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Abstract 16 

Digitalisation of metallurgical manufacturing, especially technological continuous casting using 17 

numerical models of heat and mass transfer and subsequent solidification has been developed to 18 

achieve high manufacturing efficiency with minimum defects and hence low scrappage. It is still 19 

challenging to perform adaptive closed-loop process adjustment using high-fidelity computation in 20 

real-time. To address this challenge, surrogate models are a good option to replace the high-fidelity 21 

model, with acceptable accuracy and less computational time and cost. Based on deep learning 22 

technology, here we developed a real-time prediction (ReP) model to predict the three-dimensional 23 

(3D) temperature field distribution in continuous casting on millisecond timescale, with mean absolute 24 

error (MAE) of 4.19 K and mean absolute percent error (MAPE) of 0.49% on test data. Moreover, by 25 

combining the ReP model with machine learning technology—Bayesian optimization, we realised the 26 

rapid decision-making intelligent adaptation of the operating parameters for continuous casting with 27 

high predictive capability. This innovative and reliable method has a great potential in the intelligent 28 

control of the metallurgical manufacturing process. 29 
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Introduction 30 

Continuous casting (CC) is a sophisticated metallurgical process used to manufacture most of the 31 

technological steel products (including billets, blooms, and slabs) around the world. There are always 32 

several types of casting defects including surface and corner cracks, center macrosegregation, center 33 

shrinkage, and porosity in the CC billets, which reduced the working performance of the steel products. 34 

An effective solution to overcome these defects is to use soft reduction technology, in which the key 35 

technical parameters are the position and amount of reduction, and appropriate secondary cooling 36 

water control. For the effective control of the secondary cooling and the soft reduction, the thickness 37 

of the solidified shell and the metallurgical length (the distance where solidification is sufficiently 38 

complete in slab center) in the CC process need to be accurately estimated1. Therefore, it is of great 39 

importance to analyse altogether the heat transfer, solidification, multiphase turbulent flow, and other 40 

interacting phenomena in the CC process. However, it is rather difficult to perform enough experiments 41 

on CC process to generate data for digitalization of the process, and due to the limitation of 42 

measurement techniques and harsh production environment, most of the important information in CC 43 

processes cannot be obtained by direct experiment. Numerical simulation is widely applicable to gain 44 

a better understanding on these fundamental behaviors, and subsequently predict the 3D temperature 45 

distribution and solidification shell, which are key information for process optimisation and defect 46 

mitigation strategy. 47 

Direct numerical simulation (DNS) model based upon computational fluid dynamics (CFD) 48 

calculation for CC has greatly improved since the 1980s2, and has been used to optimise the operating 49 
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conditions, such as the cooling water arrangement in the secondary cooling zone, resulting in the 50 

reduction of casting defects in the strand. The DNS models have been developed to simulate the 51 

complex phenomena during the CC process3-6, and studies have combined the DNS with optimisation-52 

regulation algorithms7-10, in order to speed up the optimisation process for a more appropriate 53 

arrangement of cooling water. However, a common problem of these models is the excessive 54 

computational time and resource consumption, especially in parametric studies for the process 55 

optimisations where a great number of DNS calculations need to be performed, even in serial. Besides, 56 

there are always situations where the actual process behaviours misbehave an unexpected way. In this 57 

case, a fast decision and an autocorrect response are intensely needed to prevent the process from 58 

becoming more exacerbated.  59 

Deep learning (DL) has emerged as a powerful technology, exhibiting state-of-the-art performance 60 

on a variety of tasks. With its exceptional ability to learn from vast amounts of data, DL techniques 61 

has been widely used in CC process11 to achieve continuous monitoring (3D laser image scanning 62 

system based on binocular imaging and DL techniques to detect, recognise, classify, and delineate the 63 

defects in CC product surfaces12.), control (temperature control optimisation13 and molten steel 64 

temperature preset14 in the CC process with deep neural networks.), and assessment of the 65 

implementation (internal crack prediction15 and breakout prediction16 in the CC process with deep 66 

neural networks.). Despite the benefits that DL techniques have offered for improving the intelligence 67 

and efficiency of the CC process, there is still a pressing need to develop methods that enable fast 68 

decision-making and rapid autocorrection response in this field. 69 

For real-time monitoring and fast response of heat transfer and solidification phenomena in the 70 
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CC process, by simplifying the numerical model17,18 and enhancing computing resources19-21 could 71 

help speed up the process optimisation; still these approaches have to compromise the accuracy and/or 72 

require unacceptable computing resources. Whereas the conventional DNS technology cannot offer 73 

real-time digital representation considering the demanding computational time, resources and accuracy. 74 

