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Abstract

Research in automatic analysis of facial expressions
mainly focuses on recognising the seven basic ones. How-
ever, compound expressions are more diverse and represent
the complexity and subtlety of our daily affective displays
more accurately. Limited research has been conducted for
compound expression recognition (CER), because only a
few databases exist, which are small, lab controlled, im-
balanced and static. In this paper we present an in-the-
wild A/V database, C-EXPR-DB, consisting of 400 videos
of 200K frames, annotated in terms of 13 compound expres-
sions, valence-arousal emotion descriptors, action units,
speech, facial landmarks and attributes. We also propose
C-EXPR-NET, a multi-task learning (MTL) method for CER
and AU detection (AU-D); the latter task is introduced to en-
hance CER performance. For AU-D we incorporate AU se-
mantic description along with visual information. For CER
we use a multi-label formulation and the KL-divergence
loss. We also propose a distribution matching loss for cou-
pling CER and AU-D tasks to boost their performance and
alleviate negative transfer (i.e., when MT model’s perfor-
mance is worse than that of at least one single-task model).
An extensive experimental study has been conducted illus-
trating the excellent performance of C-EXPR-NET, vali-
dating the theoretical claims. Finally, C-EXPR-NET is
shown to effectively generalize its knowledge in new emo-
tion recognition contexts, in a zero-shot manner.

1. Introduction
For the past twenty years research in automatic analysis

of facial behaviour was mainly limited to the recognition of
the so-called six universal expressions (e.g., anger, happi-
ness), plus the neutral state, influenced by the seminal work
of Ekman [7]. However, the affect model based on basic ex-
pressions is limited in the ability to represent the complexity
and subtlety of our daily affective displays [19]. Many more
facial expressions exist and are used regularly by humans.
The compound expressions are a better representation of af-
fective displays in everyday interactions. Compound means

that the expression category is constructed as a combination
of two basic expression categories. Obviously, not all com-
binations are meaningful for humans. Twelve compound
expressions are most typically expressed by humans, e.g.,
people regularly produce a happily surprised expression and
observers do not have any problem distinguishing it from an
angrily surprised expression.

The design of systems capable of understanding the
community perception of expressional attributes and af-
fective displays is receiving increasing interest. Benefited
from the great progress in deep learning research, the per-
formance of expression recognition has greatly improved.
However, deep-model based methods are starved for labeled
data, whereas the annotation is a highly labor intensive and
time consuming process and the complexity of expression
categories obscures the labelling procedure. Initially, re-
search was mainly limited to posed behavior captured in
highly controlled conditions. Some representative datasets
are CK+ [17], MMI [26], CFEE [6] and iCV-MEFED [18].

However, it is now widely accepted that progress in
a particular application domain is significantly catalysed
when a large number of datasets are collected in-the-wild
(i.e., in unconstrained conditions). Thus, expression analy-
sis could not only focus on spontaneous behaviors, but also
on behaviours captured in unconstrained conditions. Hence,
two in-the-wild databases have been generated, EmotioNet
[1] and RAF-DB [15]. These databases, although in-the-
wild, are: i) very small in terms of size (RAF-DB contains
around 4,000 images; EmotioNet contains around 1,500 im-
ages); ii) very imbalanced (in RAF-DB one category con-
sists of 1,700 images; in EmotioNet one category contains
half the samples); iii) static (i.e., they contain only images);
iv) lacking a training-validation-test set split.

It is evident that these databases are very small and do
not contain sufficient data for both training and evaluating
deep learning systems, so that the results are meaningful
and illustrate good generalization. Compound expression
recognition (CER) is in its infancy due to the above limita-
tions. To this end, we collected the largest, diverse, in-the-
wild audiovisual database, C-EXPR-DB, reliably annotated
for 12 compound expressions plus a category referring to



other affective states. C-EXPR-DB is also annotated for:
i) continuous dimensions of valence-arousal (how positive-
negative, active-passive the emotional state is); ii) speech
detection; iii) facial landmarks and bounding boxes; iv) ac-
tion units (activation of facial muscles); v) facial attributes.

Recently, some works have utilized multi-task learning
(MTL) for basic expression recognition and AU detection
(AU-D) [2, 3]. They have shown that MTL helps improve
the performance across tasks. Inspired by this, we proposed
a novel methodology, C-EXPR-NET, for MTL of CER and
AU-D; we are interested in CER but we use AU-D as auxil-
iary task to enhance CER performance. We utilize SEV-Net
[30] for AU-D. The FACS manual [7] provides a complete
set of textual descriptions for AU definitions; such a set of
AU descriptions provides rich semantic information (about
facial area/position, action, motion direction/intensity, rela-
tion of AUs). The model introduces such AU semantic de-
scriptions as auxiliary information and processes them via
inter- and intra-transformer modules and a cross modality
attention module for AU-D.

