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Abstract

The performance benefits promised by Reconfigurable Intelligent Surface (RIS) are strongly

dependent on the availability of highly accurate and up-to-date Channel State Infor-

mation (CSI), which, however, is challenging to obtain. This thesis proposes efficient

transceiver designs for a variety of CSI challenges such as worst channel condition in

multicast systems, channel uncertainties caused by the presence of random blockages in

millimeter wave systems, by the channel estimation error in downlink systems and by

the presence of eavesdropper in security systems.

First, a low-complexity transceiver design scheme in the multicast systems is proposed.

In order to ensure the quality of service of the user with the worst channel condition, this

thesis deploys an RIS to enhance signal coverage, and proposes two novel and efficient

algorithms to jointly design the Base Station (BS) and RIS beamformings. The low-

complexity algorithm with closed-form solutions is proved to have the same performance

as the general second-order cone programming based algorithm.

Second, novel fairness-oriented robust transceiver design schemes are proposed in RIS-

aided millimeter wave systems. The channel uncertainty caused by the random blockages

is analyzed, and the metric of maximum outage probability minimization is proposed.

To address this problem, stochastic optimization techniques are adopted and closed-form

solutions of the BS and RIS beamformings are then obtained. The proposed stochastic

optimization algorithms are proved to converge to the set of stationary points.

Third, a framework of robust transceiver design scheme is proposed to address the chan-

nel uncertainty caused by the cascaded BS-RIS-user channel estimation error. Two

cascaded channel error models are analyzed, and the correspondingly two robust beam-

forming design problems are proposed. The optimization theory is used to address the

complex non-convex optimization problems. The numerical results show that the pro-
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posed robust scheme can effectively resist channel uncertainty.

Finally, robust transceiver design schemes are proposed in RIS-aided physical layer secu-

rity systems. The schemes analyze the channel uncertainties caused by the eavesdropper

who launches an active attack, and by the eavesdropper conducting passive eavesdrop-

ping. Numerical results show that the negative effect of the eavesdropper’s channel error

is larger than that of the legitimate user.

ii



Acknowledgments

Foremost, I would like to express my deepest gratitude to my primary supervisor Prof.

Cunhua Pan for his prudent guidance, continuous support and patience during my PhD

journey, and to my co-supervisor Dr. Kok Keong (Michael) Chai for his kind help and

continuous support in the final year of my PhD. With their professional supervision, I

could figure out research problems, deal with challenges, and then contribute a list of

publications.

Secondly, I would like to thank Prof. Marco Di Renzo (Université Paris-Saclay), Prof.
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Chapter 1

Introduction

While the fifth-Generation (5G) wireless communication system is under deployment

worldwide, research interest has shifted to the future sixth-Generation (6G) wireless

system [1]–[3], which targets supporting not only cutting-edge applications like mul-

tisensory augmented/virtual reality applications, wireless brain computer interactions,

and fully autonomous systems, but also the wireless evolution from “connected things”

to “connected intelligence”. The required Key Performance Indicators (KPIs), including

data rates, reliability, latency, spectrum/energy efficiency, and connection density, will

be much more superior to those for 5G. For example, the energy and spectrum effi-

ciency for 6G are expected to be 10-100 times and 5 times over that of 5G, respectively.

These KPIs, however, cannot be fully achieved by the existing three-pillar 5G physical

layer techniques [4], which include massive Multiple-Input Multiple-Output (MIMO),

millimeter Wave (mmWave) communications, and ultra-dense heterogeneous networks.

In particular, a large number of antennas along with active Radio Frequency (RF) chains

are needed for massive MIMO to achieve high spectrum efficiency, which leads to high

energy consumption and hardware cost. Moreover, moving to the mmWave frequency

band renders the electromagnetic waves more susceptible to blockage by obstacles such

as furniture and walls in indoor scenarios. In addition, more costly RF chains and sophis-

1



Chapter 1. Introduction 2

ticated hybrid precoding are necessary for mmWave communication systems. The dense

deployment of small Base Stations (BSs) also incurs high maintenance cost, network

energy consumption, and hardware cost due to high-speed backhaul links. Furthermore,

sophisticated interference management techniques are necessary in ultra-dense networks.

Conventionally, the wireless environment is perceived as a randomly varying entity

that impairs the signal quality due to uncontrolled reflections, refractions and unex-

pected interference. Although a plethora of physical layer techniques such as advanced

modulation/demodulation and precoding/decoding schemes have been developed at the

endpoints of communication links to compensate for these negative impacts, it is unde-

niable that a certain level of saturation has been reached in terms of achievable data

rate and performance reliability. Huge performance gains are expected when regarding

the wireless environment as an additional variable to optimize. This is made possible by

exploiting the new and revolutionary idea of Reconfigurable Intelligent Surfaces (RISs)

[5]–[9], which are capable of reconfiguring the wireless propagation environment into a

transmission medium with more desirable characteristics.

Reconfigurable Intelligent Surfaces

An RIS is a planar surface composed of a large number of passive and low-cost

reflecting elements, each of which can impose an independent phase shift/amplitude

on the impinging electromagnetic signals in a fully customized way. Thanks to recent

advances in metamaterials [10], the phase shifts imposed on the incident electromagnetic

signals can be adjusted in real-time in reaction to the rapid variations in the wireless

propagation environment. By judiciously tuning the phase shifts of the RIS, the signals

re-radiated from the RIS can be added constructively with the signals from other paths to

enhance the received signal power at the desired users, or can be combined destructively

to mitigate the undesired signals at unintended users such as multiuser interference and

signal leakage at the eavesdroppers.

Unlike conventional relaying techniques, an RIS is free from RF chains and amplifiers,
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and thus entails much reduced power consumption and hardware cost. Furthermore,

due to their passive nature, RIS can be fabricated with a low profile, light weight, and

limited thickness, which enables them to be readily layered on surfaces available in the

environment, including building facades, ceilings, street lamps, and so on.

Furthermore, the RIS, as a new concept beyond conventional massive MIMO systems,

maintains all the advantages of massive MIMO systems, such as being capable of focusing

large amounts of energy in three-dimensional space which paves the way for wireless

charging, remote sensing and data transmissions. However, the differences between RIS

and massive MIMO are also obvious. Firstly, the RIS can be densely deployed in indoor

spaces, making it possible to provide high data rates for indoor devices in the way of

near-field communications [11]. Secondly, in contrast to conventional active antenna

array equipped with energy-consuming RF chains and power amplifiers, the RIS with

passive reflection elements is cost-effective and energy-efficient [12], which enables RIS

to be a prospective energy-efficient technology in green communications. Thirdly, as the

RIS just reflects the signal in a passive way, there is no thermal noise or self-interference

imposed on the received signal as in conventional full-duplex relays.

1.1 Background and Motivation

An RIS can be used to extend the coverage area, improve the channel rank, mitigate

the interference, enhance the reliability, and improve the positioning accuracy. However,

this comes with a price of higher restrictions imposed on the quality of the Channel State

Information (CSI) required at the transmitter, specifically in the downlink mode. This

stems from the necessity to deal with multiuser interference through preprocessing, as the

receivers are generally decentralized and cannot cooperate. The ability to provide highly

accurate and up-to-date CSI at the transmitter is questionable. Therefore, considerable

effort has been devoted to characterize and improve the performance in the presence of

CSI challenges. This thesis focuses on developing novel transmit beamforming strategies

for some applications of RIS assisted wireless communications with a variety of CSI
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challenges. Specifically, four practically relevant scenarios are considered: a multicast

communication system with the worst channel condition, a mmWave communication

system with CSI uncertainty caused by the presence of random blockages, a downlink

communication system with CSI uncertainty caused by the cascaded channel estimation

error and a secrecy communication system with CSI uncertainty caused by the presence

of eavesdropper.

1.1.1 CSI Challenge in Multicast Communications

Background: Most of the contributions only investigated the performance benefits

of deploying an RIS in unicast transmissions, where the Base Station (BS) sends an

independent data stream to each user. However, unicast transmissions will cause severe

interference and high system complexity when the number of users is large. To address

this issue, the multicast transmission based on content reuse [13] (e.g., identical content

may be requested by a group of users simultaneously) has attracted wide attention,

especially for the application scenarios such as popular airport or video conference. From

the perspective of operators, it can be envisioned that multicast transmission is capable

of effectively alleviating the pressure of tremendous wireless data traffic and play a vital

role in the next generation wireless networks. Therefore, it is necessary to explore the

potential performance benefits brought by multiple RISs during the multigroup multicast

transmission. Specifically, in multicast systems, the data rate of each group is limited by

the user with the worst-channel gains. Hence, the RIS can be deployed to improve the

channel conditions of the worst-case user, which can be significantly improve the system

performance. A common performance metric in multicast transmissions is the Max-Min

Fairness (MMF), where the minimum Signal-to-Interference-plus-Noise-Ratio (SINR) or

spectral efficiency of users in each multicasting group or among all multicasting groups is

maximized [14]–[18]. The existing contributions of multicast transmission in single-group

and multigroup are presented in [14], [15], where the MMF problems are formulated as

a fractional Second-Order Cone Programming (SOCP) and solved using SemiDefinite

Relaxation (SDR) technique [19].
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Motivation: Unfortunately, the popular SDR-based method incurs a high computa-

tional complexity (O(N4.5), where N denotes the number of variables) which hinders its

practical implementation when the number of design parameters (e.g., precoding matrix

and reflection coefficient vector) becomes large. Furthermore, the aforementioned low-

complexity techniques designed for the RIS-aided unicast communication schemes cannot

be directly applied in the multigroup multicast communication systems since the MMF

metric is a non-differentiable and complex objective function. Chapter 3 focuses on

the investigation of RIS-aided multicast transmission, and the non-differentiable and

complex MMF metric is addressed by proposing two efficient algorithms, one of which

has low-complexity closed-form solution. To the best of the knowledge, this is the first

work exploring the performance benefits of deploying an RIS in multigroup multicast

communication systems.

1.1.2 CSI Challenge in mmWave Communications

Background: mmWave communication is expected to be a promising technology to

meet the growing demand for data rate in current and future wireless networks. mmWave

communication systems are affected by severe signal attenuations. Thanks to the small

signal wavelength, however, this can be compensated by deploying antenna-arrays with

a large number of antennas at the transmitters and receivers. In addition, the high-

directional beams obtained by utilizing large antenna-arrays can mitigate the inter-user

interference. However, mmWave communication systems suffer from high penetration

losses [20]–[22]. Hence, mmWave systems are much more susceptible to the presence of

spatial blockages than sub-6 GHz systems, and the reliability of the communication links

cannot always be guaranteed throughout the whole network [20]–[22].

Motivation: Although the performance advantages of deploying RISs in mmWave

systems have been demonstrated in recent contributions, there still exist major open

problems to solve. Examples include the following. The authors of [23] have only con-

sidered the BS-RIS-user channels and have assumed that the direct BS-user communi-
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cation links are completely blocked by obstacles. However, this assumption only applies

to the case of static blockages with blockage probability equal to one, but it does not

apply in the presence of dynamic blockages since the blockage probability lies in [0,1]

[20]–[22]. The numerical results illustrated in [24], for example, have shown that the

gain from additional reflections can compensate for the performance loss caused by the

presence of random blockages. However, the impact of blockages was not considered in

the beamforming design. Most recently, the authors of [25] have considered the design of

robust beamforming methods for RIS-aided mmWave communication systems by taking

the presence of random blockages into consideration. However, the considered optimiza-

tion problem is the minimization of the sum outage probability, which cannot ensure the

fairness among all the users. Chapter 4 proposes a min-max outage probability prob-

lem for fairness in the RIS-aided mmWave systems, which is tackled by proposing two

low-complexity stochastic optimization algorithms. To the best of the knowledge, this

is the first work that introduces a robust beamforming design for RIS-aided downlink

multiuser mmWave systems that relies on the knowledge of large-scale CSI and blockage

probability.

1.1.3 CSI Challenge Caused by Channel Estimation

Background: The algorithms developed in most contributions [26]–[32] were based on

the assumption of perfect Channel State Information at the Transmitter (CSIT). Unfor-

tunately, it is challenging to estimate the channels for the RIS-aided wireless systems,

since RIS is passive and can neither send nor receive pilot symbols. Due to the inevitable

channel estimation error, it will induce system performance loss if naively treating the

estimated channels as perfect ones. Hence, it is imperative to design robust transmission

strategies for the RIS-aided wireless communication systems.

Motivation: To the best of the knowledge, there are only a few contributions in

this area [33], [34]. Specifically, the authors of [33] first proposed a worst-case robust

design algorithm by assuming that the BS only knew the imperfect RIS-user channels
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in a Multi-User Multiple-Input Single-Output (MU-MISO) wireless system. Then, the

authors in [34] further proposed a robust secure transmission strategy by also applying

the worst-case optimization method when the channels from the RIS to the eavesdroppers

were imperfect. However, to implement the above robust design algorithms in [33] and

[34], one should rely on the channel estimation where the BS-RIS channels and RIS-user

channels should be independently estimated. This is difficult to achieve since several

active elements should be installed at the RIS. A more practical robust transmissions

under the cascaded channel estimation error needs to be investigated. Chapter 5 proposes

a framework of robust beamforming designs to tackle the channel uncertainties caused

by the cascaded channel error. To the best of the knowledge, this is the first work to

study the robust transmission design based on imperfect cascaded BS-RIS-user channels,

which is more practical than the previous works in which imperfect RIS-user channels

were considered.

1.1.4 CSI Challenge in Security Communications

Background: Based on the exploration of the differences in channel conditions and

interference environment, the RIS can enhance the received signal of Legitimate Users

(LUs) and suppress the signal received by the EavesDropper (ED) by changing the

reflection direction of the incident signal [31], [34]–[37]. Thus, RIS has the potential

of extending the coverage area, mitigating the interference, and improving the physical

layer security communication. In general, ED works in two modes: active attacks and

passive eavesdropping [38], [39]. In an active attack, in order to mislead the BS to send

signals to the ED, the ED pretends to be a LU sending pilot signals to the BS during

the channel estimation procedure. Nonetheless, a passive attack is more challenging to

tackle since the passive ED can hide itself and its CSI is not available at the BS.

Motivation: To the best of the knowledge, all the existing contributions on the RIS-

aided security enhancement were developed under the active attacks, where the BS can

acquire the CSI of ED. There is no existing work studying the passive eavesdropping in
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RIS-aided secure communication systems. In addition, even for the imperfect CSI under

the active attacks, the methods proposed in [34], [37] are only applicable to small-size RIS

(i.e., the number of the reflecting elements is less than 10) which can be observed from

the numerical results. However, for practical RIS-aided communication systems, the RIS

can be equipped with a large number of reflecting elements due to the passive feature

of the RIS. Furthermore, more reflecting elements can capture more electromagnetic

energy. In addition, RIS has advantages over the conventional massive MIMO and relay

in terms of energy efficiency only when the number of the reflecting elements of the RIS

is large [29]. Chapter 6 proposes an RIS-aided two-phase secrecy communication scheme

to avoid the leakage of useful signals from BS to ED, and effective secure beamforming

algorithms are proposed for the active attack mode with imperfect CSI and the passive

eavesdropping mode with blind CSI, respectively.

1.2 Outline and Contributions

In the following, the outline of the thesis is presented, in which the key contributions of

each chapter are briefly summarized.

Chapter 2 provides an overview of the primary concepts, related literature, and

optimization techniques used throughout the thesis. In particular, reviews of literature

on RIS assisted wireless communication systems, random blockages in mmWave com-

munication systems and estimation of RIS related channels are first briefly presented.

Mathematical preliminaries of optimization techniques used in the proposed algorithms

are then provided. Specifically, the overview of RIS element design under the unit-

modulus constraints in the existing literature is briefly discussed. Then, the frameworks

of the Majorization–Minimization (MM) and Successive Convex Approximation (SCA)

methods, which are the basis of the proposed efficient solutions to the considered prob-

lems in the thesis, are provided.

Chapter 3 considers downlink multigroup multicast communication systems assisted
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by an RIS. It aims for maximizing the sum rate of all the multicasting groups by the

joint optimization of the precoding matrix at the BS and the reflection coefficients at

the RIS under both the power and unit-modulus constraints. To tackle this non-convex

problem, two efficient algorithms under the MM algorithm framework are proposed.

Specifically, a concave lower bound surrogate objective function of each user’s rate has

been derived firstly, based on which two sets of variables can be updated alternately by

solving two corresponding SOCP problems. Then, in order to reduce the computational

complexity, another concave lower bound function of each group’s rate for each set of

variables at every iteration is derived, and the closed-form solutions under these loose

surrogate objective functions is obtained. Finally, the simulation results demonstrate

the benefits in terms of the spectral and energy efficiency of the introduced RIS and the

effectiveness in terms of the convergence and complexity of the proposed algorithms.

Chapter 4, in order to improve the robustness of mmWave systems in the presence

of random blockages, considers the deployment of multiple RISs to enhance the spatial

diversity gain, and the design of robust beamforming schemes based on stochastic opti-

mization methods that minimize the maximum outage probability among multiple users

so as to ensure fairness. Under the stochastic optimization framework, the Stochas-

tic Majorization–Minimization (SMM) method and the Stochastic Successive Convex

Approximation (SSCA) method are adopted to construct deterministic surrogate prob-

lems at each iteration, and to obtain closed-form solutions of the precoding matrix at

the BS and the beamforming vectors at the RISs. Both stochastic optimization methods

are proved to converge to the set of stationary points of the original stochastic problems.

Simulation results show that the proposed robust beamforming for RIS-aided systems

can effectively compensate for the performance loss caused by the presence of random

blockages, especially when the blockage probability is high.

Chapter 5 studies the robust beamforming based on the imperfect Cascaded BS-

RIS-User channels at the Transmitter (CBRUT). Specifically, the transmit power min-

imization problems are formulated subject to the worst-case rate constraints under the
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bounded CSI error model and the rate outage probability constraints under the statisti-

cal CSI error model, respectively. After approximating the worst-case rate constraints by

using the S-procedure and the rate outage probability constraints by using the Bernstein-

type inequality, the reformulated problems can be efficiently solved. Numerical results

show that the negative impact of the CBRUT error on the system performance is greater

than that of the direct CSI error.

Chapter 6 adopts RIS to enhance the physical layer security in the Rician fading

channel where the angular direction of the eavesdropper is aligned with a legitimate

user. In this scenario, a two-phase communication system under the active attacks and

passive eavesdropping is considered. Particularly, in the first phase, the BS avoids direct

transmission to the attacked user. While, in the second phase, other users cooperate to

forward signals to the attacked user with the help of RIS and energy harvesting technol-

ogy. Under the active attacks, an outage constrained beamforming design problem under

the statistical cascaded channel error model is investigated, which is solved by using the

Bernstein-type inequality. As for the passive eavesdropping, an average secrecy rate

maximization problem is formulated, which is addressed by a low-complexity algorithm.

Numerical results show that the negative effect of the eavesdropper’s channel error is

larger than that of the legitimate user.

Chapter 7 presents the conclusion and some thoughts for future work.

1.3 Publications

The thesis is written as a monograph based on four journal papers [J1, J2, J6, J8, J11]

and three related conference papers [C1, C2, C3]. All the mentioned papers have already

been published. The author of this thesis had the main responsibility for developing the

original ideas, formulating the mathematical problems, deriving the analytical equations

and algorithms, writing the MATLAB-based simulation codes, generating the numerical

results, and writing the papers. The role of all co-authors was to provide valuable
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guidance, ideas, comments, criticisms, and support in developing the ideas/algorithms

and writing the papers.

In addition to the papers mentioned above, the author of this thesis also published

four other journal papers [J3, J4, J5, J7] and one conference paper [C5], which are not

included in the thesis. The author was also the co-author of the journal papers [J9, J10,

J11] and the conference paper [C4].

Published journal papers

[J1] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang and A. Nallanathan, ”Intelli-

gent Reflecting Surface Aided Multigroup Multicast MISO Communication Systems,” in

IEEE Transactions on Signal Processing, vol. 68, pp. 3236-3251, Apr. 2020. (Chapter

3)

[J2] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang and A. Nallanathan, ”A

Framework of Robust Transmission Design for IRS-Aided MISO Communications With

Imperfect Cascaded Channels,” in IEEE Transactions on Signal Processing, vol. 68, pp.

5092-5106, Aug. 2020. (Chapter 5)

[J3] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang, Marco Di Renzo and A. Nal-

lanathan, ”Robust Beamforming Design for Intelligent Reflecting Surface Aided MISO

Communication Systems,” in IEEE Wireless Communications Letters, vol. 9, no. 10,

pp. 1658-1662, Oct. 2020.

[J4] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang, M. Elkashlan and Marco Di

Renzo, ”Stochastic Learning-Based Robust Beamforming Design for RIS-Aided Millimeter-

Wave Systems in the Presence of Random Blockages,” in IEEE Transactions on Vehicular

Technology, vol. 70, no. 1, pp. 1057-1061, Jan. 2021.

[J5] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang and Zhangjie Peng, ”Secure

Wireless Communication in RIS-Aided MISO System With Hardware Impairments,” in

IEEE Wireless Communications Letters, vol. 10, no. 6, pp. 1309-1313, Jun. 2021.
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[J6] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang, Marco Di Renzo, “Fairness-

Oriented Multiple RISs-Aided MmWave Transmission: Stochastic Optimization Meth-

ods,” in IEEE Transactions on Signal Processing, vol. 70, pp. 1402-1417, Mar. 2022.

(Chapter 4)

[J7]Gui Zhou, Cunhua Pan, Hong Ren, P. Popovski, and A. L. Swindlehurst, “Chan-

nel estimation for RIS-aided multiuser millimeter-wave systems,” in IEEE Transactions

on Signal Processing, vol. 70, pp. 1478-1492, Mar. 2022.

[J8] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang, Kok Keong Chai, Kai-Kit

Wong, “User Cooperation for IRS-aided Secure SWIPT MIMO Systems,” accepted by

Intelligent and Converged Networks. (Chapter 6)

[J9] Kangda Zhi, Cunhua Pan, Gui Zhou, Hong Ren, Maged Elkashlan, Robert

Schober, “Is RIS-Aided Massive MIMO Promising with ZF Detectors and Imperfect

CSI?,” accepted by IEEE Journal on Selected Areas in Communications.

[J10] A. Lee Swindlehurst, Gui Zhou, Rang Liu, Cunhua Pan, Ming Li, “Channel

Estimation with Reconfigurable Intelligent Surfaces – A General Framework,” in Pro-

ceedings of the IEEE, early access.

Published conference papers

[C1] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang and A. Nallanathan, ”Outage

Constrained Transmission Design for IRS-aided Communications with Imperfect Cas-

caded Channels,” GLOBECOM 2020 - 2020 IEEE Global Communications Conference,

Taipei, Taiwan, 2020, pp. 1-6. (Chapter 5)

[C2] Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang and Kok Keong Chai, ”RIS-

Aided mmWave Transmission: A Stochastic Majorization-Minimization Approach,” ICC

2021 - IEEE International Conference on Communications, Montreal, QC, Canada, 2021,

pp. 1-6. (Chapter 4)
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[C3] Gui Zhou, Cunhua Pan, Hong Ren, Kangda Zhi, Sheng Hong and Kok Keong

Chai, ”User Cooperation for RIS-aided Secure SWIPT MIMO Systems under the passive

eavesdropping,” 2021 IEEE/CIC International Conference on Communications in China

(ICCC Workshops), Xiamen, China, 2021, pp. 171-176. (Chapter 6)

[C4] Kangda Zhi, Cunhua Pan, Gui Zhou, Hong Ren and Kezhi Wang, ”Analy-

sis and Optimization of RIS-aided Massive MIMO Systems with Statistical CSI,” 2021

IEEE/CIC International Conference on Communications in China (ICCC Workshops),

Xiamen, China, 2021, pp. 153-158.

[C5] Gui Zhou, Cunhua Pan, Hong Ren and Kezhi Wang, ”Channel Estimation

for RIS-Aided Millimeter-Wave Massive MIMO Systems : (Invited Paper),” 2021 55th

Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA,

2021, pp. 698-703.

Journal papers under review

[J11] Cunhua Pan, Gui Zhou, Kangda Zhi, Sheng Hong, Tuo Wu, Yijin Pan, Hong

Ren, Marco Di Renzo, A. Lee Swindlehurst, Rui Zhang, Angela Yingjun Zhang, “An

Overview of Signal Processing Techniques for RIS/IRS-aided Wireless Systems,” Dec.

2021, submitted to IEEE Journal of Selected Topics in Signal Processing. [Online].

Available: https://arxiv.org/abs/2112.05989 (Chapter 2)

1.4 Notations

The following mathematical notations and symbols are used throughout this thesis. Vec-

tors and matrices are denoted by boldface lowercase letters and boldface uppercase let-

ters, respectively. The symbols X∗, XT, XH, and ||X||F denote the conjugate, transpose,

Hermitian (conjugate transpose), Frobenius norm of matrix X, respectively. The symbol

||x||2 denotes the 2-norm of vector x. The symbols Tr{·}, Re{·}, |·|, λ(·), and ∠ (·) denote

the trace, real part, modulus, eigenvalue, and angle of a complex number, respectively.

diag(x) is a diagonal matrix with the entries of x on its main diagonal. [x]m denotes
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the m-th element of vector x. The Kronecker product between two matrices X and Y

is denoted by X⊗Y. X ⪰ Y means that X−Y is positive semidefinite. The symbol C

denotes the complex field, R denotes the real field, and j ≜
√
−1 is the imaginary unit.

The inner product ⟨•, •⟩ : CM×N × CM×N → R is defined as ⟨X,Y⟩ = Re{Tr{XHY}}.



Chapter 2

Literature Review and

Mathematical Preliminaries

This chapter first summarizes a review of related works on transmission strategy designs

of RIS-aided systems, random blockages in mmWave communication systems, channel

estimations of RIS-aided systems and RIS-aided secure communications associated with

the scope of the thesis. Then, mathematical preliminaries of optimization techniques,

which lay the foundations for the development of solutions for the design problems, are

provided.

2.1 Review of Related Works

2.1.1 Transmission Strategy Designs of RIS-Aided Systems

RIS has been investigated in various wireless communication systems. Specifically, the

authors in [12] first formulated the joint active and passive beamforming design problem

both in downlink single-user and multiple-users Multiple-Input Single-Output (MISO)

systems assisted by the RIS, while the total transmit power of the BS is minimized based

on the SDR [19] and Alternating Optimization (AO) techniques. In order to reduce the

15
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high computational complexity incurred by SDR, Yu et al. proposed low complexity

algorithms based on MM (Majorization–Minimization or Minorization–Maximization)

algorithm in [30] and manifold optimization in [40] to design reflection coefficients with

the targets of maximizing the security capacity and spectral efficiency communications,

respectively. Pan et al. considered the weighted sum rate maximization problems

in multicell MIMO communications [27], Simultaneous Wireless Information and Power

Transfer (SWIPT) aided systems [26], Artificial Noise (AN)-aided secure MIMO commu-

nications [35], all demonstrating the significant performance gains achieved by deploying

an RIS in the networks. A Deep Reinforcement Learning (DRL)-based algorithm [41]

and a mobile edge computing-based algorithm [28] were proposed to jointly design the

active and passive beamformings in RIS-related systems. In cognitive radio communica-

tion systems, the high rate for the secondary user can be achieved with the assistance of

the RIS [42].

2.1.2 Random Blockages in mmWave Communication Systems

The spatial blockages can be divided into static blockages (e.g., buildings and other static

objects), dynamic blockages (e.g., human beings, vehicles, or moving obstructions) and

self-blockages (e.g., hand blocking of the user itself and blockage from other parts of the

body). To account for the impact of blockages, statistical models have been proposed

to characterize the properties of dynamic blockages and self-blockages [21], [22], [43].

The authors of [44] have developed a distance-dependent blockage probability model, in

which the probability that a link is blocked increases exponentially with the length of

the link. Furthermore, the authors of [45] and [46] have proposed an approach to predict

the blockage probability via machine learning. If the blockage probability is known or is

estimated, robust beamforming design strategies can be utilized to address the channel

uncertainties caused by the presence of random blockages [47], [48]. Specifically, the

authors of [47] have proposed a worst-case robust beamforming design for application to

Coordinated MultiPoint (CoMP) systems in which all possible combinations of blockage

patterns are considered. Due to the high computational complexity of the method intro-



Chapter 2. Literature Review and Mathematical Preliminaries 17

duced in [47], an outage-minimum strategy based on a stochastic optimization method

has been proposed in [48] to improve the robustness of mmWave systems against random

blockages. The use of multiple BSs in CoMP systems may be an option to compensate

for the performance loss caused by the presence of random blockages by exploiting spa-

tial diversity gains. However, this solution incurs in excessive hardware cost and power

consumption. Another possible solution consists of deploying cost-efficient RISs so as to

create alternative and reliable communication links in mmWave systems [25].

2.1.3 Channel Estimations of RIS-Aided Systems

In RIS-aided communication systems, there are two types of channels: the direct channel

spanning from the BS to the user, and the RIS-related channels. The direct channel can

be readily estimated by using conventional channel estimation methods such as the least

square algorithm. Hence, most of the existing contributions focused on the channel

estimation for the RIS-related channels, which are composed of the channel from the BS

to the RIS (BS-RIS channel), and those from the RIS to the users (RIS-user channels).

In general, there are two main approaches to estimate the RIS-related channels. The first

approach is to directly estimate the RIS-related channels, i.e., estimate BS-RIS channel

and RIS-user channels separately [49]. Specifically, in [49], some active channel elements

are installed at the RIS to estimate the individual channels. This method, however, has

several drawbacks. The active elements may increase the hardware cost and consume

extra power, which causes un-affordable burden on the RIS. In addition, the channel

information estimated at the RIS needs to be fed back to the BS, which increases the

information exchange overhead.

Fortunately, it is observed that the cascaded BS-RIS-user channels, which are the

product of the BS-RIS channel and the RIS-user channels, are sufficient for the joint

active and passive beamforming design [29]–[32]. As a result, most of the existing contri-

butions focused on the second approach, i.e., the cascaded channel estimation [50]–[53].

Specifically, the channel estimation of the cascaded channel has been investigated both in
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the Single-User Multiple-Input Multiple-Output (SU-MIMO) system [50] and the Multi-

User Multiple-Input Single-Output (MU-MISO) system [51] by using the Least Square

(LS) method. However, the pilot overhead of the LS method is prohibitively high, which

is required to be larger than the dimension of cascaded channel and thus scales up with

number of reflection elements. In order to reduce the pilot overhead, the authors in [52]

exploited the sparse property of the channel matrix and proposed a channel estimation

method based on compressed sensing technique. Furthermore, another sparsity repre-

sentation of the cascaded channel has been found in [53] by using the fact that the height

of the BS and the RIS are often the same.

2.1.4 RIS-Aided Secure Communications

Recently, the benefits of RIS in physical layer security under the active attacks have been

investigated in the existing literature [31], [34]–[37], [54]. The performance gains of RIS

in terms of security capacity was first explored in a simple model consisting of only one

single-antenna LU and one single-antenna ED in [31]. Closed-form solutions of the phase

shifters of RIS were obtained by leveraging the MM technique in [31], which has a better

performance than the classical SDR method. The authors in [35] and [54] respectively

extended the results in [31] to a MIMO system and a multicast system where AN was

introduced to enhance the security performance. The results in [36] further showed that

the AN-aided system without an RIS outperforms the RIS-aided system without AN

when the RIS is surrounded by a large number of eavesdroppers. However, all the above

contributions were based on the assumption of perfect CSI of the eavesdropping channels

at the BS. This assumption is too strict and even impractical. The reasons are twofold: 1)

It is challenging to estimate the RIS-related channels since RIS is passive and can neither

send nor receive pilot signals. 2) The pilot transmission from the ED to the BS may

not be continuous and the corresponding CSI at the BS may be outdated. To deal with

the imperfect CSI of the ED, robust transmission methods for secure communication of

RIS were proposed in [34], [37]. In particular, the authors in [34] proposed a worst-case

robust secure transmission strategy under the assumption of imperfect CSI from the RIS
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to the ED. On the other hand, the authors in [37] considered the more practical imperfect

cascaded BS-RIS-ED channel and proposed an outage constrained beamforming design

method under the statistical CSI error model. However, the imperfect CSI of both LU

and ED was not studied in [37].

2.2 Mathematical Preliminaries

This section provides a concise overview of optimization techniques on which proposed

solutions for the problems considered in the thesis are based. In this section, the key

technical concepts are mainly presented, whereas the rigorous mathematical analysis,

which can be found in the mentioned references, is omitted.

2.2.1 Optimization Techniques for Continuous Phase Shifts

The optimization problem with continuous phase shifts constraint can be expressed as

min
θ

f (θ)

s.t. S =
{
θ| θ = ejφ, φ ∈ [0, 2π)

}
.

(2.1)

Existing techniques used in RIS-related literature for optimizing Problem (2.1) can be

classified into the following categories.

(1) Relaxation and projection [25], [55], [56] : The unit modulus constraint on the

phase shift can be rewritten as S1 = {θ| |θ| = 1, θ ∈ C}. The idea of this technique is first

to relax the non-convex constraint S1 to the convex constraint S̃1 = {θ| |θ| ≤ 1, θ ∈ C},

and then to project the obtained solution onto the unit-modulus constraint S1. Accord-

ingly, given the solution θm of the relaxed problem, the final solution is θ⋆m = ejφm , where

φm is the phase of θm.

(2) SemiDefinite Relaxation (SDR) [12], [24], [57]–[61] : The SDR method is the

most common method for optimizing the phase shifts under constraint S1, i.e., for con-

tinuous phase shifts. Define V = θθH. Then, the unit modulus constraint can be
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equivalently written as V ≻ 0 and rank (V) = 1. Because of the rank one constraint,

the transformed problem is still non-convex. Based on the SDR method, the non-convex

rank one constraint is removed. The obtained relaxed problem is a convex SemiDefinite

Program (SDP), which can be readily solved by using CVX [62]. In general, the obtained

relaxed problem is not a rank-one solution, i.e., rank (V) ̸= 1. In this case, the Gaussian

randomization method [14] is utilized to obtain a rank-one solution.

(3) Majorization-Minimization (MM) algorithm [26], [29], [31], [63]–[65] : The MM

algorithm is another widely used technique for optimizing the phase shifts of the RIS. The

MM algorithm is an iterative optimization method that approximates a difficult problem

as a series of more tractable subproblems that are solved iteratively. Assume that the

solution of the subproblem at the t-th iteration is θt and the corresponding objective

function is f(θt) 1. Based on the MM algorithm, a surrogate objective function f̃
(
θ|θt

)
is constructed, which fulfills the following three conditions: 1) f̃

(
θt
∣∣θt
)
= f

(
θt
)
; 2)

∇θf̃
(
θ|θt

)∣∣∣
θ=θt

= ∇θf
(
θt
)∣∣

θ=θt ; 3) f̃
(
θ|θt

)
≥ f (θ). If these conditions are fulfilled,

the sequence of the solutions obtained by solving each subproblem will converge. By

replacing the original objective function with the constructed function f̃
(
θ|θt

)
and

removing the constant terms, the subproblem to be solved in each iteration is given by

max
θ

Re
{
θHqt

}
(2.2a)

s.t. |θm| = 1,m = 1, · · · ,M, (2.2b)

where M is the length of vector θ, and qt is a constant complex vector at the t-th

iteration. The optimal solution to the optimization problem in (2.2) is

θt+1 = ej arg(q
t). (2.3)

This procedure is iterated until convergence according to any criterion of convergence.