To circumvent the limitations of conventional DNS techniques, researchers have attempted to develop 75 

surrogate models using DL techniques to predict the DNS results with acceptable accuracy and less 76 

computational time and cost. For instance, CNNs-based autoencoder has been utilised to predict CFD 77 

velocity field by signed distance function22,23. To deal with irregular geometry grid, fully connected 78 

neural networks has been employed to predict the temperature evolutions calculated by finite element 79 

models24. In order to establish a mapping from the parametric space of the problem to its solution space, 80 

Nikolopoulos et al. applied a CNNs-based autoencoder and a feed-forward neural network to 81 

efficiently map points from the parametric space to the compressed version of the respective solution 82 

matrices25. Since the DNS results are highly related to the corresponding technological parameter 83 

setting, the DL model can be used to learn the relationships between them, so as to achieve rapid 84 

prediction of DNS results under the corresponding parameter settings. However, for different DNS 85 

models and varied prediction needs, building the corresponding dataset is challenging and resource-86 

intensive, and more efforts are required to select and establish the appropriate DL models to build the 87 

corresponding surrogate models. Although DL-based surrogate model for CC has been reported26, 88 

which incorporated CNNs and recurrent neural networks to address both spatial and sequential 89 

information, it is limited to a 2D simulation prediction and focuses more on time series prediction. 90 

In this study, we established an efficient surrogate model for a 3D CC heat transfer DNS process 91 
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and demonstrated its potential industrial application. The proposed real-time prediction (ReP) model 92 

is capable of computing the 3D temperature fields of CC process with the aid of DL techniques, and 93 

combining with Bayesian optimisation (BO) to conduct the intelligent adaptation, it can improve the 94 

key operating conditions to achieve the expected target. The difference and contribution between our 95 

study and prior work are listed as followed: 1). Different tasks: Our surrogate model aims to predict 96 

the 3D temperature field during CC process under different casting speed, cooling water flow rate. 2). 97 

Different approaches: For our specific data form and task requirements, we have designed a specific 98 

model structure to achieve the best performance. 3). Exploration of application prospect of surrogate 99 

model: We aim to demonstrate how the surrogate model can be applied to process decision making 100 

and, in an attempt, to serve real-world metallurgical manufacturing engineering to meet the needs of 101 

intelligent control. We first developed a combined hybrid 3D/2D model3 to produce the CC DNS data. 102 

With the established 800 dataset of 3D simulated temperature fields (700 for training and 100 for 103 

testing), we trained a convolutional neural network (CNN)-based autoencoder27 to extract the latent 104 

code from the data, and reconstructed the data using the latent code. Then we developed an MLP-105 

Mixer-based28 parameter encoder to map the technological parameter setting (casting speed and 106 

cooling water flow rate in eight different cooling zone) to the corresponding latent code. The ReP 107 

model can rapidly predict the 3D temperature fields accurately on millisecond timescale, without the 108 

requirement for excessive resources. 109 

 110 
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Results 111 

Model construction  112 

We hypothesise that the CC DNS temperature field (Tf) is a complex function F of the 113 

corresponding technological parameter setting (p), as shown Eq. 1. 114 

𝑇f = 𝐹(𝑝) (1) 115 

A real-time prediction (ReP) model has been successfully developed to fit function F to predict 116 

the temperature field under the corresponding technological parameter setting. The process is divided 117 

into two parts: encoder-decoder structure autoencoder and parameter encoder, as shown in Fig. 1. To 118 

extract the most valuable featured information from the CC data, we trained a self-supervision CNN-119 

based autoencoder with the DNS data as the input and the output; the autoencoder needs to compress 120 

the 3D DNS data to a one-dimensional 128×1 latent code, and reconstruct the DNS data, so the 121 

autoencoder can extract the essential information from the data by the encoder part, and reconstruct 122 

the data by the decoder part using Eq. 2 and Eq. 3, where lc, Tf, 𝑇f
′, E, D represent latent code, DNS 123 

temperature field, reconstructed temperature filed, encoder and decoder, respectively. 124 

𝑙c = 𝐸(𝑇f) (2) 125 

𝑇f
′ = 𝐷(𝑙c) (3) 126 

The Multilayer Perception (MLP) layer placed at the end of the encoder and the beginning of the 127 

decoder works as a nonlinear projection head that produces the latent code, which can improve the 128 

representation quality29. Considering symmetry and computational cost, we only take a quarter of the 129 

1000×78×26 3D domain (20362×1530×190 mm3), then split it by layers, and zero pad it into thirteen 130 
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1000×40×1 data for training, as shown in Fig. 1. 131 

With the well-trained autoencoder, then we trained a parameter encoder to map the technological 132 

parameter sets to the corresponding latent code. As our autoencoder extracts thirteen layers of 128×1 133 

latent codes for each 3D data points, the autoencoder can only ‘see’ one layer of the 3D data at a time. 134 