For CER we use a multi-label formulation, where the
output classes are 6 (the basic expressions) and each da-
tum contains annotations for 2 of these 6 categories. We
use a softmax activation in the output layer of our method
that tackles CER and the Kullback-Leibler divergence (KL-
div) as its loss function. The concept for this formulation
aligns with what compound expressions are, i.e., expres-
sions that can be constructed as combinations of basic cat-
egories. In addition, this formulation allows our method to
be additionally trained with images annotated with the 6 ba-
sic expressions (as a form of data augmentation or to learn
to differentiate between basic expressions as well). This
formulation deviates from traditional CER approaches that
use a multi-class formulation, with the compound expres-
sions being mutually exclusive classes (i.e., each datum is
annotated in terms of only one compound expression).

However, when we compared the performance of our
multi-task method with that of single-task (ST) methods for
CER and AU-D, we observed that MTL increased CER per-
formance, but it harmed AU-D performance. Thus negative
transfer occurred, as CER task dominated the training pro-
cess. Inspired by [11, 12], we propose a distribution match-
ing approach based on task relatedness, i.e., knowledge ex-
change between CER and AU-D tasks is enabled via dis-
tribution matching over their predictions. We demonstrate
empirically that this distribution matching approach allevi-
ates negative transfer and further boosts CER performance.
The main contributions of this work are summarized below:
• We generate the largest, diverse, in-the-wild A/V

database, C-EXPR-DB, annotated for compound expres-
sions, valence-arousal, AUs, facial attributes, speech de-
tection, facial landmarks and bounding boxes;

• We propose the novel C-EXPR-NET, a MT method for

CER and AU-D; the latter task acts as an auxiliary one for
enhancing the former task’s performance (we are the first
to prove this). For AU-D, our method incorporates visual
information, as well as AU descriptors (that act as auxil-
iary, rich, semantic information) and processes them via
inter- and intra-transformer modules and a cross-modality
attention module. For CER our method uses a multi-label
formulation and KL-div loss. Our method finally contains
a distribution matching loss, based on task relatedness,
for coupling the tasks to alleviate negative transfer and
further boost their performance.

• We conduct an extensive experimental study which shows
that: i) C-EXPR-NET outperforms the state-of-the-art
(sota) both for CER and BER on RAF-DB, regardless
if trained from scratch or pre-trained on C-EXPR-DB;
ii) C-EXPR-NET outperforms the sota regardless if AU
annotations are manual or automatic; iii) C-EXPR-NET
can effectively generalize its knowledge in new emotion
recognition contexts, in a zero-shot manner.

2. Related Work
DLP-CNN+mSVM [15] is pretrained for BER and used

as a feature extractor for CER; it is trained using the soft-
max loss and a locality preserving loss - that pulls the lo-
cally neighboring faces of the same class together. In [16],
a loss is introduced - for BER and CER - that consists of
a separate loss and the classical cross entropy; the separate
loss consists of an intra-class and an inter-class loss, both
based on normalized cosine similarity. ReCNN [29] uses
VGGFACE for extracting features cropped into sub-feature
maps and processed by other layers. A weighted cross en-
tropy loss is optimized during training for BER and CER.
ResNet-18 (ARM) [25] is proposed for BER, consisting of a
backbone network that extracts visual features, an auxiliary
block that rearranges the features and two functional blocks,
for realizing the features’ weight distribution by means of
convolution and for simplifying the representation learning
by splitting the features to two parts.

DACL [8] consists of a backbone network that extracts
facial features, a module which eliminates features’ noise
and irrelevant information and a multi-head binary classifi-
cation module that calculates the attention weights for the
’cleaned’ features; DACL is trained for BER with sparse
center loss and softmax cross entropy loss. PSR [27] is
a pyramid architecture of a spatial transformer (for align-
ment), a scaling module (for processing input on different
scales), a low- and high-level extractor, a classifier and a
concatenation block for BER. [10] is a methodology for
generating realistic images with valence-arousal and 6 ba-
sic expressions. The authors train VGG-FACE on many
databases, augmenting their training set with generated im-
ages from the particular database. Finally [11,12] introduce
FaceBehaviorNet, a multi-task model targeting valence-



arousal estimation, BER and AU-D. The network was fur-
ther utilized in a zero-shot and few-shot setting for CER.

3. C-EXPR-DB Database
Data collection All videos of Compound-Expression-
DataBase (C-EXPR-DB) have been downloaded from
YouTube. For finding videos with compound expressions,
we searched YouTube with different expression related key-
words (one of the basic or compound categories or synonym
words for them); activities, reactions and actions-causes
that trigger or induce these expressions. More details re-
garding the data and their collection are included in the sup-
plementary material.

