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Abstract

Unprecedented anthropogenic changes are causing drastic shifts in biodiversity, species
ranges and the survival of plants. Understanding which attributes put plants at risk is of vital
importance for safeguarding the natural world. Genome size is a fundamental plant attribute
with strong links to a variety of plant traits and its study opens novel areas of ecological
research, leading to a new understanding of plant responses to environmental changes.

The aim of this thesis is to consider the role that genome size plays at landscape scales. To
achieve this aim, I assembled an inventory of the flora of Britain and Ireland and analysed
species distribution patterns within the flora over time, together with information on land use,
climate and nutrient deposition changes across the past three decades.

Distinctive spatial patterns of mean genome size per hectad of Britain and Ireland were found
across time, with a steady increase in mean genome size since the 1980s. A particular driver of
the patterns appears to be land use, with areas especially impacted by humans containing
plant communities characterised by larger mean genome sizes.

Genome size, along with a set of functional traits and niche descriptors, were all informative
characters in a random forest algorithm predicting species trends, achieving 70% prediction
accuracy. The effect of genome size was found to be indirect, mediated via its influence on
functional traits, which in turn lead to differing niche requirements and temporal trends.
The results suggest that the effects of genome size on plant growth, fitness and response to
the abiotic environment impacts landscape scale species compositions. Genome size emerges
as an important meta-trait to consider when monitoring and anticipating biodiversity changes
in response to environmental change and could be used in models that guide conservation

efforts.



Glossary

Category

Term

Description

Native status

Native

Species which colonised the study region
naturally since the last glaciation or that
were present before that point

Non-native/alien

Species which were most likely introduced
by human activity, they are further
subdivided into archaeophytes and
neophytes

Archaeophyte Non-natives that were introduced by
human activity before the year 1500, further
subdivided into colonist, cultivated and
denizen

- colonist Weedy species occurring on open ground

- cultivated  Deliberately cultivated species

- denizen Species with near-native behaviour, able to
compete with natives

Neophyte Non-natives that were introduced by
human activity since the year 1500

- casual Not naturalised, persist only for a short time

- naturalised Established and self-perpetuating

- survivor Not naturalised, but able to persist for long
times, often as relics in locations where they
were planted

Neonative Species that arose from natural

hybridisation between either a native and a
non-native or between two non-native taxa,
or that evolved from another neonative or
non-native species within Britain & Ireland

Genome size

Genome size

The amount of DNA in an unreplicated
nucleus as estimated by flow cytometry,
given as 1C (haploid nucleus) and 2C
(diploid nucleus), measured in picograms
(pg) or mega base pairs (Mbp)

Realised niche

Ellenberg
indicator values

Ordinal data for the preference of a species
within an environmental gradient; data
given for light, moisture, soil acidity, soil
fertility, salt and temperature (each species
is assigned a value (typically from 1 to 9)
depending on its predicted preference
within the environmental gradient);
concept developed by Ellenberg (1974)

Life strategy

CSR strategy

Functional classification of each species’
propensity for being a competitor (C),
stress-tolerator (S) or ruderal (R);
developed by Grime (1974)




Life-form
sensu
Raunkiaer

(1934)

Hydrophyte

Aquatic herb, buds are submerged in water
or in soil underneath water, leaves may float
or be submerged, flowering parts may
emerge (= ‘aquatics’)

Helophyte

Buds are fully submerged in water or within
water-saturated soil, flowers and leaves
emerge fully (= ‘emergents’)

Geophyte

Above ground parts die outside the growing
season, plant survives as a bulb, rhizome,
tuber or root bud

Hemicryptophyte

Herbaceous stems that tend to die back
outside the growing season, buds survive on
or just under the soil level, includes many
biennial and perennial herbs

Therophyte

Life cycle is completed within one growing
season, surviving as a seed until the next
growing season (= ‘annuals’)

Chamaephyte

Herbaceous or woody stems, buds above
soil, but not exceeding 50 cm (= ‘shrubs’)

Phanerophyte

Persistent, woody stems, buds usually 3 m
or more above ground, trees and larger
shrubs (= ‘trees’)
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An introduction to genome size and ploidy

Setting the scene

Since the molecular revolution, modern biology has been dominated by sequence-based
studies of genomes. Consequently, while the content of genomes is increasingly well
understood, comparatively less attention has been paid to a fundamental characteristic of
every living being’s genetic material: its amount. Indeed, genome size is often considered
useful only in the context of estimating costs of sequencing projects (Li & Harkness, 2018),
and frequently not even then. However, the ‘nucleotype hypothesis’ (Bennett, 1972)
established the idea that the size of the genome itself, rather than just the information
encoded within it, might have fundamental effects on the phenotype. While across
eukaryotes most genomes are small, ranges in genome size are staggeringly large in a few
groups, as exemplified in the diverse clade of flowering plants, where genome sizes range
at least 2,400-fold (Pellicer et al., 2018). Given this span, the notion that genome sizes
might affect plant evolution, physiology and ecology in a fundamental way suggests itself
and questions regarding the impacts of genome size on plants’ abilities to establish, adapt
and dominate are gaining more traction (e.g. Guignard et al., 2016; Simonin & Roddy, 2018;

Suda et al,, 2015).

Some definitions

Defining genome size is not an easy matter, with its terminology being unclear until
Greilhuber et al. (2005) gave stable definitions for the terms used in the context of DNA
amounts. Since then, genome size has been defined as the total amount of DNA within an
organism’s unreplicated gametic nucleus, based on chromosome numbers and measured

in units of mega base pairs (Mbp) or picograms (pg); one pg equals 978 Mbp (DoleZel et
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al.,, 2003). The C-value, often used synonymously with genome size (Bennett & Smith,
1976), can be considered the DNA amount typical for a specific genotype (Bennett &
Leitch, 2005), with the numeric value attributed to it corresponding to the amount of DNA
in the nucleus as the cell progresses through the cell cycle (i.e. 1C, 2C and 4C
corresponding respectively to the amount of DNA in the nucleus of (i) a gamete, (ii) a
somatic cell following fertilisation, and (iii) a cell that has undergone DNA replication (S
phase of cell cycle) but not yet entered mitosis or meiosis). The C of C-value was clarified
by the inventor of the abbreviation (Swift, 1950) to stand for ‘constant’, but a suite of
genetic processes means it is not constant for a species over evolutionary time, nor indeed
need it be constant within species. Nevertheless, in large parts the C-value of a species is

a good indication of the genome size in the majority of individuals belonging to it.

The size of a genome itself is determined by genetic processes in the species’ ancestry,
including whole genome multiplications (especially in plants; Van de Peer, Mizrachi &
Marchal, 2017; Wendel, 2015), the multiplication of repetitive, non-essential DNA
sequences (often termed junk’ or ‘selfish’ DNA), caused - for the most part - by
transposable elements (Leitch & Leitch, 2013; Chénais et al.,, 2012; Elliott & Gregory, 2015),
and the frequency of recombination-based DNA removal (Schubert & Vu, 2016; Pellicer et

al., 2018).

The role of genome size and ploidy in angiosperm evolution

Charles Darwin famously considered the rapid radiation of the angiosperm clade an
‘abominable mystery’, as he lamented to JD Hooker in 1879 (Darwin, 1903; Davies et al.,
2004; Buggs, 2021). Genome duplication events are believed to be one driving force behind
this burst in diversification (Wendel, 2015; Escudero & Wendel, 2020; Fox et al., 2020),

since they create opportunities for example for subfunctionalisations and
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neofunctionalisations of duplicated genes (Wood et al., 2009; Tank et al., 2015; Van de Peer
et al,, 2017; Landis et al,, 2018; Ren et al., 2018; Sandve, Rohlfs & Hvidsten, 2018). Fossil and
genomic data show that all modern angiosperms have polyploid ancestors arising from
one or multiple whole genome duplication events, even if they are now considered to be
diploid (Masterson, 1994; Wood et al, 2009; Jenczewiski et al., 2013). They are thus
palaeopolyploids (Van de Peer, Maere & Meyer, 2009; Jiao et al., 2o11; Paterson et al., 2012).
Roughly a third of modern angiosperms and nearly all economically important crops are
polyploids and it is estimated that c. 15% of all angiosperm speciation events involve ploidy

changes (Wood et al., 2009).

Partly caused by this history of genome duplications, the 1C-values in flowering plants
range at least 2,400-fold, with the smallest known genome containing a mere 0.07 pg/1C
of DNA in Genlisea tuberosa (Fleischmann et al., 2014) and the largest, of Paris japonica
(Franch. & Sav.) Franch., measured at 152.23 pg/1C (Pellicer et al., 2010). The abundance of
whole genome duplications in angiosperm lineages (Van de Peer, Maere & Meyer, 2009;
Jiao et al., 2011; Paterson et al., 2012) might suggest a prevalence of large genome sizes, but
there is a considerable skew towards smaller genomes instead (Pellicer et al., 2018; Fig. 1.1).
This skew is further unexpected considering the constant pressure towards genome
expansion caused by the amplification of transposable elements and other repetitive DNA
sequences (e.g. tandem repeats) which can comprise up to 90% of the genome (Novak et
al., 2020), and it has been suggested that there might be inherent disadvantages for larger
genomes, leading to a universal limit in genome size, at around 150 pg/1C (Hidalgo et al.,
2017). The skew in the distribution of genome sizes towards small genomes indicates
various mechanisms of DNA deletion, leading to genome downsizing, processes that also

contribute to the diploidisation of genomes following an episode of polyploidy (Leitch &
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Bennett, 2004; Wendel, 2015; Pellicer et al., 2018; Zenil-Ferguson, Ponciano & Burleigh,

2016; Wang et al., 2021).

v Min: 0.07 pg
Max: 152.23 pg
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Fig. 1.1 Histogram and smoothed density of genome size data in angiosperms
showing skew towards smaller genomes. The number of species is plotted by genome
size in picograms [pg] per haploid genome [1C] based on 10,770 estimates. Examples for
plants are represented along the histogram, close to their genome size. They are from left to
right: Genlisea tuberosa Rivadavia, Gonella & A.Fleischm. (0.07 pg/1C = minimum), Holcus
lanatus L. (1.70 pg/1C = mode), Vanilla x tahitensis ].W.Moore (2.62 pg/1C = mean), Fritillaria
meleagris L. (47.30 pg/1C), Viscum album L. (88.90 pg/1C), Paris japonica (Franch. & Sav.)
Franch. (152.23 pg/1C = maximum). Minimum, maximum, mean and mode genome size are
given at the top and species are chosen to represent approximations of those values.

Ecological consequences of large genomes and polyploidy

Given the strong tendency of genomes to be small, the question as to whether large
genomes are detrimental has been explored. The ‘large genome constraint hypothesis’
(Knight, Molinari & Petrov, 2005) highlights a number of physiological routes that might
disadvantage or exclude plants with large genomes from certain habitats and growth
strategies. This hypothesis has since been refined and supported in some experimental

settings (e.g. Faizullah et al., 2021; Guignard et al,, 2016).
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Larger genomes impose limits on trait space and strategies

A multitude of studies has found correlations between genome size and a range of plant
traits with ramifications at all levels of plant form and function (see e.g. Knight & Beaulieu,
2008; Simova & Herben, 2012; Greilhuber & Leitch, 2013; Doyle & Coate, 2019). Greater
amounts of genetic material have been shown to be associated with longer cell cycles and
hence longer generation times, constraining plants with very large genomes to slow-
growing, perennial life strategies (Bennett, 1971; Bennett, 1987; Vesely, Bure$ & Smarda,
2013). It has been shown that larger genomes impact minimum cell size through
constraints imposed by DNA packing. However, while the relationship holds for some cell
types including meristematic cells, it is not apparent for all cell types (Cavalier-Smith,
2005; Knight & Beaulieu, 2008), largely due to variances in vacuole sizes (Greilhuber &
Leitch, 2013). Beyond the cell, Beaulieu et al. (2007) show that larger genome sizes are
correlated with increases in seed size, which in some species may lead to shorter maximum
dispersal distances (Jenkins et al.,, 2007), although in those species that exploit large
herbivores (e.g. elephants) or water (e.g. coconuts) for dispersal, such relationships would

certainly break down.

Of particular interest to recent research and to this thesis is the role of genome size in
shaping the water and nutrient requirements of plants. The hypothesised role of genome
size in water use efficiency is complex and coupled intimately with photosynthetic
efficiency and nutrient acquisition (Faizullah et al., 2021). Genome size has been found to
correlate positively with stomatal guard cell length and negatively with the density of
stomatal pores (Beaulieu et al., 2008). Larger stomatal openings are associated with slower
reactions to changes in water availability which can occur rapidly with fluctuations in
weather patterns, and their low density may lead to suboptimal gas exchange within plant

tissues impacting photosynthesis and water use efficiency (Franks & Farquhar, 2001;
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Lawson & Vialet-Chabrand, 2019). Stomatal conductance handles the delicate balance
between limiting water loss and allowing sufficient CO, uptake for efficient photosynthetic
rates, leading to potentially detrimental effects of large genomes, especially in arid
environments and under CO, limitation (Roddy et al., 2020). Adding to this, larger genome
size has also been demonstrated to negatively affect CO,-diffusion within cells and leaves
by increasing cell sizes, thus altering surface to volume ratios of cells and changing the
mesophyll structure, further impairing photosynthetic rates (Cavalier-Smith, 200s5;
Théroux-Rancourt et al.,, 2021). Simonin & Roddy (2018) suggest that the competitive
success of early angiosperm lineages is a direct consequence of genome downsizing which
allowed for smaller, more densely packed stomata and consequently for more efficient gas
exchange and photosynthesis. While support for this link between genome size and the
trade-off between water use efficiency and photosynthetic productivity is well supported

by correlation studies, the causation remains to be proven in experimental settings.

Experimental support exists to a greater degree for the effect of genome size on nutrient
requirements. Nucleic acids are inherently expensive molecules, particularly demanding
high levels of nitrogen and phosphorus, which contribute 14.5% and 8.7% respectively to
their make-up (Sterner & Elser, 2002; Hessen, Elser & Sterner, 2013). Competition for
nutrient allocation between genomes and essential proteins suggest another direct
detriment to plants that need to maintain excessively large genomes at the cost of efficient
growth (Hessen et al., 2010). This constraint becomes particularly drastic when nutrients
are limited or biologically unavailable (Elser et al., 2007); biologically available phosphorus
is a sparse resource especially in tropical soils (Vitousek et al., 2010; Chadwick et al., 1999),
while mineralised nitrogen limitation increases towards the poles (Houlton et al., 2008;
Menge et al.,, 2017; Deng et al., 2018; Du et al., 2020). Controlled field experiments have
consolidated our understanding of the limiting effect of a lack of nutrients for plants with

large genomes. Smarda et al. (2013), Guignard et al. (2016) and Peng et al. (2022)
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demonstrated in grassland settings that in both the short and long term, combined
fertilisation with nitrogen and phosphorus allows communities comprising species with
higher mean genome size to develop, suggesting that restrictions imposed by nutrient
deficits on genomes were lifted. Another interesting potential drawback associated with
the higher nutrient content in species with large genomes lies in their apparent appeal for
herbivores; rabbits may preferentially consume plants with larger genome sizes (Guignard
et al., 2019), potentially due to their higher nutrient content and/or the lower cell wall to
cytoplasm ratio making them more succulent, or they recover more slowly following

herbivore damage due to their longer cell cycle times and hence slower growth rates.

Certain plant life forms appear to relax some of the constraints placed on genome size by
the environment. Many plants with extremely large genomes are geophytes (e.g. Paris
japonica (Franch. & Sav.) Franch., Fig. 1.1) or parasitic plants (e.g. Viscum album L., Fig.
1.1), both of which may be less dependent on environmental nutrient limitation. In the
case of parasitic plants, nutrients and water can be obtained from their respective host
plants, potentially allowing an upward drift of genome sizes in the absence of selection
pressures imposed by nutrient limitation on free living species (Hibberd & Jeschke, 2001;
Vesely, Bure$ & Smarda, 2013). Geophytes are characterised by storage organs, such as
bulbs or tubers. Such storage capacity allows for the accumulation of nutrients and pre-
division of cells during dormancy periods, or over long periods of time, rendering those
plants more independent from fluctuations in soil nutrient availability and enabling them
to grow speedily by cell expansion in spite of long replication times for larger genomes

(Grime & Mowforth, 1982; Grime, 1983; Greilhuber, 1995; Vesely, Bure$ & Smarda, 2013).

The supposition that large genomes are detrimental has also received support from a study
of species at risk of extinction, where threatened plant species were demonstrated to have
larger genomes on average than less vulnerable related species (Vinogradov, 2003). The

situation is complicated, however, by the fact that polyploidy is often associated with
18



increased performance and vigour caused by fixed heterozygosity (Soltis & Soltis, 2000;
Birchler, 2015; Dodsworth, Chase & Leitch, 2016). This, along with a tendency towards
selfing tolerance in polyploids (Dodsworth, Chase & Leitch, 2016), perhaps contributes
towards explaining the prominent role of polyploid species in plant breeding (Sattler,
Carvalho & Clarindo, 2016). While genome size has been found to be smaller in invasive
species which typically have fast growth rates and excellent dispersal abilities, it has also
been shown that polyploidy and higher chromosome numbers are positively correlated
with invasiveness (Pandit, White & Pocock, 2014; Suda et al.,, 2015). These data suggest that
genome size and ploidy should be considered together in order to gain full insight into

their effects on species performance.

Genome size and environmental change

There appears to be an emerging pattern suggesting that plants with large genomes might
face limitations (see above) that preclude them from some ecological strategies (such as
short-lived annual lifestyles; Bennett, 1972), whereas species with smaller genomes may
have a wider range of options open to them. Existing data suggest that plants with large
genomes are excluded from extreme environments (e.g. by Knight & Ackerly, 2002), e.g.
where fast reproduction cycles and tolerance of pollution, radiation or nutrient and water
limitation are advantages (Vidic et al., 2009; Temsch et al., 2010; Sparrow & Miksche, 1961;

Einset & Collins, 2018; Knight, Molinari & Petrov, 2005).

The hypothesised decreases in water use efficiency with increasing genome size, as noted
above, suggest that increasingly arid conditions should select against plants with large
genomes, but studies attempting to show such effects in plant distribution data have led
to varied results and only partial support for the hypothesis (synthesised in Knight,

Molinari & Petrov, 2005). It has been suggested that the relatively small spatial scales at
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which such studies have been performed and the use of predominantly linear methods to
test for correlation might obscure patterns of genome size and climatic preferences that
actually do exist (Knight & Ackerly, 2002; Knight, Molinari & Petrov, 2005). Recent data
are suggesting a tendency towards species with smaller genomes in the tropics and larger
genomes towards the poles, although species occupying areas above latitudes c. 50-60 N
exhibit decreasing genome sizes (Bures§ et al., 2022 (in press)), and a study of palm genome
size demonstrated selection pressure against genome expansion under water stress (Schley
et al., 2022). Should the expected hypothesis of disadvantages of large genomes in arid
conditions hold true, the effects of climate change could have disproportionate effects on
plants with larger genomes, especially in areas where increasing temperatures and more
frequent drought events are to be expected under unmitigated climate change scenarios

(Ritchie et al., 2019).

While species with larger genome sizes tend to have a decreased tolerance to heavy metal
pollution (Vidic et al., 2009; Temsch et al., 2010) and radiation (Sparrow & Miksche, 1961;
Einset & Collins, 2018), one very prevalent pollution type might actually favour plants with
large genomes. Nutrient pollution (e.g. from agricultural fertilisation) might favour
species with large genomes, as observed in field experiments (Smarda et al., 2013; Guignard
et al., 2016), but is associated with decreasing biodiversity leading to diminishing
ecosystem services (Peng et al., 2022; Lambers et al., 20ou1; Carpenter et al., 2009; Rohr et

al., 2016; Stevens et al., 2016).

Given the above, genome size is expected to have a role to play in shaping species
distributions in response to climate change and anthropogenic pressures. The

hypothesised links between the environment and genome size are illustrated in Fig. 1.2.
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Fig. 1.2 Proposed mechanism by which genome size might link observable
environmental change with the occurrence of species. The immediate effects of
genome size modulate the ability of plants to withstand pressures posed by nutrient and
water limitation as well as competition with other species.

Only connect - the flora of Britain and Ireland

The knowledge base regarding plant genomes is ever increasing and well-accessible; the
Chromosome Count Database (Rice et al., 2015) compiles information on chromosome
counts made on land plants, while the Plant DNA C-values database, established in 2001
(Bennett & Leitch, 2001) and most recently updated in release 7.1, represents a central hub
for genome size and polyploid-level estimates that currently houses information for 12,273
species of land plants and algae (Pellicer & Leitch, 2019). An even greater wealth of
information exists for functional traits and characters associated with plants worldwide,

with the TRY Plant Trait database (Kattge et al., 2020) and local floras (e.g. Chytry et al.,
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2021; Falster et al.,, 2021) at the forefront of the collation, curation and dissemination of

trait data.

The flora of Britain and Ireland offers itself as the setting for a case study of the local role
of genome size, chromosome counts and ploidy level in shaping species distributions in
the context of plants’ overall trait space. Its history of repeated colonisations shaped by
glaciations (Clark et al., 2012; Ingrouille, 2012) and local isolation as a consequence of rising
sea levels (Ingrouille, 2012), followed by pervasive and high levels of human disturbance
(Fig. 1.3), high levels of eutrophication (Smart et al., 2003; Firbank et al., 2000) and current
climate change (Ritchie et al., 2019), make the area of particular interest in exploring how
genome characters impact the distribution dynamics of native species (see glossary) and

new arrivals in a system.

Fig. 1.3 Characteristic landscape panorama of Britain and Ireland. The high levels of
human disturbance throughout history have created a landscape characterised by a
patchwork of arable field, grazing grounds and settlements, interspersed with more natural
environments. Image taken near Henley-on-Thames, Oxfordshire, in summer 2022.

Spatio-temporal changes in the British and Irish flora have been remarkably well
documented for centuries, with keen interest in botany resulting in comprehensive species
lists as early as the 1690s (Ray, 1690) and continued recording by passionate expert and
amateur botanists alike continuing to this day (Pescott et al, 2019a). High quality
distribution information for the flora of Britain and Ireland is curated and made available

by the Botanical Society of Britain and Ireland and presented in the Atlas of the British
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Flora (Preston, Pearman & Dines, 2002), allowing research that traces changes in species
distributions over time, although inevitable biases in the record base must be accounted

for (Isaac & Pocock, 2015).

In their fundamental treatise on the ‘large genome constraint hypothesis’, Knight,
Molinari & Petrov (2005) highlight the need for a holistic approach to the study of genome
size and its multiple correlations, suggesting that the integration of genome size estimates,
trait data and species occurrence records would be of particular value in advancing our
understanding of the role genome size has to play in ecology. Connecting the available
information on plant genomes, traits and distributions outlined above would allow for this
very approach and promises novel insights into the influences of genome size at landscape

scales.

Aims and scope of the thesis

As highlighted above, a growing body of research, largely based on controlled
experimental settings, points towards a role of genome size in plant ecology. The
overarching aim of this thesis is to test the hypothesis that genome size, polyploidy and
chromosome number have ecological ramifications that translate into effects at landscape

scales within the study area of Britain and Ireland.

This aim necessitates the integration of extensive data on genetic characters, functional
traits, species distributions and environmental parameters (including land cover). To
achieve that need, Chapter 2 describes the generation of a flora-wide and taxonomically
harmonised inventory of all vascular plant species in Britain and Ireland that underlies all
subsequent chapters, containing a wealth of trait, genetic and descriptive information.

Chapter 3 outlines the species distribution data that allows me to move to landscape scales.
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Since such distribution data necessarily contains biases specific to biological records, the
chapter also relays the methods of bias correction employed to achieve the highest level
of reliability in the data used in the following chapters and presents some top-level

findings regarding distribution trends of species within the flora.

In Chapter 4, I explore spatial patterns in the genome size and ploidy levels of angiosperm
species across Britain and analyse the environmental factors driving them, including also
a special focus on the impact of human activities. Considering changes in climate that have
occurred over the past three decades, this chapter also determines the magnitude of range
shifts along the North-South axis, and contextualises them with genome size. In Chapter
5, the dynamics reported on in earlier chapters are built upon through the application of
genome size, along with functional traits and niche requirements, in predicting decreasing
or increasing species trends. The final chapter offers a general synthesis of the findings
across the preceding chapters and strives to reach some conclusions regarding the role of
genome size in shaping the British and Irish flora through time and space, while also

highlighting important focal points for future research.
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Chapter 2 A snapshot of the vascular flora of

Britain and Ireland

Publication information

The majority of this chapter was published in Scientific Data on 10 January 2022.

I am the lead author of the publication which forms the basis of all sections leading to the sub-
chapters Results and Discussion. Thereafter the Results and Discussion provide some initial insights
into the flora. The Methods section also contains additional information on the production of a flora-
wide phylogeny, which occurred after publication of the paper. In order to integrate the publication
into this thesis as a chapter, I have also changed the language from American English to British
English.

Marie C Henniges, Ilia ] Leitch and Andrew R Leitch developed the concept of the database
presented here. Ilia ] Leitch, Andrew R Leitch, Richard ] Gornall, Max R Brown, Alex D Twyford, Peter
M Hollingsworth, Kevin ] Walker and Marie C Henniges planned the scope and practicality of the
resource. Marie C Henniges extracted and compiled the datasets from a diversity of sources and
carried out data validation. Clive A Stace made available his knowledge and allowed use of his
published work. Maarten JM Christenhusz made available his knowledge on life forms. Sahr Mian
and Robyn F Powell performed genome size measurements. Max R Brown compiled and calculated
hybridisation scores. Laura Jones and Natasha de Vere contributed barcode information. Richard ]
Gornall made available his dataset of chromosome numbers and attributed numbers to the listed
species, checked the species list and provided valuable guidance. Kevin ] Walker contributed species
status and distribution metrics. Alexandre Antonelli provided guidance on data compilation and R
package development. Marie C Henniges coordinated the activities of all participants in the
published paper. All authors contributed to the writing of the manuscript. Marie C Henniges

provided a first draft. All authors approved the final version of the manuscript.
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Abstract

The vascular flora of Britain and Ireland is among the most extensively studied in the
world, but the current knowledge base is fragmentary, with taxonomic, ecological and
genetic information scattered across different resources. Here we present the first
comprehensive data repository of native and non-native species optimised for fast and
easy online access for ecological, evolutionary and conservation analyses. The inventory is
based on the most recent reference flora of Britain and Ireland, with taxon names linked
to unique Kew taxon identifiers and DNA barcode data. Our data resource for 3,227 species
and 26 traits includes existing and unpublished genome sizes, chromosome numbers and
life strategy and life-form assessments, along with existing data on functional traits,
species distribution metrics, hybrid propensity, associated biomes, realised niche
description, native status and geographic origin of non-native species. This resource will
facilitate both fundamental and applied research and enhance our understanding of the
flora’s composition and temporal changes to inform conservation efforts in the face of

ongoing climate change and biodiversity loss.
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Introduction

There is a long history of botanical recording on the islands of Britain and Ireland, referred
to here as ‘BI’, comprising England, Scotland, Wales, Northern Ireland, Republic of
Ireland, Isle of Man and the Channel Islands (Fig. 2.1). The earliest systematic records date
back to Revd John Ray in 1690. The Botanical Society of Britain and Ireland (BSBI) provides
access to large-scale geographic distribution data based on more than 4o million
occurrence records, allowing for unique research into changes within the flora, especially

throughout the last century.

Fig. 2.1 Area covered by the database - Britain and Ireland. The area considered for
our attribute database (red) comprises England, Scotland, Wales, Northern Ireland, the
Republic of Ireland, the Isle of Man and Channel Islands.

In addition, a large community of researchers have contributed to a wide knowledge base
for the BI flora, which includes large datasets on ecological traits, chromosome numbers

and cytotype variation, population-level variation and genetic diversity, DNA barcoding
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resources, and many other traits (Fitter & Peat, 1994; Database for the Biological Flora of
the British Isles; BSBI database search facility). The conservation status of species in the
BI flora has been assessed, including via national red listing (BSBI, 2021). This diversity is
protected in situ via a range of land management and habitat protection schemes and ex
situ via large conservation collections and seed banking, with 72% of the UK’s native and
archaeophyte angiosperm species (see Table 2.1 for a glossary of terms used) currently

conserved in seed banks (Clubbe et al., 2020).

Table 2.1 Glossary of terms used within dataset.

Category Term Description
Native status Native Species which colonised the study region
naturally since the last glaciation or that
were present before that point
Non-native/alien =~ Species which were most likely introduced
by human activity, they are further
subdivided into archaeophytes and
neophytes
Archaeophyte Non-natives that were introduced by
human activity before the year 1500, further
subdivided into colonist, cultivated and

denizen

- colonist Weedy species occurring on open ground

- cultivated  Deliberately cultivated species

- denizen Species with near-native behaviour, able to
compete with natives

Neophyte Non-natives that were introduced by

human activity since the year 1500

- casual Not naturalised, persist only for a short time

- naturalised Established and self-perpetuating

- survivor Not naturalised, but able to persist for long

times, often as relics in locations where they
were planted
Neonative Species  that arose from natural
hybridisation between either a native and a
non-native or between two non-native taxa,
or that evolved from another neonative or
non-native species within Britain & Ireland
Genome size Genome size The amount of DNA in an unreplicated
nucleus as estimated by flow cytometry,
given as 1C (haploid nucleus) and 2C
(diploid nucleus), measured in picograms
(pg) or mega base pairs (Mbp)
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Realised niche Ellenberg
indicator values

Ordinal data for the preference of a species
within an environmental gradient; data
given for light, moisture, soil acidity, soil
fertility, salt and temperature (each species
is assigned a value (typically from 1 to 9)
depending on its predicted preference
within the environmental gradient);
concept developed by Ellenberg (1974)

Life strategy CSR strategy

Functional classification of each species’
propensity for being a competitor (C),
stress-tolerator (S) or ruderal (R);
developed by Grime (1974)

Aquatic herb, buds are submerged in water
or in soil underneath water, leaves may float
or be submerged, flowering parts may
emerge (= ‘aquatics’)

Buds are fully submerged in water or within
water-saturated soil, flowers and leaves
emerge fully (= ‘emergents’)

Above ground parts die outside the growing
season, plant survives as a bulb, rhizome,
tuber or root bud

Herbaceous stems that tend to die back
outside the growing season, buds survive on
or just under the soil level, includes many
biennial and perennial herbs

Life cycle is completed within one growing
season, surviving as a seed until the next
growing season (= ‘annuals’)

Herbaceous or woody stems, buds above
soil, but not exceeding 50 cm (= ‘shrubs’)

Life-form Hydrophyte

sensu

Raunkieer

(1934)
Helophyte
Geophyte
Hemicryptophyte
Therophyte
Chamaephyte
Phanerophyte

Persistent, woody stems, buds usually 3m
or more above ground, trees and larger
shrubs (= ‘trees’)

BI also have a long history of agricultural development, beginning in prehistoric times
(Fowler, 1983) and undergoing a series of changes towards high levels of intensification,
especially during the last century (Green, 1990). Together these make the region a globally
outstanding system for exploring the links between species richness, diverse ecological

traits and genetic attributes, allowing for studies on the impacts of environmental and

land use change on natural plant communities.
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Despite these opportunities, large scale studies of the flora are challenging because of the
current lack of a taxonomically harmonised repository of species present in the BI flora,
optimised for comparative flora-wide assessments rather than information retrieval for
individual species. The most recent version of a similar data source (Hill, Preston & Roy,
2004) dates back to 2004 and almost exclusively covers native species (Table 2.2). Another
notable inventory, the List of Vascular Plants of the British Isles (Kent, 1992), including
both native and non-native species, has served as the basis for subsequent checklists and
keys (e.g. Hill, Preston & Roy, 2004; Stace, 2019). Since a large proportion (approx. 50%
according to Stace & Crawley, 2015) of species present in BI today are not native, informed
predictions of the species’ future abundance and distribution require that attribute data
are readily available for native and non-native plants alike. Trait-based approaches to
species distribution modelling and community ecology are emerging to enable more
informed forecasting of population level responses to changes in the abiotic environment,
such as those driven by climate change (Schleuning et al., 2020; Tikhonov et al., 2020; Vesk

et al., 2021).

