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Abstract—Trust management is an important security 

approach for the successful implementation of Vehicular Ad Hoc 

Networks (VANETs). Trust models evaluate messages to assign 

reward or punishment. This can be used to influence a driver’s 

future behaviour. In the author’s previous work, a sender-side 

based trust management framework is developed which avoids 

the receiver evaluation of messages. However, this does not 

guarantee that a trusted driver will not lie. These “untrue 

attacks” are resolved by the RSUs using collaboration to rule on 

a dispute, providing a fixed amount of reward and punishment. 

The lack of sophistication is addressed in this paper with a novel 

fuzzy RSU controller considering the severity of incident, driver 

past behaviour, and RSU confidence to determine the reward or 

punishment for the conflicted drivers. Although any driver can 

lie in any situation, it is expected that trustworthy drivers are 

more likely to remain so, and vice versa. This behaviour is 

captured in a Markov chain model for sender and reporter 

drivers where their lying characteristics depend on trust score 

and trust state. Each trust state defines the driver’s likelihood of 

lying using different probability distribution. An extensive 

simulation is performed to evaluate the performance of the fuzzy 

assessment and examine the Markov chain driver behaviour 

model with changing the initial trust score of all or some drivers 

in Veins simulator. The fuzzy and the fixed RSU assessment 

schemes are compared, and the result shows that the fuzzy 

scheme can encourage drivers to improve their behaviour. 

Keywords—VANET; Trust management; fuzzy logic; Markov 

chain; reward and punishment; driver behaviour model 

I. INTRODUCTION 

Vehicular Ad Hoc Networks (VANETs) can play a major 
role in the successful implementation of the Intelligent 
Transport System (ITS). However, the implementation of 
VANETs and ITS face many security threats concerning 
traffic events. There are many security approaches in state-of-
the-art literature which aim to address these threats, though the 
completeness of these approaches is limited in thwarting both 
internal and external attacks. Attacks from authorized users 
can be curbed by a trust model [1-4]. However, each trust 
model has some limitations. Research to-date presents many 
models to evaluate the trust of vehicles and their messages. 
Trust approaches differ by their evaluation mechanism, and 
the infrastructures considered in the approaches. Some 
schemes evaluate only the trust of vehicles, whereas others 
evaluate the trustworthiness of messages. There are also some 
hybrid approaches which evaluate both the vehicles and 
messages. In this way, approaches isolate malicious vehicles 
from benign ones. Typically, the trustworthiness of relayed 
messages is evaluated using some measures and 

computational processes [5]. Once the malicious vehicles are 
identified, then it possible to limit or ignore their actions. To 
this end, some schemes also blacklist vehicles and/or drivers 
[6, 7]. Additionally, approaches incentivize trustworthy 
announcements (positive behaviour) to motivate vehicles to 
act honestly in the future [3, 6, 8]. Conversely, approaches 
punish mischievous behaviours to limit their future actions to 
avoid launching of future attacks [6, 9]. By arranging 
punishments to lower their trust score, drivers may feel guilty 
and be more careful about their future actions. In this way, the 
VANET can thwart attacks from authorized users by adopting 
a trust model which penalizes malicious activities and rewards 
benevolent behaviour. Even so, in some approaches [2, 3, 5, 
10, 11], both reliable and unreliable vehicles can announce 
messages. The approach in [6] does not need any trust metric 
dissemination unlike these schemes [2, 4, 12] which require 
substantial trust data dissemination to verify an original 
announcement. 

Trust evaluation can be performed at either the sender [6] 
and/or receiver side [2, 4, 10, 11, 13]. If receiver vehicles 
evaluate the trust of sender vehicles and/or messages, then the 
approach incurs additional delay and results in a higher 
communication overhead. Whereas, if a device in the sender 
vehicle can evaluate the trust, then there is typically no need to 
evaluate the trust of sender messages. Receivers do not need 
to rely on further communication with other sources (RSU, 
neighbour vehicles) for opinions or recommendation data. 

A trust management framework is proposed in [6] which 
adopts sender-side trust evaluation inside a Tamper Proof 
Device (TPD) which is equipped onto every regular vehicle. 
This TPD is responsible for altering the trust of all drivers of a 
regular vehicle. In this approach, drivers receive rewards from 
announcements after the expiration of reward withhold timer. 
The accuracy of the message, responsiveness of the driver, 
and the distance travelled from the event location are used to 
calculate the reward or penalize a driver. The TPD updates the 
trust of a driver using a standard set of rules. The TPD does 
not know the truthfulness of a message unless it receives a 
report/complaint from a reporter vehicle about the 
announcement. The framework thus includes a collaboration 
procedure to determine the validity of a disputed event by an 
RSU. The dispute concerns “an event” announced by a sender 
whereas a reporter says, “an opposite event”. The RSU then 
collects feedback from the vehicles (trusted clarifiers) which 
are visiting the presumed event location thereafter. With this 
data, the RSU decides, and sends rewards and punishment to 
the respective drivers when the decision is ready. In 
comparison to TPD reward and punishment, the RSU reward 
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and punishment mechanism is simple, and it only assigns a 
fixed reward or punishment to the disputed drivers irrespective 
of the severity of incident, driver past behaviour, and RSU 
confidence in the sender or reporter (environmental 
dynamics). Thus, in this paper an advanced RSU reward and 
punishment generator is developed to assign a justified level 
of reward or punishment to the drivers concerned. It is found 
in the state-of-the-art that many researchers use Mamdani 
fuzzy logic to deal with the imprecision and uncertainty. In the 
Mamdani fuzzy logic, each rule output is a fuzzy set, and the 
rules can be designed intuitively with some expert knowledge. 

In [6], an RSU assigns only fixed rewards and punishment 
based on the decision and does not consider the environmental 
dynamics. It is found that there is some uncertainty and 
incompleteness involved in the dispute resolution process.. 
Thus, our attention is drawn to developing an advanced model 
to reward or punish drivers using a fuzzy logic based RSU 
assessment method. This model considers various factors and 
then allocates justified levels of reward or punishment 
accordingly. Also, in [6] the driver behaviour is modelled with 
a straightforward probabilistic distribution. Drivers with 
higher trust scores send less untrue messages. However, the 
probability distribution is fixed and not influenced by the 
changing trust score of the driver. This is why a Markov-chain 
based driver behaviour model is introduced. The states of the 
Markov model are associated with a specific range of trust 
scores. From each state, a driver’s lying probability is defined 
which controls their likelihood of making trustworthy or 
malicious announcements. From a higher trust state, drivers 
announce less untrue messages whereas from the lower trust 
state they are more likely to announce untrue messages. The 
following contributions are made in this paper: 

 The RSU reward and punishment mechanism is 
amended using Mamdani fuzzy logic-based 
assessment. This method considers the severity of 
incident, confidence score in the sender or reporter and 
driver past behaviour. 

 A Markov-chain based driver behaviour model is used 
to govern the behaviour of drivers from different trust 
states. The state transition model along with the 
conditions to move between states is given. Also, from 
each state, the trustworthy / malicious announcement 
probability is defined. 

 A series of experiments have been conducted to 
validate and compare the performance of the fuzzy 

versus fixed reward and punishment schemes. 

 The Markov chain behaviour model is examined by 
defining the probabilistic distribution of sender, 
reporter drivers from different trust states and changing 
the initial trust distribution of drivers. 

The paper is organized as follows: Section II reviews trust 
models based on fuzzy logic and Markov chain-based models 
and similar state-of-the-art. Section III briefly introduces 
author’s earlier trust framework and presents the proposed 
fuzzy logic based RSU reward and punishment assessment 
method as well as Markov Chain driver behaviour model. 
Section IV describes the simulation environment and 

parameters for the experiments. Section V gives analysis and 
validation of results. Section VI compares fuzzy versus fixed 
RSU rewards and punishments and analyses the driver 
behaviour model with changing trust scores. Section VII 
presents the discussions. Finally, this work is concluded in the 
Section VIII where possible future research directions are 
indicated. 

II. LITERATURE REVIEW 

This work primarily implements a fuzzy logic-based 
reward and punishment mechanism at RSUs. Additionally, a 
Markov model-based driver behaviour is developed to control 
the behaviour of drivers. These are improvements to the trust 
framework presented in [6]. First, some of the existing state-
of-the-art trust models are briefly reviewed including fuzzy 
logic and Markov-model approaches. Trust approaches vary 
from different perspectives. For example, they can be 
differentiated based on whether they are application-oriented 
(architecture-less) [14] or architecture-based [3, 4]. Some 
approaches are centralized like [15] whilst others employ a 
decentralized architecture like [16]. Also, they can differ 
based on their data collection mechanism. For example, some 
schemes use only direct recommendations as [17]; others use 
both direct and indirect recommendations like [12, 34] for 
trust evaluation. Trust evaluation mechanisms are divided into 
three main classes which are Entity-Oriented Trust Models 
(EOTMs), Data-Oriented Trust Models (DOTMs), and Hybrid 
Trust Model (HTMs). These trust evaluation mechanisms are 
briefly reviewed next. 

A. Entity-Oriented Trust Models (EOTMs) 

Entity-oriented trust models are epitomized by [10], where 
the researchers securely manage allocated credit using a 
Tamper Proof Module (TPM) on every vehicle. A vehicle first 
gets the transmission cost and the signed message from its 
TPM. Receiver vehicles consider the sender’s reputation to 
decide whether to trust a message and the trust is revised using 
feedback from all receivers. This approach considers the 
presence of false attacks and benevolent vehicles. However, 
the process for setting a revised trust score can lead to 
excessive communication. In [18], the researchers consider 
familiarity, packet delivery ratio, timeliness, and interaction 
frequency to manipulate a weight-based aggregated final trust. 
They analyse the time-aware trust of vehicles from histories of 
interactions. However, they do not consider any attacker 
model for validation. In [4], a trust model uses a false message 
detection scheme to generate feedback on received messages 
which computes the trust of vehicles. Vehicles utilize primary 
and secondary scores from the RSUs for further 
communication until the next periodic update. The scheme is 
evaluated in the presence of false messages for both urban and 
highway environments. Nevertheless, it suffers from excessive 
trust metric dissemination. 