If the phase shifts of the RIS appear in the constraints of the optimization problem, the

1When the beamforming vectors in W are given, the objective function in (2.1) is denoted by f(θ),
and the functions in constraint C1 are denoted by gi(θ),∀i.
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pricing-based method can be utilized [26].

(4) Manifold approach [27], [40], [66]–[68] : There exist different kinds of manifold

methods. This part considers the Complex Circle Manifold (CCM) method [27] as an

example. The constraint space in S1 can be regarded as the product of M complex

circles, which is a sub-manifold of CM given by

SM ∆
=
{
x ∈ CM : |xl| = 1, l = 1, 2, · · · ,M

}
, (2.4)

where xl is the l-th element of vector x. The main idea of the CCM method is to

derive the gradient descent algorithm based on the manifold space given in (2.4). The

optimization problem aims at optimizing the phase shifts to minimize the objective

function f̂ (θ). The main steps can be summarized as follows.

(a) Computation of the gradient in Euclidean space: The search direction for the

minimization problem is the opposite of the gradient of f̂ (θ), which is given by ηt =

−∇θf̂(θ)
∣∣∣
θ=θt

;

(b) Computation of the Riemannian gradients: The Riemannian gradient of f̂ (θ)

at θ = θt should lie in the tangent space TθtSM [27]. Then, the Riemannian gradient

of f̂ (θ) at θt is obtained by projecting ηt onto TθtSM , which yields PTθtSM (ηt) =

ηt − Re{ηt∗ ⊙ θt} ⊙ θt;

(c) Update over the tangent space: Update the point θt on the tangent space TθtSM

as θ̄t = θt + βPTθtSM (ηt), where β is a constant step size;

(d) Retraction operator : This step aims to map ϕ̄t onto the manifold SM using the

retraction operator θt+1 = θ̄t ⊙ 1

|θ̄t| . Through iterating steps 1) to 4) until convergence,

the final solution is obtained.

(5) Element-wise Block Coordinate Descent (BCD) [30], [32], [69], [70] : The idea of

the element-wise BCD algorithm is simple. At the m-th iteration, one reflection coeffi-

cient θm is optimized by keeping fixed the other reflecting coefficients θm′ ,m′ ̸= m,m =
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1, · · · ,M . The algorithm ends after M iterations when all the reflection coefficients

are optimized one-by-one while keeping the other fixed. The element-wise BCD algo-

rithm is simple since it is simpler to optimize a single variable rather than optimizing

M variables simultaneously. However, the complexity may be high when the number of

reflecting elements is large.

(6) Rank-one equivalents [71], [72] : Similar to the SDR method, by defining V =

θθH, the unit modulus constraint can be written as V ≻ 0 and rank (V) = 1. The

rank-one constraint can be equivalently transformed to

tr (V)− ∥V∥2 = 0. (2.5)

Also, tr (V) =
∑M

m=1 λm and ∥V∥2 = λ1, where λm denotes the m-th largest singular

value of V. Since V ≻ 0 and V is a non-zero matrix, the equality tr (V) − ∥V∥2 = 0

holds only when λ1 > 0 and λm = 0,m = 2, · · · ,M . Then, at the (t+ 1)-th iteration of

the iterative algorithm, a lower-bound for ∥V∥2 at the point Vt can be derived as

∥V∥2 ≥
∥∥Vt

∥∥
2
+
〈(
V −Vt

)
, ∂V∥V∥2|V=Vt

〉 ∆
= f

(
V;Vt

)
, (2.6)

where ∂V∥V∥2|V=Vt is a subgradient of ∥V∥2 with respect to V at V = Vt, which is

equal to u1u
H
1 with u1 denoting the eigenvector that corresponds to the largest singular

value of Vt.

Based on (2.6), the constraint in (2.5) can be approximated with the following convex

constraint

tr (V)− f
(
V;Vt

)
≤ ε, (2.7)

where ε is a very small positive constant. Then, using (2.6) and (2.7), one has 0 ≤

tr (V) − ∥V∥2 ≤ tr (V) − f
(
V;Vt

)
≤ ε. Hence, when ε tends to zero, tr (V) will

approach ∥V∥2, which ensures that the rank-one constraint is fulfilled.

(7) Alternating Direction Method of Multipliers (ADMM) based algorithm [12], [73],
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[74] : An auxiliary variable ω is introduced such that ω = θ, which can be regarded as

a copy of θ. The feasible region of constraint C1 is denoted by B, which, by using the

indicator function, can be formulated as follows

IB (W,θ) =

 f (W,θ) , if {W,θ} ∈ B

∞, otherwise.
(2.8)

Similarly, the feasible region that corresponds to constraint C2, i.e., S1 can be written

as follows

IS1 (ω) =

 0, if ω ∈ S1

∞, otherwise.
(2.9)

Then, the equivalent ADMM reformulation for the optimization problem in (2.1) is

min
W,θ,ω

IB (W,θ) + IS1 (ω)

s.t. ω = θ.

(2.10)

The augmented Lagrangian of the optimization problem in (2.10) is

Lξ = IB (W,θ) + IS1 (ω) +
ξ

2
∥θ − ω + λ∥22 , (2.11)

where ξ > 0 is a constant penalty parameter, and λ = [λ1, · · · , λM ]T is the dual variable

vector of the constraint ω = θ. Based on the ADMM algorithm, the variables W,θ and

ω are alternately optimized.

The ADMM algorithm is an iterative approach. In the t-th iteration, given Wt,θt

and ωt, the variables are updated as follows.

(a) Updating θ: The subproblem for updating θ is

min
θ

f (θ) +
ξ

2

∥∥θ − ωt + λt
∥∥2
2

s.t. gi (θ) ≥ Di, i = 1, · · · , I.
(2.12)
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Note that the unit-modulus constraint for θ is not included in this subproblem, which

significantly reduces the complexity of computing θ.

(b) Updating W: The subproblem for updating W is

min
W

f (W)

s.t. gi (W) ≥ Di, i = 1, · · · , I.
(2.13)

(c) Updating ω: The subproblem for updating ω is

ωt+1 = arg min
ω∈S1

∥∥θt+1 + λt − ω
∥∥2
2
. (2.14)

The objective of the optimization problem in (2.14) is to project θt+1 + λt onto the

feasible set S1, whose solution is ωt+1 = ej arg(θ
t+1+λt).

(d) Updating λ: The update of λ is λt+1 = λt + θt+1 − ωt+1.

(8) Penalty Convex-Concave Procedure (CCP) [75], [76] : The unit modulus con-

straint can be equivalently rewritten as 1 ≤ |θm|2 ≤ 1,∀m. Using the SCA method, the

non-convex constraint 1 ≤ |θm|2 can be converted into a series of convex constraints,

i.e., 1 ≤ 2Re(θ∗mθtm)−
∣∣θtm∣∣2, where θtm is the solution in the t-th iteration. By introduc-

ing 2M slack variables b = [b1, · · · , b2M ], the phase shift optimization problem can be

rewritten as

min
θ,b≥0

f (θ)− λt
∑2M

m=1
bm

s.t. gi (θ) ≥ Di, i = 1, · · · , I,∣∣θtm∣∣2 − 2Re(θ∗mθtm) ≤ bm − 1, ∀m,

|θm|2 ≤ 1 + bm+M , ∀m,

(2.15)

where λt is the regularization factor to control the feasibility of the constraints in the

t-th iteration. After some transformations, the optimization problem in (2.15) can be

solved by CVX, and the detailed procedure to solve this problem, which can be found
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in references [75], [76], is omitted here for brevity.

(9) Barrier function penalty [77]–[79] : The unit modulus constraint can be equiva-

lently written as tr
(
θθH

)
= M and ∥θ∥∞ ≤ 1. Since ∥θ∥∞ is non-differentiable, the lp

norm with large p can be used to approximate it, i.e., ∥θ∥∞ = lim
p→∞

∥θ∥p. To deal with

the constraint ∥θ∥p ≤ 1, the log barrier function F (x) (which is self-concordant and can

converge quickly) can be used to approximate the penalty of violating the lp constraint,

as

F (x) =

 −
1
κ ln(x), x > 0,

∞, x ≤ 0,
(2.16)

where κ > 0 is the barrier function penalty factor, which does not affect the solution of the

approximation problem due to the fact that this merely scales the objective function. For

simplicity, constraint C1 is ignored. Accordingly, the phase shift optimization problem

can be reformulated as

min
θ

G (θ) = f (θ) + F
(
1− ∥θ∥p

)
s.t. tr

(
θθH

)
= M.

(2.17)

Due to the non-convex constraint, the optimization problem in (2.17) is still non-convex.

To circumvent this issue, a possible solution is to utilize the gradient and projection

method, which provides a low complexity but suboptimal solution. Specifically, the

gradient of the objective function G (θ) can be formulated as

∇θG(θ) =
∥θ∥1−p

p

2κ
(
1− ∥θ∥p

)ξ +∇θf(θ), (2.18)

where ξ = [θ1|θ1|p−2, · · · , θM |θM |p−2]T .

Since the problem formulation in (2.17) is a minimization problem, the search direc-

tion is opposite to the direction of the gradient in (2.18). Let θ(i) denote θ at the i-th

iteration, the search direction in the i-th iteration is d
(i)
gd = −∇θG(θ)|θ=θ(i) Then, this
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search direction d
(i)
gd is projected onto the tangent plane of tr

(
θθH

)
= M , as

d(i)
p = d

(i)
gd −

(
d
(i)
gd

)T (
θ(i)
)∗

θ(i)∥∥θ(i)
∥∥2 . (2.19)

Then, the update of θ in the (i+ 1)-th iteration is

θ(i+1) = (1− α⋆)θ(i) + α⋆
√
M

d
(i)
p∥∥∥d(i)
p

∥∥∥2 , (2.20)

where the parameter α⋆ is obtained by

α⋆ = argmax
α

f

(1− α)θ(i) + α
√
M

d
(i)
p∥∥∥d(i)
p

∥∥∥2
 . (2.21)

(10) Accelerated Projected Gradient (APG) [80]–[82] : For simplicity, constraint C1

is ignored and only the optimization of the phase shifts is considered. A projection

operator PS1 is defined as

θ̂ = PS1(θ)⇔ θ̂m =

 θm/|θm|, if θm ̸= 0

1, otherwise.
(2.22)

Then, the update of the phase shifts in the (i+ 1)-th iteration is given by

θi+1 = PS1

(
zi −

1

γi
∇θf (θ)|θ=zi

)
, (2.23)

where zi = θi + αi (θi − θi−1), and αi is updated as

αi =
ξi−1 − 1

ξi
, ξi =

1 +
√
1 + 4ξ2i−1

2
. (2.24)

In (2.23), γi is obtained by using the backtracking line search method [83].

(11) Gradient descent approach [84], [85] : When the objective function f(θ) is differ-
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entiable, the optimization problem can be solved by using the gradient descent method.

Specifically, let θt be the phase shift vector at the t-th iteration. Then, the optimization

variable θ at the (t+ 1)-th iteration is updated as

θt+1 = exp
(
j arg

(
θt − µ∇θf (θ)|θ=θt

))
, (2.25)

where µ is the step size and the arg operator is used for satisfying the unit-modulus

constraint.

(12) Heuristic methods [86]–[89] : When the objective function is analytically involv-

ing, the above-mentioned algorithms may not be applicable or the computation of the

gradient may be time-consuming. Possible solutions to circumvent this issue include

the use of heuristic methods such the Genetic Algorithms (GA) or the Particle Swarm

Optimization (PSO) methods. More details can be found in [86]–[89].

(13) Deep reinforcement learning [41], [90], [91] : Machine learning methods can also

be applied to optimize the phase shifts of the RIS. A suitable approach is the use of

deep reinforcement learning. In fact, unlike supervised learning methods that require a

large number of training labels, deep reinforcement learning based methods do not need

training labels and can learn and operate in an online manner. Examples of application

of deep reinforcement learning to the optimization of RIS-aided communications can be

found in [41], [90], [91].

Simulation results: Fig. 2.1 illustrates the performance of the different algorithms

discussed in this article in terms of sum rate and Central Processing Unit (CPU) run

time. All algorithms are represented by the numbers they are introduced above. The

simulation setups: BS with N = 10 antennas communicates with K = 4 users via RIS

equipped with M = 100 reflection elements at SNR of 5 dB. It can be seen that most of

the algorithms for which a closed-form solution for the phase shifts can be found at each

iteration (algorithms 3-5, 7, 9-11) provide a high sum rate with a low CPU time (around

100 seconds). However, the time-consuming algorithms (algorithms 1,2,6,8), which are
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implemented by using CVX, are more flexible to address optimization problems with

complex constraints, such as Quality of Service (QoS) constraints.
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Figure 2.1: Sum rate and CPU time consumption of different algorithms.

2.2.2 Majorization-Minimization Method

The aim of the MM method [92], [93] is to find an easy-to-solve surrogate problem

with a surrogate objective function, then optimize it instead of the original complex

one. Specifically, suppose that f(x) is the original objective function which needs to be

minimized over a convex set Sx. Let f̃(x|xt) denote a real-valued function of variable x

with given xt. The function f̃(x|xt) is said to majorize f(x) at a given point xt if they

satisfy the following assumptions [93]:

Assumption A

(A1) :f̃(xt|xt) = f(xt), ∀xt ∈ Sx.

(A2) :f̃(x|xt) ≥ f(x),∀x,xt ∈ Sx.

(A3) :f̃
′
(x|xt;d)|x=xt = f

′
(xt;d),∀d with xt + d ∈ Sx.

(A4) :f̃(x|xt) is continuous in x for ∀xt−1 ∈ Sx.
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where f
′
(xt;d), defined as the direction derivative of f(xt) in the direction d, is

f
′
(xt;d) = lim

λ→0

f(xt + λd)− f(xt)

λ
.

The Assumptions (A1)-(A3) indicate that the surrogate function f̂(x,xt−1) is a local

upper bound of the original function f(x) around the feasible point xt−1. The Assump-

tion (A3) is a consistency condition for the first-order directional derivative.

To ensure the convergence of the MM algorithm, the following conditions also need

to be fulfilled [94].

Assumption: B

(B1) : The feasible set Sx and the channel realizations are bounded.

(B2) : The functions f̂(x|xt−1) and f(x), their derivatives, and their second-order

derivatives are uniformly bounded.

2.2.3 Successive Convex Approximation Method

The surrogate functions employed by the SCA method do not need to be upper bound

of the original function but they only need to preserve the first-order properties of the

original function. Accordingly, the surrogate function, which is denoted by f̂(·), needs

to satisfy Assumption B and the following assumptions [95].

Assumption C

(C1) : f̂
(
x|xt−1

)
is strongly convex in x for ∀xt−1 ∈ Sx.

(C2) : f̂(xt−1|xt−1) = f(xt−1), ∀xt−1 ∈ Sx.

(C3) : ∇xf̂(x
t−1|xt−1) = ∇xf(x

t−1), ∀x,xt−1 ∈ Sx,

where ∇xf̂(·) denotes the gradient operation applied to complex-valued functions [96].
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Assumption C cannot ensure that the sequences of the approximate objective values

are monotonically decreasing at each iteration. To guarantee the convergence of the

algorithm, however, the variables can be updated, at each iteration, by choosing an

appropriate step size that ensures that the objective value decreases. Based on the

above assumptions, the proximal gradient-like approximation is chosen to construct the

surrogate function, which is [97]

f̂
(
x|xt−1

)
= f

(
xt−1

)
+∇xf(x

t−1)T(x− xt−1) +
τ t

2
||x− xt−1||2, (2.26)

where τ t can be any positive number.



Chapter 3

Transmission Design under

Perfect Channel State

Information

This chapter considers an RIS-assisted multigroup multicast transmission system in

which a multiple-antenna BS transmits independent information data streams to multiple

groups, and the single-antenna users in the same group share the same information and

suffer from interference from those signals sent to other groups. The main contributions

of this chapter are summarized as follows:

• To the best of the knowledge, this is the first work exploring the performance ben-

efits of deploying an RIS in multigroup multicast communication systems. Specifi-

cally, the precoding matrix and the reflection coefficient vector are jointly optimized

to maximize the sum rate of all the multicasting groups, where the rate of each

multicasting group is limited by the minimum rate of users in the group. This

formulated problem is much more challenging than previous problems considered

in unicast systems since the considered objective function is non-differentiable and

complex due to the nature of the multicast transmission mechanism. In addi-

31
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tion, the highly coupled variables and complex sum rate expression aggravates the

difficulty to solve this problem.

• The formulated problem is solved efficiently in an iterative manner based on the

alternating optimization method under the MM algorithm framework. Specifically,

the original non-concave objective function is firstly minorized by a surrogate func-

tion which is biconcave of precoding matrix and reflection coefficient vector, and

then apply the alternating optimization method to decouple those variables. At

each iteration of the alternating optimization method, the subproblem correspond-

ing to each set of variables is reformulated as an SOCP problem by introducing

auxiliary variables, which can help to transform the non-differentiable concave

objective function into a series of convex constraints.

• To further reduce the computational complexity, the MM method is used to derive

closed-form solutions of each subproblem, instead of solving the complex SOCP

problems with a high complexity at each iteration. Specifically, the log-sum-exp

lower bound is firstly applied to approximate the non-differentiable concave objec-

tive function, yielding a differentiable concave function. Then, a tractable surro-

gate objective function of the log-sum-exp function is derived, based on which the

closed-form solutions of each subproblem is obtained. Finally, it is proved that the

proposed algorithm is guaranteed to converge and the solution sequences generated

by the algorithm converge to KKT points.

• Finally, the simulation results demonstrate the superiority of the RIS-assisted

multigroup multicast system over conventional massive MIMO systems in terms

of the spectral efficiency and energy efficiency. The convergence and the low com-

plexity of the proposed algorithms have also been illustrated.
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Figure 3.1: An RIS-aided multigroup multicast communication system.

3.1 System Model

3.1.1 Signal Transmission Model

As shown in Fig. 3.1 1, an RIS-aided multigroup multicast MISO communication system

is considered. There is a BS with N transmit antennas serving G multicasting groups.

Users in the same group share the same information data and the information data

destined for different groups are independent and different, which means there exists

inter-group interference. Let us define the set of all multicast groups by G = {1, 2, ..., G}.

Assuming that there areK(K ≥ G) users in total, the user set belonging to group g ∈ G is

denoted as Kg and each user can only belong to one group, i.e., Ki∩Kj=∅,∀i, j ∈ G, i ̸= j.

The transmit signal at the BS is

x =
G∑

g=1

fgsg, (3.1)

where sg is the desired independent Gaussian data symbol of group g and follows

E[|sg|2] = 1 as well as fg ∈ CN×1 is the corresponding precoding vector that maps the

scalar symbol sg to the N -antenna BS. Let us denote the collection of all precoding vec-

tors as F =[f1, · · · , fG] ∈ CN×G satisfying the power constraint SF = {F | Tr
(
FHF

)
≤

1It is better that the physical locations of multiple users in multicast group are adjacent, otherwise
the interference between groups will be severe.
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PT}, where PT is the maximum available transmit power at the BS.

In the multigroup multicast system, an RIS is employed with the goal of enhancing

the received signal strength of users by reflecting signals from the BS to the users. It is

assumed that the signal power of the multi-reflections (i.e., reflections more than once)

on the RIS is ignored due to the severe path loss [12]. Denote M as the number of the

reflection elements on the RIS, then the reflection coefficient matrix of the RIS is modeled

by a diagonal matrixE = diag([e1, · · · , eM ]T) ∈ CM×M , where |em|2 = 1,∀m = 1, · · · ,M

[12]. Please note that the design of the practical reflection amplitude which was modeled

as a function of the phase shifts [98] is more complex and will be investigated in future

work. The channels spanning from the BS to user k, from the BS to the RIS, and

from the RIS to user k are denoted by hd,k ∈ CN×1, Hdr ∈ CM×N , and hr,k ∈ CM×1,

respectively.

It is assumed that the CSI is perfectly known at the BS. The BS is responsible for

designing the reflection coefficients of the RIS and sends them back to the RIS controller

as shown in Fig. 3.1. As a result, the received signal of user k ∈ Kg belonging to group

g is

yk = (hH
d,k + hH

r,kEHdr)

G∑
g=1

fgsg + nk, (3.2)

where nk is the received noise at user k, which is an Additive White Gaussian Noise

(AWGN) following Circularly Symmetric Complex Gaussian (CSCG) distribution with

zero mean and variance σ2
k. Then, its achievable data rate (bps/Hz) is given by

Rk = log2

(
1 +

|(hH
d,k + hH

r,kEHdr)fg|2∑G
i ̸=g |(hH

d,k + hH
r,kEHdr)fi|2 + σ2

k

)
. (3.3)

Denoting by Hk =

 diag(hH
r,k)Hdr

hH
d,k

 ∈ C(M+1)×N the equivalent channel spanning

from the BS to user k and by e = [e1, · · · eM , 1]T ∈ C(M+1)×1 the equivalent reflection
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coefficient vector, then

|(hH
d,k + hH

r,kEHdr)fg|2 = |eHHkfg|2, (3.4)

G∑
i ̸=g

|(hH
d,k + hH

r,kEHdr)fi|2 =
G∑
i ̸=g

|eHHkfi|2 + σ2
k. (3.5)

Note that e belongs to the set Se = {e | |em|2 = 1, 1 ≤ m ≤ M, eM+1 = 1}. Then, the

data rate expression in (3.3) can be rewritten in a compact form as

Rk (F, e) = log2

(
1 +

|eHHkfg|2∑G
i ̸=g |eHHkfi|2 + σ2

k

)
. (3.6)

Due to the nature of the multicast mechanism, the achievable data rate of group g is

limited by the minimum user rate in this group and is defined as follows

min
k∈Kg

{Rk (F, e)} . (3.7)

3.1.2 Problem Formulation

This chapter aims to jointly optimize the precoding matrix F and reflection coefficient

vector e to maximize the sum rate of the whole system, which is defined as the sum rate

achieved by all groups. Mathematically, the optimization problem is formulated as

max
F,e

F (F, e) =
G∑

g=1

min
k∈Kg

{Rk (F, e)}


s.t. F ∈ SF , e ∈ Se. (3.8)

Problem (3.8) is a non-convex problem and difficult to solve since the objective func-

tion F (F, e) is non-differentiable and non-concave, while the unit-modulus constraint

set Se is also non-convex. In the following, two efficient algorithms are proposed based

on the MM algorithm framework to solve Problem (3.8).
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3.2 SOCP-based MM method

This section proposes an SOCP-based MM method to solve Problem (3.8). Specifically,

under the MM algorithm framework, the non-convex objective function is first handled by

introducing its concave surrogate function. Then, the alternating optimization method is

adopted to solve the subproblems corresponding to different sets of variables alternately.

Note that F (F, e) is a composite function which is the linear combinations of some

pointwise minimum with non-concave subfunction Rk (F, e). The non-concave property

of Rk (F, e) is first tackled. To this end, the following lemma is introduced.

Lemma 1. Let {Ft, et} be the solutions obtained at iteration n − 1, then Rk (F, e) is

minorized by a concave surrogate function R̃k

(
F, e|Ft, et

)
defined by

R̃k

(
F, e|Ft, et

)
= constk + 2Re

{
ake

HHkfg
}
− bk

G∑
i=1

|eHHkfi|2

≤ Rk (F, e) , (3.9)

where

ak =
(f tg)

HHH
k e

t∑G
i ̸=g |(et)HHkf

t
i |2 + σ2

k

,

bk =
|(et)HHkf

t
g|2(∑G

i ̸=g |(et)HHkf
t
i |2 + σ2

k

)(∑G
i=1 |(et)HHkf

t
i |2 + σ2

k

) ,
constk = Rk

(
Ft, et

)
− bkσ

2
k − bk

(
G∑
i=1

|(et)HHkf
t
i |2 + σ2

k

)
,

at fixed point {Ft, et}.

Proof: Please refer to Appendix A.1. ■

Based on the above lemma, Problem (3.8) can be transformed into the following
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surrogate problem:

max
F,e

F̃
(
F, e|Ft, et

)
=

G∑
g=1

min
k∈Kg

{
R̃k

(
F, e|Ft, et

)}
s.t. F ∈ SF , e ∈ Se. (3.10)

It notes that R̃k

(
F, e|Ft, et

)
is biconcave of F and e [99] due to the fact that

R̃k

(
F|Ft

)
= R̃k

(
F, e|Ft, et

)
with given e is concave of F and R̃k

(
e|et

)
= R̃k

(
F, e|Ft, et

)
with given F is concave of e. This biconvex problem enables us to use the AO method

to alternately update F and e.

3.2.1 Optimizing the Precoding Matrix

This subsection aims to optimize the precoding matrix F with given e. With some

manipulations, R̃k

(
F, e|Ft, et

)
in (3.9) can be shown to be a quadratic function of F:

R̃k

(
F|Ft

)
= constk + 2Re

{
ake

HHkfg
}
− bk

G∑
i=1

|eHHkfi|2

= constk + 2Re
{
Tr
(
CH

k F
)}
− Tr

(
FHBkF

)
, (3.11)

where Bk = bkH
H
k ee

HHk, C
H
k = aktge

HHk, and tg ∈ RG×1 is a selection vector in which

the gth element is equal to one and all the other elements are equal to zero.

By using (3.11), the subproblem of Problem (3.10) for the optimization of F is

max
F

G∑
g=1

min
k∈Kg

{
constk + 2Re

{
Tr
(
CH

k F
)}
− Tr

(
FHBkF

)}
s.t. F ∈ SF . (3.12)

The pointwise minimum expressions in the objective function of Problem (3.12) is then
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tackled by introducing auxiliary variables γ = [γ1, ..., γG]
T, as follows

max
F,γ

G∑
g=1

γg

s.t. F ∈ SF ,

constk + 2Re
{
Tr
(
CH

k F
)}
− Tr

(
FHBkF

)
≥ γg,∀k ∈ Kg,∀g ∈ G. (3.13)

Problem (3.13) is an SOCP problem and the globally solution can be obtained by the

CVX [62] solver, such as MOSEK [100].

3.2.2 Optimizing the Reflection Coefficient Vector

This subsection focuses on optimizing the reflection coefficient vector e with given F,

then R̃k

(
e|et

)
can be rewritten as

R̃k

(
e|et

)
= constk + 2Re

{
aHk e

}
− eHAke, (3.14)

where Ak = bkHk
∑G

i=1 fif
H
i HH

k and ak = akHkfg.

Upon replacing the objective function of Problem (3.10) by (3.14), the subproblem

for the optimization of e is given by

max
e

G∑
g=1

min
k∈Kg

{
constk + 2Re

{
aHk e

}
− eHAke

}
s.t. e ∈ Se. (3.15)

Also introducing auxiliary variables κ = [κ1, ..., κG]
T, Problem (3.15) is equivalent to

max
e,κ

G∑
g=1

κg

s.t. e ∈ Se,

constk + 2Re
{
aHk e

}
− eHAke ≥ κg, ∀k ∈ Kg,∀g ∈ G. (3.16)



Chapter 3. Transmission Design under Perfect Channel State Information 39

The above problem is still non-convex due to the non-convex unit-modulus set Se.

To address this issue, it is replaced with a relaxed convex one as

Se−relax = {eHdiag(im)e ≤ 1, ∀m = 1, · · · ,M, eM+1 = 1},

where im ∈ R(M+1)×1 is a selection vector whose mth element is equal to one and all

the other elements are equal to zero. Let us denote by ê1 the optimal solution of the

following relaxed version of the SOCP problem, i.e.,

ê1 = argmax
e

G∑
g=1

γg

s.t. e ∈ Se−relax,

constk + 2Re
{
aHk e

}
− eHAke ≥ κg,∀k ∈ Kg,∀g ∈ G. (3.17)

Then, the locally optimal solution e in the nth iteration is

et+1 =


ê2, if F

(
Ft+1, ê2|Ft, et

)
≥ F

(
Ft+1, et|Ft, et

)
,

et, otherwise,

(3.18)

where

ê2 = exp

{
j∠

(
ê1

[ê1]M+1

)}
, (3.19)

and symbol [ê1]m denotes the mth element of the vector ê1. Here the exp {·} and the

∠ (·) are both element-wise operations.

3.2.3 Algorithm Development

Based on the above analysis, Algorithm 3.1 summarizes the alternating update process

between precoding matrix F and reflection coefficient vector e to maximize the sum rate

of the whole system.
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Algorithm 3.1: SOCP-based MM algorithm

Require: Initialize F0 and e0, and t = 0.
1: repeat
2: Calculate Ft+1 by solving Problem (3.13) with given et;
3: Calculate et+1 by solving Problem (3.17) with given Ft+1;
4: t← t+ 1;
5: until The value of function F (F, e) in (3.8) converges.

3.2.3.1 Complexity Analysis

This subsection analyzes the computational complexity of Algorithm 3.1, which mainly

comes from optimizing F in the SOCP problem in (3.13) and optimizing e in the SOCP

problem in (3.17).

According to [101], the complexity of solving an SOCP problem, with Msocp sec-

ond order cone constraints where the dimension of each is Nsocp, is O(NsocpM
3.5
socp +

N3
socpM

2.5
socp). Problem (3.13) contains one power constraint with dimension NG and

K rate constraints with dimension NG. Therefore, the complexity of solving Problem

(3.13) per iteration is O(NG +N3G3 +NGK3.5 +N3G3K2.5). Problem (3.17) has M

constant modulus constraints with dimension one for sparse vector im and K rate con-

straints with dimension M +1. Therefore, the complexity of solving Problem (3.17) per

iteration is O(M3.5 +M2.5 + (M +1)K3.5 + (M +1)3K2.5). Therefore, the approximate

complexity of Algorithm 3.1 per iteration is O(N3G3K2.5 +M3.5 +MK3.5).

3.2.3.2 Convergence Analysis

The following theorem shows the convergence and solution properties of Algorithm 3.1.

Theorem 1. The objective function value sequence {F
(
Ft, et

)
} generated by Algorithm

3.1 is guaranteed to converge, and the optimal solution converges to a Karush-Kuhn-

Tucker (KKT) point.

Proof: Please refer to Appendix A.2. ■
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3.3 Low-Complexity MM Method

As seen in Algorithm 3.1, two SOCP problems need to be solved in each iteration, which

incurs a high computational complexity. This section aims to derive a low-complexity

algorithm containing closed-form solutions.

Since mink∈Kg

{
R̃k

(
F, e|Ft, et

)}
in Problem (3.10) is non-differentiable, it is approx-

imated as a smooth function by using the smooth log–sum–exp lower-bound [102]

min
k∈Kg

{
R̃k

(
F, e|Ft, et

)}
≈ fg (F, e)

= − 1

µg
log
(∑
k∈Kg

exp
{
−µgR̃k

(
F, e|Ft, et

)})
, (3.20)

where µg > 0 is a smoothing parameter which satisfies

fg (F, e) ≤ min
k∈Kg

{
R̃k

(
F, e|Ft, et

)}
≤ fg (F, e) +

1

µg
log (|Kg|) . (3.21)

Theorem 2. fg (F, e) is biconcave of F and e.

Proof: According to [79], if the Hessian matrix of a function is semi-negative definite,

that function is concave. In particular, the Hessian matrix of the exp-sum-log function

f (x) = − log
(∑

k∈Kg
exp {−x}

)
is derived as

∇2f(x) = − 1

(1zT)2
((
1Tz

)
diag(z)− zzT

)
, (3.22)

where z = (ex1 , . . . , exN ). Then for all v, it has

vT∇2f(x)v = − 1

(1zT)2

( N∑
n=1

zn

)(
N∑

n=1

v2nzn

)
−

(
N∑

n=1

vnzn

)2


= −
(
bTbaTa−

(
aTb

)2) ≤ 0, (3.23)
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where the components of vectors a and b are an = vn
√
zn and bn =

√
zn, respectively.

The inequality follows from the Cauchy-Schwarz inequality. Then ∇2f(x) ⪯ 0, and the

log-sum-exp function f (x) is concave. Therefore, − 1
µg

log
(∑

k∈Kg
exp

{
−µgR̃k

})
is an

increasing and concave function w.r.t. R̃k. Recall that R̃k

(
F, e|Ft, et

)
is biconcave of F

and e. Finally, according to the composition principle [79], fg (F, e) is biconcave of F and

e. The proof is complete. ■

Large µg leads to high accuracy of the approximation, but it also causes the prob-

lem to be nearly ill-conditioned. When µg is chosen appropriately, Problem (3.10) is

approximated as

max
F,e

G∑
g=1

fg (F, e)

s.t. F ∈ SF , e ∈ Se. (3.24)

This problem is still a biconvex problem of F and e, which enables us to alternately

update F and e by adopting the alternating optimization method.

3.3.1 Optimizing the Precoding Matrix

Given e, the subproblem of Problem (3.24) for the optimization of F is

max
F

G∑
g=1

fg (F)

s.t. F ∈ SF . (3.25)

Even fg (F) is a concave and continuous function of precoding matrix F, it is still very

complex and difficult to be optimized directly. In this subsection, the surrogate function

of fg (F) in the MM algorithm framework is given in the following theorem.

Theorem 3. Since fg (F) is twice differentiable and concave, fg (F) is minorized at any
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fixed Ft with a quadratic function f̃g(F|Ft) satisfying Assumptions (A1)-(A4), as follows

f̃g(F|Ft) = 2Re
{
Tr
(
UH

g F
)}

+ αgTr
(
FHF

)
+ consFg, (3.26)

where

Ug =
∑
k∈Kg

gk(F
t)(Ck −BH

k F
t)− αgF

t, (3.27)

gk(F
t) =

exp
{
−µgR̃k

(
Ft
)}

∑
k∈Kg

exp
{
−µgR̃k (Ft)

} , k ∈ Kg, (3.28)

αg = −max
k∈Kg

{
bke

HHkH
H
k e
}
− 2µgmax

k∈Kg

{tpk} , (3.29)

tpk = PTb
2
k|eHHkH

H
k e|2 + ||Ck||2F + 2

√
PT||BkCk||F , (3.30)

consFg = fg(F
t) + αgTr

(
(Ft)HFt

)
− 2Re

{
Tr
(
DH

g F
t
)}

. (3.31)

Proof: Please refer to Appendix A.3. ■

Upon replacing the objective function of Problem (3.25) with (3.26), the following

surrogate problem is obtained

max
F

G∑
g=1

(
2Re

{
Tr
(
UH

g F
)}

+ αgTr
(
FHF

)
+ consFg

)
s.t. F ∈ SF . (3.32)

The optimal Ft+1 could be obtained by introducing a Lagrange multiplier τ ≥ 0

associated with the power constraint, yielding the Lagrange function

L(F,τ) = 2Re

Tr

 G∑
g=1

UH
g F

+

G∑
g=1

αgTr
(
FHF

)
+

G∑
g=1

consFg − τ
(
Tr
(
FHF

)
− PT

)
.

(3.33)
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By setting the first-order derivative of L(F,τ) w.r.t. F∗ to zero, it has

∂L(F)
∂F∗ = 0.

Then the globally optimal solution of F in iteration t can be derived as

Ft+1 =
1

τ −
∑G

g=1 αg

G∑
g=1

Ug. (3.34)

By substituting (3.34) into the power constraint, one has

Tr

((∑G
g=1Ug

)H (∑G
g=1Ug

))
(τ −

∑G
g=1 αg)2

≤ PT. (3.35)

It is obvious that the left hand side of (3.35) is a decreasing function of τ .