Here we present a comprehensive database and inventory of vascular plant species — both
native and non-native — currently present in BI, together with diverse trait data. The
species list is based on the most recent edition of the New Flora of the British Isles (Fourth
Edition, Stace, 2019) (including name changes from the 2021 reprint), with each species
name linked to its unique identification number according to the World Checklist of

Vascular Plants (WCVP, 2020) to ensure taxonomic clarity and stability.

The repository encompasses 3,209 extant species and 18 extinct species (see Materials &
Methods). Each entry includes associated intrinsic and functional traits, distribution and
ecologically relevant data where available. In addition to information adapted from Stace
(2019) such as taxonomic ranks, native or non-native status and origin (for non-native

plants), we have collated other types of data from various sources (Table 2.2). These
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include data for several functional traits (e.g. Specific Leaf Area (SLA), and seed mass),
realised niche descriptions (Ellenberg’s indicator values (Ellenberg, 1974), Table 2.1), the
life strategy of each species using the CSR strategy framework of Grime (1974) (Table 2.1),
information on hybridisation propensity, genome sizes and chromosome numbers, along

with DNA barcode sequences.

We consider that this comprehensive data repository will be crucial for enabling both
fundamental and applied research to enhance our understanding of the biotic and abiotic
factors influencing the distribution and composition of the vascular plant flora of BI. Such
new insights will be invaluable for predicting how different species will respond to
environmental challenges such as biodiversity loss, climate change, land use change and
new pests and diseases and hence enable more informed decision making to ensure the

long-term stewardship of the BI flora.
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Table 2.2 Summary of the categories included in the database of vascular plants in BI.

Category Percentage of species with datain = Databases and other reference Description
the complete flora (percentage for sources of the data
natives/ non-natives given in
brackets)
Taxonomy 100% (100%/100%) Nomenclature and lower taxonomic Overview of species taxonomy, including kew_id, species

ranks - Stace (2019, reprint 2021);
World Checklist of Vascular Plants
(WCVP), Higher taxonomic ranks
(order, family) - NCBI via ‘taxize’,
WCVP

binomials (Stace, 2019 (reprint 2021); WCVP), taxonomic
rank (i.e. order, family, genus, subgenus, section,
subsection, series, species, group, aggregate). Also
provided are URLs to species pages on WCVP, POWO
and IPNI.

Native status

(1) 98% (-/-) (i) Stace (2019)

(ii) 82% (-/-) (ii) PLANTATT (Hill, Preston & Roy,
2004) and ALIENATT (pers. comm.
Kevin ] Walker)

(iii) 48% (-/-) (iii) Alien Plants (Stace & Crawley,

2015); pers. comm. Kevin ] Walker

Combined coverage: 99%

Description of level of nativity or establishment in Britain
and Ireland (‘Native’, ‘Archaeophyte denizen’, ‘Neophyte
naturalised’ etc., for full list and explanations see Table
2.1)

Functional traits

SLA: 56% (69%/45%)

LDMC: 47% (65%/32%)

Seed mass: 68% (74%/63%)

Leaf area: 51% (66%/39%)

Vegetative height: 75% (88%/65%)

Public data from the TRY database

(Kattge et al., 2020); for a list of specific

publications see Table Sz.2

Functional plant trait averages for (i) Specific Leaf Area
(SLA, mm2 mg™), (ii) Leaf Dry Matter Content (LDMC, g
g"), (iii) Seed mass (mg), (iv) Leaf area (mm?), and (v)
Vegetative height (m). Also included is maximum
vegetative height (m)

Realised niche
description

Percentages given for each Ellenberg
category, first the coverage derived
from PLANTATT, then from Déring,
2017, then coverage for both sets
combined:

L: (1) 56% (94%/23%)

(ii) 60% (94%/32%)

61%

(i) PLANTATT (Hill et al. 2004)
(ii) Zeigerwerte von Pflanzen &

Flechten in Mitteleuropa (Déoring, 2017)

Ellenberg indicator values assigned to plant species as
observed in Britain (data from PLANTATT) and in
Central Europe (data from Déring, 2017). Listed Ellenberg
categories are L (light), F (moisture, from German
‘Feuchtigkeit’), R (reaction, soil acidity), N (nutrients,
fertility), S (salt), T (temperature, only for European
data). Numbers typically range across a scale of 1 to 9,
with low numbers indicating an affinity to the lower end
of the described environmental gradient. S and F have
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(i) 56% (94%/23%)

(i) 59% (92%/31%)

61%
(i) 56% (94%/23%)
(i) 55% (87%/29%)
60%
(i) 56% (94%/23%)
(ii) 58% (91%/30%)
60%
(i) 56% (94%/23%)
(ii) 61% (95%/32%)
61%

(i) - (-/-)

(ii) 27% (38%/17%)

different scales with S spanning from o to g and F
spanning from 1 to 12.

Life strategy

(i) 14% (27%/4%)

(i) Electronic Comparative Plant
Ecology (Hodgson et al., 1995)

(ii) 45% (63%/30%)

(ii) Inferred from functional traits

Combined coverage: 45%

Life strategy of plants given as the CSR category
established by Grime (1974). These can be either
competitor (C), stress tolerator (S), ruderal (R), or a
combination of these (e.g. CS, C/CSR)

Growth form and

(i) 86% (89%/83%) for growth form

Public data from the TRY database

(i) Plant growth form given as recorded by the TRY

succulence (Kattge et al., 2020), for specific contributors Engemann and Giinther. Categories used are
references see Table S2.2. aquatic, fern, graminoid, herb, shrub, and tree.

(ii) 16 succulent species (ii) Succulence was recorded when a species was
mentioned as ‘succulent’ by any author in the growth
form data from the TRY database (16 species).

Life-form 100% (100%/100%) Pers. comm. Maarten JM Christenhusz  Life form categories as per Raunkizer (1934) (e.g.

‘chamaephyte’, ‘hemicryptophyte’, ‘therophyte’ or
combinations thereof, see Table 1 for explanations)

Associated biome  48% (86%/15%) Ecoflora database (Fitter & Peat, 1994) Description of typical biome for the species (e.g.
‘Mediterranean’ or ‘Boreo-Temperate’)
Origin of non- (1) 48% (-/87%) Stace, 2019 (i) Description of country or region of origin (i.e. the

native species

most likely area plants were introduced from; not equal
to complete foreign distribution) for non-native species.
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(i) 46% (-/84%)

(ii) Information is also given as a TDWG level 1 code
(Brummitt, 2001).

Species
distributions

98% (98%/97%)

BSBI distribution database

Species occurrences within Britain and Ireland at hectad
resolution for four time intervals: 1987 - 1999, post 2000,
2000 - 2009, 2010 - 2019. Data are given separately for
Great Britain and the Isle of Man, Ireland and the
Channel Islands.

Hybrid propensity

20% (30%/11%)

Stace et al., 2015; pers. comm. Max R
Brown

Hybrid propensity (sensu Whitney et al., 2010), scaled
hybrid propensity (weighted by the number of intragenic
combinations within the genus)

DNA barcodes

44% (87%/11%) (with at least one
record on BOLD), 935 species have
sequence data for all three sequences
(rbcL, matK and ITS2)

Pers. comm. L Jones & Natasha de Vere,
de Vere et al., 2012; Jones et al., 2021

Hyperlinks to the Barcode of Life Data System (BOLD)
record pages, which contains barcode sequences (rbcL,
matK and ITS2), an image of the scanned herbarium
specimen and details about sample collection

Genome size

66% (77%/58%) (with at least one
measurement)

(i) Unpublished data from the Royal
Botanic Gardens, Kew (RBG Kew)
(ii) Smarda et al., 2019

(iii) Zonneveld, 2019

(iv) Plant DNA C-values database
(Pellicer & Leitch, 2019)

14% (27%/4%) (with at least one
measurement from material sourced
from the study region)

Genome size measurements, given as 1C- and 2C-values
in picograms (pg) and megabasepairs (Mbp)

Chromosome
numbers

44% (76%/17%) (with at least one
measurement from material sourced
from the study region)

72% (91%/57%) (with chromosome
numbers available from all sources
combined)

Database curated at the University of
Leicester by Richard ] Gornall

(i) Database curated at the University
of Leicester by RJ.G.

(ii) Smarda et al., 2019

(iii) Zonneveld, 2019

(iv) Plant DNA C-values database
(Pellicer & Leitch, 2019)

Chromosome counts and estimates prepared from plant
material from Britain and Ireland, an additional column
adds further chromosome numbers from outside of the
study area
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Materials & Methods

The broad categories of data included in the repository are summarised in Table 2.2
and visualised in Fig. 2.2. Each category is explained in greater detail below, while full
details together with accompanying notes are given in Table S2.1. Table 2.2 gives an
overview of data coverage per category, both across all species and for native species

separately. A complete list of data sources is available in Table S2.2.
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Fig. 2.2 Visualisation of the attributes presented in the database.
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Generation of the species list

Taxon names listed in the most recent and widely accepted New Flora of the British
Isles’ index (Stace, 2019) were digitised via the Optical Character Recognition Software
ReadirisTM 17 (IRIS). Results from the digitisation were transferred into a spreadsheet
and obvious recognition errors were fixed. The resulting table contained 5,687 taxa and
associated taxonomic authorities. A total of 360 unnamed hybrids were excluded, as
well as species noted to have only questionable or unconfirmed records, leaving 5,038
species. Forty-one intergeneric hybrid species, 827 entries relating to
(notho)subspecies, (notho)varieties, cultivars and forma were also removed along with
720 named hybrids. Species that were included by Stace (2019) but which he considered
were not part of the flora (i.e. listed as ‘other species’ and ‘other genera’, e.g. genus
Tragus or Coreopsis verticillata) were also excluded. Seven species that were labelled
‘extinct’ in the flora were included as there were indications that the species might be
in the process of reintroduction (e.g. Bromus interruptus, Bupleurum falcatum and
Schoenoplectus pungens). Extinct native and archaeophyte species without any signs of
reintroduction (e.g. Dryopteris remota) are also listed but no additional data are
provided and they are not included in calculations of completeness of data (Table 2.2).
The final number of extant species listed here is therefore 3,209 (comprising 1,468
natives, 1,690 non-natives and 51 species with unknown status), plus 18 formally extinct
species (natives and archaeophytes not seen in study region since 1999). Species names
and taxonomic authorities were revised according to the 2021 reprint of the New Flora
of the British Isles, communicated to us by Clive A Stace ahead of publication. Genera
with less well-defined species - for example due to apomixis — contain additional
information on subgenera, sections, and aggregates, as per Stace (2019). Since

misidentifications are common in these groups, we include a column termed
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‘unclear_species_marker’ that allows for these species to be quickly identified and
excluded from analyses if appropriate. Such genera are often incompletely listed in our

database since most microspecies are not sufficiently well defined.

Taxonomy

Nomenclature of the list was checked by Global Names Resolver in the R package
‘taxize’ (Chamberlain & Szocs, 2013; Chamberlain et al., 2020), using the International
Plant Name Index (IPNI, 2020) as the data source, to remove any digitisation errors.
Resolved names were used to determine accepted higher taxonomic hierarchy (family,
order) again using taxize, with the National Center for Biotechnology Information
(NCBI) database. Species that could not be resolved by the Global Names Resolver or
did not yield matches in the NCBI database for their higher taxonomic ranks were
manually checked for name matches in the World Checklist of Vascular Plants (WCVP,
2020). Species within the original species list that were found to be identical to a
different spelling in WCVP were retained in the database. In such instances, and when
slight  spelling differences occurred, the columns ‘taxon_name’ and
‘taxon_name_WCVP* differ. To improve clarity, each species is presented here with its
unique identification number according to the WCVP (listed as ‘kew_id’) together with
three additional columns (i.e. WCVP.URL, POWO.URL and IPNI.URL) which contain
hyperlinks to the freely accessible taxon description websites of the World Checklist of
Vascular Plants (WCVP, 2020), Plants of the World Online (POWO, 2020) and
International Plant Names Index (IPNI, 2020), respectively. Thus, while the taxon
names used in the database correspond to those used by Stace (2019), changes in the
accepted species name since publication can be traced in columns ‘taxonomic_status’

and ‘accepted_kew_id’. The family classification of WCVP follows APG IV (2016) for
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angiosperms, Christenhusz et al. (201) for gymnosperms and Christenhusz & Chase

(2014) for ferns and lycopods.

Native status

We offer three different datasets which describe the status of a species as native or non-
native, and its level of establishment in BI. The first is extracted from Stace (2019), the
second contains the status codes used in PLANTATT (Hill, Preston & Roy, 2004) and
the unpublished ALIENATT (pers. comm. author K.J.W.) datasets, and the third is
extracted from Alien Plants (Stace & Crawley, 2015). The status from Stace (2019) and
Stace & Crawley (2015) assigns a species to either native or non-native status, with non-
natives subdivided into archaeophytes and neophytes at different levels of
establishment (e.g. denizen, colonist etc., see Table 1). Status codes from the BSBI can
be either AC (alien casual), AN (neophyte), AR (archaeophyte), N (native), NE (native

endemic) or NA (native status doubtful).

Functional traits

Data for five ecologically relevant functional traits (i.e. seed mass, specific leaf area
[SLA], leaf area, leaf dry matter content [LDMC] and vegetative height) were
downloaded from public data available in the TRY database (Kattge et al., 2020) (for
specific authors see Table S2.1 and Table S2.2). Averages were calculated using the
available measurements downloaded for each species, excluding rows where the
measurement was zero. In addition, the maximum vegetative height for each species is

given, where available.
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Realised niche description

Realised niche descriptions based on assessments made on plants living in Bl are given
in the form of Ellenberg indicator values (Ellenberg, 1974), as published in PLANTATT
(Hill, Preston & Roy, 2004). Ellenberg indicator values place each species along an
environmental gradient (e.g. light or salinity) by assigning a number on an ordinal
scale, depending on the species’ preference for the specific gradient (Table 2.2). This
information is often used to gain insights into environmental changes based on species
occurrences (Hill, Mountford & Roy, 1999). For species listed under a previously
accepted name in PLANTATT, the information was associated with the accepted
synonym in Stace (2019). Due to the low coverage of PLANTATT for non-native species
included in our list, we additionally include Ellenberg indicator values based on Central
European assessments, as made available by Déring (2017). Each Ellenberg category is
listed in a separate column, keeping the information from both data sources separate
to avoid confounding of assessments based on two different regions (i.e. Britain and

Ireland versus Central Europe).

Life strategy

To characterise the life strategy of a species, we used the CSR scheme developed by
Grime (1974), which classifies each species as either a competitor (C), stress tolerator
(S), ruderal (R) or a combination of these (e.g. CS, SR). CSR classifications were
obtained from the Electronic Comparative Plant Ecology database (Hodgson et al.,
1995). Due to the low coverage of available CSR assessments for species in our database
(i.e. data available for just 460 out of 3,209 extant species) we imputed CSR strategies

for a further 981 species using available functional trait data, following the method
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proposed by Pierce et al. (2017). The functional leaf traits required for this method - i.e.
specific leaf area, leaf area, leaf dry matter content — were obtained from the TRY
database (Kattge et al., 2020). Pre-existing (Hodgson, et al., 1995) and newly imputed

CSR strategies are listed in separate columns.

Growth form, succulence and life-form

Plant growth form descriptions were obtained from the TRY database (Kattge et al.,
2020) and filtered for those entries given by specific contributors (Table 2.2) to
maintain consistent use of growth form categories. Information on whether a species
was considered to be a succulent was obtained by screening the entire growth form

information obtained from the TRY database for the phrase ‘succulence’ or ‘succulent’.

Species life-form categories according to Raunkieer (1934) were determined for each
species in our dataset with regard to the typical life-form of the species as it grows in

BI (pers. comm. Maarten JM Christenhusz).

Associated biome and origin

Information given in the Ecoflora database (Fitter & Peat, 1994) for the biome that each
species is associated with was matched to the species names according to Stace (2019).
The recognised biome categories follow Preston & Hill (2002) and are ‘Arctic Montane’,
‘Boreal Montane’, ‘Boreo-Arctic Montane’, ‘Boreo-Temperate’, ‘Mediterranean’,
‘Mediterranean-Atlantic’, ‘Southern Temperate’, ‘Temperate’, ‘Wide Boreal’ and ‘Wide

Temperate’.
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For non-native species, the assumed origin (i.e. the region that plants were most likely
to have been introduced to BI from, rather than the full non-BI distribution of a species)
was adapted from Stace (2019) into a brief description of their country or region of
origin. In addition, these descriptions were manually allocated to the TDWG level 1
regions listed in the World Geographical Scheme for Recording Plant Distributions

(WGSRPD, TDWG, Brummitt, 2001).

Species distributions

Distribution metrics for each species are given as the number of 10 km square hectads
in BI with records for the species in question within a specified time window (pre and
post 2000, 1987-1999, 2000-2009 and 2010-2019). The data were derived from the BSBI
Distribution Database and were extracted for each species, dividing the study region
into Great Britain (incl. Isle of Man), Ireland and the Channel Islands, as previously
partitioned for data available in PLANTATT (Hill, Preston & Roy, 2004). The database
was queried using species and hectads for grouping, showing only records ‘matching
or within 2 km of county boundary’ and excluding ‘do-not-map-flagged’ occurrences.
The data were not corrected for sampling bias and should therefore only be used as an

indication of trends.

Hybrid propensity

Data on hybridisation is provided for 641 species, obtained from the Hybrid flora of the
British Isles (Stace, Preston & Pearman, 2015) which enumerates every hybrid reported
in BI up until 2015 (pers. comm. Max R Brown). Each entry was transcribed manually,

and then filtered to exclude (a) hybrids that have been recorded, but not formed in the
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British Isles, (b) triple hybrids (mainly reported for the genus Salix), (c) doubtful
records, (d) hybrids between subspecific ranks, and (e) hybrids where at least one
parent is not native (only archaeophytes included). This left 821 hybrid combinations
for data aggregation. The metric chosen here is hybrid propensity, which is a per-
species metric of how many other species a focal species hybridises with (sensu
Whitney et al, 2010). A scaled hybrid propensity metric is also given which was
calculated by weighting the hybrid propensity score by the number of intrageneric
combinations for a given genus, to account for the greater opportunities of

hybridisation in larger genera.

DNA barcodes

DNA barcode sequences for plant species present in Bl are currently available for 1,413
species in our database. The information was derived from a dataset of rbcL, matK and
ITS2 sequences compiled for the UK flora generated by the National Botanic Garden of
Wales and the Royal Botanic Garden Edinburgh (de Vere et al.,, 2012; Jones et al., 2021;
pers. comm. Laura Jones and Natasha de Vere). The data are given as a hyperlink to the
record’s page on the Barcode of Life Data Systems (BOLD, Ratnasingham & Hebert,
2007) which includes the DNA barcode sequences as well as scans of the herbarium
specimen and information on the sample’s collection. Most species have multiple
record pages associated with them, due to the sampling of more than one individual.
We include a maximum of three BOLD accessions per species; the full range of
individuals sampled can be accessed via the original publications (de Vere et al., 2012;
Jones et al., 2021). DNA barcodes are almost exclusively available for native species.
Future releases of our database will increase the coverage of the non-native flora

significantly. Where species in the BOLD database are attributed to a species name that
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is considered synonymous with another name in our list, the hyperlink is matched to
the latest nomenclature (Stace, 2019). 1,421 species have at least one sequence
associated with them, and 935 species have sequence data for all three sequences (rbcL,

matK and ITS2).

Genome size and chromosome numbers

Genome size data for 2,117 specimens (at least one measurement per species) were
obtained from various sources. Measurements for 467 species were newly estimated
using plant material of known BI origin from the Millennium Seedbank of the Royal
Botanic Gardens, Kew (Chapman, Miles & Trivedi, 2019). The measurements were
made by flow cytometry using seeds or seedlings and following an established protocol
(Pellicer, Powell & Leitch, 2020). Information on the extraction buffers and calibration
standard  species used are available in the file GS_Kew_Bl.csv
(https://catalogue.ceh.ac.uk/documents/9fog7d82-7560-4ed2-af13-604ag110cf6d),

along with peak CV values of the measurements as a quality control. Where more than
one measurement is reported per species, the measurements were made on plant
material from different populations or using different buffers. Previously published
data for additional species were obtained from reports on the Czech flora (Smarda et
al., 2019), and the Dutch flora (Zonneveld, 2019), and prime values listed in the Plant
DNA C-values database (Leitch et al., 2019; Pellicer & Leitch, 2019). Since significant
intraspecific differences in genome size between plant material from different
geographical origins have previously been described, predominantly due to cytotype
diversity in ploidy level (Kolaf et al., 2017), genome size measurements from previously
published sources were assessed with regard to the origin of the material. The column

‘from_BI_material’ (GS_Bl.csv, BI_main.csv, see https://catalogue.ceh.ac.uk/
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documents/9fog7d82-7560-4ed2-af13-604aguocf6d) allows users to filter for
measurements made on material from BI to exclude a potential bias. The information

was obtained from the original publication source of each measurement.

Chromosome numbers for 1,410 species (at least one chromosome number per species)
determined exclusively from material collected in BI were obtained from an extensive
dataset compiled by Richard ] Gornall from various published studies, unpublished
theses and personal communications from trusted sources. The counts were made
between 1898 and 2017, with a large proportion stemming from efforts to achieve
greater coverage of the flora by a team of cytologists based at the University of Leicester
and headed by Richard ] Gornall. Part of the dataset was previously incorporated into
the BSBI's data catalogue but has since undergone revisions to incorporate new
information and changes in taxonomy. The dataset contained many measurements at
subspecies level which were allocated to the species level taxon in our list. This served
to include as much of the often considerable infraspecific variation as possible. Since
some species for which chromosome counts have been reported elsewhere are lacking
chromosome counts from British or Irish material, they are absent from this dataset.
To fill such gaps, we also present chromosome numbers from reports on the Czech
flora (Smarda et al., 2019), the Dutch flora (Zonneveld, 2019), and the Plant DNA C-

values database (Leitch et al,, 2019; Pellicer & Leitch, 2019).

Phylogeny construction

A phylogeny of the species in the BI flora was generated subsequent to the publication
of Henniges et al. (2022). Many analyses of the BI flora database are likely to require

information on the phylogenetic relatedness of species within it (Borges et al., 2019).
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To this end, a phylogeny was constructed based on pre-existing phylogenetic trees for
seed-plants (Smith & Brown, 2018; Zanne et al., 2014; synthesised by Qian & Jin, 2016),
as contained within the R package ‘V.PhyloMaker’ (Jin & Qian, 2019). Species
considered to be taxonomically unclear in the database were removed prior to pruning
the megatree down to only include the Bl-based species. Out of the remaining species,
1,993 could be matched perfectly to the backbone phylogeny. For those 659 species
without a clear match, we used information from the WCVP to identify unambiguous
synonyms, i.e. synonyms that are not associated with any other WCVP-accepted taxa.
In 161 cases, where such a clear synonym could be found, species were matched to the
backbone phylogeny via the synonymous taxon name. Finally, species that could
neither be matched directly nor via a synonym were investigated further to find out if
previous molecular studies had assigned these species a clear position within family-
or genus-level phylogenies (for a detailed reference list for such information, see Table
S2.3), giving information about their closest relatives within the megatree. Apart from
these small-scale studies, I also used information from an unpublished phylogeny
generated by Max R Brown and kindly shared with me by Max R Brown and Alex
Twyford to guide these further attachment decisions. This additional reference
phylogeny focused on species native to the UK and used separate plastid data and ITS
alignment, as well as an APG IV (2016) tree to guide inference of family level
relationships. 347 species were attached to the tree in this way, avoiding polytomies by
respecting the dichotomous relationships found in the previous molecular studies. The

resulting phylogeny contains 2,501 of the 3,227 species present in the database.
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Software and visualisation

All data compilation and manipulation was carried out in R 3.5.3 - 4.1.3 (2022), with
data management in Microsoft Excel (versions 2019-2022). ‘Tidyverse’ (Wickham et al.,

2019) packages were used for data manipulation and plotting of results.

All figures were generated in R 4.1.3 with post-processing in Microsoft PowerPoint and
iWork Keynote, with line drawings of species generated in the raster graphics software
Sketchbook. Maps were produced using the R packages ‘s’ (Pebesma, 2018) and
‘rnaturalearth’ (South, 2017). The phylogeny was visualised in iTOL (Letunic & Bork,

2021).

R package and data set information

Data records

A static version of the data as of publication date is available from the NERC
Environmental Information Data Centre (https://doi.org/10.5285/9fog7d82-7560-
4ed2-af13-604a910cf6d). A metadata file (Database_structure.csv, see also Table S2.1)
with explanations of the main dataset (BI_main.csv), additional datasets (GS_BI.csv,
GS_Kew_Bl.csv and chrom_num_Bl.csv), and a complete list of all publications and
sources used to compile the data (Detailed_sources.csv, see also Table S2.2) are
included along with the data. The main database BI_main.csv lists all taxa included in
this work along with their identification number (kew_id), associated taxonomic
authorities, taxonomic ranks (order, family, genus, subgenus, section, subsection,
series, species, group, aggregate), associated trait, distribution, and ecological data. The
main database contains a summary of chromosome numbers and the smallest genome

size measurement available per species.
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Because more than one chromosome number and genome size measurement has been
reported for many species - often reflecting considerable infraspecific variance - these
additional chromosome number (chrom_num_Bl.csv) and genome size (GS_Bl.csv)
data are published along with the main dataset as separate files. Detailed information
about the newly generated genome size measurements from RBG Kew are summarised
in GS_Kew_Bl.csv, including information on the calibration standard species and

extraction buffers used to estimate the genome size.

The data is also available as an R package on GitHub
(https://github.com/RBGKew/BIFloraExplorer, Fig.

2.3), where we aim to provide new releases that will

reflect new additions to the dataset as well as

taxonomic changes.

Fig. 2.3 Hex sticker for
‘BIFloraExplorer’ R package.

Technical validation

All data presented in the resource were compiled from a range of sources, the vast
majority of which were from previously published field guides, atlases or peer reviewed
articles. All such data are provided with full reference to their source (Table Sz.1 and
Table S2.2), allowing the user to validate particular pieces of information with ease.
Any new unpublished data presented here were either determined experimentally,
following best practice protocols (e.g. genome size data), calculated using peer
reviewed methods (Pierce et al., 2017), or supplied by one of the expert authors on this

publication.

Where data were manually extracted from print sources, spot checks were conducted

at various stages throughout the data collection to verify that mistakes had been kept
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to a minimum. When data were added from online or other digital resources, species
binomial and - if available - taxonomic authority information were used to match data

to the species in the list. This matching process was manually checked for each dataset.

Usage Notes

We present an easily accessible and downloadable database for the current vascular BI
flora, comprising a full list of species with a range of associated ecological, genomic and
distribution data. The data as of publication date are freely available for download from
the EIDC (https://doi.org/10.5285/9fog7d82-7560-4ed2-af13-604ag10cf6d). Species
names are presented as published previously (Stace, 2019, with name changes from the
2021 reprint); changes in taxonomy are reflected in columns ‘accepted_kew_id’,
‘accepted_name’ and ‘accepted_authors’, as per WCVP and POWO. The development

version of the dataset is available at https://github.com/RBGKew/BIFloraExplorer.

Results

Composition of the flora

There are 3,227 species that are considered part of the extant vascular flora in this
database. These species fall into a total of 60 orders and 164 families, with half of all
species falling into one of the five largest orders (Poales, Asterales, Rosales,
Caryophyllales, Lamiales) and into one of the ten largest families (Rosaceae,
Asteraceae, Poaceae, Fabaceae, Brassicaceae, Cyperaceae, Caryophyllaceae, Apiaceae,

Lamiaceae and Plantaginaceae), Fig. 2.4.
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Plantaginaceae
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Fig. 2.4 Species composition of the BI flora at the family and order level. Donut charts
represent the proportion of the flora within each clade. Total species numbers per clade are
given within each segment of the charts.

While many previous checklists focused entirely or in part on representing the native
flora, this database demonstrates that this reductive view misses more than half of the
diversity currently present within the flora (Fig. 2.5), when considering status through
the lens of the New Flora of the British Isles. Native species make up the largest single
group within the flora (1,407 species), but the larger proportion is made up of non-
native species (1,686 species). Of the latter, the comparatively small subgroup of
archaeophytes (181 species) is dwarfed by the much more prominent subgroup of
neophyte species (1,505 species), which are comparatively recent introductions to the
flora (arrived within the last 500 years). The largest group within the neophytes is that
of naturalised neophytes (936 species), species that have not only been introduced to
BI but are also thriving. There are only four species that have the rarer status of

neonatives, and 130 species are not assigned a clear status.
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Fig. 2.5 Status of species within the BI flora. The treemap representation shows the
hierarchical subdivision of the flora into native and non-native (alien) plants. Non-native
plants are further subdivided into neophytes and archaeophytes, which in turn are split into
naturalised, survivor and casual neophytes as well as denizen, colonist and cultivated (=
cultd) archaeophytes (see Table 2.1). Four neonative species form too small a group to be
discernible in this representation. While the largest single group is that of native plants, the
higher level group of non-native plants encompasses more species overall.

Origin of introductions

Non-native species are introduced to Britain from all across the globe (Fig. 2.6), but the
majority of them, 719 species, stem from other parts of Europe. Further common areas
of origin are Temperate Asia (434 species), North America (259 species) and Africa (204
species). Smaller numbers of species were introduced from Southern America (119
species), Australasia (72 species) and Tropical Asia (28 species). Within those broader
areas of origin, Southern Europe and the Mediterranean (184 species) stand out as

common individual places from where many species have been introduced.

51



259 719 434

204
28/
119
12

Fig. 2.6 Origin of 1,487 species that are not native to Bl at TDWG Level 1. The
bubble plot represents the number of species introduced to BI from each of the TDWG
continental areas, with size and labelling of the bubbles proportional to the number of
species from each location.

The biomes that species within Britain are commonly associated with range from
Mediterranean to Arctic-Montane (Fig. 2.7), but the vast majority of BI's vascular plants
prefers Temperate (537 species), Southern Temperate (269 species) and Boreo-
Temperate biomes (228 species). The number of species typically found within warmer
biomes (Mediterranean and Mediterranean-Atlantic) exceeds the number of species
with a preference for colder conditions (Boreal Montane, Arctic Montane, Boreo-Arctic

Montane and Wide Boreal), with 253 and 222 species respectively.

Mediterranean
Mediterranean-Atlantic
Southern Temperate 269
Wide Temperate
Temperate 537
Boreo-Temperate 228
Wide Boreal
Boreal Montane

Boreo-Arctic Montane

Arctic Montane

Fig. 2.7 Biomes associated with 1,531 species within the flora for which biome
data were available.
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Genome sizes

Genome sizes within the Bl flora show the same characteristic skew towards small

genomes that has been observed for all species (Fig. 2.8).

v
P N
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GENOME SIZE DATA FOR 66% OF SPECIES IN THE
FLORA OF BRITAIN AND |IRELAND
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Fig. 2.8 Histogram and smoothed density of genome size data for vascular plants of
BI. The number of species is plotted by genome size in picograms [pg] per haploid genome
[1C] based on the 66% (2,117 species) of the native and non-native flora of BI for which data
is currently available. The plants represented along the histogram are located close to their
genome size and are, from left to right: Linnaea borealis L. (0.81 pg/1C), Botrychium lunaria
(L.) Sw. (1210 pg/1C), Erythronium dens-canis L. (24.99 pg/1C), Fritillaria meleagris L. (47.30
pg/1C), Tulipa sylvestris L. (58.00 pg/1C), Viscum album L. (88.90 pg/1C).