In [15], a Reputation-based Global Trust Management 
(RGTE) scheme employing a Reputation Management Center 
(RMC) is presented. The RMC keeps track of the updated 
reputation of all vehicles. Every vehicle sends its 
recommendation about its neighbours to the RMC and then it 
uses central limit theory to exclude unreasonable 
recommendations. It updates reputation of vehicles for which 
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it receives recommendations. Whenever a receiver receives a 
message, it directly consults the RMC about the reputation of 
the sender. However, in this model, the server is contacted 
frequently for reputation requests and replies. 

A fuzzy logic-based direct trust and Q-learning-based 
indirect trust is considered in [12]. This approach analyses 
precision and recall metrics with varying the number of 
malicious vehicles. However, the overhead is high as it 
involves repeated sensing of messages from neighbours. The 
authors in [19] apply fuzzy logic to calculate trust using 
experience, plausibility, and location accuracy. Furthermore, 
location accuracy is determined using fog nodes. It can detect 
bogus attacks and message alteration attacks. However, 
vehicles consulting with fog nodes for location accuracy raise 
the communication overhead. The authors in [20] also use 
fuzzy logic and calculate the relaying trust and coordinating 
trust. Then the final trust is computed from these two and a 
path is identified using a set of rules and experiences. 
However, this model only considers trust-based routing to 
deliver a message along the most trusted path. 

The study [21] selects an optimal path for packet 
forwarding using fuzzy logic-based transmission method. In 
this method, driving direction, vehicle speed, link time, hop 
count are used for relay node selection.  Additionally, it 
considers the future state of vehicles. In [22], a fuzzy logic-
based trust model is proposed that uses the RSU assessment, 
emulation attack attempts, and collaboration degree to assess 
the trust of vehicles. It incentivises good behaviour and 
punishes malicious vehicles. However, their analysis only 
concentrates on network performance measurement 
considering the malicious behaviour of making the connection 
slow, modifying messages, and stating false opinions. 

In [23], a fuzzy logic-based trust model is proposed to 
address uncertainty and inaccurate trust estimation in a 
VANET. In this method, edge servers compute the trust of 
vehicles using fuzzy logic from packet drop, alteration, and 
false message injection factors. The analysis considers 
message alteration attacks and bad-mouthing attacks. In [24], 
a fuzzy logic-based system is used for vehicle authentication. 
This system only considers distance and trust factors to 
classify vehicles as partially or fully trusted or malicious. 
However, this approach is not analysed in the presence of a 
known adversary. 

In [25], a fuzzy-logic-based trust model is presented where 
plausibility, experience, and vehicle type are used to decide on 
the validity of events. The fuzzy decision-making module of 
receiver vehicles utilizes these factors to compute the trust of 
the sender to determine whether to accept or reject or to 
forward a message. The analysis considers simple, opinion 
tampering, and on-off attacks. Every receiver vehicle applies 
fuzzy logic independently to forward an announcement to a 
further vehicle. The researchers in [26] propose a Hidden 
Markov Model (HMM) based trust evaluation method which 
computes trust of vehicles at the RSUs. This model improves 
the accuracy in detecting malicious vehicles compared to a 
baseline scheme. 

B. Data-Oriented Trust Models (DOTMs) 

In [27], the researchers present machine learning based 
trust models (i.e. KNN, decision tree, naïve Bayes, and 
random forest). An RSU runs a location spoofing attack 
detection framework which uses stored data and received 
Basic Safety Messages (BSMs). The model is trained with 
both legitimate and malicious data. The analysis examines the 
accuracy, precision, and recall for all machine learning 
approaches. However, the analysis is limited to the BSM data. 
Research [28] differentiates malicious vehicles from 
benevolent ones using an ensemble learning algorithm and a 
decision tree-based model. The analysis includes measuring 
the accuracy, precision, and recall. However, it only identifies 
fake positional data. 

In [29] author proposes a fuzzy system considering 
network density, relaying distance, and trust inconsistency to 
predict the relaying trust of vehicles. Then the coordinated 
trust is computed using velocity, connection degree and loss 
parameters. After that, the final trust is computed using a 
fuzzy system considering the relaying and coordinated trust 
that is used to find a trusted path. However, the model only 
selects the trusted relayer to confirm the trusted path for 
delivering messages. In [30], the authors propose a data 
oriented HMM-based reputation model. This model evaluates 
the reliability and the legitimacy of the announced messages. 
The reputation of vehicles is updated based on the correctness 
of safety and non-safety messages. The study [31] presents a 
vehicle behavioural monitoring and trust computational model 
to classify fake and legitimate messages. This model uses a 
neuro-fuzzy method to evaluate the behaviour of vehicles. It 
features accurate malicious message detection from speed and 
emission data. Using this data, the model can isolate 
misbehaving vehicles and discard messages from them. 

C. Hybrid Trust Models (HTMs) 

In [32], the researchers present a Markov Chain-based 
hybrid trust model for VANETs. In this scheme, a state 
transition model, and the state transition probabilities are 
presented considering a cooperation factor and the accurate 
evaluation of messages. The monitoring process considers 
trustworthy message broadcasting besides cooperativeness, 
and they examined camouflaged behaviour. The researchers in 
[33] consider the likelihood and impact of taking a decision 
when both the event and the opposite event coexist. This 
approach is compared with a multi-faceted trust model. The 
results suggest that this approach always selects a low-risk 
action relative to a typical trust-based approach. However, the 
model is designed for a clustered environment. 

In [34], the researchers develop a Bayesian inference-
based direct and recommendation-based trust model. The 
direct trust considers penalties and time-decaying information. 
Also, the confidence of direct trust is checked beforehand to 
avoid unnecessary recommendation trust calculations. The 
analysis considers packet drop and interception as malicious 
behaviours. Alternatively, in [35], a self-organizing hybrid 
trust model is proposed for both urban and rural scenarios. 
This approach keeps a history of interactions and then 
validates the received messages by assigning a credit. This 
model accepts the message with the highest trust for a 
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particular event. It can detect fake event locations, source 
locations, and event times as well as revoke messages from 
malicious vehicles. However, this model is not evaluated 
against a baseline. Study [36] embeds the trust certificate of a 
vehicle with the message that a receiver uses as a weight to 
evaluate the trust of the data. A vehicle that visits the event 
location either confirms or denies the event. The vehicle sends 
all stored feedback to an RSU to forward it to the Certificate 
Authority (CA) to update a vehicle’s trust certificate. Later, 
vehicles receive updated trust certificates from the CA via an 
RSU. Thus, the approach suffers from communication 
overhead to frequently update trust certificates. 

In [37], trust is computed from past experiences, 
neighbouring vehicle information, trust of the vehicle, and the 
packet delivery ratio. This approach has a trust manager, route 
manager, and decision manager. The trust manager finds the 
path trust and calculates the required time to forward a 
message to the destination. The decision manager informs a 
nearby RSU if the vehicle does not want to participate in 
packet forwarding. This model selects a path with the highest 
trust and lowest delay. The approach considers the packet 
delivery ratio, delay, and the number of routes. However, they 
only implement the trusted routing. In [38], a vehicle learns 
cognitively from the environment and develops contexts 
around an event to infer the trust. It defines a context which 
associates a set of interrelated concepts (for example vehicle, 
evaluation, event). This framework considers experience, 
opinion, and role for the trust evaluation. For outlier detection, 
time, speed, and distance thresholds are used. Besides finding 
the trust level for every report, this approach also finds the 
confidence of the report. The framework is simulated in both 
rural and urban scenarios and compared against existing 
frameworks. However, malicious vehicles can bypass the 
outlier-based detection process and can send false messages 
within the acceptable threshold they set for this model. In [39], 
an RSU is solely responsible for the trust computation of 
vehicles, and it collects recommendations and feedback from 
vehicles. Besides this, the RSU creates, manages, and merges 
clusters for the VANET. The scheme is robust against 
thwarting Sybil and wormhole attacks. The RSU also 
identifies malicious vehicles and prevents them joining 
another cluster. Though they maintain trustworthy clusters, 
this requires considerable dissemination and cluster 
management at the RSUs which demands significant 
computational effort. 

III. PROPOSED RSU ASSESSMENT METHOD AND DRIVER 

BEHAVIOUR MODEL 

The proposed RSU assessment method is used only to 
assign RSU reward and punishment to drivers who are 
involved in disputes relating to untrue attack dissemination in 
the network. This is an extension to the trust framework 
described in [6]. The Markov model is used for behavioural 
analysis of drivers with this trust framework. 

A. Sender – Side Trust Framework 

In [6], a trust management framework is presented where a 
Tamper Proof Device (TPD) is fitted to each regular vehicle 
providing trust-based access control to the VANET. This 
framework considers regular vehicles, along with police, 

ambulance, and fire service vehicles. The main components of 
the framework are the vehicles, RSUs, and the Trust Authority 
(TA). RSUs send incident data to the TA for storage. Vehicles 
take different roles based on their activities in the network. 
When a vehicle announces a message, then it is a sender 
vehicle. When a vehicle receives a message, it is called a 
receiver vehicle. When a vehicle notices an announcement is 
invalid, it can become an untrue attack reporter. However, this 
report can be malicious as well for which the framework 
arranges some punishment upon an RSU ruling. An RSU 
collaborates with the vehicles which are visiting the event 
location near the time to decide on the validity of the event. 
The vehicles which send feedback when collaboration is 
running are called clarifiers. 