As a result, the information between layers in the 3D temperature field is completely ignored. Since 135 

the temperature between two layers is interrelated, we consider this information in the parameter 136 

encoder part. Therefore, we employed an MLP-Mixer-based parameter encoder to map the 9×1 137 

technological parameter setting to the corresponding latent code (128×13) of 3D data, as shown in Eq. 138 

4, where 𝑙c
′ , p, P are the latent code prediction, technological parameter setting and the parameter 139 

encoder, respectively. We proved the effectiveness in this approach by reintroducing the information 140 

between layers in the parameter encoder part (see Supplementary Figure 4). 141 

𝑙c
′ = 𝑃(𝑝) (4) 142 

The structures of autoencoder and parameter encoder are selected after experimental verification 143 

(see Supplementary Figure 3-5) to ensure the best performance. The loss function and evaluation 144 

metric are described with mean absolute error (MAE) as Eq. 5 and mean absolute percent error (MAPE) 145 

as Eq. 6, where 𝑇𝑖,𝑥,𝑦,𝑧 , 𝑇𝑖,𝑥,𝑦,𝑧
′   and 𝑛  are ground truth values, predicted values and total sample 146 

number. 147 

MAE(𝑇, 𝑇′) =
1

𝑛

1

1000 × 39 × 13
∑ ∑ ∑ ∑ |𝑇𝑖,𝑥,𝑦,𝑧 − 𝑇𝑖,𝑥,𝑦,𝑧

′ |
13

𝑧=1

39

𝑦=1

1000

𝑥=1

𝑛

𝑖=1
(5) 148 

MAPE(𝑇, 𝑇′) =
1

𝑛

1

1000 × 39 × 13
∑ ∑ ∑ ∑ |

𝑇𝑖,𝑥,𝑦,𝑧 − 𝑇𝑖,𝑥,𝑦,𝑧
′

𝑇𝑖,𝑥,𝑦,𝑧
|

13

𝑧=1

39

𝑦=1

1000

𝑥=1

𝑛

𝑖=1
(6) 149 

 150 
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Real-time prediction results  151 

With the well-trained autoencoder and parameter encoder models, we can complete the 3D 152 

temperature field prediction, as shown in Fig. 2(a) and Eq. 7, where 𝑇f
′′, p, D, P are the temperature 153 

field prediction, technological parameter setting, decoder and parameter encoder, respectively. The 154 

9×1 technological parameter setting is first encoded into 128×13 latent code by the parameter encoder, 155 

then the decoder will decode the latent code into temperature field prediction. 156 

𝑇f
′′ = 𝐷(𝑃(𝑝)) (7) 157 

A typical 3D temperature field predicted by ReP model is shown in Fig. 2(a). In order to verify 158 

the overall reliability of the ReP model, we compared the 3D temperature fields predicted by ReP 159 

model and DNS respectively, as shown in Fig. 2(b). The predicted results by ReP model are in good 160 

agreement with the DNS results.  161 

The MAPE result of test data can better reflect the performance of the model, since the test data 162 

is isolated from the training process. Therefore, to demonstrate the performance of the model, we 163 

mainly use the MAPE result of the test data for the verification. In Fig. 3(a), the MAPE distribution of 164 

the ReP model on 100 test data is plotted. First, we ensure the uniformity of data points by sampling 165 

algorithms for the accuracy and robustness of our model. The MAPE is very low on most of the test 166 

data (blue points, MAPE ≤ 0.5%: 68, 0.5 < MAPE ≤ 1.0%: 20). Though the error is a bit higher on a 167 

small group of test data (red point, 1.0% < MAPE ≤ 1.5%: 10, 1.5% < MAPE ≤ 2.1%: 2), these data 168 

is clustered at the origin and corresponding to the very low cooling water flow rate (CWFR), which is 169 

rarely used in industry. 170 
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To show the accuracy of the ReP model at each data point more deeply, we plotted the ReP 171 

temperature and DNS temperature results in Fig. 3(b). However, because the total number of the test 172 

data points is too large (100 test data, each contains 507000 (1000×39×13) data points), we uniformly 173 

selected 27 points from each test data (in each 1000×39×13 test data, selected points at 100, 500, 900 174 

in the first dimension, 10, 20, 30 in the second dimension, 1, 5, 9 in the third dimension), 2700 data 175 

points in total. As shown in Fig. 3(b), the ReP temperature results fits the DNS temperature results 176 

very well, with R2 score of 0.9982. And the R2 score between the ReP and DNS results on the whole 177 

test data point is 0.9987. 178 

 Furthermore, we demonstrate the accuracy of the ReP model in two different dimensions: along 179 

casting direction (Fig. 3(c)) and on the transverse section (Fig. 3(d)). We calculated the average MAPE 180 

at a certain location or section over all the test data to analyse the accuracy of the model in depth. In 181 

