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Real-time prediction and adaptive adjustment of
continuous casting based on deep learning
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Digitalisation of metallurgical manufacturing, especially technological continuous casting

using numerical models of heat and mass transfer and subsequent solidification has been

developed to achieve high manufacturing efficiency with minimum defects and hence low

scrappage. It is still challenging to perform adaptive closed-loop process adjustment using

high-fidelity computation in real-time. To address this challenge, surrogate models are a good

option to replace the high-fidelity model, with acceptable accuracy and less computational

time and cost. Based on deep learning technology, here we developed a real-time prediction

(ReP) model to predict the three-dimensional (3D) temperature field distribution in con-

tinuous casting on millisecond timescale, with mean absolute error (MAE) of 4.19 K and

mean absolute percent error (MAPE) of 0.49% on test data. Moreover, by combining the ReP

model with machine learning technology—Bayesian optimisation, we realised the rapid

decision-making intelligent adaptation of the operating parameters for continuous casting

with high predictive capability. This innovative and reliable method has a great potential in

the intelligent control of the metallurgical manufacturing process.
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Continuous casting (CC) is a sophisticated metallurgical
process used to manufacture most of the technological
steel products (including billets, blooms, and slabs)

around the world. There are always several types of casting
defects including surface and corner cracks, centre macro-
segregation, centre shrinkage, and porosity in the CC billets,
which reduced the working performance of the steel products. An
effective solution to overcome these defects is to use soft reduc-
tion technology, in which the key technical parameters are the
position and amount of reduction, and appropriate secondary
cooling water control. For the effective control of the secondary
cooling and the soft reduction, the thickness of the solidified shell
and the metallurgical length (the distance where solidification is
sufficiently complete in slab centre) in the CC process need to be
accurately estimated1. Therefore, it is of great importance to
analyse altogether the heat transfer, solidification, multiphase
turbulent flow, and other interacting phenomena in the CC
process. However, it is rather difficult to perform enough
experiments on CC process to generate data for digitalisation of
the process, and due to the limitation of measurement techniques
and harsh production environment, most of the important
information in CC processes cannot be obtained by direct
experiment. Numerical simulation is widely applicable to gain a
better understanding on these fundamental behaviours, and
subsequently predict the 3D temperature distribution and soli-
dification shell, which are key information for process optimisa-
tion and defect mitigation strategy.

Direct numerical simulation (DNS) model based upon com-
putational fluid dynamics (CFD) calculation for CC has greatly
improved since the 1980s2, and has been used to optimise the
operating conditions, such as the cooling water arrangement in
the secondary cooling zone, resulting in the reduction of casting
defects in the strand. The DNS models have been developed to
simulate the complex phenomena during the CC process3–6, and
studies have combined the DNS with optimisation-regulation
algorithms7–10, in order to speed up the optimisation process for
a more appropriate arrangement of cooling water. However, a
common problem of these models is the excessive computational
time and resource consumption, especially in parametric studies
for the process optimisations where a great number of DNS
calculations need to be performed, even in serial. Besides, there
are always situations where the actual process behaviours mis-
behave an unexpected way. In this case, a fast decision and an
autocorrect response are intensely needed to prevent the process
from becoming more exacerbated.

Deep learning (DL) has emerged as a powerful technology,
exhibiting state-of-the-art performance on a variety of tasks. With
its exceptional ability to learn from vast amounts of data, DL
techniques has been widely used in CC process11 to achieve
continuous monitoring (3D laser image scanning system based on
binocular imaging and DL techniques to detect, recognise, clas-
sify, and delineate the defects in CC product surfaces12), control
(temperature control optimisation13 and molten steel tempera-
ture preset14 in the CC process with deep neural networks.), and
assessment of the implementation (internal crack prediction15

and breakout prediction16 in the CC process with deep neural
networks). Despite the benefits that DL techniques have offered
for improving the intelligence and efficiency of the CC process,
there is still a pressing need to develop methods that enable fast
decision-making and rapid autocorrection response in this field.