The following equations define the trust thresholds to 
achieve access control. Equation (1) confirms the trust score 
of a driver stays in the range of 0.05 to 0.9 irrespective of trust 
adjustments. Equation (2) relates to access-blocking of a 
driver/vehicle. Equation (3) regulates the message relaying 
ability and Equation (4) determines ability of regular vehicles 
to make announcements. 

     {

                                      
                                     
                                 

} (1) 

     *                    +  (2) 

                          {
                           
                                   

} (3) 

                              {
                            
                                              

}

 (4) 

Within this framework, regular vehicles are classified as 
access-blocked (T = 0.05), not trusted (0.05 < T ≤ 0.25), lowly 
trusted (0.25 < T < 0.5), trusted (0.5 ≤ T < 0.8), and highly 
trusted (0.8<T≤0.9). The trust of official vehicles is T = 1.0 
which is higher than the maximum trust of a regular vehicle 
(T=0.9). A set of rules are employed for governing the actions 
of regular vehicles [6]. 

1) Trust based access control for message 

announcements: It is assumed each driver can announce an 

event if it is seen in the dashboard. It is dynamically updated 

based on the driver’s trust score. Messages are organized into 

classes and each class is associated with a range of trust scores 

for access control. Vehicles must achieve a particular trust 

score to announce messages of a certain class. The framework 

rewards trustworthy announcements from the TPD after 

expiry of a withhold timer and optionally penalizes a driver if 

a driver delays beyond an acceptable limit. The TPD updates 

trust in relation to announcements, reporting, clarifying, 

relaying, and beaconing besides adjusting trust with RSU 

rewards and punishments. 

2) Functional diagram of the framework: Assume, a 

trusted sender sends an announcement based on what he/she 

observes on a road which receivers receive and relay. The 

event is reported (opposite event) by a reporter after he/she 

thinks that the event has not occurred at the said location. An 

RSU upon reception of the report starts collaboration to decide 
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on the truthfulness of the event. Then it informs the TA of its 

decision and sends fixed rewards (0.1) / punishments (0.1) to 

the respective drivers based on the decision. The TPD of the 

respective drivers combines the RSU assessment with the 

driver’s current trust. Additionally, the TA decides on whether 

blacklisting of a driver is necessary. This decision is conveyed 

via an RSU and the driver’s TPD implements it. The 

functionality is shown in Fig. 1. 

3) RSU untrue message detection: When a reporter 

reports an untrue attack, an RSU resolves the issue using a 

sum of weighted feedback calculation. This feedback data are 

collected from clarifier vehicles. However, when an official 

vehicle sends feedback, an RSU directly uses this to decide on 

the dispute. The TA also maintains a driver profile database 

consisting of the recent records from disputed decisions. A 

decision results in either a reward or punishment for a driver 

which are saved into this list. The untrue message detection 

mechanism is shown in Fig. 2. 

In [6], the untrue detection process executes at RSUs to 
allocate the fixed reward and punishment without considering 
the severity of incident, driver past behaviour, and RSU 
confidence in the sender or reporter. Thus, the reward and 
punishment scheme lacks a sophisticated model to assess the 
appropriate magnitude of the reward or punishment. These 
parameters are important to consider as they are related to the 
event and the driver. They also vary from one event to 
another, from one driver to another, and the collected 
feedback. A fuzzy logic-based reward and punishment scheme 
is a good fit as these parameters are uncertain and inexact, 
although the reward or punishment should be based on the 
severity level of the incident. Also, fuzzy logic can 
approximately imitate the human-level decision making. The 
fuzzy logic based RSU controller can account for various 
factors and assign a justified level of reward or punishment for 
a given driver. 

 
Fig. 1. Functional diagram of the trust framework [6]. 

 

Fig. 2. RSU steps for untrue message detection. 
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B. Overview of the Proposed Fuzzy RSU Reward or 

Punishment Assessment Scheme 

Fig. 3 depicts the proposed fuzzy RSU controller for 
determining reward or punishment. It starts from the left-hand 
side where it collects three inputs which are driver past 
behaviour, confidence in the sender or reporter and severity of 
the incident. This involves some form of pre-processing of 
input data to feed into the fuzzy controller. Then these inputs 
are handed over to the fuzzifier to produce input fuzzy sets. 
These sets are delivered to the fuzzy inference module which 
evaluates the fuzzy rules on the input fuzzy sets to produce the 
output fuzzy sets. These sets are then transferred to the 
defuzzifier module to generate the crisp number as output 
variables which is sent to the respective drivers as the level of 
reward or punishment for their action. A disputed decision at 
an RSU invokes the execution of this function to calculate the 
extent of reward or punishment for a conflicted 
announcement. 

 
Fig. 3. A block diagram of the proposed fuzzy logic based RSU controller. 

1) Fuzzification: Fuzzification finds the degree of 

membership for each input to the fuzzy sets (one or more 

linguistic variables) using a membership function. To find the 

degree of belonging, first the shape of the membership 

functions for every input are defined. Then the degree of 

belonging to the fuzzy sets are determined for each input. 

Membership functions are defined intuitively with the help of 

linguistic variables as shown in Table I. 

TABLE I. INPUT FUZZY SETS 

Input Parameters Fuzzy sets 

Driver Past Behaviour (DPB) Good (G), Neutral (N), and Bad (B) 

Severity of the Incident (SI) 
Not Severe (NS), Less Severe (LS), and 

High Severe (HS) 

RSU Confidence (RCS) Low (L), Medium (M), and High (H) 

Reward/ 

Punishment 

Very Low (VL), Low (L), Medium (M), 

High (H), and Very High (VH) 

a) Driver Past Behaviour (DPB): The RSU uses a 

membership function to convert each input to the degree of 

belonging to the fuzzy sets. RSUs always send data 

concerning the rewarded and punished drivers to the TA. An 

RSU asks for DPB data from the TA. Let, NoP and NoR be 

the recorded number of rewards and punishments for the 

concerned drivers from their previous disputed events. When 

the TA sends NoP and NoR data to a dispute resolver RSU, 

then it estimates the ratio of NoP/(NoR+ NoP) for the relevant  

drivers. The RSU feeds this data directly into the fuzzifier to 

get a degree of belonging of the DPB to each from the set: 

{“Good”, “Medium”, “Bad”}. The DPB ranges from 0 to 1 

and each DPB value is separated by 0.1. For example, if a 

driver record contains 4 punishments out of the 10 most recent 

records, then the DPB is 0.4. The fuzzification returns the 

fuzzy value as {Good: 0.24, Medium: 0.76, Bad:0}. Fig. 4 

shows the membership function for driver past behaviour. 

 
Fig. 4. Membership function for driver past behaviour. 

b) Severity of Incident (SI): The list of potential events 

is shown in Table II for this fuzzy controller. This is just an 

example list of possible events. In this Table, the event's 

name, and its severity (assumed impact on human lives) are 

shown. 

TABLE II. POSSIBLE EVENT LIST 

Incident Name SEVERITY LEVEL 

(LOWEST TO HIGHEST) 

Road Clear 0 

Debris or Road Spillage (Oil or Muds or Sands) 1 

Illegal Waste Dumping 2 

Poor Conditioned Road 3 

Minor Road Defect (Faded Sign)  or 
Malfunctioning Traffic Element 

4 

Stranded or Abandoned Vehicle or Obstacle or 

No Obstacle 
5 

Major Road Defect (Pothole, Illegal Sign) 6 

Diversion or Road Maintenance 7 

Severe Weather (Snowy Road or Poor Visibility 

Due to Fog etc) or Environmental Incident 
8 

Flood or Fallen Tree on Road 9 

Congestion 10 

Traffic jam 11 

Accident 12 

Every RSU stores a copy of this table. When there is a 
dispute, the RSU looks up the severity level from the table to 
feed into the fuzzifier. Three fuzzy sets {“Not Severe”, “Less 
Severe”, and “High Severe”} are used for this input. When the 
SI is inputted, the fuzzification returns the fuzzy value as {Not 
Severe: 0.18, Less Severe: 0.82, High Severe: 0}. Fig. 5 shows 
the membership function for the severity of incident. 
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Fig. 5. Membership function for severity of incident. 

c) RSU Confidence in the Sender or Reporter: An RSU 

obtains a confidence score from the received feedback using 

the ratio of feedback that supports the sender’s event to the 

sum of feedback which supports and contradicts the 

announcement. This is the RSU's confidence in the sender. 

Similarly, the RSU confidence in the reporter is defined as the 

ratio of feedback that supports the reporter’s report to the sum 

of the feedback which both supports and contradicts the 

reporter’s report. Three fuzzy sets are defined for the RSU 

confidence which are {“Low”, “Medium”, and “High”}. The 

RSU confidence in the sender or reporter may or may not 

differ based on the feedback. The fuzzification returns the 

fuzzy value as {Low: 0, Medium: 0.33, High:0.67} for RSU 

confidence. Fig. 6 shows the membership function for RSU 

confidence in the sender or reporter. 

 
Fig. 6. Membership function for RSU confidence. 

2) Fuzzy rules for reward and punishment: There is a 

separate set of rules for reward and punishment. Table III 

shows the set of rules used for rewarding whereas Table IV is 

used for punishing drivers. The reason for maintaining two 

sets of rules is that for one situation the reward may be 

smaller, but the punishment should be higher. Let output 

membership be OM. As each input has three fuzzy sets, thus 

the total number of rules is 3*3*3=27 which are given next. 