• If the power constraint inequality (3.35) holds when τ = 0, then

Ft+1 =
−1∑G
g=1 αg

G∑
g=1

Ug. (3.36)

• Otherwise, there must exist a τ > 0 that (3.35) holds with equality, then

Ft+1 =

√√√√√ PT

Tr

((∑G
g=1Ug

)H (∑G
g=1Ug

)) G∑
g=1

Ug. (3.37)

3.3.2 Optimizing the Reflection Coefficient Vector

Given F, the subproblem of Problem (3.24) for the optimization of e is

max
e

G∑
g=1

fg (e)

s.t. e ∈ Se. (3.38)
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Upon adopting the MM algorithm framework, it firstly needs to find a minorizing func-

tion of fg (e) and denotes it as f̂g(e|et). Since Se is a non-convex set, Assumption (A3)

should be modified so as to claim stationarity convergence [103], [104]:

f̂
′
g(e|et;d)|e=et = f

′
g(e

t;d),∀d ∈ TSe(e
t),

where TSe(e
t) is the Boulingand tangent cone of Se at et. Therefore f̂g(e|et) is given in

the following theorem.

Theorem 4. Since fg (e) is twice differentiable and concave, fg (e) is minorized at any

fixed et with a function f̂g(e|et) satisfying Assumptions (A1)-(A4), as follows

f̃g(e|et) = 2Re
{
uH
g e
}
+ consEg, (3.39)

where

ug =
∑
k∈Kg

gk(e
t)(ak −AH

k e
t)− βge

t, (3.40)

gk(e
t) =

exp
{
−µgR̃k

(
et
)}

∑
k∈Kg

exp
{
−µgR̃k (et)

} , k ∈ Kg, (3.41)

βg = −maxk∈Kg {λmax(Ak)} − 2µgmaxk∈Kg {tp2k} , (3.42)

tp2k = ||ak||22 + (M + 1)λmax(AkA
H
k ) + 2||Akak||1, (3.43)

consEg = fg(e
t) + 2(M + 1)βg − 2Re

{
dH
g e

t
}
. (3.44)

Proof: Please refer to Appendix A.4. ■

Upon replacing the objective function of Problem (3.38) by (3.39), it obtains the

following surrogate problem as

max
e

G∑
g=1

(
2Re

{
uH
g e
}
+ consEg

)
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s.t. e ∈ Se. (3.45)

Then, the globally optimal solution of e at the nth iteration is

et+1 = exp

j∠

 G∑
g=1

ug

 /

 G∑
g=1

ug


M+1

 , (3.46)

where exp {j∠ (·)} is an element-wise operation.

3.3.3 Low-Complexity Algorithm Design

This section adopts alternating optimization algorithm to alternately optimize precod-

ing matrix F and reflection coefficient vector e. Note that the tightness of the lower

bounds αg in (3.29) and βg in (3.42) affects the performance of the convergence speed.

Here, SQUAREM [105] is adopted to accelerate the convergence speed of the proposed

algorithm, which is summarized in Algorithm 3.2.

LetMF (·) denote the nonlinear fixed-point iteration map of the MM algorithm of F

in (3.34), i.e., Ft+1 =MF (F
t), and Me(·) of e in (3.46), i.e., et+1 =Me(e

t). PS(·) is

project operation to force wayward points to satisfy their nonlinear constraints. For the

power constraint in Problem (3.32), the projection can be done by using the function

(·)
||·||F ||F2||F to the solution matrix, e.g., PS(X) = (X)

||X||F ||F2||F . For the unit-modulus

constraints in Problem (3.45), it can be obtained by using function exp {j∠(·)} element-

wise to the solution vector. Steps 10 to 13 and steps 21 to 24 are to maintain the ascent

property of the proposed algorithm.

3.3.4 Complexity Analysis

The computational complexity of Algorithm 3.2 is composed of the nonlinear fixed-point

iteration maps MF (·) and Me(·). In MF (·), the computational complexity of Ug in

(3.30) mainly comes from gk(F
t) in (3.28) and αg in (3.29). Firstly, the computational

complexity of gk(F
t) is of order O(|Kg|(2MNG + 3NG)) since there are |Kg| R̃k

(
Ft
)
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Algorithm 3.2: Low-complexity MM algorithm

Require: Initialize F0 and e0, and t = 0.
1: repeat
2: Set e = et;
3: F1 =MF (F

t);
4: F2 =MF (F1);
5: J1 = F1 − Ft;
6: J2 = F2 − F1 − J1;
7: ω = − ||J1||F

||J2||F ;

8: Ft+1 = −PS(Ft − 2ωJ1 + ω2J2);
9: while F

(
Ft+1

)
< F

(
Ft
)
do

10: ω = (ω − 1)/2;
11: Ft+1 = −PS(Ft − 2ωJ1 + ω2J2);
12: end while
13: Set F = Ft+1;
14: e1 =Me(e

t);
15: e2 =Me(e1);
16: j1 = e1 − et;
17: j2 = e2 − e1 − j1;
18: ω = − ||j1||F

||j2||F ;

19: et+1 = −PS(et − 2ωj1 + ω2j2);
20: while F

(
et+1

)
< F

(
et
)
do

21: ω = (ω − 1)/2;
22: et+1 = −PS(et − 2ωj1 + ω2j2);
23: end while
24: n← n+ 1;
25: until The value of function F (F, e) in (3.8) converges.

in (3.9) of order O(2MNG+ 3NG). Then each tpk in (3.30) is of complexity O(4N3 +

2N2K−NK+4MN) neglecting the lower-order terms, thus αg is of order O(|Kg|(4N3+

2N2K+4MN)). Therefore, the approximate complexity ofMF (·) isO(4N3K+2N2K2+

2MNGK) neglecting the lower-order terms. InMe(·), the computational complexity of

gk(e
t) in (3.41) is the same as gk(F

t), which is of complexity O(|Kg|(2MNG + 3NG)).

Furthermore, the eigenvalue operations λmax(Ak) and λmax(AkA
H
k ) of order O((M +

1)3) contribute to the main complexity of calculating βg in (3.42), which is of order

O(|Kg|(M+1)3). Neglecting the lower-order terms, the approximate complexity ofMe(·)

is O(2MNGK +K(M +1)3). Eventually, the approximate complexity of Algorithm 3.2

per iteration is O(4N3K+2N2K2+3MNGK+K(M +1)3), neglecting the lower-order
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terms.

The computational complexity of the proposed two algorithms are summarized and

compared in Table 3-A. Comparing with Algorithm 3.1 based on SOCP, Algorithm 3.2

has a lower computational complexity and requires less CPU time, which will be shown

in the following section.

3.3.5 Convergence Analysis

In each iteration, the MM algorithm is adopted to update each set of variables. The

monotonicity of the MM algorithm has been proved in [93] and [106]. In the following,

it claims the monotonicity of Algorithm 3.2. At the nth iteration, with given et, it has

fg(F
t, et) = f̃g(F

t,Ft) ≤ f̃g(F
t+1,Ft) ≤ fg(F

t+1, et),

where the first equality follows from (A1), the first inequality follows from (3.32), and

the second one follows from (A2). Subsequently, with given Ft+1, it is straightforward

to have

fg(F
t+1, et) = f̂g(e

t, et) ≤ f̂g(e
t+1, et) ≤ fg(F

t+1, et+1).

Therefore, the objective function values {fg(Ft+1, et+1)} generated during the procedure

of the AO algorithm are monotonically increasing.

Let {Ft} be the sequence generated by the proposed algorithm. Since SF is a convex

set, every limit point of {Ft} is a d-stationary point of Problem (3.8), and the limit point

F∞ satisfies

f
′
g(F

∞;d) ≤ 0, ∀d with F∞ + d ∈ SF .

The proof of converging to a d-stationary point can be found in [107].

Let {et} be the sequence generated by the proposed algorithm. Since Se is a non-

convex set, every limit point of {et} is a B-stationary point of Problem (3.8), and the
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Table 3-A: Complexity analysis of the proposed MM algorithms
Algorithm Complexity

SOCP-based MM algorithm O(4N3K + 2N2K2 + 3MNGK +K(M + 1)3)

Low-complexity MM algorithm O(N3K3 +NK4.5 +N3K5.5 +MK3.5 +M3K2.5)

limit point e∞ satisfies

f
′
g(e

∞;d) ≤ 0, ∀d ∈ TSe(e
∞).

The proof of converging to a B-stationary point can be found in [103] and [104].

The property of the converged solution of Algorithm 3.2 is shown in the following

Theorem.

Theorem 5. The optimal solution converges to a KKT point of Problem (3.24).

Proof: Please refer to Appendix A.5. ■

3.4 Simulation Results and Discussions

3.4.1 Simulation Setup

100 1200

Users

 x (m)

 y (m)

RIS

20

 BS

Figure 3.2: The simulated system setup.

In this section, extensive simulation results are provided to evaluate the performance

of the proposed algorithms for an RIS-aided multigroup multicast MISO communication

system. All experiments are performed on a PC with a 1.99 GHz i7-8550U CPU and

16 GB RAM. Each point in the following figures is obtained by averaging over 100

independent trials. The simulated model in Fig. 5.2 2 is as follows: The BS locating at

22D scenario can be extended to 3D scenario.
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(0 m, 0 m) employs a uniform linear array (ULA) with N antennas and the RIS locating

at (100 m, 0 m) is equipped with a uniform planar array (UPA) with M reflecting

elements, where the width of the UPA is fixed at 4 and the length is M/4. All users are

randomly distributed in a circle centered at (120 m, 20 m) with radius 10 m.

The large-scale path loss is PL = −30 − 10α log10(d) dB, in which d is the link

length in meters and the path loss exponents for the BS-RIS link, the RIS-user link,

and the BS-user link are set as αBI = αIU = 2 and αBU = 4, respectively [108]. The

small-scale fading in [Hdr, {hd,k}∀k∈K] is assumed to follow Rayleigh distribution with

zero-mean and unit variance due to the fact of the large lengths of the BS-RIS link

and the BS-user link, while the small-scale fading in {hr,k}∀k∈K is assumed to be Rican

fading with Ricean factor κIU = 10. The Line-of-Sight (LoS) components are modeled

as the product of the steering vectors of the transceivers and the non-LoS components

are drawn from a Rayleigh distribution. Unless otherwise stated, the other parameters

are set as: Transmission bandwidth of 10 MHz, noise power density of −174 dBm/Hz,

convergence accuracy of ϵ = 10−6, smoothing parameter of µg = 100 [102], N = 4,

N = 16, G = |Kg| = 2.

RIS-Alg. 1 is used to represent Algorithm 3.1 and RIS-Alg. 2 to represent

Algorithm 3.2. For comparison purposes, the performance of the scheme without RIS is

showed, in which the precoding matrix is also obtained by the proposed two algorithms,

denoted as NRIS-Alg. 1 and NRIS-Alg. 2, respectively.

3.4.2 Baseline Schemes

Due to the hardware limitation, it is practically difficult to realize the continuous phase

shifts at each reflection element considered in this work. Hence, two baseline schemes

with 2 bit resolution are considered in the simulations to investigate the performance

loss of using finite resolution reflection elements. Specifically, with optimal eo generated
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by Algorithm 3.1 or Algorithm 3.2, the mth discrete phase shift can be obtained by

θom = arg min
θ∈Fθ

| exp {j∠θ} − eom|,

where Fθ = {0, 2π/B, ..., 2π(B−1)/B} and B = 22. Therefore, the two baseline schemes

are called as RIS-Alg. 1, 2 bit and RIS-Alg. 2, 2 bit.

Besides, RIS is advocated as an energy-efficient device for assisting wireless commu-

nication. Hence, it is necessary to compare the performance of the RIS-based and the

full-duplex Amplify-and-Forward (AF) relay-based multigroup multicast systems. To

ensure a fair comparison with the proposed RIS-aided system, the Relay benchmark

scheme, in which the relay is located at the same place of the RIS, has considered the

same users’ locations and channel realizations. Then, the sum rate maximization prob-

lem for the joint design of the precoder F and the relay beamforming W is given by

max
F,W

G∑
g=1

min
k∈Kg

Rrelay
k

s.t. ||F||2F ≤ PT

||WHdrF||2F + ||W||2Fσ2
r ≤ Prelay, (3.47)

where Rrelay
k is given by

log2

(
1 +

|(hH
d,k + hH

r,kWHdr)fg|2∑G
i ̸=g |(hH

d,k + hH
r,kWHdr)fi|2 + ||hH

r,kW||22σ2
r + σ2

k

)
.

Here, Prelay is the maximum available transmit power at the relay, σ2
r is the noise power

received by the relay, and the digital relay beamforming W is assumed to be a diagonal

matrix.

The AO method is adopted to solve the above problem. Basically, the SCA method

in [109] is extended to alternately update each variable in Problem (3.47).
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Figure 3.3: The performance comparison of different initialization, when N = 4, M = 16,
G = |Kg| = 2 and PT = 15 dBm.

3.4.3 Convergence of the Proposed Algorithms

Consider the fact of the nonconvexity of Problem (3.8), different initial points may result

in different locally optimal solutions obtained by the the proposed algorithms. By testing

30 randomly channel realizations, Fig. 3.3 illustrates the impact of the initialization on

the performance of the proposed algorithms. The initialization of RIS-Alg. 1 and RIS-

Alg. 2 are: F is initialized by uniformly allocating maximum transmit power, e is

initialized by setting each entry to 1. RIS-Alg. 1-EXH (RIS-Alg. 2-EXH) refers to the

best initial point of 1000 random initial points for each channel realization. It can be

seen that the sum rate of RIS-Alg. 1 (RIS-Alg. 2) is almost the same as that of RIS-Alg.

1-EXH (RIS-Alg. 2-EXH), implying that the simple uniform power allocation of F and

all-one e is a good option for the initialization.

Fig. 3.4 investigates the convergence behaviour of various algorithms in terms of the

iteration number and the CPU time when PT = 20 dBm. Fig. 3.4(a) compares conver-

gence speed in terms of the number of iterations. Only a small number of iterations are

sufficient for Algorithm 3.1 to converge for both RIS and NRIS schemes. The reason is

that the lower bound of the original objective function in (3.9) used in Algorithm 3.1 is

tighter than those in (3.26) and (3.39) used in Algorithm 3.2. Although Algorithm 3.2
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Figure 3.4: The convergence behaviour of different algorithms, when N = 4, M = 16,
G = |Kg| = 2 and PT = 20 dBm.

needs more iterations to converge, it has a fast convergence speed in terms of CPU time

shown in Fig. 3.4(b). This is because in each iteration of Algorithm 3.2, there always

exists closed-form solutions when designing precoding matrix and reflection coefficient

vector. In addition, the optimal objective function values generated by both algorithms

for RIS case and NRIS case are the same. Therefore, Algorithm 3.2 outperforms Algo-

rithm 3.1 due to the fact that the former can generate the same gain with the latter

while costing much less CPU running time

3.4.4 RIS vs AF Relay Performance Comparison

Fig. 3.5 shows the sum rate, the energy efficiency, and the corresponding CPU running

time under different maximum transmit power. The energy efficiency (bit/Hz/J) is

defined as the ratio of the sum rate to the power consumption, i.e.,

EE =
Sum Rate

Power
.

In the relay-aided system, it sets PT = Prelay. The linear power consumption model is

Power = η(pT + prelay) + NPt + 2MPr, where pT and prelay are the practical transmit

power of the BS and the relay, respectively. Following [110], the reciprocal of the power

amplifier efficiency is set as η = 1.2 and the circuit power consumption of the active
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Figure 3.5: The sum rate, energy efficiency, and CPU time versus the total transmit
power, when N = 4, M = 16 and G = |Kg| = 2.
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antennas at the BS and the relay as Pt = Pr = 200 mW. In the RIS-aided system, it

adopts Power = η(pT + prelay) + NPt +MPRIS , where the circuit power consumption

of the passive reflection elements is set as PRIS = 5 mW [111].

It can be seen in Fig. 3.5(a) that the RIS structure can obviously enhance the sum

rate performance of the system without consuming additional transmit power, comparing

with the system without the RIS structure. The performance loss of the ‘2 bit’ phase

shifter generated by the proposed two algorithms is much small compared with the

continuous phase shifter cases. However, the relay-aided system outperforms the RIS-

aided one, which is reasonable due the fact that the relay can amplify and forward the

received signals by using the relay transmit power Prelay. The EE of the RIS-aided system

shown in Fig. 3.5(b) is higher than the relay-aided one at high transmit power. The

reason behind this is twofold. On the one hand, as PT increases, the contribution of the

relay transmit power Prelay to the system sum rate gain becomes less. On the other hand,

the circuit power consumption of the relay is relatively high. Another observation from

Fig. 3.5(b) is that the EE of the relay system decreases with the number of the active

antennas deployed at the relay. From Fig. 3.5(c), it is observed that Algorithm 3.1 is

time-consuming and the time required is unacceptable when PT increases. In addition,

the computational complexity of the joint optimization of the precoder and the relay

beamforming is much higher than the RIS case when PT is less than 20 dBm due to

the fact that relay power constraint is complex. Finally, all the results obtained from

Fig. 3.5 verify the performance gains of the RIS-aided system in terms of the EE and

complexity.

3.4.5 RIS Performance Analysis

It is of practical significance to compare the communication performance of conventional

large-scale antenna arrays deployed at the BS and large-scale passive elements deployed

at the RIS, since RIS is regarded as an extension of massive MIMO antenna array. Fig.

3.6 illustrates the sum rate and the EE performance versus the numbers of antenna ele-
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Figure 3.6: The sum rate versus the numbers of reflection elements at the RIS M or
transmit antennas at the BS N , when G = |Kg| = 2 and PT = 20 dBm.

ments at the BS and reflection elements at the RIS when PT = 20 dBm. It is observed

from Fig. 3.6(a) that significant gains can be achieved by the RIS scheme over that

without an RIS even when M is as small as 4, and also that the spectral efficiency per-

formance gains achieved by increasing the number of reflection elements are much higher

than those achieved by increasing the number of transmit antennas. In addition, in Fig.

3.6(b), it is more energy-efficient to deploy an RIS with passive elements than installing

active large-scale antenna array with energy-consuming RF chains and power amplifiers.
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The trend of EE decreasing with the number of transmit antennas comes from the fact

that the circut energy consumption of more antennas outweighs the system sum rate

gain introduced by deploying more antennas. These simulation results demonstrate that

RIS technology is superior to traditional massive MIMO in terms of spectral efficiency

and energy efficiency.
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Figure 3.7: The sum rate versus the number of users per group, when N = 4, M = 16,
and PT = 20 dBm.

The above simulation results show that Algorithm 3.2 requires less CPU time than

Algorithm 3.1. Hence, Algorithm 3.2 is adopted to investigate the effect of an RIS on

the performance of a multicast communication system. Fig. 3.7 illustrates the sum rate

versus the number of users per group for various numbers of groups. It can be observed

from this figure that the sum rate for all values of G decreases with the increase of the

number of users per group. The reason is that the data rate for each group is limited by

the user with the worst channel condition. With the increase of the number of users per

group, the channel gain for the worst user becomes smaller.

Fig. 3.8 compares the effects of two improvements on the performance limit, namely,

increasing the number of antennas at the BS and the number of reflection elements at

the RIS, respectively. When |Kg| = 1, the multicasting system reduces to a unitcasting

system, in which the transmit antennas outperform the reflection elements in the aspect
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Figure 3.8: The sum rate versus the number of groups, when PT = 20 dBm.

of suppressing multi-user interference. While when |Kg| = 3, the sum rate of the system

increases slowly and tends to be stable with the increase of the number of multicasting

groups for a given number of antenna/reflection elements. This is because the multicast

transmission pays more gain to enhance the rate of the worst user in the multicast group

for ensuring fairness, at the expense of sum rate improvement.

3.5 Summary

In this chapter, it has shown the performance benefits of introducing an RIS to the multi-

group multicast systems. By carefully adjusting the reflection coefficients at the RIS,

the signal reflected by the RIS can enhance the strength of the signal received by the

user. It investigates the sum rate maximization problem by joint optimization of the pre-

coding matrix at the BS and reflection coefficient vector at the RIS, while guaranteeing

the transmit power constraint and the associated non-convex unit-modulus constraint

at the RIS. Under the MM algorithm framework, it derives the concave lower bound of

the original non-concave objective function, and then adopts alternating optimization

method to update variables in an alternating manner. Furthermore, this work proposed

a low-complexity algorithm under the MM algorithm framework in which there exists

closed-form solutions at each iteration. The simulation results have demonstrated the
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significant spectral and energy efficiency enhancement of the RIS in multigroup multicast

systems and that the proposed algorithm converges rapidly in terms of CPU time.



Chapter 4

Robust Transmission in the

Presence of Random Blockages

This chapter proposes a robust transmission strategy for application to RIS-aided mmWave

communication systems, which accounts for the channel uncertainties caused by the pres-

ence of random blockages while ensuring the fairness among the users. Typical methods

to handle the presence of channel uncertainties at the design stage are the outage con-

strained robust optimization and the worst-case robust optimization techniques [75].

However, both methods rely on the estimation of the instantaneous CSI. Furthermore,

the worst-case robust optimization method is conservative and hence suboptimal due to

the low probability of occurrence of the worst case. This chapter considers the design of

robust beamforming schemes for application to mmWave systems without relying on the

knowledge of instantaneous CSI. The proposed approach is based, on the other hand, on

the knowledge of large-scale CSI and the blockage probability. The proposed approach

is motivated by the results reported in [22], where the authors have shown that the

time-scale at which mmWave signals are randomly disrupted by spatial blockages is of

the order of a few 100 milliseconds (or more), as well as the results reported in [44],

where the authors have shown that the blockage probability is determined by the trans-

60
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mission distance and by some environment-specific parameters. Therefore, a mmWave

link is disrupted by the same blockages for several physical layer resource blocks and

the associated probability can be assumed to be known if the large-scale CSI is assumed

to be known. Specifically, this work formulates a maximum outage probability mini-

mization problem and solve it by using a stochastic optimization framework. The main

contributions of this chapter can be summarized as follows:

• To the best of the knowledge, this is the first work that introduces a robust beam-

forming design for RIS-aided downlink multiuser mmWave systems that relies on

the knowledge of large-scale CSI and blockage probability. Specifically, the consid-

ered optimization criterion is based on minimizing the maximum outage probability

of all the users. In contrast to the sum outage probability minimization problem in

[25], [48], the considered min-max outage probability problem ensures the desired

QoS performance to the worst-case user. Because of the non-differentiable objec-

tive function of the considered problem, the Stochastic Gradient Descent (SGD)

method adopted in [25], [48] cannot be directly applied. To circumvent this issue,

two stochastic optimization frameworks are introduced for jointly optimizing the

beamforming at the BS and at the RIS.

• First, it considers the single-user case and optimizes the beamforming schemes at

the BS and RIS by minimizing the outage probability given the large-scale CSI and

the blockage probability. Since the objective function of the considered problem

is not formulated in a closed-form expression, it is approximated with the statis-

tical expectation of a smooth function that is twice differentiable. The resulting

expectation optimization problem is solved by adopting the SMM method. Specif-

ically, an upper bound surrogate function of the original differentiable function is

constructed for any new channel realization at each iteration. The constructed sur-

rogate problem is shown to have a closed-form solution and to be computationally

efficient. It is proved that the proposed SMM method is guaranteed to converge

to the set of stationary points of the original expectation minimization problem.
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• Then, it considers the multi-user case and a min-max outage probability optimiza-

tion problem is formulated. To tackle the non-differentiability of the max objective

function, it is replaced with the log-sum-exp upper bound. Then, the SSCA method

is employed, which offers a greater flexibility than the SMM method in terms of

selecting the surrogate function and results in closed-form expressions at each iter-

ation. Also in this case, it is proved that the proposed SSCA method is guaranteed

to converge to the set of stationary points of the original expectation minimization

problem.

• It is demonstrated through numerical results that the proposed robust beamform-

ing algorithm outperforms its non-robust counterpart and the robust beamform-

ing algorithm for conventional systems in the absence of RISs. If the blockage

probability is high, the proposed methods outperform the others in terms of max-

imum outage probability and minimum effective rate. Moreover, deploying multi-

ple small-size RISs is shown to provide better performance than deploying a single

large-size RIS in terms of improving the performance of the worst-case user.

4.1 System Model

4.1.1 Signal Model

BS

RIS 2

User 2

User 1

User KUser k

RIS 1

BS-user channels

BS-RIS channels

RIS-user channels

Figure 4.1: Multiple RIS-aided mmWave communication system.
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As shown in Fig. 4.1 1, an RIS-aided downlink mmWave communication system

is considered. In order to ensure high QoS for the users in the presence of random

blockages, U RISs, each of which has M reflecting elements, are deployed to assist the

communication from the BS equipped with N active antennas to K single-antenna users

(denoted by K ≜ {1, . . . ,K}). The RISs are assumed to be connected to controllers

that exchange control information with the BS through dedicated channels [26], [27].

The baseband transmitted signal at the BS is x = Fs, where s ∈ CK×1 ∼ CN (0, I) is

the Gaussian data symbol vector and F = [f1, . . . , fK ] ∈ CN×K denotes the full-digital

beamforming matrix. The baseband transmit power is limited to the total transmit

power Pmax. Hence, F belongs to the set Sf = {F | ||F||2F ≤ Pmax}.

Let hb,k ∈ CN×1, Hu ∈ CM×N and hu,k ∈ CM×1 denote the channels of the links

from the BS to the k-th user, from the BS to the u-th RIS, and from the u-th RIS to the

k-th user, respectively. Then, the received signal intended to the k-th user is expressed

as 2

yk =

(
hH
b,k +

U∑
u=1

hH
u,kEuHu

)
x+ nk, (4.1)

where nk ∼ CN (0, σ2
k) is the AWGN, and Eu = ζdiag([e(u−1)M+1, . . . , euM ]) is the reflec-

tion coefficient matrix (also known as the RIS beamforming matrix) of the u-th RIS. The

element e(u−1)M+m is the m-th unit modulus reflection coefficient at the u-th RIS, and

ζ ∈ [0, 1] denotes the reflection efficiency. it is assumed, independently of the applied

phase shift and of the angle of incidence, ζ = 1 for simplicity, since it offers the best

reflection performance for the RIS.

By defining the matrices hk = [hH
1,k, . . . ,h

H
U,k]

H and H = [HH
1 , . . . ,H

H
U ]

H, it obtains

the equivalent channel Gk =

 diag(hH
k )H

hH
b,k

 ∈ C(UM+1)×N between the BS and the

12D scenario can be extended to 3D scenario.
2For simplicity, the reflections of signals between the RISs is ignored, since they are typically weak in

the mmWave frequency band. The impact of the reflected signals between RISs was recently addressed
in [112].
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k-th user. The corresponding equivalent reflection coefficient vector is given by e =

[e1, . . . , eUM+1]
T ∈ C(UM+1)×1 which belongs to the set Se = {e | |em|2 = 1, 1 ≤ m ≤

UM, eUM+1 = 1}. Then, (4.1) can be rewritten in a compact form as

yk = eHGkFs+ nk. (4.2)

Therefore, the corresponding achievable SINR is

Γk (F, e) =
|eHGkfk|2∑K

i ̸=k |eHGkfi|2 + σ2
k

. (4.3)

4.1.2 Channel Model

It is considered a typical Saleh-Valenzuela (SV) [113] channel model for application to

mmWave systems. For simplicity, it ignores the randomness introduced by the presence

of hardware impairments that may affect the performance of mmWave systems. In par-

ticular, it is assumed that a UPA is deployed at the BS and at the RIS. The steering

vector of each UPA is denoted by a (φ, ϕ), where φ(ϕ) denotes the azimuth (elevation)

Angle of Departure (AoD) and Angle of Arrival (AoA) depending on whether a trans-

mitter or a receiver is considered. It is assumed that there exist maximum Lb,k, Lu,k and

Lb,u sparse scatterers on the links from the BS to the k-th user, from the u-th RIS to the

k-th user, and from the BS to the u-th RIS, respectively. Also, it is assumed that each

scatterer comprises I subpaths. In the far-field region, therefore, the mmWave channels

can be expressed as

hb,k = gb,k0 a
(
φAoD
b,k,0, ϕ

AoD
b,k,0

)
+

√
1

ILb,k

Lb,k∑
l=1

I∑
i=1

gb,kl,i a
(
φAoD
b,k,l,i, ϕ

AoD
b,k,l,i

)
,∀k, (4.4)

hu,k = gu,k0 a
(
φAoD
u,k,0, ϕ

AoD
u,k,0

)
+

√
1

ILu,k

Lu,k∑
l=1

I∑
i=1

gu,kl,i a
(
φAoD
u,k,l,i, ϕ

AoD
u,k,l,i

)
,∀k, ∀u, (4.5)

Hu = gb,u0 a
(
φAoA
u,0 , ϕAoA

u,0

)
a
(
φAoD
b,0 , ϕAoD

b,0

)H
+

√
1

ILb,u

Lb,u∑
l=1

I∑
i=1

gb,ul,i a
(
φAoA
u,l,i , ϕ

AoA
u,l,i

)
a
(
φAoD
b,l,i , ϕ

AoD
b,l,i

)H
, ∀u, (4.6)
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where, by denoting an arbitrary element q ∈ {(b, k), (u, k), (b, u)}∀k,∀u, gq0a
(
φAoD
q,0 , ϕAoD

q,0

)
is the LoS component whose fading coefficient has distribution gq0 ∼ CN (0, ζq010

PL
10 ),

where ζq0 = κ
1+κ is the power that corresponds to the Rician factor κ, and PL is the

distance-dependent path-loss. The remaining paths are the Non Line-of-Sight (NLoS)

components whose fading coefficients have distribution gql,i ∼ CN (0, ζql 10
PL
10 ) where ζql =

1
(Lq−1)I(1+κ) is the corresponding power fraction.

It is assumed that the users’ locations are quasi-static over milliseconds or even

seconds. Therefore, the large-scale fading parameters, such as the distance-dependent

path-loss, the number of clusters, the Rician factor, the cluster central angles, and the

angular spreads, change relatively slowly and can be assumed to be known by the BS

[114], [115]. However, the instantaneous CSI, which is given by {hb,k,hu,k,Hu}, vary

during the data transmission because of the rapidly varying small-scale fading coefficients

{gq0, g
q
l,i}, AoDs and AoAs. In general, these parameters vary according to an ergodic

stationary process. For example, the AoDs and AoAs can be generated according to a

Gaussian distribution, whose mean value coincide with the central angles of the clusters

and the variance coincides with the angular spread [114].

Besides the path-loss and the small-scale fading, the reliability of the communication

links in the mmWave frequency band is determined by the presence of blockages [116].

In the context of RIS-aided communications, most existing contributions have consid-

ered the worst-case scenario where the BS-user links are completely blocked due to the

presence of obstacles during the whole transmission, while the RIS-related links are not

affected by the presence of blockages since the locations of the RISs can be appropri-

ately chosen to ensure line-of-sight transmission. However, this assumption may not

represent all possible deployment scenarios. Traditionally, the presence of blockages is

incorporated in the shadowing model, along with the impact of reflections, scattering,

and diffraction [43]. In contrast, it is adopted a recently proposed probabilistic model

[48] to characterize the channel uncertainties caused by the presence of random block-

ages. The considered model is more realistic, since the impact of blockages and the
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corresponding blockage probability depends on the transmission distance [43].

Specifically, let us introduce the blockage parameters ωk,l ∈ {0, 1}, 0 ≤ l ≤ Lb,k, ∀k ∈

K, which are random variables with a Bernoulli distribution. In particular, these random

variables take the value one with probability pk, which is referred to as the blockage

probability. With the aid of these random variables, the presence of blockages can be

taken into account in the formulation of the mmWave channels. Specifically, the BS-user

links in (4.4) are modified as

hb,k = ωk,0g
b,k
0 a

(
φAoD
b,k,0, ϕ

AoD
b,k,0

)
+

√
1

ILb,k

Lb,k∑
l=1

ωk,l

I∑
i=1

gb,kl,i a
(
φAoD
b,k,l,i, ϕ

AoD
b,k,l,i

)
,∀k. (4.7)

As far as the blockage probability is concerned, it is known that it usually depends on the

transmission distance. For example, the authors of [43] have shown that the probability

that a link is blocked, i.e., there is at least one object in between the transmitter and

the receiver, can be formulated as pk(dk) = max(0, 1 − e−aoutdk+bout), where dk is the

transmission distance between the BS and the k-th user in the considered system model

and aout and bout are environment-dependent parameters that can be obtained from

theory or can be obtained from curve fitting from data [44], [Table II, [117]].

4.1.3 Problem Formulation

Since the RISs are not equipped with power amplifiers and with digital signal processing

units, the acquisition of CSI is difficult to obtain. This is especially true if the BS and the

RISs are optimized based on perfect instantaneous CSI, since a large training overhead

would be needed [118]. Therefore, it is important to develop robust beamforming schemes

that do not necessarily rely on the knowledge of the instantaneous CSI, but still account

for the impact of the large-scale CSI, which is easier to acquire at a reduced overhead, and

that are robust to the presence of random blockages. Motivated by this consideration,

this chapter aims to design robust beamforming schemes for RIS-aided systems that

depend only on the large-scale CSI and the blockage probability, but are independent

of the short-term CSI, i.e., the fast fading. Also, this chapter aims to ensure that the
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beamforming schemes provide fairness to the network users.

To this end, the min-max outage probability optimization problem is formulated as

min
F,e

max
k∈K

Pr{Γk (F, e) ≤ γk} (4.8a)

s.t. F ∈ Sf (4.8b)

e ∈ Se, (4.8c)

where the outage probability Pr{Γk (F, e) ≤ γk} is the probability that the SINR

Γk (F, e) of the k-th user is less than the SINR reliability threshold γk for all possi-

ble realizations of the random channel G = [G1, . . . ,GK ]. Specifically, the probability

in (4.8) is computed as a function of the small-scale fading coefficients, the AoDs and the

AoAs of the subpaths of the scatterers. Notably, the outage probability in (4.8) depends

on the transmission distance, the blockage probability, the number of clusters and their

centers and angular spreads.

Compared with the sum outage probability minimization problem formulated in [25],

the objective function in (4.8) ensures fairness among the users. However, due to the

min-max formulation, the objective function is not smooth and differentiable, which

makes the algorithms proposed in [25] not directly applicable to solve the problem in

(4.8).

4.2 Single-User System

This section considers a single-user system model in order to obtain some design insights.

By setting K = 1 and omitting the user index, the problem in (4.8) reduces to

min
f ,e

Pr{Γ (f , e) ≤ γ} (4.9a)

s.t. f ∈ Sf (4.9b)

e ∈ Se. (4.9c)
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4.2.1 Problem Reformulation

The probability Pr{Γ (f , e) ≤ γ} has no closed-form expression and thus the problem

in (4.9) is prohibitively challenging to be solved. To tackle this issue, the probability

function is reformulated in terms of an equivalent expectation function, i.e., Pr{Γ(f , e) ≤

γ} = EG[IΓ≤γ ] where IΓ≤γ denotes the step function applied to the event Γ ≤ γ. Thanks

to this reformulation, several stochastic programming techniques can be used to solve the

problem in (4.9). However, the step function is discontinuous, and the existing stochastic

programming methods cannot be directly applied.

To circumvent this issue, the step function is approximated with the following smooth

approximating function

u (x) =
1

1 + e−θx
, (4.10)

where x = γ − Γ and θ is a smooth parameter that controls the approximation error.

Specifically, the larger θ is the closer to an ideal step function the function in (4.10) is.