Fig. 3(c), the solid red curve shows the average MAPE on all test data at different distances from the 182 

meniscus. The value of MAPE starts nearly zero at the beginning and then increases with the distance 183 

from the meniscus, reaching 0.91% at the bottom of the slab. We believe that this phenomenon is 184 

related to the complexity of the temperature fields in the data. For example, since in our case the 185 

temperature at the beginning of the slab (the mould) is affected only by the casting speed under the 186 

same pouring temperature, the ReP model can learn this relationship easily. As the distance from the 187 

meniscus increases, the temperature is influenced by more and more factors, the casting speed, the 188 

CWFR in the current cooling zone and the previous zone. It is therefore getting harder for the ReP 189 

model to make an accurate prediction. To demonstrate this, we calculated the standard deviation of the 190 

temperature at different distance in all the test data, as illustrated in the blue curve of Fig. 3(c). It can 191 
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be inferred that the non-uniformity distribution of the error is consistent with the standard deviation, 192 

which is confirmed by the similarity of the error and standard deviation distribution along the casting 193 

direction. Similarly, the average MAPE is calculated on all test data on the transverse section, as shown 194 

in Fig. 3(d). The MAPE on the surfaces is relatively larger, especially on the lateral surfaces where it 195 

reaches the maximum value of 1.78%; in the interior of the slab, it is very small, value of which ranges 196 

from 0.24% to 0.6%. Overall, by analysing the errors in two different dimensions, it can be concluded 197 

that the errors of the prediction by the ReP model are relatively small, this has confirmed further the 198 

validated reliability of the model. 199 

The ReP model can effectively make real-time prediction on the 3D temperature field of the 200 

continuous casting process within only 0.12 s (on personal laptop with CPU: AMD Ryzen 7 5800H 201 

and GPU: NVIDIA GeForce RTX 3060, see Supplementary Movies 1) and high accuracy (on test data, 202 

MAE: 4.19 K, MAPE: 0.49%; on training data, MAE: 4.19 K, MAPE: 0.48%; the standard deviation 203 

of the total data points (800×1000×39×13) is 181.7 K). In contrast, the conventional DNS model costs 204 

about 8 hours with 4 CPUs (Intel Xeon E5-2620, 2.40 GHz, 32 G RAM for each CPU) in parallel (Intel 205 

MPI) to complete the DNS process. 206 

 207 

Adaptive adjustment of the secondary cooling 208 

The secondary cooling is an important factor affecting metallurgical length (the distance where 209 

solidification is sufficiently complete in slab center, calculated based upon solid fraction along the slab 210 

direction as shown in Fig. 3(a)), which is a crucial processing variable used to estimate the casting 211 
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defects distributed along the centerline of the slab, such as centerline segregation, porosity, inclusions, 212 

alloy-rich regions, and even cracks. They are especially harmful in rolling process of the highly alloyed 213 

steel slabs30,31. Robust and accurate control of secondary cooling is vital to prevent or even suppress 214 

the defects and to the produce high-quality steel slabs. Real-time control of secondary cooling to 215 

control the metallurgical length is highly desirable to meet the demands of product quality and 216 

operational safety. Thus far we can predict the temperature field on millisecond timescale, the ReP 217 

model can provide the information for the adaptive real-time closed loop process control. To narrow 218 

down the enormous search space during adaptive adjustment, we further combine the quick prediction 219 

model with Bayesian optimisation (BO)32 to solve when one or more technological parameters (casting 220 

speed and cooling water flow rate in eight different cooling zone) change, and interrogate how to set 221 

other parameters to keep the metallurgical length. 222 

We randomly choose a predicted result as the initial state, and increase the casting speed from 1.3 223 

m·min-1 to 1.37 m·min-1. The metallurgical length is lengthened from 9.36 m to 10.18 m. Then, we use 224 

the BO to search for the best CWFR settings for Zone 1 and Zone 2 to minimise the change of the 225 

metallurgical length. The BO will provide a new prediction parameter setting based on Gaussian 226 

process. Then the new parameter setting is input to our ReP model to predict the 3D temperature field. 227 

The next step is to calculate the objective function and iterate the Bayesian model as shown in Fig. 228 

4(a). The original, mutation and new parameter setting are listed in Table 1. Here, we use the difference 229 

of the metallurgical length as the objective function, and the solidification state is calculated according 230 

to the temperature field by Eq. 8, where fL, T, TSolidus and TLiquidus are liquid fraction, temperature (K), 231 

solidus temperature (1715 K), and liquidus temperature (1786 K), respectively. In this experiment, it 232 
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takes BO 22 iterations to converge, and a new parameter setting leading to the same metallurgical 233 

length is found. The comparison of the shell thickness under the original, mutation and new parameter 234 

settings is shown in Fig. 4(b). The thickness gets thinner with the increase in casting speed, and besides 235 

the BO finds a higher CWFR in Zone 1 and Zone 2 arrangements to get a 9.32 m metallurgical length, 236 

which is similar to the original one. A metallurgical length difference map is shown in Fig. 4(c), and 237 