The first rule from Table III says as “if the (Driver Past 

Behaviour (DPB) is Good) AND (Severity of Incident (SI) is 

Not Severe (NS)) AND (RSU Confidence (RC) is Low), then 

the Reward is Low”. This explanation goes to other rules as 

well. 

TABLE III. FUZZY RULES USED FOR REWARD 

Rules DPB SI RC R 

1 Good Not Severe Low Low 

2 Good Not Severe Medium Medium 

3 Good Not Severe High High 

4 Good Low Severe Low Medium 

5 Good Low Severe Medium High 

6 Good Low Severe High Very High 

7 Good High Severe Low High 

8 Good High Severe Medium Very High 

9 Good High Severe High Very High 

10 Neutral Not Severe Low Low 

11 Neutral Not Severe Medium Low 

12 Neutral Not Severe High Medium 

13 Neutral Low Severe Low Low 

14 Neutral Low Severe Medium Medium 

15 Neutral Low Severe High High 

16 Neutral High Severe Low Medium 

17 Neutral High Severe Medium High 

18 Neutral High Severe High Very High 

19 Bad Not Severe Low Very Low 

20 Bad Not Severe Medium Very Low 

21 Bad Not Severe High Low 

22 Bad Low Severe Low Very Low 

23 Bad Low Severe Medium Low 

24 Bad Low Severe High Medium 

25 Bad High Severe Low Low 

26 Bad High Severe Medium Medium 

27 Bad High Severe High High 

TABLE IV. FUZZY RULES USED FOR PUNISHMENT 

Rules DPB SI RC P 

1 Good Not Severe Low Very Low 

2 Good Not Severe Medium Very Low 

3 Good Not Severe High Low 

4 Good Low Severe Low Low 

5 Good Low Severe Medium Low 

6 Good Low Severe High Medium 

7 Good High Severe Low Medium 

8 Good High Severe Medium High 

9 Good High Severe High High 

10 Neutral Not Severe Low Low 

11 Neutral Not Severe Medium Low 

12 Neutral Not Severe High Low 

13 Neutral Low Severe Low Low 

14 Neutral Low Severe Medium Medium 

15 Neutral Low Severe High Medium 

16 Neutral High Severe Low Medium 

17 Neutral High Severe Medium High 

18 Neutral High Severe High Very High 

19 Bad Not Severe Low Very Low 

20 Bad Not Severe Medium Low 

21 Bad Not Severe High Low 

22 Bad Low Severe Low Low 

23 Bad Low Severe Medium Medium 

24 Bad Low Severe High High 

25 Bad High Severe Low Very High 

26 Bad High Severe Medium Very High 

27 Bad High Severe High Very High 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

8 | P a g e  

www.ijacsa.thesai.org 

3) Fuzzy inference: Human decision making can be 

approximated by using fuzzy inference. Fuzzy Inference 

produces fuzzy output sets from the input fuzzy sets. During 

the fuzzy inference, each rule executes sequentially to obtain 

the desired output fuzzy set. A rule executes when its 

antecedent is satisfied. The antecedent of each rule is formed 

using Fuzzy AND, Fuzzy OR and Fuzzy NOT. The Fuzzy 

AND and Fuzzy OR are used as fuzzy logical operators. 

Fuzzy AND returns the minimum of all membership values 

from the antecedent part whereas a Fuzzy OR returns the 

maximum to clip or bound the height of output membership 

function. The returned value from each rule is the firing 

strength which is used to clip or bound the height of the output 

membership function. This means the output of the antecedent 

define the corresponding degree of membership value of the 

consequent part of each rule. Fig. 7 shows the output 

membership function of the reward/punishment where the 

reward is 0.08 and the punishment is 0.03. 

 
Fig. 7. Output membership functions for reward and punishment. 

4) Aggregation: In this step, all outputs from the fuzzy 

inference are combined to get one aggregated fuzzy output set 

which is fed into the defuzzifier module to get the fuzzy 

reward and punishment. During aggregation, all similar output 

fuzzy sets are merged into one and their resultant fuzzy set has 

the maximum consequent from all similar output fuzzy sets. 

For example, if three rules produce Low output fuzzy set with 

the degree of membership are 0.05, 0.064, and 0.021, then the 

aggregation combines these into one Low output fuzzy set 

with the degree of membership equals 0.064. 

5) Defuzzification: A defuzzification method takes the 

aggregated output fuzzy membership function and produces 

one crisp number which is the desired output from this system. 

Centre of Gravity (COG) is the most widely accepted 

defuzzification method to find the final defuzzified value. It is 

the final step of the fuzzy system. The most widely 

defuzzification method of Mamdani inference is the centroid 

technique. It delivers a point where a vertical line divides the 

aggregated output fuzzy set into two equal masses. This 

method finds a point which represents the COG of a fuzzy set, 

A, on the interval [a, b]. Here, 𝜇  denotes the degree of 

membership. A reasonable estimation can be obtained by 

sampling a set of points. This is expressed as in Equation (5). 

    
∫   ( )   
 
 

∫   ( )  
 
 

  (5)

6) An Example Fuzzy Inference for reward 

a) Fuzzy Inference: In Fig. 8, the truncated execution of 

two rules for calculating fuzzy reward is shown as they are 

selected during the fuzzy inference. The execution of other 

rules is deleted deliberately to save space. The antecedent part 

of the rules is evaluated first to generate an output from each 

rule with the height defined by the min or Fuzzy AND 

operation of the antecedents. The DPB is 0.8, SI is 4, and the 

RSU confidence is 0.33 for example fuzzy inference. 

Similarly, fuzzy punishment is determined using the rules 

from Table IV. 

b) Redundant rule reduction for reward: When multiple 

rules produce the same output fuzzy set with different values, 

they can be combined into one by taking the maximum of all 

consequent values for the same output fuzzy set; As the rules 

10, 11, 13, and 23 have Low output fuzzy set, so taking the 

maximum gives us Rule 23 with 0.65 as the membership 

degree for the Low output fuzzy set. As there is only one 

Medium fuzzy set, it is included directly. Also, Rules 19, 20, 

and 22 have the Very Low output fuzzy set, thus the 

maximum consequent value from these three rules is Rule 20 

to include in the selected group for aggregation. This situation 

is depicted in Fig. 9. 

 
Fig. 8. Fuzzy rule inference for reward assessment.
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Fig. 9. Redundant rules reduction for reward. 

c) Aggregation of the consequents for reward: The 

aggregation is applied to the selected rules which merges them 

to get the combined output membership function. In this step, 

only the output fuzzy sets with the highest degree of 

membership are used where all the output fuzzy sets with a 

lower value are inclusively covered. This is a combined fuzzy 

set as depicted in Fig. 10. 

 
Fig. 10. Aggregated output membership for reward assessment. 

d) Defuzzification for reward: Fig. 11 shows the 

assessed reward from the centroid defuzzification method. 

First, the area is sliced equally as shown in Fig. 11. Then the 

reward of 0.030014 is obtained as shown with a green arrow 

on the x-axis. 

 

Fig. 11. Defuzzified reward for the example case. 

Alternatively, from the “good” state, a driver can improve 
trust to move into the “very good” state to become a highly 
trusted vehicle. Once a driver is in the “very good” trust state, 
it is harder to lose trust as he/she only announces untrue 
messages with 0.1 probability. As such, the model captures the 
philosophy that good drivers tend to remain so, and vice versa 
unless they are encouraged to modify their behaviour. For 
consecutive untrue message announcements, a driver’s trust 
score is reduced. In this case, he/she may be moved to the 
“good” or “normal” state. It is even possible to move into the 
“bad” or “very bad” state when he turns severely malicious. In 
this way, a mal-intent driver loses his/her trust and may be 
access-blocked in the network from where he/she cannot 
participate in any communication.  When a vehicle is access-
blocked, an external procedure is assumed to enable him/her 
to be reset to the “normal” trust state, if permitted. 

A clarifier is a vehicle which sends feedback in response to 
an RSU query. This feedback is consistent with the driver 
behaviour model. This allows the behaviour of clarifiers to be 
programmed similarly to the probabilities defined for different 
trust states of the sender and/or reporter drivers. As the trust 
model does not evaluate a clarifier’s feedback, their behaviour 
analysis is not considered as important as the sender or 
reporter information. 

C. Markov Chain Driver Behaviour Model 

Driver announcements are only randomly reported by 
some reporters with the attack generation probability is set to 
0.4 in the analysis of the current model [6]. In the series of 
experiments, a driver’s behaviour is not modelled to see at 
what situation they are sending more trustworthy or malicious 
messages. The disputes only arise from the reporter’s untrue 
attack messages which are generated randomly when the 
probability function returns true. This is why a model is 
developed which can control the message announcement 
behaviour from the driver. To this end, Markov-chain state 
transition model is created which can provide driver behaviour 
modelling and control message announcements. The proposed 
driver behaviour model is defined with some fixed states and 
from each states message announcement probability for both 
trustworthiness and maliciousness are defined. There are some 
fixed conditions to switch between the states of this model. 

The trust states of the proposed Markov chain model are 
defined with drivers lying probabilities to examine their 
honesty or lying behaviour. These states are defined based on 
the different trust thresholds set for the framework. Trust 
states are ordered according to the increasing trust values. 
Thus, a driver who wants to reach a higher trust state must 
achieve a higher trust value by announcing only trustworthy 
messages. A driver switches to another state when its trust 
score falls outside the range of trust scores for the current 
state. It is believed that a driver with a higher trust state 
possess the higher probability to announce more trustworthy 
messages than those with a lower trust state. With this model, 
acceptable behaviour means announcing trustworthy messages 
whereas the unacceptable behaviour means announcing untrue 
messages. When a trustworthy message is announced, a driver 
improves the trust score from it. If another driver sends a 
report about it and the sender driver wins the dispute, then 
RSU reward is added with the current trust. As a result, the 
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sender driver possibly makes a transition to another state 
which is associated with higher trust scores than the current 
one. In contrast, a driver loses trust score from the 
announcement of an untrue message when another reporter 
sends an untrue attack about it and the message is proved 
malicious by an RSU. Whether an announcement would be 
trustworthy or untrue, it is directly related to the driver 
behaviour. Hence, these activities are modelled with the 
proposed Markov chain-based state transition diagram by 
setting the probabilistic distribution to control untrue and 
trustworthy message announcements from each state. From 
each state, a driver earns rewards from the announcement, 
clarifying, reporting, forwarding and gets either reward or 
punishment from an RSU if there is a dispute relating to 
his/her announcement. 