While the range of genome sizes from the smallest (Selaginella selaginoides (L.)
P.Beauv., 0.08 pg/1C) to the largest (Viscum album L., 88.90 pg/1C) is remarkable, the
vast majority (1,761 out of 2,117 species with data) of species have genome sizes that do

not exceed 5 pg/1C.

Even though most genome sizes in the BI flora are small, some clades are characterised
by a tendency towards larger genomes (Fig. 2.9, for a high resolution image see Fig.

S2.1, the phylogenetic tree is available in Method S2.1). Notably, the far smaller groups
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of Lycophytes, Monilophytes and gymnosperms have larger genomes than
angiosperms, with means of 4.56 pg/i1C, 10.33 pg/i1C and 17.56 pg/iC respectively
compared to 2.88 pg/iC in angiosperms. Despite this, the largest genome present
within the flora is that of an angiosperm, Viscum album L., while the smallest genome

of Selaginella selaginoides (L.) P.Beauv. falls into the group of Lycophytes.

Fig. 2.9 Visualisation of the BI phylogeny and genome sizes. The circular
representation of 2,501 species with phylogenetic information includes colour coding for the
different clades, with Lycophytes in yellow, Monilophytes coded in green, gymnosperms in
red and angiosperms overlaid in blue. The smallest known genome size for each species is
plotted around the outside in pg/1C with gridlines at s, 10, 15 and 20 pg for orientation.
Lycophytes, Monilophytes and gymnosperms have larger genome sizes overall, but the
overwhelmingly largest genome of the flora, that of Viscum album L., an angiosperm, is
visible on the bottom right with a genome size of 88.90 pg/1C.

54



Genome sizes differ between plants of different status (Fig. 2.10) in the UK. Overall,
neophytes have significantly larger genomes than both natives and archaeophyte
species (p < 0.001), according to a pairwise T-test for multiple groups with a Bonferroni
correction. Among archaeophytes, cultivated species have significantly larger genomes
than both denizen and colonist species. Both naturalised and survivor type neophytes

have larger genomes than casual neophytes.

Native
n=1083

n=146

Neophyte
=824

-25 0.0 25 -25 0.0
GS [log pg/1C] GS [log pg/1C]

Fig. 2.10 Genome sizes by status. The boxplots show differences in genome size between
the different status categories. a represents genome size for the three large categories
(natives, archaeophytes, and neophytes). b splits the latter two groups into their constituent
subgroups (denizen, colonist, cultivated (= cultd), naturalised (= natd), casual, and survivor
(= surv) as well as adding a category for those species that had no categorisation for status.
Group sizes are given with labels. Neonatives were omitted due to a low number of species
(n = 3). Both native and archaeophyte species have significantly smaller genome sizes than
neophytes (p < 0.001), but there is no significant different between the genome sizes of
natives and archaeophytes.

Strikingly, genome sizes in the flora of Bl appear to be linked with life strategy. Fig. 2.11
shows a ternary plot of Grime’s Competitor - Stress-tolerator - Ruderal (CSR)
classification for species in BI, where each species is assigned to a position between
three poles representing the three life strategy characters of competitive, stress-
tolerating or ruderal (i.e. weedy). Numeric CSR scores that were used to generate the
figure are presented in Table S2.4. Most species pursue a mixed life strategy that

incorporates varying levels of each of these three strategy characters. Centroids
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representing the average position of plants within the genome size quintiles, ranging
from very small to very large genome sizes (very small: 0.15 - 0.53 pg/1C, small : 0.54 -
0.90 pg/1C, medium: 0.91 - 1.59 pg/1C, large: 1.60 - 4.18 pg/1C, very large: 4.3 - 47.3
pg/1C), reveal that plants with smaller genome sizes tend towards a ruderal strategy,
while the largest genome size groups show increasing tendencies towards a more

competitive and marginally more stress-tolerant lifestyle.
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Fig. 2.11 Ternary plot of CSR strategy and genome size quintiles for 915 species.
Strategies of different species are characterised by proximity to three poles:
competitiveness, stress-tolerance and weediness (ruderal). Dots represent a plant’s location
with respect to all three poles with number from o to 100 along the outside indicating the
score along each axis. E.g. species with exclusively ruderal life strategies are located at the
far bottom left of the diagram with a score of 100 for ruderal and o for each of the other
options. Colours indicate the quintile of genome size a species falls within (very small: 0.15
- 0.53 pg/1C, small: 0.54 - 0.9 pg/1C, medium: 0.91 - 1.59 pg/1C, large: 1.60 - 418 pg/1C, very
large: 4.3 - 47.3 pg/1C). Larger dots represent the centroid of all species within each genome
size quintile. With increasing genome size, species are less likely to be ruderals and more
likely to follow a competitive life strategy. The large quintile shows slightly higher proclivity
towards stress-tolerance.
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Discussion

The results above are a glimpse of the extensive diversity encountered in the BI flora
and highlight the value of having such an organised and comprehensive resource as the
BIFloraExplorer dataset for a wide variety of analyses. Following in the footsteps of
other flora-wide databases such as Pladias (Czech flora, Chytry et al., 2021) and
AusTraits (Australian flora, Falster et al., 2021), the dataset has the potential to boost

research investigating the dynamics of the BI flora.

A flora of immigrants

BI’s flora is an impoverished one with only 3,227 species, of which 1,407 are natives.
This number is dwarfed by the extremely specious Australian flora (~28,900 native
taxa) but also by continental European floras such as the Czech or German flora with
around five thousand and seven thousand accepted taxa respectively (Wild et al., 2019;
Netzwerk Phytodiversitdt Deutschland & Bundesamt fiir Naturschutz, 2013). It is not
unusual for floras in north-western Europe to have limited numbers of native species
since repeated glaciation cycles have impacted the area and depleted its diversity
(Ingrouille, 2012). This past is shared by BI, two thirds of which, with the exception of
southern England, were covered by ice during the Last Glacial Maximum, 27,000 years
ago (Ehlers & Gibbard, 2004; Clark et al.,, 2012), the last remnants of which lasted until
11,300 years ago (Small & Fabel, 2016). While BI’s soils and ecosystems are clearly still
heavily impacted by this recent glaciation, the archipelago’s sealocked nature presents
another reason for the sparse species numbers. As the ice sheet retreated, sea levels
rose, and after the Irish Sea first separated Ireland from Britain, the English Channel

then separated the British Isles from the European mainland. Thus, BI were cut off from
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the continent approximately 8,500 ago (Preece, 1995) and as the rest of Europe was
quickly repopulated by immigrant species, BI lagged behind (Ingrouille, 2012). The BI
flora must therefore be considered a flora not only of immigrants, but of recent
immigrants. For this reason, the inclusion of both native and non-native species within
this database is of particular importance to gain some insight into dynamics within
cohorts of plants that have arrived in BI at different times. While previous inventories
of the BI flora have focused mostly or entirely on native species (e.g. Hill, Preston &
Roy, 2004), it is clear from the results above that this approach leaves more than half
of the flora unaccounted for. There is increasing interest in characterising the spread
and movements of non-native species across Bl. This tendency is reflected in excursion
floras; in 1952, Clapham, Tutin & Warburg’s flora was overwhelmingly focused on
natives while Stace’s New Flora of the British Isles lists the greater number of non-
natives also present. This change in realisation of the importance of non-natives is also
manifest in the increased reliability of non-native species records (both presence and
absence) within the BSBI’s distribution database since the 1980s (pers. comm. Kevin ]
Walker). As awareness of the dangers of plant invasions grows, so does the importance
of understanding the non-native species in the flora (Kowarik & Lippe, 2008; Chytry et
al., 2009; Pysek et al., 2022; Clements et al., 2022). While a flora increasingly dominated
by non-natives may sound like a change for the worse, research seems to indicate that
with some exceptions (Manchester & Bullock, 2001), the new arrivals in the flora may
actually be a welcome addition to an impoverished flora with little to no negative

consequences for overall biodiversity (Maskell et al., 2006; Thomas & Palmer, 2015).

In distinguishing natives and non-natives it must be stressed that in many cases,
especially in BI following their tumultuous geological past, a native may simply be an

immigrant species that arrived before any human record or observation existed to
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document their arrival, while a non-native may simply be anything that arrived

subsequent to documentation (Webb, 1985).

Beyond a simple split into natives and non-natives, it can be seen that new arrivals into
Britain are introduced from locations across the globe (Fig. 2.6), reflecting the role that
globalisation and international trade have played in contributing to the composition of
BI’s flora (Hulme, 2009). Due to BI’s characteristic humid temperate climate it is not
surprising that the majority of plants in its flora favour temperate climes. Remarkably,
while Bl is considered to be lacking in habitat variation when compared to other parts
of Europe which exhibit, for example, extremes in altitude (e.g. the Alps) and aridity
(e.g. Mediterranean regions), there are, nevertheless, species within BI that favour the
conditions present within both Mediterranean and Arctic biomes (Fig. 2.7, examples
are Arabis alpina L., Euphrasia frigida Pugsley and Veronica fruticans Jacq. for Arctic
Montane biomes and Centranthus ruber (L.) DC., Datura stramonium L. and Fuchsia
magellanica Lam. as representatives of Mediterranean biomes), a phenomenon that

will be further explored in the following chapters.

BI as a case study of genome sizes

Although the BI flora includes only a small fraction of the global plant biodiversity
(approximately 308,312 vascular plants according to Christenhusz & Byng, 2016),
species within BI with genome size data show they range nearly half (i.e. 1,100-fold) of
the total ~2,400-fold range of genome sizes described for vascular plants as a whole
(Leitch & Leitch, 2013). Genome size diversity in Bl also mirrors the characteristic skew
towards smaller genomes that has been observed at a global scale (Dodsworth, Leitch

& Leitch, 2015). Visualisation of the genome size data on the phylogeny of the BI flora
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also indicates the presence of a strong phylogenetic signal in the genome size dataset.
Such signal reveals the need to account for species phylogenetic structure in any

analyses involving genome size data (Borges et al., 2019).

Interestingly, the large group of neophyte species have significantly larger genomes
than those species that are native or have existed in the UK for a longer period
(archaeophytes). This means that species with larger genomes have been entering the
flora. How this affects genome sizes across species assemblies in different regions of

the study area is explored in Chapter 4.

Genome size has previously been shown to constrain life strategies. For example,
Guignard et al. (2016, 2019), found within controlled field plots that high levels of
nutrients favoured competitive species with higher ploidy levels and larger genome
sizes. However, such a trend is complicated by observations that plants with extremely
large genome sizes are more likely to be limited to stress-tolerant, slow-growing
lifestyles (Bennett, 1972). Meanwhile species with smaller genomes have been
associated with weediness and consequently greater invasion success (Suda et al., 2015).
Such results are mirrored in the findings for the BI flora (Fig. 2.11), where the quintile
centroids of species with large and very large genome sizes lean towards competitive
strategies whereas species within the small and very small quintiles are more ruderal
(i.e. weedy) in their life strategy. As a potential meta-trait with constraining effects on
a variety of plant traits and characters (e.g. Roddy et al., 2020; Théroux-Rancourt et al.,
2021; Simova & Herben, 2012; Bennett, 1971), genome size emerges as an interesting

character which warrants further study in the context of the BI flora.
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Chapter3 Tackling sampling biases in the

current knowledge of the British flora
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Abstract

Although the record base for vascular plants in Britain and Ireland is extensive and well
curated, it is fraught with biases that can skew findings obtained from it. Of particular
note are spatial differences in recording effort linked with accessibility, changes in
recording intensity over time, and the fact that inconspicuous and introduced species are
often severely under-recorded.

Species distribution information at 10x10 km resolution for the most recent three date
classes (1987-1999, 2000-2009 and 2010-2019) from the Botanical Society of Britain and
Ireland’s Distribution Database is used as the underlying information. Based on this data,
[ generate an updated dataset with the help of a frequency scaling method, accounting for
biases from uneven sampling effort in time and space.

The resulting dataset conserves broad trends within the original data with regard to overall
species numbers following a latitudinal diversity gradient, with most species in the South
and species richness declining towards the North. I present bias-corrected diversity
estimates for 3,136 plant species and illustrate the differences between raw and corrected
estimations by focusing on three species of different status.

The approach’s strength is particularly evident in the context of high human presence in
the South of the study area where higher recording effort and the effect of garden and
agricultural escapes would confound future analyses if not explicitly addressed. The
resulting bias-corrected dataset presented here, although not perfect, allows for higher

levels of confidence in any results derived from analyses of the British flora.
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Introduction

A wealth of modern and historic species distribution data is available for the vascular flora
of Britain and Ireland. The Botanical Society of Britain and Ireland (BSBI) Distribution
Database (DDb) holds and curates this ever-expanding record base. Datasets are fed into
this repository from the Vascular Plant Database (VPDDb), from databases of county-wide
recording, expert survey data and citizen science projects, leading to a total of over 40
million records to date (BSBI website, 2022; Amphlett, 2015; Walker et al., 2010; Pescott et
al., 2018; Pescott et al., 2019a). New data is added continuously, including not only present-
day survey data but also information from historic datasets with records at sufficient
spatial resolution (Walker et al, 2010). The database allows ecologists, conservationists
and landowners to make use of the wealth of organised and curated species occurrence
data that has become available since the first Atlas of the British Flora (Perring & Walters,
1962), data that has drawn interest from the public, leading to increasing numbers of
volunteer recorders (Preston, 2013). Despite being well-curated, the varied nature of
species occurrence records means that the dataset is fraught with several biases that need

to be accounted for (Isaac & Pocock, 2015; Dornelas et al., 2013).

Data within the BSBI DDb is held in a variety of spatial resolution levels, each with its
unique set of advantages and disadvantages (Amphlett, 2015; Pescott et al., 2018). While
much of the current recording effort is focused on monad (1 km x 1 km) or tetrad (2km x 2
km) level observations, projects looking to incorporate older records can benefit from
using the spatial resolution of hectads (i.e. 10 km x 10 km grid squares). The greater
reliability of hectad scale data is because hectad level recording has historically been the
standard method employed for creating species lists and atlas maps (Pescott et al., 2018).
Monad and tetrad level records are fraught with a number of spatio-temporal biases, such

as the tendency of monad and tetrad recording sites to be located in easily accessible and
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highly populated areas, the unevenness at which different counties are adapting to
recording this finer-scale data and potential issues arising from inaccurate georeferencing.
Although not devoid of biases, the use of hectad level records can lessen the impact of
such distortions while also allowing comparisons across time. The remaining bias of
uneven recording across space and time can be further reduced by using detection/non-
detection data rather than abundance information and by grouping the data by date
classes, instead of using yearly records. The date classes are designed to balance
differences in sampling effort over time and are congruent with periods of recording for
the Atlas of the British and Irish Flora (Preston, Pearman & Dines, 2002; Pescott et al.,

2018).

While recorders for the BSBI are instructed to follow unbiased sampling strategies (Groom
et al., 20m1), inherent biases typical of biological records do exist within the data (Isaac &
Pocock, 2015), not least due to the differences in historical and contemporary recording
practices. While the choice of date class and hectad level data helps alleviate some of these
biases, formal measures of bias correction are important to derive meaningful insights into

trends, i.e. changes over time, from the datasets (Stroh et al, 2014).

The Frescalo method (FREquency SCAling LOcal; Hill, 2012) was developed in the context
of biological recording in Britain as a more sophisticated alternative to previously
employed methods for bias correction available at the time, such as moving averages,
extrapolations and the simple regression technique of the Telfer method (Telfer, Preston
& Rothery, 2002; Isaac et al., 2014; Rich & Karran, 2006; Groom, 2013a). While not the
newest method for the correction of biases and calculation of species trends (Andermann
et al., 2022; Engemann et al., 2015), Frescalo is often considered the tried and tested choice
(Pescott, Powney & Roy, 2016; Groom, 2013a), and has been suggested to offer the most
reliable results when used with data from the BSBI DDb by its maintainers (pers. comm.

Kevin ] Walker). Frescalo uses information about site similarities and proximities to select
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locally specific benchmark species (Hill, 2012). The presence or absence of the local
benchmark species in a hectad is then used to calculate an estimation of sampling intensity
as well as deriving a relative frequency of a given species at a given time (Hill, 2012). The
approach allows inferences on time and site-specific sampling intensity as well as
calculating location-specific likelihoods of occurrence and a trend for each species across

the periods of time provided to the program.

This chapter outlines the acquisition and Frescalo-based bias correction of BSBI
distribution data that all analyses in Chapters 4 and 5 are based on. I present observed
species richness patterns and juxtapose them with those inferred by Frescalo. The clear
advantage of using Frescalo-corrected data is demonstrated on three example species and

potential drawbacks of the method are discussed.

Materials & Methods

Data acquisition

In February 2022, I downloaded hectad level detection/non-detection records for all 3,227
species listed within the ‘BIFloraExplorer’ (Henniges et al., 2021 & 2022) during the most
recent three date classes (1987-1999, 2000-2009, and 2010-2019) for the vice-counties VCi-
13 (vice counties of Great Britain; Watson, 1883) and VCHi-40 (vice counties of Ireland;
Webb, 1980), reflecting England, Scotland, Wales, Northern Ireland, the Republic of
Ireland, the Isle of Man and the Channel Islands. The decision to restrict this analysis to
only the three most recent date classes allows for a relatively high level of confidence in
the sufficiency of records of non-native taxa (see glossary; Table 2.1) starting with the

sampling period for the BSBI New Atlas (Preston, Pearman & Dines, 2002; Preston, 2002).



Since the BSBI DDb is not fully aligned with the nomenclature of Stace (2019), species
names without a match in the database were checked manually to find any alternative
spellings and mismatches. A total of 3,197 species had a clear, unambiguous match and
were included in the query. Those species without a clear match were not used for this
analysis since inconsistencies in their nomenclature and changes therein would make
findings for those species not meaningful. That being said, the curation of the BSBI
distribution database means that records from the most recent date classes with clear
matches are less affected by biases due to nomenclature changes than would be expected
in most comparable datasets (Dornelas et al., 2013). Record grouping parameters were
species and hectad. To exclude spurious records, I filtered out data points where grid-
references did not align with vice-county boundaries (within 2 km) and such records that
bore the ‘do-not-map’ label, indicating low levels of trust for an observation of a species in
the wild, as opposed to a record of a cultivated species (e.g. in the context of a garden). All
decisions were based on discussions with the maintainers and expert users of the database

(pers. comm. Kevin ] Walker, Oliver L Pescott, Tom A Humphrey).

Frescalo correction

I used a rendition of Hill’s (2011) original program that was adapted for use within R (R
version 4.1.3) in the package ‘sparta’ (August et al, 2015), developed by the Biological
Records Centre (https://www.brc.ac.uk/home). Frescalo was run on the records available
for all species for the date classes 1987-1999, 2000-2009 and 2010-2019. Frescalo uses
information on the spatial proximity and biological similarity of hectads to determine if
observed differences in species occurrences are likely to represent reality or artifacts
associated with differences in sampling effort. The result of this assessment is reflected in

weights that are used to derive the bias-corrected outputs of Frescalo. I used the custom
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weights file (“LCUK”) included in the ‘sparta’ package, based on remotely sensed land
cover for the United Kingdom (including Northern Ireland, but excluding the Republic of
Ireland), for this purpose. Hence the biological similarity is derived by the program based
on the composition of a hectad’s land cover. The alternative option of using vascular plant

coverage was rejected since this may have introduced circularity into the inference.

The lack of land cover data for the Republic of Ireland from the same source means that
this area is not included in the analysis presented below. I set the percentage of expected
species within each hectad to be treated as benchmarks to 15% (alpha), following the
settings used by Stroh et al. in their Red List for vascular plants in England (2014). This
value is lower than the default suggested by Hill (2012), meaning that a shorter list of taxa
are expected to be representative of a given hectad with their absence leading to the
assumption that a hectad was under-recorded (i.e. a less strict definition of under-
recording). I did not specify a list of species to be excluded as potential benchmarks,
instead allowing the program to consider all species within the run as local benchmarks
to avoid adding bias to the analysis. Although Hill (2012) notes that the setting of phi, the
target frequency of frequency-weighted mean frequency, is not crucial to the successful
application of Frescalo, I opted to follow best practice, running a trial iteration and raise
phi according to the trial run’s findings for the final run (phi = 0.80). The program was set
to calculate decadal change with the default setting of arithmetic change. I inspected and
compared the results of the runs with information presented for the 2014 Red List of
vascular plants for England (Stroh et al., 2014) as a ‘sanity check’. For this purpose, I
compared the spatial patterns observed in the overview maps (Fig. 3.1) from the Red List
assessment’s runs with my own. I also considered individual species in detail, comparing
the results of Frescalo runs (occurrence maps and TFactor regressions) with information

contained within the Red List assessments.



Data management, visualisations and statistics

Data management and manipulation was carried out in R (version 4.1.3) using the
‘tidyverse’ framework (Wickham et al., 2019). Frescalo application was set up in R but
computation was performed in Frescalo.exe (Hill, 2011). The initial reports from the
Frescalo runs are presented here as outputted by the internal mapping script of the
program with post-processing in Microsoft Powerpoint. Species line drawings were

created in Sketchbook (raster graphics software).

Results

The Frescalo-based correction for sampling effort did not change the overall pattern of
species richness observed across the United Kingdom. Higher levels of species richness
were found in the South and fewer species in the North (Fig. 3.1). This pattern is reinforced
by a similar trend towards lower sampling effort in the more remote areas of northern
England and Scotland as well as Wales and the eastern coast of Northern Ireland, while
most of England is comparatively well recorded (Fig. 3.1b). Consequently, the effect of the
sampling effort multiplication (i.e. Frescalo correction) at a whole flora scale is more
visible in the overall increase in assumed species numbers per hectad rather than in
changes to the overall pattern of species richness across the study area (i.e. compare Fig.
3.1a & ¢). Note for Fig. 3.1¢, the local scaling factors mapped in Fig. 3.1b are not a simple
multiplication factor to be applied to species numbers in Fig. 3.1a. Instead the scaling
factors are considered by the algorithm in determining the occurrence likelihood of each

species within the hectad in question. Fig. 3.1c is therefore a representation of approximate
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species numbers after the scaling factor has been applied in the bias-corrected occurrence

likelihood of each species.

{

B 451215

Fig. 3.1 Species richness and sampling effort output from Frescalo. a represents
the recorded species numbers obtained from the BSBI. Increasingly red hues
correspond to higher species numbers. b shows alpha, i.e. the local scaling factor to be
applied to remediate the effects of uneven sampling. Yellow areas are comparatively
well recorded while areas in red are affected by under-sampling. ¢ shows the species
numbers following Frescalo correction, with darker red areas again indicating locations
with higher species richness. Each map represents a summary across the three date
classes rather than reflecting on species numbers or scaling factor developments over
time.

Frescalo estimates the adjusted likelihood of a species occurrence in a particular site at a
particular time, given the estimated sampling intensity of the location as estimated via the
occurrence of local benchmark species, which are represented as aggregations across the
three date classes in Fig. 3.2. In addition to these occurrence likelihood profiles, Frescalo
also calculates a 'Tfactor’ (=time factor), for each date class, which reflects the detection
probability of the focal species relative to the benchmark species it co-occurs with,
averaged across all hectads. This contrasts with the local scaling factor alpha (Fig. 3.1b),
which is calculated for a specific location rather than for a given species. A regression is
then performed on the Tfactors with the resulting slope representing the magnitude of
increase or decrease in relative abundance a species has undergone (Fig. 3.2). The estimate

of trend used here and analysed in Chapter 5 was calculated as the arithmetic decadal
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change across all queried date classes. A full summary of Frescalo-corrected species
distributions, hectad occurrence likelihoods and trends can be viewed in the appendix
(Fig. S3.1; Tables S3.1 - S3.4), but three species are presented here to illustrate the effect of
Frescalo corrections (Fig. 3.2). The three examples are chosen to reflect the different status
categories present within the flora, a native species, an archaeophyte and a neophyte

(glossary; Table 2.1).

Platanthera bifolia (L.) Rich. (Fig. 3.2a), a member of the Orchidaceae and native to the
UK, is distributed across the study area, but appears to show a hotspot of occurrence in
northern and western Scotland. This trend is evident in the occurrence data but is re-
emphasised by the Frescalo correction, which bolsters the records made within similar
and proximal hectads with low recording effort in northern Scotland, while reducing the
likelihood of occurrence in hectads where records for the species exist, but the land cover
within the hectad and the larger recorder effort suggest the potential for less characteristic
records (i.e. records in areas where species observations may be indicative of frequent
reintroduction due to escapes from gardens and high recorder effort rather than
demonstrating the regular wild occurrence of the species). Across the three date classes
within this analysis, P. bifolia shows a decreasing trend, meaning that its frequency across
the UK - relative to the frequency of benchmark species typical of those hectads within

which it occurs - has decreased steadily over time.

Borago officinalis L. (Fig. 3.2b), part of the Boraginaceae and cultivated archaeophyte with
clear archaeological evidence placing it within Britain before the year 1500 (Preston,
Pearman & Hall, 2004) and a strongly suspected Mediterranean background (Asadi-

Samani, Bahmani & Rafieian-Kopaei, 2014), has been renowned as a source of courage in
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Fig. 3.2 Examples of Frescalo results for three species. Representative examples
of the Frescalo output for a) the native species Platanthera bifolia (L.) Rich., b) the
archaeophyte Borago officinalis L. and ¢) the neophyte Primula denticulata Sm. All
maps display information across all three date classes. Maps in green on the left
highlight all hectads where the species has ever been recorded since 1987. Red and
yellow maps in the middle represent the Frescalo adjusted likelihood of an
occurrence of the species in the given hectad across all three date classes. Plots on
the right show the estimated relative frequency of the species (time factor = TFactor)
during each date class. The trendline indicates the change across time as calculated
by Frescalo. Line drawings show the habitus of each species.

ancient Rome (Fernie, 1890) and is still of value as a culinary and medicinal herb (Lozano-
Baena et al., 2016). Its early introduction to Britain is therefore not a surprise. Its

occurrence is largely limited to southern England and the Midlands, with only a few
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occurrences further north and the only Scottish records limited mainly to the eastern
coast. The Frescalo-derived trend of this species shows an initial decrease in relative
frequency between the first (1987-1999) and second date class (2000-2009), but then a

rapid increase in the most recent date class (2010-2019).

Primula denticulata Sm. (Fig. 3.3¢), is a naturalised neophyte of the Primulaceae family.
This species shows a sparser distribution than the other species above but has a strongly
increasing trend across the three date classes. It has a recording hotspot in mountainous
regions near Inverness with sporadic additional records scattered in the vicinity of various
urban areas, most notably a cluster of occurrences in Greater London. Frescalo attributes
more weight to the cluster of occurrences in northern Scotland than to the sporadic urban

records.

Discussion

Even though the British flora is comparatively well described thanks to an organised and
long recording history, the same flaws inherent in other biological recording around the
world apply here (Isaac & Pocock, 2015; Zizka, Antonelli & Silvestro, 2021); for example (i)
the further a sampling location is from any human settlements, the fewer visits and
consequently records are available, and (ii) recorders may be more biased towards
recording attractive and native species, leaving less ostentatious species as well as non-
native plants under-recorded (Pescott, Humphrey & Walker, 2018). In addition, (iii)
sampling effort is uneven through time, meaning that both temporal and spatial biases

must be taken into account (Pescott, Humphrey & Walker, 2018).

In the bias correction here and for the following chapters, the choice of hectads for spatial,

and date classes for temporal aggregation is conservative — the presence of a species, even
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an inconspicuous one, has a much higher likelihood of being spotted and hence recorded
when coarsening spatio-temporal recording ranges (Isaac & Pocock, 2015) and would
therefore increase the likelihood of the species being featured in the analysis. The
drawback of this decision is that effects expected at smaller scales, i.e. short-term
differences in occurrences within date classes or differences between the multitude of
different habitats that are amalgamated within one hectad, will inevitably be invisible to
the analyses presented in the following chapters. Another point to take into consideration
is the use of detection/non-detection data. Reliable, comparable and comprehensive
information on species compositions for the entirety of the flora of the UK is still missing,
especially over the long term, with only relatively recent efforts designed to close this gap
(Pescott et al., 2019b&c). Consequently, the bias-corrected information presented here
(and in the appendix, Fig. S3.1; Tables S3.1 - S3.4) and used for analyses in the following
chapters should be seen as a top-level overview of the species within the flora, their
distribution and changes therein over the past three decades that does not reflect habitat

specific species compositions and their inner dynamics.

As previously described by Rich (2006) and is expected due to differences in the density in
human settlements, Frescalo suggests higher levels of under-recording in the North, while
most areas of England benefit from high levels of recording activity. The patterns of species
richness revealed by Frescalo correction for sampling bias are congruent with previous
findings presented by Stroh et al. (2014) in their Red List assessment for England, but here

the analysis is expanded to Scotland, Wales and Northern Ireland.

It is important to note that species richness as it is derived from the Frescalo correction is
simply the number of species recorded within a hectad, scaled by a local scaling factor to
account for sampling effort. Hectads are large areas that are likely to contain a multitude
of different habitats and - in the UK - will in almost all cases include human dwellings,

particularly in the South, where species richness (as derived from distribution records and
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Frescalo correction) is highest (Fig. 3.1a & c). It must therefore not be assumed that high
species richness as it is used in this work is an indication of healthy, thriving ecosystems.
Indeed, previous studies on global (Newbold et al., 2015) and British (McClean et al., 2011)
species richness and other measures of biodiversity show steady declines in response to
human actions (Hudson et al., 2014); in the UK, this is particularly the case in and around

arable lands (Sotherton, 1998).

Instead, the high species numbers in hectads in the South and particularly in urban areas
(Fig. 3.1) are likely in part caused by greater numbers of garden and agricultural escapes,
and the existence of a plurality of different fractured ecosystems in each hectad, as well as
potential remnants of sampling bias towards highly populated areas where fewer plants
are likely to go unnoticed. Particularly the impact of garden escapes that may become
temporarily or permanently established and be recorded as wild occurrences is likely
significant. The flora of urban domestic gardens in Britain has previously been shown to
house more than 1,000 species, with 70% them being of non-native status; this set of
species, especially those surviving sporadically due to human activities, were found to
result in inflated estimates of species richness in areas close to human settlements (Loram
et al, 2008), concurring with the findings above. Despite such biases, an underlying
latitudinal diversity gradient with remarkably higher levels of species richness in the South
and fewer species in the North is visible (Fig. 3.1c). This gradient in species numbers has
been well established at different scales across the globe and across multiple eukaryote

groups (e.g. Hillebrand, 2004; Lamanna et al., 2014).

The importance of the Frescalo correction, with its combination of proximity and
similarity comparisons for hectads, is especially evident in the case of Primula denticulata
patterns before and after the correction (Fig. 3.2c). The sporadic and potentially spurious
records of P. denticulata around Greater London are very likely the result of garden escapes

of this popular ornamental plant that may not persist in those locations for very long
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periods without human intervention. The impact of such records on subsequent analyses

is reduced due to correction with Frescalo, although the taxon still remains present.

The measures outlined above mean that biases within the BSBI distribution data have been
addressed using a well-tested and validated approach, particularly suitable for this data
set, allowing a higher level of confidence in any findings stemming from them than would

otherwise have been the case (see Chapters 4 and 5).
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Chapter 4 Spatio-temporal analysis of the
British flora reveals that land use changes are
shifting the distribution of genome sizes, leading
to an increased occurrence of species with larger

genomes

This chapter is formatted for submission; however, the authors and the journal are still

undecided.
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Abstract

The abiotic environment in the United Kingdom has been impacted heavily by millennia
of human presence. Plant genome sizes vary widely between species (at least 2,400-fold)
and are believed to play a role in influencing a diversity of ecologically-relevant traits
including a species’ nutrient and water use efficiency. Assuming this is correct, species
may respond differently to spatio-temporal differences in nutrient and water availability
in the environment, depending on their genome size.