Data Properties We downloaded 400 videos of peo-
ple exhibiting compound behaviors in arbitrary record-
ing conditions (in-the-wild, with high variations in poses,
lightning-illumination, background noise levels etc). The
total length of the videos is more than 13 hours and the total
number of frames is around 200,000. Most spontaneous/in-
the-wild A/V databases in affective computing do not con-
tain as many subjects as C-EXPR-DB: DISFA [20] (27),
BP4D [32] (41), RECOLA [23] (46), GFT [9] (96), BP4D+
[33] (140), Aff-Wild [13, 31] (200), AMFED [21] (242),
AFEW [5] (330), SEWA [14] (398). The subjects in C-
EXPR-DB come from different cultural backgrounds and
ethnicities with a large age range. Table 1 shows a sum-
mary of database’s statistics. Images from the database can
be seen in supplementary material.

Table 1. C-EXPR-DB’s Statistics; CE: Compound Expressions

Attribute Value
# Videos 400
# Frames 198,978

# Annotators 7
# Modes of Affect CE & valence-arousal & AUs

Data Annotation C-EXPR-DB contains per-frame anno-
tations for: i) 13 expression categories, ii) valence-arousal,
iii) action units (AUs), iv) speech detection, v) facial land-
marks and face bounding boxes, vi) facial attributes.

Each frame of the database has been annotated by seven
expert annotators for twelve compound expressions, plus
the ”other” state. The 12 compound expressions are shown
in Table 2, along with their total number of annotated
frames. The ”other” state includes all affective states that
are not one of the twelve compound expressions. The same
experts further annotated each frame of the database in
terms of the continuous dimensions of valence-arousal. For
accurately performing frames’ annotation, experts exploited
all available modalities, namely facial expressions, audio,
context, body pose and gesture. When the annotations have

been completed, we applied a post-processing step. For
each expert, we removed their annotations for frames for
which there was a mismatch between valence-arousal and
compound expression labels. Table 2 shows the valence-
arousal expected values for each compound category.

Table 2. C-EXPR-DB’s Annotations and their valence-arousal ex-
pected range

Expression # Frames Valence-Arousal Range
Sadly Fearful 10,112 V < 0, A > 0

Sadly Surprised 10,780 V < 0, A > 0
Sadly Disgusted 10,765 V < 0, A > 0

Sadly Angry 8,878 V < 0, A > 0
Fearfully Angry 11,591 V < 0, A > 0

Fearfully Surprised 14,445 V < 0, A > 0
Fearfully Disgusted 10,356 V < 0, A > 0
Angrily Surprised 10,535 V < 0, A > 0
Angrily Disgusted 9,415 V < 0, A > 0

Disgustedly Surprised 10,637 V < 0, A > 0
Happily Surprised 24,915 V > 0, A > 0
Happily Disgusted 8,885 A > 0

Other 44,456 V/A ∈ [−1, 1]

Additionally, a FACS trained AU coder annotated C-
EXPR-DB with 17 AUs (AU 1,2,4,5,6,7,9,10,11,12,15,17,
20,23,24,25,26). The experts also labeled the frames on
which the subject is speaking. More details regarding the
annotators and their annotations in terms of compound ex-
pressions, valence-arousal, AUs and speech can be found in
the supplementary material. Additionally, facial landmarks
were annotated for all frames. Manual annotation of facial
landmarks is highly labour intensive. Based on [24], trained
annotators can only achieve a sustained annotation speed
of 30 frames per hour and thus it would be impractical to
manually annotate all of the frames of C-EXPR-DB. There-
fore, the annotation was performed semi-automatically. Ex-
perts manually labeled with landmark points (and bounding
box) the first frame of each video in which the subject ap-
peared; then these landmarks were provided to the MDNET
face tracker [22] that automatically annotated the rest of the
frames. In parallel, we used the RetinaFace [4] to detect
facial landmarks in all frames; we compared the outputs
of the tracker and detector to find wrong detections, which
were manually corrected. Finally, the experts manually an-
notated facial attributes in all videos. The specific attributes
can be found in the supplementary material.
Major Contribution of C-EXPR-DB It is the compound
expression annotations along with its in-the-wild nature, the
fact that it is A/V as well as large and that each frame has
been annotated by 7 experts. We also need to stress the
fact that the database contains so many different annotations
and especially its annotations in terms of three different
modes of affect. C-EXPR-DB’s multimodality (faces, body
and pose, gestures, audio/speech) is important as true emo-



tion inference requires multiple modalities to disambiguate
emotions that map to similar expressions in one modality.
It contains video sequences that show the evolution of the
compound expressions through time with all its develop-
ment (onset/apex/offset); these video sequences contain dif-
ferent compound expressions and intensities, different body
posture and hand gestures per identity. These can facilitate
and foster research on image/video generation (e.g. GANs).