The proposed Markov model has six different trust states 
out of which one is the access-blocked state. A driver reaches 
this state when he/she is blacklisted, and his/her trust becomes 
0.05. Other states are associated with different ranges of trust 
values. The six trust states are: “very good”, “good”, 
”normal”, “bad”, “very bad” and “access-blocked”. The 
probabilities of sending trustworthy and untrue messages from 
these states are set as shown in Table V which can be 
configured with different values to simulate the variation in 
driver behaviour. Table VI lists the probability of sending 
untrue attacks in the different trust states which defines the 
behaviour of the reporter drivers. These values are selected 
such that drivers with higher trust states send less untrue 
messages and reports than in the lower trust states. In a real-
world scenario, a driver can react differently at different times 
which can be modelled with a Markov chain-based driver 
behaviour model using a different probabilistic distribution. 

TABLE V. DRIVER’S ANNOUNCEMENT LYING PROBABILITY 

Trust States 
Probability of Announcing 

Trustworthy Message 

Probability of 

Announcing Malicious 

Message 

“very good” 0.8 0.2 

”good” 0.6 0.4 

”normal” 0.4 0.6 

“bad” 0.2 0.8 

“very bad” 0.1 0.9 

“access -
blocked” 

0 0 

TABLE VI. REPORTER’S UNTRUE ATTACK REPORTING PROBABILITY 

Trust States 

Probability of 

Reporting an Untrue 

Attack 

Probability of Not 

Reporting an Untrue 

Attack 

“very good” 0.1 0.9 

”good” 0.3 0.7 

”normal” 0.5 0.5 

“bad” 0.7 0.3 

“very bad” 0.9 0.1 

“access-blocked” 0 0 

 
Fig. 12. Markov-chain behavioural model (state transition diagram). 

With these trust states, a Markovian state transition-based 
driver behaviour model is presented, which is consistent with 
the trust framework described in Subsection III.A. A diagram 
of this model is shown in Fig. 12. It has fixed trust states, and 
each state is associated with a range of trust scores. A driver 
remains in a given state when his/her trust belongs to the 
range of trust values related to that state. With this model, a 
driver starts his/her journey from the “normal” state with a 
trust value equal to 0.5. From this state, a driver sends some 
announcements and relays events from others. 

This model covers the announcement lying behaviour of 
drivers. Thus, from a “normal” state, a driver can build trust to 
reach the “good” state if he/she continues announcing 
trustworthy messages in the network. Also, he/she can lose 
trust by announcing untrue messages to reach the “bad” state 
from the “normal” state. He/she can even move to the “very 
bad” trust state if most of the announcements are untrue. In the 
worst case, the driver may be access-blocked if his/her trust 
score reaches 0.05. 
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IV. IMPLEMENTATION 

First, Mamdani type fuzzy inference is implemented in 
MATLAB 2022 for RSU reward and punishment assessment. 
This provides a built-in fuzzy logic designer app where three 
inputs are created, their input membership functions, and 
corresponding fuzzy sets. After that, two different set of rules 
are entered into the rule editor of, and all the rules are given 
equal weight. As this is a two-output fuzzy system, two output 
membership functions and corresponding fuzzy sets are 
created. The fuzzy OR operator is used for punishment and the 
fuzzy AND is applied to the reward assessment. There are 
three fuzzy sets for each input and five fuzzy sets for each 
output. During the fuzzy inference for each dispute, all twenty 
sevens rules are evaluated individually to produce the fuzzy 
output sets for each output. The aggregation applies on these 
output fuzzy sets and then the centroid method is applied on 
the combined fuzzy sets to return the desired fuzzy reward and 
punishment. These output values from MATLAB are directly 
processed and inserted into two different lists in the 
OMNeT++ to be used with the proposed model. There are 
eleven possible values of DBP. Hence, for each DBP value, all 
possible values of SI and RSU confidence are considered. In 
this way, different combinations of input values are used with 
the fuzzy system. For each DPB, a list of values is produced, 
and a different data structure in OMNeT++ is created to 
enable faster searching for different combinations of input 
values. 

When a dispute decision is ready, an RSU asks for the 
DPB data from the TA. As the TA maintains a list of past 
records for all drivers, it can serve the query readily. After 
that, the RSU calculates the DPB for the relevant drivers. The 
RSU also calculates a confidence score of the disputing 
drivers from the collected feedback. Additionally, the RSU 
determines the severity level of event. The RSU then looks up 
the corresponding fuzzy reward and fuzzy punishment from 
the list. These values are directly used in the reward and 
punishment messages which the RSU announces and forwards 
to nearby RSUs to announce, too. In this way, each respective 
driver/vehicle receives the fuzzy RSU reward and punishment. 

The following set of experiments use the Markov chain-
based driver behaviour model which is implemented inside the 
TPD of every regular vehicle. This model governs the driver’s 
announcement behaviour by setting the probability of sending 
trustworthy and untrue messages based on the behaviour state. 

V. ANALYSIS AND VALIDATION OF THE MARKOV CHAIN- 

DRIVER BEHAVIOUR MODEL 

A. Simulation Setup 

A set of experiments has been carried out to evaluate the 
behaviour of sender or reporter drivers by changing their lying 
probability to observe the proportion of trustworthy and untrue 
messages generated from different trust states over the 
simulation period. The trust framework, the fuzzy reward and 
punishment mechanism, and the Markov state transition model 
are implemented in Veins [40] which comprises OMNeT++ 
[41] and SUMO [42]. It is an open-source framework which 
enables online communication between OMNeT++ and 
SUMO when the simulation is running. The participating 

vehicles run for 5000 simulation seconds (s) on a fixed 
circular route in the Erlangen city map shown in Fig. 13. 100 
vehicles are added at the start of the simulation and their 
numbers are kept constant throughout the experiment. 
Vehicles undergo a warm-up period where they move without 
announcing any event. When the warm-up period has elapsed, 
a fixed sender driver announces messages periodically at 
1000s periodic intervals for each event type starting from the 
500s. The simulation includes multiple types of event 
announcement from the same driver of V[0] for behavioural 
analysis. The events are scheduled as an accident message at 
500s, a debris message at 700s, a road defect message at 900s, 
a traffic element problem message at 1100s and a tree on the 
road message at 1300s. Reporters deterministically send 
untrue attack reports based on the probabilistic distribution 
defined in Table VI. 

As it is required to model the behavioural change of these 
reporters as well, their trusts are shown in Fig. 15 to 20 beside 
the sender driver.  In this way, a series of experiments are 
conducted with different initial trust distributions and then the 
trust evolution is observed to examine the distinctive driver 
behaviour. A fixed reward and punishment mechanism is used 
from the disputes to update the trust of drivers so the result 
can differentiate their behaviour, whether they lie or not and in 
what circumstances they lie. Other rewards and punishments 
within the trust framework are not enabled for this analysis of 
driver behaviour. 

In this series of experiments, drivers can send untrue 
attacks even when their trust score is less than 0.5 which was 
not allowed with the trust model presented in [6]. If a driver 
can send a message from a particular trust state, then he/she is 
allowed to send an untrue attack version of the originated 
message. The RSUs employ a 120-second collaboration timer 
to determine the validity of a dispute from the clarifier 
feedback. Thus, the verification time delays the reception of 
rewards and punishments from an RSU. Also, RSU reward is 
disseminated in one message and RSU punishment is sent in 
another message to the driver which also adds an additional 
delay besides their availability to an RSU and wireless 
collisions. Thus, the collaboration timer and a vehicle’s 
availability, delays the reception of reward or punishment at 
the vehicles concerned. Table VII lists the parameters for the 
experiments. 

There are two sets of experiments conducted for 
examining driver behaviour model. In the first set of 
experiments, clarifiers send opinion based on the witness and 
a probability distribution. If a driver with a “very high” trust 
state generates an event, then the clarifiers send positive 
opinions with 0.8 probability and negative opinions with 0.2 
probability. For the “good” trust state, clarifiers send positive 
opinions to 60% of cases and negative opinions to 40% of 
cases. A message from a “normal” trust state originating from 
a driver gets 40% positive and 60% negative opinions. From 
the “bad” state, clarifiers deny announcements 80% of the 
time and support only 20% of the time. From the “very bad” 
state, clarifiers deny announcements 90% of the time and 
support only 20% of the time. This distribution can be 
changed as needed to model the variation in a sender or 
reporter driver's behaviour. In the second set of experiments, 
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clarifiers send feedback based on the probability distribution 
of their trust states as shown in Table VIII and the reporters 
send report based on the Table VI. 