For real-time monitoring and fast response of heat transfer and
solidification phenomena in the CC process, by simplifying the
numerical model17,18 and enhancing computing resources19–21

could help speed up the process optimisation; still these
approaches have to compromise the accuracy and/or require
unacceptable computing resources. Whereas the conventional

DNS technology cannot offer real-time digital representation
considering the demanding computational time, resources and
accuracy. To circumvent the limitations of conventional DNS
techniques, researchers have attempted to develop surrogate
models using DL techniques to predict the DNS results with
acceptable accuracy and less computational time and cost. For
instance, CNNs-based autoencoder has been utilised to predict
CFD velocity field by signed distance function22,23. To deal with
irregular geometry grid, fully connected neural networks has been
employed to predict the temperature evolutions calculated by
finite element models24. In order to establish a mapping from the
parametric space of the problem to its solution space, Nikolo-
poulos et al. applied a CNNs-based autoencoder and a feed-
forward neural network to efficiently map points from the
parametric space to the compressed version of the respective
solution matrices25. Since the DNS results are highly related to
the corresponding technological parameter setting, the DL model
can be used to learn the relationships between them, so as to
achieve rapid prediction of DNS results under the corresponding
parameter settings. However, for different DNS models and
varied prediction needs, building the corresponding dataset is
challenging and resource-intensive, and more efforts are required
to select and establish the appropriate DL models to build the
corresponding surrogate models. Although DL-based surrogate
model for CC has been reported26, which incorporated CNNs
and recurrent neural networks to address both spatial and
sequential information, it is limited to a 2D simulation prediction
and focuses more on time series prediction.

In this study, we established an efficient surrogate model for a 3D
CC heat transfer DNS process and demonstrated its potential
industrial application. The proposed real-time prediction (ReP)
model is capable of computing the 3D temperature fields of CC
process with the aid of DL techniques, and combining with Bayesian
optimisation (BO) to conduct the intelligent adaptation, it can
improve the key operating conditions to achieve the expected target.
The difference and contribution between our study and prior work
are listed as followed: (1) Different tasks: Our surrogate model aims
to predict the 3D temperature field during CC process under dif-
ferent casting speed, cooling water flow rate. (2) Different approa-
ches: For our specific data form and task requirements, we have
designed a specific model structure to achieve the best performance.
(3) Exploration of application prospect of surrogate model: We aim
to demonstrate how the surrogate model can be applied to process
decision making and, in an attempt, to serve real-world metallurgical
manufacturing engineering to meet the needs of intelligent control.
We first developed a combined hybrid 3D/2D model3 to produce
the CC DNS data. With the established 800 dataset of 3D simulated
temperature fields (700 for training and 100 for testing), we trained a
convolutional neural network (CNN)-based autoencoder27 to extract
the latent code from the data, and reconstructed the data using the
latent code. Then we developed an MLP-Mixer-based28 parameter
encoder to map the technological parameter setting (casting speed
and cooling water flow rate in eight different cooling zone) to the
corresponding latent code. The ReP model can rapidly predict the
3D temperature fields accurately on millisecond timescale, without
the requirement for excessive resources.

Results
Model construction. We hypothesise that the CC DNS tem-
perature field (Tf) is a complex function F of the corresponding
technological parameter setting (p), as shown Eq. 1.

T f ¼ F p
� � ð1Þ

A real-time prediction (ReP) model has been successfully
developed to fit function F to predict the temperature field under

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00084-1

2 COMMUNICATIONS ENGINEERING |            (2023) 2:34 | https://doi.org/10.1038/s44172-023-00084-1 | www.nature.com/commseng

www.nature.com/commseng


the corresponding technological parameter setting. The process is
divided into two parts: encoder-decoder structure autoencoder
and parameter encoder, as shown in Fig. 1. To extract the most
valuable featured information from the CC data, we trained a self-
supervision CNN-based autoencoder with the DNS data as the
input and the output; the autoencoder needs to compress the 3D
DNS data to a one-dimensional 128×1 latent code, and
reconstruct the DNS data, so the autoencoder can extract the
essential information from the data by the encoder part, and
reconstruct the data by the decoder part using Eq. 2 and Eq. 3,
where lc, Tf, T

0
f , E, D represent latent code, DNS temperature

field, reconstructed temperature filed, encoder and decoder,
respectively.

lc ¼ E T f

� � ð2Þ

T 0
f ¼ D lc

� � ð3Þ

The Multilayer Perception (MLP) layer placed at the end of the
encoder and the beginning of the decoder works as a nonlinear
projection head that produces the latent code, which can improve
the representation quality29. Considering symmetry and compu-
tational cost, we only take a quarter of the 1000×78×26 3D
domain (20362×1530×190 mm3), then split it by layers, and zero
pad it into thirteen 1000×40×1 data for training, as shown in
Fig. 1.