4. The Proposed Method: C-EXPR-NET
Fig. 1 gives an overview of our proposed framework,

Compound-Expression-Network (C-EXPR-NET) for rec-
ognizing compound expressions.

Problem Statement For a given image x ∈ X , we can
have label annotations:

i) in terms of 6 basic expressions yexpr ∈ {0, 1}6,
where the 6 classes are mutually exclusive (multi-class
problem); their notation is in one-hot encoding, e.g,
”happy” is denoted as [0, 0, 0, 1, 0, 0]; or

ii) in terms of 12 compound expressions yexpr ∈
{0, 0.5}6, where the 12 classes are non mutually exclu-
sive (multi-label problem), e.g, the ”happily surprised”
class (consisting of ”happy” and ”surprise” classes) is
denoted as [0, 0, 0, 0.5, 0, 0.5]; and

iii) in terms of 17 binary action units yAU ∈ {0, 1}17

Generation of Missing Labels for the AU Auxiliary Task
If no AU labels exist, then we generate automatic ones. We
merge many AU annotated databases so as: i) to have sam-
ples annotated in terms of all 17 AUs and ii) to have an ade-
quate amount of samples that can produce a good AU-D per-
formance. Then we train a CNN-RNN model on them. This
will act as the Teacher Pre-trained Network of Fig. 1 that
will provide the AU labels to our proposed method. More
details exist in the supplementary material.

Method’s Components C-EXPR-NET consists of 5
parts: Backbone Network (BNet); Expression Branch
(ExprB); AU Branch (AUB); Distribution Matching (DM)
module; Data Augmentation (DA) module.

Backbone Network (BNet): The input image is encoded
by the Backbone Network to spatial visual features
V ∈ RH×W×D; W , H , D are the feature map’s width,
height, depth. Any CNN/CNN-RNN can be Backbone Net.

Expression Branch (ExprB): The visual features V are fed
into the Expression Block (i.e., resnet block) that produces
features V ′ ∈ RH′×W ′×D′

, where W ′, H ′, D′ are the fea-
ture map’s width, height, depth; these features are followed
by a classifier with softmax that produces the expression
probabilities pexpr ∈ {0, 0.5}6. The loss function, related
to this block, is KL-div that minimizes the distance between

expression labels’ and predictions’ distributions. KL-div is
defined for two probability distributions yexpr and pexpr
corresponding to the expression labels and predictions -N
being the total number of images fed to the module- as:

Lexpr =
1

N

N∑
k=1

KL(yk
expr||pkexpr)

=
1

N

N∑
k=1

{ ∑
(yk

expr,p
k
expr)

yk
expr · log(

yk
expr

pkexpr
)

}
(1)

AU Branch (AUB): It consists of two parts: the AU Seman-
tic Encoding part and the Cross-Modality Attention one,
as is the case with SEV-Net. At first, based on the FACS
manual, a summary of the 17 AU semantic descriptions is
created; some of these can be seen in the bottom of Fig.
1. These descriptions denote the process to spot and an-
notate the particular action associated with each AU acti-
vation. Each description consists of multiple sentences and
each sentence consists of words.

Then we split each AU semantic descriptor into tokens
by using the WordPiece tokenizer [28] and assign posi-
tional encoding to each word. Thus, for each token, its in-
put representation is the sum of its trainable word, segment
and positional embedding. Each AU semantic descriptor
is fed to an Intra-Encoder module that consists of a multi-
layer transformer network that encodes contextual informa-
tion for tokens within each sentence. The output of the
Intra-Encoder is a set of embeddings for each AU semantic
descriptor; these embeddings are fed to the Inter-Encoder
module, which is a multi-layer transformer encoder that
captures the inter-AU relations (among multiple descriptor
embeddings). The Inter-Encoder module outputs embed-
dings, Ei, i = 1, .., 17, one embedding per AU descriptor.

All the AU embeddings Ei are then fed to the Cross-
Modality Attention module, along with the output of the AU
Block, which is a resnet block taking as input the visual fea-
tures V and produces output features V ′′ ∈ RH′′×W ′′×D′′

,
where W ′′, H ′′ and D′′ are the width, height and depth of
the feature map. The Cross-Modality Attention module out-
puts attention maps; each category-specific cross-modality
attention map aji for AUi at location j is defined as:

aj
i = ReLU

(
cosθji

)/W ′′×H′′∑
j=1

ReLU
(

cosθji
)

(2)

where cosθji is the cosine similarity between the output fea-
tures V ′′

j of the AU Block and the embeddings Ei of the
Inter-Encoder module (the latter is needed to be at first
linearly projected to the same dimensions of the former).
Then, the attention maps are multiplied with the output fea-
tures of the AU Block, thus acting as weights for the ag-