TABLE VII. SIMULATION PARAMETERS 

Parameters Values 

Fuzzy reward and punishment Varied 

Fixed reward and punishment 0.1 

Data Collection Nature 

1. When all features enabled 

2. When only RSU judgement 

applied 

Simulation Period 5000s 

Warm-up Period 500s 

Announcement Interval 1000s 

Initial Trust Uniform distribution (0.5-0.6) 

Number of Vehicles 100 

Multiple types of Events Generated Yes 

Number of RSUs 12 

Number of TA 1 

Attacker Model Untrue and Inconsistent Behaviour 

Untrue Attack Generation Based on the message class 

Announcement Reward 
Maximum of 0.8 (0.1 to 0.8 based on 

delay and distance) 

Clarifier Reward Maximum of 0.8 

Relaying Reward 0.002 

Collaboration Timer 120s 

 
Fig. 13. Erlangen city map from [40]. 

B. Behavioural Analysis of the Sender and Reporter Drivers 

1) Uniform Trust Distribution (0.4 to 0.5): In this 

experiment, all vehicles are inserted, and drivers are assigned 

their initial trust using a uniform distribution in the range of 

0.4 to 0.5. Fig. 14 records the lying behaviour data from this 

experiment. The x-axis shows the simulation seconds, and the 

y-axis shows how trust score changes from the rewards and 

punishments. Though 100 drivers are present, the trust records 

of most drivers are not included in this chart for simplicity as 

their trust remains constant. 

a) Results: There is an accident message scheduled 

from V0 which is not announced as the trust of the driver is 

insufficient. This is why a change in the trust data only 

commences from 700s when V[0] announces a debris 

message. As the trust of V[0] is low, driver has a higher 

chance to lie to others which is modelled using a probabilistic 

distribution. As the driver of V[0] lies, the drivers of V[2] and 

V[3] improve their trust by sending untrue attacks and they 

win against the driver of V[0]. This is visible from the chart. 

The other two drivers do not participate in the reporting 

process and hence their trust remains constant over the 

simulation period. Also, V[5] wins one dispute over V[0] 

which is indicated by a trust increment at about 3600s. It is 

seen that the announcement of trustworthy messages varies 

based on a driver’s trust state. 

 

Fig. 14. Behavioural analysis of the drivers with trust (0.4-0.5). 

2) Fixed trust score of 0.9: In this experiment, all drivers 

start from a very high trust state with a trust score of 0.9. Fig. 

15 records the lying behaviour data from this experiment. The 

driver of V[0] is set to send 90% trustworthy and 10% of 

malicious announcements from this state. 

a) Results: It is seen very few announcements are 

reported from V[1] and V[5] as they are also assigned “very 

good” trust states though their malicious probability is 0.2. 

This results in the constant trust score of the driver of V[0] 

while some reporters send untrue attacks maliciously which 

are disproved at RSUs. Hence, some reporters receive RSU 

punishments at different times during the latter part of the 

simulation. The drivers of V[1] and V[2] send only untrue 

attacks for which their trust is reduced. Thus, as configured, 

with a higher trust state there are fewer untrusted messages 

announced. Additionally, reporter drivers send fewer untrue 

attacks when their trust scores and corresponding trust states 

are higher. 

 
Fig. 15. Behavioural analysis of the drivers with trust=0.9. 
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C. Behavioural Analysis of Sender with Fixed Trust (0.6) of 

Reporter and Clarifier 

1) Simulation setup: The set of parameters are same as 

they are listed in Table VII. 100 vehicles are added and then 

they elapse a warm-up period. One sender driver of V[0] 

sends message periodically and five reporters from 

V[0],…,V[5] send reports based on the probability distribution 

defined in Table VI. Table VIII lists the feedback generation 

probability of clarifier vehicles. In the next two experiments, 

clarifiers send feedback based on the probability distribution 

of their trust states. Also, the reporters send report based on 

the probability distribution of their trust states. After that their 

behaviour are captured in Fig. 16 and Fig. 17. 

TABLE VIII. CLARIFIER’S FEEDBACK PROBABILITY 

Trust States 
Probability of Sending 

Positive Feedback 

Probability of Sending 

Negative Feedback 

“very good” 0.8 0.2 

”good” 0.6 0.4 

”normal” 0.4 0.6 

“bad” 0.2 0.8 

“very bad” 0.1 0.9 

“access -

blocked” 
0 0 

2) With sender driver’s trust of 0.3: Fig. 16 shows the 

trust score evolution of six vehicles. In this experiment, the 

trust of sender driver is set to 0.3, the trust of the reporter and 

the clarifier is set to 0.6. Clarifiers send opinion when an RSU 

asks based on their probability distribution of trust states. As, 

the trust score of the reporter and clarifier belong to the 

“Good” trust state. With these settings, reporter vehicles send 

untrue attacks with only 30% of cases and clarifiers send 

positive opinion in 60% of cases when they observe event on 

road. They also send negative feedback with 0.4 probability if 

they do not see the event on the said location. In this way, 

their communication is achieved. 

a) Results: Until first 1400s, there is no dispute, and no 

trust change observes. After that, there are many reports 

announced for which the driver of V[0] only wins. As the 

reporters sends report maliciously. The reporter driver of V[5] 

loses all disputes which reduces trust to 0.2 at 2400s. The 

driver of V[3] does not report any announcements from V[0] 

until 2800s as seen from the chart. After this time, V[3] sends 

many reports which are proved false to RSU, so the trust is 

reduced to 0.2 at 4030s. Other reporters excluding V[4] 

occasionally sends untrue attacks and they also lose the 

disputes to V[0]. In this way, V[0] builds trust as always it 

announces trustworthy messages and some reporters being 

malicious lose trust. In Fig. 16, the sender driver slowly 

improves trust from only the RSU rewards, and the malicious 

reporters receive only RSU punishments as their reports are 

proved false by RSUs. As the sender is trustworthy throughout 

the simulation, all reporters receive RSU punishments which 

reduces their trust score, and their trust state moves from 

“normal” to “bad” and then “very bad” as a consequence. 

 
Fig. 16. Behaviour analysis of driver when trust score is 0.3. 

3) With sender driver’s trust of 0.7: In this experiment, 

sender driver starts with 0.7 trust score and from “normal” 

trust state whereas the clarifier’s and reporter’s trust state are 

same to the previous experiment. They both start with the 

“Good” trust state. 

a) Results: In this experiment, the driver of V[0] only 

builds trust as always send trustworthy announcements. 

Reporter drivers V[2], V[5], and V[3] send reports maliciously 

for which they lose all disputes. These are noticed by the trust 

decrements in Fig. 17. Reporter V[4] does not send any report 

and V[1] sends only one untrue report for which it receives the 

RSU punishment. When a reporter sends a malicious report 

and receives RSU punishment, then subsequently it sends 

more report maliciously as their trust states moves toward 

“bad” state. As the sender driver reaches “Good” trust state 

early in Fig. 17, it only announces trustworthy messages and 

when reporters send false reports, they receive RSU 

punishments. As they move from “Normal” to “Bad” states 

the reporters send more false reports and hence they receive 

more RSU punishments. 

 
Fig. 17. Behaviour analysis of driver when trust score is 0.7. 

VI. PERFORMANCE COMPARISON OF THE PROPOSED FUZZY 

JUDGEMENT VS. FIXED RSU JUDGEMENT 

A.  Performance Comparison Using Only RSU Reward and 

Punishment 

1) Simulation setup: The fuzzy reward or punishment 

method is applied when dispute decisions are ready at RSUs. 

Hence, the comparison is made between the fuzzy vs fixed 

reward and punishment schemes. To this end, a series of 

experiments is conducted to evaluate their performance. When 

the warm-up period has elapsed, a fixed sender driver of V[0] 

announces messages periodically at 1000s periodic intervals 

for each event type starting from the 500s. In this set of 
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experiments, multiple types of event announcement are 

considered from the same driver V[0] for this comparison 

which is announced similarly in the behaviour analysis. When 

they are announced, a fixed set of reporter drivers of vehicles 

V[1], V[2], V[3], V[4], and V[5] deterministically sends 

untrue attack reports after their reception. The trust data is 

recorded separately for both the fuzzy and fixed systems. The 

trust framework has other TPD rewards and punishments 

which are omitted for differentiating these assessment results 

since fuzzy logic is only used to improve the RSU reward and 

punishment mechanism. Updates to trust from the fuzzy and 

fixed reward and punishment schemes are shown on graphs to 

compare them. After this, two trust density distributions are 

presented for each scheme. One shows the initial trust data, 

and the other provides the trust data when the simulation ends. 

2) Scenario 1 – Trust Updates from the Fuzzy RSU: Fig. 

18 shows the trust score evolution for six vehicles only. Trust 

is updated only from RSU judgements. The x-axis represents 

simulation seconds, and the y-axis shows the updated trust 

from the fuzzy RSU unit. During this experiment, the driver of 

V[0] sends scheduled events periodically. The initial trusts are 

assigned from a uniform distribution with the range of 0.5 to 

0.6. The driver of V[0] starts with a “normal” trust state which 

governs his/her behaviour in message announcements. This 

state is configured to send more malicious messages than the 

trustworthy messages in the state transition model. 

a) Results: It is seen that V[0] builds trust from the 

fuzzy rewards as it announces only trustworthy messages 

while the reporters get fuzzy punishments which reduces their 

trust as the simulation progresses. First, V[0] moves to 

“Good” state and then to “Very Good” states. V[0] reaches the 

maximum trust at about 1800s with “Very Good” state. 