Using bias corrected distribution information on British angiosperms, climatic and
nitrogen deposition data, I test the hypothesis that environmental factors influence spatial
genome size distributions by plotting and modelling patterns of and hypothesised drivers
behind weighted mean genome size per hectad as well as their change over the past three
decades. Additionally, I explore the movement of distribution centroids of British plants
since the late 1980s and explore the role that genome size and native status play in
determining the magnitude of latitudinal range shifts.

Results show that hectad weighted mean genome sizes have increased by 5.5% over the
past thirty years. Areas characterised by high levels of human disturbance and nitrogen
pollution harbour species with larger genomes on average, but water availability correlates
less strongly with the distribution of species with larger genome sizes across the generally
wet temperate UK. While the majority (79.4%) of plants have shown northward range
movements in the last three decades, species with larger genome sizes and especially those
that are neophytes have expanded significantly further north than those with smaller
genomes and natives.

These results extend previous findings from field experiments to landscape scales,
demonstrating that nutrient pollution and effects of human activities can lift genome size-
induced constraints on species distributions and significantly influence species movement

and establishment.
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Introduction

The landscapes of Britain have been shaped by human activities for millennia. Although
arable farming was noted to be mostly absent from the area by Julius Caesar (Gerrish,
2022), there is ample evidence of prehistoric agricultural activities, both in the cultivation
of varieties of grain and the keeping of livestock on dedicated grazing grounds (Curwen,
1927; Applebaum, 1958). Indeed, prior to the Industrial Revolution, the majority of the
British population was employed in agricultural labour (Curwen, 1927). Throughout
history, agricultural practices have been shaped by changes in climate (Applebaum, 1958)
and have undergone steady intensification (Firbank et al., 2000). Natural and semi-natural
landscapes characteristic of Britain have thus developed in the presence of high levels of

human influence over the past millennia.

Genome size is a fundamental plant character with significant repercussions on various
aspects of plant physiology and is consequently expected to have a role in influencing the
ecology of a species (Leitch & Bennett, 2007; Herben et al., 2012). Previous research has
shown genome size to be associated with a range of plant traits that are likely to constrain
and shape ecological strategies and niche availabilities of plants (e.g. Bennett, 1971;
Bennett, 1972; Masterson, 1994; Beaulieu et al., 2007; Knight & Beaulieu, 2008; Vesely et
al., 2012; Sparrow & Miksche, 1960; Vesely et al., 2013; Roddy et al., 2020; Théroux-Rancourt

et al., 2021; see Chapter 5).

Various controlled experiments and field trials have shown that nutrient levels in the soil
can shape the composition of plant communities, and that the nutrient demands of larger
genomes play a key role in this dynamic (Guignard et al., 2016; Smarda et al., 2013; Walczyk
et al., 2019). This is because genomes are inherently costly with regard to nitrogen and
phosphorus, acting as major sinks for these macronutrients (Hessen et al., 2010). All else

being equal, a plant that has to maintain a larger genome therefore potentially faces
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increased constraints under limiting nutrient resources compared with plants that have
smaller genomes. Potentially therefore, differences between species’ genome sizes in the
British flora (1,100-fold range in the British and Irish flora, see Chapter 2) could be relevant
in determining where species can grow and compete successfully depending on soil
nutrient availability. In field experiments, the combined effect of nitrogen and phosphorus
abundance has been shown to be associated with an increasing dominance, in terms of
biomass production, of polyploid plants with larger genomes (Guignard et al., 2016). If this
observation applies across landscape scales, one might predict that in areas particularly
exposed to high levels of atmospheric nitrogen deposition or the addition of NPK
fertilisers, e.g. in the context of intensive agricultural use, this abundance in nutrients
might lift genome size-imposed growth restrictions for species with large genomes and

hence enable them to become established and thrive.

Genome size has also been shown to correlate positively with the size of stomatal guard
cells as well as a variety of other leaf cells (Simonin & Roddy, 2018; Beaulieu et al., 2008;
Hodgson et al., 2010; Théroux-Rancourt et al., 2021; Wilson et al., 2021) and is negatively
associated with the density of stomata. Larger stomatal pores and intracellular spaces are
often associated with lower water use efficiency (Faizullah et al., 2021), and indeed, in
pairwise comparisons, those species distributed in humid climates have larger genome
sizes than their counterparts in arid conditions (Vesely et al., 2020). However, the link
between genome size and water use efficiency is complex, since the lower stomatal
densities typically found in plants with larger genomes are associated with higher levels of
water use efficiency. Nevertheless, there is a suggestion that levels of humidity as well as
changes therein over the years may play a role in shaping patterns of species distributions,

depending on genome size.
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In this chapter, [ examine spatial patterns and temporal trends in genome sizes and ploidy
across the UK, as well as abiotic factors influencing them, drawing on species distribution,
climatic and nitrogen deposition data for the past three decades. I demonstrate the drastic
changes in land use across the last century and link these developments with genome size
patterns associated with different land use types. Finally, I test whether genome size has
played a role in influencing the extent of the northward movement of plants over the last
few decades. Expanding on previous findings from tightly controlled field experiments
(Guignard et al., 2016; Smarda et al., 2013), I take the next step in testing for such
correlations at the scale of landscapes and reveal that genome size may indeed contribute
to influencing plant community composition across the UK in response to the

environment.

Materials & Methods

Mapping weighted mean genome size and ploidy level

All analyses are based on the Frescalo-corrected species distributions outlined and
presented in Chapter 3. Maps of mean genome size and ploidy per hectad were created for
each of the three most recent BSBI (Botanical Society of Britain and Ireland) date classes
(1987-1999, 2000-2009, 2010-2019). To reflect the sampling bias correction from Frescalo,
I calculated hectad means for these genetic characters as the weighted mean (‘smart’
package; Martin, 2020). The weights used were the estimated probabilities of occurrence
for a species in a hectad at a given time after rescaling relative to benchmark occurrences

(available in Tables S3.2¢, S3.3¢ and S3.4c¢).

There exists cytotype variability (genome size and ploidy level) amongst some plant

species (Tate, Soltis & Soltis, 2005; Kolaf et al., 2017). This intraspecific variation had not
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been accounted for in the original release of the ‘BIFloraExplorer’ (Henniges et al., 2021 &
2022), but was considered for the mapping of mean genome sizes and ploidies here. Each
cytotype of a species with multiple cytotypes was assumed to account for an equal fraction
of the overall local frequency derived from Frescalo. I compiled cytotype information for
genome size, ploidy and chromosome numbers from the same sources (i.e. Smarda et al.,
2019; Zonneveld, 2019; Leitch et al., 2019) that had supplied the genome size information
within the ‘BIFloraExplorer’ dataset. Where a direct match of the species name used in the
database and the individual source could not be obtained, I matched species via synonyms
present within the World Checklist of Vascular Plants (WCVP, 2022). From the datasets, I
manually assigned prime estimates, i.e. the most trusted genome size measurements and

ploidy levels, based on the following:

1. Where multiple genome size values were available for a species, and where
differences exceeded 30% of the smaller value, I assumed that the different
estimates characterised different cytotypes.

2. Where differences in values were equal to or less than 30% of the smaller value,
the estimates were ranked and only the most trusted value was chosen for the
analysis. The most trusted measurements were assigned as follows:

a. Values produced by RBG Kew (Kew) took precedence since this allowed me
to use measurements made on known UK-sourced material that had been
produced by the same team using the same equipment.

b. If measurements were taken from publications by scientists outside Kew,
then the most trusted measurement was chosen if a chromosome count
and genome size estimate were published together, especially if the
genome size and chromosome count had been estimated on the same
plant. To prioritise the selection of genome size estimates and to keep as

many values as possible from the same source, genome size estimates were
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selected in the following order of priority: Smarda et al. (2019), then
Zonneveld (2019) and lastly the Plant DNA C-values Database (release 7.1,
2019).

c. Chromosome counts already present in the ‘BIFloraExplorer’ that had been
confirmed by Richard Gornall were used to validate chromosome counts
provided by the different datasets. Where two competing genome size
measurements or chromosome counts were available and supported by
equal amounts of evidence, the smaller count was chosen as the prime
value.

d. Where genetic information was available at subspecies and variety level,
these were also retained as prime values if there were suspected differences
in ploidy.

e. If support for cytotype variation was sparse (i.e. very few or unreliable
chromosome counts at different ploidy levels) in the chromosome counts
supplied by Richard Gornall or by any entries in the Chromosome Counts
Database (Rice et al, 2015) then only the smallest genome size
measurement from the prioritised source was retained.

f.  Where a species had a genome size estimate but lacked information on
ploidy and/ or chromosome numbers, and if sister taxa with chromosome
count/ploidy data had similar (<30% different) genome sizes, then the
species was assumed to have the same chromosome count and ploidy level
as the sister taxa, and the assumption noted in Table S4.1. All underlying
genomic information used for the compilation of this list is available in

Table S4.2.

The extent of species examined in this chapter is restricted to herbaceous and graminoid,

non-woody (i.e. excluding phanerophytes, see glossary; Table 2.1) angiosperms for ease of
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comparisons between species. This totals 1,585 species with sufficient information for
Frescalo runs and with genetic information (1,698 when counting duplicates due to

cytotype diversity).

Centre of mass

Using bias-corrected occurrence likelihood data (Tables S3.2¢, S3.3¢ and S3.4¢), I derived
the distance and direction of movement of the centre of mass for each species’ range
between start (1987-1999) and end (2010-2019) date classes. Narrowly distributed species,
i.e. those present in fewer than 5% of hectads (n = 150) in any date class, were excluded.
The centre of mass for each species in each date class was calculated as the weighted mean
latitude and longitude, with Frescalo occurrence likelihood serving as the weighing factor.
[ used the Haversine formula to calculate distances between centroids of the first and last
date class, accounting for the curvature of the Earth, and the bearing using the ‘geosphere’
package (Hijmans, Williams & Vennes, 2020). The same was done to derive the distance

travelled along the North-South axis only.

Environmental data acquisition and preparation

Information about three aspects of the abiotic environment was obtained to place genome

size patterns and changes into a spatio-temporal context.

Climate data

I downloaded monthly mean temperature and total rainfall data from the Met Office via

the CEDA Archive (https://archive.ceda.ac.uk/) for each year between 1987 and 2019
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(Hollis et al., 2022). Data for each month was extracted using the ‘raster’ package in R
(Hijmans et al,, 2015). Mean monthly temperature and rainfall per hectad were then
calculated using the ‘terra’ and ‘raster’ packages (Hijmans et al., 2022), also averaging
across the growing season, here defined as the period from April to July, and across all
years to find the mean value per date class. The hectad shapefile used for this operation
was based on the Ordnance Survey National Grids of 1936 (Ordnance Survey, 2015), made

available by Roper (2015).

Nitrogen deposition data

[ obtained wet and dry nitrogen deposition data from the dataset created by Tomlinson et
al., 2020 and 2021, downloaded from the UKCEH Environmental Information Data Centre
(https://eidc.ac.uk/). Annual mean deposition values per hectad were extracted using the
R package ‘sp’ (Pebesma et al., 2012), for the four different deposition types available (NHx
dry, NHx wet (‘dry and wet deposition of reduced nitrogen’), NOy dry and NOy wet (‘dry
and wet deposition of oxidised nitrogen’)) and then averaged across date classes. The
subtypes of wet and dry deposition were added to form total wet and total dry nitrogen
deposition values. Since the nitrogen deposition dataset only dates back to the year 1990,
the means for the first date class (1987-1999) only incorporate information from 1990

onwards.

Land cover maps

The UK Centre for Ecology and Hydrology (UKCEH) have used satellite imagery to publish
detailed land cover maps (LCMs) since 1990, with further releases at increasingly regular

intervals. In order to reflect the three date classes, I downloaded land cover maps for the
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year 1990 (first date class), 2007 (second date class), 2017 (third date class) as well as an
even more recent map for 2020 from the EDINA Digimap service
(https://digimap.edina.ac.uk/). The maps  were processed in QGIS
(https://qgis.org/en/site/), where I used “Zonal Statistics’ to calculate the majority land
cover type within each hectad. The land cover map of 2007 had two additional land cover
categories (‘montane habitats’ and ‘rough grassland’) that were not part of the
classification on earlier and later land cover maps. To avoid problems in making direct
comparisons, I removed any hectads exhibiting these extra classes as the majority land

cover (133 hectads removed).

Historic land use

For a look further into the past, I utilised ©Dudley Stamp’s Land Utilisation Survey of
Britain which had collated land use information in the 1930s. This was the first attempt of
its kind in Britain (Stamp, 1931), aiming to document detailed changes in British land use
for future generations. Remarkably, the survey was carried out by school children

instructed by their teachers (Stamp, 1934). Again drawing on the EDINA Digimap service,

B scttn

Fig. 4.1 Steps in the preparation of the hectad scale Dudley Stamp 1930s land
utilisation map and modern land cover maps. a is the composite of original Dudley
Stamp map material. b shows the digitised and hectad aggregated rendition of the Dudley
Stamp map used below. ¢ shows the UKCEH 2020 LCM re-classified to be comparable with
Dudley Stamp’s map. d is the hectad scale majority aggregation of the 2020 LCM and e
shows the original 2020 LCM map. The legend explains the colour codes for each land cover
type with the first set of categories (within the grey box) relating to the Dudley stamp
classification and the second set (within the black box) relating to the UKCEH 2020 LCM
categories.
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who hold digitised copies of the original survey sheets, I loaded the material into ArcGIS
10.8 and georeferenced it (Fig. 4.1a). [ used supervised classification in the ‘Spatial Analyst’
extension to extract information on land cover, making sure to build the training set with
samples from different areas across the map to account for slight colouring differences
from the scans of the original sheets. Finally, ‘Zonal Statistics’ in QGIS were used to find
majority coverage of each hectad (Fig. 4.1b). This last step also alleviates to some extent
the digitisation pitfalls highlighted by Zatelli et al. (2019), namely the misidentification of
text on the map as a minor land cover type. The different steps of the process outlined
above are visualised in Fig. 4.1. The hectad scale Dudley Stamp map is available as a
shapefile (Method S4.1). Finally, since Dudley Stamp’s classification and that of the later
land cover maps are not identical, I made the decision to summarise categories to make

the data more comparable. The reclassification is illustrated in Table 4.1.

Table 4.1 Reassignments of categories for comparisons between Dudley Stamp’s Land
Utilisation Survey data and the UKCEH’s land cover maps (LCMs).

Comparison category Dudley Stamp category UKCEH LCM category
Arable/orchards Arable land Arable and horticulture
Orchards and nursery gardens
Forest and woodland Forest and woodland Broadleaved woodland
Coniferous woodland
Heathland/moorland/rough Heathland, moorland and rough  Acid grassland
pasture pasture Rough grassland
Bog
Heather

Heather grassland
Inland rock

Saltmarsh
Meadow/grassland Meadowland and permanent Calcareous grassland
grassland Improved grassland
Neutral grassland
Urban Chief urban areas Urban
Suburban
Not applicable Not applicable Freshwater
Saltwater

Littoral rock

Littoral sediment
Supra-littoral rock
Supra-littoral sediment
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Data management, visualisations and statistics

Microsoft Excel was used for data management and data manipulation. Analyses relied on
packages of the ‘tidyverse’ (Wickham et al, 2019) in R (R version 4.1.3). All maps,
coefficient tables and plots were created in QGIS Desktop 3.24.2 ‘Tisler’ and R (packages
‘sf, ‘spdep’, ‘tmap’, ‘maptools’, ‘kableExtra’, ‘ggplot2’ and ‘ggalluvial’ (Pebesma, 2018;
Bivand et al., 2015; Tennekes et al., 2022; Bivand et al., 2022; Zhu, 2019; Wickham, Chang
& Wickham, 2016; Brunson, 2018)), with post-processing in Microsoft PowerPoint. The full
data frame used for modelling (including environmental data and hectad weighted

genome size and ploidy) is available in Table S4.3.

The change of genome sizes over time was assessed using a Wilcoxon Signed Rank Test to
account for the non-independence of repeated data for the same set of hectads. Variable
selection for spatial models of hectad weighted mean genome size and ploidy per hectad
in the final date class and of change in genome size per hectad was based on Pearson
correlation assessed in the ‘corrplot’ package (Wei et al.,, 2017) and iterative dropping of
each model term to minimise AIC. Predictors for hectad weighted mean genome size in
the final date class were environmental variables and species richness (the estimated
number of species present in any hectad, following Frescalo correction, as per Chapter 3).
In modelling change in weighted mean genome size per hectad over the course of the three

date classes, I used changes within the predictors over the same time span.

The relative importance of variables in non-spatial linear models was assessed using the
‘relaimpo’ package (Gromping & Matthias, 2021). I chose the Img’ metric (proposed by
Lindemann, Merenda & Gold, 1980), which decomposes R* into a set of non-negative
contributions, summing automatically to the total R* This approach has been shown to
be robust to the pitfalls of collinearity since the metric averages across different orderings

for the predictors (Gromping, 2007).



Spatial signal (spatial autocorrelation) was assessed by calculating Moran’s I of outcome
and predictors. Residuals of the non-spatial model were also plotted and inspected for
spatial signal. Lagrange multiplier diagnostics (Anselin et al., 1996) for spatial dependence
were used to identify the nature of the spatial dependence present within the data (spatial
lag and spatial error dependence). Due to strong evidence of both spatial lag and spatial
error dependence, I followed guidance by Anselin, Le Gallo & Jayet (2008) and corrected
for the dependence with the largest test statistic, in this instance the spatial error
dependence. The ‘spatialreg’ package (Bivand et al., 2019) was used to run the final spatial

model.

Differences in hectad weighted mean genome size profiles of different land use categories
were assessed using ANOVA with Tukey post-hoc tests for multiple comparisons on those

land use classes that are the majority cover in more than 15 hectads.

[ tested for the presence of phylogenetic signal (Blomberg’s K and Pagel’s A) in the genome
size and magnitude of change along the North-South axis data using the ‘phytools’ package
(Revell, 2012) with 10,000 randomisations. The association of genome size and northward
movement was then tested using Phylogenetic Generalised Least Squares (PGLS, Symonds
& Blomberg, 2014) regression as implemented in the packages ‘ape’ and ‘nlme’ (Paradis et
al., 2019; Pinheiro et al., 2017), based on the flora-wide phylogeny described in Chapter 2.
To account for cytotype variation, I attached each cytotype to the base species within the
phylogeny, resulting in an expansion of the phylogeny from 2,501 leaves to 2,742, which
was ultimately used to account for phylogenetic signal here (the resulting phylogeny is
available in Method S4.2). I tested model fit based on Brownian, Blomberg and Pagel
correlation structures and chose Pagel’s due to it yielding the lowest AIC value. Genome
size data was log transformed and the magnitude of northward movement was sqrt-
transformed. Further, I performed quantile regression (Koenker & Bassett, 1978), as

implemented in the ‘quantreg’ package (Koenker et al., 2018), on the same data to find if
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the association between genome size and northward movement differed at different
quantiles of northward movement. A Bonferroni correction was applied to the quantile
regression results to account for multiple comparisons. A phylogenetically corrected
ANOVA (‘phytools’ package) was chosen to test for differences in the northwards
movement of plants of different status (i.e. native, archaeophyte, neophyte; see glossary;

Table 2.1).

Results

Spatio-temporal patterns of genome size and ploidy

The patterns of genome size and ploidy show two very different trends.

Hectad weighted mean ploidy level across the UK follows a clear latitudinal and altitudinal
gradient (Fig. 4.2a) that stays consistent across the three date classes; the South is
characterised by lower hectad weighted mean ploidy levels while the North and especially
the Scottish Highlands exhibit higher hectad weighted mean ploidy levels on average. The
changes in hectad weighted mean ploidy levels are negligible across the three date classes,

with changes never exceeding +/-0.09.

The pattern of hectad weighted mean genome size is strikingly different, with distinct
areas characterised by smaller and others by larger hectad weighted mean genome sizes
(Fig. 4.2b). An overall trend of smaller hectad weighted mean genome sizes in the North
(especially the North West) and larger hectad weighted mean genome sizes in the South
(especially the South East) is visible, but in addition to this trend, there are clear hot spots
(large genome sizes), such as in urban areas (Greater London in particular), and cold spots
(small genome sizes) e.g. in western Scotland and northern Wales. There are also clear

trends in hectad weighted mean genome size profiles between the three date classes (Fig.
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4.33). Most (2,842) hectads have experienced weighted mean genome size increases from

the first to the most recent date class, with only 159 showing a decreasing weighted mean.
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Fig. 4.2 Patterns of ploidy and genome size in space and time. Series a and b
show the patterns of weighted mean ploidy and genome size respectively
throughout the three date classes. The legend for ploidy level is given in the number
of chromosome sets in the nucleus (x), while the legend for genome size is given in
pg/1C. A clear gradient from North to South and very few changes through time in
the ploidy graphs are juxtaposed with locally distinctive patterns and a gradual
change towards larger genomes in more recent years.

The greatest increases in hectad weighted mean genome sizes are localised in England and
northern Scotland. The Wilcoxon Signed Rank Test with continuity correction revealed a
significant increase in hectad weighted mean genome sizes across the whole study area,
both overall and from one date class to the next (all p < 0.0001, Fig. 4.3b). The total mean

increase in hectad weighted mean genome sizes across the study area between the first
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and last date class amounts to 5.5% (from a mean of 2.4 pg/1C in the first date class to a

mean of 2.6 pg/1C in the last date class).
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Fig. 4.3 Changes in genome size. a shows the change in hectad weighted mean
genome size of each hectad, between the first and second, second and third and first
and third date class (full change). Orange hues indicate increases while areas with
decreasing genome sizes are coded in blue. The violin plots and integrated boxplots
in b illustrate the gradual increase in genome size across the study area. Significant
differences were found between all groups (p < 0.0001), as indicated by asterisks. All
hectad weighted mean genome sizes are in pg/1C for 1,698 species and cytotypes
with available data.

Land use changes in the long- and short-term

Fig. 4.4 shows the change in land cover present in the study area from the 1930s to 2020.
The expansion of agricultural land, particularly in the West of England, and the slightly

increasing space occupied by urban areas are visible, but also the increasing reforestation
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in Scotland can be made out with more hectads exhibiting mostly forest cover. The alluvial
plot (Fig. 4.4a) demonstrates the fate of hectad majority cover; each hectad is represented
here as a line with colours indicative of the majority cover in 2020. The strata at each time
point represent the proportions of the different land cover types within them. A more

detailed plot of land cover changes can be seen in S4.1.

Roughly half (362 hectads, 46.8%) of current agricultural land (773 hectads) was converted
from areas that were previously meadow or grassland areas between the 1930s and 199o.
While only three hectads were mostly covered in forest in the 1930s, there now is a
substantial group of such hectads (114 hectads). The overwhelming majority of them (104

hectads) were previously classed as heathland, moorland or rough pasture.

Predictors of hectad weighted mean genome size and ploidy

Numeric predictors

All numeric predictors (species richness, rainfall, temperature, wet and dry nitrogen
deposition) as well as hectad weighted mean genome size and ploidy were found to be
spatially autocorrelated (Moran’s I 0.91, 0.91, 0.94, 0.87, 0.93, 0.91 and 0.96, all p < 0.0001).
The same is true for the changes in predictors, hectad weighted mean genome size and
ploidy across the three date classes (Moran’s I 0.82, 0.83, 0.95, 0.83, 0.89, 0.83 and 0.78, all

p < 0.0001). Maps of each predictor are available in Fig. S4.2.
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Fig. 4.4 Land cover changes. a is an alluvial plot that visualises the change in majority land
cover for the 2,655 hectads (represented as individual lines) for which this information is
available at each of the time points considered here (1930s, 1990, 2007, 2017 and 2020). b and
¢ map the land cover by hectad categorised according to the Dudley Stamp 1930s map (b)
and UKCEH land cover maps (c). 2007 represents a special case, since the UKCEH LCM’s
categories for this period are not perfectly aligned with those used in the preceding and
following years, making direct comparisons more challenging. Hectads with majority cover
for one of those land cover types that were not assigned in all time periods. The land cover
types only present in the 2007 LCM are highlighted in grey in the legend. Legends for maps
are given inside the grey box for Dudley Stamp categories and inside the black box for
UKCEH categories). Colours in a indicate the majority cover the hectad falls into in the final
date class and correspond to the legend and map in b.
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Linear models for individual predictors of hectad weighted mean genome size and ploidy
are presented in Fig. S4.3 and S4.4 and show opposing responses for hectad weighted mean
genome size and ploidy to all tested predictors. While hectad weighted mean genome sizes
decrease with increasing latitudes, hectad weighted mean ploidy level increases. Hectad
weighted mean ploidy level also increases with rainfall per growing season. Conversely,
hectad weighted mean genome size increases with increasing species numbers,
temperature per growing season and both wet and dry nitrogen deposition, while hectad

weighted mean ploidy level decreases in response to these predictors.

Changes in hectad weighted mean genome size over time showed less clear relationships
with changes occurring in the different predictors, although hectad weighted mean
genome size increases over time were correlated with rising species numbers, increasing

temperatures and wet nitrogen deposition (Fig. S4.5).

In preparation for multivariate modelling I inspected correlations between predictor
variables to diagnose collinearity that would necessitate exclusions of variable
combinations. I found that Pearson correlations (Fig. S4.6) among potential predictors of
changes in hectad weighted mean genome size over time were not high enough to
preclude any combinations of variables from multivariate analyses, with all correlations
well below +/-0.4, with the exception of the correlation between the change in
temperature and the change in dry nitrogen deposition over time, which was -0.56.
Conversely, most of the predictor variables for prediction of mean genome size within
hectads of the last date class showed stronger correlations, once again indicating the need
for a spatial modelling approach. Single term deletions on the multivariate linear models
revealed a benefit in dropping the temperature component from the change models for

both hectad weighted mean genome size and ploidy.
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The relative importance of variables was derived from linear models that did not account
for spatial correlations, but which did include latitude and longitude as predictors. The
resulting Img metrics (Lindemann, Merenda & Gold, 1980) of variable importance for all
predictors of hectad weighted mean genome size and ploidy in the last date class as well
as the change in hectad weighted mean genome size and ploidy over time are summarised
in Table 4.2. Unsurprisingly given the clear gradient observed when mapping hectad
weighted mean ploidy (Fig. 4.2a), the overwhelmingly most effective predictors for it are
temperature and latitude (Table 4.2a), with increasing latitude and decreasing
temperature associated with larger ploidy levels (Fig. S4.4). Changes in hectad weighted
mean ploidy across the three date classes were negligible and were therefore not
considered in the following analyses (data not shown). The best predictor of hectad
weighted mean genome size is species richness, with rainfall a distant second (Table 4.2b).
The importance of species richness becomes even more apparent in the variable
importance for the model of change in hectad weighted mean genome size. Here, the
change in species richness outcompetes the other predictors by an order of magnitude
(Table 4.2c¢).

Table 4.2 Relative importance of predictors in linear models. a hectad weighted mean
ploidy level in the last date class, b hectad weighted mean genome size in the last date class
and c the change in hectad weighted mean genome size from the first to the last date class.
Lmg is the metric of variable importance used (Lindemann, Merenda & Gold, 1980) and
describes the variance explained by each predictor, summing to the total R* of each model
(R* = 0.77, 0.80 and 0.64, respectively).

a Img b Img C lmg
species richness 0.1364  species richness 0.2058  change in species richness 0.4961
rainfall 0.0577  rainfall 0.1480  change in rainfall 0.0050
temperature 0.2441  temperature 0.1077  change in dry N deposition  0.0491
dry N deposition  0.0678  dry N deposition 0.1169  change in wet N deposition 0.0381
wet N deposition  0.0354  wet N deposition 0.0215  latitude 0.0175
latitude 0.2329 latitude 0.0613 longitude 0.0396
longitude 0.0285  longitude 0.1064

When grouping the hectads by the land use (as categorised by UKCEH LCMs; Fig. 4.4¢)
they fall into in the last date class, change in species richness remains the main factor
influencing changes in hectad weighted mean genome size across the majority of land
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cover types. However, there are some interesting emergent predictors when interrogating
certain land cover categories in this way. In ‘suburban’ and ‘urban’ hectads, change in dry
nitrogen deposition emerges as a substantial secondary predictor of change in hectad
weighted mean genome size. In areas where the majority cover is ‘heather’, changes in wet
nitrogen deposition and rainfall also add considerable explanatory power to the models.
Finally, the change in wet nitrogen deposition becomes an important predictor in addition
to changes in species richness in ‘acid grassland’, ‘bog’ and ‘coniferous woodland’ land
cover types. Indeed, in ‘acid grassland’ hectads, change in wet nitrogen deposition is the
most helpful predictor, ahead of species richness, with a considerable effect of change in

dry nitrogen deposition as well (Table S4.4).

The residuals within the models for hectad weighted mean genome size in the final date
class and for the change in hectad weighted mean genome size also showed spatial
patterning (Moran’s I 0.65, p < 0.0001). This, on top of the spatial non-independence
within predictors and outcome does suggest the importance of accounting for spatial
dependence structures within the models themselves to avoid chronic under- or
overestimation of the regression in proximate areas. Lagrange multiplier diagnostics for
spatial dependence showed that both spatial error and spatial lag dependence were
present and significant within the models (p < 0.0001 in all cases). The test statistics for
the spatial error dependence were higher in both models (RLMerr = 3,976.0 and RLMerr
= 1,2906.2, RLMlag = 21.7 and RLMlag = 96.6), suggesting the greater importance of
correcting for the non-independence in the error structure (Aneselin, Gallo & Jayet, 2008).
The final, spatial linear regression model showed only slight, but significant effects of
species richness, mean rainfall and mean temperature per growing season on hectad
weighted mean genome size in the last date class (Table 4.3a). Species richness and

temperature were positively associated with hectad weighted mean genome size, while an

96



increase in rainfall had a negative effect on hectad weighted mean genome size. Neither
wet nor dry nitrogen deposition showed significant effects.

Table 4.3 Summary of spatial models. a hectad weighted mean genome size in the final
date class and b of change in hectad weighted mean genome size between the first and last

date class.

a Estimate Std. Error  z value Pr(>|z|)
(Intercept) 1.7327 0.0517 33.5412 0.0000
species richness 0.0006 0.0000 27.8544 0.0000
mean rainfall per growing season -0.0010 0.0002 -5.2785 0.0000
mean temperature per growing season 0.0404 0.0036 11.1847 0.0000
mean dry N deposition 0.0009 0.0018  0.5177 0.6047
mean wet N deposition 0.0009 0.0011  0.7716 0.4403
b Estimate Std. Error  z value Pr(>|z|)
(Intercept) 0.0981 0.0065 15.1141 0.0000
change in species richness 0.0010 0.0000 33.6947 0.0000
change in rainfall -0.0009 0.0003 -2.9810 0.0029
change in dry N deposition -0.0058 0.0010 -5.9659 0.0000
change in wet N deposition 0.0094 0.0010  9.1027 0.0000

The model for change in hectad weighted genome size over time based on changes in the
predictors across the three date classes revealed significant associations for all predictors
retained in the model (Table 4.3b). A positive change in species richness was once again
associated with an increase in hectad weighted mean genome size, while an increase in
rainfall concurred with a decrease in hectad weighted mean genome size. Changes in wet
and dry nitrogen deposition have relatively strong and opposing effects in this model, with
increases in wet nitrogen deposition associated with an increase in genome size while

increases in dry nitrogen deposition correlate with genome size decreases.

Land cover

Having already observed the differences in variable importance associated with different
land cover types, I wanted to find out how hectad weighted mean genome size and its

change over time differs by land use.

97



Weighted mean genome sizes per hectad showed clear differences across the different land
cover types (Fig. 4.5). Notably, hectad weighted mean genome sizes in ‘urban’ and
‘suburban’, ‘arable and horticulture’ as well as ‘improved grassland’ and ‘littoral sediment’
hectads were all significantly larger than in any of the other land cover types tested (Tukey
HSD p < 0.0001, except for the comparison between ‘improved grassland’ and ‘littoral
sediment’ with ‘saltwater’ (p = 0.0241 and p = 0.0041), for a full list of comparisons see

Table S4.5.
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Fig. 4.5 Hectad weighted mean genome sizes in different land cover categories for
2,778 hectads. Boxplot representation of weighted mean genome size profiles in hectads
associated with different land cover types in the final date class. Only categories represented
by more than 15 hectads are shown. Colours correspond to default UKCEH land cover colour
code. Land cover types ‘urban and ‘suburban’, but also ‘arable and horticulture’, ‘improved
grassland’ and ‘littoral sediment’ stand out from all others as harbouring plants with
significantly larger mean genome sizes. The number of hectads falling into each group is
given along the y-axis.