With the well-trained autoencoder, then we trained a
parameter encoder to map the technological parameter sets to
the corresponding latent code. As our autoencoder extracts
thirteen layers of 128×1 latent codes for each 3D data points, the
autoencoder can only ‘see’ one layer of the 3D data at a time. As a
result, the information between layers in the 3D temperature field
is completely ignored. Since the temperature between two layers
is interrelated, we consider this information in the parameter
encoder part. Therefore, we employed an MLP-Mixer-based
parameter encoder to map the 9×1 technological parameter
setting to the corresponding latent code (128×13) of 3D data, as
shown in Eq. 4, where l0c, p, P are the latent code prediction,
technological parameter setting and the parameter encoder,

respectively. We proved the effectiveness in this approach by
reintroducing the information between layers in the parameter
encoder part (see Supplementary Fig. 4).

l0c ¼ P p
� � ð4Þ

The structures of autoencoder and parameter encoder are
selected after experimental verification (see Supplementary
Figs. 3–5) to ensure the best performance. The loss function
and evaluation metric are described with mean absolute error
(MAE) as Eq. 5 and mean absolute percent error (MAPE) as
Eq. 6, where Ti;x;y;z , T 0

i;x;y;z and n are ground truth values,
predicted values and total sample number.

MAE T;T 0ð Þ ¼ 1
n

1
1000 ´ 39 ´ 13

∑n
i¼1∑

1000
x¼1∑

39
y¼1∑

13
z¼1 Ti;x;y;z � T 0

i;x;y;z

���
���
ð5Þ

MAPE T;T 0ð Þ ¼ 1
n

1
1000 ´ 39 ´ 13

∑n
i¼1∑

1000
x¼1∑

39
y¼1∑

13
z¼1

Ti;x;y;z � T 0
i;x;y;z

Ti;x;y;z

�����

�����
ð6Þ

Real-time prediction results. With the well-trained autoencoder
and parameter encoder models, we can complete the 3D tem-
perature field prediction, as shown in Eq. 2(a) and Eq. 7, where

T ’’f , p, D, P are the temperature field prediction, technological
parameter setting, decoder and parameter encoder, respectively.
The 9×1 technological parameter setting is first encoded into
128×13 latent code by the parameter encoder, then the decoder
will decode the latent code into temperature field prediction.

T ’’f ¼ D P p
� �� � ð7Þ

A typical 3D temperature field predicted by ReP model is
shown in Fig. 2a. In order to verify the overall reliability of the
ReP model, we compared the 3D temperature fields predicted by
ReP model and DNS respectively, as shown in Fig. 2b. The
predicted results by ReP model are in good agreement with the
DNS results.

Fig. 1 Framework of the real-time prediction model. The 1000×78×26 simulated temperature field from computational fluid dynamic (CFD) calculation
was split by layers, and then normalised and padded to thirteen 1000×40×1 shaped data to train the encoder-decoder structure autoencoder. The latent
coder extracted by the encoder part was merged to a 128×13 latent code of 3D dataset, to train the parameter encoder to map the technological parameter
setting (casting speed and cooling water flow rate (CWFR) in each cooling zone) onto the corresponding latent code.
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The MAPE result of test data can better reflect the performance
of the model, since the test data is isolated from the training
process. Therefore, to demonstrate the performance of the model,
we mainly use the MAPE result of the test data for the
verification. In Fig. 3a, the MAPE distribution of the ReP model
on 100 test data is plotted. First, we ensure the uniformity of data
points by sampling algorithms for the accuracy and robustness of
our model. The MAPE is very low on most of the test data (blue
points, MAPE ≤ 0.5%: 68, 0.5 <MAPE ≤ 1.0%: 20). Though the
error is a bit higher on a small group of test data (red point, 1.0%
<MAPE ≤ 1.5%: 10, 1.5% <MAPE ≤ 2.1%: 2), these data is
clustered at the origin and corresponding to the very low cooling
water flow rate (CWFR), which is rarely used in industry.

To show the accuracy of the ReP model at each data point
more deeply, we plotted the ReP temperature and DNS
temperature results in Fig. 3b. However, because the total
number of the test data points is too large (100 test data, each
contains 507,000 (1000×39×13) data points), we uniformly
selected 27 points from each test data (in each 1000×39×13 test
data, selected points at 100, 500, 900 in the first dimension, 10, 20,
30 in the second dimension, 1, 5, 9 in the third dimension), 2700
data points in total. As shown in Fig. 3b, the ReP temperature
results fits the DNS temperature results very well, with R2 score of
0.9982. And the R2 score between the ReP and DNS results on the
whole test data point is 0.9987.