Alternatively, reporters in this experiment send untrue reports 

and move from the “normal” to the “bad” trust state. For 

example, the driver of V[2] always sends false reports and 

receives RSU punishments. His/her trust score plunges to the 

lowest value of 0.34 at 2900s due to being malicious. It is 

noticeable that the first reward of V[0] is highest as the driver 

has no punishment records in the DBP whereas the latter 

judgements are not seen as high as the first one. Since, some 

latter rewards are from the disputes relating to the less severe 

announcements. Alternatively, the fuzzy RSU punishments are 

not very harsh initially which is seen in the reporter vehicles 

V[1] and V[5]’s punishments. They increase slightly in the 

later punishments where the severity of incident, punishment 

records in the DPB, and RSU confidence influence the 

outcome.  In later disputes, event severity levels are different 

which vary the punishment. Hence, the rewards / punishments 

vary throughout the experiment whereas in the fixed reward 

scheme trust increments / decrements are fixed irrespective of 

mitigating factors. So, with the fuzzy scheme, a driver has 

more chances to improve trust scores from subsequent 

announcements and trustworthy reporting. This way their 

network participation lifespan is extended. Fig. 19 depicts the 

trust scores of all vehicles which participated in this 

experiment. It is noticeable from this figure that the trust 

scores of most vehicles are unchanged throughout the 

simulation as they do not report or announce any messages 

and there is no forwarding or clarifying reward for others. 

 
Fig. 18. Trust score evolution of six vehicles from the fuzzy reward and 

punishment. 

 
Fig. 19. Trust score evolution of all vehicles with the fuzzy reward and 

punishment. 

Fig. 20 shows the trust score density distribution of 
vehicles collected at the beginning and at the end of the 
simulation. The initial trust score of all vehicles is between 0.5 
and 0.6. The right-side chart shows that V[0] reaches 0.9 
which is marked by a dot. Most vehicles do not see any trust 
score alterations apart from three vehicles which are the 
reporters in this experiment. This is because general vehicles 
do not engage in any disputes from which they can earn or 
lose trust. Additionally, they are not given any reward from 
the forwarding or other activities. The long gap in the right 
chart means no vehicle other than V[0] achieves this score due 
to the experimental design and this result is as expected. Also, 
the driver behaviour model governs their honest and dishonest 
announcements. It is seen with the fuzzy system, the 
magnitude of reward and punishment are more nuanced than 
the fixed system so vehicles have more time to correct their 
future behaviour and resume normal operation. The 
blacklisting of a vehicle or reaching the highest trust is also 
delayed when using the fuzzy system. Even so, in the fuzzy 
system when only RSU rewards and punishments are given, 
the sender vehicle still reaches 0.9 trust. The reporter vehicle 
reaches a low trust score though it has some trust left to carry 
out further communication and it could choose to correct its 
behaviour and achieve good trust score in due course. Overall, 
with the fuzzy system the trust scores are more stable than the 
fixed system in the sense that when trust is gained or lost it 
does not change dramatically. Additionally, the fuzzy system 
considers environmental dynamics for fuzzy judgements, e.g., 
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event severity, driver past behaviour and confidence score 
which is appropriate when reviewing disputes. 

 
Fig. 20. Distribution of trust scores at the start and the end. 

3) Scenario 2 – Trust Updates from the Fixed RSU: The 

next experiment measures the trust score of vehicles only from 

the fixed RSU reward and punishment mechanism. In Fig. 21, 

simulation time is on the x-axis and the y-axis shows the trust 

score. This is conducted with the set of parameters defined in 

Table V, but the RSU reward and punishment is fixed (0.1) for 

every driver. 

a) Results: V[0] sends a malicious message initially and 

receives an RSU punishment that reduces its trust below 0.5. 

From this stage, it is configured to send more malicious 

messages 80% of time. Thus, its trust subsequently decreases 

from RSU punishments. When its trust score belongs to the 

“very bad” state, it sends all malicious messages. In this way, 

its trust is reduced to 0.05 which meets the condition to block 

its access. Alternatively, the reports from V[1] wins all 

disputes and hence its characteristic shows an upward trend. 

Also, V[4] and V[5] win two other disputes over V[0] and 

hence receive RSU rewards. It should be noted that there are 

no events after the 4400 seconds. It is seen that trust 

adjustments are faster in the fixed RSU judgement system as it 

assigns a higher amount (0.1) irrespective of event type and 

driver behaviour compared to the fuzzy system which 

provides a value in the range 0.01 to 0.1 based on the 

evaluation result. When only RSU rewards and punishments 

are given, in the fixed system vehicle V[0] is access-blocked. 

This is due to the RSU decisions about the announcement 

being untrue along with the magnitude of the penalty. Fig. 22 

shows the trust scores of all vehicles in this experiment. In this 

figure most of the vehicles do not change their trust score as 

they do not participate in any reporting or announcement. 

Besides, they are not given any reward for clarifying and 

forwarding. 

 
Fig. 21. Trust score evolution from fixed reward and punishment. 

 
Fig. 22. Trust score evolution with fixed reward and punishment. 

Fig. 23 shows the initial trust and the final trust 
distribution in two density curves. The first density chart 
shows the trust scores of all vehicles generated from a uniform 
distribution. However, the right-hand chart plots the trust 
scores of all vehicles when the simulation ends. As expected, 
in the second chart, the trust of most vehicles is unchanged as 
they do not engage in any disputes from which their trust can 
change. The right-hand chart confirms some vehicles with 
positive behaviour build their trust from truthfully reporting 
activities whereas the sender V0 is access-blocked, leaving its 
trust at 0.05. With this fixed RSU judgement, vehicles have 
less opportunity to modify their behaviour and vehicle access-
blocking is more likely as shown in the right chart in Fig. 21. 

 

Fig. 23. Distribution of trust scores at the beginning and the end. 

VII. DISCUSSION 

The trust model with the fuzzy reward or punishment 
assessment scheme controls the broadcasting of messages at 
the sender side based on the trust score of drivers / vehicles so 
a receiver driver / vehicle can believe in a message instantly 
and does not need to take any further action. By regulating the 
ability to broadcast, malicious vehicles, once identified, are 
unable to continue to broadcast messages. Though, 
blacklisting is present in most existing approaches it requires 
the trust score to reach zero. Therefore, a malicious vehicle 
can create many hazardous problems before being blacklisted. 
Furthermore, driver decision times (response times) are 
reduced as trust does not need to be verified on a per message 
basis. This also reduces the communication overhead. It uses 
the RSU for ruling on a dispute when needed using clarifier 
feedback, rather than approaches which gather direct and/or 
indirect trust or opinions from surrounding neighbours, which 
may include false recommendations from malicious vehicles. 
However, the application of fuzzy reward or punishment 
assessment is only limited to the dispute resolution process at 
the RSU. Additionally, it requires presence of clarifier 
vehicles to send feedback to assist in the resolution of 
disputes. 
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VIII. CONCLUSION AND FUTURE WORK 

In this paper, a Mamdani fuzzy logic based RSU reward 
and punishment assessment scheme is presented. This 
application considers event severity, driver past behaviour and 
RSU confidence (calculated from the feedback of the clarifier 
vehicles) to determine an appropriate level of reward or 
punishment for the drivers involved. The reward and 
punishment mechanism uses a different set of rules to assess 
the output. The fuzzy RSU reward or punishment assessment 
scheme is an extension of the fixed RSU judgement 
mechanism in the previous sender-side trust framework [6]. 
The RSU ruling is only needed when there is a dispute (when 
both an event and opposite event exist) in the network. The 
fuzzy RSU controller is invoked only when it receives untrue 
attack reports, which is expected to be occasional. A Markov-
chain based driver behaviour model is also included to control 
the announcement behaviour of driver when conducting the 
series of experiments. 

The fuzzy approach is compared against a fixed reward 
and punishment scheme. Trust evolution timelines are 
provided in each case along with trust density distribution 
curves when only the RSU mechanism is active. The results 
suggest the fuzzy system achieves a more stable trust 
environment. This assessment also employs a Markov-chain 
based driver behaviour model whereby good drivers are 
assumed to behave in a positive manner more generally, and 
vice versa. This allows the nuanced fuzzy controller decisions 
to encourage drivers to behave better, and to provide fairer 
allocation of rewards and punishments based on several 
factors. However, in the future other inputs to the fuzzy 
controller could be considered. 

REFERENCES 

[1] S. Tangade and S. S. Manvi, “Trust management scheme in VANET: 
Neighbour communication-based approach,” in Proc. IEEE Int. Conf. on 
Smart Technol. for Smart Nat. (SmartTechCon)., Bengaluru, India, 
2017, pp. 741-744. 

[2] Z. Wei, F. R. Yu, A. Boukerche, “Trust based security enhancements for 
vehicular ad hoc networks,” in Proc. of the 4th ACM Int. Symp. on Dev. 
and Anal. of Intell. Veh. Netw. and Appl. (DIVANet)., Montreal, 
Canada, 2014, pp. 103-109. 

[3] S. Tangade and S. S. Manvi, “CBTM: Cryptography based trust 
management scheme for secure vehicular communications,” in Proc. 
IEEE 15th Int. Conf. on Control., Autom., Robot. and Vis. 
(ICARCV)., Singapore, 2018, pp. 325-330. 

[4] R. Dahiya, F. Jiang, and R. R. Doss, “A Feedback-Driven Lightweight 
Reputation Scheme for IoV,” in Proc. IEEE 19th Int. Conf. on Trust. 
Secur. and Priv. in Comput. and Commun. (TrustCom)., Guangzhou, 
China, 2020, pp. 1060-1068. 

[5] T. Gazdar,  A. Belghith, H. Abutair, “An enhanced distributed trust 
computing protocol for VANETs,” IEEE Access, vol. 6, pp. 380-392, 
October 2017.  

[6] R. Shahariar and C. Phillips, “A trust management framework for 
vehicular ad hoc networks,” Int. J. of Secur., Priv. and Trust. Manag. 
(IJSPTM), vol. 12, no. 1, pp. 15-36, February 2023. 

[7] R. Abassi, A.B.C. Douss, and D. Sauveron, “TSME: a trust-based 
security scheme for message exchange in vehicular ad hoc networks,” in 
Human-centric Computing and Inf. Sciences, vol. 10, no. 1, pp.1-19, 
October 2020. 