some points during the BO iterative process are drawn to show the searching path. The map shows that 238 

the lowest difference locates in an arc range. This corresponds to the fact that the cooling water flow 239 

rate in Zone 1 and Zone 2 should be complementary, and either too low or too high CWFR will result 240 

in a larger offset. With the help of our ReP model, this optimisation process only takes 5.2 s, while it 241 

would be days for the conventional DNS. 242 

𝑓L =

{
 

 
0 𝑇 ≤ 𝑇Solidus

𝑇 − 𝑇Solidus
𝑇Liquidus − 𝑇Solidus

𝑇Solidus < 𝑇 < 𝑇Liquidus

1 𝑇 ≥ 𝑇Liquidus

   (8) 243 

 The experiment above uses a target metallurgical length as the objective function. Moreover, other 244 

objective functions, such as target temperature distribution, target shell thickness, and target 245 

temperature at a certain position, can be set for technological parameter searching to achieve different 246 

quality objectives and even a hybrid one. In addition, other optimisation regulation algorithms, such 247 

as simulated annealing, differential evolution, and particle swarm optimisation, can also be combined 248 

with our model. Only a few seconds are needed for the ReP model to run hundreds of iterations for the 249 

optimisation regulation algorithms and to ensure the convergence. So it is suitable to deal with the 250 

complex changes and requirements in real manufacturing environment. Besides, our well-trained ReP 251 

model is more deployment friendly and can be performed on a regular personal computer. As shown 252 
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in Fig. 5, the training of the ReP model is a one-time cost, the low computing time and cost makes the 253 

adaptive adjustment system have the advantages of edge deployment and control, and realized 254 

intelligence casting to improve the steel quality and reduce costs.  255 

 256 

Dataset volume analysis  257 

 As a data-driven model, the performance and robustness of DL model are very sensitive to the 258 

datasets size, and small size datasets impose great challenge in developing DL model. In this study, we 259 

simulated 700 CC DNS temperature field data to train our DL model and achieved satisfactory 260 

performance. In order to investigate the impact of dataset size on model performance and explore ways 261 

to improve, we first illustrate the effect of data volume on model performance by analysing the 262 

relationships between training data and test data, and then compare the test results under different 263 

training data volumes. 264 

In Fig. 6(a), we show the MAPE distribution of 100 test data, where the cosine similarity between 265 

the test technological parameter setting and the whole training technological parameter setting is set 266 

as the x-axis. Higher cosine similarity means that this test data is closer to the coverage of the training 267 

data, which should result in better performance on this test data. For a better view, we divide the region 268 

in Fig. 6(a) into seven sub-regions equally and draw box-whisker plots for the last five sub-regions in 269 

Fig. 6(b), we can see the trend of MAPE decreasing with the increase in cosine similarity. Besides, we 270 

compare the MAPE results when we reduce the training data volume from 700 to 200, as shown in Fig. 271 

6(c). Obviously, the MAPE results deteriorate as the training data volume reduces. Due to the too many 272 
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(nine) technological parameters and the too large sampling space, our training data cannot cover the 273 

entire sampling space, so it is hard to map the relationships between the technological parameter sets 274 

and the latent code perfectly. Increasing the data volume to cover more sampling space should improve 275 

the performance. But we find a diminishing marginal effect when changing dataset volume, as shown 276 

in Fig. 6(c). Therefore, the amount of data to achieve a perfect result might be rather extensive. When 277 

the amount of data is limited, the performance and robustness of the model can be improved through 278 

data augmentation33, regularization34, transfer learning35, and knowledge distillation36. 279 

However, when comparing the results of reducing the training data volume of the autoencoder and 280 

reducing the training data volume of the parameter encoder (when reducing the training data volume 281 

of one model, the training data volume for another model stays at 700). The MAPE curve is similar 282 

between the red circle curve (reducing the training data volume of both the autoencoder and parameter 283 

encoder) and the blue triangle curve (reducing the training data volume of the parameter encoder), but 284 

the MAPE results do not deteriorate much when only reducing the training data volume of the 285 

autoencoder (yellow square curve). It can be inferred that the bottleneck of our ReP model is the 286 

parameter encoder, and the autoencoder can be well-trained with only a small amount of data. The loss 287 

curve also shows that the parameter encoder is a little bit underfitting while the autoencoder fits well 288 

(see Supplementary Figure 7-8). Fig. 6(d) shows the comparison of ReP results by different training 289 

data volumes. Clearly, the ReP result is improved with the increase in the number of training data. 290 