Figure 1. The proposed C-EXPR-NET. The visual features are extracted by a Backbone network and fed to an Expression and an AU
block for producing new features. The Expression Block’s features are fed to a classifier that produces compound expression predictions
pexpr . By utilizing knowledge about the relatedness between expressions and AUs, qAU is derived from pexpr (i.e, AUs are modeled as
a mixture over the expression predictions). AU semantic embeddings are obtained through the Intra-AU and Inter-AU attention modules;
the former captures the relation among words within each sentence that describes individual AUs, and the latter focuses on the relation
among those sentences. The learned AU semantic embeddings and the features of the AU Block are used to generate attention maps via
a cross-modality attention module. The attention maps are used as weights for the aggregated features; their product is fed to a classifier
that produces AU predictions pAU . Finally, we match pAU with qAU to make the predicted AUs consistent with the activated AUs of the
predicted expressions.

gregated features. A high value in a specific location j of
AUi denotes that the location j is more important than other
locations for recognizing AUi; thus the model needs to pay
more attention to that location when detecting that specific
AU. Finally the output of this multiplication is fed to a clas-
sifier with sigmoid activation function. This branch pro-
duces the predictions piAU , i = 1, . . . , 17 for the AUs. The
loss function related to this is a binary cross entropy (where
N is the total number of images):

LAU =
1

17 ·N

N∑
k=1

17∑
i=1

[
yi,k
AU log pi,kAU + (1− yi,k

AU )log (1− pi,kAU )
]

(3)

To sum up, this branch applies the attention in 3 levels
to capture different AU semantic relations: i) words level
(location, action type/intensity, etc); ii) sentence level (AU
relations, can 2 AUs happen concurrently?); iii) modality
level (connecting AU semantic embeddings to visual
features). As a result, the model is able to learn more
discriminative features from more meaningful areas.

Distribution Matching (DM) module: We generate a new
distribution qiAU , i = 1, . . . , 17 where the AUs are mod-
eled as a mixture over the expression categories. The new
distribution is derived from the predictions of the expres-
sion branch pexpr according to a pre-defined relatedness
between expressions and AUs. This relatedness can be
extracted from the psychological study of [6], where it is
found that, e.g., AU12 is activated when someone is happy
(related to ”happily surprised” and ”happily disgusted” ex-
pressions), thus q12AU = phappy. In another case, AU4 is
activated in sadness, fear, anger and disgust (related to all
compound expressions, apart from ”happily surprised” and
”happily disgusted”), thus q4AU = psadness + pfear + panger +
pdisgust. The new distribution is therefore defined as:

qiAU =
∑
pexpr

pexpr · pAUi|expr (4)

where pAUi|expr is defined deterministically from Table 1
of [6] (in supplementary); it is 1 if AUi is activated for the
particular ”expr” and 0 otherwise.



We match distributions piAU and qiAU -so as to make the
predicted AUs consistent with the activated AUs of the pre-
dicted expressions- by minimizing the cross entropy with
the soft target loss term (N is the total number of images):

Ldist =

N∑
k=1

17∑
i=1

[
pi,kAU log qi,kAU + (1− pi,kAU )log (1− qi,kAU )

]
17 ·N

(5)

Data Augmentation (DA) module: To increase the size of
the training set, we further add images annotated in terms
of the 6 basic expressions (e.g. from RAF-DB).

Overall Loss Function The overall objective function is
the sum of the losses defined previously (α1, α2 and α3

control the relative importance of each term):

Loverall = α1Lexpr + α2LAU + α3Ldist (6)

When experimenting with the A/V C-EXPR-DB, we utilize
the visual modality by feeding images to C-EXPR-NET (C-
EXPR-NET-V). However, C-EXPR-NET is modality ag-
nostic; thus we extract spectrograms from the audio modal-
ity and feed them to C-EXPR-NET (C-EXPR-NET-A). Fi-
nally, we perform late fusion on the expression and AU log-
its of C-EXPR-NET-V and C-EXPR-NET-A. More details
on this as well as training implementation details for our
proposed method can be found in supplementary material.

5. Experimental Results

To evaluate the proposed method, we perform exten-
sive experiments on RAF-DB and C-EXPR-DB. The Un-
weighted Average Recall (UAR) and F1 score are the per-
formance metrics for RAF-DB and C-EXPR-DB, respec-
tively. Details regarding RAF-DB and pre-processing per-
formed, as well as definitions of the performance evaluation
metrics, can be found in the supplementary material.

Comparison with State-of-the-Art for CER on RAF-DB
At first, we train C-EXPR-NET on RAF-DB for Com-
pound Expression Recognition (CER) and compare its per-
formance to the state-of-the-art. Table 3 shows that C-
EXPR-NET outperforms by: i) 7% the best performing
method FaceBehaviorNet (pretrained with millions of im-
ages from 10 databases for multi-task learning of valence-
arousal, basic expressions, AUs and fine-tuned on RAF-DB
for CER); ii) 9.2% the ReCNN (pretrained on million faces
for face recognition and then trained on RAF-DB for CER);
iii) 10.7% the DLP-CNN + mSVM (pretrained for BER on
RAF-DB and then fine-tuned on RAF-DB for CER); iv)
12.1% the ResNet-18 + separate loss.