While across all land cover types, the hectad weighted mean genome size has been
increasing steadily across the three date classes, some land cover types stand out.
Compared to the 5.5% increase in mean genome size between the first and last date class

when analysing data from all land cover types together (Fig. 4.3), weighted mean genome
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sizes in ‘acid grassland’ hectads only increase by 2.5% with a stagnation of the increase
between the second and third date class. In contrast, particularly large increases in
weighted mean genome size can be observed in ‘bog’ hectads (8.1% increase) and in

‘suburban’ hectads (7.3% increase), where the rise was steady across date classes.

Centre of mass

The vast majority (79.4%) of species exhibited a northward shift from the 1987-1999 to the
2010-2019 date class, with 933 out of the total 1,175 species with sufficient information
moving North. Fig. 4.6 shows the distances and direction of movement for those species

with available data for status. Plants with different status in the study area also showed
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Fig. 4.6 Shifts in centre of mass between the first and last date class. The shifts for the
centre of mass of 1,163 species. 825 native (green), 111 archaeophyte (blue), 224 neophyte
(yellow) and 3 neonative (black) species are represented with respect to the distance as well
as the direction of the movement. The vast majority (i.e. 79.4%) and especially neophyte are
moving towards the North.
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different potential for movements towards the North, with archaeophytes and especially
neophytes moving significantly larger distances compared to natives, who only performed
marginal shifts of usually less than 25 km towards the North (Fig. 4.7). The differences
were significant (phylogenetic ANOVA, all p < 0.01), even when accounting for the

pronounced phylogenetic signal within the northward movement data (K = 0.0338039, A

= 0.77175, P < 0.0001).

Evocative of this trend, the strongest shifts northward were shown by Cupressus
macrocarpa Hartw. ex Gordon (Cupressaceae, 130 km), Jacobaea maritima (L.) Pelser &
Meijden (Asteraceae, 18 km) and Lemna minuta Kunth (Araceae, 106 km), representing a
neophyte survivor and two naturalised neophytes respectively. The species moving
furthest South are two natives, Callitriche platycarpa Kiitz. (Plantaginaceae, 65 km) and
Catapodium marinum (L.) C.E.Hubb. (Poaceae, 53 km), and Cedrus libani A.Rich.
(Pinaceae, 64 km), another neophyte survivor. Meanwhile among some of the species with
an almost entirely static centre of mass are the native plants Trifolium repens L. (Fabaceae),

Plantago lanceolata L. (Plantaginaceae) and Juncus effusus L. (Juncaceae).

Beyond the signal already found within northward movement data, phylogenetic signal
was also significant and substantial in the genome size data (K = 0.259017, A = 0.999934, p
< 0.0001), suggesting the importance of a phylogenetic correction. The magnitude of
northward shift in the flora was found to be significantly and positively associated with
genome size (Fig. 4.8a) when tested using PGLS regression (p < 0.0001). Quantile
regression revealed that this positive association is especially driven by those species that
move the furthest distances (0.9 and 0.75 quantiles), where the positive association is the

steepest (Fig. 4.8b).
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Fig. 4.7 The northward movements of natives and non-natives. The different
movement profiles of plants of different status towards the North are represented as a box-
and scatterplot (a). All comparisons were significant after accounting for phylogenetic
signal, as indicated by asterisks. The data represents 443 natives, 62 archaeophytes and 99
neophytes with available phylogenetic information. Neonatives were not tested due to a
scarcity of records (n = 3). b & ¢ show the location of centre of masses in the first date class
(1987-1999, b) and the last date class (2010-2019, c¢). Neophyte plants that showed the
strongest northward movement typically have centres of mass in the far South in the first
date class, while natives are spread out across the whole length of the UK. In the last date
class neophyte centres of mass had shifted further north leaving fewer centres of mass in
the far South. The location plots encompass information on all 825 native (green), m
archaeophyte (blue), 224 neophyte (yellow) and 3 neonative (black) species for which centre
of mass could be calculated.
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Fig. 4.8 The association of northward shifts and genome size for 604 species. The
square root of the magnitude of northward shifts of each species is plotted against its log
transformed genome size along with PGLS regression (a) and quantile regression lines (b).
Colours in a correspond with status of species (green stands for natives, blue for
archaeophytes, and yellow for neophytes). Larger northward shifts are associated with larger
genome sizes. Notably, it is especially neophytes who are performing large movements
northwards The PGLS fit is highly significant (p < 0.0001). The quantile regression was
performed on the conditional quantiles t = 0.9, 0.75, 0.5, 0.25 and o0.1. Only regressions for t
= 0.9 and 0.75 are significant (p < 0.05). Dashed lines indicate non-significance. Lines are
labelled with the corresponding equation (format mx + ¢, where m = slope and c = intercept).
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Discussion

Genome size patterns and their predictors

Weighted mean genome size and ploidy levels per hectad show inverse patterns across the
UK. The clear increase in hectad weighted mean ploidy levels towards the North concurs
with findings of Rice et al. (2019) who found that polyploid frequency increases towards
the poles. Recent findings from an analysis of the global distribution of genome sizes
showed a similar pattern of increasing genome sizes towards both poles, although in the
far North (above latitudes of c. 50-60N), particularly in regions with recent glaciation
histories, the relationship was reversed, with further increases towards the North
characterised by increasingly smaller genomes (Bures$ et al., 2022 (in press)). This latter
finding is corroborated by the patterns of weighted mean genome size in the very recently

glaciated UK (Clark et al., 2012), presented here.

Meanwhile, the comparatively small size of the study area means that the factors at play
on a global level may not be apparent in this study. While both global genome size and
ploidy distributions are likely to be linked to climate and soil properties (e.g. nutrient
poorer soils in the tropics), it appears that the smaller geographic scales and extremely
high levels of human disturbance characterising the UK might lead to different dynamics.
In the analysis here, hectad weighted mean ploidy level on the one hand is predicted
mostly by temperature and latitude in simple linear models without spatial considerations
beyond the inclusion of coordinate data. This is in agreement with the findings of Rice et
al. (2019), who found temperature to be the most relevant factor in predicting polyploid
frequencies. Such a clear picture does not emerge in the more spatially distinctive patterns
of hectad weighted mean genome size, where non-spatial models identify species richness
as the major predictor of hectad weighted mean genome size and especially of changes in

hectad weighted mean genome size over time. In this study, weighted mean genome size
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per hectad increases with temperature but decreases with rainfall, both in assessments of
the effect of individual factors and in the final spatial models. In contrast, the model
exploring changes in hectad weighted mean genome size over time performs better with
the exclusion of temperature altogether, while local increases in rainfall since the 1980s

and 1990s are associated with decreases in genome size.

The correlation between genome size and water use efficiency is complex. Species with
larger genome sizes and hence stomatal guard cell sizes are thought to lose less water than
species with smaller guard cells for the same total stomatal pore area, which might suggest
increased water use efficiency in species with larger genomes. However, those species may
also open and close their stomata more slowly in response to changing weather, which
may have the opposite effect on water use efficiency (Faizullah et al.,, 2021). While an
increase in mean air temperature for Central England has been reported (Watts et al,
2015), with summers now between 1 and 6°C warmer and in some regions up to 60% drier
than in 1990 (Met Office, 2022), the UK is still a comparatively wet and cool area with
relatively few areas affected by droughts on a regular basis, although the effects of climate
change are already felt in increased frequencies of extreme weather events from droughts
to storms (Kendon et al., 2022). The relatively limited range in temperatures and aridity
across the UK may not be sufficient for strong trends to emerge. However, this situation
may well change in the future, since unmitigated climate change is expected to cause
unprecedented increases in temperature and decreases in rainfall with the potential to

overturn landscape-level community assemblages (Ritchie et al., 2019).

Wet and dry nitrogen deposition is used in the models above as a proxy for overall
eutrophication, a known driver of declines in species richness (Payne et al., 2017; Stevens
et al., 2004) and a hypothesised enabling factor in the increased dominance of plants with
larger genomes (Guignard et al., 2016; Smarda et al., 2013; Peng et al., 2022). In the current

study, there is some uncertainty regarding the role of nitrogen deposition on hectad
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weighted mean genome size. Neither wet nor dry nitrogen deposition are significantly
associated with hectad weighted mean genome sizes in the spatial multiple regression
analysis of the last date class. Nevertheless, changes in each deposition type have opposing
and significant correlation with changes in hectad weighted mean genome size over time,
with increases in dry nitrogen deposition associated with decreases in the temporal change
in hectad weighted mean genome size but increases in wet nitrogen deposition leading to
increases in hectad weighted mean genome size. In individual regressions of these
predictors, this opposing effect on change in hectad weighted mean genome size is also
seen, while individual regressions of the association of hectad weighted mean genome size
in the last date class and nitrogen deposition show positive correlations with both
deposition types. One of the most unexpected results, that areas with increasing dry
nitrogen deposition show decreasing hectad weighted mean genome sizes, might be
explained by the nature of dry deposition which is expected to be highest near urban
centres, along motorways and near agricultural sites, where the effects of other human
impacts may be more prominent and perhaps obscure the expected effects of additional
nitrogen. Wet nitrogen deposition on the other hand travels further away from emission
sources and is deposited more evenly (Tomlinson et al., 2021). The fact that this deposition
type does seem to correlate with increases in hectad weighted mean genome size offers
support for the hypothesis that high levels of nutrient availability in soils are expected to
lift the constraint of highly nutrient-demanding species with large genomes, allowing
them to colonise more widely. Meanwhile, the contradicting nature of the findings
regarding the role of nitrogen deposition on genome size patterns may also mean that the
hypothesised role of nutrients on shaping plant communities via genome size simply does
not emerge at the scales tested. It must be noted that the data on atmospheric nitrogen
deposition used here is likely not the ideal measure to test for the effect of increased

nutrient availability, especially when considering that the full effects of nutrient limitation
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on genome size are likely to arise from the combined effect of nitrogen and phosphorus

(Guignard et al., 2016).

In the setting of steady increases in the intensity of agriculture and consequently
eutrophication from agricultural run-off across the UK in the last century (Smart et al,
2003; Firbank et al., 2000), nutrient pollution from agricultural lands continues to be a
major and poorly controlled (Sharma, 2020) threat to soil health, even as more effective
policies have caused steady declines in atmospheric nitrogen deposition (Tomlinson et al.,
2021). While information on fertiliser application for England in 2015 is available (UKCEH
Land Cover® plus) and was used in preliminary models, the restricted extent of this dataset
excluded many interesting geographical areas of hectad weighted mean genome size
distributions and led to inconclusive findings. What is clear, however, is that areas
characterised by human activity can be expected to be more drastically affected by
nutrient pollution, either in the form of atmospheric nutrient deposition (especially
‘urban’ and ‘suburban’ land cover categories) or nutrient pollution from fertiliser
application and livestock manure (‘arable and horticulture’ as well as ‘improved grassland’
land cover types, the latter of which is most commonly used as productive grazing land
(NatureScot, 2018)). This is confirmed by higher levels of nitrogen, phosphorus and
potassium application in hectads with mostly agricultural use (‘arable and horticulture’,
to a lesser extent ‘improved grasslands’, see Fig. S4.7), suggesting that land use might offer
further insights into the shaping effects behind the genome size distribution patterns
observed. In particular, while mere nitrogen deposition cannot account for the combined
effects of nitrogen and phosphorus pollution, the coupled application of NPK fertilisers in
agricultural environments suggests that larger mean genome sizes within agricultural land

use types might reflect the synergistic effect of both nutrients.
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Human impact favours larger genomes in the UK

Hectads most impacted by humans, i.e. those with a majority of ‘urban’, ‘suburban’, ‘arable
and horticulture’ or ‘improved grassland’ cover clearly harboured the largest mean
genomes (Fig. 4.5). These are the very hectads most likely to suffer from high levels of
nutrient pollution either from atmospheric deposition or from agricultural practices,
offering support for the hypothesis that abundant nutrient supply removes constraints on
species with larger genome sizes, thus driving the average genome size of species
occupying such hectads upwards. The specific associations between land use, nutrient
pollution and other effects of human activities with genome size patterns may benefit from

structural equation modelling to help untangle some of these interrelated effects.

Beyond the effects of nutrient levels alone, human disturbance in itself might be a factor
in driving genome size differences and change across Britain. Lim et al. (2014) noted that
the strongly felt presence of humans is a major driver of plant invasions, suggesting that
the level of human disruption present within small, industrialised nations such as the UK
might fundamentally alter the way threats to biodiversity must be contextualised and
countered. The finding that higher levels of species richness are associated with larger
hectad weighted mean genome size may also be related to human actions, especially due
to higher levels of species richness near metropolitan areas. As discussed in detail in
Chapter 3, the pattern of species richness (Fig. 3.1) considered here is most likely less
reflective of thriving and diverse natural communities, but is likely instead influenced by
recurrent introductions of species from agriculture and domestic gardens, recognised as a
major route for plant introductions worldwide (Guo et al, 2019). Notably, neophyte
species, i.e. recent additions to the flora, have larger genomes than native species (Fig.
2.10), and are likely to be more frequently beneficiaries of frequent re-introductions,

especially in hectads with high levels of human disturbance (e.g. as garden escapes).
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Beyond the effect of garden escapes near clusters of human settlements, some species,
specifically generalists with wider ranges, have previously been found to benefit from the
novel niches created by human disturbance, leading to an overall loss in distinctiveness
across such disturbed assemblages (Newbold et al., 2018). Given the findings presented
here, plants with larger genomes appear to be another group of such beneficiaries of

increasing disturbance.

While land use changes in the past thirty years have been subtle, the last century has seen
significant levels of agricultural intensification across the UK, especially in the wake of
World War II (Robinson & Sutherland, 2002; Smart et al., 2003), which is reflected in the
vast expansion of ‘arable and horticultural’ land documented by the Dudley Stamp and
subsequent land cover maps (Fig. 4.4). Given the strong association of larger hectad
weighted mean genome size with land cover types characterised with high levels of human
activity, it is conceivable that the drastic changes in land use have positively influenced
the establishment of plants with large genome sizes across the UK. While a look back in
time to the genetic composition of areas about to undergo change towards more intensive
agricultural use in and before the 1930s is challenging due to increasingly severe biases
within biological records (Isaac & Pocock, 2015), the association of hectad weighted mean
genome size with wet nitrogen deposition and changes within it certainly suggests a role
of nutrient pollution and hence agricultural practises in driving community genome sizes.
Ritchie et al. (2019), suggest that ongoing climate change will likely bring about an
overhaul of land use across Britain, with warmer temperatures and higher CO., levels
predicted to lead to westward expansions of arable lands, but also to potential needs for
extensive artificial irrigation to maintain productivity especially in the South East. The
expansion of intensively managed agricultural lands and uncertainty about the
effectiveness of legislation on nutrient pollution in the future (Sharma, 2020; DEFRA,

2022) will pose risks to nutrient poorer habitats in particular, whose species richness has
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been shown frequently to decrease in response to nitrogen deposition (Maskell et al., 2010;
Stevens et al., 2004). Plants with larger genomes may well emerge as winners of this trend
and their potential to become dominant and ‘crowd out’ biodiversity in the presence of an
abundance of nutrients as suggested in field experiments (Guignard et al., 2016) and under
higher CO, (Ritchie et al, 2019) as hypothesised by Faizullah et al, (2021) might then
become a threat for ecosystems in Britain. Whether this advantage due to nutrient
pollution will be sufficient to outweigh the increasing aridity expected to result from
climate change, or whether this might become the limiting factor influencing the
distribution of species in the UK, especially those with larger genome sizes, will be an

important development to watch.

Northward movements

Genome size also appears to correlate with range shifts of the British flora. It is clear from
the results shown above that the vast majority of species in the UK are on a northward
trajectory (Fig. 4.6). Northward shifts in animal and more rarely in plant distributions have
been recorded and are often interpreted in the context of climate change (e.g. see Hickling
et al. (2006) for a variety of animal groups and Lenoir et al. (2008) for plants). Groom
(2013b) undertook to test for such movements in the UK’s vascular plants between 1978
and 2011. Here I have expanded this temporal range to the year 2019 and my approach
differs from Groom’s in several ways (namely his use of kriging instead of Frescalo for
smoothing the effects of recording bias, different timescales and the use of native species

only), but produces similar results of a tendency towards northward movements.

The differences in range shifts of native and non-native plants are notable. Particularly
neophytes are showing strong northward movement, while the majority of natives are

almost static. This likely indicates that many of the relatively new arrivals in the flora are
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still in the process of expanding their range to their full potential within the UK, with
continued human-driven dispersal of useful and charismatic plants a crucial factor, while
many native species have likely reached the limit of northward expansion that is feasible
to them (Pearce-Higgins et al., 2017). The strong northward shifts of neophytes therefore
may therefore be a reflection of the joint impact of gradual warming of the study area
opening new habitats for plants with higher temperature requirements, along with the
movement of newly introduced species from areas of initial introduction and cultivation
towards more sparsely populated areas in the North (Groom, 2013b). The comparative
unreliability in non-native records which was noted to make inferences about neophyte
distribution shifts challenging by Braithwaite (2010), was here addressed by only using
date classes that occurred after notable changes in thinking made the recording of
neophytes more mainstream and expansive, but traces of it are likely to have an impact on
the findings. Meanwhile, Hill & Preston (2015) demonstrated on plants native to the UK
that boreal species were disappearing from the South of Britain, and, by comparing
changes in the frequencies of boreal plants with similar species with warmer preferences,
found that climate change appeared to be an emerging driver of vascular plant declines in
Britain, suggesting that at least part of the northward movement demonstrated here is

likely due to the gradual warming of the UK’s climate.

The fact that plants with larger genomes are migrating further northward (Fig. 4.8) might
be considered surprising given that plants with smaller genomes are often believed to have
greater trait flexibility, enabling them to inhabit a broader range of environmental niches
compared to species with larger genomes that are more constrained in the ecological
options available to them (i.e. ‘the large genome constraint hypothesis’, Knight et al., 2005;
see also Suda et al.,, 2015 and Faizullah et al., 2021). Vinogradov (2003) in fact noted that
threatened plant species tended to be characterised by possessing larger genomes than

species with lower levels of vulnerability to extinction, suggesting that some of the DNA
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sequences, such as repetitive DNA, which dominate large genomes, may constrain the
ecological and evolutionary potential of such species as they act as a burden. Such findings
are supported by more recent studies showing the dynamics of repetitive DNA turnover
are more constrained in species with large genomes, reducing their ability to generate
genetic diversity upon which selection can act (Novak et al, 2020). Field experiments
(Guignard et al, 2016; Smarda et al, 2013) have previously shown, however, that in
locations where limiting factors (nutrient limitation in particular) are removed, plants
with larger genome sizes may find themselves at a competitive advantage and become
dominant. It is possible then, that the wet and nutrient-rich environments of the UK are
ideal locations for plants with larger genome sizes to swiftly move into new environments,
although there are likely upper limits since the very largest genome sizes are typically
associated with long minimum generation times and large diaspore sizes making their

expansion into new niches more challenging (Cavalier-Smith, 2005).

As indicated in Fig. 4.7 and Fig. 4.8a, it is especially neophytes that are moving far
distances and that thus dominate the upper quantiles of northward movement where the
positive association with genome size was steepest (Fig. 4.8). It appears therefore that the
newcomers in the flora are a strong influence on the changes in genome size patterns
observed here, with neophyte species characterised by larger genomes than those of native
and archaeophyte species, on average. Out of the 10 species with the largest genome sizes
in this analysis, seven were neophytes. Lim et al. (2014) also note that successful invasive
species in Britain are often characterised by high moisture and nutrient requirements,
traits that would be shared with plants with larger genomes in areas where plants can take
advantage of higher levels of human impact (e.g. high levels of nutrient additions) as well

as the wetter conditions of northern parts of Britain.

The faster movement in the ranges of neophytes and plants with larger genomes in general

demonstrated here might place some of them at a competitive advantage as they may well
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be more able to keep up with the increasingly fast-paced changes in land use and climate
across the UK (Sandel et al., 2011), to the potential detriment of native species with smaller
genomes. Although it remains to be explored to what extent it is the intrinsic property of
a larger genome that is apparent here, as opposed to a mere correlational tendency of
neophyte species to have larger genomes, the role of genome size as a potential predictor
of species success in the face of ongoing anthropogenic change should be considered in

more detail.

The aim of this chapter was the elucidation of how spatial changes and patterns within the
flora influenced the distribution of hectad weighted mean genome size and ploidy levels.
Weighted mean genome sizes of species in hectads across the UK show uneven patterns,
with the largest values found in areas of high human impacts. There also is a correlation
between genome size and the trajectories of plants within the UK, particularly for species
which have been introduced into the flora more recently (i.e. neophytes, Fig. 4.8a) and
hence may not have established their full potential range. The results suggest that genome
size may be a helpful addition to models that aim to determine species at risk of
disappearance from the British flora as a whole and/or locally or at risk of becoming
dominant and hence potentially affecting the survival of native species. This could be
because genome size covaries with various functional traits (e.g. Bennett, 1971; Bennett,
1972: Masterson, 1994; Beaulieu et al., 2007; Knight and Beaulieu, 2008; Vesely et al., 2012;
Sparrow and Miksche, 1960; Vesely et al., 2013; Roddy et al., 2020; Théroux-Rancourt et al.,
2021). Unlike these other traits however, which can vary with development, age and

environment, genome size is an inherent character that is relatively easy to obtain.

112



Chapter5 Genome size informs predictions of
species at risk of decline mediated through

functional traits

This chapter is formatted for submission; however, the authors and the journal are still

undecided.
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Abstract

The identification of species in decline is of vital importance in a time of unprecedented
anthropogenic changes that require targeted conservation actions. Traits and plant
characters shape the functional and environmental niche that plants are able to occupy and
can consequently help us to distinguish species predisposed to decline in response to
environmental change. Genome size sets limits on and correlates with a multitude of plant
traits, and may offer additional information to models seeking to identify species at risk.
However, its putative value for such analyses remains underexplored.

Based on species records from the flora of the United Kingdom, I use the Frescalo method
to calculate decreasing and increasing species trends (based on regressions of relative
frequencies) over the past thirty years and characterise ‘winners’ and ‘losers’ with regard to
status, biome associations and genetic characters. Using a random forest classification
algorithm built on functional traits, Ellenberg indicator values and genome size, I predict
species trends and determine if genome size can be an informative addition for such
predictions. Path analysis is used to explore how genome size might be linked with trend via
interactions with traits and niche requirements.

My findings indicate that species showing increasing trends are typically non-natives from
Mediterranean biomes with larger genomes. Random forest derived predictions of trend
categories correctly identify species with declining trends in 77% of cases with an overall
model accuracy of 70%. Genome size emerges as a helpful feature for pinpointing species at
risk, and appears to exert its role indirectly via impacts on functional traits.

These findings suggest that genome size can help us improve trait-based models for the
identification of species at risk from environmental change. Although the extent to which
this applies to species outside the UK remains to be explored, trait-based models including
genome size promise to be highly beneficial for informing targeted conservation, especially

in areas where distribution data is sparse.
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Introduction

In the context of global biodiversity in decline and anthropogenic threats to it mounting
further (Bellard, Marino & Courchamp, 2022), methods that aid our ability to identify early
those species heading for extinction are crucial. Vulnerability assessments such as those
undertaken by the IUCN Red List (2022) are the most widely adopted approach for the
identification of species at risk, but distribution data at sufficient temporal and spatial
resolution to support Red List assessments are not always available. Consequently, any
information that can be linked with increased risk of decline and extinction is crucial to
allow policymakers to prioritise focal species, thus maximising conservation effects

(Pearce-Higgins et al, 2017).

As basic descriptors of plant function, functional traits have long received attention as
predictors of species’ responses to environmental gradients and their ability to adapt to
change. Indeed, Alexander von Humboldt pioneered the exploration of plant trait patterns
and their link with the environment as far back as the early 19" century (PaRler & Ette,
2020). Since there is a vast array of plant traits and the ease with which they can be
sampled differs greatly between trait types, much research has focused on recognising
major dimensions in plant function and determining which traits are the most suited to
capturing this fundamental diversity. For example, Grime’s CSR (competitor - stress-
tolerator - ruderal; 1974 & 1977) scheme is often used as a concise conceptualisation of
strategy information inherent in functional traits. While CSR assessments are certainly
useful, their use is often limited to comparisons within local floras in which they are
calibrated, with only recent advances towards CSR classifications that are built upon
globally comparable trade-offs between frequently measured traits (Pierce et al., 2017). The
leaf-height-seed scheme was proposed by Westoby (1998) as an alternative to the complex

strategy descriptors that are Grime’s CSR axes, suggesting instead the use of specific leaf
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area, canopy height and seed mass as easily measured plant traits that cover the major
dimensions of the functional diversity exhibited by plants, a concept that has received
support over the CSR scheme (Pierce et al, 2014). Broadly, plant height is typically
considered a reflection of the plant’s proclivity to dominate vegetation cover and capture
light, seed mass reflects dispersal and establishment ability and leaf traits (specific leaf
area in particular) characterise the dynamics and trade-offs of plant growth and resource
efficiency (higher specific leaf area is often found in fast-growing species) (Violle et al.,
2009; Thomson et al., 2011; Tamme et al., 2014, Carboni et al., 2016). The notion that height
and leaf economics are major axes of plant function concurs with the findings of Diaz et
al. (2016) in their analysis of the entire global plant trait space. Leaf traits, height and seed
mass have been used in the assessment of species responses to their biotic and abiotic
environment (e.g. Lake & Leishmann, 2004; Pollock, Morris & Vesk, 2012; Carboni et al,
2018) and the need for sophisticated models that capture the variable effects of functional

trait combinations was highlighted by Vesk (2013) and Vesk et al. (2021).

Similar to plant traits, Ellenberg’s indicator values (Ellenberg, 1974; Ellenberg et al., 1991,
see glossary; Table 2.1) offer fundamental information about a species, reflecting their
ecological requirements. The broad axes of the indicator values represent moisture
(Ellenberg F), nutrients (Ellenberg N), light (Ellenberg L), soil reactivity (Ellenberg R) and
salinity (Ellenberg S). Based on quantitative observations of realised niche conditions in
the field, their true ability to describe the abiotic environment in the way Ellenberg
intended has been disputed (Schaffers & Sykora, 2000). However, they do represent
strikingly informative characterisations of niche requirements - a type of data that would
otherwise require extensive environmental sampling (Diekmann, 2003) and careful
integration of a variety of factors (e.g. for Ellenberg F: soil moisture content, precipitation,
ground water level etc. (Schaffers & Sykora, 2000)). Unsurprisingly, Ellenberg values have

become popular metrics in attempts to predict plant performance based on niche
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preferences (Pysek, Prach & Smilauer, 1995; Thompson & McCarthy, 2008; Lim et al., 2014;

Powney et al., 2014a).

While traits and Ellenberg values are frequently employed as predictors of species success,
the role that genome size, ploidy and chromosome numbers might play has received little
attention, although multiple studies point towards an influence of these genetic characters
on trait space (Faizullah et al., 2021), community composition (Guignard et al., 2016;
Smarda et al, 2013; Peng et al, 2022) and responses to environmental pressures
(Vinogradov, 2003; Hegarty & Hiscock, 2008; Pandit, White & Pocock, 2014; Chapter 4).
Genome size is at the very base of plant physiology, setting hard biophysical limits on
minimum cell size, packing densities and cell-division speed (Van’t Hof & Sparrow, 1963;
Francis, Davies & Barlow, 2008; Beaulieu et al., 2008; Simova & Herben, 2012; Roddy et al.,
2020; Bennett, 1971 & 1972). Unsurprisingly, these limits mean that genome size has been
found to correlate strongly with a multitude of traits and characters (including stomatal
size, pollen size, UV-sensitivity and life strategy (Masterson, 1994; Beaulieu et al., 2008;
Knight et al,, 2010; Knight & Beaulieu, 2008; Sparrow & Miksche, 1960; Vesely et al., 2012;

Vesely et al., 2013)).

Genome size has also been shown to correlate with the functional traits included in the
leaf-height-seed hypothesis. A clear positive relationship between genome size and seed
mass, assumed to stem from the constraint of genome size on minimum cell size, has long
been established (Knight, Molinari & Petrov, 2005; Beaulieu et al., 2007). However, the
effect of genome size on plant height and specific leaf area is less clear and varies
depending on the clade in question. Trees typically have smaller genomes, leading to an
overall negative association between genome size and height (Knight & Beaulieu, 2008),
but non-woody species appear to show the opposite trend, i.e. a positive correlation

between genome size and plant height (Rios, Kenworthy & Munoz, 2015; Herben et al,

17



2012). Specific leaf area, too, has been shown to be positively or negatively associated with

genome size, depending on the taxonomic context (Kang et al., 2014; Herben et al., 2012).

Studies of the associations between Ellenberg values and genome size have been sparse
(Bures et al.,, 2004; Chrtek et al, 2009; Kube$ova et al., 2010) and correlations have not
been observed consistently between genome size and the indicator values. Meanwhile
there is theoretical support for a potential link between genome size and the Ellenberg
values for nutrients (N) and moisture (F). The hypothesised altered water use efficiency in
plants differing in genome size (Faizullah et al,, 2021), supported by the finding that plants
occurring in humid conditions tended towards larger genomes than those from arid
environments (Vesely et al., 2020), suggests that the maintenance of larger genomes might
lead to a preference for higher moisture levels and consequently a higher Ellenberg F score
in those species. Much more support is available for a link between nutrient levels in the
soil and species with larger genome sizes, which would suggest the existence of a positive
link between Ellenberg N and genome size. The costly nature of nucleic acids with regard
to nitrogen and phosphorus was proposed by Hessen et al. (2010), and Smarda et al. (2013),
Guignard et al. (2016) and Peng et al. (2022) have all demonstrated that nitrogen and
phosphorus enrichment favours species with increased genome size, leading to changes in

species community composition in field experiments.

In addition to genome size, the conjunction of ploidy and chromosome number is a further
component of the genetic make-up of a species. Although linked by the history of genome
duplications in a species’ ancestry, a trend towards genome downsizing following
polyploidy means that plants with higher ploidy levels may not necessarily have larger
genomes (Renny-Byfield & Wendel, 2014). Indeed, in certain circumstances, the expected
effects of large genomes and high ploidy levels contradict one another, as in the case of
invasiveness, where species with larger genomes are less likely to be invasive, but those

with higher ploidy level (and chromosome number) are more likely to be invasive
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(Vinogradov, 2003; Pandit et al., 2014). This points to the potential benefits of including
all genetic characters together in analyses of trait driven species success to capture all

potentially important information contained across them.

The complex roles that genome size, ploidy and chromosome number are expected to play
in the context of ecology suggest that their inclusion in models of species success may be
important. Indeed, Herben et al. (2012), demonstrated that even when accounting for
functional traits, genome size offered additional predictive value in models of regional

plant abundance.

In this chapter, I construct a random forest classifier to distinguish between plants with
increasing and decreasing species trends (based on regressions of relative frequencies, see
Chapter 3, Fig. 3.2) across the UK in the past thirty years, based on Ellenberg values,
functional traits and genetic characters. Following an assessment of variable importance
from the random forest models, I then conduct a phylogenetic path analysis to gain
insights into the way in which predictors tie in with one another to exert their effect on
trend outcomes, focusing in particular on the way that genome size might factor into the

equation.