Furthermore, we demonstrate the accuracy of the ReP model in
two different dimensions: along casting direction (Fig. 3c) and on
the transverse section (Fig. 3d). We calculated the average MAPE
at a certain location or section over all the test data to analyse the
accuracy of the model in depth. In Fig. 3c, the solid red curve
shows the average MAPE on all test data at different distances
from the meniscus. The value of MAPE starts nearly zero at
the beginning and then increases with the distance from
the meniscus, reaching 0.91% at the bottom of the slab. We
believe that this phenomenon is related to the complexity of
the temperature fields in the data. For example, since in our case
the temperature at the beginning of the slab (the mould) is
affected only by the casting speed under the same pouring
temperature, the ReP model can learn this relationship easily. As
the distance from the meniscus increases, the temperature is

influenced by more and more factors, the casting speed, the
CWFR in the current cooling zone and the previous zone. It is
therefore getting harder for the ReP model to make an accurate
prediction. To demonstrate this, we calculated the standard
deviation of the temperature at different distance in all the test
data, as illustrated in the blue curve of Fig. 3c. It can be inferred
that the non-uniformity distribution of the error is consistent
with the standard deviation, which is confirmed by the similarity
of the error and standard deviation distribution along the casting
direction. Similarly, the average MAPE is calculated on all test
data on the transverse section, as shown in Fig. 3d. The MAPE on
the surfaces is relatively larger, especially on the lateral surfaces
where it reaches the maximum value of 1.78%; in the interior of
the slab, it is very small, value of which ranges from 0.24% to
0.6%. Overall, by analysing the errors in two different dimensions,
it can be concluded that the errors of the prediction by the ReP
model are relatively small, this has confirmed further the
validated reliability of the model.

The ReP model can effectively make real-time prediction on
the 3D temperature field of the continuous casting process within
only 0.12 s (on personal laptop with CPU: AMD Ryzen 7 5800H
and GPU: NVIDIA GeForce RTX 3060, see Supplementary
Movies 1) and high accuracy (on test data, MAE: 4.19 K, MAPE:
0.49%; on training data, MAE: 4.19 K, MAPE: 0.48%; the
standard deviation of the total data points (800×1000×39×13) is
181.7 K). In contrast, the conventional DNS model costs about
8 h with 4 CPUs (Intel Xeon E5-2620, 2.40 GHz, 32 G RAM for
each CPU) in parallel (Intel MPI) to complete the DNS process.

Adaptive adjustment of the secondary cooling. The secondary
cooling is an important factor affecting metallurgical length (the
distance where solidification is sufficiently complete in slab cen-
tre, calculated based upon solid fraction along the slab direction
as shown in Fig. 3a), which is a crucial processing variable used to
estimate the casting defects distributed along the centerline of the
slab, such as centerline segregation, porosity, inclusions, alloy-
rich regions, and even cracks. They are especially harmful in
rolling process of the highly alloyed steel slabs30,31. Robust and
accurate control of secondary cooling is vital to prevent or even
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Fig. 2 Workflow and results of the real-time prediction (ReP) model. a Workflow of the real-time prediction model. The parameter encoder map the 9×1
technological parameter set to the corresponding 128×13 latent code of 3D data, then the decoder part of the autoencoder predicts the 1000×78×26 3D
temperature field by the latent code. It takes only 0.12 s for the real-time prediction model to complete. The mean absolute error (MAE) and mean absolute
percent error (MAPE) on the test data are 4.19 K and 0.49%, respectively. b Comparison between 3D temperature fields obtained by ReP Model and direct
numerical simulation (DNS). Half of the slab is shown, and three sub-regions are highlighted.
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suppress the defects and to the produce high-quality steel slabs.
Real-time control of secondary cooling to control the metallur-
gical length is highly desirable to meet the demands of product
quality and operational safety. Thus far we can predict the tem-
perature field on millisecond timescale, the ReP model can pro-
vide the information for the adaptive real-time closed loop
process control. To narrow down the enormous search space
during adaptive adjustment, we further combine the quick pre-
diction model with Bayesian optimisation (BO)32 to solve when
one or more technological parameters (casting speed and cooling
water flow rate in eight different cooling zone) change, and
interrogate how to set other parameters to keep the metallurgical
length.