Domain Adaptation Experiment on RAF-DB for CER
The proposed C-EXPR-DB is currently the largest in-the-
wild database annotated for compound expressions. Thus
we train C-EXPR-NET on this database and then use it in
a domain adaptation context. In more detail, we consider
C-EXPR-NET (pretrained on C-EXPR-DB) as a prior and
fine-tune it on RAF-DB for CER. We compare its perfor-
mance to the state-of-the-art. Table 3 shows that C-EXPR-
NET when pretrained on C-EXPR-DB outperforms by: i)
4.8% the same method that is not pretrained on C-EXPR-
DB, but is directly trained on RAF-DB; ii) 11.8% the Face-
BehaviorNet. Our method yields state-of-the-art results, il-
lustrating the strength of using C-EXPR-DB for CER.

Comparison with State-of-the-Art for BER on RAF-DB
Since C-EXPR-NET targets multi-label CER (rather than
multi-class CER), it can also solve the basic expression
recognition problem (BER). Thus we utilize the C-EXPR-
NET that is directly trained on RAF-DB for CER and test
its performance on RAF-DB for BER. We then compare
its performance to the state-of-the-art. Table 3 shows that
C-EXPR-NET outperforms by: i) 5% the best performing
method ResNet-18 (ARM) (pretrained for BER on Affect-
Net and then fine-tuned on RAF-DB for BER); ii) 5.9% the
DACL (pretrained on millions of faces for face recognition
and then trained on RAF-DB for BER including data aug-
mentation); iii) 6% the PSR; iv) 7% the ReCNN (pretrained
on million faces for face recognition and trained on RAF-
DB for BER); v) 8.2% the VGGFACE + augmented (trained
on a combination of artificially generated images and real
images of RAF-DB for BER); vi) 8.4% the FaceBehavior-
Net; vii) 9.1% the ResNet-18 + separate loss; viii) 12% the
DLP-CNN + mSVM. When C-EXPR-NET is pretrained on
C-EXPR-DB and then fine-tuned on RAF-DB for CER, its
performance for BER is 2.3% higher than the performance
of the same method that is not pretrained on C-EXPR-DB,
but is directly trained on RAF-DB. All these verify that C-
EXPR-NET trained for CER indirectly learns as well to dis-
tinguish between the basic expressions.

Zero-Shot Learning on RAF-DB Here we train C-
EXPR-NET without the data augmentation component on
RAF-DB for CER. We test its performance for BER in a
zero-shot setting. The fact that C-EXPR-NET targets CER
as a multi-label problem (rather than multi-class one) results
in C-EXPR-NET being able to effectively generalize its
knowledge in new emotion recognition contexts, in a zero-
shot manner. Table 3 shows that zero-shot C-EXPR-NET:
i) outperforms some methods that have been trained for 6
basic expression recognition (VGG + mSVM and baseD-
CNN + mSVM); ii) has a comparable performance to the
other state-of-the-art methods (between 1.8% and 8.8%),
although all methods have been trained for BER and the
total number of images used in their training was an order



of magnitute bigger than the total number of images used in
zero-shot C-EXPR-NET’s training.

Table 3. Performance comparison between the state-of-the-art and
C-EXPR-NET for 11-compound and 6-basic expression recogni-
tion on RAF-DB; performance metric is UAR

RAF-DB Compound Basic
zero-shot C-EXPR-NET 0.517 0.714

C-EXPR-NET 0.553 0.852
C-EXPR-NET pretrained on C-EXPR-DB 0.601 0.875

FaceBehaviorNet [11, 12] - 0.768
fine-tuned FaceBehaviorNet 0.483 -

VGG + mSVM [15] 0.316 0.579
baseDCNN + mSVM [15] 0.402 0.706
DLP-CNN + mSVM [15] 0.446 0.732

ResNet-18 + separate loss [16] 0.432 0.759
ReCNN [29] 0.461 0.782

VGG-FACE + augmented [10] - 0.770
ResNet-18 (ARM) [25] 0.471 0.802

PSR [27] 0.465 0.792
DACL [8] 0.466 0.793

Ablation Study for each proposed Component on RAF-
DB & C-EXPR-DB At first, we keep only the Backbone
Network and Expression Block of C-EXPR-NET, which
predicts the compound expressions when fed with images
annotated in terms of compound expressions. We uti-
lize three widely used DNNs to act as these components,
namely ResNet50, VGG16 and DenseNet121. We com-
pare their performance when CER is formulated as a: i)
multi-class (MC) problem, in which the compound expres-
sion output classes are mutually-exclusive; the output layer
has 12 units, softmax activation and the loss function is a
categorical cross entropy one; ii) multi-label (ML) prob-
lem, in which the compound expression output classes are
not mutually-exclusive; the output layer has 6 units, sig-
moid activation and the loss function is binary cross en-
tropy (CE); iii) multi-label problem, in which the output
layer has 6 units, softmax activation and the loss function
is KL-divergence.