 291 
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Discussion 292 

In this study, we developed a ReP model to predict the 3D CC temperature field with high precision 293 

and throughput. Proving that the DL technology can learn the relationships between the DNS data and 294 

the corresponding technological parameter setting, and then make accurate predictions. The final 295 

performance and accuracy of the Rep model depends on two aspects: accuracy of the numerical 296 

simulation and completeness of dataset space; and the accuracy of DL model. Therefore, to make more 297 

precise prediction, a better solidification model is essential. As a first attempt for this approach, the 298 

main purpose of this study is to verify the feasibility of the approach, so we do not give much 299 

consideration to the CC DNS dataset, and current dataset contains only the temperature information of 300 

the CC. In fact, when we use the most advanced DNS models (such as macrosegregation model and 301 

dendritic structure model) to generate datasets, these CC DNS datasets will contain more valuable 302 

information (process variables), and we can fully develop ReP models for macrosegregation and 303 

dendritic structure prediction, which is of great significance for the quality and intelligent control of 304 

CC process, but lots of efforts and times may be required to build this kind of dataset. In addition, this 305 

approach is content independent in some ways, so it is possible to be spread to other research areas to 306 

actualise similar ReP processes to help accelerate scientific research. 307 

 Furthermore, we take the advantages of the ReP model and combine it with optimisation 308 

regulation algorithms to achieve fast adaptive adjustment. In our model, the adaptive adjustment is 309 

completed in seconds, which is much faster than using conventional DNS technology, demonstrating 310 

the potential application scenarios and capabilities. The trained ReP model does not require extensive 311 
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computing resources as the conventional DNS, which is more computational friendly for edge 312 

deployment and computing. Thus, it is also possible to deploy the ReP model at the front of the 313 

fabrication to help implementation fast adaptive adjustment to improve process control as shown in 314 

Fig. 5. 315 

 Besides, it is necessary to discuss the limitations and shortcomings of our model as well: 316 

 As a data-driven method, the dataset is a common concern for researchers. Although a lot of effort 317 

has been made to produce a large number of the CC dataset, our ReP model has yet reached a 318 

perfect accuracy. As illustrated in Fig. 6(c), the dataset, especially for parameter encoder, needed 319 

to be further enriched to achieve higher accuracy of the trained ReP model. Moreover, this work 320 

provides the most complete dataset to digitalise the metallurgical process.  321 

 The ReP model can only predict the results within the training data space. For example, current 322 

ReP model is difficult to accurately predict the CC results with a casting speed larger than 1.65 323 

m·min-1, because the operating parameter is beyond the range of the operating conditions (0.75 ~ 324 

1.65 m·min-1) in the training data. We used the ReP model to predict the temperature at the end of 325 

the slab under the extreme casting process conditions, i.e. the minimum casting speed and 326 

maximum cooling water flow, and obtained a minimum temperature of 598K, but the actual value 327 

should be 372 K from DNS result. The reason is that the minimum temperature in our dataset is 328 

604 K, and the predicted minimum temperature will be limited by the training dataset and not 329 

much lower than the lowest temperature in this dataset. Therefore, to obtain higher prediction 330 

accuracy, it is necessary not only to increase the dataset, but also to expand the range of processing 331 

processes and resultant temperatures as much as possible. 332 
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 333 

More work is needed to completely replace the conventional DNS. Having said that our model 334 

has excellent advantages in terms of computational speed and resources, and it is accurate enough 335 

under the conditions investigated. The digitalisation tool proposed here is therefore valuable for 336 

accelerating the manufacturing science research and technology take-up. 337 

 338 

Methods 339 

Data preparation and preprocessing 340 

In this study, we developed a combined hybrid 3D/2D model for heat transfer, fluid flow, and 341 

solidification simulation using computational fluid dynamics (CFD) calculation, according to the 342 

reference3 to generate our dataset (see Supplementary Figure 1-2, Supplementary Table 1-3 and 343 

Supplementary Note 1). The solution of the CC model is performed on the ANSYS FLUENT 14.5 344 

CFD software. We chose this model for three reasons. First, it is a verified model that can provide 345 

reliable results. Second, the 3D simulation results are more representative than the 2D simulation ones. 346 

Third, the computational speed is much faster than a 3D simulation model, which is a very important 347 

consideration because a great number of simulations need to be performed for big datasets. This 348 

numerical model divided the computational domain into two parts—the 3D turbulent flow region and 349 

the 2D laminar flow region. The velocity of the molten steel in the casting direction is equal to the 350 

casting speed after the 3D turbulent flow region and 2D laminar flow region interface (which is set at 351 

the end of Zone 3) and thus forming plug flow. Moreover, as reported37, the heat flux in the casting 352 
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direction accounts for just a little (about 3%-6%) of the total heat loss. These phenomena enable us to 353 

ignore the heat flux in the casting direction in the laminar flow region. In addition, due to the heat 354 

transfer, cooling condition, and solidification process of slab continuous casting are of good symmetry 355 

in the width and thickness directions of the slab, the difference in cooling intensity between the inner 356 

and outer wide surfaces of the slab, and the effect of the bending and straightening process on the 357 

thermal contraction deformation, can be neglected to reduce the computational cost38. One-quarter of 358 

the strand was included in the computational domain. The computation cost has obviously reduced, 359 

providing us an advantage for generating a large amount of data. We employed this CC model to 360 

produce our dataset under different casting speeds and cooling water flow rates. In addition, this model 361 

considers the uneven distribution of cooling water in the wide face direction according to the actual 362 

process, and there are eight secondary cooling zones with different cooling water rates.  363 