Materials & Methods

Estimation of species trends

The trend information derived from the Frescalo bias correction on plant detection/ non-
detection data from the Botanical Society of Britain and Ireland’s (BSBI) distribution
database (DDb) outlined in Chapter 3 was used here to derive insights into the success of
individual species across the three most recent complete date classes of data (1987-1999,

2000-2009 and 2010-2019). The trend estimate (visualised in Fig. 3.2) is based on a
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regression across the relative frequencies of a species in each of the date classes, as
compared with benchmark species. Species showing a positive regression coefficient are
described as showing an increasing species trend (‘winners’), while those with a negative
coefficient represent species with a declining trend (‘losers’). All results from Frescalo

runs, including the trend regression results, are available in Appendix 2.

To test the reliability of the Frescalo-estimated species trends, I also (i) calculated alpha
hulls (Edelsbrunner et al, 1983; Burgman & Fox, 2003) as a measure of Extent of
Occurrence (Joppa et al., 2016) using the ‘ConR’ package (Dauby et al., 2017), with alpha =
0.2, (ii) derived the decadal change in alpha hull size and (iii) compared this decadal
change with the Frescalo trend estimates. Both measures were clearly positively associated
and consequently the Frescalo-based trend estimate was used in the following analyses

since it had the added benefit of intrinsic correction for sampling bias.

Dataset compilation

[ assembled a dataset of potential predictors of species trend - as defined above - from the
‘BIFloraExplorer’s’ (Henniges et al, 2021) functional trait data, niche descriptors and
information on genetic characters. The dataset for all presented analyses following the
Frescalo correction was restricted to angiosperms associated with a graminoid or
herbaceous growth form (i.e. not woody), explicitly filtering out species associated with

phanerophytic life forms (see glossary; Table 2.1).

The functional traits specific leaf area, leaf area, leaf dry matter content, mean canopy
height and seed mass were used in analyses. Use of Grime’s CSR values within the models
was considered, but since the scores along the three axes had been determined by utilising
Pierce et al.’s (2017) suggested method, using the trade-offs between specific leaf area, leaf

area and leaf dry matter content, this meant that use of the CSR scores would have
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necessitated exclusion of all leaf traits, making interpretation in the context of the leaf-

height-seed scheme impossible.

Ellenberg indicator values describing the realised niche of plants with respect to nutrients
(N), water (F), soil reactivity (R), salinity (S) and light (L) sensu Hill, Preston & Roy, 2004
were used as presented in the ‘BIFloraExplorer’ (Henniges et al., 2021). Assessments by
Doring (2017) were not used to fill gaps in our knowledge of realised niche descriptions,
since the mixture of subjective estimates from two different sources in the same
quantitative analyses posed the risk of confounding results. Additional information on

Ellenberg values is presented in Chapter 2, Table 2.2.

The genetic characters chromosome number, ploidy level and genome size were also
included in the dataset of potential predictors of species trend. [ used the dataset of genetic
information previously described in Chapter 4, taking into account cytotype variation by
treating each cytotype as an additional ‘species’ that shares the same traits, Ellenberg

values and trend, but differs with regard to chromosome number, ploidy and genome size.

In addition to the dataset on predictors for subsequent analysis, I also created a dataset to
characterise and give an overview of the species with increasing and decreasing species
trends with regard to their status (sensu Stace, 2019, i.e. native, archaeophyte, neophyte
etc., see glossary; Table 2.1), their biome association (i.e. Temperate, Mediterranean,
Boreal etc.), and CSR strategy (all from the ‘BIFloraExplorer’ (Henniges et al., 2021), see

Chapter 2 and glossary).

The phylogeny described in Chapter 2 (with attachments of cytotypes as in Chapter 4)
allowed me to test for phylogenetic signal in all predictor variables (Pagel’s A with 10,000
randomisations) and the trend data (‘D-statistic’; Fritz & Purvis, 2010), using the ‘phytools’

package and the ‘caper’ package (Revell, 2012; Orme et al., 2013).
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Data management, visualisations and formal analyses

All data management, manipulation and analyses were carried out in R (version 4.1.3),
relying on ‘tidyverse’ packages (Wickham et al., 2019). Plots were generated using ‘ggplot2’
(Wickham, Chang & Wickham, 2016), ‘treemap’ (Tennekes & Ellis, 2017) and ‘ggtern’
(Hamilton & Ferry, 2018). Differences in each predictor between trend categories were
assessed using phylogenetically corrected ANOVAs as implemented in the ‘phytools’
package with 1,000 randomisations. All steps of random forest runs were executed in the

‘tidymodels’ framework (Kuhn & Wickham, 2020).

Random Forest

Due to the expected highly complex role of genetic characters in affecting species trends,
I chose the random forest algorithm to build a predictive model for binary species trends.
The random forest, first proposed by Breiman (2001) is a machine learning algorithm
founded on the basic principle of the decision tree, where successive splits in the dataset
based on predictor variables are used to arrive at highly accurate predictions of an
outcome variable. Improving the predictive power of this very simplistic algorithm, the
random forest uses the concept of the wisdom of the crowds, constructing an entire ‘forest’
of decision trees, each based on a random subset of data, and then averaging across their
individual predictions (Liu, 2014; Biau & Scornet, 2016). In addition to achieving high
predictive accuracy on non-linear problems, being remarkably robust to outliers and
making no assumptions about interdependencies in the data, the random forest is also

more interpretable with regard to variable importance (Auret & Aldrich, 2012).

Feature selection for the random forest algorithm was based on multiple steps. First, I
calculated and inspected Pearson correlations between all predictors, noting that none of

the correlations warranted exclusion of variables (all well below o.5, excepting the
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correlation between ploidy and chromosome number which was 0.62). Secondly, I applied
two variable selection steps contained within the ‘tidymodels’ framework: a near-zero
variance filter to exclude sparse and unbalanced variables and a filter that removes
variables that are linear combinations of one another which would make model fitting and
later inferences about variable importance challenging. Neither filter suggested the
removal of any of the predictors. Thirdly, I performed Boruta feature selection (Kursa,
Jankowski & Rudnicki, 2010) as implemented in the R package ‘Boruta’ (Kursa & Rudnicki,
2010) on ten random subsamples. This process aims to remove ‘unhelpful’ variables and to
this end generates ‘shadow features’, an alternative version of a specific variable, where
observations are randomly shuffled against the outcome to generate an arbitrary and
consequently non-predictive version of the original feature. The shadow features are then
included in a set of random forest iterations. Only those features that are persistently
found by the algorithm to be more helpful than the most informative of the randomised
shadow features are retained for the final model (Kumar et al, 2017). Boruta feature
selection was run with 100 iterations on each of ten random subsets of the original dataset.
Based on the findings of the Boruta feature selection, both ploidy and chromosome
number were excluded since they were not found to improve models. All functional traits,
Ellenberg values and genome size were retained since they all provided helpful
information for models to reach their final predictions. Since species with decreasing
trends were more common than those with increasing trends, I applied the synthetic
minority over-sampling technique (Chawla et al, 2002) implemented in the ‘themis’

package (Hvitfeldt, 2020).

For use in the subsequent models, I experimented with using the outcome (trend) either
as a numeric variable (directly derived from Frescalo assessments), coded as a categorical
variable (decreasing, neutral, increasing) with a threshold of +/- 10% change to distinguish

the categories, or as a binary variable (decreasing and increasing). When using the
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numeric or threshold representation of trend in the random forest models, I achieved very
low levels of accuracy with the set of predictors outlined above. Hence, the outcome
variable is treated as binary in this chapter and the random forest classifier algorithm is
used to predict whether a species falls into the decreasing or increasing trend category

based on functional traits, Ellenberg values and genome size.

[ generated ten random subsets of the data and within them performed % training/testing
splits, leaving Y4 for model testing. From each training set, I created a random 10-fold cross-
validation object for tuning of the hyperparameters ‘mtry’ (the number of predictors
available to the algorithm at each split), ‘trees’ (number of trees to be built for the random
forest) and ‘min_n’ (the number of observations at which a node must be split further),

which were tuned via grid-based tuning, aiming to maximise accuracy.

The final models with tuned hyperparameters were run in the ranger engine on the testing
sets to assess the final performance of the models. The total number of trees generated
across all random forests was 8,000. Estimates given below summarise the average
performance across the ten runs on random subsamples of the dataset. Variable
importance as estimated by the random forest models is presented as averages across all
ten independent runs, giving an indication of the variation in importance observed on
different subsets of the original data. Instead of the default mean decrease in impurity
importance metric (Breiman, 2001), [ used the more elaborate permutation-based variable
importance metric which considers features to be important if they improve the prediction
accuracy of the overall model (Cutler, Cutler & Stevens, 2012). Since Pearson correlations
between the used predictors are low, the potential pitfall of permutation-based variable

importance was avoided (Cutler, Cutler & Stevens, 2012).
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Phylogenetic path analysis

Since random forests cannot give clear insights into the interconnectedness of variables
that allow them to exert their predictive potential (Auret & Aldrich, 2012), I conducted a
confirmatory path analysis in an attempt to untangle the predictors’ relationships, with a
particular focus on the way genome size might be linked with the other predictors and
how it might relate to trend outcomes. Based on multiple regression, this approach
represents variables within a network of interdependencies, comparing the feasibility of a
range of causal models in the context of the data presented to it. Due to the levels of
phylogenetic signal present within each of the predictors, I used a phylogenetic path
analysis as implemented in the package ‘phylopath’ (van der Bijl, 2018 & 2022). Developed
by Hardenberg & Gonzalez-Voyer (2013) by integrating the concept of Phylogenetic
Generalised Least Squares (PGLS; Symonds & Blomberg, 2014) with Shipley’s (2000) ‘d-
separation’ method, phylogenetic path analysis allows users to gain insights into the
unresolved causal structures at the root of correlations (Shipley, 2016; Gonzalez-Voyer &

Hardenberg, 2014) in the presence of phylogenetic signal.

Since an abundance of variables within path analyses can lead to confusing and
unintelligible causal structures (Streiner, 2005), I simplified the model to include only a
subset of predictors (genome size, the functional traits specific leaf area, seed mass and
vegetative height as well as the Ellenberg values for moisture (F) and nutrients (N)), with
binary trend as the outcome. The selection of these Ellenberg values was based on the
identity of Ellenberg F and N as the most powerful predictors identified by the random
forest runs. The three functional traits were chosen since they are most frequently used to

represent the three dimensions of the leaf-height-seed strategy scheme (Westoby, 1998).

To meet assumptions of the regressions within the phylogenetic path analysis, all

functional traits and genome size were log-transformed. All variables were also
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standardised. Phylogenetic path analysis based on the same dataset used for random forest
runs, but restricted to the above traits, was run at default settings, with phylogenetic
correction based on the phylogeny constructed and described in Chapter 2, including the

addition of cytotypes described in Chapter 4.

[ tested a set of 16 hypothesised causal models, summarised as acyclic path diagrams in
Fig. S5.1. All models are based on exploratory PGLS analysis conducted on functional traits,
Ellenberg values and genome size. Since bidirectional arrows would cause difficulties in
the interpretation of path analysis results (Streiner, 2005), arrows between the two
Ellenberg values and among all the functional traits were assumed to be unidirectional.
The competing models were ranked by their C-statistic information criterion (CICc) to
assess support of each hypothesised causal structure. The structure with the best support
was used to build the final directed acyclic diagram with 500 bootstrap iterations. Strength
of paths is expressed as the standardised regression coefficients and their significance was

derived via 95% confidence intervals.

Only complete observations (i.e. species that had full coverage across all functional traits,
niche descriptors (Ellenberg values) and genetic data) were included in random forest
models, leaving 960 observations including cytotypes that were counted as separate
species (98 species had more than one cytotype, leading to 104 observations being added
due to additional cytotypes). The removal of species without phylogenetic information
meant that this number was restricted to 784 for the phylogenetic path analysis. The
visualisation of ‘winners’ and ‘losers’ with regard to distribution trend is based on all
available data since completeness across all traits was not required for that analysis.

Sample sizes are given with the figures.
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Results

Characterising ‘winners’ and ‘losers’

Trend information (based on regression across relative occurrence frequencies, Chapter 3,
Fig. 3.2) is available for 2,249 species, with 1,353 showing decreasing and 896 species
showing increasing trends. Of these, 1,195 are native plants, 160 are archaeophytes, 885 are

neophytes, and 3 are neonatives.

Of those species with genome size and phylogenetic data available (i.e. 1,743 species,

including cytotypes), the results show that genome size stands out in the context of native
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Fig. 5.1 Trend, status and genome size of 1,743 species. Boxplots show the log
transformed genome size profiles of species with different status within the decreasing
and increasing groups. Green stands for natives (973 species), blue for archaeophytes
(147 species), and yellow for neophytes (620 species). The increasing group is
dominated by neophytes (49.2%) and is characterised by overall larger genomes. The
decreasing category contains mostly native species (63.9%). The data shown here is
reduced to those species with phylogenetic information, concurring with data used for
the phylogenetic ANOVA and does not include neonatives (n=3).
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and non-native plants (Fig. 5.1). Species with an increasing trend (684 species) have
significantly larger genome sizes (phylogenetic ANOVA F =12.74, p < 0.05; mean genome
size 4.21 pg/1C compared with a mean genome size of 2.86 pg/1C among the 1,059 species
showing a decreasing trend) and neophytes are clearly more prominent within the
increasing group (298 natives, 49 archaeophytes, 336 neophytes and 1 neonative)
compared with species following a decreasing trend (675 natives, 98 archaeophytes, 284

neophytes and 2 neonatives).

Fig. 5.2 represents the make-up of the group of decreasing (‘losers’) and increasing
(‘winners’) species with regard to status (Fig. 5.2a & b), biomes (Fig. 5.2c & d) and genetic
characters (genome size and ploidy, Fig. 5.2e & f). The majority (58.9%) of species showing
increasing trends is made up of non-natives (Fig. 5.2a), especially naturalised neophytes,
who account for 36.8% of all species in this group, with casual and survivor neophytes
accounting for 11.4 and 4.8% respectively. 41.0% of the increasing group are native plants
and only 5.9% are archaeophytes. Conversely, when looking at the group of species with
decreasing trends, natives are in the majority with 61.4%, neophytes make up a
significantly smaller proportion with especially the proportion of naturalised neophytes
and survivors only half (18.8% and 1.9%) of their proportion among ‘winners’.

Archaeophytes are more common among the ‘losing’ species with 7.9% (Fig. 5.2b).

With regard to the biomes that species are associated with, the most striking difference is
the proportion of Mediterranean (both Mediterranean and Mediterranean-Atlantic)
species, which are far more prevalent among ‘winners’ (24.2%) than among ‘losers’ (11.0%,
Fig. 5.2c & d). The most prominent biome association in both groups, however, is a variety
of Temperate biome types, which collectively account for 65.9% of ‘winners’ and 72.1% of
‘losers’. While fewer Temperate and Boreo-Temperate species fall within the ‘winning’
category, species associated with Southern Temperate and Wide Temperate biomes make

up larger proportions among the ‘winners’ (22.1% and 4.4%) than among the ‘losers’ (16.7%
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Fig. 5.2 Treemaps representing the composition of the increasing and decreasing
groups of species. a and b represent status (native, neophytes, archaeophytes; see Table
2.1), ¢ and d show the biome (Temperate, Mediterranean, Boreal, Arctic etc.) are associated
with and e and fillustrate genetic categories (ploidy and genome size). a, ¢ and e represent
the group of ‘winners’ (i.e. increasing trends), b, d and f show the composition of the
decreasing group. Subgroups within e and f correspond to genome size quintiles (very
small: 0.15 - 0.53 pg/1C, small: 0.54 - 0.90 pg/1C, medium: 0.91 - 1.59 pg/1C, large: 1.60 - 4.18
pg/1C, very large: 4.3 - 47.3 pg/1C). Numbers after group names show the percentage that
this category takes up within the overarching groups (plants with increasing or decreasing
species trend). Treemaps are based on available data for each descriptor (a - 895 species, b
- 1,347 species, ¢ - 434 species, d — 941 species, e — 678 species, f - 1,055 species).

and 1.8%). Boreal species representation is relatively balanced between the two groups,
with 9.2% among ‘winners’ and 10.2% among ‘losers’. This is in stark contrast to plants

with a preference for Arctic conditions (Arctic Montane biomes), who are hardly
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represented within the increasing group (0.7%), but contribute 6.5% to the ‘losing’ group,

showing that almost all species associated with this biome are suffering declines.

Polyploid plants are just as prevalent among ‘losers’ (39.6%) as among ‘winners’ (39.1%,
5.2e & f). Genome sizes, here given in quintiles (very small: 0.15 - 0.53 pg/1C, small : 0.54 -
0.90 pg/1C, medium: 0.91 - 1.59 pg/1C, large: 1.60 - 4.18 pg/1C, very large: 4.3 - 47.3 pg/10),
show some subtle shifts between groups. Plants with very small genomes are the most
prevalent group among diploids across both the ‘winners’ and ‘losers’ (14.3% and 18.4%,
respectively). The second largest group among ‘winners’ are diploid plants with the largest
genome sizes (13.9%). This group is the least frequent diploid quintile among ‘losing’
species (8.9%). The quintile representing large genome sizes is slightly more common
among ‘winners’ (12.1%) than among ‘losers’ (11.4%). Among the polyploids, the largest
categories are those with large or very large genome size, but while the large genome size
quintile accounts for 8.7% of ‘winning’ species, it accounts for 1.1% among the ‘losers’,
with the very large quintile overtaking the large quintile as the group with the highest

proportion among ‘winning’ species.

Finally, I characterised species with decreasing and increasing trends with regard to their
CSR-strategy (Grime, 1974; Fig. 5.3). Species with increasing trends show a tendency
towards a competitive lifestyle and are less likely to be ruderals or stress-tolerators
compared with species showing a decreasing trend which more often lean towards
adopting a ruderal life strategy. This tendency is not specific to natives or non-natives,
since both groups show the same pattern when visualised independently (Fig. 5.3b & c).
However, while natives overall and particularly those with increasing trends show a
stronger proclivity towards stress-tolerance, the opposite is true for non-natives, which
are generally less likely to be stress-tolerators, with the mean S-score for ‘winning’ non-

natives being close to zero.
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ruderal

Fig. 5.3 Ternary plots of CSR strategy and trend. Life strategies of species are represented
as their location within the space between the three poles competitor (C), stress-tolerator
(S) and ruderal (R), in accordance with Grime’s CSR scheme. Colours indicate the group
each species falls into, with orange denoting decreasing and blue denoting increasing trend.
The centroid of each group is represented by the large, darker dots. 50 and 95% confidence
interval as calculated using Mahalanobis distance (Hamilton, 2015). a represents all 915
species with available data for CSR scores and trend, b and ¢ show the available data for
natives (571 species) and non-natives (342 species) respectively. Species showing an
increasing trend are tending more towards adopting a competitive life strategy and are less
likely to be ruderals or stress-tolerators. Stress-tolerance is more typically observed among
natives generally and those natives showing an increasing trend in particular, while non-
natives with increasing trends are rarely stress-tolerators.
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Predictions of species trends

I used a random forest classifier to find out if I could accurately predict if a species was
showing an overall increasing or decreasing species trend based on traits, niche
preferences (Ellenberg values) and genetic characters (although only genome size was

included in final models following Boruta feature selection).

Out of the 960 species with complete data across all predictors, 651 were decreasing and
309 had an increasing trend. This skew was addressed with the themis package’s synthetic
minority over-sampling technique (SMOTE, Chawla et al., 2002). The removal of all
species that did not have full coverage across all the functional trait, Ellenberg value and
genetic character data meant that native species dominate the dataset used for further

analysis (739 natives, 113 archaeophytes, 106 neophytes, and 2 neonatives).

There was no strong phylogenetic signal within the binary trend (increase or decrease)
data (D = 0.7417643, D-statistic of zero corresponds to Brownian motion evolution, a value
of one corresponds to complete absence of signal). Consequently I did not include
phylogenetic information in the random forest runs. There was, however, significant
phylogenetic signal within the genetic characters (genome size A = 0.90708z2, ploidy level
A = 0.223224, and chromosome number A = 0.379103, all p < 0.0001), the functional traits
(specific leaf area A = 0.846305, leaf dry matter content A = 0.767634, leaf area A =
0.0803706, mean vegetative height A = 0.894468, all p < 0.0001; and seed mass A = 0.027421,
p < 0.05), and the Ellenberg values (F A = 0.958421, N A = 0.83935, R A = 0.698443, L A =
0.793788, S A = 0.945842, all p < 0.0001). Nevertheless, the phylogenetic signal present
within the predictor variables is not problematic for random forest predictions since the
non-parametric nature of random forests means they make far fewer assumptions about

variable independence and normality than parametric tests (Dankowski & Ziegler, 2016).
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All parameters except ploidy and chromosome number were found to be helpful to the

random forest models in making predictions by the Boruta feature selection step.

The final accuracy in predicting binary trend achieved across runs was 69.8% with a ROC
AUC of 73.1% (perfect distinction between both categories would correspond to a score of
100% on both metrics). Out of bag (OOB) prediction error rates averaged 14.2%. The
algorithm correctly identified decreasing species in 76.9% of cases, and species with
increasing trends in 52.8% of cases. A summary of the accuracies, error rates and confusion

matrices of the runs on each subset is presented in Table S5.1.

Out of the predictors used within the random forests, the Ellenberg values for nutrients
(N) and moisture (F) were the most informative, followed by leaf area, Ellenberg R

(reactivity) and specific leaf area (Fig. 5.4). Mean vegetative height, leaf dry matter content

Ellenberg N .
Ellenberg F 4 »
leaf area .
Ellenberg R 1 —_——
SLA —_—

height+ —_——
Ellenberg S - *

LDMC A —_——
seed mass- —_——
Ellenberg L 1 —_——
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0.02 0.03 0.04 0.05 0.06
Mean Permutation Variable Importance

Fig. 5.4 Variable importance of random forest. The permutation-based
importance of each variable in informing the final random forest ensemble for ten
random subsets of the original data (8,000 trees). Mean and standard errors are
derived from the ten independent runs. The focal variable genome size is
highlighted in orange and contributes to the model to a lesser degree than the
functional traits and Ellenberg values. The most important variables for the random
forest are Ellenberg N and Ellenberg F. (SLA = specific leaf area, LDMC = leaf dry
matter content).
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and seed mass were less crucial, similar to Ellenberg S (salinity) and Ellenberg L (light).

Finally, genome size was the least important of the eleven informative predictors.

In the dataset used for random forest runs, species showing a decreasing trend were
associated with lower nutrient level (Ellenberg N, phylogenetic ANOVA F = 20.85, p <
0.002) and soil reactivity scores, (Ellenberg R, phylogenetic ANOVA F = 5.55, p = 0.07) but
higher moisture preferences (phylogenetic ANOVA F = 6.18, p = 0.063). Their leaf areas
were smaller (phylogenetic ANOVA F = 8.44, p < 0.05), but their specific leaf area bigger
(phylogenetic ANOVA F = 2.04, p = 0.29). Genome sizes of species with decreasing trends
tended to be smaller, although not significantly so in this subset with complete records
across all predictors (phylogenetic ANOVA F = 3.43, p = 0.174). Results for all phylogenetic

ANOVAs and group means of predictors can be found in Table Ss5.2.

Untangling causalities behind the predictions

Having found that inclusion of genome size is helpful (albeit the least informative of
eleven informative variables) for the prediction of species trends (Fig. 5.4), I conducted a
phylogenetic path analysis to find out how genome size might impact the other predictors
in influencing the success of a species (here defined as showing an increasing trend). The
model with by far the most support across the 16 models tested, although even this model
provided a relatively poor fit with the data (p = 0.004), included genome size as an
exogenous variable which directly influences seed mass, specific leaf area and vegetative
height, represented as a directed acyclic graph in Fig. 5.5. A summary report for all models
is available in Table Ss5.3. This association is positive for seed mass and height but negative
for specific leaf area. Links among the functional traits vary, with a negative correlation of
specific leaf area and seed mass and a positive link between height and seed mass. All

functional traits were positively associated with the species’ realised niche, as
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encapsulated in the Ellenberg N and F values, with the exception of seed mass, which
showed a negative association with Ellenberg F. The effect of Ellenberg N on trend is
positive and strong, suggesting that plants preferring nutrient-rich environments are more
likely to exhibit increasing trends. On the other hand, the association between moisture
preference (Ellenberg F) and trend was negative and non-significant. Meanwhile, an
indirect pathway for the effect of moisture requirements on trend via Ellenberg N is

relatively weak but significant.
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Fig. 5.5 The directed acyclic graph representing the most supported model of
the relationships of predictors and species trend. The result of the phylogenetic
path analysis show the hypothesised model of causal effects on species trend most
supported by the data. Genome size (GS) is the only exogenous variable and directly
influences the functional traits (seed mass = SM, specific leaf area = SLA and
vegetative height = height), which in turn influence Ellenberg values (for nutrients
(N) and moisture (F)) and finally trend. Numbers along the paths and path thickness
correspond to the standardised path coefficients derived from path analysis. Orange
paths indicate negative effects, while blue paths correspond to positive effects.
Dashed lines indicate non-significant relationships (where the 95% interval includes
zero), and solid lines indicate statistically significant relationships.
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Discussion

The comparatively well-sampled flora of the UK, where species trends can be assessed over
relatively long time scales with some confidence, offers itself for an exploratory study such
as this. My aim in this chapter was to construct a model capable of predicting species

trends based on easily measured plant characters and traits, and to explore whether
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genome size and other genetic traits might be able to contribute to the accuracy of such a
model. I show how the model is able to predict increasing and decreasing range trends
over the past three decades. The study demonstrates the value of predictive tools based on
traits and characters in assessing species dynamics, as previously shown by Powney et al.
(2014a), which might also be applicable to biodiversity hotspots worldwide, even when
they do not exhibit the same density of records (Meyer, Weigelt & Kreft, 2016; Paton et al.,
2020). I find a role of genome size in the predictive framework, and I explore the way in
which it might exert its effect in the context of the other predictors. Although currently
limited to the UK, the greatest potential value of this approach of trait-based predictive
models of species success with inclusion of genome size lies in its application to areas with
much sparser levels of historic and current botanical activity, where species declines are
more challenging to assess. Such transferability for a trait-based model of species success
was previously demonstrated by Powney et al. (2014b). While further research is needed
to demonstrate the validity of these findings in such different contexts, they could well

contribute to more accurate tools to guide targeted conservation approaches.

The challenge of capturing species trends

My results show that a greater number of species within the UK is showing decreasing
trends in their relative frequencies than increasing trends. The metric of species trend used
here corresponds to the change in relative frequency derived with the Frescalo method
(Hill, 2012) and is presented in binary format. While the Atlas of the British and Irish Flora
(Preston, Pearman & Dines, 2002) has previously aimed to capture change (in range size)
within the plants it covered via the Change Index, based on the Telfer method (Telfer,
Preston & Rothery, 2002), more elaborate characterisations are required to capture

meaningful measures of change from data biased by spatio-temporal recording differences
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(Hodgson, 2003). Although the Frescalo-based bias correction used here follows the best
practise approach currently available which is recommended for this dataset, its use does
not alter the fact that the determination of accurate change metrics for plants in the flora
from flawed distribution records is fraught with difficulties, which are outlined and

discussed in detail in Chapter 3.

The magnitude of frequency change that a species can exhibit is directly dependent on the
frequency of records available for that species at the start of the sampling period. Non-
native species, especially neophytes, that are new arrivals to the flora and that are only
present in very few locations or under-recorded would show explosive expansions of their
range simply because they started from a comparatively low point. Such a rapid expansion
would not necessarily be caused by any intrinsic trait or ability of the species to thrive, but
might reflect another facet of sampling bias that cannot be entirely removed by Frescalo.
Using binary trends, a decision partially dictated by low prediction accuracies of regression
type random forests achieved with the dataset, levels the playing field to some extent,
removing skews in the data from such spuriously extreme changes. Nevertheless, the
binary nature of the data comes at the cost of showing differences between species with
increasing, decreasing and stable trends. When the data were split into these three
categories using a 10% decadal change threshold, as suggested in a comparable study of
population changes in moths (Coulthard et al,, 2019), low accuracies were achieved once

again and the approach was abandoned.
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Species trends - who are the ‘winners’ and ‘losers’?

The findings presented here indicate that those species with an overall increasing trend
are more often neophytes, and are more often species that are associated with
Mediterranean and Southern Temperate biomes. Chapter 4 had already demonstrated that
neophyte species have greater northward shifts than native and archaeophyte species (Fig.
4.7), which would explain why those species are more prevalent among the group of
species with increasing trends than among those that are decreasing in frequency. The
human impacts described and discussed in Chapters 3 & 4 are likely to play a major role
in making neophytes and plants with Mediterranean and Southern biome preferences so

successful.

Guo et al. (2019) demonstrated that 94% of species that had become naturalised as
neophytes anywhere in the world were cultivated in domestic gardens, suggesting that the
flora of the UK would be strongly impacted by introductions of garden escapes. The appeal
of attractive and exotic Mediterranean species (RHS Gardening, 2022) will likely have
contributed to favouring those plants associated with Southern Temperate and
Mediterranean biomes in their expansion across Britain. The concurrent tendency of
plants associated with Arctic-Montane conditions to decline (Fig. 5.2c & d) is consistent
with the previous findings by Hill & Preston (2015), who demonstrated losses of boreal
plants in southern Britain. The decline of Arctic-Montane species is likely caused by
climate change, which is reducing habitat availability for cold-adapted species. Climate
change probably also explains part of why the Mediterranean species are increasing in
frequency. Pearce-Higgins et al. (2015 & 2017) identified that upland species (plants and
animals) were typically at risk from the effects of habitat loss due to climate change and
urged towards their protection, offering support for the above finding of the striking

absence of Arctic-Boreal plants from the ‘winners’. The repeated introductions of
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attractive garden species and the increasing attention paid to non-natives in the wild likely

also plays a role in the trends observed here.

Increasing species (both natives and non-natives) showed tendencies towards competitive
life strategies (Fig. 5.3). At a global scale, the size of the naturalised range of herbaceous
plants has previously been found to be positively associated with competitive tendencies,
while native range sizes were positively associated with ruderal tendencies, and all range
size estimates (native and naturalised) were negatively related to stress-tolerance (Liao et
al., 2021). On the much smaller scale of the UK, natives and non-natives mostly differ in
the extent to which stress-tolerance contributes to their life strategy (Fig. 5.3b & c). Non-
natives score extremely low on the stress-tolerance axis, especially those showing
increasing species trends, while native plants have, on average, higher stress-tolerator
scores, with increasing species more likely to be stress-tolerant than decreasing species.
Many native species will have adapted to a very specific niche over long periods of time,
including specific stress adaptations, while successful naturalisation appears to be
facilitated mostly by higher ruderality and competitiveness (Guo et al., 2018). The quick
growth, high levels of flower and seed production and highly nutritious tissues typically
found in competitive and ruderal plants, predispose them to higher invasion success while
simultaneously making them more attractive for introductions by humans for horticulture
and agriculture (Guo et al., 2018; Pysek & Richardson, 2008; van Kleunen et al., 2010; van
Kleunen et al., 2018), explaining the strong tendency of non-natives towards high ruderal
and competitor scores. Stress-tolerance on the other hand, which is associated with slow
growth cycles, low seed production and highly specialised adaptation to particular
stressors (Grime, 1979; Grime & Pierce, 2012; Alexander et al.,, 201) is not helpful for
naturalisation but appears to be a strategy associated with successful natives in the UK,
perhaps suggesting an advantage of stress adaptations when niches are faced with ongoing

environmental changes.
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Finally, species with increasing trends are more often associated with larger genome sizes
than those with decreasing trends (Fig. 5.1). This is consistent with the findings regarding
the northward movement of species presented in Chapter 4, where species with larger
genomes moved further northwards than those with smaller genomes (Fig. 4.8). The
pattern observed in this chapter is driven by neophyte plants with larger genomes (Fig. 5.2
& 5.3), likely at an advantage from their human cultivation in gardens, high levels of garden
fertiliser application as well as more widespread eutrophication across the UK (Smart et
al., 2003; Firbank et al., 2000), as well as the effect of climate change making the UK’s
climate increasingly favourable to neophyte species, especially those from Mediterranean
areas. The tendency of increasing species (among both natives and non-natives) towards
more competitive life strategies may also be related to genome size; Chapter 2 showed that
plants with larger genome sizes also tended to be those adopting a more competitive
strategy (Fig. 2.11). Newbold et al. (2018) had previously found on a global level that species
with broad distribution ranges were often positively impacted by human disturbances,
while more narrow-ranged habitat specialists suffered. Typically, broad range sizes and a
lack of specialisation are associated with ruderal lifestyles (Guo et al, 2019) which are
themselves associated with smaller genome sizes (Fig. 2.11; Suda et al,, 2015). Given this,
my finding that increasing species in the UK are characterised by significantly larger
genomes overall might be considered surprising. My putative interpretation is that the
severe level and specific forms of human impact across the UK, namely high levels of
eutrophication and human-driven repeated introductions of neophytes, might give
competitive plants with larger genome sizes an advantage that translates into the overall
increasing species trends observed here for non-native competitive species with larger
genome sizes. However, it is also possible that the observed patterns are influenced mostly

by a tendency of neophytes to fall into the increasing category, paired with the strong
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correlation between genome size and neophytic status. In this case, the expected effect of

genome size may simply not hold true in this dataset.