Table 4 (rows 1-9) shows that the case when CER is
formulated as multi-label problem utilizing softmax and
KL-divergence provided the best results on both tested
databases, RAF-DB and C-EXPR-DB. It provided the best
performance regardless of which network was used, making
our methodology model agnostic. Comparing the 3 afore-
mentioned DNNs, ResNet50 achieved the best performance
consistently among all settings and databases; thus we de-
cided to use ResNet50 in our proposed method.

The above results verify our intuition that formulating
CER as a multi-label problem is more realistic and makes
it easier for the model to decompose and recognise expres-
sions more accurately as it takes into account the informa-
tion that two classes are correlated. Compound means that
the expression is constructed as a combination of two ba-

sic expressions. ”Happily surprised” & ”happily disgusted”
expressions involve facial muscles typically used in the pro-
duction of expressions of happiness and surprise & happi-
ness and disgust, respectively; for both compound expres-
sions, the basic expression ”happy” is involved. Thus an
expression recognition system identifies some similar pat-
terns on the two compound expressions, that confuse the
system if the problem is formulated as multi-class.

Next, we keep only the Backbone Network and Expres-
sion Block of the proposed method and feed it with both
compound expression annotated images and basic expres-
sion annotated images from RAF-DB. Table 4 (rows 9-10)
illustrates that CER performance is enhanced by 4% and 2%
on RAF-DB and C-EXPR-DB, respectively, when the extra
basic expression annotated images are fed to the model as a
form of data augmentation. This data augmentation is plau-
sible due to formulating CER as a multi-label problem.

Next, we target multi-task (MT) learning by incorporat-
ing an AU detection task (AU-D) in the above setting, with
the aim to further increase CER performance. Thus we add
the AU branch to the previous model. Table 4 (rows 10-
11) indicates that CER performance increases by 5% and
7% on RAF-DB and C-EXPR-DB, respectively. This re-
sult is the first ever proof that AU-D can act as an auxil-
iary task to enhance CER performance, regardless whether
the AU annotations are manual (C-EXPR-DB) or automatic
(RAF-DB). Additionally we train a single-task (ST) model
(ResNet) only with the Backbone Network and AU Branch
for AU-D. We compare its AU-D performance with that of
the MT model described in the previous paragraph. Table 5
(rows 1-2) shows that the single-task model’s performance
is higher by 2% and 1% on RAF-DB and C-EXPR-DB, re-
spectively. The fact that MT model’s performance for AU-D
is worse than that of ST model indicates that negative trans-
fer occurs, because CER dominates the training process.

Consequently, we add the Distribution Matching mod-
ule in the MT model, forming C-EXPR-NET, and compare
its performance to that of the ST model for AU-D. Table 5
(rows 2-3) shows that C-EXPR-NET (denoted as C-EXPR-
NET-V since the visual modality is utilized as input to the
method) outperforms the single-task model by 2% & 3%
on RAF-DB and C-EXPR-DB, respectively. We also no-
tice that C-EXPR-NET’s performance for CER is further
increased by 3% and 5% on RAF-DB and C-EXPR-DB, re-
spectively (shown on row 12 of Table 4).

The above presented results refer to cases where the vi-
sual modality was used; images were provided as input to
the models. Let us mention that the proposed methodology
is modality agnostic, meaning that it works for any type of
modality (not only the visual one). Since C-EXPR-DB is an
A/V database, it further contains the audio modality. There-
fore we utilize the audio modality in the form of spectro-
grams and provide them as input to our method. In the case



of A/V C-EXPR-DB, we extract spectrograms from the au-
dio modality and use them as input to C-EXPR-NET; the re-
sulting model is denoted C-EXPR-NET-A in Tables 4 and 5.
Alternatively, instead of extracting spectrograms from the
audio modality, we could use the raw signal-waveform as
input to our method. In that case we would have to choose
appropriate feature extractors as Backbone Network, Ex-
pression Block and AU Block. Finally, we perform late fu-
sion on the expression and AU logits of C-EXPR-NET-V
and C-EXPR-NET-A. Tables 4 and 5 illustrates that the late
fusion method enhances both CER and AU-D performance
by 3% and 5% from the visual-only (C-EXPR-NET-V) and
audio-only (C-EXPR-NET-A) models.