By defining f (f , e|G) = u
(
γσ2 − |eHGf |2

)
, a convenient approximation of the prob-

lem formulated in (4.9) is

min
f∈Sf ,e∈Se

g(f , e|G) = E [f (f , e|G)] . (4.11)

4.2.2 Stochastic Majorization-Minimization Method

A simple approach for solving the problem in (4.11) is the Sample Average Approxima-

tion (SAA) method. However, the SAA method is computationally prohibitive since it

requires large-size memory storage due to the fact that the solution obtained at each

iteration is calculated by averaging over a large number of channel realizations. To

overcome these difficulties, it is adopted the widely used SMM [119] (also known as

stochastic successive minimization [94]) method. Accordingly, an appropriately chosen

upper bound approximation for the function f(f , e|G) is constructed at each iteration of

the algorithm and for each channel realization. The solution is obtained as the average
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over the channel realizations at each iteration.

The typical approach to apply this method consists of introducing an upper bound

approximation function for f(f , e|G) that satisfies Assumption A and B in Section 2.2.2

and then makes the corresponding surrogate problem easy to solve. In some cases, a

closed-form solution may be found as well.

Since the variables f and e are highly coupled with each other, an AO method is

adopted to update them. Based on Assumption A and B, the variables f and e are

updated, at the t-th iteration of the algorithm, by solving the following two SMM sub-

problems

f t = arg min
f∈Sf

1

n

t∑
i=1

f̂
(
f , f i−1|Gi

)
, (4.12)

and

et = arg min
e∈Se

1

n

t∑
i=1

f̂
(
e, ei−1|Gi

)
, (4.13)

where G1,G2, ... are some independent samples of the random equivalent channel G

3. Furthermore, f̂
(
f , f i−1|Gi

)
denotes the surrogate function associated to f when e is

given, and f̂
(
e, ei−1|Gi

)
is the surrogate function that corresponds to e when f is given.

4.2.2.1 Optimizing f

First, f̂
(
f , f i−1|Gi

)
is constructed so as to fulfill the Assumptions A and B. This is given

in the following lemma.

Lemma 2. Given the twice differentiable function f(f |Gi), this work considers the fol-

3More precisely, it is assumed that the large-scale fading parameters are kept fixed, and that the
samples of G are constituted by {hb,k,hu,k,Hu} , which are obtained by generating the random variables
{gq0 , g

q
l,i}, AoDs and AoAs according to their distributions whose parameters are assumed to be known,

as well as the Bernoulli random variables ωk,l whose blockage probability pk is assumed to be known.
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lowing second-order upper bound approximation around any given f i−1

f̂(f , f i−1|Gi) = 2Re
{
di,H
f f
}
+ αi

f ||f ||22 + constif , (4.14)

where

di
f = mi

f − αi
f f

i−1, (4.15a)

mi
f =

−θe−θxi(
1 + e−θxi

)2Gi,Hei−1ei−1,HGif i−1, (4.15b)

xi = γσ2 − |ei−1,HGif i−1|2, (4.15c)

αi
f =

θ2

2
Pmax|ei−1,HGiGi,Hei−1|2, (4.15d)

constif = f(f i−1|Gi) + αi
f ||f i−1||22 − 2Re

{
mi,H

f f i−1
}
. (4.15e)

Proof: Please refer to Appendix B.1. ■

By using (4.14) and ignoring the irrelevant constants, the subproblem in (4.12) for

updating f is reformulated as

min
f∈Sf

2Re

{
1

t

t∑
i=1

di,H
f f

}
+

1

t

t∑
i=1

αi
f ||f ||22. (4.16)

The optimization problem in (4.16) is convex and can be solved by computing its

Lagrange function given by

L(f ,κ) = 2Re

{
1

t

t∑
i=1

di,H
f f

}
+

1

t

t∑
i=1

αi
f ||f ||22 + κ

(
||f ||22 − Pmax

)
, (4.17)

where κ ≥ 0 is the Lagrange multiplier associated with the power constraint. By setting

∂L(f)/∂f∗ = 0, the globally optimal solution of f at the t-th iteration is

f t =
−1

κ+ 1
t

∑t
i=1 α

i
f

1

t

t∑
i=1

di
f . (4.18)
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Also, (4.18) must satisfy the power constraint in (4.9b), which yields

|| 1n
∑t

i=1 d
i
f ||22

(κ+ 1
t

∑t
i=1 α

i
f )

2
≤ Pmax. (4.19)

Since the left hand side of (4.19) is a decreasing function of κ, the closed-form solution

is obtained as

f t =


−1∑t
i=1 α

i
f

∑t
i=1 d

i
f , if

||
∑t

i=1 d
i
f ||

2
2

(
∑t

i=1 α
i
f )

2 ≤ Pmax,

−
√

Pmax

||
∑t

i=1 d
i
f ||

2
2

∑t
i=1 d

i
f , otherwise,

(4.20)

where the first case in (4.20) is obtained by setting κ = 0, and the second case follows

because there must exist a κ > 0 for which (4.19) holds with equality.

4.2.2.2 Optimizing e

Similar to the optimization of f , it is first constructed a surrogate function for e.

Lemma 3. Given the twice differentiable function f
(
e|Gi

)
, this work considers the

following second-order upper bound approximation around any feasible ei−1

f̂(e, ei−1|Gi) = 2Re
{
di,H
e e

}
+ constie, (4.21)

where

di
e = mi

e − αi
ee

i−1, (4.22a)

mi
e =

−θe−θxi(
1 + e−θxi

)2Gif i−1f i−1,HGi,Hei−1, (4.22b)

αi
e =

θ2

2
(UM + 1)|f i−1,HGi,HGif i−1|2, (4.22c)

constie = f(ei−1|Gi) + 2(UM + 1)αi
e − 2Re

{
mi,H

e ei−1
}
. (4.22d)

Proof: The proof of Lemma 3 is similar to that of Lemma 2 and it is hence omitted
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for brevity. ■

By substituting (4.21) into the objective function of the subproblem in (4.13) and

ignoring the irrelevant constants, it is obtained

min
e∈Se

2Re

{
1

n

t∑
i=1

di,H
e e

}
. (4.23)

The globally optimal solution of the optimization problem in (4.23) is

et = exp

j∠

( t∑
i=1

di
e

)
/

[
t∑

i=1

di
e

]
UM+1

 , (4.24)

where [·]m denotes the m-th element of the vector, j ≜
√
−1 is the imaginary unit, ∠ (·)

denotes the angle of a complex number, and exp {j∠ (·)} is an element-wise operation.

4.2.3 Algorithm Development

By leveraging the SMM method, it has been obtained the closed-form solutions in (4.20)

and (4.24) for f and e, respectively. The closed-form solutions, at each iteration of the

algorithm, greatly reduce the computational complexity. The whole numerical recipe is

reported in Algorithm 4.1, which is referred to as the SMM-OutMin algorithm.

Algorithm 4.1: SMM-OutMin Algorithm

Require: Initialize f0 ∈ Sf and e0 ∈ Se. Set t = 1.
1: repeat
2: Obtain the sample channel Gt.
3: Update f t according to (4.20).
4: Update et according to (4.24).
5: t = t+ 1.
6: until ||f t − f t−1||2 → 0 and ||et − et−1||2 → 0.

4.2.3.1 Convergence Analysis

The convergence of Algorithm 4.1 is analyzed in the following theorem.

Theorem 6. Assume that Assumptions A and B are satisfied. Then, the sequence of the
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solutions obtained in each iteration of Algorithm 4.1 converges to the set of stationary

points of the problem in (4.11) almost surely.

Proof: Please refer to Appendix B.2. ■

4.2.3.2 Complexity Analysis

The computational complexity for updating f t and et at each iteration mainly depends

on the computation of (4.20) and (4.24), respectively. In particular, due to the update

rule in {
∑t

i=1 α
i
f ,
∑t

i=1 d
i
f ,
∑t

i=1 d
i
e}, only {αt

e,d
t
f ,d

t
e} need to be calculated at the t-th

iteration. Therefore, the approximate complexity of each iteration is O(4UMN +12N).

4.3 Multiuser System

This section considers the general multiuser setup and solve the optimization problem

in (4.8). The min-max problem in (4.8) is more challenging to tackle as compared with

the problem in (4.9) due to the presence of the max function. To tackle the problem in

(4.8), the SMM method applied to the single user case is extended.

4.3.1 Problem Reformulation

This work first approximate the probability function in the original formulation of the

problem in (4.8) by still using the smooth function in (4.10). To this end, it is defined

fk (F, e|G) = u
(
eHGkFΥkF

HGH
k e+ γkσ

2
k

)
, where Υk is a diagonal matrix whose diag-

onal entries are all equal to γk with the exception of the k-th diagonal element that is

equal to −1. Therefore, an approximate expression for the objective function in (4.8) is

maxk∈K E [fk (F, e|G)]. However, the obtained objective function is still intractable since

the maximization operation and the expectation operation make the functions fk, ∀k and

the different channel states coupled, respectively. To circumvent these issues, this work

uses Jensen’s inequality

max
k∈K

E [fk (F, e|G)] ≤ E
[
max
k∈K

fk (F, e|G)

]
, (4.25)
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since the max function maxk∈K{x1, . . . , xK} is convex [79].

Furthermore, the non-differentiable max function, maxk∈K fk (F, e|G), is approxi-

mated by adopting a smooth log–sum–exp upper-bound [102]

max
k∈K

fk (F, e|G) ≈ F (F, e|G) = µ ln
(∑
k∈K

exp

{
1

µ
fk (F, e|G)

})
, (4.26)

where µ > 0 is a smoothing parameter that fulfills the condition

max
k∈K

fk (F, e|G) ≤ F (F, e|G) ≤ max
k∈K

fk (F, e|G) +
1

µ
log (|K|) . (4.27)

When µ is appropriately chosen, a smooth approximation for the problem in (4.8) is

min
F∈Sf ,e∈Se

G (F, e|G) = E [F (F, e|G)] . (4.28)

4.3.2 Stochastic Successive Convex Approximation Method

Similar to the optimization problem in (4.11), the optimization problem in (4.28) may be

solved by adopting the SMM method. However, the function F (F, e|G) in (4.26) is more

complex and its second-order derivative, which is necessary to construct the upper bound

surrogate function of F (F, e|G) as shown in Appendix B.1, is not easy to be calculated.

Furthermore, the coefficient of the second-order term in the final upper bound surrogate

function of F (F, e|G) (αi
f in (4.14)) may not be very tight, which eventually results in

a very slow convergence rate of the SMM algorithm. Therefore, it is adopted the SSCA

method to overcome these issues with Assumption C in Section 2.2.3.

4.3.2.1 Optimizing F

By using (2.26) and the complex differential formula dF (X,X∗) = Tr((∂F (X,X∗)
∂X )TdX+

(∂F (X,X∗)
∂X∗ )TdX∗) (Eq. (3.4.55) in [120]), a surrogate function can be constructed for F
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around Fi−1 when e is given. The surrogate function is given in

F̂
(
F,Fi−1|G

)
= F

(
Fi−1|G

)
+Tr

(∂F
(
Fi−1|G

)
∂F

)T

(F− Fi−1)


+Tr

(∂F
(
Fi−1|G

)
∂F∗

)T

(F∗ − F∗,i−1)

+
τ i

2
||F− Fi−1||2F

= F
(
Fi−1|G

)
+ 2

∑
k∈K

likRe
{
Tr
(
ΥkF

i−1,HGH
k e

i−1ei−1,HGk(F− Fi−1)
)}

+
τ i

2
||F− Fi−1||2F

= 2Re
{
Tr
(
Pi,H

f F
)}

+
τ i

2
||F||2F + cons1i, (4.29)

where the following parameters are introduced

Pi
f = Wi

f −
τ i

2
Fi−1, (4.30a)

Wi
f =

∑
k∈K

likG
i,H
k ei−1ei−1,HGi

kF
i−1Υk, (4.30b)

lik =
exp

{
1
µfk

(
Fi−1, ei−1|Gi

)}
∑

k∈K exp
{

1
µfk (F

i−1, ei−1|Gi)
} θe−θxi

k(
1 + e−θxi

k

)2 , (4.30c)

xik = ei−1,HGi
kF

i−1ΥkF
i−1,HGi,H

k ei−1 + γkσ
2
k, (4.30d)

cons1i = F
(
Fi−1|Gi

)
+

τ i

2
||Fi−1||2F − 2Re

{
Tr
(
Wi,H

f Fi−1
)}

. (4.30e)

By using (4.29), the optimization subproblem in (4.28) as a function of F is formu-

lated, at the t-th iteration, as

min
F∈SF

1

t

t∑
i=1

F̂
(
F,Fi−1|Gi

)
. (4.31)

The obtained optimization problem in (4.31) can be solved by using the same methods

as for the optimization problem in (4.16). Specifically, the global minimizer of the
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optimization problem in (4.31) is

F̂t =


−2∑t
i=1 τ

i

∑t
i=1P

i
f , if

4||
∑t

i=1 P
i
f ||

2
F

(
∑t

i=1 τ
i)2

≤ Pmax,

−
√

Pmax

||
∑t

i=1 P
i
f ||

2
F

∑t
i=1P

i
f , otherwise.

(4.32)

4.3.2.2 Optimizing e

Similarly, the optimization subproblem in (4.28) as a function of e when F is given, can

be formulated, at the t-th iteration, as

min
e∈Se

1

t

t∑
i=1

F̂
(
e, ei−1|Gi

)
, (4.33)

where F̂
(
e, ei−1|Gi

)
= 2Re

{
pi,H
e e

}
+ cons2i, and

pi
e = wi

e −
τ i

2
ei−1, (4.34a)

wi
e =

∑
k∈K

lkGkF
i−1ΥkF

i−1,HGHei−1, (4.34b)

cons2i = F
(
ei−1|Gi

)
+ τ i(UM + 1)− 2Re

{
wi,H

e ei−1
}
. (4.34c)

Therefore, the minimizer of the optimization problem in (4.33) is

êt = exp

j∠

( t∑
i=1

pi
e

)
/

[
t∑

i=1

pi
e

]
UM+1

 . (4.35)

4.3.3 Algorithm Development

The closed-form solutions for F in (4.32) and for e in (4.35) can greatly reduce the

computational complexity. Algorithm 4.2 summarizes the proposed SSCA-based robust

beamforming design for RIS-aided multiuser mmWave systems in which the BS-user

links are subject to random blockages. The proposed algorithm is referred to as the

SSCA-OutMin algorithm.
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Algorithm 4.2: SSCA-OutMin Algorithm

Require: Initialize F0 ∈ Sf and e0 ∈ Se. Set t = 0.
1: repeat
2: t = t+ 1.
3: Obtain the sample channel Gt.
4: Calculate F̂t according to (4.32).

5: Update Ft = Ft−1 + ξtf

(
F̂t − Ft−1

)
.

6: Calculate êt according to (4.35).
7: Update et = et−1 + ξte

(
êt − et−1

)
.

8: until ||Ft − Ft−1||2F → 0 and ||et − et−1||2 → 0.

4.3.3.1 Step-Size Selection

It is worth noting that the approximation in (4.29) has the same form as that in (4.14).

However, τ i in the SSCA method can be any positive number, and F̂
(
F,Fi−1|G

)
might

not be a global upper bound of F (F|G). To account for this issue, the step sizes ξtf and

ξte in Algorithm 4.2 need to be carefully chosen to ensure convergence.

As an example, let us consider the choice of ξtf to illustrate the update rule, which is

a line-search (also called Armijo step-size) rule. Consider ξ0f > 0 and c1,f , c2,f ∈ (0, 1).

Let ξtf be the largest element in {ξ0fct2,f}t=0,1,... such that

F

(
Ft−1 + ξtf

(
F̂t − Ft−1

))
≤ F (Ft−1) + c1,fξ

t
fTr

(
∇FF (Ft−1)T

(
F̂t − Ft−1

))
.

(4.36)

Theorem 7. If {ξtf}t=1,2,... is chosen according to the line-search rule, then

lim
n→∞

||F̂t − Ft−1|| = 0.

Proof: See Theorem 7 in [95]. ■

4.3.3.2 Convergence Analysis

The convergence of Algorithm 4.2 is given in the following theorem.
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Theorem 8. Assume that Assumptions B and C are satisfied. Then, every limit point

of the iterations generated by Algorithm 4.2 is a stationary point of the optimization

problem in (4.28) almost surely.

Proof: Please refer to Appendix B.3. ■

4.3.3.3 Complexity Analysis

The computational complexity for updating f t and et at each iteration mainly depends

on the computation of (4.32) and (4.35), respectively. In particular, only {Pt
f ,p

t
e} needs

to be calculated at the t-th iteration. Therefore, the approximate complexity of each

iteration is given by O((K + 2)2UMN + UMK +NK + (N + 2)K2 + 2N).

4.3.3.4 Initial Point

The optimization problem in (4.28) has, in general, multiple local minima due to the

non-convex unit-modulus constraint and to e ∈ Se. The accurate selection of the initial

points in Algorithm 4.2 plays an important role for the convergence speed and the quality

of the obtained local solution. To that end, e is first initialized to maximize the minimum

equivalent total channel gain, resulting in the following optimization problem

e0 = argmax
e∈Se

min
k∈K
||eHG0

k||22. (4.37)

The optimization problem in (4.37) can be efficiently solved by using the SDR method

as follows

max
E

t (4.38a)

s.t. Tr{G0
kG

0,H
k E} ≥ t,∀k ∈ K (4.38b)

E ⪰ 0, rank(E) = 1, [E]m,m = 1, ∀m, (4.38c)

where E = eeH and t is an auxiliary variable.
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Furthermore, F is initialized by using the maximum-ratio transmission (MRT) solu-

tion as

F0 = Pmax
G0e0

||G0e0||
. (4.39)

4.4 Numerical Results and Discussion
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Figure 4.2: The simulated system setup.

4.4.1 Simulation Setup

This section numerically evaluates the performance of the proposed algorithms. All

experiments are performed on a PC with a 1.99 GHz i7-8550U CPU and 16 GB RAM. It

is adopted the polar coordinates to describe the simulated system setup as shown in Fig.

4.2 4. Specifically, the BS is located at (0 m, 0◦), and the four RISs are deployed in the

locations (10 m, 0◦), (10 m, 45◦), (10 m, 20◦) and (10 m, 30◦) which are close to the BS.

The users are randomly placed in a region that is identified by the polar diameter dk ∈[50

m, 80 m] and the polar angle ϑ ∈ [0, 45◦], where dk is used to calculate the distance-

dependent blockage probability. The large-scale fading, which corresponds to an Urban

Micro (UMi)-street canyon scenario [115], is PL = 32.4+ 20 log10(fc) + 10α log10(D) + ξ

in dB, where D is the link distance (in meters), α is the path loss exponent, and ξ ∼

CN (0, σ2
ξ ) is the log-normal shadowing where σ2

ξ denotes the shadowing variance. The

mmWave system operates at a carrier frequency fc = 28 GHz and the bandwidth is 20

42D coordinate is considered here for convenience, the performance of which can be extended to 3D
scenario.
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MHz. Since the macro-scattering environment between the BS and the users is complex,

only NLoS clusters are assumed to exist in the BS-user links, i.e., the Rician factor is

κ = 0. The large-scale parameters of the NLoS links are α = 3.5 and σξ = 8.2 dB [115].

In practice, the RISs can be installed such that the BS-RIS links and the RIS-user links

are blockage-free. Thus, the channels in (4.5) and (4.6) are assumed to have only the

LoS cluster with a Rician factor κ → ∞. The large-scale parameters of the LoS link

are α = 2 and σξ = 4 dB according to [115]. Unless stated otherwise, it is assumed

Lb,k = Lu,k = Lb,u = 5 and I = 20. The transmit power limit of the BS is Pmax = 30

dBm and the noise power at each user is σ2
1 = . . . = σ2

K = −94 dBm. For simplicity, it

is assumed an equal blockage probability, pk,l = pblock,∀k, l, and an equal target SINR,

γ = γ1 = . . . = γK , which yields the target rate Rtarg = log2(1 + γ). The smooth

parameters are chosen to be θ = 1
max∀k∈K |x0

k|
and µ = 1

100K .

To evaluate the performance of the proposed stochastic optimization algorithms, the

following benchmark schemes are considered. 1) Perfect-Instantaneous: Perfect instan-

taneous CSI is assumed to be known, including the instantaneous channel gains, AoAs,

AoDs, and blockage status of the links. This scheme is regarded as the performance

upper bound. 2) NoRIS: In this case, no RIS is employed and the precoding at the

BS is obtained by using the SMM or SSCA methods. This scheme is regarded as the

performance lower bound. 3) No-robust: In this scheme, the beamforming schemes at

the BS and at the RIS are designed by using the SMM or SSCA methods by taking into

account the random small-scale parameters while assuming pblock = 0. 4) Imperfect CSI:

In this scheme, the beamforming schemes at the BS and at the RIS are designed by using

the SMM or SSCA methods based on the imperfect knowledge of the central angles of

the clusters. Specifically, it is assumed that the estimation error of the central angles

of the clusters is 0.01 degrees, i.e., △E{φ(ϕ)} = 0.01. 5) Quantization-1/2/3 bit: In

this scheme, the optimal continuous-valued phase shifts of the RIS are first obtained by

using the SMM algorithm and are then quantified with 1 bit or, 2 bit or 3 bit resolution.

6) SAA: In this scheme, 300 independent channel realizations are generated in advance,
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and the solutions at each iteration of the algorithms are obtained as the average over

the 300 channel samples. Also, the surrogate function used at each iteration is obtained

by adopting the MM or SCA methods. To be specific, let us consider the beamforming

design in the single-user case as an example. The beamforming designed by using the

SAA-MM method is obtained by modifying the problems in (4.12) and (4.13) with the

following updating rules

f t = arg min
f∈Sf

1

300

300∑
i=1

f̂
(
f , f t−1|Gi

)
, (4.40)

and

et = arg min
e∈Se

1

300

300∑
i=1

f̂
(
e, et−1|Gi

)
. (4.41)

In order to demonstrate the robustness of the proposed algorithms, this work consid-

ers two performance metrics: the outage probability and the effective rate. In particular,

the outage probability of each user is calculated by averaging over 1000 independent

channel realizations. The corresponding effective rate of the k-th user is defined as

Reff,k ≜ E[log2(1 + Γk(F, e))] if Γk(F, e) ≥ γ and Reff ≜ 0 otherwise.

4.4.2 Convergence

Table 4-A: Comparison of the CPU time
Algorithms The CPU time (sec) per iteration The CPU time (sec)

SMM 0.0025 1.8750

SSCA 0.0042 4.6719

SAA 0.3557 20.9844

Figure 4.3 illustrates the convergence behavior of the considered stochastic optimiza-

tion algorithms. For comparison, the single-user case is considered in the presence of RIS

1 depicted in Fig. 4.2, and the other parameters are given in Fig. 4.3. In Fig. 4.3, the

coordinate value on the y-axis is the objective value of the problems in (4.16) or (4.31),

and it is not the actual outage probability of the original problem. It is observed that the
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Figure 4.3: Convergence behavior of different algorithms, when N = 8, M = 128, K = 1,
U = 1, and Rtarg = 0.1 bps/Hz.

SMM and SSCA algorithms are characterized by an oscillatory convergence behavior,

which depends on the random channel generations at each iteration. On the other hand,

using 300 channel realizations for each iteration leads to the monotonic convergence

behavior of the SAA algorithm when adopting a monotonically decreasing surrogate

function for each channel realization. Although the SAA algorithm requires the least

number of iterations to converge, it is much more computationally demanding than the

other two algorithms. This observation is confirmed in Table 4-A, which compares the

CPU time consumption of each iteration and the total CPU time consumption for the

three considered algorithms. Theoretically, the computational complexity of each itera-

tion of the SAA algorithm is 300 times higher than that of the SMM or SAA algorithms,

because each parameter needs to be calculated 300 times for all channel realizations at

each iteration of the SAA algorithm.

4.4.3 Single-User Case Study

This work considers a single-user system where the transmission of data is assisted by

the RIS 1 in Fig. 4.2 and the target rate is Rtarg = 0.1 bps/Hz. Figure 4.4 illustrates

the performance of different algorithms as a function of the blockage probability. It is

seen that the SMM-based beamforming scheme with M = 128 outperforms the NoRIS
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Figure 4.4: Comparison of the outage probability and effective rate as a function of the
blockage probability pblock for N = 8, K = 1, U = 1, and Rtarg = 0.1 bps/Hz.

scheme when pblock ≥ 0.1. If pblock ≤ 0.1, on the other hand, the direct BS-user channel

is much stronger than the cascaded BS-RIS-user channel, as the latter is subject to the

double path loss law, which dominates the performance for long transmission distances

at high frequency bands. When the blockage probability is small (pblock ≤ 0.1), therefore,

the BS tends to allocate the transmit power to the stronger direct path, thus reducing

the contribution of the RIS to the system performance. If the number of reflecting ele-

ments at the RIS is increased to M = 160, the proposed SMM algorithm outperforms
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the NoRIS system for any value of the blockage probability (i.e., 0 ≤ pblock ≤ 1). The

reason is that the RIS-aided channel provides a beamforming gain that compensates for

the performance loss caused by the presence of blockages even if pblock = 0. When M

is further increased to 192, the outage probability is compressed to about 0.05 during

pblock ∈ [0, 0.6]. In addition, it is seen that the SMM-based beamforming scheme and the

SAA-based beamforming scheme offer the same performance. As far as the impact of

the phase quantization is concerned, it is seen that 1-bit resolution has a non-negligible

negative impact on the system performance, while 3-bit resolution is sufficient to obtain

performance very close to the continuous-valued phase shifts. As expected, the Perfect-

Instantaneous scheme outperforms all the other schemes at the price of frequent channel

estimations in each channel coherence block. Finally, the proposed robust designs out-

perform the NoRobust case and the imperfect CSI case, since the impact of random

blockages is accounted for at the design stage.
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Figure 4.5: Outage probability as a function of M with fixed N = 8 and as a function
of N with fixed M = 128, when K = 1, U = 1, and Rtarg = 0.1 bps/Hz.

Figure 4.5 shows the impact of the size of the RIS and the size of the antenna array at

the BS on the outage probability. The SMM algorithm is considered. It can be observed

from Fig. 4.5(a) that, when BS is equipped with N = 8 antennas, the RIS plays a

significant role in guaranteeing the desired user’s QoS and in improving the system

robustness as the number of reflecting elements increases (M : 64→ 256). Specifically, a
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large-size RIS with M ≥ 224 provides an outage probability smaller than 0.1, even if the

direct channel from the BS to the user is blocked with unit probability. A similar trend

is observed in Fig. 4.5(b) as the number of BS antennas is increased while the number

of RIS elements is kept fixed and is equal to M = 128. The main difference is that the

N antennas at the BS require power amplifiers, digital processing units, and multiple

RF chains.

4.4.4 Multiuser Case Study
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Figure 4.6: Comparison of the maximum outage probability and minimum effective rate
as a function of the blockage probability pblock for N = 16, K = 3, and Rtarg = 0.1
bps/Hz.

This section analyzes a multiuser system with K = 3 users, and assume that the

target rate is Rtarg = 0.1 bps/Hz. Multiple RISs are distributed as shown in Fig. 4.2.

For fairness, the total number of RIS elements is kept fixed, i.e., UM = 240. From Fig.

4.6, it comes to the conclusion that, compared with the single-RIS case, distributing

the total number of RIS elements between two RISs significantly improves the system

performance in terms of maximum outage probability and minimum effective rate. This

is because a better spatial diversity gain is ensured in this case, while ensuring the each

RIS has a sufficient number of reflecting elements to compensate for the path loss of

the RIS-aided links. If the total number of reflecting elements is distributed among

three or four RISs, the system performance is reduced. This is because each RIS cannot
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compensate the distance-dependent path loss. In a multi-RIS scenario, therefore, the

size of each RIS (i.e., the number of reflecting elements) is an optimization parameter

that needs to be judiciously chosen. Furthermore, it is noted that the proposed robust

designs significantly outperform the NoRobust and the NoRIS schemes, under similar

setups.
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Figure 4.7: Comparison of the maximum outage probability as a function of the number
of users K for N = 16, pblock = 0.6, and Rtarg = 0.1 bps/Hz.

Finally, Fig. 4.7 illustrates the maximum outage probability as a function of the

number of users. For a fair comparison, it is assumed the setup N = 16,M = 120 and

U = 2. It is seen that the gain with respect to the NoRIS scheme is almost constant

as the number of users K increases. Therefore, the proposed RIS-aided scheme can

guarantee the desired QoS performance for the worst-case user even if the number of

users increases.

4.5 Summary

This chapter has introduced schemes for improving the reliability of a mmWave sys-

tem in the presence of random blockages by deploying multiple RISs and designing the

corresponding robust beamforming. In order to reduce the system outage, this chapter

has formulated and solved a maximum outage probability minimization problem which

belongs to the family of stochastic optimization problems. More precisely, this chapter
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has introduced robust beamforming schemes at the RIS that depend on the large-scale

CSI and the blockage probability. The proposed schemes are obtained by solving complex

stochastic optimization problems, for which closed-form solutions have been proposed at

each iteration by leveraging the SMM and SSCA optimization methods. The proposed

stochastic methods are proved to converge to the set of stationary points of the origi-

nal stochastic problems. Selected numerical results have demonstrated the performance

gains, in terms of outage probability and effective rate, that the proposed schemes can

offer when applied to RIS-aided mmWave systems in the presence of random blockages.

However, as shown in Fig. 4.4, the negative impact of imperfect CSI on outage prob-

ability is still a challenge. Therefore, in the next chapter, we will investigate robust

beamforming designs to address the channel uncertainty caused by channel error.



Chapter 5

Robust Transmission under

Channel Estimation Error

This chapter studies the robust transmission design based on the imperfect cascaded

CBRUT. Specifically, this work aims to design a robust active and passive beamforming

scheme to minimize the total transmit power under both the bounded CSI error model

and the statistical CSI error model. Unfortunately, the robust beamforming algorithms

developed in [33] and [34] are not applicable for the imperfect CBRUT case. Hence, the

contributions of this work are summarized as follows:

• To the best of the knowledge, this is the first work to study the robust transmission

design based on imperfect cascaded BS-RIS-user channels, which is more practical

than the previous works in which imperfect RIS-user channels were considered.

In addition, it considers the robust transmission design under two channel error

models: the bounded CSI error model and the statistical CSI error model. However,

both [33] and [34] only considered the bounded CSI error model.

• For the bounded CSI error, worst-case robust beamforming design problems are

formulated that minimize the transmit power subject to unit modulus of the reflec-

88



Chapter 5. Robust Transmission under Channel Estimation Error 89

tion beamforming and the worst-case QoS constraints with imperfect CBRUT. The

worst-case robust design can guarantee that the achievable rate of each user is no

less than its minimum rate requirement for all possible channel error realizations.

To address this non-convex problem, S-procedure is firstly adopted to approximate

the semi-infinite inequality constraints. Then, under the AO framework, the pre-

coder is updated in an SOCP and the reflection beamforming is updated by using

the penalty CCP.

• For the statistical CSI error model, the aim is to minimize the transmit power

subject to unit-modulus constraints and the rate outage probability constraints.

Here, the rate outage probability constraints represent the probability that the

achievable rate of each user being below its minimum rate requirement needs to be

less than a predetermined probability. By applying the BTI, the safe approximation

of the rate outage probability is obtained to make the original problem tractable.

Then, the precoder and the reflection beamforming are optimized by using the

SDR and penalty CCP techniques respectively in an iterative manner.

• It is demonstrated through numerical results that the robust beamforming under

the statistical CSI error model can achieve superior system performance in terms of

the minimum transmit power, convergence speed and complexity, than that under

the bounded CSI error model. In addition, it is observed that the level of the

CBRUT error plays an important role in the RIS-aided systems. Specifically, when

the CBRUT error is small, the total transmit power decreases with the number

of the reflection elements due to the increased beamforming gain. However, when

the CBRUT error is large, the transmit power increases with the number of the

reflection elements due to the increased channel estimation error. Hence, whether

to deploy the RIS in wireless communication systems depends on the level of the

CBRUT error.
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5.1 System Model

This section first introduces the system model of the RIS-aided MISO downlink commu-

nication system, and then discusses the channel uncertainty scenarios as well as the CSI

error models.

5.1.1 Signal Transmission Model

As shown in Fig. 5.1, an RIS-aided MISO broadcast communication system is consid-

ered, which consists of one multi-antenna BS, K single-antenna users and one RIS. It is

assumed that the BS is equipped withN active antennas, and transmitsK Gaussian data

symbols denoted by s = [s1, · · · , sK ]T ∈ CK×1 to all the users, where E[ssH] = I. RIS

with M programmable phase shifters is deployed to enhance the system performance.

Therefore, by defining the set of users as K = {1, 2, ...,K}, the received baseband signal

of users is given by

yk = (hH
k + hH

r,kEHdr)Fs+ nk, ∀k ∈ K. (5.1)

Here, F =[f1, · · · , fK ] ∈ CN×K is the precoder matrix, in which fk is the precoding vector

associated with user k. Then, the transmit power at the BS is E{Tr
(
FssHFH

)
} = ||F||2F .

nk is the AWGN at user k, with zero mean and noise variance σ2
k, i.e., nk ∼ CN (0, σ2

k).

The reflection beamforming of the RIS is a diagonal matrix E =
√
ιdiag(e1, · · · , eM ) ∈

BS

RIS

User 1

User k

Figure 5.1: An RIS-aided multi-user communication system.
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CM×M , of which has unit-modulus phase shifts, i.e., |em|2 = 1. 0 ≤ ι ≤ 1 indicates

the reflection efficiency and the power loss of reflection operation usually comes from

multiple reflections of signals. Here, it is assumed that only the first-order reflection on

the RIS is considered and set ι = 1. It is assumed that the phase shifts of the RIS are

calculated by the BS and then fed back to the RIS controller through dedicated feedback

channels [26], [27]. In addition, the channel vectors spanning from the BS to user k and

from the RIS to user k are denoted by hk ∈ CN×1 and hr,k ∈ CM×1, respectively. The

channel matrix between the BS and the RIS is represented by Hdr ∈ CM×N .

Denote by Gk = diag(hH
r,k)Hdr the cascaded channel from the BS to user k via the

RIS, by e = [e1, · · · , eM ]T ∈ CM×1 the vector containing diagonal elements of matrix E,

and by βk = ||(hH
k + eHGk)F−k||22 + σ2

k the Interference-plus-Noises (INs) power of user

k, where F−k = [f1, · · · , fk−1, fk+1, · · · , fK ]. Then, the achievable data rate (bit/s/Hz)

at user k is given by

Rk (F, e) = log2

(
1 +

1

βk

∣∣(hH
k + eHGk

)
fk
∣∣2) . (5.2)

5.1.2 Two Scenarios and CSI Error Models

In the RIS-aided communication system, there are two types of channels: the direct

channel hk, and the cascaded BS-RIS-user channel Gk. The system performance of the

RIS-aided communication system is highly affected by the accuracy of the Direct Channel

State Information at the Transmitter (DCSIT) and the CBRUT. In the following, two

scenarios of the channel uncertainties are first introduced and then two types of CSI

error models.

1) Scenario 1: Partial Channel Uncertainty (PCU)

In RIS-aided communications, the CBRUT is much more challenging to obtain than

the DCSIT due to the passive features of the RIS. Hence, in this scenario, it is assumed

that the DCSIT is perfect, while the CBRUT is imperfect. The CBRUT can be repre-
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sented as

Gk = Ĝk +△Gk, ∀k ∈ K, (5.3)

where Ĝk is the estimated cascaded CSI known at the BS, △Gk is the unknown CBRUT

error.