We randomly choose a predicted result as the initial state, and
increase the casting speed from 1.3 mmin−1 to 1.37 mmin−1.
The metallurgical length is lengthened from 9.36 m to 10.18 m.
Then, we use the BO to search for the best CWFR settings for Zone
1 and Zone 2 to minimise the change of the metallurgical length.
The BO will provide a new prediction parameter setting based on
Gaussian process. Then the new parameter setting is input to our
ReP model to predict the 3D temperature field. The next step is to
calculate the objective function and iterate the Bayesian model as
shown in Fig. 4a. The original, mutation and new parameter
setting are listed in Table 1. Here, we use the difference of the
metallurgical length as the objective function, and the solidifica-
tion state is calculated according to the temperature field by Eq. 8,
where fL, T, TSolidus and TLiquidus are liquid fraction, temperature
(K), solidus temperature (1715 K), and liquidus temperature
(1786K), respectively. In this experiment, it takes BO 22 iterations

to converge, and a new parameter setting leading to the same
metallurgical length is found. The comparison of the shell
thickness under the original, mutation and new parameter
settings is shown in Fig. 4b. The thickness gets thinner with the
increase in casting speed, and besides the BO finds a higher CWFR
in Zone 1 and Zone 2 arrangements to get a 9.32 m metallurgical
length, which is similar to the original one. A metallurgical length
differencemap is shown in Fig. 4c, and some points during the BO
iterative process are drawn to show the searching path. The map
shows that the lowest difference locates in an arc range. This
corresponds to the fact that the cooling water flow rate in Zone 1
and Zone 2 should be complementary, and either too low or too
high CWFR will result in a larger offset. With the help of our ReP
model, this optimisation process only takes 5.2 s, while it would be
days for the conventional DNS.

f L ¼
0 T ≤TSolidus

T�TSolidus
TLiquidus�TSolidus

TSolidus<T<TLiquidus

1 T ≥TLiquidus

8><
>:

ð8Þ

The experiment above uses a target metallurgical length as the
objective function. Moreover, other objective functions, such as
target temperature distribution, target shell thickness, and target
temperature at a certain position, can be set for technological
parameter searching to achieve different quality objectives and
even a hybrid one. In addition, other optimisation regulation
algorithms, such as simulated annealing, differential evolution,
and particle swarm optimisation, can also be combined with our

MAPE, %

a

c d

b

Fig. 3 Accuracy analysis of ReP model. aMean absolute percent error (MAPE) distribution of 100 test data points, with cooling water flow rate (CWFR) in
cooling zone 1 and cooling zone 2 as the x-axis and y-axis. Blue points represent MAPE values less than 1.0% and include 88 data points, with 68 data
points have MAPE values less than 0.5% and 20 data points have MAPE values between 0.5% and 1.0%. Red points indicate MAPE values between 1.0%
and 2.1%, with 10 data points having MAPE values between 1.0% and 1.5% and 2 data points having MAPE values between 1.5% and 2.1%. b Plot of ReP
temperature and DNS temperature of selected test data points. Blue points represent the predicated temperature, red dashed line corresponds to the
predicted value being the same as the DNS temperature. c MAPE and standard deviation distribution along casting direction in test data. Red curve shows
the average MAPE on all test data at different distances from the meniscus, and blue dashed curve represent the standard deviation of the temperature at
different distance in all the test data. d MAPE distribution on the transverse section in test data.
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model. Only a few seconds are needed for the ReP model to run
hundreds of iterations for the optimisation regulation algorithms
and to ensure the convergence. So it is suitable to deal with the
complex changes and requirements in real manufacturing
environment. Besides, our well-trained ReP model is more
deployment friendly and can be performed on a regular personal
computer. As shown in Fig. 5, the training of the ReP model is a
one-time cost, the low computing time and cost makes the
adaptive adjustment system have the advantages of edge
deployment and control, and realised intelligence casting to
improve the steel quality and reduce costs.

Dataset volume analysis. As a data-driven model, the perfor-
mance and robustness of DL model are very sensitive to the
datasets size, and small size datasets impose great challenge in
developing DL model. In this study, we simulated 700 CC DNS
temperature field data to train our DL model and achieved
satisfactory performance. In order to investigate the impact of
dataset size on model performance and explore ways to improve,
we first illustrate the effect of data volume on model performance
by analysing the relationships between training data and test data,
and then compare the test results under different training data
volumes.