The role of functional traits and niche preferences in predicting species trends

The vital role of functional traits in influencing species establishment, distribution and
response to changes has been shown for many different groups of organisms (Newbold et
al., 2013; Coulthard et al., 2019, Pollock, Morris & Vesk, 2012; Vesk et al,, 2021). Pollock,
Morris & Vesk (2012); Vesk (2013) highlight that different values of individual traits can
fundamentally modulate the correlations between the environment, plant success and
other traits. They therefore suggest flexible modelling approaches to capture the full
predictive potential of functional traits. For this chapter, I decided to use a random forest
algorithm to tackle the complex relationships and modulations expected to be present

within the dataset.

The advantages of this approach are manifold; random forests are well known to perform
well with highly complex, non-linear tasks since the successive splits and combination of
multiple trees built on different data are able to capture information regardless of the
shape of the input data. Further, the algorithm is able to handle a multitude of data in very
different formats and - to some extent — imbalances in the data, allowing me to
incorporate Ellenberg values, traits and genome size together without elaborate
transformations that might compromise interpretability. Drawbacks of random forests are
their inability to extrapolate and their opacity when compared to conventional statistical
models. Although the latter is less pronounced in random forests than in other machine
learning algorithms, which otherwise outperform random forests with regard to

prediction accuracies and flexibility (Ghannam & Techtmann, 2021), it still necessitates
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additional analyses (in this case a path analysis) to explain the success of individual

contributions detected by the algorithm.

Although imperfect, the relatively high level of accuracy (~70%) achieved with the random
forest models and especially the high success in pinpointing declining species (~77%)
suggest that the random forests obtained sufficient information from the chosen traits and

characteristics to reliably classify species into decreasing and increasing trend categories.

The leaf-height-seed hypothesis has been proposed as an alternative to Grime’s CSR-
scheme. It suggests that the easily measurable traits of specific leaf area, height at maturity
and seed mass can adequately capture the ecology and overall strategy of a plant (Westoby,
1998). These functional traits were used here, with the added leaf traits of leaf area and
leaf dry matter content in an attempt to capture further aspects of leaf traits potentially at
play (Diaz et al, 2016), to generate models of species trend. Of these traits, leaf area,
specific leaf area and height were found to be important predictors of species trends, while
seed mass was of much lower importance to the final models (Fig. 5.4). The lesser
importance of seed mass in the models probably suggests that positive and negative
developments of species frequencies in the UK do not hinge massively on their ability to
disperse far distances and become established (Westoby, 1998). More important
characters appear to be instead associated with the ability of species to become
competitive quickly (i.e. height, leaf area and specific leaf area; Dayrell et al., 2018;
Westoby, 1998; and perhaps genome size too, see below). It is also likely that across the
UK, there are enormous effects of human intervention, with human-mediated dispersal of
species making seed mass a much less relevant trait than it may be in larger and less

disturbed locations.

Carboni et al. (2018) found that specific leaf area and plant height were important

predictors of invasion success along gradients of human disturbance and environmental
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parameters in France, with a non-significant role of seed mass. The same study showed -
similar to the results presented above - that larger plants were more successful invasives,
but also that successful invasives had higher specific leaf areas (a finding that is
corroborated by Lake & Leishman, 2004), which is counter to my finding regarding the
marginally bigger specific leaf area of species with decreasing trends. Carboni et al. (2018)
do find, however, that the success of plants with smaller specific leaf areas is increased by
higher levels of human disturbance offering a potential explanation for the results

presented above.

Of even greater use to the random forest classification models than these functional traits
are the Ellenberg values for nutrients and moisture. Ellenberg values are not used as
commonly in modern ecological settings due to their subjective nature (Ellenberg et al.,
1901), the lack of this classification for most floras worldwide and inherent difficulties in
determining Ellenberg values for new species (Chytry et al., 2018). Additionally, caution is
advised with regard to the actual meaning of each indicator. Schaffers & Sykora (2000)
showed how Ellenberg values compared with measurable conditions within niches and
found that while Ellenberg F correlated satisfactorily with moisture, when characterising
the soil’s sensitivity to drought during the driest months in particular, Ellenberg N values
only correlated weakly with measurable soil parameters. Instead, a multitude of studies
point towards Ellenberg N being a reflection of overall productivity rather than nutrient
content (Hill & Carey, 2009; Ertsen, Alkemade & Wassen, 1998), suggesting that high
values of Ellenberg N integrate a multitude of environmental factors that allow high
productivity, such as soil consistency, moisture retention and pH or the presence of
disturbances (Schaffers & Sykora, 2000). The strong predictive power of the Ellenberg
values within the model presented here (Fig. 5.4) highlights that despite difficulties with

Ellenberg values, they do offer a highly informative description of niche preferences.
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Therefore continued interest in these values, as evidenced by recent efforts to expand the

system to new floras (Berg, Welk & Jager, 2017; Chytry et al., 2018), should be encouraged.

The identity of the two most important predictors (Ellenberg N and F) in this model is
relevant to the effects of eutrophication over the last century (Smart et al., 2003; Firbank
et al., 2000) and to the expected aridification of the UK projected to result from continuing
climate change (Ritchie et al., 2019). Already, I find that species with decreasing trends
have tendencies towards lower Ellenberg N values, suggesting a preference for niches with
lower productivity, but higher Ellenberg F values, indicating a preference for moist
environments. Thus it appears that eutrophication and climate change are already

involved in driving species declines within the UK.

Genome size is a helpful addition when predicting species trends

The fact that genome size is expected to have a multitude of complex and sometimes
opposing correlations with a multitude of traits and characters makes its incorporation
into conventional models challenging, especially in the context of already noisy ecological
data. The framework of the nonparametric and flexible random forest algorithm used here
allowed me to explore whether genome size might be helpful in predicting plant success
as hypothesised and previously hinted at by Herben et al. (2012). Although genome size is
found by the model to be the least important predictor, its survival of the Boruta feature
selection step shows that there is valuable information to be gleaned from the genome size
of a species. Indeed, Herben et al. (2012) suggest that the effect of genome size on cell size
and division rates and their physiological repercussions are difficult to capture in any trait

other than genome size.

The coding of cytotypes as two or more separate ‘species’ with exactly the same traits in

the models above (i.e. 104 out of the 960 ‘species’ exist as duplicates or triplicates of the
144



98 species with cytotype diversity) means that the role of genome size was very likely
downplayed. Although an increasing number of studies aims to characterise
morphological and distributional differences between cytotypes (e.g. Halverson et al,
2008; Richardson & Hanks, 2011; Pegoraro et al., 2016; reviewed by Kolar et al., 2017), trait
information on separate cytotypes of the same species is often not available. However,
different cytotypes of the same species are likely to display different trait values and
distributions, indeed often competitively excluding each other when competing in the
field (Collins, Naderi & Mueller-Schaerer, 2011; Laport et al., 2013; Walczyk & Hersch-
Green, 2019; Pegoraro et al., 2019). It is therefore not unreasonable to assume that - had
detailed trait information been available on separate cytotypes — genome size might have

emerged as an even more influential predictor.

Additionally, the findings presented in Chapter 4 point towards a spatially heterogeneous
distribution pattern of genome size across the UK, potentially influenced in part by
nutrient availability, with limitations due to a lack of nutrients lifted in some areas, leading
to the higher prevalence of larger genomes in such areas. While the outcome variable of
decreasing and increasing species trends here looks at the flora as a whole and does not
take into account these spatial differences, incorporating spatial patterns into future
models may also elevate the importance of genome size as a predictor of species success

in some areas more than in others.

The Boruta feature selection step led to the exclusion of ploidy and chromosome number
in random forest runs. Pandit et al. (2014) had previously found that the inclusion of
genome size and chromosome number together in models aiming to predict the likelihood
of a species becoming invasive increased the overall explanatory power of each, but also
that genome size and ploidy had contradicting effects. They hypothesised that with
increasing ploidy level the effect of genome size would change. The fact that our model

did not consider chromosome number or ploidy level as being helpful in its predictions is
145



therefore surprising. It is possible that the signal one might expect from the hybrid vigour
associated with polyploidy (Soltis & Soltis, 2000; Birchler, 2015; Te Beest et al, 2012) is
obscured by the use of duplicated cytotype data in this analysis. Therefore, further analyses
along the same lines as presented here would benefit from the investigation of trait
variation between cytotypes. Potentially, however, the predictive capacity of ploidy is
simply too limited in this context to emerge - especially compared with the contributions
of Ellenberg values and functional traits - even if the data availability allowed the

integration of cytotype variation.

The fact that the random forest analysis was almost entirely restricted to native species
due to data availability means that the predictive potential of genome size among non-
native species could not be sufficiently explored here. Differences in the way that genome
size impacts species trends for established species and new arrivals may well be substantial
and should be considered by future research, as data availability for non-native species
increases. Additionally, any insights into the causalities behind the tendency of neophytes
to have larger genomes in the UK would be valuable for further assessments of the

helpfulness of genome size in capturing predictive information.

Genome size is likely to be indirectly linked with trend

A phylogenetic path analysis helped me gain insights into potential causality structures
among the predictors used in the random forest models and how they exert their effect on
trend. The 16 hypothetical models put forward three alternative potential causal flows;
firstly independence of effects of the three groups of predictors (genome size, functional
traits and Ellenberg values), secondly a setting where traits influence niche requirements
which in turn act directly on trend, and thirdly the reverse setting where belonging within

a specific realised niche leads to different trait values and then to trends. Within those
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three causal flows, the position of genome size was shifted to determine which causality
structure for the integration of genome size was most consistent with the data (visualised
in Fig. S5.1). The structure most supported (Fig. 5.5) was consistent with traits conditioning
niche requirements (i.e. Ellenberg values) and genome size exerting its role as an
exogenous variable with direct links with all three functional traits, but indirect effects on
Ellenberg values and trend. The fact that all models, including the most supported model
presented here, had low p-values suggested that further links and nodes are required to
more accurately represent the causality structure within the network. Importantly, the 16
competing hypothetical structures that were preformulated here are themselves based on
assumptions made about likely causality structures - with a special focus on elucidating
the position of genome size - leading to an inherent level of subjectivity in the path
analysis. In the most supported model genome size has positive links with seed mass and
height, and a negative effect on specific leaf area. While the finding of a positive correlation
between genome size and seed mass agrees with several previous smaller studies reviewed
by Knight, Molinari & Petrov (2005) and the larger study of Beaulieu et al. (2007), genome
size was previously shown to correlate negatively with plant height (Knight & Beaulieu,
2008), although the effect was not significant under phylogenetic correction. This latter
trend is likely driven by trees, which typically have smaller genomes (Knight & Beaulieu,
2008) and the opposing trend, concurrent with my findings, was shown in graminoid
(Rios, Kenworthy & Munoz, 2015) and, including a phylogenetic correction, in herbaceous
plants (Herben et al, 2012), which are also studied here. The negative correlation of
genome size with specific leaf area is also supported by findings from Herben et al. (2012),
but does not appear to be universally applicable across groups of plants (Kang et al., 2014).
Lower specific leaf areas are typically found in highly nutrient and water use efficient
species with lower metabolic rates, suggestive of lower competitive performance, while

greater plant height is a hallmark of greater dominance and competitive success (Violle et

147



al., 2009; Carboni et al, 2018; Peng et al, 2022), hinting once again at the complex
entanglement of genome size, its immediate physiological correlations and the
consequential interactions between the traits influenced and their ecological

ramifications.

The directed acyclic graph (Fig. 5.5) most supported by the underlying data makes clear
that the strongest associations of larger genome size eventually translate into a tendency
towards higher Ellenberg N values, and consequently into a preference for productive
environments. The suggested role of moisture in defining the productivity described by
Ellenberg N (Schaffers & Sykora, 2000) led to the assumption of an additional
unidirectional pathway from Ellenberg F (Streiner, 2005), the second most important
predictor in the random forest presented above, to Ellenberg N, the most important
predictor. Contrary to the high importance of Ellenberg F postulated by the random forest,
the phylogenetic path analysis suggests that the direct link between Ellenberg F and trend
is actually not significant and instead suggests that moisture requirements might influence
their role indirectly via Ellenberg N. Far from undermining the role of moisture
requirements for influencing species trends (and hence in part the role of climate change),
this finding simply indicates that there are likely additional links missing from the model
that, when added, would show a closer approximation of the true pathway via which

moisture requirements might impact trend.

The findings are consistent with an indirect role of genome size on species trend, mediated
through the sometimes opposing and usually complex links that genome size has with a
multitude of plant traits. The traits chosen to present in this context are far from the only
ones that genome size has been shown to influence (Van't Hof & Sparrow, 1963; Francis,
Davies & Barlow, 2008; Beaulieu et al., 2008; Simova & Herben, 2012; Roddy et al., 2020;
Bennett, 1971 & 1972), but the inclusion of further traits would have created difficulties in

the interpretation of the analysis due to complexity. An analysis integrating other
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processes likely impacted by genome size, such as photosynthetic rates or water use
efficiency (Roddy et al,, 2020; Beaulieu et al., 2008) may well offer further insights into the
links of genome size with species trend and overall success, and might help further in
elucidating the link with moisture requirements in particular. Sadly, the limited
availability of such data for UK species means that opportunities to extend these studies
are currently constrained. What is clear from this analysis and falls in with the findings of
previous field experiments (Guignard et al., 2016; Smarda et al., 2013; Peng et al., 2022) as
well as with Chapter 4 is the fact that genome size appears to correlate with various aspects
of plant ecology in a fundamental way and may do so, at least in part, via an association

with nutrient availability in the environment.

Whether the role of genome size differs from what is presented here and offers the same
level of predictive power in a global context should be a focus of future research, offering
the potential to improve predictive models of species success in areas where species
records are sparser and such methods could be crucial for impactful conservation

approaches.
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Chapter 6 General discussion
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Summary of findings

This thesis aims to elucidate the role that genome size might play at landscape scales, and
determine the extent to which it can be found to correlate with distribution, movement
and success of plants in response to the environment. To facilitate this approach, I created
a comprehensive repository of the vascular plants of Britain and Ireland, both native and
non-native (see glossary; Table 2.1), bringing together the vast knowledge of Britain and
Ireland’s expert botanists. Use of this repository, in conjunction with the UK’s unique
recording history, allowed me to characterise dynamic changes within the flora, and

explore the patterns and influence of genome size.

The three major findings with regard to genome size can be summarised as follows: (i)
Distinct spatial distributions of genome size and ploidy (as weighted mean per hectad) are
visible, with genome size distribution in particular showing a pattern that coincides with
land cover types most impacted by humans, suggesting nutrient pollution as a potential
influence. (ii) Plants with larger genomes are also shown to move further distances along
the north-south axis of the UK as species ranges respond to anthropogenic pressures over
time. (iii) Finally, this thesis trials the use of genome size as a predictive variable in random
forest models to identify species with decreasing species trends across the UK and points
towards an indirect role of genome size that adds value to trait-based models of species

success.

This thesis shows that more than half of the British and Irish flora is currently made up of
non-native species. It is also increasingly impacted by climate change; pervasive
movements towards the north, especially of neophyte species, and a dominance of
Mediterranean introductions amongst species with increasing species trends are reported

here and illustrate the growing impact of temperature rises and decreases in rainfall.
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Tying in with previous research from field experiments, these novel findings show that
knowledge of genome size can help us to identify priorities for conservation, a finding of
particular importance against the backdrop of mounting human pressures on ecosystems
worldwide. To my knowledge, this thesis represents the first holistic, flora-wide
assessment of the role that genome size might play in influencing plant distributions,
going beyond individual correlation studies and tightly controlled experimental settings,

as called for by Knight, Molinari & Petrov (2005).

A flora in flux

Despite its impressive history of organised botanical recording dating back to the late 17
century (Ray, 1690), comprehensive studies of the flora have long been held back by a lack
of consistency between the multitude of repositories, checklists and distribution records
available for the British and Irish flora, particularly with regard to taxonomy and the
treatment of plants with different status (native, non-native). The first major output of
this thesis, a comprehensive and taxonomically harmonised repository of all vascular
plants within the flora, developed in collaboration with leading experts, is intended as a
starting point for a more integrative and holistic approach to characterising the flora and

changes occurring within it (Henniges et al., 2021 & 2022).

In this thesis, I demonstrate that the British and Irish flora is undergoing dynamic changes.
Following Stace (2019), the data includes all species that ‘the plant-hunter might
reasonably be able to find [...] in any one year’ and thus offers a comprehensive look at
species currently characterising ecosystems in the study area. Out of these species, more
than half are non-native, suggesting that the inclusion of such species is crucial should
one wish to characterise the true species composition present within the area; a focus on

native species only, often for good reasons (such as a lack of trust in the reliability of
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occurrence records for the non-native flora, e.g. Groom, 2013b), will therefore necessarily
miss a big part of the picture. Py$ek et al. (2004) lament the incongruous treatment of non-
natives (invasives in particular), their assumed status (neophyte, archaeophyte; see
glossary; Table 2.1) and naturalisation level (naturalised, casual etc.) in many floras and

highlight the value of flora-wide analyses that incorporate non-natives.

The analyses presented in this thesis (Chapter 4, Chapter 5) clearly highlight the strong
and often contradicting effects of non-native species within this dataset, even though
particular care was taken to incorporate them. On the one hand, both chapters highlight
how differently natives and non-natives appear to have developed in the UK in the past
three decades; the northward movement of non-natives is far more pronounced than that
of natives (Fig. 4.7 & Fig. 4.8) and non-natives are also more prevalent among species with
increasing species trends (i.e. species with positive slopes on regressions of their relative
frequency over time, Fig. 5.1, Fig. 5.2 a&b). Further, tendencies in adapted life strategies
differ between successful (i.e. increasing species trend) natives and non-natives, with a
tendency towards stress tolerance in natives but not in non-natives (Fig. 5.3 b&c). On the
other hand, due to the historic under-representation of non-native species in local floras,
data such as the Ellenberg indicator values were not available for non-native species,
meaning that not all analytic avenues allowed the integration of both native and non-
native species (such as the random forest modelling in Chapter 5). The importance of
including all components of a flora, irrespective of status, when generating new datasets

must therefore be stressed to avoid such bottlenecks and limitations in the future.

The impact of humans on compositional changes in the flora of a small, industrialised
nation such as the UK is considerable (Lim et al., 2014). Introductions of ornamental
garden plants in particular and their naturalisation beyond the garden are not often
considered by ecological studies (Pergl et al, 2016), but have tremendous impact on

possible biases in analyses such as the ones presented in this thesis (as highlighted in
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Chapter 3) and are also likely a strong influence on the compositional changes observed
here (Chapters 4 & 5). Their full inclusion in floras, species checklists and flora-wide

analysis is therefore required to fully characterise changes and threats therein.

Beyond the success of non-native species, changes in the flora are also visible when
considering the biome types that its species are associated with. Those taxa with increasing
species trends were more often linked with Mediterranean and Southern Temperate
biomes, while I found that cold-adapted species with associations to an Arctic Montane
biome were overwhelmingly among those species with decreasing trends (Fig. 5.2 c&d).
Species adapted to specific biomes show clear patterns of occurrence across the UK, with
Arctic Montane species typically centring their occurrence in the mountainous, northern
parts of Scotland (Fig. 6.1). Thus existing at the northern boundary of the UK, and with
further retreat options limited at high altitudes of the Highlands, such species are at severe

risk as climate change alters their habitat and allows species from the South to infringe on

it.
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Fig. 6.1 Distribution centroid and biome associations for 964 species. a & b show the
location of centre of masses in the first date class (1987-1999) and the last date class (2010-
2019), respectively. Colours indicate if the centroid belongs to a species associated with an
Arctic, Boreal, Temperate or Mediterranean biome (see legend). The centre of Arctic and
Boreal species’ distributions is typically located in the far North, Temperate species centre
their mass throughout the length of the UK and Mediterranean species tend to centre in the
South. All species show subtle advances northward over the past three decades.
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These differences in success of plants from typically hot and typically cold biomes (Fig.
5.2¢ & d), paired with the demonstrated further movement of neophyte species towards
the North (Fig. 4.7 & 4.8) suggests that impacts of climate change are already affecting the
flora’s composition, with further and more severe changes to be expected in the near
future (Richie et al, 2019). Emerging from this work and in agreement with previous
studies by Hill & Preston (2015) as well as Pearce-Higgins et al. (2015 & 2017), cold-adapted
species and those occurring in upland habitats are at particular risk from current and

future impacts of climate change.

Is alarge genome always a burden? - a question of circumstances

This thesis presents evidence that mean genome sizes (at hectad scale) have steadily
increased in nearly all areas of the UK in the past thirty years (Fig. 4.3). This finding is
surprising given the fact that large genomes have often been associated with physiological
disadvantages; large genomes necessitate slower growth cycles (Bennett, 1971; Bennett,
1972; Bennett, 1987), are more restricting with regard to the levels of soil nutrients and
pollution plants with such genomes can endure and thrive in (e.g. Guignard et al., 2016;
Vidic et al., 2009; Sparrow & Miksche, 1961) and have been suggested to impact negatively
water use efficiency and photosynthetic rates (Faizullah et al,, 2021). All this suggests that
having a larger genome constrains the trait space and adaptation flexibility of plants
(Faizullah et al.,, 2021). Concurrent with these physiological drawbacks, larger genomes
have been shown to be at greater risk of extinction globally (Vinogradov, 2003) and are

rarely found to be invasive plants (Suda et al, 2015).

Given these findings and notions, large genomes are typically thought of as burdensome
(‘large genome constraint hypothesis’, Knight, Molinari & Petrov, 2005), causing concerns

for plants that maintain large genomes, often with the help of specific adaptations (Vesely,

155



Bures$ & Smarda, 2013), in the face of changing environments. In this thesis, I find that large
genomes may not always be as restricting as they are often thought to be. Beyond the
steady increase in weighted mean genome size across the past thirty years, I also find that
plants with increasing trends have larger genomes than those with decreasing trends (Fig.
5.1) and poleward movement is more pronounced in plants with larger genomes (Fig. 4.8).
While this could be an artifact caused by the success of introduced species that happen to
have larger genomes rather than a direct consequence of large genomes, it appears as
though the specific context of the highly disturbed UK might compensate for some of the
typical drawbacks associated with large genomes. For example, ongoing eutrophication
may lead to a similar release from nutrient limitation and consequent dominance as has
previously been observed in field experiments (Guignard et al., 2016; Smarda et al., 2013;
Peng et al., 2022), and human-driven introductions of species in new environments via
gardens and agriculture as well as the disturbance of intact ecosystems may make large
propagule sizes and longer generational times less prohibitive for successful dispersal and

establishment.

On the other hand, the fact that plants with larger genomes move further distances might
also indicate that they are more successful in colder regions where their physiology may
be better adapted, necessitating such movement in the first place. Plants with the largest
genomes are often highly specialised, having adaptations that allow them to be
competitive under limiting environmental nutrient availability, such as the storage tissues
of geophytes (Vesely, Bure$ & Smarda, 2013). Indeed, after the parasitic plant Viscum
album L. (88.9 pg/1C) with by far the largest genome in the study area, the three plants
with the next largest genomes, Tulipa sylvestris L. (58.0 pg/1C), Fritillaria meleagris L. (47.3
pg/1C) and Paris quadrifolia L. (44.2 pg/1C) all have storage tissues typical for geophytic
lifestyles. This particular adaptation affords plants with large genomes the ability to store

nutrients slowly accumulated and to pre-divide cells prior to the next growing season,
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when hydraulic expansion, driven by water accumulation in vacuoles, causes rapid growth
(Bennett, 1972). This strategy is not disadvantaged by cold temperatures, unlike growth by
cell division. Thus with a warming climate, the advantage of growth by cell division that
underpins growth in species with small genomes provides an ever increasing competitive
advantage, potentially pushing species with large genomes northward. There is also
evidence of higher frost resistance in species with larger genomes (MacGillivray & Grimes,
1995) - an advantage that would become increasingly irrelevant under increasing
temperatures, which could eventually impact species with large genomes negatively, as

average temperatures across the UK continue to increase.

Since the Frescalo-derived species data operate at hectad scale, the analyses presented in
this thesis do not allow for insights into changes in community composition. Further
research is needed to elucidate if the positive species trends and further northward shifts
associated with larger genomes translate into greater dominance of the species in the field
or instead simply means plants with larger genomes shift their range northward, where

they are most competitive.

From individual correlations to landscapes

Research on genome size has long been dominated by individual correlation studies (e.g.
as reviewed in Knight, Molinari & Petrov, 2005) and has recently benefited from insights
derived from controlled field experiments (e.g. Guignard et al., 2016). Given the multitude
of suspected effects of genome size at all levels of plant physiology, ecology and evolution,

the notion that it might improve our understanding of plant biogeography suggests itself.

Increasingly, studies of genetic characters exist at global scales (Rice et al., 2019 and Bure$

et al., 2022 (in press)) and highlight gradients of both ploidy and genome size across
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biomes. Meanwhile the intermediate step — between field experiments and global patterns
- promises to offer insights into the local drivers that interact with genome size in shaping
plant distributions. To my knowledge, this is the first attempt to consider in detail both
the external correlates of genome size patterns as well as the predictive power of genome
size on species trends to gain a greater understanding of the role it might play in shaping

the distribution dynamics within a national flora.

This thesis demonstrates distinctive spatial patterns of genome size across the UK that can
be linked with human presence (Chapter 4); areas close to human settlements and land
used for agriculture are characterised by larger mean genome size (considered at hectad
scale, Fig. 4.5). The analysis presented here could not conclusively identify either
atmospheric nitrogen deposition (in part due to contrary findings for wet and dry
deposition types) or climatic factors (temperature, rainfall) as major correlates behind
these patterns, but the location of genome size hotspots (Fig. 4.2b) suggests that human
actions are a major factor. Whether this is due to repeated introduction and spread of
plants with larger genomes, due to nutrient pollution that lifts nutritional constraints on
genome size or some other underlying effect remains to be confirmed in future research.
Particularly the role of joint nitrogen and phosphorus availability could not be fully
elucidated here. Previous findings from field experiments (Guignard et al., 2016; Berendse
et al., 2021) have found that atmospheric nitrogen deposition alone does not have the same
levels of impact on species composition (and the mediation via genome size) as the effect
of an industrial fertiliser containing nitrogen and phosphorus jointly. Different locations
worldwide have differing levels of nutrient limitation (Du et al., 2020), with the far North
more impacted by nitrogen limitation and the tropics more by phosphorus limitation.
Anthropogenic nitrogen deposition appears to be shifting the limitation away from

nitrogen and towards phosphorus (Pefiuelas et al., 2013; Crowley et al., 2012), potentially
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explaining why nitrogen deposition alone did not help to explain the patterns and change

in genome sizes across the UK conclusively.

Regardless of the exact pathway by which human action shapes the landscape of genome
size hotspots in the UK, it is clear that at least in this case study, the presence of humans
appears to influence the genome size profiles of the flora around them. Genome size
information can thus be considered a helpful link in understanding how human-made

environmental disturbances will impact species compositions.

Genome size can help inform conservation efforts

Beyond characterising patterns of genome size at landscape scales, this thesis furthers the
concept that the limitations inherent in genomes of different sizes could influence which
environmental conditions a plant can occur in and how it responds to changing
environments. I demonstrate that knowledge of genome size can help predict species
success (as expressed in the form of changes in relative frequencies of species) in the UK

(see Chapter 5), suggesting its value in informing targeted conservation efforts.

Regardless of the external influences that condition how genome size might exert its
effects, a growing body of literature, including the work presented in this thesis, suggests
a role for genome size in predicting ecological trajectories of plant species. Herben et al.
(2012) concluded that information on cell size and division rates contained within genome
size data offered helpful data for models of regional species abundances, while Schmidt &
Drake (20m) and Pandit, White & Pocock (2014) successfully used genetic characters

(genome size and chromosome number) in predicting invasive success.

The role of genome size in predisposing species to become invasive has received some

attention over the years (reviewed in Suda et al, 2015). Species with small genomes are
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considered to have higher potential to become invasive due to their ability to have short
generation times, small propagule size and high resource efficiency, among others (Pandit,
White & Pocock, 2014; Suda et al, 2015). Indeed, the species most frequently reported as
invasives in the UK with high perceived impact scores according to Dehnen-Schmutz et
al. (2022) all have small genomes; these species are Impatiens glandulifera Royle (0.83
pg/1C) Reynoutria japonica Houtt. (0.78 pg/1C), Rhododendron ponticum L. (0.81 pg/1C),
Crassula helmsii (Kirk) Cockayne (0.32 pg/1C) and Heracleum mantegazzianum Sommier

& Levier (1.83 pg/1C).

The fact that many non-natives (especially naturalised neophytes) are showing positive
trends in their relative frequencies (Chapter 5) and underwent greater northward
movement in the study area than native species (Chapter 4) chimes with the definition of
invasive species, i.e. that they are non-natives that have become naturalised, forming self-
replacing populations and that they have the potential to spread over long distances and
cause harm to native species and environments (Richardson et al., 2000). However, the
finding that successful and far-moving species identified here tend to have larger genomes
suggests that it may not be invasives sensu strictu that are affecting the patterns observed.
Species with larger genomes have increasingly strong tendencies towards a competitive
life strategy (Fig. 2.11), which is also associated with increasing species frequency trends in
both native and non-native species (Fig. 5.3) and is the same group that Guignard et al.
(2016) found to respond most positively to the combined application of nitrogen and

phosphorus in field trials.

While species with a small genome size may be predisposed to exhibit invasive tendencies
such as efficient spread and rapid growth (Suda et al, 2015), those with a large genome
size might have a competitive advantage in highly disturbed areas where - given the right
environmental conditions - they might become dominant, negatively impacting native

biodiversity. Consequently, it appears that different environmental contexts may well
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favour plants with different genome sizes. As outlined above, species with large genomes
are not always at risk of extinction, but can - under the right environmental conditions -
become a potential threat to the biodiversity around them. Knowledge of the genetic
make-up of plants (e.g. genome size and whether or not they are polyploid), combined
with information about local conditions in the environment, thus promises to aid in the
identification of species at risk of invasive or overly competitive behaviour, and conversely,

extinction.

The rapid changes of the Anthropocene, from climate change to pollution and habitat
conversion, are endangering biodiversity across the globe (Tilman et al.,, 2017). Improving
our understanding of the factors that modulate the way in which different species respond
to those changes is crucial to better use limited conservation resources and to develop
biodiversity bonds, which will become increasingly important in the context of a growing
appreciation that monetising biodiversity will drive its stewardship (Dasgupta, 2021).
Work in this thesis demonstrates that genome size might constitute a useful and easily
obtained source of information that is currently omitted from trait-based assessments of
species at risk from declines and extinction (e.g. Pollock, Morris & Vesk, 2012; Vesk et al,

2021).