2) Scenario 2: Full Channel Uncertainty (FCU)

In complex electromagnetic environment, the accurate DCSIT is also challenging to

obtain. In this scenario, it is assumed both the DCSIT and the CBRUT are imperfect.

In addition to the CBRUT error model in (5.3), the direct channel is expressed as

hk = ĥk +△hk, ∀k ∈ K, (5.4)

where ĥk is the estimated DCSIT known at the BS and △hk is the unknown DCSIT

error.

This work investigates two types of robust beamforming design for RIS-aided MISO

communication systems depending on the CSI error models.

1) Error model 1: Bounded CSI error model

Specifically, one is the worst-case robust beamforming design subject to the bounded

CSI error model, i.e.,

∥△Gk∥F ≤ ξg,k, ∥△hk∥2 ≤ ξh,k,∀k ∈ K, (5.5)

where ξg,k and ξh,k are the radii of the uncertainty regions known at the BS. This CSI

error model characterizes the channel quantization error which naturally belongs to a

bounded region [121]. For example, in the Frequency Division Duplex (FDD) setting,

the receiver estimates the downlink channel and then feeds the rate-limited quantified

CSI back to the transmitter. Then, the acquired CSI is plagued by quantization errors.
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2) Error model 2: Statistical CSI error model

The other is the outage-constrained robust beamforming design associated with the

statistical CSI error model, in which each CSI error vector is assumed to follow the

CSCG distribution, i.e.,

vec(△Gk) ∼ CN (0,Σg,k),Σg,k ⪰ 0,∀k ∈ K, (5.6a)

△hk ∼ CN (0,Σh,k),Σh,k ⪰ 0,∀k ∈ K, (5.6b)

where Σg,k ∈ CMN×MN and Σh,k ∈ CN×N are positive semidefinite error covariance

matrices. In this case, the CSI imperfection is caused by the channel estimation error

[122]. For example, in the Time Division Duplex (TDD) setting, noise and limited

training will cause the uplink channel estimation error. The conventional MMSE method

is generally adopted to estimate the cascaded channel, and thus the channel estimation

generally follows the CSCG distribution.

In the following, the first type of robust beamforming design based on the bounded

CSI error model is first considered. Then, the second one based on the statistical CSI

error model is addressed.

5.2 Worst-Case Robust Beamforming Design

In this section, the worst-case robust beamforming design is considered under the bounded

CSI error model. The aim is to minimize the total transmit power of the BS by the joint

design of the precoder matrix F and reflection beamforming vector e under the unit-

modulus constraints and the worst-case QoS constraints, i.e., ensuring the achievable

rate of each user to be above a threshold for all possible channel error realizations.

In order to solve the non-convex robust design problem with semi-infinite inequality

constraints and coupled variables, an AO algorithm is proposed based on S-Procedure,

SOCP and penalty CCP [123].
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First, two useful lemmas about multiple complex valued uncertainties are formally

introduced as follows, which will be used in the later derivations.

Lemma 4. (General S-Procedure [124]) Define the quadratic functions of the variable

x ∈ Cn×1:

fi(x) = xHWix+ 2Re
{
wH

i x
}
+ wi, i = 0, ..., P,

where Wi = WH
i . The condition {fi(x) ≥ 0}Pi=1 ⇒ f0(x) ≥ 0 holds if and only if there

exist ∀i,ϖi ≥ 0 such that

 W0 w0

wH
0 w0

− P∑
i=1

ϖi

 Wi wi

wH
i wi

 ⪰ 0.

Lemma 5. (General sign-definiteness [125]) For a given set of matrices W = WH,

{Yi,Zi}Pi=1, the following Linear Matrix Inequality (LMI) satisfies

W ⪰
P∑
i=1

(
YH

i XiZi + ZH
i X

H
i Yi

)
,∀i, ||Xi||F ≤ ξi,

if and only if there exist real numbers ∀i, µi ≥ 0 such that



W −
∑P

i=1 µiZ
H
i Zi −ξ1YH

1 · · · −ξPYH
P

−ξ1Y1 µ1I · · · 0

...
...

. . .
...

−ξPYP 0 · · · µP I


⪰ 0.

It is noted that Lemma 5 can be proved by applying Lemma 4 and the detailed proof

is given in [126].

5.2.1 Scenario 1: Partial Channel Uncertainty

This subsection designs the robust beamforming for the RIS-aided communication system

under Scenario 1 with perfect DCSIT and imperfect CBRUT. This problem is simpler
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than the one with full channel uncertainty and the algorithm developed for Scenario 1 has

lower complexity than that for Scenario 2. Mathematically, let Epartialk ≜ {∀ ∥△Gk∥F ≤

ξg,k} and denote by M = {1, 2, ...,M} the set of reflection elements, the worst-case

transmit power minimization problem is formulated as

min
F,e
||F||2F (5.7a)

s.t. Rk (F, e) ≥ Rk, Epartialk , ∀k ∈ K (5.7b)

|em|2 = 1, ∀m ∈M. (5.7c)

Here, Rk is the target rate of user k. Constraints (5.7b) are the worst-case QoS require-

ments for the users, while constraints (5.7c) correspond to the unit-modulus requirements

of the reflection elements at the RIS.

To start with, the non-convexity of constraints (5.7b) can be addressed by firstly

treating the INs power β = [β1, ..., βK ]T as auxiliary variables. Hence, constraints (5.7b)

are reformulated as

∣∣(hH
k + eHGk

)
fk
∣∣2 ≥ βk(2

Rk − 1), Epartialk , ∀k ∈ K, (5.8)∥∥(hH
k + eHGk

)
F−k

∥∥2
2
+ σ2

k ≤ βk, Epartialk ,∀k ∈ K. (5.9)

Constraints (5.8) and (5.9) are termed as the worst-case useful signal power constraints

and the worst-case INs power constraints, respectively.

Then, the non-convex semi-infinite inequality constraints (5.8) are handled by firstly

approximating the non-convex parts and then dealing with the semi-infinite inequalities

by using the S-Procedure. Specifically, the following lemma shows the linear approxima-

tion of the useful signal power in (5.8).

Lemma 6. Substituting Gk = Ĝk+△Gk into the useful signal power in (5.8) and let f
(n)
k

and e(n) be the optimal solutions obtained at iteration n, then |[hH
k +eH(Ĝk+△Gk)]fk|2
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is linearly approximated by its lower bound at (f
(n)
k , e(n)) as follows

vecT(△Gk)Akvec(△G∗
k) + 2Re

{
aTk vec(△G∗

k)
}
+ ak, (5.10)

where

Ak =fkf
(n),H
k ⊗ e∗e(n),T + f

(n)
k fHk ⊗ e(n),∗eT − (f

(n)
k f

(n),H
k ⊗ e(n),∗e(n),T),

ak =vec(e
(
hH
k + e(n),HĜk

)
f
(n)
k fHk ) + vec(e(n)

(
hH
k + eHĜk

)
fkf

(n),H
k )

− vec(e(n)
(
hH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k ),

ak =2Re
{(

hH
k + e(n),HĜk

)
f
(n)
k fHk

(
hk + ĜH

k e
)}

−
(
hH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k

(
hk + ĜH

k e
(n)
)
.

Proof: Please refer to Appendix C.1. ■

By replacing the useful signal power in (5.8) with its linear approximation (5.10),

constraints (5.8) are reformulated as

vecT(△Gk)Akvec(△G∗
k) + 2Re

{
aTk vec(△G∗

k)
}
+ ak ≥ βk(2

Rk − 1), Epartialk , ∀k ∈ K.

(5.11)

Lemma 4 is then used to tackle the CSI uncertainty in the above constraints. Specifi-

cally, constraint corresponding to each user in (5.11) can be recast by setting the param-

eters in Lemma 4 as follows

P = 1, W0 = Ak, w0 = ak, w0 = ak − βk(2
Rk − 1),

x = vec(△G∗
k), W1 = −I, w1 = ξ2k.
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Then, (5.11) is transformed into the following equivalent LMIs as

 ϖg,kIMN +Ak ak

aTk Cpartial
k

 ⪰ 0,∀k ∈ K, (5.12)

where ϖg = [ϖg,1, ..., ϖg,K ]T ≥ 0 are slack variables and Cpartial
k = ak − βk(2

Rk − 1) −

ϖg,kξ
2
k.

Next, the uncertainty in {△Gk}∀k∈K of (5.9) is considered. Specifically, Schur’s com-

plement Lemma [79] is firstly adopted to equivalently recast the INs power inequalities

in (5.9) into matrix inequalities as follows

 βk − σ2
k tHk

tk I

 ⪰ 0, ∀k ∈ K, (5.13)

where tk = ((hH
k + eHGk)F−k)

H. By using Gk = Ĝk +△Gk, (5.13) is then rewritten as

 βk − σ2
k t̂Hk

t̂k I

 ⪰−
 0

FH
−k

△GH
k

[
e 0

]
−

 eH

0

 △Gk

[
0 F−k

]
,∀k ∈ K,

(5.14)

where t̂k = ((hH
k + eHĜk)F−k)

H.

In order to use Lemma 5, the following parameters (It is noted that the subscript i

in Lemma 5 has been ignored since P = 1.) are chosen for each constraint in (5.14) as

W =

 βk − σ2
k t̂Hk

t̂k I

 ,Y = −
[
0 F−k

]
,

Z =

[
e 0

]
, X = △GH

k .
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Then, the equivalent LMIs of the worst-case INs power constraints (5.9) are given by


βk − σ2

k − µg,kM t̂Hk 01×N

t̂k I(K−1) ξg,kF
H
−k

0N×1 ξg,kF−k µg,kIN

 ⪰ 0,∀k ∈ K, (5.15)

where µg = [µg,1, ..., µg,K ]T ≥ 0 are slack variables.

Based on the above discussions, Problem (5.7) is approximately rewritten as

min
F,e,β,ϖg,µg

||F||2F (5.16a)

s.t. (5.12), (5.15), (5.7c), (5.16b)

ϖg ≥ 0,µg ≥ 0. (5.16c)

This problem is still non-convex and difficult to optimize F and e simultaneously since

F and e are coupled in Ak, ak and t̂k. In the following, the AO method is adopted to

optimize F and e sequentially in an iterative manner. In particular, the transmit power

is minimized by first fixing the reflection beamforming e so that the problem reduces to

a convex one with respect to F. CVX tool [62] is adopted to solve the resulting convex

problem. Precoder F is then fixed and the resulting non-convex problem of e is handled

under the penalty CCP method. Specifically, for given e, the subproblem of F is given

by

F(n+1) = arg min
F,β,ϖg,µg

||F||2F (5.17a)

s.t. (5.12), (5.15), (5.16c), (5.17b)

where F(n+1) is the optimal solution obtained in the (n+1)-th iteration. Problem (5.17)

is a SDP and can be solved by the CVX tool.

Then, for given F, the subproblem of e is a feasibility-check problem. According

to [12], [33] and in order to improve the converged solution in the optimization of e,
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the useful signal power inequalities in (5.8) are modified by introducing slack variables

α = [α1, ..., αK ]T ≥ 0 and recast as

∣∣(hH
k + eHGk

)
fk
∣∣2 ≥ βk(2

Rk − 1) + αk,∀k ∈ K. (5.18)

Subsequently, the LMIs (5.12) are modified as

 ϖg,kIMN +Ak ak

aTk Cpartial
k − αk

 ⪰ 0,∀k ∈ K. (5.19)

In addition, it is noted that only the submatrix of K×K in the upper left corner of (5.15)

depends on e, so the dimension of the LMIs (5.15) can be reduced from (K+N)×(K+N)

to K ×K as  βk − σ2
k − µg,kM t̂Hk

t̂k I(K−1)

 ⪰ 0,∀k ∈ K. (5.20)

Combining (5.19) and (5.20), the sub-problem of e can be formulated as

max
α,e,β,ϖg,µg

K∑
k=1

αk (5.21a)

s.t. (5.19), (5.20), (5.7c), (5.16c), (5.21b)

α ≥ 0. (5.21c)

Note that the solution of Problem (5.21) can yield a lower objective value compared with

Problem (5.17), the explanation of which can be found in [12].

It is noted that the above problem is still non-convex due to the unit-modulus con-

straints. As in [33], the penalty CCP [123] is adopted here to deal with the non-convex

constraints. Following the penalty CCP framework, the constraints (5.7c) are firstly

equivalently rewritten as 1 ≤ |em|2 ≤ 1, ∀m ∈M. The non-convex parts of the resulting

constraints are then linearized by |e[i]m|2 − 2Re(e∗me
[i]
m) ≤ −1,∀m ∈ M, at fixed e

[i]
m. It
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finally comes to the following convex subproblem of e as

max
e,α,b,

β,ϖg,µg

K∑
k=1

αk − λ[i]
2M∑
m=1

bm (5.22a)

s.t. (5.19),(5.20),(5.16c),(5.21c), (5.22b)

|e[i]m|2 − 2Re(e∗me[i]m) ≤ bm − 1, ∀m ∈M (5.22c)

|em|2 ≤ 1 + bM+m, ∀m ∈M (5.22d)

b ≥ 0, (5.22e)

where b = [b1, ..., b2M ]Tare slack variables imposed over the equivalent linear constraints

of the unit-modulus constraints, and ||b||1 is the penalty term in the objective function.

||b||1 is scaled by the regularization factor λ[i] to control the feasibility of the constraints.

Problem (5.22) is an SDP and can be solved by the CVX tool. The steps of finding

a feasible solution of e to Problem (5.21) is summarized in Algorithm 5.1. It remarks

that: a) When χ is sufficiently low, constraints (5.7c) in the original Problem (5.21) is

guaranteed by ||b||1 ≤ χ; b) The maximum value λmax is imposed to avoid a numerical

problem, that is, a feasible solution satisfying ||b||1 ≤ χ may not be found when the

iteration converges to the stopping criteria ||e[i] − e[i−1]||1 ≤ ν with the increase of λ[i];

c) Stopping criteria ||e[i]− e[i−1]||1 ≤ ν controls the convergence of Algorithm 5.1; d) As

mentioned in [123], a feasible solution to Problem (5.22) may not be feasible for Problem

(5.21). Hence, the feasibility of Problem (5.21) is guaranteed by imposing a maximum

number of iterations Tmax and, in case it is reached, the iteration is restarted based on

a new initial point.

Finally, under the AO framework, Problem (5.16) is solved by solving Problems (5.17)

and (5.21) in an iterative manner. It is remarked that the fixed point e[i] in constraint

(5.22c) is updated iteratively in Algorithm 5.1, which is the same as λ[i]. While fixed

point e(n) in constraint (5.19) is updated iteratively in the outer AO framework.
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Algorithm 5.1: Penalty CCP optimization for reflection beamforming opti-
mization

Require: Initialize e[0], γ[0] > 1, and set t = 0.
1: repeat
2: if t < Tmax then
3: Update e[i+1] from Problem (5.22);
4: λ[i+1] = min{γλ[i], λmax};
5: t = t+ 1;
6: else
7: Initialize with a new random e[0], set up γ[0] > 1 again, and set t = 0.
8: end if
9: until ||b||1 ≤ χ and ||e[i] − e[i−1]||1 ≤ ν.

10: Output e(t+1) = e[i].

5.2.2 Scenario 2: Full Channel Uncertainty

This subsection discusses the extension from the robust beamforming design in the previ-

ous subsection to the case where both the DCSIT and CBRUT are imperfect. By consid-

ering the full channel uncertainty in (5.3) and (5.4) and denoting Efullk ≜ {∀|| △ hk||2 ≤

ξh,k, ∀|| △Gk||F ≤ ξg,k}, constraints (5.7b) can be extended to

Rk (F, e) ≥ Rk, Efullk ,∀k ∈ K, (5.23)

which is then equivalent to

∣∣(hH
k + eHGk

)
fk
∣∣2 ≥ βk(2

Rk − 1), Efullk ,∀k ∈ K, (5.24)∥∥(hH
k + eHGk

)
F−k

∥∥2
2
+ σ2

k ≤ βk, Efullk ,∀k ∈ K. (5.25)

The above non-convex semi-infinite inequality constraints can be addressed in the

same way as Scenario 1. In particular, the linear approximation of the useful signal

power in (5.24) is given in the following lemma.

Lemma 7. Let f
(n)
k and e(n) be the optimal solutions obtained at iteration n, and by

inserting hk = ĥk +△hk and Gk = Ĝk +△Gk into the useful signal power in (5.24),

then the resulting |[(ĥk +△hk)
H + eH(Ĝk +△Gk)]fk|2 is lower bounded linearly at (f

(n)
k ,
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e(n)) as follows

xH
k Ãkxk + 2Re

{
ãHk xk

}
+ ãk, (5.26)

where

Ãk = Dk +DH
k − Zk,

Dk =

 f
(n)
k

f
(n)
k ⊗ e(n),∗

[ fHk fHk ⊗ eT
]
,

Zk =

 f
(n)
k

f
(n)
k ⊗ e(n),∗

[ f
(n),H
k f

(n),H
k ⊗ e(n),T

]
,

ãk = d1,k + d2,k − zk,

d1,k =

 fkf
(n),H
k

(
ĥk + ĜH

k e
(n)
)

vec∗(e
(
ĥH
k + e(n),HĜk

)
f
(n)
k fHk )

 ,

d2,k =

 f
(n)
k fHk

(
ĥk + ĜH

k e
)

vec∗(e(n)
(
ĥH
k + eHĜk

)
fkf

(n),H
k )

 ,

zk =

 f
(n)
k f

(n),H
k

(
ĥk + ĜH

k e
(n)
)

vec∗(e(n)
(
ĥH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k )

 ,

ãk = 2Re {dk} − zk,

dk =
(
ĥH
k + e(n),HĜk

)
f
(n)
k fHk

(
ĥk + ĜH

k e
)
,

zk =
(
ĥH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k

(
ĥk + ĜH

k e
(n)
)
,

xk =

[
△hH

k vecH(△G∗
k)

]H
.

Proof: Please refer to Appendix C.2. ■

Based on Lemma 7, constraints (5.24) are equivalently rewritten as

xH
k Ãkxk + 2Re

{
ãHk xk

}
+ ãk ≥ βk(2

Rk − 1), Efullk , ∀k ∈ K. (5.27)
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Before applying Lemma 4, it is beneficial to express Efullk in terms of the following

quadratic expressions as

Efullk ≜



xH
k

 IN 0

0 0

xk − ξ2h,k ≤ 0,

xH
k

 0 0

0 IMN

xk − ξ2g,k ≤ 0.

Therefore, after introducing ϖh = [ϖh,1, ..., ϖh,K ]T ≥ 0 and ϖg = [ϖg,1, ..., ϖg,K ]T ≥

0 as slack variables, constraints (5.24) can be transformed by Lemma 4 into the following

equivalent LMIs as


Ãk +

 ϖh,kIN 0

0 ϖg,kIMN

 ãk

ãHk Cfull
k

 ⪰ 0, ∀k ∈ K, (5.28)

where Cfull
k = ãk − βk(2

Rk − 1)−ϖh,kξ
2
h,k −ϖg,kξ

2
g,k.

Next, by inserting hk = ĥk +△hk and Gk = Ĝk +△Gk into the equivalent matrix

inequality of the INs power in (5.13), it has

0 ⪯

 βk − σ2
k t̃Hk

t̃k I

+

 0
(
△hH

k + eH△Gk

)
F−k

FH
−k

(
△hk +△GH

k e
)

0


⪯

 0

FH
−k

[ △hr,k 0

]
+

 △hH
r,k

0

[ 0 F−k

]
+

 0

FH
−k

△GH
k

[
e 0

]

+

 eH

0

△Gk

[
0 F−k

]
+

 βk − σ2
k t̃Hk

t̃k I

 , (5.29)

where t̃k = ((ĥH
k + eHĜk)F−k)

H.

Applying Lemma 5 and defining slack variables µg = [µg,1, ..., µg,K ]T ≥ 0 and µh =
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[µh,1, ..., µh,K ]T ≥ 0, the equivalent LMIs of the worst-case INs power constraints (5.25)

are given as



Tempk t̃Hk 01×N 01×N

t̃k I(K−1) ξg,kF
H
−k ξh,kF

H
−k

0N×1 ξg,kF−k µg,kIN 0N×N

0N×1 ξh,kF−k 0N×N µh,kIN


⪰ 0,∀k ∈ K, (5.30)

where Tempk = βk − σ2
k − µg,kM − µh,k.

With (5.28) and (5.30), the worst-case robust beamforming design problem under full

channel uncertainty can be formulated as

min
F,e,β,ϖg,
ϖh,µgµh

||F||2F (5.31a)

s.t. (5.28), (5.30), (5.7c), (5.31b)

ϖg ≥ 0,ϖh ≥ 0,µg ≥ 0,µh ≥ 0. (5.31c)

Problem (5.31) is again non-convex and has coupled variables, which can be solved

similarly to Problem (5.16) and thus omitted for simplicity.

5.3 Outage Constrained Robust Beamforming Design

In general, the channel estimation error follows the Gaussian distribution [51]. Hence,

it is unbounded. The above bounded channel model may not be able to characterize

the practical channel error model. As a result, this section considers the statistical

CSI error model. Specifically, by defining the maximum data rate outage probabilities

ρ1, ..., ρK ∈ (0, 1], the transmit power minimization problem is formulated as

min
F,e
||F||2F (5.32a)

s.t. Pr{Rk (F, e) ≥ Rk} ≥ 1− ρk,∀k ∈ K (5.32b)
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|em|2 = 1, 1 ≤ m ≤M. (5.32c)

The rate outage constraints (5.32b) guarantee that the probability of each user that can

successfully decode its message at a data rate of Rk is no less than 1− ρk.

The outage constrained robust beamforming design problem in (5.32) is computa-

tionally intractable due to the fact that the rate outage probability constraints (5.32b)

have no simple closed-form expressions [127]. In order to solve Problem (5.32), a safe

approximation based on Bernstein-type inequality is given in the following lemma.

Lemma 8. (Bernstein-Type Inequality: Lemma 1 in [127]) Assume f(x) = xHUx +

2Re{uHx}+ u, where U ∈ Hn×n, u ∈ Cn×1, u ∈ R and x ∈ Cn×1 ∼ CN (0, I). Then for

any ρ ∈ [0, 1], the following approximation holds:

Pr{xHUx+ 2Re{uHx}+ u ≥ 0} ≥ 1− ρ (5.33a)

⇒Tr (U)−
√

2 ln(1/ρ)x+ ln(ρ)λ+
max(−U) + u ≥ 0 (5.33b)

⇒


Tr (U)−

√
2 ln(1/ρ)x+ ln(ρ)y + u ≥ 0√
||U||2F + 2||u||2 ≤ x

yI+U ⪰ 0, y ≥ 0,

(5.33c)

where λ+
max(−U) = max(λmax(−U), 0). x and y are slack variables.

Please refer to [127] for the proof of Lemma 8.

The following subsections first design the relatively simple robust beamforming under

the partial channel uncertainty, and then extend it to the full channel uncertainty case.

5.3.1 Scenario 1: Partial Channel Uncertainty

Before the derivations, the rate outage probability of user k in (5.32b) is rewritten as

Pr

{
log2

(
1 +

∣∣(hH
k + eHGk

)
fk
∣∣2∥∥(hH

k + eHGk

)
F−k

∥∥2
2
+ σ2

k

)
≥ Rk

}
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= Pr
{(

hH
k + eHGk

)
Φk

(
hk +GH

k e
)
− σ2

k ≥ 0
}
, (5.34)

where Φk = fkf
H
k /(2Rk − 1)− F−kF

H
−k.

For the convenience of derivations, it is assumed that Σg,k = ε2g,kI, then the RCSIT

error in (5.6) can be rewritten as vec(△Gk) = εg,kig,k where ig,k ∼ CN (0, I). Defining

E = eeH, the rate outage probability (5.34) is reformulated in

Pr
{(

hH
k + eH(Ĝk +△Gk)

)
Φk

(
hk + (Ĝk +△Gk)

He
)
− σ2

k ≥ 0
}

= Pr
{
vecH(△Gk)(Φ

T
k ⊗E)vec(△Gk) + 2Re{vecH((ehH

k +EĜk)Φk)vec(△Gk)}

+ (hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k ≥ 0

}
= Pr

{
ε2g,ki

H
g,k(Φ

T
k ⊗E)ig,k + 2Re{εg,kvecH((ehH

k +EĜk)Φk)ig,k}

+(hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k ≥ 0

}
. (5.35)

Therefore, the rate outage constraints (5.32b) are given as

Pr
{
iHg,kUkig,k + 2Re{uH

k ig,k}+ uk ≥ 0
}
≥ 1− ρk,∀k ∈ K, (5.36)

where

Uk = ε2g,k(Φ
T
k ⊗E), (5.37a)

uk = εg,kvec((eh
H
k +EĜk)Φ

H
k ), (5.37b)

uk = (hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k. (5.37c)

Applying Lemma 8 and introducing auxiliary variables x = [x1, ..., xK ]T and y =

[y1, ..., yK ]T, rate outage constraint of user k in (5.36) is transformed into the determin-

istic form as

Tr (Uk)−
√

2 ln(1/ρk)xk + ln(ρk)yk + uk ≥ 0, (5.38a)
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√
||Uk||2F + 2||uk|||2 ≤ xk, (5.38b)

ykI+Uk ⪰ 0, yk ≥ 0. (5.38c)

(5.38) can be further simplified by some mathematical transformations as follows

Tr (Uk) = ε2g,kTr
(
ΦT

k ⊗E
)
= ε2g,kTr (Φk) Tr (E) = ε2g,kMTr (Φk) , (5.39a)

||Uk||2F = ε4g,k||(ΦT
k ⊗E)||2F = ε4g,k||Φk||2F ||E||2F = ε4g,kM

2||Φk||2F , (5.39b)

||uk||2 = ε2g,k||vec((ehH
k +EĜk)Φ

H
k )||2 = ε2g,kM ||

(
hH
k + eHĜk

)
Φk||22, (5.39c)

λ(Uk) = λ(ε2g,k(Φ
T
k ⊗E)) = ε2g,kλ(Φ

T
k ⊗E) = ε2g,kλ(Φk)λ(E) = ε2g,kMλ(Φk). (5.39d)

Operation λ(X) means the eigenvalues of X. (5.39a) and (5.39b) are from [P76 in [120]],

(5.39d) is from [P421 in [120]].

Therefore, according to Lemma 8 and equation (5.39), the approximation problem of

Problem (5.32) can be given as

min
F,e,x,y

||F||2F (5.40a)

s.t. ε2g,kMTr (Φk)−
√
2 ln(1/ρk)xk − ln(1/ρk)yk + uk ≥ 0, ∀k ∈ K (5.40b)∥∥∥∥∥∥∥

ε2g,kMvec(Φk)
√
2Mεg,kΦk

(
hk + ĜH

k e
)
∥∥∥∥∥∥∥ ≤ xk, ∀k ∈ K (5.40c)

ykI+ ε2g,kMΦk ⪰ 0, yk ≥ 0,∀k ∈ K (5.40d)

|em|2 = 1,∀m ∈M. (5.40e)

Problem (5.40) is still difficult to solve because constraints (5.40c) are non-convex

and have coupled variables F and e. The AO method is used to update F and e in

an iterative manner. More specifically, by first fixing e, the non-convex problem in F

at hand is relaxed by employing the SDR technique [19] and solved by CVX. F is then

fixed and the resulting non-convex problem of e is also handled under the penalty CCP
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method.

For fixed e, let Φk = Γk/(2
Rk − 1) −

∑K
i=1,i ̸=k Γi where Γk = fkf

H
k , Problem (5.40)

corresponding to F is rewritten as

min
Γ,x,y

K∑
k=1

Tr (Γk) (5.41a)

s.t. ε2g,kMTr (Φk)−
√
2 ln(1/ρk)xk − ln(1/ρk)yk + uk ≥ 0, ∀k ∈ K (5.41b)∥∥∥∥∥∥∥

ε2g,kMvec(Φk)
√
2Mεg,kΦk

(
hk + ĜH

k e
)
∥∥∥∥∥∥∥ ≤ xk, ∀k ∈ K (5.41c)

ykI+ ε2g,kMΦk ⪰ 0, yk ≥ 0,∀k ∈ K (5.41d)

Γk ⪰ 0, ∀k ∈ K (5.41e)

rank(Γk) = 1, ∀k ∈ K, (5.41f)

where Γ = [Γ1, ...,ΓK ]. Problem (5.41) can be solved by adopting the SDR technique,

i.e., removing rank(Γk) = 1,∀k ∈ K from the problem formulation, the resulting convex

SDP problem is then efficiently solved by the CVX tools. The following theorem reveals

the tightness of the SDR.

Theorem 9. If the relaxed version of Problem (5.41) is feasible, then there always exists

a feasible solution, denoted as Γ⋆ = [Γ⋆
1, ...,Γ

⋆
K ], satisfying rank(Γ⋆

k) = 1,∀k ∈ K.

Proof: Please refer to Appendix C.3. ■

Remark 1: Numerical results show that, the optimal Γ⋆
k is usually of rank one before

the construction of the rank-1 solution mentioned in Appendix C.3. The optimal fk can

be obtained from Γ⋆
k by using eigenvalue decomposition.

This work now considers the subproblem of e with fixed F. With the same purpose

of (5.18), slack variables α = [α1, ..., αK ]T is introduced to the rate outage probability
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in (5.34), which leads to

Pr
{(

hH
k + eHGk

)
Φk

(
hk +GH

k e
)
− σ2

k − αk ≥ 0
}
. (5.42)

Then, (5.37c) is also modified as follows

uek = (hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k − αk. (5.43)

It is noted that (5.43) is non-concave in e due to the fact that eHĜkfkf
H
k ĜH

k e/(2
Rk − 1)

in ĜkΦkĜ
H
k is convex. By using the first-order Taylor inequality given in Appendix C.1,

eHĜkfkf
H
k ĜH

k e/(2
Rk−1) can be lower bounded linearly by uelinear,k = (2Re{e(n),HĜkfkf

H
k ĜH

k e}−

e(n),HĜkfkf
H
k ĜH

k e
(n))/(2Rk−1). This work then constructs an equivalent concave version

of (5.43), which is given as

uek =uelinear,k − eHĜkF−kF
H
−kĜ

H
k e+ 2Re{eHĜkΦkhk}+ hH

k Φkhk − σ2
k − αk

+MconstEk. (5.44)

In addition, constraints (5.40d) are independent of e and transformed from λ+
max(−U)

in Lemma 8, which then can have yk = max(λmax(−ε2g,kMΦk), 0),∀k ∈ K. With α and

(5.44), the subproblem of (5.40) corresponding to e is formulated as

max
e,α,x,y

K∑
k=1

αk (5.45a)

s.t. ε2g,kMTr (Φk)−
√

2 ln(1/ρk)xk − ln(1/ρk)yk + uek ≥ 0,∀k ∈ K (5.45b)∥∥∥∥∥∥∥
ε2g,kM ||Φk||F

√
2Mεg,kΦk

(
hk + ĜH

k e
)
∥∥∥∥∥∥∥ ≤ xk,∀k ∈ K (5.45c)

α ≥ 0 (5.45d)

|em|2 = 1,∀m ∈M. (5.45e)

The non-convex constraints (5.45e) in Problem (5.45) is solved by using the same tech-
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niques as those used for solving Problem (5.21), then the resulting approximation prob-

lem for Problem (5.45) can be solved by using Algorithm 5.1.

5.3.2 Scenario 2: Full Channel Uncertainty

This subsection introduces the extension of the outage constrained robust beamform-

ing design from the partial channel uncertainty to the case where all the channels are

imperfect at the BS. By considering the full statistical CSI error in (5.6), (5.34) is then

formulated as

Pr
{(

ĥH
k + eHĜk

)
Φk

(
ĥk + ĜH

k e
)
+ 2Re

{(
ĥH
k + eHĜk

)
Φk

(
△hk +△GH

k e
)}
− σ2

k

+
(
△hH

k + eH △Gk

)
Φk

(
△hk +△GH

k e
)
≥ 0
}
. (5.46)

Assuming that Σh,k = ε2h,kI, then the DCSIT can be expressed as △hk = εh,kih,k where

ih,k ∼ CN (0, I). The second term inside (5.46) is rewritten as

2Re
{
(ĥH

k + eHĜk)Φk △ hk + vecT(e(ĥH
k + eHĜk)Φk)vec(△G∗

k)
}

= 2Re
{
εh,k(ĥ

H
k + eHĜk)Φkih,k + εg,kvec

T(e(ĥH
k + eHĜk)Φk)i

∗
g,k

}
= 2Re

{
ũH
k ĩk

}
,

where ĩk = [ iHh,k iTg,k ]H and

ũk =

 εh,kΦk(ĥk + ĜH
k e)

εg,kvec
∗(e(ĥH

k + eHĜk)Φk)

 .

The fourth term on the left hand side of (5.46) is rewritten as

△hH
k Φk △ hk + 2Re

{
eH △GkΦk △ hk

}
+ eH △GkΦk△GH

k e

= ε2h,ki
H
h,kΦkih,k + 2Re

{
△hH

k (Φk ⊗ eT)vec(△G∗
k)
}
+ vecT(△Gk)(Φk ⊗ET)vec(△G∗

k)

= ε2h,ki
H
h,kΦkih,k + 2Re

{
εh,kεg,ki

H
h,k(Φk ⊗ eT)i∗g,k

}
+ ε2g,ki

T
g,k(Φk ⊗ET)i∗g,k
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= ĩHk Ũk ĩk,

where

Ũk =

 Σ
1/2
h,kΦkΣ

1/2
h,k εh,kεg,k(Φk ⊗ eT)

εh,kεg,k(Φk ⊗ e∗) ε2g,k(Φk ⊗ET)

 .

Denote ũk = (ĥH
k + eHĜk)Φk(ĥk + ĜH

k e) − σ2
k, the rate outage constraint (5.46) is

then equivalent to

Pr
{̃
iHk Ũk ĩk + 2Re

{
ũH
k ĩk

}
+ ũk ≥ 0

}
≥ 1− ρk. (5.47)

Combining Lemma 8 and new auxiliary variables x̃ = [x̃1, ..., x̃K ]T and ỹ = [ỹ1, ..., ỹK ]T,

the approximation of the data rate outage constraint of user k in (5.47) is given by

Tr
(
Ũk

)
−
√

2 ln(1/ρk)x̃k + ln(ρk)ỹk + ũk ≥ 0, (5.48a)√
||Ũk||2F + 2||ũk||2 ≤ x̃k, (5.48b)

ỹkI+ Ũk ⪰ 0, ỹk ≥ 0. (5.48c)

Some terms in (5.48) are simplified as follows:

Tr
(
Ũk

)
= Tr

( εh,kΦ
1/2
k

εg,k(Φ
1/2
k ⊗ e∗)

[ εh,kΦ
1/2
k εg,k(Φ

1/2
k ⊗ eT)

])

= (ε2h,k + ε2g,kM)Tr (Φk) , (5.49a)

||Ũk||2F = (ε2h,k + ε2g,kM)2||Φk||2F , (5.49b)

||ũk||2 = (ε2h,k + ε2g,kM)||(ĥH
k + eHĜk)Φk||22, (5.49c)

ỹkI+ Ũk ⪰ 0 =⇒ ỹkI+ (ε2h,k + ε2g,kM)Φk ⪰ 0. (5.49d)

The derivations of (5.49) are similar to (5.39).
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Based on the above results, Problem (5.32) with imperfect DCSIT and imperfect

CBRUT is given by

min
F,e,x̃,ỹ

||F||2F (5.50a)

s.t. (ε2h,k + ε2g,kM)Tr (Φk)−
√

2 ln(1/ρk)xk − ln(1/ρk)yk + ũk ≥ 0, ∀k ∈ K (5.50b)∥∥∥∥∥∥∥
(ε2h,k + ε2g,kM)vec(Φk)√

2(ε2h,k + ε2g,kM)Φk

(
ĥk + ĜH

k e
)
∥∥∥∥∥∥∥ ≤ x̃k, ∀k ∈ K (5.50c)

ỹkI+ (ε2h,k + ε2g,kM)Φk ⪰ 0, ỹk ≥ 0,∀k ∈ K (5.50d)

|em|2 = 1,∀m ∈M. (5.50e)

Comparing Problem (5.50) with Problem (5.40), it is found that the former can be

obtained from the latter by replacing ε2g,kM with ε2h,k+ε2g,kM and hk with ĥk. Therefore,

Problem (5.50) can be solved by using the same techniques as those used to solve Problem

(5.40). In addition, when M is large, the impact of imperfect CBRUT dominates the

performance of the system, which will be illustrated in the numerical results later. Thus,

it is significant to investigate the robust beamforming in an RIS-aided system in which

there are a large number of reflection elements with high channel estimation error.

