing the whiter 

“fluffy” connective tissue down, like taking off a sock. This method revealed multiple 
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millimetres of the nerve, as it pushed the connective tissue and fat away from the base of the 

nerve, enough for 2-3 recording attempts. This unveil was usually limited by branching of the 

nerve which halted the retreat of the connective tissue sheath. When dissection was necessary 

and more of the nerve needed to be revealed, a method of dissecting around the nerve was 

employed. This involved dissecting away fat and connective tissue all around the nerve, such 

that a thick strand composed of nerve, connective tissue and fat remained isolated from the 

rest of the mesentery. Only then should the mesenteric fat and connective tissue be removed 

from the nerve (mainly using the “sock” method). A helpful teaching analogy used was digging 

a deep moat around a tree and its roots, before carefully stripping back the bark to reveal the 

wood underneath. Generally a few millimetres of “naïve” nerve (nerve that had not been 

previously sucked) was dissected out of the mesenteric fat and connective tissue sheath, 

before recordings were attempted. On occasion, if after a prolonged search, active nerves 

were not evident, a crude last chance dissection method was used. This involved using reverse 

dissection to pull and tease apart thick strands of clumped connective tissues, intermittent 

with a microscope scan to try and identify any new nerves freed up by the process.  

Nerve bundles were translucent, with a white tiger stripe pattern, not to be confused 

with the similar looking but whiter connective tissue strands. Tiny pieces of thin black plastic 

for colour contrast were used to help with nerve bundle visibility and in distinguishing 

between the different strands in the bath. Nerve bundles exhibited considerable branching, 

both convergent and divergent, usually the latter, as the nerve tracks towards the wall of the 

gut. Thicker and thinner strands of these nerve bundles demonstrated activity, with no clear 

relationship between diameter and firing rate, although no hard data was obtained. A policy of 

sucking up the larger nerve first was employed.  

The importance of tissue positioning and pinning in the bath was initially 

underappreciated. There must be enough space on each side of the tissue to apply stretching 

stimuli. Similarly the tissue needed to be robustly pinned on 1 side if it was to withstand any 
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force encountered during nerve characterisation protocols, mainly circumferential stretch. If 

only pinned at the corners, the tissue would shorten gradually overtime. Insufficient pinning, 

coupled with long protocols meant the tissue shortened pulling the nerve out of the electrode 

and ruining the recording and protocol. Using mosquito pins around the sides of the tissue can 

help avoid this, without damaging extensive parts of the tissue. It was important to ensure the 

full thickness of the bowel wall was pinned, as mucosal pinning did not prevent tissue 

shortening.  

The practice of cauterising the tissue during laparoscopic surgeries, and thereby 

damaging the nerves, was thought to be a reason for the initially low recording rates. Tissue 

from open procedures, where cautery was not practiced, was therefore preferred. However, a 

number of successful recordings from cauterised tissue proved this not to be the case. Nerves 

were found to be active just millimetres away from the cauterised region (figure App.04). 

Initially a small volume (~20ml) tissue bath was used for HVA recordings. This was only 

suitable for small pieces of human tissue with thin mesentery. If the tissue was too thick a lot 

of the mesentery protruded above the top level of the Krebs. In addition, the bath did not have 

facility to cannulate appendix specimens for distension preparations. Smaller volumes of drugs 

were added to preparations done in this bath, usually applied using a pipette straight over the 

tissue, but occasionally superfused into the bath. A bigger tissue bath (~100ml) was custom 

made, with accompanying cannula attachments. The bath was wider, longer and deeper and 

allowed even thick preparations to be completely submerged in Krebs. Drugs from then on 

were almost exclusive applied by bath superfusion.   

Local application of drugs to a nerve’s receptive field using a metal ring, as previously 

used in animal electrophysiological recordings was trialled. It proved difficult to place the ring 

steadily and securely on the tissue surface, due to the relatively unequal thickness and uneven 
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surface of the human tissue. However, better pinning and the use of silicone gel to seal the 

bottom of the metal ring has made using this method for future experiments a possibility.  
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Figure App.04: Appendices from an emergency appendicectomies demonstrate HVA activity 

despite considerable cauterisation of its mesentery. A) Appendix in tissue bath. The black circle 

indicates the region of the mesentery that was cauterised during surgery. B) Raw trace of HVA 

activity from the same cauterised appendix. This demonstrates the feasibility of recordings 

from even heavily cauterised tissue, provided some intact mesentery remains. 
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