In Fig. 6a, we show the MAPE distribution of 100 test data,
where the cosine similarity between the test technological
parameter setting and the whole training technological parameter
setting is set as the x-axis. Higher cosine similarity means that this
test data is closer to the coverage of the training data, which
should result in better performance on this test data. For a better
view, we divide the region in Fig. 6a into seven sub-regions
equally and draw box-whisker plots for the last five sub-regions in
Fig. 6b, we can see the trend of MAPE decreasing with the
increase in cosine similarity. Besides, we compare the MAPE
results when we reduce the training data volume from 700 to 200,
as shown in Fig. 6c. Obviously, the MAPE results deteriorate
as the training data volume reduces. Due to the too many (nine)
technological parameters and the too large sampling space, our
training data cannot cover the entire sampling space, so it is hard
to map the relationships between the technological parameter sets
and the latent code perfectly. Increasing the data volume to cover
more sampling space should improve the performance. But we

Fig. 4 Schematic of secondary cooling water optimisation using ReP model and Bayesian optimisation. a Workflow of the secondary cooling water
optimisation. When the parameter setting changes, the mutation state is input to the Bayesian model as the initial state to obtain the optimised setting;
then the new setting is used in the ReP model to predict the temperature field; finally, calculate the objective function to determinate whether to stop the
optimisation search or not. b Comparison of the shell thickness curve under original setting (Orange curve), mutation setting (Red curve) and optimised
setting (Blue curve). c Metallurgical length difference under the corresponding parameters (cooling water flow rate (CWFR)) mapped with ReP model.
Points are scattered to show the search path of the BO process (Red points correspond to the start point, black point correspond to the intermediate point
and blue point correspond to the end point).

Table 1 The original, mutation and new parameter setting
during the optimisation.

Original Mutation New

Casting speed (mmin−1) 1.3 1.37 1.37

Cooling water flow rate in each
cooling zone (L min−1)

Zone 1 102 102 127
Zone 2 87 87 106
Zone 3 89 89 89
Zone 4 85 85 85
Zone 5 70 70 70
Zone 6 30 30 30
Zone 7 77 77 77
Zone 8 49 49 49

Bold font indicates the parameter that has changed.
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find a diminishing marginal effect when changing dataset volume,
as shown in Fig. 6c. Therefore, the amount of data to achieve a
perfect result might be rather extensive. When the amount of data
is limited, the performance and robustness of the model can be
improved through data augmentation33, regularisation34, transfer
learning35, and knowledge distillation36.

However, when comparing the results of reducing the training
data volume of the autoencoder and reducing the training data
volume of the parameter encoder (when reducing the training
data volume of one model, the training data volume for another
model stays at 700). The MAPE curve is similar between the red
circle curve (reducing the training data volume of both the
autoencoder and parameter encoder) and the blue triangle curve
(reducing the training data volume of the parameter encoder), but
the MAPE results do not deteriorate much when only reducing
the training data volume of the autoencoder (yellow square
curve). It can be inferred that the bottleneck of our ReP model is
the parameter encoder, and the autoencoder can be well-trained
with only a small amount of data. The loss curve also shows that
the parameter encoder is a little bit underfitting while the
autoencoder fits well (see Supplementary Figs. 7 and 8). Figure 6d
shows the comparison of ReP results by different training data
volumes. Clearly, the ReP result is improved with the increase in
the number of training data.

Discussion
In this study, we developed a ReP model to predict the 3D CC
temperature field with high precision and throughput. Proving
that the DL technology can learn the relationships between the
DNS data and the corresponding technological parameter setting,
and then make accurate predictions. The final performance and
accuracy of the Rep model depends on two aspects: accuracy of
the numerical simulation and completeness of dataset space; and
the accuracy of DL model. Therefore, to make more precise
prediction, a better solidification model is essential. As a first

attempt for this approach, the main purpose of this study is to
verify the feasibility of the approach, so we do not give much
consideration to the CC DNS dataset, and current dataset con-
tains only the temperature information of the CC. In fact, when
we use the most advanced DNS models (such as macrosegrega-
tion model and dendritic structure model) to generate datasets,
these CC DNS datasets will contain more valuable information
(process variables), and we can fully develop ReP models for
macrosegregation and dendritic structure prediction, which is of
great significance for the quality and intelligent control of CC
process, but lots of efforts and times may be required to build this
kind of dataset. In addition, this approach is content independent
in some ways, so it is possible to be spread to other research areas
to actualise similar ReP processes to help accelerate scientific
research.