5.4 Computational Complexity

This section analyzes the computational complexity of the proposed robust transmission

design methods. Since all the resulting convex problems involving LMI, Second-Order

Cone (SOC) constraints and linear constraints that can be solved by a standard interior

point method [101], it can compare the computational complexity of different methods

in terms of their worst-case runtime, the general expression (the complexity of the linear
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constraints are ignored) of which is given by

O((
J∑

j=1

bj + 2I)1/2n(n2 + n

J∑
j=1

b2j +

J∑
j=1

b3︸ ︷︷ ︸
due to LMI

+ n

I∑
i=1

a2i︸ ︷︷ ︸
due to SOC

)),

where n is the number of variables, J is the number of LMIs of size bj , and I is the

number of SOC of size ai. Based on the above expression, the computational complexity

per iteration of the proposed methods is provided as follows:

1) PCU-bounded method denotes the worst-case beamforming design method under

Scenario 1. The approximate complexity of Problem (5.17) is oF = O([K(MN + K +

N + 1)]1/2n1[n
2
1 + n1K((MN + 1)2 + (K +N)2) +K((MN + 1)3 + (K +N)3)]) where

n1 = NK, and that of Problem (5.22) is oe = O([K(MN + 1 + K) + 2M ]1/2n2[n
2
2 +

n2K((MN + 1)2 + K2) + K((MN + 1)3 + K3) + n2M ]) where n2 = M . Finally, the

approximate complexity of PCU-bounded method per iteration is oF + oe.

2) FCU-bounded method denotes the worst-case beamforming design method under

Scenario 2. The approximate complexity of Problem (5.31) is oF + oe, where oF =

O([K(MN + 3N +K + 1)]1/2n1[n
2
1 + n1K((MN +N + 1)2 + (K + 2N)2) +K((MN +

N +1)3 + (K +2N)2)]) with n1 = NK, and oe = O([K(MN +1+K) + 2M ]1/2n2[n
2
2 +

n2K((MN + 1)2 +K2) +K((MN + 1)3 +K3) + n2M ]) with n2 = M .

3) PCU-statistic method denotes the outage constrained beamforming design method

under Scenario 1. The approximate complexity of Problem (5.41) is oF = O([2K(N +

1)]1/2n1[n
2
1+2n1KN2+2KN3+nKN2(N +1)2]) where n1 = NK, and that of Problem

(5.45) is oe = O([4K + 2M ]1/2n2[n
2
2 + n2(K(M2 + (N + 1)2) + M)]) where n2 = M .

Finally, the approximate complexity of PCU-statistic method per iteration is oF + oe.

4) FCU-statistic method denotes the outage constrained beamforming design method

under Scenario 2. Here, the approximate complexity per iteration is the same with the

PCU-statistic method since they only have some different coefficients.
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5.5 Numerical Results and Discussions

(50,10) RIS

(0,0)

BS

(70,0)

(0,0)

BS

Users

Figure 5.2: The simulated system setup.

Table 5-A: System parameters
Path loss exponents of BS-user link αBU = 4

Path loss exponents of BS-RIS link αBI = 2.2

Path loss exponents of RIS-user link αIU = 2

Noise power σ2
1 = ... = σ2

K = −80 dBm

Convergence tolerance 10−4

Maximun outage probabilities ρ1 = ... = ρK = ρ = 0.05

This section provides numerical results to evaluate the performance of the proposed

algorithms. The simulated system setup of the considered network is shown in Fig. 5.2

1, in which it is assumed that the BS is located at (0 m, 0 m) and the RIS is placed at (50

m, 10 m). K users are randomly and uniformly distributed in a circle centered at (70 m,

0 m) with radius of 5 m. The channel models, i.e., {hk,Gk}∀k∈K, are assumed to include

large-scale fading and small-scale fading. The large-scale fading model is expressed as

PL = −PL0−10α log10(d) dB, where α is the path loss exponent and d is the link distance

in meters. PL0 denotes the pathloss at the distance of 1 meter, which is set as 40 dB based

on the 3GPP UMi model [128] with 3.5 GHz carrier frequency (i.e., carrier frequency of

5G in China). The small-scale fading in {hk,Gk}∀k∈K is assumed to be Rayleigh fading

distribution. For the statistical CSI error model, the variance of vec(△Gk) and △hk

are defined as ε2g,k = δ2g ||vec(Ĝk)||22 and ε2h,k = δ2h||ĥk||22, respectively. δg ∈ [0, 1) and

δh ∈ [0, 1) measure the relative amount of CSI uncertainties. For the bounded CSI error

model, the radii of the uncertainty regions are set as

ξg,k =

√
ε2g,k
2

F−1
2MN (1− ρ),

12D scenario can be extended to 3D scenario.
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and

ξh,k =

√
ε2h,k
2

F−1
2N (1− ρ),

where F−1
2MN (·) and F−1

2N (·) denote the inverse Cumulative Distribution Function (CDF)

of the Chi-square distribution with degrees of freedom equal to 2MN and 2N , respec-

tively. According to [127], the above bounded CSI error model provides a fair compari-

son between the performance of the worst-case robust design and the outage constrained

robust design. In addition, the target rates of all users are assumed to be the same, i.e.,

R1 = ... = RK = R and the fixed simulation settings for the simulations are given in

Table 5-A.
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Figure 5.3: Transmit power versus the number of iteration of different algorithms, when
K = 3 and {δg, δh} = {0.01, 0.02}.

Fig. 5.3 illustrates the convergence behavior of the proposed four algorithms. Here,

the minimum rate is set as R = 2 bit/s/Hz, and the channel uncertainty levels are

chosen as {δg, δh} = {0.01, 0.02}. It is observed that all algorithms converge rapidly

and 10 iterations are sufficient for the algorithms to converge. It also shows that the

convergence speed increases with the number of antennas. In addition, the algorithms

under the statistical error model converge faster than those under the bounded error

model.
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Figure 5.4: Average CPU time versus the number of antenna elements at the RIS M
and at the BS N , when K = 2 and {δg, δh} = {0.01, 0.02}.

Fig. 5.4 compares the average CPU running time of the proposed algorithms ver-

sus the numbers of antenna elements at the BS and/or reflection elements at the RIS.

The results are obtained by using a computer with a 1.99 GHz i7-8550U CPU and 16

GB RAM. Here, it is set K = 2, R = 2 bit/s/Hz, and {δg, δh} = {0.01, 0.02}. Firstly,

it is observed that the robust algorithms under the statistical CSI error model require

much less CPU running time than those under the bounded CSI error model. This is

due to the fact that there are some large-dimensional LMIs that increase the computa-

tional complexity of the worst-case algorithms. Secondly, the FCU-bounded algorithm

requires more CPU time than the PCU-bounded algorithm because the DCSIT error

△hk increases the dimension of the LMIs. Thirdly, when M = 6, the CPU running

time of the outage constrained algorithm under two scenarios is similar due to the fact

that no additional complexity is introduced by considering the additional DCSIT error.

Finally, under bounded CSI error model, the gap of CPU time between FCU and PCU

cases (see solid pink and black curves) reduces when M becomes large due to the fact

that the role of M becomes weak in the complexity, While larger N has more impact in

the complexity such that the gap between FCU and PCU cases (see dash pink and black

curves) increases with N .
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Figure 5.5: Transmit power versus the target rate R under N = M = 6 and {δg, δh} =
{0.01, 0.02}.

Fig. 5.5 shows the minimum transmit power of the RIS-aided communication system

versus the target rate requirements of users under various CSI error models. Some

system parameters are set as N = M = 6, K = {2, 3}, {δg, δh} = {0.01, 0.02}. It is

seen that the minimum transmit power increases with the target rate for both channel

uncertainty scenarios and both CSI error models. In addition, it is also observed that

the minimum transmit power of the worst-case robust design algorithms is larger than

that of the outage constrained robust design algorithms. This is due to the fact that

the worst-case optimization is the most conservative robust design, which requires more

transmit power with the aim of ensuring that the achievable rate of each user meets

the target rate requirement for the worst-case CSI error realization. Finally, the FCU

scenario requires more transmit power to achieve the target rate than the PCU scenario,

since FCU scenario needs more transmit power to combact the transmission loss caused

by both the direct channel and reflection channel error.

In the following, the impact of the accuracy of the CSI on the system performance is

studied. The outage constrained robust beamforming design algorithms is adopted since

the computational complexity of the worst-case robust beamforming design algorithms

is unacceptable at large numbers of antennas.
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(a) Feasibility rate
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(b) Transmit power

Figure 5.6: Feasibility rate and transmit power versus the number of antenna elements
under the PCU scenario, when K = 2.

Fig. 5.6 shows the feasibility rate and the minimum transmit power versus N or M

when only the CBRUT is imperfect, i.e., δh = 0. It is assumed that there are K = 2

users with R = 2 bit/s/Hz. The feasibility rate is defined as the ratio of the number

of feasible channel realizations to the total number of channel realizations, where the

feasible channel realization means that there exists a feasible solution to the outage

constrained problem in (5.32) with this channel realization. An interesting phenomenon

can be observed from Fig. 5.6(a). When fixing the number of transmit antennas N ,
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the feasibility rate decreases rapidly with the number of phase shifters at a high level of

channel uncertainty (δg ≥ 0.08). By contrast, when fixing the number of phase shifters

M the feasibility rate keeps stable for different numbers of antennas even at a high level

of channel uncertainty.

Based on the observations of Fig. 5.6(a), the minimum transmit power consumption

of different channel uncertainty levels is further examined in Fig. 5.6(b) with a bench-

mark scheme without RIS. Fig. 5.6(b) is generated based on the channel realizations for

which the feasible solutions can be obtained at N = 16 or M = 16.

This work first studies the case with fixed number of transmit antennas N = 6. In

Fig. 5.6(b), the case with δg = 0 can be regarded as the perfect CBRUT case, and

its minimum transmit power decreases with the number of the reflection elements. This

trend is consistent with that of Fig. 4 in [12]. The minimum transmit power consumption

values under small values of δg, e.g., δg = {0.05, 0.08}, also decrease with the number

of the reflection elements, and are higher than that of the perfect CBRUT case. The

reason is that the BS needs to consume more power to compensate for the rate loss

caused by the CBRUT error. However, when δg increases to 0.1 or larger, transmit power

consumption starts to increase with the number of reflection elements. The reason is

that increasing the number of reflection elements cannot only reduce the transmit power

due to its increased beamforming gain, but also increase the channel estimation error

that more transmit power is required to compensate for the channel errors. Therefore,

when the CBRUT error is small, the benefits brought by the increase of M , outweighs

its drawbacks, and vice versa. As a result, the number of RIS reflection elements should

be carefully chosen, and the accuracy of the CBRUT estimation is crucial to reap the

benefits offered by the RIS.

On the other hand, for the case with a fixed number of reflection elements, the

transmit power consumption values decrease with the number of antennas at the BS

even when the CBRUT error is high as δg = 0.12. The reason is that when the number

of antennas is large, more degrees of freedom can be exploited to optimize the active
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beamforming vector at the BS to compensate for the channel estimation error. Finally,

compared with the system without RIS, the RIS may lose its performance gain advantage

under high CBRUT error.
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Figure 5.7: Feasibility rate and transmit power versus the number of antenna elements
under the FCU scenario, when K = 2.

Fig. 5.7 shows the feasibility rate and the minimum transmit power versus M or N

when both the DCSIT and the CBRUT are imperfect. The simulation parameters are

the same as those in Fig. 5.6. Fig. 5.7(a) shows that when δg is low, the feasibility

rates achieved by various cases are always high. In addition, from Fig. 5.7(b), it is
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found that the increase of the number of antennas at the BS is effective in reducing the

transmit power consumption, which is not affected by the DCSIT error δh (see curves

M = 6, δg = 0.01, δh = {0.01, 0.05, 0.1}).

5.6 Summary

This chapter investigated robust beamforming designs under imperfect CBRUT for the

RIS-aided MU-MISO system. The aim was to minimize the transmit power subject to

the worst-case rate constraints under the bounded CSI error model and the rate out-

age probability constraints under the statistical CSI error model. The CSI uncertainties

under the bounded CSI error model were addressed applying the S-procedure, and those

under the statistical CSI error model were tackled by using the Bernstein-Type Inequal-

ity. The reformulated problems were efficiently solved under the AO framework. It is

shown that the performance in terms of the minimum achievable transmit power, con-

vergence and complexity under the statistical CSI error model is higher than that under

the bounded CSI error model. The number of elements on the RIS may have a negative

impact on system performance when the CBRUT error is large. This conclusion provides

an engineering insight for the careful selection of the size of the RIS. In the end, this

work provides a framework of robust transmission design in a simple single-cell mul-

tiuser scenario. The more complicated scenarios, such as the RISs-assisted full-duplex

communication systems and RIS-aided physical layer security systems, will be studied

as the future work. Furthermore, the robustness of the RIS in mmWave system under a

geometric channel model is also worth studying.



Chapter 6

Robust Transmission in the

Presence of Eavesdropper

This chapter studies the RIS-aided secrecy communication under the active attacks and

passive eavesdropping. The contributions of this chapter are summarized as follows:

• This chapter proposes an RIS-aided two-phase secrecy communication scheme for

a scenario where the ED has a similar channel direction as a LU in order to acquire

high-quality eavesdropping information. In particular, in the multicasting phase,

the BS transmits signals to the LU with low transmission power to reduce the infor-

mation leakage to the ED. In the user cooperation phase, other LUs forward the

received signals to the attacked LU with the assistance of RIS by using the energy

harvested in the previous phase. In addition, two models of ED are considered in

this work, i.e. active attack and passive eavesdropping.

• In the presence of statistical CSI error under the active attack, this work develops

an outage constrained beamforming design that maximizes the secrecy rate subject

to the unit-modulus constraint, the energy harvesting constraint and the secrecy

rate outage probability constraint. Here, the outage probability constraint guar-

122
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antees the maximum secrecy rate of the system for secure communication under a

predetermined probability. By resorting to the BTI and convex approximations,

the non-convexity of constraints is addressed. Then, the active precoders and the

passive reflecting beamforming are updated by using the proposed SDP and penalty

CCP technique respectively in an iterative manner.

• For the passive ED case with only partial CSI, it maximizes an average secrecy

rate subject to the unit-modulus constraint of the reflecting beamforming and

the energy harvesting constraint. To address the numerical integration in the

objective function, an angular secrecy model, which is analytically non-convex, is

proposed. A low-complexity algorithm is proposed based on the MM-based AO

framework, where the active beamforming vectors are updated by solving a convex

optimization problem and the reflecting beamforming vectors are updated in a

closed-form solution which is globally optimal.

• The numerical results demonstrate that the level of the cascaded CSI error plays

a vital role in the RIS-aided secure communication systems. In particular, at low

error of cascaded CSI, the secrecy rate increases with the number of elements at

the RIS due to the increased beamforming gain. However, at large level of cascaded

CSI error, the secrecy rate decreases with the number of elements at the RIS due

to the increased channel estimation error. Hence, whether to enable the RIS for

enhancing the security capacity in the communication systems depends on the level

of the cascaded CSI error. In addition, the RIS can enhance the average secrecy

rate under the passive eavesdropping.

6.1 System Model

As shown in Fig. 6.1, a BS with N transmit antennas communicates with K single-

antenna LUs in the presence of a single-antenna ED. An RIS with M reflecting elements

is introduced to aid the secure communication.
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Rician wiretap channels are considered for the analysis of angle aware two-phase

security communication. Define the set of all LUs as K = {1, 2, ...,K}, and denote set

K−K = K/{K} and set K+E = K ∪ {E}. By denoting {Di, θi}∀i∈K+E
as the distances

and the azimuth angles respectively from the BS to the LUs and the ED, as shown in

Fig. 6.1, Rician channel is used to model the corresponding channels {gi ∈ CN×1}∀i∈K+E

[129]:

gi =

√
ϱ0

(
Di

d0

)−αBS
(√

KBS

1 +KBS
gLOS
i +

√
1

1 +KBS
gNLOS
i

)
, ∀i ∈ K+E , (6.1)

where ϱ0 is the pathloss at the reference distance of d0, αBS and KBS are the pathloss

exponent and the Rician factor of the BS-related links, respectively. It is assumed

that the BS is equipped with a ULA. Then, the LoS component is given by gLOS
i =[

1, e−jπ sin θi , · · · , e−j(N−1)π sin θi
]
, and the non-LoS component is drawn from a Rayleigh

fading, i.e., gNLOS
i ∼ CN (0, IN ).
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Furthermore, by denoting {DRIS, θRIS} as the distance and the azimuth angle from

the BS to the RIS, it is straightforward to obtain the distances {dRIS,i}∀i∈K+E
and the

azimuth angles {φi}∀i∈K+E
from the RIS to the LUs and the ED as shown in Fig. 6.2:

dRIS,i =
[
(DRIS cos θRIS −Di cos θi)

2 + (DRIS sin θRIS −Di sin θi)
2
]−1/2

,

sinφi =
1

dRIS,i
(Di sin θi −DRIS sin θRIS),

cosφi =
1

dRIS,i
(DRIS cos θRIS −Di cos θi).

The corresponding channels {hi ∈ CN×1}∀i∈K+E
are given by

hi =

√
ϱ0

(
dRIS,i

d0

)−αRIS
(√

KRIS

1 +KRIS
hLOS
i +

√
1

1 +KRIS
hNLOS
i

)
, ∀i ∈ K+E , (6.2)

where αRIS and KRIS are the pathloss exponent and the Rician factor of the RIS-related

links, respectively. hNLOS
i is the non-LoS component, and its distribution is the same as

that of gNLOS
i . By assuming an M = Mx ×My UPA deployed at the RIS with Mx and

My being the number of reflecting elements in x-axis and y-axis, respectively, the LoS

component is then written as

hLOS
i = hx

i ⊗ hy
i , (6.3)

where hx
i = [1, · · · , e−jπ(Mx−1) cosφi cosϕ sin θi ]T, hy

i = [1, · · · , e−jπ(Mx−1) sinφi cosϕ sin θi ]T,

and ϕ is the elevation angle observed at the RIS side.

6.1.2 Signal Transmission

As shown in Fig. 6.1, it is assumed that the ED hides at the line connecting the BS

to one of the users, denoted as user K, to achieve high success rate of attack. In this

situation, the signal received by the ED is highly correlated with user K [38], [39], which

leads to θE ≈ θK , gLOS
E ≈ gLOS

K and DE ∈ (0, DK). When the Rician factor KBS is

sufficiently large, the channel gE is approximately equal to the channel gK .

In particular, in the first phase, the BS multicasts the common signal to all users
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except user K 1. In the second phase, the helping users (∀k ∈ K−K) forward the

decoded common signal to user K via the RIS. In this work, in order to implement the

AAUC scheme without consuming extra energy, the LUs adopt the hybrid information

and energy harvesting receiving mode which splits the received signal into two power

streams with power splitting ratios tk and 1 − tk. The former is used for decoding the

signal and the latter is for energy harvesting.

6.1.2.1 Multicasting Phase

In this phase, the BS multicasts the signal s to the helping LUs through beamforming

vector f ∈ CN×1 which is limited to the maximum transmit power Pmax, i.e., ||f ||22 ≤

Pmax. Since gE ≈ gK , the beamforming f needs to satisfy |gH
Kf | = 0 to ensure that

|gH
Ef | ≈ 0. Let Q ∈ CN×(N−1) be the orthogonal matrix which spans the null space

of gK by using the QR decomposition, i.e., QHQ = I. Then, design f = Qz, where

z ∈ C(N−1)×1 is a newly introduced variable. Therefore, the signal received by LU k

is given by gH
k Qz + nk, where nk is the received noise with the noise power of σ2

k. By

adopting the hybrid receiving mode and let t = [t1, ..., tK−1]
T where tk is the power

splitting ratio of LU k, the achievable rate at LU k ̸= K is

Rk (z, tk) =
1

2
log2

(
1 +

tk
σ2
k

∣∣gH
k Qz

∣∣2) , (6.4)

where the factor 1/2 is due to the assumption that the total time duration is evenly

distributed to two transmission phases. The harvested power at LU k ̸= K is

(1− tk)
∣∣gH

k Qz
∣∣2 . (6.5)

1The RIS is assumed to be turned off in the first phase to avoid reflecting useful signals to the ED.
Please note that this assumption is practical due to the fact that the BS has no responsibility of designing
secure reflecting beaming for the RIS, which reduces the computational complexity and hardware cost
at the BS.
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6.1.2.2 User Cooperation Phase

In this phase, the helping LUs (∀k ∈ K−K) forward the signal s to LU K through a

beamforming vector w ∈ C(K−1)×1 = [w1, ..., wK−1]
T by using the power harvested in

the multicasting phase. Since LU K is randomly selected by the ED and assume that

there are many obstacles in the communication environment, such as indoor applications,

the direct links between the helping LUs and the LU K may be blocked. To address this

issue, an RIS can be installed on the building with a certain height, and thus the RIS

is capable of reflecting the signals forwarded by the helping LUs to LU K. Denote by e

the reflection coefficient vector of the RIS, where |em|2 = 1,∀m = 1, · · · ,M . Then, the

signal received by LU K is given by

yK = hH
Kdiag(e∗)HRISws+ nK

= eHHKws+ nK ,

where HRIS = [h1, ..., hK−1], HK = [h∗
K ⊙ h1, ..., h

∗
K ⊙ hK−1] is the cascaded LU-RIS-

LU (LRL) channel, and nK ∼ CN (0, σ2
K) is the noise. The corresponding achievable

rate is

RK (w, e) =
1

2
log2

(
1 +

1

σ2
K

∣∣eHHKw
∣∣2) . (6.6)

On the other hand, the signal received by the ED is yE = eHHEws + nE , where

HE = [h∗
E ⊙ h1, ..., h

∗
E ⊙ hK−1] is the cascaded LU-RIS-ED (LRE) channel, and nE ∼

CN (0, σ2
E) is the received noise at the ED.

The corresponding eavesdropping rate is

RE (w, e) =
1

2
log2

(
1 +

1

σ2
E

∣∣eHHEw
∣∣2) . (6.7)

Finally, the secrecy rate of this system under the AAUC scheme can be given by [39]:

[
min
∀k∈K

Rk −RE

]+
. (6.8)
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The following two sections consider the system design for two ED models: the active

eavesdropper model and the passive eavesdropper model.

6.2 ED Model I: Active Eavesdropper Model

This section considers the active attack case, in which the ED pretends to be an LU

sending pilot signals to the transmitters (including the BS and the helping LUs) during

the channel estimation procedure [38], [39]. It is reasonable to assume that the BS is

capable of addressing this attack by using the multi-antenna technique, so as to obtain

perfect CSI of the system. Nevertheless, the single-antenna helping LUs only have the

imperfect CSI of LU K and the ED due to their limited anti-interference ability.

6.2.1 Channel Uncertainties

Based on the above assumption, the cascaded channels can be modeled as

HK = ĤK +△K , HE = ĤE +△E , (6.9)

where ĤK and ĤE are the estimated cascaded channels, △K = [△K
1 · · ·△K

K−1] and

△E = [△E
1 · · ·△E

K−1] are the unknown cascaded channel errors. △K
k and △E

k are the

unknown cascaded LRL and LRE channel error vectors at LU k, respectively.

According to [75], the robust beamforming under the statistical CSI error model

outperforms the bounded CSI error model in terms of the minimum transmit power,

convergence speed and computational complexity. In addition, the statistical channel

error model is more suitable to model the channel estimation error when the channel

estimation is based on the Minimum Mean Sum Error (MMSE) method. Hence, the

statistical model is adopted to characterize the cascaded CSI imperfection [75], i.e., each

CSI error vector is assumed to follow the CSCG distribution, i.e.,

△K
k ∼ CN (0,ΣK

k ),ΣK
k ⪰ 0, ∀k ∈ K−K , (6.10a)
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△E
k ∼ CN (0,ΣE

k ),Σ
E
k ⪰ 0,∀k ∈ K−K , (6.10b)

where ΣK
k ∈ CM×M and ΣE

k ∈ CM×M are positive semidefinite error covariance matri-

ces. Note that the CSI error vectors of different LUs are independent with each other.

Therefore, it has

vec(△K) ∼ CN (0,ΣK), vec(△E) ∼ CN (0,ΣE), (6.11)

where ΣK and ΣE are block diagonal matrices, i.e., ΣK = diag(ΣK
1 , ...,ΣK

K−1) and

ΣE = diag(ΣE
1 , ...,Σ

E
K−1).

6.2.2 Outage Constrained Beamforming Design

Under the statistical CSI error model, a probabilistic robust algorithm is developed for

the secrecy rate maximization problem, which is formulated as

max
Rsec,z,w,e,t

Rsec (6.12a)

s.t.Pr

{
min
∀k∈K

Rk −RE ≥ Rsec

}
≥ 1− ρ (6.12b)

||z||22 ≤ Pmax (6.12c)

|em|2 = 1, 1 ≤ m ≤M (6.12d)

0 ≤ t ≤ 1 (6.12e)

|wk|2 ≤ (1− tk)
∣∣gH

k Qz
∣∣2 ,∀k ∈ K−K , (6.12f)

where ρ ∈ (0, 1] is the secrecy rate outage probability.

Problem (6.12) is difficult to solve due to the computationally intractable rate outage

probability constraint (6.12b), the non-convex unit-modulus constraint (6.12d), and the

non-convex power constraint (6.12f).

Firstly, constraint (6.12b) is replaced with the development of a safe approximation

consisting of three steps in the following.



Chapter 6. Robust Transmission in the Presence of Eavesdropper 130

Step 1: Decouple the Probabilistic Constraint: First of all, based on the independence

between {gk}∀k∈K−K
and HK , it comes to

(6.12b)⇔
K∏
k=1

Pr {Rk −RE ≥ Rsec} ≥ 1− ρ (6.13)

⇐Pr {Rk −RE ≥ Rsec} ≥ 1− ρ̄, ∀k ∈ KK , (6.14)

where ρ̄ = 1− (1− ρ)1/K .

Step 2: Convenient Approximations: To address the non-concavity of Rk−RE , ∀k ∈

KK , it needs to construct a sequence of surrogate functions of {Ri}∀i∈K+E
. More specif-

ically, the following lemmas is needed.

Lemma 9. [79] The quadratic-over-linear function x2

y is jointly convex in (x, y), and

lower bounded by its linear first-order Taylor approximation 2xt

yt x− (x
t

yt )
2y at fixed point

(xt, yt).

By substituting x with gH
k Qz and y with 1/tk, Lemma 9 is utilized to obtain a concave

lower bound of rate Rk (z, tk) for ∀k ∈ K−K . The lower bound is given by

R̃k(z, tk|zt, ttk) =
1

2
log2

(
1−

tt,2k
σ2
ktk

∣∣gH
k Qzt

∣∣2 + 2ttkRe

{
1

σ2
k

zt,HQHgkg
H
k Qz

})
(6.15)

for any feasible solution {zt, ttk}.

Lemma 10. The upper bound of rate RE (w, e) is given by

R̃E (w, e, aE) =
aE
∣∣eHHEw

∣∣2 /σ2
E + aE − ln aE − 1

2 ln 2
,

where aE is the auxiliary variable.

Proof: Please refer to Appendix D.1. ■
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Lemma 11. The lower bound of rate RK (w, e) is given by

R̃K(w, e, aK , v) =
1

2 ln 2

(
−aK |v|2|eHHKw|2 − σ2

KaK |v|2 + 2aKRe
{
veHHKw

}
−aK + ln aK + 1) ,

where aK and v are the auxiliary variables.

Proof: Please refer to Appendix D.2. ■

For the convenience of derivations, it is assumed that ΣK
k = ε2K,kIM and ΣE

k =

ε2E,kIM , then ΣK = ΛK ⊗ IM where ΛK = diag(ε2K,1, ..., ε
2
K,K−1), and ΣE = ΛE ⊗ IM

where ΛE = diag(ε2E,1, ..., ε
2
E,K−1). Furthermore, the error vectors in (6.11) can be

rewritten as vec(△K) = Σ
1
2
K iK where iK ∼ CN (0, IM(K−1)), and vec(△E) = Σ

1
2
EiE

where iE ∼ CN (0, IM(K−1)). Define E = eeH and W = wwH. Combining (6.15) with

Lemma 10, Left Hand Side (LHS) of (6.14) corresponding to the users in K−K can be

replaced by its lower bound:

Pr {Rk −RE ≥ Rsec}

≥Pr
{
R̃k − R̃E ≥ Rsec

}
=Pr

{
aETr

(
E(ĤE +△E)W(ĤH

E +△H
E)
)
− [2 ln 2(R̃k −Rsec)− aE + ln aE + 1]σ2

E ≤ 0
}

=Pr
{
iHEUEiE + 2Re

{
uH
EiE

}
+ uk ≤ 0

}
, (6.16)

where

UE = aEΣ
1
2
E(W

T ⊗E)Σ
1
2
E , (6.17a)

uE = aEΣ
1
2
Evec(EĤEW), (6.17b)

uk = aETr
(
EĤEWĤH

E

)
− [(R̃k −Rsec)2 ln 2− aE + ln aE + 1]σ2

E . (6.17c)

Combining Lemma 10 with Lemma 11, the LHS of (6.14) corresponding to LU K can
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be replaced by its lower bound:

Pr {RK −RE ≥ Rsec}

≥Pr
{
R̃K − R̃E ≥ Rsec

}
=Pr

{
aK |v|2Tr

(
E(ĤK +△K)W(ĤH

K +△H
K)
)
− 2aKRe

{
veH(ĤK +△K)w

}
+

aE
σ2
E

Tr
(
E(ĤE +△E)W(ĤH

E +△H
E)
)
− c ≤ 0

}
=Pr

{
iHUK i+ 2Re

{
uH
K i
}
+ uK ≤ 0

}
, (6.18)

where

i = [ iHK , iHE ]H, (6.19a)

UK = diag
{
aK |v|2Σ

1
2
K(WT ⊗E)Σ

1
2
K ,

aE
σ2
E

Σ
1
2
E(W

T ⊗E)Σ
1
2
E

}
, (6.19b)

uK = [aK |v|2vecH(EĤKW)Σ
1
2
K − aKvvecH(ewH)Σ

1
2
K ,

aE
σ2
E

vecH(EĤEW)Σ
1
2
E ]

H,

(6.19c)

uK = aK |v|2Tr
(
EĤKWĤH

K

)
+

aE
σ2
E

Tr
(
EĤEWĤH

E

)
− 2aKRe

{
veHĤKw

}
− c,

(6.19d)

c = ln aE + ln aK − aE − aK − 2Rsec ln 2 − σ2
KaK |v|2 + 2. (6.19e)

Now, by substituting (6.16) and (6.18) into (6.14), (6.14) can be approximated as

Pr
{
iHEUEiE + 2Re

{
uH
EiE

}
+ uk ≤ 0

}
≥ 1− ρ̄,∀k ∈ K−K , (6.20a)

Pr
{
iHUK i+ 2Re

{
uH
K i
}
+ uK ≤ 0

}
≥ 1− ρ̄. (6.20b)

Step 3: A BTI-Based Safe Approximation: The outage probabilities in (6.20) are

characterized by quadratic inequalities, which can be safely approximated by using the

following lemma.
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Lemma 12. (Bernstein-Type Inequality) [130] Assume f(x) = xHUx+2Re{uHx}+ u,

where U ∈ Hn×n, u ∈ Cn×1, u ∈ R and x ∈ Cn×1 ∼ CN (0, I). Then for any ρ ∈ [0, 1],

the following approximation holds:

Pr{xHUx+ 2Re{uHx}+ u ≤ 0} ≥ 1− ρ

⇒Tr (U) +
√
2 ln(1/ρ)x− ln(ρ)λ+

max(U) + u ≤ 0

⇒


Tr (U) +

√
2 ln(1/ρ)x− ln(ρ)y + u ≤ 0√
||U||2F + 2||u||22 ≤ x

yI−U ⪰ 0, y ≥ 0,

(6.21)

where λ+
max(U) = max(λmax(U), 0). x and y are slack variables. ■

Before using Lemma 12, the following simplified derivations is needed for LU k,

∀k ∈ K−K , i.e.,

Tr (UE) = Tr

(
aEΣ

1
2
E(W

T ⊗E)Σ
1
2
E

)
= Tr

(
aE(W

T ⊗E)(ΛE ⊗ IM )
)

= aEMTr (ΛEW) , (6.22a)

||UE ||2F = a2EM
2||ΛEW||2F , (6.22b)

||uE ||22 = a2Evec
H(EĤEW)(ΛE ⊗ IM )vec(EĤEW)

= a2EM ||Λ
1
2
EWĤH

Ee||22, (6.22c)

λmax(UE) = λmax(aEΣ
1
2
E(W

T ⊗E)Σ
1
2
E)

= λmax(aE(ΛEW
T ⊗E))

= aEλmax(ΛEW)λ(E) = aEMwHΛEw. (6.22d)

By substituting (6.22) into (6.21) and introducing slack variables {xE , yE}, the con-
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straints for ∀k ∈ K−K in (6.20a) are transformed into the following deterministic form:

BTI1 ≜



Tr (UE) +
√
2 ln(1/ρ̄)xE − ln(ρ̄)yE

+uk ≤ 0,∀k ∈ K−K∥∥∥∥∥∥∥
aEMvec(ΛEW)
√
2MaEΛ

1
2
EWĤH

Ee

∥∥∥∥∥∥∥ ≤ xE

yE ≥ aEMwHΛEw.

(6.23)

On the other hand, the simplified derivations for LU K are given by

Tr (UK) = aK |v|2MTr (ΛKW) +
aE
σ2
E

MTr (ΛEW) , (6.24a)

||UK ||2F = a2K |v|4M2||ΛKW||2F +
a2E
σ4
E

M2||ΛEW||2F , (6.24b)

||uK ||2 = M ||Λ
1
2
K

(
aK |v|2WĤH

Ke− aKvw
)
||22 +

a2E
σ4
E

M ||eHĤEWΛ
1
2
E ||

2
2, (6.24c)

λmax(UK) = max

{
aK |v|2MwHΛKw,

aE
σ2
E

MwHΛEw

}
.

By substituting the above equations into (6.21) and introducing slack variables {xK , yK},

the constraint for LU K in (6.20b) is transformed into the following deterministic form:

BTI2 ≜



Tr (UK) +
√

2 ln(1/ρ̄)xK − ln(ρ̄)yK + uK ≤ 0∥∥∥∥∥∥∥∥∥∥∥∥∥

aK |v|2Mvec(ΛKW)

aEMvec(ΛEW)/σ2
E

√
2MΛ

1
2
K

(
aK |v|2WĤH

Ke− aKvw
)

√
2MaEΛ

1
2
EWĤH

Ee/σ
2
E

∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ xK

yK ≥ λmax(UK), yK ≥ 0.