Table 4. Ablation Study: Performance comparison for CER;
in parenthesis is the problem formulation: multi-class (MC);
multi-label with sigmoid cross entropy (ML-CE); multi-label
with softmax KL-div (ML-KL); ExprB/AUD: Expression/AU
Branches; DM/DA: Distribution Matching/Data Augmentation
modules; V/A: visual/audio modalities given as input to system;
LF: late fusion; metrics: UAR for RAF-DB, F1 for C-EXPR-DB

Methods Components Databases
ExprB AUB DM DA RAF-DB C-EXPR-DB

VGG (MC) ✓ 0.29 0.35
DenseNet (MC) ✓ 0.33 0.36
ResNet (MC) ✓ 0.35 0.39

VGG (ML-CE) ✓ 0.32 0.36
DenseNet (ML-CE) ✓ 0.35 0.37
ResNet (ML-CE) ✓ 0.37 0.40
VGG (ML-KL) ✓ 0.38 0.41

DenseNet (ML-KL) ✓ 0.40 0.41
ResNet (ML-KL) ✓ 0.43 0.46
ResNet (ML-KL) ✓ ✓ 0.47 0.48
ResNet (ML-KL) ✓ ✓ ✓ 0.52 0.55
C-EXPR-NET-V ✓ ✓ ✓ ✓ 0.55 0.60
C-EXPR-NET-A ✓ ✓ ✓ ✓ - 0.58
C-EXPR-NET-LF ✓ ✓ ✓ ✓ - 0.63

Table 5. Performance comparison for AU-D; ML-KL: multi-label
with softmax & KL-div; ExprB/AUD: Expression/AU Branches;
DM/DA: Distribution Matching/Data Augmentation modules;
V/A: visual/audio modalities; LF: late fusion; metric: F1

Methods Components Databases
ExprB AUB DM DA RAF-DB C-EXPR-DB

ResNet ✓ 0.58 0.52
ResNet (ML-KL) ✓ ✓ ✓ 0.56 0.51
C-EXPR-NET-V ✓ ✓ ✓ ✓ 0.60 0.55
C-EXPR-NET-A ✓ ✓ ✓ ✓ - 0.53
C-EXPR-NET-LF ✓ ✓ ✓ ✓ - 0.58

Ablation Study on AU Detection Performance on RAF-
DB and C-EXPR-DB Here we perform ablation exper-
iments to show and verify the value of incorporating AU
semantic descriptors as auxiliary information for AU detec-
tion, via the AU Semantic Encoding and Cross-Modality
Attention parts. At first we train a vanilla ResNet-50 for

AU detection (vanilla means that only images are provided
as input to the network) and compare its performance to that
of a ResNet-50 that includes AU Semantic Encoding and
Cross-Modality Attention parts (i.e., the AU Branch of the
proposed methodology) and thus takes as input both images
and 17 AU semantic descriptors. Table 6 illustrates that the
latter network outperformed the vanilla ResNet by 2% and
3% on RAF-DB and C-EXPR-DB, respectively.

Finally, we aim to show that incorporating AU seman-
tic descriptors as auxiliary information for AU detection
brings similar and significant performance gains, regard-
less of which backbone network is used. Previously we
showed that this is the case when ResNet-50 is used. We
further utilize VGG16 and DenseNet121 as backbone net-
works. Table 6 illustrates that the performance gain when
VGG is used is 2% and 3% for RAF-DB and C-EXPR-DB,
respectively. Table 6 also shows that the performance gain
when DenseNet is used is 3% and 3% for RAF-DB and C-
EXPR-DB, respectively. These results validate that incor-
porating AU semantic descriptors as auxiliary information
to the system enhances its performance for AU detection.

Table 6. Ablation Study: Performance comparison for AU detec-
tion when the AU semantic descriptors are vs are not provided as
auxiliary information; performance metric: F1 for both databases

Methods Databases
RAF-DB C-EXPR-DB

vanilla ResNet 0.56 0.49
ResNet with AU Semantic Encoding

and Cross-Modality Attention 0.58 0.52

vanilla VGG 0.50 0.45
VGG with AU Semantic Encoding

and Cross-Modality Attention 0.52 0.48

vanilla DenseNet 0.54 0.46
DenseNet with AU Semantic Encoding

and Cross-Modality Attention 0.57 0.49

6. Conclusions

Limited research has been conducted for CER, because
there exist only two, small in-the-wild databases. In this
paper, we introduce C-EXPR-DB, the largest A/V in-the-
wild database annotated in terms of compound expressions,
which can foster further research on the area. We also pro-
pose C-EXPR-NET, a novel methodology for CER. We per-
form extensive experiments that illustrate that the database
is needed and that the proposed method outperforms the
state-of-the-art both for basic and compound expression
recognition. The limitations of this work are the fact that
C-EXPR-DB is imbalanced and the fact that there are not
many other in-the-wild databases annotated for compound
expressions that can be used to further evaluate our method.
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