 The DNS model produced the 20362×765×95 mm3 temperature field (a quarter of the slab). In 364 

other words, a data dimension of 1000×39×13. However, this data shape was too large for a DL model. 365 

In order to reduce the computational cost, we divided the data into 13 layers in the thickness direction 366 

(Z-direction) as illustrated in Fig. 1. Moreover, we zero pad the data in the width direction (Y-direction) 367 

to shape 1000×40×1 and normalise them between 0 and 1 to simply the scaling operation. We used 368 

Latin hypercube sampling (LHS)39 to collect our sampling points to guarantee the randomness and 369 

uniformity of the dataset. The sampling range for each parameter is listed in Supplementary Table 4. 370 

3D DNS data of 800 model outputs was calculated, and we divided the dataset into 700 dataset for 371 

training and 100 dataset for testing. Then we expanded the training data through data augmentation33. 372 

The test data were only used to test the model performance, instead of participated in any training 373 
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processes. 374 

Real-time prediction model  375 

The framework of the whole ReP model is shown in Fig. 1, the backbone of our autoencoder and 376 

parameter encoder is the ConvNeXt block and Mixer layer, which are built according to the 377 

corresponding references28,40 (see Supplementary Figure 6). The Down/Up-sample layer is a 2×2 378 

Conv2D/Conv2DTranspose with strides 2 to half/double the height and width of the feature map. The 379 

projection layer is a 1×1 Conv2D layer to change the dimension of the feature map. MLP layer is 380 

placed at the end of the encoder and the beginning of the decoder as a projection head to operate on 381 

one-dimension data, and is very important for extracting the latent code. A detailed structure is listed 382 

in Supplementary Table 5-6. The reason for separating the whole ReP model into autoencoder and 383 

parameter encoder is to introduce data augmentation to enhance the robustness of the model (see 384 

Supplementary Figure 9). Adam optimiser41 was used for both two DL models at learning rates of 385 

0.0013 and 0.01, respectively. Early stopping42 and learning rate decay43 were adopted to speed up the 386 

training progress. We set a 0.9 learning rate decay for five epoch patience and found it beneficial for 387 

training. The activation function and loss function for both two DL models were gelu44 and MAE. The 388 

batch size for the autoencoder and parameter encoder is 32 and 128, respectively. 389 

 All DL models were trained on NVIDIA HGX A100 40GB GPU using the Tensorflow45 library, 390 

and it took about seven hours to train the ReP model (about seven hours for the autoencoder and ten 391 

minutes for the parameter encoder). 392 
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Bayesian optimisation 393 

As a framework for global optimisation of expensive-to-evaluate black-box functions, BO has 394 

become popular due to its remarkable performance in hyperparameter tuning of machine learning 395 

algorithms recently. The goal of Bayesian optimisation is to build a distribution based on previous 396 

measurements, priori information, using a Gaussian random process. It has been invented and used for 397 

a long time46 and constantly upgraded and evolved32,47. In this work, a regular version of BO is 398 

achieved using the bayes_opt48 library in Python, an efficient implementation of the BO methodology 399 

for nonlinear optimisation, experimental design and hyperparameter tuning. The initial step of random 400 

exploration is set to 5. With expected improvement function as acquisition function and set an 401 

exploration ratio of 0.1. 402 

Data availability 403 

Representative research data are given in the figures (and supplementary data). The source data 404 

for Fig. 3a, Fig. 3b and Fig. 3c is provided as Supplementary Data 1. The unedited raw data generated 405 

by Fluent that makes up the key dataset is accessible in figshare (doi link: 406 

https://doi.org/10.6084/m9.figshare.22810319.v1). Other generated and/or analysed datasets that 407 

support the findings of this study are available from the corresponding author upon reasonable request. 408 

Code availability 409 

All custom code used in this work, including that used to train and test ReP models, and perform 410 

secondary cooling water optimisation with BO, can be obtained from the following publicly accessible 411 

https://doi.org/10.6084/m9.figshare.22810319.v1
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GitHub page: https://github.com/LarkMi/ReP. 412 
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Figure Legends 550 

 551 

Fig. 1 Framework of the real-time prediction model. The 1000×78×26 simulated temperature field from 552 

computational fluid dynamic (CFD) calculation was split by layers, and then normalised and padded to thirteen 553 