(6.25)

Then, to handle the non-convex power constraint (6.12f), the right hand side of (6.12f)

is replaced with its linear lower bound

Ξ(z, tk) =2(1− ttk)Re
{
zt,HQHgkg

H
k Qz

}
−

(1− ttk)
2
∣∣gH

k Qzt
∣∣2

(1− tk)
(6.26)
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at feasible point {zt, ttk} by adopting the same first-order Taylor approximation used in

Lemma 9.

Therefore, based on (6.23), (6.25) and (6.26) and defining x = [xE , xK ]Tand y =

[yE , yK ]T, the Problem (6.12) can be approximated as

max
Rsec,z,w,e,t,aK ,aE ,v,x,y

Rsec (6.27a)

s.t.(6.23), (6.25), (6.12c)− (6.12e), (6.27b)

|wk|2 ≤ Ξ(z, tk), ∀k ∈ K−K . (6.27c)

For given {e, aK , aE , v}, a new variable is introduced as W = wwH with rank(W) =

1. However, different from the general SDP, w and W, coexist in (6.24c). Therefore,

the SDR technique is not applicable here. In order to handle this problem, it is assumed

w and W are two different variables. If Tr (W) = λmax(W), then rank(W) = 1. If the

obtained W is not rank one, then Tr (W)−λmax(W) > 0. Therefore, Tr (W)−λmax(W)

is constrained to be less than a very small real positive number threshold ε to guarantee

the rank-1 condition of W, yielding the surrogate constraint of rank-1 constraint as

Tr (W)− λmax(W) ≤ ε. (6.28)

When rank(W) ≈ 1, the relationship between w and W is given by the following con-

straint:

−ε ≤ ||w||2 − Tr (W) ≤ ε. (6.29)

As for constraint (6.28), since λmax(W) is a convex function of W [79], the left hand

side of (6.28) is concave, which is the difference between a linear function and a convex

function. Hence, it needs to construct a convex approximation of constraint (6.28). To

address this issue, the following lemma is introduced.
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Lemma 13. Denote by vmax the eigenvector corresponding to the maximum eigenvalue

of a matrix V, it has

Tr
(
vmaxv

H
max(Z−V)

)
= vH

maxZvmax − vH
maxVvmax

= vH
maxZvmax − λmax(V)

≤ λmax(Z)− λmax(V)

for any Hermitian matrix Z. ■

Let dt
W be the eigenvector corresponding to the maximum eigenvalue of the feasible

point Wt. Then, by using Lemma 13, the surrogate convex constraint of (6.28) is given

by

Tr (W)− λmax(W
t)− Tr

(
dt
Wdt,H

W (W −Wt)
)
≤ ε. (6.30)

Now, constraint (6.29) is considered. By applying the first-order Taylor approxima-

tion to ||w||2, it obtains the following convex approximation of the constraint in (6.29)

as

||w||2 − Tr (W) ≤ ε, (6.31a)

2Re
{
wt,Hw

}
− ||wt||2 − Tr (W) ≥ −ε. (6.31b)

Finally, the subproblem w.r.t., {z,w,W, t} is formulated as

max
Rsec,z,w,W,t,x,y

Rsec (6.32a)

s.t.(6.23), (6.25), (6.12c), (6.12e), (6.32b)

(6.27c), (6.30), (6.31) (6.32c)

W ⪰ 0. (6.32d)
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Problem (6.32) is an SDP and can be solved by the CVX tool [62].

For given {w, aK , aE , v}, Problem (6.27) with optimization variable e can be solved

by applying the penalty CCP [33], [75], [123] to relax the unit-modulus constraint (6.12d).

Comparing with the SDR technique, the penalty CCP method is capable of finding a

feasible solution to meet constraint (6.12d). In particular, the constraint of (6.12d) can

be relaxed by

|e[j]m |2 − 2Re(eHme[j]m ) ≤ bm − 1, 1 ≤ m ≤M, (6.33a)

|em|2 ≤ 1 + bM+m, 1 ≤ m ≤M, (6.33b)

where e
[j]
m is any feasible solution and b = [b1, ..., b2M ]T are slack vector variables. The

proof of (6.33) can be found in [33], [75]. Following the penalty CCP framework, the

subproblem for optimizing e is formulated as

max
Rsec,e,x,y

Rsec − λ[j]||b||1 (6.34a)

s.t.(6.23), (6.25), (6.33). (6.34b)

Problem (6.34) is an SDP and can be solved by the CVX tool. The algorithm for

finding a feasible solution of e is summarized in Algorithm 6.1.

Algorithm 6.1: Penalty CCP optimization for reflection beamforming opti-
mization

Require: Initialize e[0], γ[0] > 1, and set j = 0.
1: repeat
2: if j < Jmax then
3: Update e[j+1] by solving Problem (6.34);
4: Update λ[j+1] = min{γλ[j], λmax};
5: j = j + 1;
6: else
7: Initialize with a new random e[0], set γ[0] > 1 again, and set j = 0.
8: end if
9: until ||b||1 ≤ χ and ||e[j] − e[j−1]||1 ≤ ν.

10: Output e(n+1) = e[j].
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In addition, Problem (6.27) is convex w.r.t. {Rsec, v,x,y} for given {z,w, e, t, aK , aE , },

and convex w.r.t. {Rsec, aK , aE ,x,y} for given {z,w, e, t, v, }. Finally, Problem (6.27)

is addressed under the AO framework containing four subproblems. The convergence of

the AO framework can be guaranteed due to the fact that each subproblem can obtain

a non-decreasing sequence of objective function values.

6.3 ED Model II: Passive Eavesdropper Model

This section focuses on the transmission design for the passive attack, which is more

practical and more challenging to address, since the passive ED can hide itself and

its CSI is not known [38], [39]. The authors in [129] proposed to exploit the angular

information of the ED to combat its passive attack, which is also applicable here. In this

section, the cascaded LRL channel HK and the channel HRIS are assumed to be perfect,

which is reasonable due to the fact that the pilot information for channel estimation for

LUs is known at the BS.

6.3.1 Average Eavesdropping Rate Maximization

The signal received by the ED is formulated as

yE = hH
Ediag(e

∗)HRISws+ σ2
E .

Since the ED is passive, it can only detect the activity of the ED on the line segment

between the BS and LU K without knowing its exact location. This detection of a

passive attack is based on spectrum sensing [131]. Hence, the average eavesdropping

rate is considered which can be computed as follows [129], [132], [133]:

Rav
E (w, e) =

1

DK

∫ DK

0
E{hE}

[
1

2
log2

(
1 +

1

σ2
E

∣∣hH
Ediag(e

∗)HRISw
∣∣2)]dDE

. (6.35)
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With (6.35), the following optimization problem is formulated:

max
z,w,e,t

{
min
∀k∈K

Rk −Rav
E (w, e)

}
(6.36a)

s.t.(6.12c)− (6.12f). (6.36b)

The main challenge to solve Problem (6.36) is from the average eavesdropping rate

containing the integration over DE and the expectation over hE . To address this issue,

Jensen’s inequality is used to construct an upper bound of Rav
E (w, e) given by

Rup
E (w, e) =

1

2
log2

1 +

∫ DK

0 E{hE}

[∣∣hH
Ediag(e

∗)HRISw
∣∣2] dDE

σ2
EDK


=

1

2
log2

(
1 +

1

σ2
E

wHHH
RISdiag(e)REdiag(e

∗)HRISw

)
, (6.37)

where RE = 1
DK

∫ DK

0 E{hE}[hEh
H
E ]dDE

that can be computed via one-dimension inte-

gration.

According to (6.2), define

hE =

√
ϱ0

(
dRIS,E

d0

)−αRIS KRIS

1 +KRIS
hLOS
E , (6.38a)

RE = ϱ0

(
dRIS,E

d0

)−αRIS 1

1 +KRIS
IM , (6.38b)

where hE describes the LoS component and is the mean of channel hE . Moreover, RE is

a positive semi-definite covariance matrix representing the spatial correlation character-

istics of the non-LoS component. Therefore, it comes to hE ∼ CN (hE ,RE) [134], and

further obtains

E{hE}[hEh
H
E ] =

[
RE + hEh

H
E

]
= ϱ0

(
dRIS,E

d0

)−αRIS
[

1

1 +KRIS
IM +

KRIS

1 +KRIS
hLOS
E (hLOS

E )H
]
.
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6.3.2 Proposed Algorithm

By replacing Rav
E (w, e) with Rup

E (w, e) in the objective function of Problem (6.36), it

has

max
z,w,e,t

{
min
∀k∈K

Rk −Rup
E

}
(6.39a)

s.t.(6.12c)− (6.12f). (6.39b)

Problem (6.39) is still difficult to solve due to the non-convex constraints and objec-

tive function, as well as the coupled variables w and e. Hence, an MM-based AO

method is proposed to update w and e iteratively. More specifically, by first fixing e,

the non-concave objective function w.r.t., {z,w, t} is replaced by its customized concave

surrogate function and then solved by the CVX. {z,w, t} are then fixed and the closed-

form solution of e can be found by constructing an easy-to-solve surrogate objective

function w.r.t e.

The surrogate functions of Rk (z, tk) for ∀k ∈ K−K are given by R̂k(z, tk|zt, ttk) =

R̃k(z, tk|zt, ttk) given in (6.15), and those of RK (w, e) and RE (w, e) are given in the

following lemma by using the first-order Taylor approximation.

Lemma 14. Let {wt, et} be any feasible solution, then RK (w, e) is lower bounded by a

concave surrogate function R̂K

(
w, e|wt, et

)
defined by

R̂K(w, e|wt, et) =
1

2
log2

(
1−

qtK
σ2
K

+ 2Re

{
qK
σ2
K

})
, (6.40)

where qtK =
∣∣et,HHKwt

∣∣2 and qK = et,HHKwtwHHH
Ke.

Meanwhile, RE (w, e) is upper bounded by a convex surrogate function R̂E

(
w, e|wt, et

)
given by

R̂up
E

(
w, e|wt, et

)
=

1

2
log2

(
1 +

qtE
σ2
E

)
+

qE − qtE
2(σ2

E + qtE) ln 2
, (6.41)



Chapter 6. Robust Transmission in the Presence of Eavesdropper 141

where qtE = wt,HHH
RISdiag(e

t)REdiag(e
t,∗)HRISw

t and qE = wHHH
RISdiag(e)REdiag(e

∗)HRISw.

Furthermore, the following proposition is given.

The functions {R̂k, R̂K , R̂up
E } preserve the first-order property of functions {Rk, RK , RE},

respectively. Let’s take R̂K and RK as an example

∇wR̂K(w, et|wt, et)|w=wt =∇wRK

(
w, et

)
|w=wt ,

∇eR̂K(wt, e|wt, et)|e=et =∇eRK

(
wt, e

)
|e=et .

Proof: See Appendix B in [129]. ■

Giving e, by using (6.15), (6.40), (6.41) and (6.27c), the subproblem of optimizing

{z,w, t} is formulated as

max
z,w,t

{
min
∀k∈K

R̂k − R̂up
E

}
(6.42a)

s.t.(6.12c), (6.12e), (6.27c). (6.42b)

Introducing auxiliary variable r, Problem (6.42) can be transformed into

max
z,w,t,r

{
r − R̂up

E

}
(6.43a)

s.t.(6.12c), (6.12e), (6.27c) (6.43b)

R̂k ≥ r, ∀k ∈ K, (6.43c)

which is convex and can be solved by using CVX.

Giving {z,w, t} and combining (6.15), (6.40) and (6.41), the subproblem w.r.t., e is

formulated as

max
e

{
min
∀k∈K

R̂k − R̂up
E

}
, s.t.(6.12d). (6.44)
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Problem (6.44) can be solved by transforming it into a SOCP under the penalty CCP

method mentioned in Section 6.2.2. However, the penalty CCP method needs to solve a

series of SOCP problems which incurs a high computational complexity. In the following,

the aim is to derive a low-complexity algorithm containing the closed-form solution of e.

Let R = minK−1
k=1 {Rk (z, tk)} which is a constant. Then, Problem (6.39) is reformu-

lated as

max
e

{
min{R, RK (e)} −Rup

E (e)
}
, s.t.(6.12d) (6.45)

for the optimization of e.

Before solving Problem (6.45), the following two subproblems are first considered:

P1 : min
e

Rup
E (e) , s.t.(6.12d), RK (e) ≥ R. (6.46)

P2 : max
e

RK (e)−Rup
E (e) , s.t.(6.12d), RK (e) ≤ R. (6.47)

Denote the solutions to P1 and P2 as e#1 and e#2 , respectively. In addition, let us

denote the objective function value of Problem (6.45) as obj(e), which is a function of

e. If obj(e#1 ) ≥ obj(e#2 ), then the optimal solution of Problem (6.45) is given by e#1 .

Otherwise, the optimal solution is e#2 .

The following lemma shows the solutions of Problem P1.

Lemma 15. The optimal solution of P1 is given by

e#1 = exp{j arg((λmax(AE)I−AE + ϱopt1 AK)et)}, (6.48)

where AE = (HRISwwHHH
RIS)⊙ (RT

E/σ
2
E), AK = HKwwHHH

K/σ2
K and ϱopt1 is the price

introduced by the price mechanism [26].
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The optimal solution of P2 is given by

e#2 = exp{j arg(c+ ϱopt2 (λmax(AK)I−AK)et)}, (6.49)

where ϱopt2 is the price and

c =
1 + dtK

(1 + dtE)
2
(λmax(AE)I−AE)e

t +
AKet

1 + dtE
,

dtK = et,HAKet, dtE = et,HAEe
t.

Proof: Please refer to Appendix D.3. ■

Since e#1 and e#2 are the globally optimal solutions of P1 and P2, respectively, hence

e# is the globally optimal solution of Problem (6.45). The optimal price parameter can

be obtained by using the bisection search method detailed in [26].

According to Proposition 6.3.2 and Theorem 1 in [135], the sequence {zt,wt, tt,

et}n=1,2,3,... obtained in each iteration is guaranteed to converge to the set of stationary

points of Problem (6.39). The computational complexity of Problem (6.43) mainly comes

from SOC constraints and is given by O(
√
2I(n3+n2

∑I
i=1 a

2
i )), where I is the number of

SOC of size ai and n is the number of variables [75]. Thus, the computational complexity

of Problem (6.43) is O(
√
2N(n3 + n2((N − 1)2 + K − 1)), where n = N + 2K − 3.

The computational complexity of (6.48) or (6.49) is mainly comes from the eigenvalue

operation whose complexity isO(N3). Therefore, the total complexity of solving Problem

(6.39) at each iteration is given by O(
√
2N(n3 + n2((N − 1)2 +K − 1) +N3).

6.4 Numerical Results and Discussions

This section illustrates the performance of the proposed schemes in terms of the secrecy

rate and the proposed algorithms in terms of the feasibility rate and complexity. The

results are obtained by using a computer with a 1.99 GHz i7-8550U CPU and 16 GB
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RAM. Polar coordinate system is used to describe the simulated system setup: The BS

is located at (0 m, 0 m) and the RIS is placed at (50 m, 0 m) with elevation angle ϕ = 2π
3 ;

K LUs are randomly and uniformly distributed in an area with Dk ∼ U(20m, 40m) and

θk ∼ U(−π
2 ,

π
2 ) for ∀k ∈ K, where U is the uniform distribution. The ED is located at

(DE , θK) with DE ∈ (0, DK). The pathloss at the distance of 1 m is −30 dB, the pathloss

exponents are set to αBS = αRIS = 2.2 and the Rician factor is 5. The transmit power

budget at the BS is Pmax = 30 dBm and the noise powers are {σ2
i = −90 dBm}∀i∈K+E

.

For the statistical CSI error model, the variances of {△K
i ,△E

i }∀i∈K−K
are defined as

{ε2K,i = δ2K ||h∗
K ⊙ hi||22, ε2E,i = δ2E ||h∗

E ⊙ hi||22}∀i∈K−K
, where δK ∈ [0, 1) and δE ∈ [0, 1)

measure the relative amount of CSI uncertainties. In addition, the outage probability of

secrecy rate is ρ = 0.05.

6.4.1 Robust Secrecy Rate in ED Model I

In order to verify the performance of the proposed outage constrained beamforming in

the AAUC, the case of N = 8 andK = 5 is simulated. For comparison, the “Non-robust”

is also considered as the benchmark scheme, in which the estimated cascaded LRL and

LRE channels are naively regarded as perfect channels, resulting in the following problem

max
z,w,e,t

{
min
∀k∈K

Rk −RE

}
(6.51a)

s.t.(6.12c)− (6.12f), (6.51b)

where RK (e) = 1
2 log2(1 + |eHĤKw|2/σ2

K) and RE (e) = 1
2 log2(1 + |eHĤEw|2/σ2

E).

Problem (6.51) can be solved by using the proposed low-complexity algorithm used to

solve Problem (6.36).

Fig. 6.3 investigates the feasibility rate and the maximum secrecy rate versus the

distance of the ED, in which the coordinate of X-axis is set to the ratio of DE/DK . The

feasibility rate is defined as the ratio of the number of channel realizations that have
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Figure 6.3: Performance versus DE/DK under N = 8, M = 32 and K = 5.

a feasible solution to the outage constrained problem of (6.12) to the total number of

channel realizations. It is observed from Fig. 6.3(a) that the closer the ED is to LU K,

the lower the feasibility rate will be, which means that the location of the eavesdropper

imposes a great threat to the security system. From Fig. 6.3(b), it can be seen that the

secrecy rate drops fast when the ED approaches LU K, and this secrecy rate reduces to

zero when the channel error is large. At this situation, the whole system is no longer

suitable for secure communication.
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Figure 6.4: Secrecy rate versus M under N = 8 and K = 5.

Next, the performance versus the size of the RIS, i.e., M , is verified in Fig. 6.4.

Assume that the ED is located at DE/DK = 0.5. In Fig. 6.4, the case of δK = δE = 0

is regarded as the perfect cascaded CSI case, and its maximum secrecy rate increases

with M , which is consistent with that of Fig. 6 in [29]. The performance of δK =

δE = 0 can be used as the performance upper bound of the proposed outage constrained

beamforming method. Furthermore, the maximum secrecy rate is obviously degraded

with enlarged channel uncertainty levels. In addition, it is observed that black line of

{δK = 0.2, δE = 0} outperforms the pink line of {δK = 0, δE = 0.2}, which means that

the negative impact of cascaded LRL channel error on secrecy rate is higher than that

of the cascaded LRE channel error.

6.4.2 Average Secrecy Rate in ED Model II

This subsection evaluates the performance of the proposed scheme under the passive

attack. In order to evaluate the performance of the proposed low-complexity algorithm,

two benchmark algorithms are considered and given by: 1) The “SOCP” scheme, in which

the CVX tool is used to solve the SOCP version of Problem (6.44). 2) The “Random”

scheme, in which the phases of the reflecting elements are randomly generated.

Fig. 6.5 illustrates the performance in terms of the average secrecy rate and the
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Figure 6.5: Performance versus M under N = 8 and K = 5.

computational complexity under the system setting of N = 8 and K = 5. It is observed

from Fig. 6.5(a) that the proposed algorithm with semi-closed-form solution is almost

the same as that of the SOCP-based algorithm with global optimal solution, and both

of them outperform the scheme with random reflecting phases. Moreover, increasing the

number of reflecting elements at the RIS can significantly enhance the average secrecy

rate of the system. To evaluate the computational complexity of the algorithms, Fig.

6.5(b) describes the CPU time consumption required for these three algorithms. It can

be seen that the proposed algorithm with closed-form solution requires much less CPU
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running time than the SOCP-based scheme. In addition, the CPU running time of the

SCOP-based algorithm is scaled with M , but the proposed algorithm is not sensitive

to M , due to the fact that the computational complexity of the SOCP depends on M ,

while that of the closed-form solution does not.
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Figure 6.6: Performance versus K under M = 64.

Finally, Fig. 6.6 illustrates the performance versus the number of users whenM = 64.

It can be obtained the same conclusion as above that the proposed algorithm has the

same performance of the SOCP-based algorithm but consumes less CPU running time.
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6.5 Summary

This chapter has proposed a two-phase RIS-aided communication system to realize the

secure communication under the active attacks and passive eavesdropping. In order

to address the cascaded channel error caused by the active attacks, the secrecy rate

is maximized subject to secrecy rate outage probability constraints, which has been

tackled by using the BTI. For the case of the partial CSI of the ED, average secrecy

rate maximization problem was considered, which is addressed by the proposed low-

complexity algorithm. It was shown that the negative effect of the ED’s channel error

is greater than that of the LU. In addition, the number of elements on the RIS has a

negative impact on system performance when the channel error is large. This conclusion

provides an engineering insight for the careful selection of the number of elements at the

RIS.



Chapter 7

Conclusion

The purpose of this thesis was to develop optimization approaches for transmit beam-

forming designs of the RIS-aided wireless communication systems under different CSI

challenges. Specifically, four CSI challenges are: worst channel condition in multicast

transmissions, CSI uncertainty caused by the presence of random blockages, CSI uncer-

tainty caused by the cascaded channel error and CSI uncertainty caused by the pres-

ence of eavesdropper. For each practical CSI issue, this thesis proposes effective or

low-complexity beamforming algorithms from two aspects, and verifies the excellent per-

formance of the designed beamforming algorithms in terms of computational complexity,

spectrum efficiency, energy efficiency and robustness from theory and simulation.

Chapter 3 started by considering the problem of minimum rate maximization in

downlink multigroup multicast communication systems under perfect CSI. To address

this problem, two efficient algorithms were developed based on MM framework. The

low-complexity algorithm with closed-form solutions was proved to have the same per-

formance as the general SOCP-based algorithm through simulations. Moreover, the

gains in terms of the spectral and energy efficiency achieved by employing RIS were

demonstrated through simulations for a variety of system parameters.

Chapter 4 addressed the problem of maximum outage probability minimization in the

150
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mmWave systems under CSI uncertainty caused by the presence of random blockages.

It started by approximating the outage probability objective function by a continuous

function. Then, robust stochastic optimization algorithms were developed based on the

SMM and SSCA methods. The convergence of the developed algorithms to the set of

stationary points of the original stochastic problems was established. Simulation results

showed that the proposed robust beamforming for RIS-aided systems can effectively com-

pensate for the performance loss caused by the presence of random blockages, especially

when the blockage probability is high.

Chapter 5 developed robust beamforming designs to address the CSI uncertainty

caused by channel estimation error. It started by characterising the cascaded BS-RIS-

user channel error with two models: the bounded CSI error model and the statistical

CSI error model. Then, the non-convex worst-case rate constraints under the bounded

CSI error model were approximated by using the S-procedure and the non-convex rate

outage probability constraints under the statistical CSI error model were addressed by

utilizing the BTI. The significant performance gains achieved of robust transmission were

demonstrated through simulations, and the negative impact of the CBRUT error on the

system performance was greater than that of the direct CSI error.

In Chapter 6, the robust secrecy transmission was investigated to the physical layer

security systems. It started by addressing the robust transmission designs under the

CSI uncertainty caused by the cascaded channel estimation error when the eavesdropper

launched an active attack. Then, a robust beamforming method was developed based

on the average secrecy rate maximization with only the knowledge of large-scale eaves-

dropper CSI when the eavesdropper conducted passive eavesdropping. Numerical results

demonstrated that the negative effect of the eavesdropper’s channel error is larger than

that of the legitimate user.
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7.1 Future Work

In conclusion of this these, some future research directions are proposed.

• Channel Estimation: The performance gain provided by the RIS relies heav-

ily on the accuracy of the CSI. The channel estimation methods of the RIS-aided

system have been widely investigated. However, the pilot overhead of the channel

estimation methods of the sub-6G systems in the existing literature is prohibitively

high and scales with the number of RIS elements. While, the estimation methods

for the sparse channel of the mmWave system in the existing literature is com-

putational complex or has error propagation. Therefore, the channel estimation

method with low pilot overhead, low computational complexity and low estimation

error is still worth exploring.

• Double/multi-RIS: Most of the existing works have considered quasi passive

beamforming designs and channel estimation schemes in systems with a single

RIS. In some scenarios, however, it may be convenient to enable the transmission

of signals through reflections from multiple RISs in order to route the signals and

bypass the blocking objects in a smart manner, directly at the electromagnetic

level (electromagnetic routing). Thus, double/multiple RISs may be utilized to

realize a blockage-free communication network via multiple signal reflections. In

addition, existing research works on double/multi-RIS aided systems often ignore

the impact of the secondary reflections among the RISs, which may be a reasonable

approximation if the RISs are in the far-field of each other but it may not hold

anymore if the RISs are closely located. Finally, the analysis and design of multi-

RIS communications at high frequency bands is an open research issue as well.

• Multifunction RISs: In the existing literature, most of the research works con-

centrate on RISs that operate as anomalous reflectors or as reflecting lenses. An

RIS, however, can realize multiple signal transformations depending on how the

scattering matrix (or equivalently the surface impedance) is designed. Recently,
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notably, a few research attempts have been made to design RISs that operate as

anomalous refracting mirrors or as anomalous refracting lenses as well RISs that

can simultaneously realize reflections and re-fractions in order to guarantee omni-

coverage performance. Multifunction RISs are an emerging research topic, and the

corresponding modeling, performance evaluation, and optimization are still at its

infancy.



Appendix A

Appendix of Chapter 3

A.1 The proof of Lemma 1

It performs some equivalent transformations of the rate expression (3.6) to show its

hidden convexity, as follows

Rk (F, e) = log2

(
1 +

|eHHkfg|2∑G
i ̸=g |eHHkfi|2 + σ2

k

)

= log2

(
1 + r−1

k,−g|e
HHkfg|2

)
= − log2

(
1−

(
rk,−g + |eHHkfg|2

)−1 |eHHkfg|2
)

= − log2
(
1− r−1

k |tk|
2
)
, (A.1)

where tk = eHHkfg, rk = rk,−g + |tk|2, and rk,−g =
∑G

i ̸=g |eHHkfi|2 + σ2
k.

Denoting Rk(tk, rk) as the last equation expression of Rk (F, e) in (A.1), Rk(tk, rk) is

jointly convex in {tk, rk} [136], thus its lower bound surrogate function could be obtained

by the first-order approximation, e.g.,

Rk (tk, rk)
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≥ Rk

(
ttk, r

t
k

)
+

∂Rk

∂tk
|tk=ttk

(
tk − ttk

)
+

∂Rk

∂t∗k
|t∗k=tt,∗g

(
t∗k − tt,∗k

)
+

∂Rk

∂rk
|rk=rtk

(
rk − rtk

)
= Rk

(
ttk, r

t
k

)
+ 2Re

{
tt,∗k (tk − ttk)

rtk − |ttk|2

}
−
|ttk|2(rk − rtk)

rtk(r
t
k − |ttk|2)

= Rk

(
ttk, r

t
k

)
+ 2Re

{
tt,∗k

rtk − |ttk|2
tk

}
−

|ttk|2

rtk(r
t
k − |ttk|2)

rk −
|ttk|2

rtk − |ttk|2
. (A.2)

Undo tk = eHHkfg, t
t
k = (et)HHkf

t
g, rk =

∑G
i=1 |eHHkfi|2 + σ2

k, and

rtk =
∑G

i=1 |(et)HHkf
t
i |2 + σ2

k, and substitute them into the right hand side of the last

equation in (A.2), it has

Rk (F, e) ≥ Rk

(
Ft, et

)
+ 2Re

{
ake

HHkfg
}
−

|ttk|2

rtk − |ttk|2
− bk

G∑
i=1

|eHHkfi|2 − bkσ
2
k

= constk + 2Re
{
ake

HHkfg
}
− bk

G∑
i=1

|eHHkfi|2

= R̃k (F, e) . (A.3)

Hence, the proof is completed.

A.2 The proof of Theorem 1

The monotonic property of the objective function value sequence {F (Ft, et)} of Algo-

rithm 3.1 can be guaranteed by (3.18). In addition, the sequence {Ft, et} generated at

each iteration of Algorithm 3.1 converges to a stable point as t→∞ because Ft and et

are bounded in their feasible sets SF and Se, respectively [137]. Denote by {Fo, eo} the

converged solution. In the following, it is proved that {Fo, eo} is the KKT point based

on the fact that all the locally optimal solutions (including the globally optimal solution)

of a nonconvex optimization problem should satisfy the KKT optimality conditions [79].

Firstly, the Lagrangian of Problem (3.13) is given by

L(F,γ,λ(1),λ(2))
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=
G∑

g=1

γg −
G∑

g=1

∑
k∈Kg

λ
(1)
k (γg − R̃k (F, e

o|Fo, eo))− λ(2)(Tr
(
FHF

)
− PT)

where λ(1) = [λ
(1)
1 , ..., λ

(1)
K ] and λ(2) are the dual variables. Since Fo is the globally

optimal solution of Problem (3.13), there must exist a λ(1),o and λ(2),o satisfying the

following partial KKT conditions:

G∑
g=1

∑
k∈Kg

λ
(1),o
k ∇F∗R̃k (F, e

o|Fo, eo) |F=Fo − λ(2),oFo = 0, (A.4)

λ
(1),o
k (γg − R̃k (F

o, eo|Fo, eo)) = 0,∀k ∈ Kg, ∀g ∈ G, (A.5)

λ(2),o(Tr
(
FH,oFo

)
− PT) = 0. (A.6)

According to the Assumptions (A1) and (A3), it has

R̃k (F
o, eo|Fo, eo) = Rk (F

o, eo) , (A.7)

∇F∗R̃k (F, e
o|Fo, eo) |F=Fo = ∇F∗Rk (F, e

o) |F=Fo . (A.8)

By substituting (A.8) and (A.7) into (A.4) and (A.5) respectively, it comes to

G∑
g=1

∑
k∈Kg

λ
(1),o
k ∇F∗Rk (F, e

o) |F=Fo − λ(2),oFo = 0, (A.9)

λ
(1),o
k (γg −Rk (F

o, eo)) = 0, ∀k ∈ Kg, ∀g ∈ G. (A.10)

Then, eo is the locally optimal solution of Problem (3.16) and satisfies the following

KKT conditions:

G∑
g=1

∑
k∈Kg

ξ
(1),o
k ∇e∗R̃k (F

o, e|Fo, eo) |e=eo−

M∑
m=1

ξ(2),om (∇e∗ |em|)|e=eo − ξ
(2),o
M+1(∇e∗eM+1)|e=eo = 0, (A.11)

ξ
(1),o
k (κg − R̃k (F

o, eo|Fo, eo)) = 0,∀k ∈ Kg,∀g ∈ G, (A.12)



Chapter A. Appendix of Chapter 3 157

ξ(2),om (|eom| − 1) = 0, 1 ≤ m ≤M, ξ
(2),o
M+1(e

o
M+1 − 1) = 0, (A.13)

where ξ(1),o = [ξ
(1),o
1 , ..., ξ

(1),o
K ] and ξ(2),o are the optimal Lagrange multipliers.

Furthermore, it can be readily checked that

∇e∗R̃k (F
o, e|Fo, eo) |e=eo = ∇e∗Rk (F

o, e) |e=eo . (A.14)

By substituting (A.14) into (A.11), it comes to

G∑
g=1

∑
k∈Kg

ξ
(1),o
k ∇e∗Rk (F

o, e) |e=eo − ξ
(2),o
M+1(∇e∗eM+1)|e=eo −

M∑
m=1

ξ(2),om (∇e∗ |em|)|e=eo = 0,

(A.15)

Now, it moves to Problem (3.8). The general equivalent problem of the max-min

Problem (3.8) is given by

max
F,e,r

G∑
g=1

rg

s.t. F ∈ SF , e ∈ Se

Rk (F, e) ≥ rg,∀k ∈ Kg, ∀g ∈ G. (A.16)

where r = [r1, ..., rG]
T are auxiliary variables. It can be readily verified that the set of

equations (A.9), (A.15), (A.10), (A.6), and (A.13) constitute exactly the KKT conditions

of Problem (A.16).

Hence, the proof is completed.
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A.3 The proof of Theorem 3

Since fg (F) is twice differentiable and concave, a quadratic surrogate function is pro-

posed to minorize fg (F), as follows

fg(F) ≥ fg(F
t) + 2Re

{
Tr
[
DH

g (F− Ft)
]}

+Tr
(
(F− Ft)HMg(F− Ft)

)
(A.17)

where matrices Dg ∈ CN×N and Mg ∈ CN×N are determined to satisfy Assumptions

(A1)-(A4).

Note that Assumptions (A1) and (A4) are already satisfied. Then it comes to prove

that Assumption (A3) also holds. Let F̃ be a matrix belonging to SF . The directional

derivative of the right hand side of (A.17) at Ft with direction F̃− Ft is given by:

2Re
{
Tr
[
DH

g (F̃− Ft)
]}

. (A.18)

The directional derivative of fg(F) is

2Re

Tr

∑
k∈Kg

gk(F
t)(CH

k − (Ft)HBk)(F̃− Ft)

 , (A.19)

where gk(F
t) is defined in (3.28).

In order to satisfy Assumption (A3), the two directional derivatives (A.18) and (A.19)

must be equal, which means

Dg =
∑
k∈Kg

gk(F
t)(Ck −BH

k F
t). (A.20)

Now it proceeds to prove that Assumption (A2) also holds. If surrogate function

f̃g(F|Ft) is a lower bound for each linear cut in any direction, Assumption (A2) could
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be satisfied. Let F = Ft + γ(F̃− Ft), ∀γ ∈ [0, 1]. Then, it suffices to show

fg(F
t + γ(F̃− Ft)) ≥ fg(F

t) + 2γRe
{
Tr
[
DH

g (F̃− Ft)
]}

+ γ2Tr
[
(F̃− Ft)HMg(F̃− Ft)

]
,

(A.21)

Let us define Lg(γ) = fg(F
t + γ(F̃ − Ft)),and lk(γ) = R̃k(F

t + γ(F̃ − Ft)). Now, a

sufficient condition for (A.21) to hold is that the second derivative of the right hand side

of (A.21) is lower than or equal to the second derivative of the left hand side of (A.21)

for ∀γ ∈ [0, 1] and ∀F̃,∀Ft ∈ SF , which is formulated as follows

∂2Lg(γ)

∂γ2
≥ 2Tr

[
(F̃− Ft)HMg(F̃− Ft)

]
. (A.22)

In order to calculate the left hand side of (A.22), the first-order derivative is first

calculated, as follows

∂Lg(γ)

∂γ
=
∑
k∈Kg

gk(γ)∇γlk(γ), (A.23)

where

gk(γ) =
exp {−µglk(γ)}∑

k∈Kg
exp {−µglk(γ)}

, k ∈ Kg,

∇γlk(γ) = 2Re
{
Tr
[
CH

k (F̃− Ft)
]
− Tr

(
(Ft + γ(F̃− Ft))HBk(F̃− Ft)

)}
= 2Re

{
Tr
[
QH

k (F̃− Ft)
]}

= 2Re
{
qH
k f
}
,

QH
k = CH

k − (Ft + γ(F̃− Ft))HBk,

qk = vec(Qk),

f = vec(F̃− Ft),
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Then, the second-order derivative is derived as

∂2Lg(γ)

∂γ2
=
∑
k∈Kg

(
gk(γ)∇2

γlk(γ)− µggk(γ)∇γlk(γ) (∇γlk(γ))
T
)

+ µg

∑
k∈Kg

gk(γ)∇γlk(γ)

∑
k∈Kg

gk(γ)∇γlk(γ)

T

, (A.24)

where

∇2
γlk(γ) = −2Tr

[
(F̃− Ft)HBk(F̃− Ft)

]
= −2fH(I⊗Bk)f .