Bellard, Marino & Courchamp (2022) highlight that while different sources of
anthropogenic environmental threats are often ranked by their expected level of impact
for different regions, each ecosystem will be faced with a set of diverse threats that can
impact species assemblages in a variety of ways. Agricultural habitat conversion, invasive
species and pollution have previously been suggested to be of particular importance for
future species extinctions in Europe (Harfoot et al, 2021), but Ritchie et al. (2019) also
points to the impacts of climate change, especially with regard to changes in growth
conditions for the vegetation in Britain, as a major threat. As outlined in Chapters 1, 4 and

5 in more detail, genome size has been hypothesised to be linked with water use
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efficiencies by constraining cell size ranges (Faizullah et al, 2021), suggesting that
knowledge of genome size can help identify species at risk from changes in climatic
conditions. Meanwhile the heightened sensitivity of plants with large genomes to
pollution (Vidic et al., 2009; Temsch et al., 2010; Sparrow & Miksche, 1961; Einset & Collins,
2018), including increased biomass accumulation with high levels of nutrients (Guignard
et al., 2016; Smarda et al.,, 2013; Peng et al., 2022) could lead to different responses of plants,

mediated in part by genome size, to different kinds of pollution.

The correlation of land use in the UK with spatial genome size patterns (Fig. 4.5) is also of
importance here. Leclére et al. (2020) analysed a set of scenarios regarding the future of
land use globally and stressed the importance of land use change in the current
biodiversity crisis, a sentiment shared by Lanz, Dietz & Swanson (2018) and Elmqvist,
Zipperer & Giineralp (2015) in considering the detrimental role of agricultural and urban
expansion on biodiversity. My analyses suggest that knowledge of genome size might help
us predict which species could profit from unmitigated habitat conversions and which
might suffer, allowing a better understanding of what future communities under different

scenarios will look like.

Avenues for future research

Further research on the British and Irish flora

The coarse resolution of distribution records at hectad and date class-scales used here
allowed me to quantify change over relatively long periods, but also necessarily poses
difficulties. Particularly the wide variety of habitats amalgamated into the synthetic unit
of hectads constrains the findings to a top-level view of dynamics within the flora. While

it is unlikely that the inherent difficulties of variable sampling biases and lacking
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comparability between modern and historic data will allow long term analyses of higher
resolution species distribution trends with the methods currently available (see e.g.
Pescott, Humphrey & Walker, 2018; Pescott et al., 2019a), emerging datasets such as the
one generated by the National Plant Monitoring Scheme (Pescott et al., 2019b&c) may
allow for more detailed insights into the role of genome size in shaping natural plant
assemblies. Such datasets are also available for grassland settings in France, China and the
United States, making comparisons between floras feasible in the future (Violle et al., 2015;

Li et al., 2015; Pearson et al.,, 2016).

Helpful information on the effect of nitrogen and phosphorus may become available from
DEFRA’s ‘June survey of  agriculture and horticulture’ datasets
(https://www.gov.uk/agricultural-survey) or from the comprehensive models of

environmental change carried out by the UK-SCAPE project (https://uk-scape.ceh.ac.uk/).

An exciting new avenue for spatially explicit trait-based distribution models lies in
Hierarchical Modelling of Species Communities (HMSC, Ovaskainen et al., 2017; Tikhonov
et al., 2020), which integrate traits, distribution and environmental information as well as
phylogenetic data to predict local species success and biodiversity development in
response to environmental change. Use of the data generated for this thesis and especially
the exploration of genome size as an addition to such models would provide greater
resolution and hence allow a more differentiated understanding of the potential drivers

behind distributional changes and biodiversity patterns across the UK.

Does the role of genome size differ across the globe?

While patterns of genome size in the UK appear to be particularly correlated with human
presence, characteristics such as soil types, climate and competition can be expected to be

even more relevant elsewhere. This thesis highlights the value of genome size in predicting
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species trends and occurrence patterns. While such trends can be quantified with relative
ease and confidence in the well-recorded UK (if existing sampling biases are appropriately
accounted for), many locations around the globe and in particular some biodiversity
hotspots did not benefit from the same levels of historical biological recording (Meyer,
Weigelt & Kreft, 2016; Paton et al., 2020). The potential of trait-based predictive models
incorporating genome size will be of particular value in such under-recorded areas,
provided the predictive power of genome size is found to apply in such different
environments and the mechanisms by which genome size exerts its role in different
contexts is taken into consideration (Powney et al., 2014b). Consequently, it will be
important to expand this analysis to different floras, to find out just how context-
dependent the role of genome size might be in shaping plant distributions and

determining local species success.

An analysis of the role of genetic characters in countries with lower levels of human impact
and greater diversity with regard to climatic conditions and soil types is required to
understand the success of plants with large genomes. Potentially the results here are
driven by the combination of a mild climate and high levels of human impacts that is
found in the UK, even though the effects of climate change are already emerging. In areas
where water is more limiting and the driving force of artificial nutrient pollution and
repeated species introductions less pronounced, subtle changes in climate might turn out
to impact the success of plants with large genomes to a greater or lesser extent than could
be observed in this work. This is especially true since nutrient availability to plants is
impaired by drought conditions (Sardans & Pefiuelas, 2012), which would place plants with

large genomes at a potential additional disadvantage.

Moving the analyses presented here to different floras and a global viewpoint promises to
further our understanding of the role that ploidy, in addition to genome size, might have

to play. While the patterns in ploidy across the UK mirrored previous findings by Rice et
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al. (2019), neither ploidy nor chromosome number were identified as informative trait in
random forest models of species trend. Since spatial patterns of polyploid frequencies were
found to be mostly predicted by temperature (Rice et al., 2019), but temperature ranges
across the UK are comparatively limited, with temperature fluctuations being still
ameliorated by the effects of the gulf stream, it is possible that the predictive potential of
ploidy might only emerge in spatial contexts with greater climatic variability. Indeed,
Pandit, White & Pocock (2014) found that when modelling invasiveness, both
chromosome number/ploidy and genome size contributed important information. Whilst
such genetic characters are to some degree correlated, they still may individually have a
role to play in shaping plant communities and responses to the environment and do need
to be considered together in future modelling approaches even if the significance of each

genetic character is likely context-dependent.

Concluding remarks

I embarked on this project attempting to determine if the previously established
correlations of genome size with many aspects of physiology might translate into a role of
genome size in shaping species distribution and success in the spatial context of Britain’s
landscapes. I demonstrate that genome size can be a helpful addition to models of species
success and movement, adding, on top of its entanglements with many functional traits,
information that may not be available if genome size is omitted from such models. In the
context of the intensive human footprint across the UK, disadvantages of large genomes
appear to be compensated, leading to overall increases in mean genome size across the
past decades. While further research is needed to explore in what ways genome size exerts
its ecological effects and how the role of genome size varies across different environmental
contexts, this thesis makes clear that genome size should have a role to play in scientific
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efforts that aim to understand and predict the response of individual species and species

assemblages to the unprecedented changes of the Anthropocene.
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Appendix 1 Supporting information for Chapter 2

Supporting Tables

Supporting Table S2.1 Database structure is available online at
https://www.nature.com/articles/s41597-021-01104-5 (Supplementary File 1).

Supporting Table S2.2 Detailed sources used to compile the dataset are
available online at https://www.nature.com/articles/s41597-021-01104-5
(Supplementary File 2).

Supporting Table S2.3 Full reference list for generation of phylogeny
(available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).

Supporting Table S2.4 CSR scores calculated using the method by Pierce et al.,
2017 (available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).

Supporting Figure

Supporting Figure S2.1 High resolution phylogeny of the British and Irish
vascular flora.

Supporting Method

Supporting Method S2.1 Phylogenetic tree of Bl species as TREE file
(available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).
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Supporting Figure S2.1 High resolution phylogeny of the British and Irish vascular
flora. The circular representation of 2,501 species with phylogenetic information includes colour
coding for the different clades, with Lycophytes in yellow, Monilophytes coded in green,
gymnosperms in red and angiosperms overlaid in blue. The smallest known genome size for each
species is plotted around the outside in pg/1C with gridlines at 5, 10, 15 and 20 pg for orientation.
Lycophytes, Monilophytes and gymnosperms have larger genome sizes overall, but the
overwhelmingly largest genome of the flora, that of Viscum album L., an angiosperm, is visible on
the bottom right with a genome size of 88.90 pg/1C.
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Appendix 2 Supporting information for Chapter 3

All Supporting Tables and Figures in Appendix 2 are available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices.

Supporting Tables

Supporting Table S3.1 Dataframe containing the results of linear regressions
on time factors across three date classes (1987-1999, 2000-2009, 2010-2019).

Supporting Table S3.2a Dataframe listing time factors calculated for each
species (1987-1999).

Supporting Table S3.2b Location report for each hectad (1987-1999).

Supporting Table S3.2c¢ Listing of rescaled species frequencies per hectad
(1987-1999).

Supporting Table S3.3a Dataframe listing time factors calculated for each
species (2000-2009).

Supporting Table S3.3b Location report for each hectad (2000-2009).

Supporting Table S3.3c Listing of rescaled species frequencies per hectad
(2000-2009).

Supporting Table S3.4a Dataframe listing time factors calculated for each
species (2010-2019).

Supporting Table S3.4b Location report for each hectad (2010-2019).

Supporting Table S3.4c¢ Listing of rescaled species frequencies per hectad
(2010-2019).

Supporting Figure

Supporting Figure S3.1 Maps and regression graphs of Frescalo outputs
across three date classes (1987-1999, 2000-2009, 2010-2019).
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Appendix 3 Supporting information for Chapter 4

Supporting Tables

Supporting Table S4.1 Full genomic information compiled for the BI flora
including assumptions (available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).

Supporting Table S4.2 Summary of available genomic information used for
the creation of Supporting Table S4.1 (available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).

Supporting Table S4.3 Full dataframe of modelling data (available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).

Supporting Table S4.4 Relative importance of predictors in linear models of

change in hectad weighted mean genome size by land use in the last date class.

Supporting Table S4.5 Tukey post-hoc test results for comparison of mean
weighted genome sizes per hectad between the different land cover types.

Supporting Figures
Supporting Figure S4.1 Detailed overview of land cover changes.

Supporting Figure S4.2 Map representations of different predictor variables
used in spatial models.

Supporting Figure S4.3 Linear models of weighted mean genome size per
hectad by different spatial parameters for the final date class (2010-2019).

Supporting Figure S4.4 Linear models of weighted mean ploidy per hectad
by different spatial parameters for the final date class (2010-2019).

Supporting Figure S4.5 Linear models of change in weighted mean genome
size per hectad by changes in different spatial parameters between 1987-1999
and 2010-2019.

Supporting Figure S4.6 Pearson correlation metrics for predictors used in
linear models.

Supporting Figure S4.7 Representation of the amount of N (nitrogen, a), P
(phosphorous, b) and K (potassium, c) applied to hectads of different land
cover types.

Supporting Methods

Supporting Method S4.1 Hectad majority Dudley Stamp map (shapefile)
(available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).

Supporting Method S4.2 Phylogenetic tree of Bl species AND cytotypes
as TREE file (available online at
https://github.com/mariehenniges/BI_flora_thesis_appendices).
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Supporting Table S4.4 Relative importance of predictors in linear models of change
in hectad weighted mean genome size by land use in the last date class. Lmg is the
metric of variable importance used (Lindemann, Merenda & Gold, 1980) and describes the
variance explained by each predictor, summing to the total R> of each model.

Acid grassland Img Bog Img Heather Img
change in species richness 0.1427 change in species richness 0.4003 change in species richness 0.3332
change in rainfall 0.0053 change in rainfall 0.0113 change in rainfall 0.0875

change in dry N deposition 0.1128 change in dry N deposition 0.0321 change in dry N deposition 0.0313
change in wet N deposition 0.1341 change in wet N deposition 0.0708 change in wet N deposition 0.0697

latitude 0.0541 latitude 0.0561 latitude 0.0445
longitude 0.1069 longitude 0.0060 longitude 0.0450
Arable and horticulture Img  Coniferous woodland lmg Heather grassland Img
change in species richness 0.5154 change in species richness 0.5066 change in species richness 0.5150
change in rainfall 0.0044 change in rainfall 0.0139 change in rainfall 0.0157

change in dry N deposition  0.0284 change in dry N deposition  0.0251 change in dry N deposition  0.0399
change in wet N deposition 0.0115 change in wet N deposition 0.0963 change in wet N deposition 0.0219

latitude 0.0107 latitude 0.1498 latitude 0.0848
longitude 0.0275 longitude 0.0407 longitude 0.0312
Improved grassland lmg Saltwater Img Suburban Img
change in species richness 0.5765 change in species richness 0.3693 change in species richness 0.6287
changce in rainfall 0.0100 change in rainfall 0.0308 change in rainfall 0.0192
change in dry N deposition  0.0565 change in dry N deposition  0.0256 change in dry N deposition  0.1308
change in wet N deposition 0.0105 change in wet N deposition 0.0789 change in wet N deposition  0.0057
latitude 0.0196 latitude 0.1822 latitude 0.0235
longitude 0.0586 longitude 0.2395 longitude 0.0042
Littoral sediment Img Urban lmg
change in species richness 0.2603 change in species richness 0.4622
change in rainfall 0.0149 change in rainfall 0.0665
change in dry N deposition  0.0260 change in dry N deposition  0.1052
change in wet N deposition 0.0167 change in wet N deposition 0.0351
latitude 0.0098 latitude 0.0254
longitude 0.0084 longitude 0.0313
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Supporting Table S4.5 Tukey post-hoc test results for comparison of mean
weighted genome sizes per hectad between the different land cover types.

groupl group2 null.value estimate conf.low conf.high p.adj p.adj.signif
Acid grassland Arable and horticulture 0 0.3638 0.3305 0.3971 0.0000 Howok
Acid grassland Bog 0 0.0688 0.0145 0.1231 0.0019 *ok
Acid grassland Coniferous woodland 0 0.0537 0.0005 0.1068 0.0457 *
Acid grassland Heather 0 0.0346 -0.0153 0.0845 0.5170 ns
Acid grassland Heather grassland 0 -0.0131 -0.0539 0.0277 0.9980 ns
Acid grassland Improved grassland 0 0.2945 0.2618 0.3272 0.0000 Hokkok
Acid grassland Littoral sediment 0 0.3321 0.2605 0.4038 0.0000 ok
Acid grassland Saltwater 0 0.2006 0.1091 0.2920 0.0000 el
Acid grassland Suburban 0 0.4507 0.3923 0.5091 0.0000 Fokorx
Acid grassland Supra-littoral rock 0 0.0284 -0.0866 0.1433 1.0000 ns
Acid grassland Supra-littoral sediment 0 0.0231 -0.0919 0.1381 1.0000 ns
Acid grassland Urban 0 0.4607 0.3587 0.5627 0.0000 HoHAE
Arable and horticulture Bog 0 -0.2950 -0.3437 -0.2463 0.0000 Hokkok
Arable and horticulture Coniferous woodland 0 -0.3101 -0.3576 -0.2627 0.0000 Fok
Arable and horticulture Heather 0 -0.3292 -0.3729 -0.2855 0.0000 Fok
Arable and horticulture Heather grassland 0 -0.3769 -0.4099 -0.3439 0.0000 Hokkx
Arable and horticulture Improved grassland 0 -0.0693 -0.0915 -0.0471 0.0000 Hokokok
Arable and horticulture Littoral sediment 0 -0.0317 -0.0992 0.0359 0.9430 ns
Arable and horticulture Saltwater 0 -0.1632 -0.2514 -0.0750 0.0000 HArx
Arable and horticulture Suburban 0 0.0869 0.0337 0.1401 0.0000 HAx
Arable and horticulture Supra-littoral rock 0 -0.3354 -0.4479 -0.2230 0.0000 Hokrok
Arable and horticulture Supra-littoral sediment 0 -0.3407 -0.4531 -0.2282 0.0000 Frdx
Arable and horticulture Urban 0 0.0969 -0.0022 0.1961 0.0626 ns
Bog Coniferous woodland 0 -0.0152 -0.0791 0.0488 1.0000 ns
Bog Heather 0 -0.0342 -0.0954 0.0270 0.8220 ns
Bog Heather grassland 0 -0.0819 -0.1360 -0.0279 0.0000 Forokx
Bog Improved grassland 0 0.2257 0.1774 0.2739 0.0000 Hodkok
Bog Littoral sediment 0 0.2633 0.1833 0.3433 0.0000 ot
Bog Saltwater 0 0.1317 0.0337 0.2298 0.0006 Hoox
Bog Suburban 0 0.3819 0.3135 0.4502 0.0000 Hokokk
Bog Supra-littoral rock 0 -0.0405 -0.1608 0.0799 0.9960 ns
Bog Supra-littoral sediment 0 -0.0457 -0.1660 0.0746 0.9890 ns
Bog Urban 0 0.3919 0.2839 0.4999 0.0000 Hokkx
Coniferous woodland Heather 0 -0.0190 -0.0793 0.0412 0.9980 ns
Coniferous woodland Heather grassland 0 -0.0668 -0.1198 -0.0138 0.0021 Hox
Coniferous woodland Improved grassland 0 0.2408 0.1938 0.2879 0.0000 Horokx
Coniferous woodland Littoral sediment 0 0.2785 0.1992 0.3577 0.0000 Hordx
Coniferous woodland Saltwater 0 0.1469 0.0495 0.2444 0.0000 Hokokk
Coniferous woodland Suburban 0 0.3970 0.3296 0.4645 0.0000 ok
Coniferous woodland Supra-littoral rock 0 -0.0253 -0.1451 0.0945 1.0000 ns
Coniferous woodland Supra-littoral sediment 0 -0.0305 -0.1504 0.0893 1.0000 ns
Coniferous woodland Urban 0 0.4071 0.2996 0.5145 0.0000 Fokk
Heather Heather grassland 0 -0.0477 -0.0974 0.0019 0.0735 ns
Heather Improved grassland 0 0.2599 0.2167 0.3031 0.0000 Fokokok
Heather Littoral sediment 0 0.2975 0.2205 0.3746 0.0000 Fokk
Heather Saltwater 0 0.1660 0.0703 0.2617 0.0000 Fokk
Heather Suburban 0 0.4161 0.3512 0.4810 0.0000 Hokokk
Heather Supra-littoral rock 0 -0.0063 -0.1247 0.1122 1.0000 ns
Heather Supra-littoral sediment 0 -0.0115 -0.1299 0.1069 1.0000 ns
Heather Urban 0 0.4261 0.3203 0.5320 0.0000 Hok
Heather grassland Improved grassland 0] 0.3076 0.2753 0.3400 0.0000 Fodkok
Heather grassland Littoral sediment 0 0.3453 0.2737 0.4168 0.0000 e
Heather grassland Saltwater 0 0.2137 0.1224 0.3050 0.0000 Forokok
Heather grassland Suburban 0 0.4638 0.4056 0.5220 0.0000 oAk
Heather grassland Supra-littoral rock 0 0.0415 -0.0734 0.1564 0.9930 ns
Heather grassland Supra-littoral sediment 0 0.0362 -0.0786 0.1511 0.9980 ns
Heather grassland Urban 0 0.4739 0.3720 0.5758 0.0000 Hokokx
Improved grassland Littoral sediment 0 0.0376 -0.0296 0.1049 0.8200 ns
Improved grassland Saltwater 0 -0.0939 -0.1819 -0.0060 0.0241 *
Improved grassland Suburban 0 0.1562 0.1034 0.2090 0.0000 Horkok
Improved grassland Supra-littoral rock 0 -0.2661 -0.3784 -0.1539 0.0000 o
Improved grassland Supra-littoral sediment 0 -0.2714 -0.3836 -0.1591 0.0000 FrAk
Improved grassland Urban 0 0.1662 0.0673 0.2652 0.0000 Fkrx
Littoral sediment Saltwater 0 -0.1316 -0.2402 -0.0229 0.0041 *ok
Littoral sediment Suburban 0 0.1186 0.0357 0.2014 0.0002 Hokok
Littoral sediment Supra-littoral rock 0 -0.3038 -0.4329 -0.1747 0.0000 Hrkk
Littoral sediment Supra-littoral sediment 0 -0.3090 -0.4381 -0.1799 0.0000 Forokk
Littoral sediment Urban 0 0.1286 0.0109 0.2463 0.0181 *
Saltwater Suburban 0 0.2501 0.1497 0.3505 0.0000 HARE
Saltwater Supra-littoral rock 4] -0.1722 -0.3132 -0.0312 0.0036 Hx
Saltwater Supra-littoral sediment 0 -0.1775 -0.3185 -0.0364 0.0022 H**
Saltwater Urban 0 0.2602 0.1295 0.3908 0.0000 Fook
Suburban Supra-littoral rock 0 -0.4223 -0.5446 -0.3001 0.0000 Frck
Suburban Supra-littoral sediment 0 -0.4276 -0.5498 -0.3053 0.0000 Fokkx
Suburban Urban 0 0.0100 -0.1001 0.1202 1.0000 ns
Supra-littoral rock Supra-littoral sediment 0 -0.0052 -0.1626 0.1521 1.0000 ns
Supra-littoral rock Urban 0 0.4324 0.2843 0.5805 0.0000 Hokokx
Supra-littoral sediment Urban 0 0.4376 0.2895 0.5857 0.0000 Hokokx
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Supporting Figure S4.1 Detailed overview of land cover changes. a and c are more
detailed alluvial plots that visualise the fate of each hectad with land cover data at each of
the time points considered here (1930s, 1990, 2007, 2017 and 2020). While a shows broader
categories of land cover, the plot in c shows far more detailed land cover information, but
does not allow comparison with the 1930s. b represents the land cover by hectad
categorised according to the Dudley Stamp 1930s map (top) and UKCEH land cover maps
(bottom). 2007 represents a special case, since the UKCEH land cover map’s categories for
this period are not perfectly aligned with those used in the preceding and following years,
making direct comparisons more challenging. Hectads with majority cover for one of those
land cover types that were not assigned in all time periods are not included in alluvial
plots. The land cover types only present in the 2007 LCM are highlighted in grey in the
legend. Legends (inside the grey box for Dudley Stamp categories, inside the black box for
UKCEH categories) are valid for maps and alluvial plots. Colours in alluvial plots indicate
the majority cover the hectad falls into in the final date class.

209



1987-1999 2000-2009 2010-2019 1987-1999 2000-2009 2010-2019

Supporting Figure S4.2 Map representations of different predictor variables used
in spatial models. Species richness following Frescalo correction (a). Mean total nitrogen
deposition [kg/ha] (b). Mean NOy wet deposition [kg/ha] (c). Mean NOy dry deposition
[kg/ha] (d). Mean NHx wet deposition [kg/ha] (e). Mean NHx dry deposition [kg/ha] (f).
Mean annual rainfall per growing season [mm] (g). Mean annual temperature per growing
season [°C] (h).
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Supporting Figure S4.3 Linear models of weighted mean genome size per hectad by
different spatial parameters for the final date class (2010-2019). Each plot illustrates the
relationship between weighted mean genome size [pg/iC] by hectad and one spatial parameter
(latitude (a), longitude (b), mean rainfall per growing season [mm] (c), mean temperature per
growing season [°C] (d), species number per hectad after Frescalo correction (e), mean total
nitrogen deposition [kg/ha] (f), mean total dry and wet nitrogen deposition [kg/ha] (g and h)). p-
values and adjusted R* are given with each plot. Each dot represents a hectad with colours
indicating the majority land cover type present there in 2017 (see legend).
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Supporting Figure S4.4 Linear models of weighted mean ploidy per hectad by
different spatial parameters for the final date class (2010-2019). Each plot illustrates
the relationship between weighted mean ploidy by hectad and one spatial parameter
(latitude (a), longitude (b), mean rainfall per growing season [mm] (c), mean temperature
per growing season [°C] (d), species number per hectad after Frescalo correction (e), mean
total nitrogen deposition [kg/ha] (f), mean total dry and wet nitrogen deposition [kg/ha]
(g and h)). p-values and adjusted R are given with each plot. Each dot represents a hectad
with colours indicating the majority land cover type present there in 2017 (see legend).
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Supporting Figure S4.5 Linear models of change in weighted mean genome size per hectad
by changes in different spatial parameters between 1987-1999 and 2010-2019. Each plot
illustrates the relationship between change in weighted mean genome size [pg/1C] by hectad and
one spatial parameter (latitude (a), longitude (b), change in mean rainfall per growing season [mm]
(c), change in mean temperature per growing season [°C] (d), change in species number per hectad
after Frescalo correction (e), change in mean total nitrogen deposition [kg/ha] (f), change in mean
total dry and wet nitrogen deposition [kg/ha] (g and h)). p-values and adjusted R* are given with
each plot. Each dot represents a hectad with colours indicating the majority land cover type present
there in 2017 (see legend).
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Supporting Figure S4.6 Pearson correlation metrics for predictors used in linear
models. a shows correlations between predictors in the model for weighted mean genome
size per hectad in the last date class (1987-1999), b shows correlations between predictors
for the model for change in weighted mean genome size per hectad. Numbers and colours
indicate the strength and direction of the correlation. Crossed out numbers are non-
significant.
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Supporting Figure S4.7 Representation of the amount of N (nitrogen, a), P (phosphorous,
b) and K (potassium, c¢) applied to hectads of different land cover types. Information was
derived from the datasets made available on https://www.ceh.ac.uk/data/ukceh-land-cover-plus-
fertilisers-and-pesticides.
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Appendix 4 Supporting information for Chapter 5

Supporting Figure

Supporting Figure S5.1 Hypothesised causal structures tested in path
analysis represented as directed acyclic graphs.

Supporting Tables

Supporting Table S5.1 Detailed results from ten independent random forest
runs on ten random subsets of data.

Supporting Table S5.2 Summary of group means and phylANOVA results for
RF predictors on subset used for RF runs.

Supporting Table S5.3 Summary report of phylopath path analysis.
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‘Traits — niche’' group ‘Niche — traits’ group

Supporting Figure S5.1 Hypothesised causal structures tested in path analysis
represented as directed acyclic graphs. Based on previous PGLS analysis conducted on
all traits, the hypotheses of causal interaction between functional traits (SM = seed mass,
SLA = specific leaf area, height = canopy height), Ellenberg values (Ellenberg N = E_N and
Ellenberg F = E_F) and genome size (GS) and fall into three broad categories. The first
category of proposed models assumes that genome size, functional traits and Ellenberg
values each have separate effects on trend (‘independence’), the second category (‘traits >
niche) postulates that the functional traits influence the realised niche requirements
(Ellenberg values) of a plant and the third category (‘niche > traits’) assumes that the
characterisation of the niche a plant occurs in effects functional traits which in turn has
impacts on trend. Within each category, the exact way in which genome size ties into the
proposed network is changed to gain insights into the way it might affect trend. Names
given with each path diagram describe the role that genome size would be expected to
play if this model received support from phylogenetic path analysis.
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Supporting Table S5.1 Detailed results from ten independent random forest runs on ten random subsets of data. For each run, the table details
the hyperparameters derived from grid-based tuning, measures of the success of the algorithm overall (accuracy, ROC AUC and the OOB (out of bag)
prediction error as well as confusion matrices and derived from them the percentage of correctly identified decreasing and increasing species.

Run 1 2 3 4 5 6 7 8 9 10
Hyper- mtry=4 mtry=2 mtry=2 mtry=2 mtry=6 mtry=2 mtry=6 mtry=2 mtry=4 mtry=6
parameters  trees=500 trees=1000 trees=1000 trees=2000 trees=500 trees=500 trees=1000 trees=500 trees=500 trees=500
min_n=6 min_n=2 min_n=2 min_n=2 min_n=2 min_n=2 min_n=1o min_n=2 min_n=2 min_n=6
Accuracy 0.696 0.717 0.708 0.742 0.658 0.708 0.692 0.654 0.675 0.729
ROC AUC 0.702 0.723 0.776 0.793 0.721 0.731 0.694 0.690 0.751 0.733
OOB 0.1399774  0.1422186 0.1401969 0.1495144 0.1314461 0.1437683  0.1435094 0.1327389  0.14129094  0.1505671
prediction
error
Confusion D I D 1 D I D 1 D I D 1 D 1 D 1 D I D 1
matrix
D133 46 D140 40 D129 45 D134 29 D124 45 D129 35 D132 42 Duy 47 D120 34 D 146 29
27 34 128 32 125 41 [ 33 44 137 34 T 35 41 132 34 13 40 144 42 136 29
%correct for  74.30 % 77.77 % 74.14 % 82.21 % 73.37 % 78.66 % 75.86 % 71.34 % 77.92 % 83.42%
decr
%correct for  55.74% 53.33 % 62.12 % 57.14 % 47.89 % 53.95 % 51.52 % 52.63 % 48.84 % 44.62 %

incr
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Supporting Table S5.2 Summary of group means and phylANOVA results for RF predictors on subset used for RF runs. Units of traits are in order
of appearance in table (mm? mm/mg?, g/g”, mg, m, pg/1C). Ellenberg values do not have a unit.

Predictor Group mean F P
Decreasing Increasing

Leaf area 3483 3485 8.44 0.023
SLA 26.7 25.5 2.04 0.202
LDMC 0.205 0.201 0.90 0.483
Seed mass 3.23 10.3 5.88 0.062
Mean vegetative height 0.445 0.486 5.62 0.068
Genome size 2.64 3.81 3.43 0.174
Ellenberg F 5.65 5.29 6.8 0.063
Ellenberg N 4.58 5.23 20.82 0.002
Ellenberg R 6.29 6.52 5.55 0.073
Ellenberg L 7.09 7.16 0.50 0.599
Ellenberg S 0.18 0.55 28.26 0.001
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Supporting Table S5.3 Summary report of phylopath path analysis. Model name is given with k, the number of independence claims inherent in the
model, g, the number of parameters estimated, the C-statistic and its p-value, CICc and delta_CICc scores, i.e. the C-statistic information criterion
corrected for small sample sizes (which converges to CIC for large sample sizes) and the difference in CICc with the best model, as well as the relative
likelihoods (1) and CICc weights (w). Model names correspond to the acyclic diagrams in Supporting Figure Ss.1, with t standing for traits and n standing
for niche.

Model k q C P CICc delta_CICc 1 A4
TN_exogenous 6 22 29.3 3.57€-03 74.6 0.0 1.00€+00 1.00€+00
NT_filter 7 21 49.8 6.65€e-03 93.0 18.4 1.03e-04 1.03e-04
TN_just_another_trait 7 21 61.3 6.96e-08 104.5 29.9 3.25e-07 3.25e-07
TN_not_tied_in 9 19 77.6 2.28e-09 16.6 41.9 7.81e-10 7.81e-10
TN_independent 8 20 76.3 7.60€-10 7.4 42.8 5.07€-10 5.07€-10
NT_exogenous 6 22 74.5 4.58e-11 19.8 45.2 1.53e-10 1.53e-10
NT_just_another_trait 5 23 75.8 3.34e-12 123.2 48.6 2.77e-11 2.77e-11
NT_not_tied_in 8 20 84.5 2.54e-11 125.6 51.0 8.50e-12 8.50e-12
NT_independent 7 21 86.9 1.44€-12 130.1 55.5 8.78e-13 8.78e-13
TN_filter 8 20 17.3 0.00e+00 158.4 83.8 6.41e-19 6.41e-19
NT_mediator 9 19 233.0 0.00e+00 272.0 197.4 1.37€-43 1.37€-43
I_exogenous 7 21 229.3 0.00e+00 272.6 197.9 1.04€-43 1.04€-43
I_trait_mediator 1 17 249.9 0.00€e+00 284.7 210.0 2.46e-46 2.46e-46
I_not_tied_in 12 16 285.2 0.00e+00 317.9 243.3 1.50e-53 1.50e-53
I_independent 1 17 284.3 0.00€+00 319.1 244.5 8.06e-54 8.06e-54
I_niche_mediator u 17 299.2 0.00e+00 334.0 259.3 4.87e-57 4.87e-57
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