Furthermore, we take the advantages of the ReP model and
combine it with optimisation regulation algorithms to achieve fast
adaptive adjustment. In our model, the adaptive adjustment is
completed in seconds, which is much faster than using conven-
tional DNS technology, demonstrating the potential application
scenarios and capabilities. The trained ReP model does not
require extensive computing resources as the conventional DNS,
which is more computational friendly for edge deployment and
computing. Thus, it is also possible to deploy the ReP model at
the front of the fabrication to help implementation fast adaptive
adjustment to improve process control as shown in Fig. 5.

Besides, it is necessary to discuss the limitations and short-
comings of our model as well:

● As a data-driven method, the dataset is a common concern
for researchers. Although a lot of effort has been made to
produce a large number of the CC dataset, our ReP model
has yet reached a perfect accuracy. As illustrated in Fig. 6c,
the dataset, especially for parameter encoder, needed to be
further enriched to achieve higher accuracy of the trained
ReP model. Moreover, this work provides the most
complete dataset to digitalise the metallurgical process.

● The ReP model can only predict the results within the
training data space. For example, current ReP model is
difficult to accurately predict the CC results with a casting
speed larger than 1.65 mmin−1, because the operating
parameter is beyond the range of the operating conditions
(0.75–1.65 mmin−1) in the training data. We used the ReP
model to predict the temperature at the end of the slab
under the extreme casting process conditions, i.e. the
minimum casting speed and maximum cooling water flow,
and obtained a minimum temperature of 598 K, but the
actual value should be 372 K from DNS result. The reason
is that the minimum temperature in our dataset is 604 K,
and the predicted minimum temperature will be limited by
the training dataset and not much lower than the lowest
temperature in this dataset. Therefore, to obtain higher
prediction accuracy, it is necessary not only to increase the
dataset, but also to expand the range of processing
processes and resultant temperatures as much as possible.

More work is needed to completely replace the conventional
DNS. Having said that our model has excellent advantages in
terms of computational speed and resources, and it is accurate
enough under the conditions investigated. The digitalisation tool
proposed here is therefore valuable for accelerating the manu-
facturing science research and technology take-up.

Methods
Data preparation and preprocessing. In this study, we developed a combined
hybrid 3D/2D model for heat transfer, fluid flow, and solidification simulation
using computational fluid dynamics (CFD) calculation, according to the reference3

Fig. 5 Schematic of intelligence casting. First, we need to build DNS
dataset to train the ReP model. Then, the ReP model can be combined with
BO model to form the adaptive adjustment system, after setting the
optimisation objective and initialising the model, the system can be
deployed at the front of the manufacturing factory to control the CC
process. 1: Tundish. 2: Mold. 3: Roll support. 4: Spray nozzle. A: Liquid
metal. B: Solidified metal.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00084-1 ARTICLE

COMMUNICATIONS ENGINEERING |            (2023) 2:34 | https://doi.org/10.1038/s44172-023-00084-1 | www.nature.com/commseng 7

www.nature.com/commseng
www.nature.com/commseng


to generate our dataset (see Supplementary Figs. 1 and 2, Supplementary
Tables 1–3 and Supplementary Note 1). The solution of the CC model is performed
on the ANSYS FLUENT 14.5 CFD software. We chose this model for three reasons.
First, it is a verified model that can provide reliable results. Second, the 3D
simulation results are more representative than the 2D simulation ones. Third, the
computational speed is much faster than a 3D simulation model, which is a very
important consideration because a great number of simulations need to be per-
formed for big datasets. This numerical model divided the computational domain
into two parts—the 3D turbulent flow region and the 2D laminar flow region. The
velocity of the molten steel in the casting direction is equal to the casting speed
after the 3D turbulent flow region and 2D laminar flow region interface (which is
set at the end of Zone 3) and thus forming plug flow. Moreover, as reported37, the
heat flux in the casting direction accounts for just a little (about 3–6%) of the total
heat loss. These phenomena enable us to ignore the heat flux in the casting
direction in the laminar flow region. In addition, due to the heat transfer, cooling
condition, and solidification process of slab continuous casting are of good sym-
metry in the width and thickness directions of the slab, the difference in cooling
intensity between the inner and outer wide surfaces of the slab, and the effect of the
bending and straightening process on the thermal contraction deformation, can be
neglected to reduce the computational cost38. One-quarter of the strand was
included in the computational domain. The computation cost has obviously
reduced, providing us an advantage for generating a large amount of data. We
employed this CC model to produce our dataset under different casting speeds and
cooling water flow rates. In addition, this model considers the uneven distribution
of cooling water in the wide face direction according to the actual process, and
there are eight secondary cooling zones with different cooling water rates.