1000×40×1 shaped data to train the encoder-decoder structure autoencoder. The latent coder extracted by the encoder 554 
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part was merged to a 128×13 latent code of 3D dataset, to train the parameter encoder to map the technological 555 

parameter setting (casting speed and cooling water flow rate (CWFR) in each cooling zone) onto the corresponding 556 

latent code. 557 

 558 

Fig. 2 Workflow and results of the real-time prediction (ReP) model a Workflow of the real-time prediction model. 559 

The parameter encoder map the 9×1 technological parameter set to the corresponding 128×13 latent code of 3D data, 560 

then the decoder part of the autoencoder predicts the 1000×78×26 3D temperature field by the latent code. It takes 561 

only 0.12 s for the real-time prediction model to complete. The mean absolute error (MAE) and mean absolute percent 562 

error (MAPE) on the test data are 4.19 K and 0.49%, respectively. b Comparison between 3D temperature fields 563 

obtained by ReP Model and direct numerical simulation (DNS). Half of the slab is shown, and three sub-regions are 564 

highlighted. 565 
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 566 

Fig. 3 Accuracy analysis of ReP model. a Mean absolute percent error (MAPE) distribution of 100 test data points, 567 

with cooling water flow rate (CWFR) in cooling zone 1 and cooling zone 2 as the x-axis and y-axis. Blue points 568 

represent MAPE values less than 1.0% and include 88 data points, with 68 data points have MAPE values less than 569 

0.5% and 20 data points have MAPE values between 0.5% and 1.0%. Red points indicate MAPE values between 1.0% 570 

and 2.1%, with 10 data points having MAPE values between 1.0% and 1.5% and 2 data points having MAPE values 571 

between 1.5% and 2.1%. b Plot of ReP temperature and DNS temperature of selected test data points. Blue points 572 

represent the predicated temperature, red dashed line corresponds to the predicted value being the same as the DNS 573 

temperature. c MAPE and standard deviation distribution along casting direction in test data. Red curve shows the 574 

average MAPE on all test data at different distances from the meniscus, and blue dashed curve represent the standard 575 

deviation of the temperature at different distance in all the test data,. d MAPE distribution on the transverse section 576 
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in test data. 577 

 578 

Fig. 4 Schematic of secondary cooling water optimisation using ReP model and Bayesian optimisation. a Workflow 579 

of the secondary cooling water optimisation. When the parameter setting changes, the mutation state is input to the 580 

Bayesian model as the initial state to obtain the optimised setting; then the new setting is used in the ReP model to 581 

predict the temperature field; finally, calculate the objective function to determinate whether to stop the optimisation 582 

search or not. b Comparison of the shell thickness curve under original setting (Orange curve), mutation setting (Red 583 

curve) and optimised setting (Blue curve). c Metallurgical length difference under the corresponding parameters 584 

(cooling water flow rate (CWFR)) mapped with ReP model. Points are scattered to show the search path of the BO 585 

process (Red points correspond to the start point, black point correspond to the intermediate point and blue point 586 

correspond to the end point). 587 
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 588 

Fig. 5 Schematic of intelligence casting. First, we need to build DNS dataset to train the ReP model. Then, the ReP 589 

model can be combined with BO model to form the adaptive adjustment system, after setting the optimization 590 

objective and initializing the model, the system can be deployed at the front of the manufacturing factory to control 591 

the CC process. 1: Tundish. 2: Mold. 3: Roll support. 4: Spray nozzle. A: Liquid metal. B: Solidified metal. 592 
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 593 

Fig. 6 Experiment results: the effect of training data volume on the prediction results. a Mean absolute percent error 594 

(MAPE) distribution of 100 test data. The cosine similarity between the test technological parameter set and the 595 

whole training technological parameter sets is set as the x-axis. Shadings indicate different sub-regions. b Box-596 

whisker plot in five sub-regions in Fig. 6(a), n = 11, 25, 38, 18, 6 independent samples for box 1-5. c MAPE results 597 

when reducing the training data volume from 700 to 200. Red circle curve: reduce the training data volume of both 598 

the autoencoder and parameter encoder; blue triangle curve: reduce the training data volume of the parameter encoder 599 

and keep 700 training data of the autoencoder; yellow square curve: reduce the training data volume of the 600 

autoencoder and keep 700 training data of the parameter encoder. d Comparison of prediction results for different 601 

training data volume and DNS result. 602 

 603 
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Tables 604 

Table 1 The original, mutation and new parameter setting during the optimization. 605 

    Original Mutation New 

Casting speed(m/min) 1.3 1.37 1.37 

Cooling 

water 

flow rate 

in each 

cooling 

zone 

(L/min) 

Zone 1 102 102 127 

Zone 2 87 87 106 

Zone 3 89 89 89 

Zone 4 85 85 85 

Zone 5 70 70 70 

Zone 6 30 30 30 

Zone 7 77 77 77 

Zone 8 49 49 49 

Bold font indicates the parameter that has changed. 

 606 