[8] S. Tangade, S.S. Manvi, and S. Hassan, “A deep learning-based driver 
classification and trust computation in VANETs,” in 2019 IEEE 90th 
Veh. Technol. Conf. (VTC2019-Fall), September 2019, (pp. 1-6). IEEE. 

[9] Z. Yang, R. Wang, D. Wu, B. Yang, and P. Zhang, “Blockchain-enabled 
trust management model for the Internet of Vehicles,” IEEE Internet of 
Things J., October 2021. 

[10] N. Haddadou, A. Rachedi, Y. Ghamri-Doudane, “A job market signaling 
scheme for incentive and trust management in vehicular ad hoc 
networks,” IEEE Trans. on Veh. Technol., vol. 64, no. 8, pp.3657-3674, 
September 2014. 

[11] R. Mühlbauer, J. H. Kleinschmidt, “Bring your own reputation: A 
feasible trust system for vehicular ad hoc networks,” J. of Sens. and 
Actuator Netw., vol. 7, no. 3, p.37, September 2018. 

[12] S. Guleng, C. Wu, X. Chen, X. Wang, T. Yoshinaga, and Y. Ji, 
“Decentralized Trust Evaluation in Vehicular Internet of Things,” IEEE 
Access, vol. 7, pp. 15980-15988, January 2019. 

[13] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C.M. Leung, “Blockchain-
based decentralized trust management in vehicular networks,” IEEE 
Internet of Things J., vol. 6, no. 2, pp.1495-1505, May 2018. 

[14] K. Rostamzadeh, H. Nicanfar, N. Torabi, S. Gopalakrishnan, and V.C. 
Leung, “A context-aware trust-based information dissemination 
framework for vehicular networks,” IEEE Internet of Things J., vol. 2, 
no 2, pp.121-132, 2015. 

[15] X. Li, J. Liu, X. Li, and W. Sun, “RGTE: A reputation-based global trust 
establishment in VANETs,” in  IEEE 5th Int. Conf. on Intel. Netw. and 
Coll. Syst.,  September  2013, pp. 210-214. 

[16] K. Mrabet, F. E.l. Bouanani, and H. Ben-Azza, “Dependable 
Decentralized Reputation Management System for Vehicular Ad Hoc 
Networks,” in 2021 IEEE 4th Intl. Conf. on Adv. Comm. Technol. and 
Netw. (CommNet), December 2021, pp. 1-7. 

[17] F. Li, Z. Guo, C. Zhang, W. Li, and Y. Wang, “ATM: an active-
detection trust mechanism for VANETs based on blockchain,” IEEE 
Trans. on Veh. Technol., vol. 70, no. 5, pp.4011-4021, 2021. 

[18] S.A. Siddiqui, A. Mahmood, Q.Z. Sheng, H. Suzuki, and W. Ni,  “A 
Time-aware Trust Management Heuristic for the Internet of Vehicles,” 
in 2021 IEEE 20th Int. Conf. on Trust., Secur. and Priv. in Computing 
and Communs. (TrustCom), October 2021,  pp. 1-8. 

[19] S.A. Soleymani, A.H. Abdullah, M. Zareei, M.H. Anisi, C. Vargas-
Rosales, M.K.  Khan, and S. Goudarzi, “A secure trust model based on 
fuzzy logic in vehicular ad hoc networks with fog computing,” IEEE 
Access, vol 5, pp.15619-15629. 2017. 

[20] A.K. Malhi and S. Batra, “Fuzzy‐based trust prediction for effective 
coordination in vehicular ad hoc networks,” Int. J. of Commun. 
Systems, vol. 30, no. 6, p.e3111, 2017. 

[21] Y. Zhou, H. Li, C. Shi, N. Lu, and N. Cheng, “A fuzzy-rule based data 
delivery scheme in VANETs with intelligent speed prediction and relay 
selection,” Wirel. Communs. and Mobile Computing, 2018. 

[22] B. Igried, A. Alsarhan,  I. Al-Khawaldeh,  A. AL-Qerem, and A. 
Aldweesh,  “A Novel Fuzzy Logic-Based Scheme for Malicious Node 
Eviction in a Vehicular Ad Hoc Network,” Electronics, vol. 11, no. 17, 
p.2741, 2022. 

[23] M.M. Hasan, M. Jahan, S. Kabir, and C. Wagner, “A Fuzzy Logic-
Based Trust Estimation in Edge-Enabled Vehicular Ad Hoc Networks,” 
In 2021 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), July 
2021,  pp. 1-8. 

[24] M. Gayathri, and C. Gomathy,  “Fuzzy based Trusted Communication in 
Vehicular Ad hoc Network,” In 2022 2nd Int. Conf. on Intell. Technols. 
(CONIT), June 2022, pp. 1-4. 

[25] S.A. Soleymani,  S. Goudarzi, M.H. Anisi, N. Kama,  S. A. Ismail, A. 
Azmi, M. Zareei, and A. H. Abdullah, “A trust model using edge nodes 
and a cuckoo filter for securing VANET under the NLoS 
condition,” Symmetry, vol 12, no. 4, p.609, 2020. 

[26] H. Liu, D. Han, and D. Li, “Behavior analysis and blockchain based 
trust management in vanets,” J. of Parallel and Distributed 
Computing, vol. 151, pp.61-69, 2021. 

[27] A. Sharma, and A. Jaekel,  “Machine learning approach for detecting 
location spoofing in VANET,” In 2021 Int. Conf. on Computer 
Communs. and Netw. (ICCCN), July 2021, pp. 1-6. 

[28] H. Mankodiya, M.S. Obaidat,  R. Gupta, and S. Tanwar, “XAI-AV: 
explainable artificial intelligence for trust management in autonomous 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

17 | P a g e  

www.ijacsa.thesai.org 

vehicles,” In 2021 Int. Conf. on Communs., Computing, Cybersecur., 
and Inform. (CCCI), October  2021,  pp. 1-5. 

[29] A.K. Malhi, and S. Batra, “Fuzzy‐based trust prediction for effective 
coordination in vehicular ad hoc networks,” Int. J. of Commun. 
Systems, vol. 30, no. 6, p.e3111, 2017. 

[30] A. Shrivastava, K. Sharma, and B.K. Chaurasia,  “HMM for reputation 
computation in VANET,” In 2016 Int. Conf. on Computing, Commun. 
and Automation (ICCCA), April 2016, pp. 667-670. 

[31] A. Tigga, and P.A.R. Kumar, “Towards a Vehicle's behavior monitoring 
and Trust Computation for VANETs,” In 2019 IEEE Conf. on Inf. and 
Commun. Technol., December 2019, pp. 1-6. 

[32] T. Gazdar, A. Rachedi,  A. Benslimane, and A. Belghith, “A distributed 
advanced analytical trust model for VANETs,” In 2012 IEEE Global 
Commun. Conf. (GLOBECOM), December 2012, pp. 201-206. 

[33] R.J. Atwa, P. Flocchini, and A. Nayak, “Risk-based trust evaluation 
model for VANETs,” In 2020 Int. Symp. on Netw., Computers and 
Commun. (ISNCC), October 2020, pp. 1-6. 

[34] H. Gao, C. Liu, Y. Yin,  Y. Xu, and Y. Li,  “A hybrid approach to trust 
node assessment and management for vanets cooperative data 
communication: Historical interaction perspective,” IEEE Trans. on 
Intell. Transp. Systems, vol. 23, no. 9, pp.16504-16513, 2021. 

[35] I.A. Rai, R.A. Shaikh, and S.R. Hassan, “A hybrid dual-mode trust 
management scheme for vehicular networks,” Int. J. of Distributed 
Sensor Netw., vol. 16 no. 7, p.1550147720939372, 2020. 

[36] Z. Liu, J. Weng, J. Ma, J. Guo, B. Feng, Z. Jiang, and K. Wei,  
“TCEMD: A trust cascading-based emergency message dissemination 
model in VANETs,” IEEE Internet of Things J., vol. 7, no. 5, pp.4028-
4048, 2019. 

[37] E. Uma, B. Senthilnayaki, A. Devi, C. Rajeswary, and P. Dharanyadevi, 
“Trust Score Evaluation Scheme for Secure Routing in VANET,” 
In 2021 IEEE Int. Conf. on Mobile Net. and Wirel. Commun. 
(ICMNWC), December  2021, (pp. 1-6). IEEE. 

[38] A. Rehman, M.F. Hassan,  Y.K. Hooi,  M.A. Qureshi,  S. Shukla, E. 
Susanto, S. Rubab, and A.H. Abdel-Aty,  “CTMF: Context-Aware Trust 
Management Framework for Internet of Vehicles,” IEEE Access, vol 10, 
pp.73685-73701, 2022. 

[39] K.A. Awan, I.U. Din, A. Almogren, M. Guizani, and S. Khan, 
“StabTrust—A stable and centralized trust-based clustering mechanism 
for IoT enabled vehicular ad-hoc networks,” IEEE Access, vol. 8, 
pp.21159-21177, 2020. 

[40] Car2x, Vehicles in Network Simulation (Veins) v5.0 (Version 5.0), 
car2x, May 31, 2023. https://veins.car2x.org/download/. 

[41] OpenSim Limited, Objective Modular Network Testbed in C++ 
(OMNeT++) v5.5.1 (Version 5.5.1), omnetpp.org, May 31, 2023, 2022. 
https://omnetpp.org/software/2019/05/31/omnet-5-5-released. 

[42] The German Aerospace Center, Simulation of Urban Mobility (SUMO) 
v1.2.0. (Version 1.2.0), sourceforge, May 31, 2023. 
https://sourceforge.net/projects/sumo/files/sumo/version%201.2.0/. 

 