The DNS model produced the 20362×765×95 mm3 temperature field (a quarter
of the slab). In other words, a data dimension of 1000×39×13. However, this data
shape was too large for a DL model. In order to reduce the computational cost, we
divided the data into 13 layers in the thickness direction (Z-direction) as illustrated
in Fig. 1. Moreover, we zero pad the data in the width direction (Y-direction) to
shape 1000×40×1 and normalise them between 0 and 1 to simply the scaling
operation. We used Latin hypercube sampling (LHS)39 to collect our sampling
points to guarantee the randomness and uniformity of the dataset. The sampling
range for each parameter is listed in Supplementary Table 4. 3D DNS data of 800
model outputs was calculated, and we divided the dataset into 700 dataset for

training and 100 dataset for testing. Then we expanded the training data through
data augmentation33. The test data were only used to test the model performance,
instead of participated in any training processes.

Real-time prediction model. The framework of the whole ReP model is shown in
Fig. 1, the backbone of our autoencoder and parameter encoder is the ConvNeXt
block and Mixer layer, which are built according to the corresponding
references28,40 (see Supplementary Fig. 6). The Down/Up-sample layer is a 2×2
Conv2D/Conv2DTranspose with strides 2 to half/double the height and width of
the feature map. The projection layer is a 1×1 Conv2D layer to change the
dimension of the feature map. MLP layer is placed at the end of the encoder and
the beginning of the decoder as a projection head to operate on one-dimension
data, and is very important for extracting the latent code. A detailed structure is
listed in Supplementary Table 5 and 6. The reason for separating the whole ReP
model into autoencoder and parameter encoder is to introduce data augmentation
to enhance the robustness of the model (see Supplementary Fig. 9). Adam
optimiser41 was used for both two DL models at learning rates of 0.0013 and 0.01,
respectively. Early stopping42 and learning rate decay43 were adopted to speed up
the training progress. We set a 0.9 learning rate decay for five epoch patience and
found it beneficial for training. The activation function and loss function for both
two DL models were gelu44 and MAE. The batch size for the autoencoder and
parameter encoder is 32 and 128, respectively.

All DL models were trained on NVIDIA HGX A100 40GB GPU using the
Tensorflow45 library, and it took about seven hours to train the ReP model (about
seven hours for the autoencoder and 10 min for the parameter encoder).

Bayesian optimisation. As a framework for global optimisation of expensive-to-
evaluate black-box functions, BO has become popular due to its remarkable per-
formance in hyperparameter tuning of machine learning algorithms recently. The
goal of Bayesian optimisation is to build a distribution based on previous mea-
surements, priori information, using a Gaussian random process. It has been
invented and used for a long time46 and constantly upgraded and evolved32,47. In
this work, a regular version of BO is achieved using the bayes_opt48 library in
Python, an efficient implementation of the BO methodology for nonlinear opti-
misation, experimental design and hyperparameter tuning. The initial step of

a

c

b

d

Temperature, K

DNS

50mm

Fig. 6 Experiment results: the effect of training data volume on the prediction results. a Mean absolute percent error (MAPE) distribution of 100 test
data. The cosine similarity between the test technological parameter set and the whole training technological parameter sets is set as the x-axis. Shadings
indicate different sub-regions. b Box-whisker plot for five sub-regions I–V in a, the number of independent samples for box I–V are 11, 25, 38, 18, 6,
respectively. c MAPE results when reducing the training data volume from 700 to 200. Red circle curve: reduce the training data volume of both the
autoencoder and parameter encoder; blue triangle curve: reduce the training data volume of the parameter encoder and keep 700 training data of the
autoencoder; yellow square curve: reduce the training data volume of the autoencoder and keep 700 training data of the parameter encoder. d Comparison
of prediction results for different training data volume and DNS result.
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random exploration is set to 5. With expected improvement function as acquisition
function and set an exploration ratio of 0.1.

Data availability
Representative research data are given in the figures (and Supplementary Data). The
source data for Fig. 3a–c is provided as Supplementary Data 1. The unedited raw data
generated by Fluent that makes up the key dataset is accessible in figshare (https://doi.
org/10.6084/m9.figshare.22810319.v1). Other generated and/or analysed datasets that
support the findings of this study are available from the corresponding author upon
reasonable request.

Code availability
All custom code used in this work, including that used to train and test ReP models, and
perform secondary cooling water optimisation with BO, can be obtained from the
following publicly accessible GitHub page: https://github.com/LarkMi/ReP.
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