This work reformulates
∂2Lg(γ)

∂γ2 in (A.24) into a quadratic form of f , as follows

∂2Lg(γ)

∂γ2
=

[
fH fT

]
Φ

 f

f∗

 ,

where Φ is given in

Φg =
∑
k∈Kg

gk(γ)

 −I⊗Bk 0

0 −I⊗BT
k

− µggk(γ)

 qk

q∗
k


 qk

q∗
k


H

+ µg

 ∑k∈Kg
gk(γ)qk∑

k∈Kg
gk(γ)q

∗
k


 ∑k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k


H

. (A.25)

The right hand side of (A.22) is also manipulated into a quadratic form of f by using

vectorization operation Tr[ATBC] = vecT(A)(I⊗B)vec(C) [138], as follows

2Tr
[
(F̃− Ft)HMg(F̃− Ft)

]
=

[
fH fT

] I⊗Mg 0

0 I⊗MT
g


 f

f∗

 .
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Then, (A.22) is equivalent to

[
fH fT

]
Φg

 f

f∗

 ≥ [ fH fT
] I⊗Mg 0

0 I⊗MT
g


 f

f∗

 ,

where it needs to find an Mg that satisfies

Φg ⪰

 I⊗Mg 0

0 I⊗MT
g

 .

For convenience, Mg = αgI = λmin (Φg) I is chosen. Finally, (A.17) is equivalent to

fg(F) ≥ fg(F
t) + 2Re

{
Tr
(
DH

g (F− Ft)
)}

+ αgTr
[
(F− Ft)H(F− Ft)

]
= 2Re

{
Tr
[
UH

g F
]}

+ αgTr
(
FHF

)
+ consFg (A.26)

where Ug and consFg are given in (3.27) and (3.31), respectively. αg in (3.29) is difficult

to obtain for the complex expression of Φg. In the following, it proceeds to obtain the

value of αg.

The following inequalities and equalities will be used later:

(B1): [138] A and B are Hermitian matrices: λmin(A) + λmin(B) ≤ λmin(A+B).

(B2): [138] A is rank one: λmax(A) = Tr [A] , λmin(A) = 0.

(B3): (Theorem 30 in book-Matrix) ak and bk are positive:
∑K

k=1 akbk ≤ maxKk=1 {bk},

if
∑K

k=1 ak = 1.

(B4): [138] A is positive semidifinite with maximum eigenvalue λmax(A) and B is

positive semidifinite: Tr [AB] ≤ λmax(A)Tr [B].

Φg is complex and cannot be determined by a constant, thus Assumptions (A1)-(A4)
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are used to find its lower bound shown in (A.27).

λmin (Φg)
(B1)

≥ −
∑
k∈Kg

gk(γ)λmax


 I⊗Bk 0

0 I⊗BT
k




− µg

∑
k∈Kg

gk(γ)λmax


 qk

q∗
k


 qk

q∗
k


H

+ λmin

µg

 ∑k∈Kg
gk(γ)qk∑

k∈Kg
gk(γ)q

∗
k


 ∑k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k


H

(B2)
= −

∑
k∈Kg

gk(γ)λmax(Bk)− 2µg

∑
k∈Kg

gk(γ)q
H
k qk

(B2)
= −

∑
k∈Kg

bkgk(γ)e
HHkH

H
k e− 2µg

∑
k∈Kg

gk(γ)q
H
k qk

(B3)

≥ −maxk∈Kg

{
bke

HHkH
H
k e
}
− 2µgmaxk∈Kg

{
||qk||22

}
= −maxk∈Kg

{
bke

HHkH
H
k e
}
− 2µgmaxk∈Kg

{
||Qk||2F

}
. (A.27)

Recall that F = Ft + γ(F̃ − Ft), ∀γ ∈ [0, 1], therefore ||Ft + γ(F̃ − Ft)||2F ≤ PT. By

using (A4), the last term in the right hand side of the last equation of (A.27) satisfies

inequality (A.28) as

||Qk||2F

= ||Ck −BH
k (F

t + γ(F̃− Ft))||2F

= ||(Ft + γ(F̃− Ft))HBk||2F + ||Ck||2F − 2Re
{
Tr
(
CH

k B
H
k (F

t + γ(F̃− Ft))
)}

(B4)

≤ λmax(BkB
H
k )||Ft + γ(F̃− Ft)||2F + ||Ck||2F − 2Re

{
Tr
[
CH

k B
H
k (F

t + γ(F̃− Ft))
]}

≤ PTλmax(BkB
H
k ) + ||Ck||2F + 2

√
PT||BkCk||F

= PTb
2
k|eHHkH

H
k e|2 + ||Ck||2F + 2

√
PT||BkCk||F . (A.28)

The third term in the right hand side of the last inequality of (A.28) is the optimal
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objective value of the following Problem (A.29) which has a closed-form solution.

min
X

2Re
{
Tr
[
CH

k B
H
k X
]}

s.t. Tr
[
XHX

]
≤ PT. (A.29)

Finally, combining (A.27) with (A.28), it comes to (3.29). Hence, the proof is com-

pleted.

A.4 The proof of Theorem 4

Since fg (e) is twice differentiable and concave, fg (e) is minorized at et with a quadratic

function, as follows

fg(e) ≥fg(et) + 2Re
{
dH
g (e− et)

}
+ (e− et)HNg(e− et), (A.30)

where vectors dg ∈ CM×1 and matrices Ng ∈ CM×M are determined to satisfy Assump-

tions (A1)-(A4).

Obviously, (A1) and (A4) are already satisfied. In order to satisfy Assumption (A3),

the directional derivatives of fg(e) and the right hand side of (A.30) must be equal,

yielding

dg =
∑
k∈Kg

gk(e
t)(ak −AH

k e
t), (A.31)

where gk(e
t) is defined in (3.41).

Let e = et + γ(ẽ− et), ∀γ ∈ [0, 1]. In order to satisfy Assumption (A2), it suffices to

show

fg(e
t + γ(ẽ− et)) ≥ fg(e

t) + 2γRe
{
dH
g (ẽ− et)

}
+ γ2(ẽ− et)HNg(ẽ− et). (A.32)

Then, it needs to calculate the second-order derivatives of the left hand side and the
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right hand side of (A.32), and make the latter one lower than or equal to the former for

∀γ ∈ [0, 1] and ∀ẽ, ∀et ∈ Se.

The second-order derivative of the left hand side of (A.32) is given by

∂2Lg(γ)

∂γ2
=

[
tH tT

]
Ψg

 t

t∗

 , (A.33)

with t = ẽ− et. Ψg is shown in (A.34) where

Ψg =
∑
k∈Kg

gk(γ)

 −Ak 0

0 −AT
k

− µggk(γ)

 qk

q∗
k


 qk

q∗
k


H

+ µg

 ∑k∈Kg
gk(γ)qk∑

k∈Kg
gk(γ)q

∗
k


 ∑k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k


H

, (A.34)

qk =ak −AH
k (e

t + γ(ẽ− et)) (A.35)

gk(γ) =
exp {−µglk(γ)}∑

k∈Kg
exp {−µglk(γ)}

, k ∈ Kg (A.36)

The second-order derivative of the right hand side of (A.32) is

2(ẽ− et)HNg(ẽ− et) =

[
tH tT

] I⊗Ng 0

0 I⊗NT
g


 t

t∗

 . (A.37)

Combining (A.33) with (A.37), Ng must satisfy

Ψg ⪰

 I⊗Ng 0

0 I⊗NT
g

 .

For simplicity, Ng = βgI = λmin(Ψg)I is chosen. Eventually, (A.30) is equivalent to

fg(e) ≥ fg(e
t) + 2Re

{
dH
g (e− et)

}
+ βg(e− et)H(e− et)
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= 2Re
{
uH
g e
}
+ consEg, (A.38)

where ug, βg, and consEg are given in (3.40), (3.42), and (3.44), respectively. The last

equation of (A.38) is from the unit-modulus constraints, i.e., eHe = (et)Het = M + 1.

The method to get the value of βg is similar as αg, so it is omitted here. Hence, the

proof is completed.

A.5 The proof of Theorem 5

Let us denote the converged solution of Problem (3.24) by {Fo, eo}. In the following,

{Fo, eo} is proved to satisfy the KKT conditions of Problem (3.24).

Firstly, since Fo is the globally optimal solution of Problem (3.32), the KKT condi-

tions of the Lagrangian in (3.33) of Problem (3.32) is given by

G∑
g=1

∇F∗ f̃g(F|Ft)|F=Fo − τ oFo = 0, (A.39)

τ o(Tr
(
FH,oFo

)
− PT) = 0, (A.40)

where τ o is the optimal Lagrange multiplier. According to the Assumption (A3), it has

∇F∗ f̃g(F|Ft)|F=Fo = ∇F∗fg (F, e
o) |F=Fo . (A.41)

By substituting (A.41) into (A.39), it comes to

G∑
g=1

∇F∗fg (F, e
o) |F=Fo − τ oFo = 0, (A.42)

Then, since eo is the locally optimal solution of Problem (3.45), it is readily to obtain
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the following KKT conditions:

G∑
g=1

∇e∗fg (F
o, e) |e=eo −

M∑
m=1

τ (2),om (∇e∗ |em|)|e=eo − τ
(2),o
M+1(∇e∗eM+1)|e=eo = 0, (A.43)

τ (2),om (|eom| − 1) = 0, 1 ≤ m ≤M, τ
(2),o
M+1(e

o
M+1 − 1) = 0, (A.44)

where τ (2),o = [τ
(2),o
1 , ..., τ

(2),o
M+1] are the optimal Lagrange multipliers.

Then, the set of equations (A.42), (A.40), (A.43), and (A.44) constitute exactly the

KKT conditions of Problem (3.24).

Hence, the proof is completed.
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Appendix of Chapter 4

B.1 The proof of Lemma 2

In this appendix, Gi is omitted for simplicity, i.e., f
(
f |Gi

)
is replaced by f (f). Since

f (f) is twice differentiable, a second-order approximation is proposed to upper bound

f (f) at any fixed point f i−1

f (f) ≤f̂
(
f , f i−1

)
=f
(
f i−1

)
+ 2Re

{
mi,H

f (f − f i−1)
}
+ (f − f i−1)HMi

f (f − f i−1), (B.1)

where mi
f and Mi

f are to be designed to satisfy Assumption A.

Assumptions (A1) and (A4) are readily satisfied. Assumption (A3) is a consistency

condition for the first-order directional derivative. Given f̃ ∈ Sf , the directional deriva-

tive of f̂
(
f , f i−1

)
at f i−1 with direction f̃ − f i−1 is (from Eq. (3.4.17) in [120])

f̂
′
(f i−1; f̃ − f i−1) =

(
∂f̂

∂f

∣∣∣∣∣
f=f i−1

)T

(f̃ − f i−1) +

(
∂f̂

∂f∗

∣∣∣∣∣
f∗=f∗,i−1

)T

(f̃ − f i−1)∗

=2Re
{
mi,H

f (f̃ − f i−1)
}
. (B.2)

167
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The corresponding directional derivative of f (f) is (from Eq. (3.4.17) in [120])

f
′
(f i−1; f̃ − f i−1) =

(
∂f

∂f

∣∣∣∣
f=f i−1

)T

(f̃ − f i−1) +

(
∂f

∂f∗

∣∣∣∣
f∗=f∗,i−1

)T

(f̃ − f i−1)∗

=
−θe−θxi(
1 + e−θxi

)2 2Re{f i−1,HGi,Hei−1ei−1,HG
(
f̃ − f i−1

)}
, (B.3)

where xi is given in (4.15c).

Assumption (A3) is satisfied only when (B.2) and (B.3) are equal, yielding

mi
f = − θe−θxi(

1 + e−θxi
)2Gi,Hei−1ei−1,HGif i−1. (B.4)

In order for Assumption (A2) to hold, it is sufficient to show that f̂(f , f i−1) is an

upper bound for each linear cut in any direction. In particular, defining f = f i−1+ ξ(f̃ −

f i−1), ∀ξ ∈ [0, 1], it is needed to show

f
(
f i−1 + ξ(f̃ − f i−1)

)
≤ f

(
f i−1

)
+ 2ξRe

{
mi,H

f (f̃ − f i−1)
}
+ ξ2(f̃ − f i−1)HMi

f (f̃ − f i−1).

(B.5)

Let us introduce the functions L(ξ) = f(f i−1 + ξ(f̃ − f i−1)) and l(ξ) = γσ2 −

|ei−1,HGi(f i−1 + ξ(f̃ − f i−1))|2. The inequality in (B.5) is fulfilled if Assumption (A3)

holds, which is ensured by using (B.4), and if the second-order derivative of L(ξ) is no

greater than the second-order derivative in the right hand side of (B.5) for any value of

ξ.

The corresponding sufficient condition can be formulated as

∂2L(ξ)

∂ξ2
≤ 2(f̃ − f i−1)HMi

f (f̃ − f i−1). (B.6)

The next step is to compute ∂2L(ξ)/∂ξ2. To this end, the first-order derivative of
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L(ξ) is first calculated, as follows

∂L(ξ)

∂ξ
= g(ξ)

∂l(ξ)

∂ξ
, (B.7)

where g(ξ) = θe−θl(ξ)

(1+e−θl(ξ))2
, ∂l(ξ)

∂ξ = −2Re{qH(f̃ − f i−1)}, and q = Gi,Hei−1ei−1,HGi(f i−1+

ξ(f̃ − f i−1)).

Then, the second-order derivative can be formulated as

∂2L(ξ)

∂ξ2
= g(ξ)

∂2l(ξ)

∂ξ2
− θg(ξ)

(
∂l(ξ)

∂ξ

)2

+ 2
(
1 + e−θl(ξ)

)(
g(ξ)

∂l(ξ)

∂ξ

)2

, (B.8)

where ∂2l(ξ)
∂ξ2

= −2Re{(f̃ − f i−1)HΘ(f̃ − f i−1)} and Θ = ξGi,Hei−1ei−1,HGi.

Equation (B.8) can be rewritten as a quadratic form of t = f̃ − f i−1, as follows

∂2L(ξ)

∂ξ2
=

 t

t∗


H

Φ

 t

t∗

 , (B.9)

where

Φ =g(ξ)
(
2
(
1 + e−θl(ξ)

)
g(ξ)− θ

) q

q∗


 q

q∗


H

− g(ξ)I2 ⊗Θ. (B.10)

Furthermore, (B.6) can be reformulated in a form similar to (B.9), as follows

 t

t∗


H  I⊗Mi

f 0

0 I⊗Mi,T
f


 t

t∗

 . (B.11)

Combining (B.9) and (B.11), the sufficient condition in (B.6) is equivalent to

 t

t∗


H

Φ

 t

t∗

 ≤
 t

t∗


H  I⊗Mi

f 0

0 I⊗Mi,T
f


 t

t∗

 ,
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which is satisfied when Mi
f is chosen so as to fulfill the condition

Φ ⪯

 I⊗Mi
f 0

0 I⊗Mi,T
f

 .

A convenient choice that fulfills this condition is Mi
f = αi

fI = λmax (Φ) I. Then,

f̂
(
f , f i−1

)
in (B.1) can be formulated as follows

f̂
(
f , f i−1

)
= f

(
f i−1

)
+ 2Re

{
mi,H

f (f − f i−1)
}
+ αi

f ||f − f i−1||22

= 2Re
{
di,H
f f
}
+ αi

f ||f ||22 + constif ,

where di,H
f , αi

f and constif are defined in Lemma 2. The deterministic expression of

λmax (Φ) is difficult to obtain, therefore the upper bound is derived as follows

λmax (Φ)
(p1)

≤ 2
(
1 + e−θl(ξ)

)
g2(ξ)λmax


 q

q∗


 q

q∗


H

− g(ξ)λmin (I2 ⊗Θ)− θg(ξ)λmin


 q

q∗


 q

q∗


H

(p2)
= 4

(
1 + e−θl(ξ)

)
g2(ξ)||q||22

(p3)
<

θ2

2
||q||22

(p4)

≤ θ2

2
λmax(G

i,Hei−1ei−1,HGiGi,Hei−1ei−1,HGi) · ||f i−1 + γ(f̃ − f i−1)||22
(p5)

≤ θ2

2
Pmax|ei−1,HGiGi,Hei−1|2.

where the inequalities are obtained by departing from (B.10) and by invoking the fol-

lowing properties.

(p1): If A and B are Hermitian matrices, then λmax(A) + λmax(B) ≥ λmax(A +B)

[138].

(p2): If A is rank one, then λmax(A) = Tr [A] , λmin(A) = 0 [138].
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(p3):
(
1 + e−θl(ξ)

)
g2(ξ) ≤ θ2/8, where the equality holds when l(ξ) = 0.

(p4): If A is positive semidefinite with maximum eigenvalue λmax(A) and B is posi-

tive semidefinite, then Tr [AB] ≤ λmax(A)Tr [B] [138].

(p5): The power constraint ||f i−1 + γ(f̃ − f i−1)||22 ≤ Pmax needs to be fulfilled.

Hence, the proof is completed.

B.2 The proof of Theorem 6

Define the random functions

gt(x) =
1

t

t∑
i=1

f
(
x|Gi

)
, (B.12)

ĝt(x) =
1

t

t∑
i=1

f̂
(
x,xi−1|Gi

)
. (B.13)

To prove the convergence of Algorithm 1, the following lemmas are used.

Lemma 16. Assume that Assumptions A and B are satisfied and define a limit point

x̄ of the subsequence {xtj}∞j=1. Then, there exists uniformly continuous functions g(x)

and ĝ(x) such that

g(x) = lim
n→∞

gt(x) = E [f (x|G)] ,∀x ∈ Sx, (B.14)

g(x̄) = lim
j→∞

gtj (xtj ), (B.15)

ĝ(x) = lim
j→∞

ĝtj (x), ∀x ∈ Sx, (B.16)

ĝ(x̄) = lim
j→∞

ĝtj (xtj ). (B.17)

Proof: First, f (x,G) is bounded for ∀x ∈ Sx and for all channel realizations due to

the Assumption (B2). Therefore, (B.14) holds by using the strong law of large numbers

[139]. Also, the families of functions {gtj (x)} are equicontinuous and bounded over the
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compact set Sx due to the Assumption (B2) and the use of the mean value theorem. Thus,

by restricting to a subsequence, it has (B.15). Furthermore, the families of functions

{ĝt(x)} are also equicontinuous and bounded over the compact set Sx due to the Assump-

tion (B2) and because ||∇xf̂(x,x
i−1,G)|| is bounded. Hence, the Arzelà-Ascoli theorem

[140] implies that, by restricting to a subsequence, there exists a uniformly continuous

function ĝ(x) such that (B.16) and (B.17) hold. ■

In addition, the update rule of Algorithm 1 leads the following lemma.

Lemma 17. limn→∞ |ĝt(xt)− gt(xt)| = 0, almost surely.

Proof: The proof of Lemma 17 is the same as the proof of (Lemma 1 in [94]) and is

hence omitted for conciseness. ■

Assumption (A2) implies that ĝtj (x) ≥ gtj (x), ∀x ∈ Sx, which combined with (B.14)

and (B.16) leads to

ĝ(x) ≥ g(x),∀x ∈ Sx. (B.18)

Moreover, combining Lemma 17 with (B.15) and (B.17) it has

ĝ(x̄) = g(x̄). (B.19)

Then, (B.18) and (B.19) imply that x̄ is a minimizer of the function ĝ(x) − g(x).

Hence the first-order optimality condition is satisfied

∇ĝ(x̄)−∇g(x̄) = 0. (B.20)

Due to the fact that x̄ is the limit point of the problem in (4.12) or the problem in

(4.13), it has ĝ(x̄) ≤ ĝ(x),∀x ∈ Sx, which implies

⟨∇ĝ(x̄),x− x̄⟩ ≥ 0,∀x ∈ Sx. (B.21)
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Combining (B.21) with (B.20), it obtains

⟨∇g(x̄),x− x̄⟩ ≥ 0,∀x ∈ Sx, (B.22)

which means that the directional derivative of the objective function g(x) is non-negative

for every feasible direction at x̄. Recalling that x ∈ {f , e} and defining the limit points

{f̄ , ē}, (B.22) is equivalent to


〈
∇g(f̄), f − f̄

〉
≥ 0, ∀f ∈ Sf ,

⟨∇g(ē), e− ē⟩ ≥ 0, ∀e ∈ Se.

Therefore, according to [95], {f̄ , ē} is a stationary point of the problem in (4.11) due

to the regularity of g(·).

B.3 The proof of Theorem 8

Define the random functions

Gt(x) =
1

t

t∑
i=1

F
(
x|Gi

)
, (B.23)

Ĝt(x) =
1

t

t∑
i=1

F̂
(
x,xi−1|Gi

)
. (B.24)

To analyze the convergence, it needs the following lemmas.

Lemma 18. Assume that Assumptions B and C are satisfied and define a limit point

x̄ for the subsequence {xtj}∞j=1. Then, there exists uniformly continuous functions G(x)

and Ĝ(x) such that

G(x) = lim
n→∞

Gt(x) = E [F (x|G)] ,∀x ∈ Sx, (B.25)

G(x̄) = lim
j→∞

Gtj (xtj ), (B.26)
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Ĝ(x) = lim
j→∞

Ĝtj (x), ∀x ∈ Sx, (B.27)

Ĝ(x̄) = lim
j→∞

Ĝtj (xtj ). (B.28)

Proof: The proof of Lemma 18 is the same as the proof of Lemma 16 and is omitted

for brevity. ■

Furthermore, xtj is the minimizer of Ĝtj (x), which implies

Ĝtj (xtj ) ≤ Ĝtj (x),∀x ∈ Sx. (B.29)

Assuming j →∞, and combining (B.27) and (B.28), it obtains Ĝ(x̄) ≤ Ĝ(x), ∀x ∈ Sx,

which implies that its first-order optimality condition is satisfied

〈
∇Ĝ(x̄),x− x̄

〉
≥ 0, ∀x ∈ Sx. (B.30)

By combining (B.30) and Assumption (C3), it finally obtains

⟨∇G(x̄),x− x̄⟩ ≥ 0, ∀x ∈ Sx. (B.31)

Since x ∈ {F, e}, define the limit points {F̄, ē} and (B.31) is then equivalent to


〈
∇G(F̄),F− F̄

〉
≥ 0, ∀F ∈ Sf ,

⟨∇G(ē), e− ē⟩ ≥ 0, ∀e ∈ Se.

Therefore, according to [95], {F̄, ē} is a stationary point of the problem in (4.28) due

to the regularity of G(·).
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Appendix of Chapter 5

C.1 The proof of Lemma 6

Let x be a complex scalar variable, it has the first-order Taylor inequality

|x|2 ≥ 2Re
{
x∗,(n)x

}
− x∗,(n)x(n), (C.1)

for any fixed point x(n). By replacing x and x(n) in (C.1) with (hH
k + eHGk)fk and

(hH
k + e(n),HGk)f

(n)
k , respectively, it has

∣∣(hH
k + eHGk

)
fk
∣∣2 ≥2Re{(hH

k + e(n),HGk

)
f
(n)
k fHk

(
hk +GH

k e
)}

−
(
hH
k + e(n),HGk

)
f
(n)
k f

(n),H
k

(
hk +GH

k e
(n)
)
. (C.2)

By plugging Gk = Ĝk +△Gk into the right hand side of (C.2) and expanding it by

using mathematical transformations, i.e., Tr(AHB) = vecH(A)vec(B) and Tr(ABCD) =

(vecT(D))T(CT ⊗A)vec(B) [120], (5.10) can be obtained.

Hence, the proof is completed.
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C.2 The proof of Lemma 7

The lower bound of (5.26) can also be derived from (C.2) under the full channel uncer-

tainty. In particular, hk = ĥk +△hk and Gk = Ĝk +△Gk are inserted into the first

term on the right hand side of (C.2), and then get (C.3) at the top of the next page.

[
(ĥH

k +△hH
k ) + e(n),H(Ĝk +△Gk)

]
f
(n)
k fHk

[
(ĥk +△hk) + (ĜH

k +△GH
k )e
]

=(ĥH
k + e(n),HĜk)f

(n)
k fHk (ĥk + ĜH

k e) + (ĥH
k + e(n),HĜk)f

(n)
k fHk (△hk +△GH

k e)

+ (△hH
k + e(n),H △Gk)f

(n)
k fHk (ĥk + ĜH

k e) + (△hH
k + e(n),H △Gk)f

(n)
k fHk (△hk +△GH

k e)

=(ĥH
k + e(n),HĜk)f

(n)
k fHk (ĥk + ĜH

k e) + (ĥH
k + e(n),HĜk)f

(n)
k fHk △ hk

+ vecH(△Gk)vec(e(ĥ
H
k + e(n),HĜk)f

(n)
k fHk ) +△hH

k f
(n)
k fHk (ĥk + ĜH

k e) +△hH
k f

(n)
k fHk △ hk

+ vecH(e(n)(ĥk + eHĜH
k )fkf

(n),H
k )vec(△Gk) + vecH(△Gk)(f

∗
k f

(n),T
k ⊗ e)△h∗

k

+△hT
k (f

∗
k f

(n),T
k ⊗ e(n),H)vec(△Gk) + vecH(△Gk)(f

∗
k f

(n),T
k ⊗ ee(n),H)vec(△Gk)

=̃iHk Dk ĩk + dH
1,k ĩk + ĩHk d2,k + dk. (C.3)

With the similar mathematical transformations, the remaining two terms on the right

hand side of (C.2) under the full channel uncertainty can be expressed as

(hH
k + eHGk)fkf

(n),H
k (hk +GH

k e
(n))

=̃iHk D
H
k ĩk + dH

2,k ĩk + ĩHk d1,k + d∗k + (hH
k + e(n),HGk)f

(n)
k f

(n),H
k (hk +GH

k e
(n))

=̃iHk Zk ĩk + zHk ĩk + ĩHk zk + zk. (C.4)

Hence, the proof is completed.

C.3 The proof of Theorem 9

Denote by Γ̂⋆ = [Γ̂⋆
1, ..., Γ̂

⋆
K ] the optimal solution of the relaxed version of Problem

(5.41) and define the projection matrices as Pk = Γ̂
⋆ 1
2

k ĥkĥ
H
k Γ̂

⋆ 1
2

k /||Γ̂⋆ 1
2

k ĥk||2, ∀k ∈ K,
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where ĥk =
(
hk +GH

k e
)
. Then, a rank-one solution is constructed as Γ̃⋆ = [Γ̃⋆

1, ..., Γ̃
⋆
K ],

each sub-matrix of which is given by

Γ̃⋆
k = Γ̂

⋆ 1
2

k PkΓ̂
⋆ 1
2

k . (C.5)

Firstly, it checks the objective value of Problem (5.41) with solution Γ̃⋆:

K∑
k=1

Tr
(
Γ̃⋆
k

)
−

K∑
k=1

Tr
(
Γ̂⋆
k

)
=

K∑
k=1

Tr

(
Γ̂
⋆ 1
2

k (Pk − I)Γ̂
⋆ 1
2

k

)
≤ 0, (C.6)

which means that the objective value achieved by using the solution Γ̃⋆ is no more than

that generated from the optimal solution Γ̂⋆.

Then, since it is computationally intractable to check whether the constructed solu-

tion satisfies the constraints (5.41b)-(5.41e) directly, it instead considers the constraint

(5.32b) in the original Problem (5.32). Specifically, from (5.34), it comes to

ĥH
k Γ̃

⋆
kĥk

(2Rk − 1)
=

|ĥH
k Γ̂

⋆
kĥk|2

||Γ̂⋆ 1
2

k ĥk||2(2Rk − 1)
=

ĥH
k Γ̂

⋆
kĥk

(2Rk − 1)
, (C.7)

as well as

ĥH
k Γ̃

⋆
i ĥk = ĥH

i Γ̂
⋆ 1
2

i

Γ̂
⋆ 1
2

i ĥkĥ
H
k Γ̂

⋆ 1
2

i

||Γ̂⋆ 1
2

i ĥi||2
Γ̂
⋆ 1
2

i ĥi

≤ λmax

(
Γ̂
⋆ 1
2

i ĥkĥ
H
k Γ̂

⋆ 1
2

i

)
= ĥH

k Γ̂
⋆
i ĥk. (C.8)

Combining (C.7) with (C.8), it has

ĥH
k [Γ̃

⋆
k/(2

Rk − 1)−
K∑
i ̸=k

Γ̃⋆
k]ĥk ≥ ĥH

k [Γ̂
⋆
k/(2

Rk − 1)−
K∑
i ̸=k

Γ̂⋆
i ]ĥk, (C.9)

which implies that the constructed solution Γ̃⋆ satisfies constraint (5.32b) and then
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satisfies constraints (5.41b)-(5.41e).

With (C.6) and (C.9), it comes to the conclusion that Γ̃⋆ is also a feasible solution

of the relaxed version of Problem (5.41) with rank one.

Hence, the proof is completed.



Appendix D

Appendix of Chapter 6

D.1 The proof of Lemma 10

To begin, the following lemma is introduced.

Lemma 19. Let x ≥ 0 be a positive real number, and consider the function g1(a, x) =

−ax+ ln a+ 1, then

lnx−1 = max
a≥0

g1(a, x).

By applying Lemma 19, an upper bound of rate RE (w, e) can be constructed as

RE (w, e) =
− ln(1 +

∣∣eHHEw
∣∣2 /σ2

E)
−1

2 ln 2

(a)
=
−maxaE≥0 g1(aE , 1 +

∣∣eHHEw
∣∣2 /σ2

E)

2 ln 2

=
minaE≥0−g1(aE , 1 +

∣∣eHHEw
∣∣2 /σ2

E)

2 ln 2

≤
−g1(aE , 1 +

∣∣eHHEw
∣∣2 /σ2

E)

2 ln 2
, for any aE ≥ 0

=
aE
∣∣eHHEw

∣∣2 /σ2
E + aE − ln aE − 1

2 ln 2

= R̃E (w, e, aE) , (D.1)
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where the equality (a) is from Lemma 19.

Hence, the proof is completed.

D.2 The proof of Lemma 11

To prove Lemma 11, the following lemma is needed.

Lemma 20. Let v be a complex number, and consider the function g2(v, x) = (|x|2 +

σ2)|v|2 − 2Re {vx}+ 1, then

σ2

|x|2 + σ2
= min

v
g2(a, x).

By applying Lemma 20, a lower bound of rate RK (w, e) can be constructed as

RK (w, e) =

ln

(
1− |eHHKw|2

σ2
K+|eHHKw|2

)−1

2 ln 2

(a)
=

maxaK≥0 g(aK , 1− |eHHKw|2
σ2
K+|eHHKw|2

)

2 ln 2

≥
g(aK , 1− |eHHKw|2

σ2
K+|eHHKw|2

)

2 ln 2
, for any aK ≥ 0

=

−aK
(

σ2
K

σ2
K+|eHHKw|2

)
+ ln aK + 1

2 ln 2

(b)
=
−aK

(
minv g2(v, e

HHKw)
)
+ ln aK + 1

2 ln 2

=
aK
(
maxv −g2(v, eHHKw)

)
+ ln aK + 1

2 ln 2

≥
aK
(
−g2(v, eHHKw)

)
+ ln aK + 1

2 ln 2
, for any v ≥ 0

=
1

2 ln 2
(−aK |v|2|eHHKw|2 − σ2

KaK |v|2 + 2aKRe
{
veHHKw

}
− aK + ln aK + 1)

= R̃K (w, e, aK , v) (D.2)

where Equality (a) is from Lemma 19, and Equality (b) is from Lemma 20.
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Hence, the proof is completed.

D.3 The proof of Lemma 15

To begin with, P1 is solved: P1 is equivalent to

min
e

eHAEe (D.3a)

s.t.(6.12d), (D.3b)

eHAKe ≥ e2R − 1. (D.3c)

Step 1: Construct a surrogate problem: Under the MM algorithm framework [93], it

comes to the following lemma.

Lemma 21. [27], [141] Given A ⪰ A0 and x, then quadratic function xHA0x is

majorized by xHAx− 2Re{xt,H(A−A0)x}+ xt,H(A−A0)x
t at xt.

By adopting Lemma 21 and setting A = λmax(AE)I for simplicity, the quadratic

objective function in (D.3a) is majorized by

2λmax(AE)M − 2Re{et,H(λmax(AE)I−AE)e} − et,HAEe
t (D.4)

at feasible point et. To deal with the non-convex constraint (D.3c), eHAKe is replaced

with its linear lower bound, resulting in the following equivalent constraint

(D.3c)⇒ 2Re{et,HAKe} ≥ e2R − 1 + et,HAKet. (D.5)

Step 2: Closed-form solution :

By omitting the constant, Problem (D.3) then becomes

max
e

2Re{et,H(λmax(AE)I−AE)e}, (D.6a)
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s.t. (6.12d), (D.5). (D.6b)

According to [26], a price mechanism is introduced for solving Problem (D.6), i.e.,

max
e

2Re{et,H(λmax(AE)I−AE)e}+ ϱ12Re{et,HAKe}

s.t. (6.12d).

where ϱ1 is a non-negative price. Then, the globally optimal solution is given by

e#1 (ϱ
opt
1 ) = exp{j arg((λmax(AE)I−AE + ϱ1AK)et)}.

The optimal ϱopt1 is determined by using the bisection search method, the detailed infor-

mation about which can be found in [26].

Then, P2 is solved: P2 is equivalent to

max
e

1 + eHAKe

1 + eHAEe
, (D.7a)

s.t. (6.12d), (D.7b)

eHAKe ≤ e2R − 1. (D.7c)

Step 1: Construct a surrogate problem: Under the MM algorithm framework, a linear

lower bound of the objective function in (D.7a) is constructed as

1 + eHAKe

1 + eHAEe

(a)

≥ 2Re{1 + dK}
1 + dtE

−
1 + dtK

(1 + dtE)
2

(
1 + eHAEe

)
(b)

≥ 2Re{1 + dK}
1 + dtE

−
1 + dtK

(1 + dtE)
2
−

1 + dtK
(1 + dtE)

2
(2λmax(AE)M

− 2Re{et,H(λmax(AE)I−AE)e} − dtE)

= 2Re{cHe}+ const,

where dK = et,HAKe. {dtK , dtE , c} are defined in Lemma 15. Inequality (a) is due to
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Lemma 9, and inequality (b) is from Lemma 21. By using Lemma 21 again, the convex

constraint (D.7c) can be replaced by an easy-to-solve form as

(D.7c)⇒ 2Re{et,H(λmax(AK)I−AK)e} ≥ −2λmax(AK)M − e2R + 1− et,HAKet.

(D.8)

Step 2: Closed-form solution: By omitting the constant, Problem (D.7) is then equiv-

alent to

max
e

2Re{cHe}, (D.9a)

s.t. (6.12d), (D.8). (D.9b)

By using the price mechanism, Problem (D.7) is reformulated as

max
e

2Re{cHe}+ ϱ22Re{et,H(λmax(AK)I−AK)e}

s.t.(6.12d).

where ϱ2 is a non-negative price. The globally optimal solution is given by e#2 (ϱ
opt
2 ) =

exp{j arg(c + ϱ2(λmax(AK)I −AK)et)} where the optimal ϱopt2 is determined by using

the bisection search method.

Hence, the proof is completed.
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