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1 Introduction and outline

The exact expressions for certain integrated correlators of four superconformal primary
operators of the stress tensor multiples in N = 4 supersymmetric Yang-Mills (SYM) theory
with gauge group GN can be determined by localisation in terms of the partition function,
ZGN (τ, τ̄ ,m), of N = 2∗ SYM that was derived by Pestun [1] in terms of the Nekrasov
partition function [2]. The N = 2∗ theory reduces to the N = 4 theory in the limit
m → 0, where the parameter m is the hypermuitiplet mass and ZGN (τ, τ̄ ,m)|m=0 = 1.
In [3] the expression

CGN (τ, τ̄) := 1
4∆τ∂

2
m logZGN (τ, τ̄ ,m)|m=0 , (1.1)

was argued to be proportional to an integrated correlator of four superconformal stress-tensor
primaries with a specific integration measure. The quantity ∆τ := 4τ2

2 ∂τ∂τ̄ is the laplacian
on the hyperbolic plane parametrised by the coupling constant τ = τ1 + iτ2 := θ

2π + i 4π
g2
YM

,
with θ the theta angle and gYM the Yang-Mills coupling constant.
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The first few terms in the large-N expansion of CGN (τ, τ̄) in the ’t Hooft limit (in
which λ = g2

YM
N is fixed) for SU(N) gauge group were studied in an expansion in powers of

1/λ in [3] and similarly for general classical groups in [4]. As shown in [5], the coefficients
in the perturbative 1/N expansion at fixed τ are modular functions that make SL(2,Z)
Montonen-Olive duality [6] (also known as S-duality) manifest. These coefficients are sums
of non-holomorphic Eisenstein series with half-integer index. The perturbative pieces of the
correlator can be extracted relatively easily from the localised expression for ZGN (τ, τ̄ ,m)
for any value1 of N [4, 15, 16], but extracting the explicit instanton contributions that are
contained in the Nekrasov partition function is more involved.

However, in [17–19] a novel expression for the integrated correlator was proposed that
is valid for any classical gauge group GN and finite τ .2 This takes the form of a double
lattice sum,

CGN (τ, τ̄) =
∑

(m,n)∈Z2

∫ ∞
0

[
e−t Ymn(τ,τ̄)B1

GN
(t) + e−t Ymn(2τ,2τ̄)B2

GN
(t)
]
dt , (1.2)

where we have defined the quantity

Ymn(τ, τ̄) := π
|m+ nτ |2

τ2
. (1.3)

The coefficient functions B1
GN

(t) and B2
GN

(t) are rational functions of the following form,

Bi
GN

(t) =
QiGN (t)

(t+ 1)n
i
GN

, (1.4)

where i = 1, 2, niGN is an integer and QiGN (t) is a degree niGN− 2 polynomial with the
“palindromic” property QiGN (t) = t

niGN
−1QiGN (t−1).

For simply-laced groups GN = SU(N), SO(2N) the correlators are expected to be
invariant under the SL(2,Z) action τ → γ · τ = aτ+b

cτ+d with γ =
(
a b
c d

)
∈ SL(2,Z), which is

a consequence of Montonen-Olive duality. In these cases, B2
GN

(t) = 0 and only B1
GN

(t) is
non-trivial,3 and (1.2) is manifestly invariant under SL(2,Z). For the non simply-laced
classical groups GN = USp(2N), SO(2N + 1) (1.2) is only invariant under the congruence
subgroup Γ0(2) ⊂ SL(2,Z).4 Furthermore Bi

GN
(t) obeys the following relations

B1
USp(2N)(t) = B2

SO(2N+1)(t) , B2
USp(2N)(t) = B1

SO(2N+1)(t) , (1.5)

which make Goddard-Nuyts-Olive (GNO) duality [24] of (1.2) manifest.
1It was shown in [7] that the perturbative contribution of integrated correlators has an interesting

intepretation in terms of periods of certain conformal Feynman integrals and agrees with explicit perturbative
computations [8–14] up to four loops.

2See [20] for a recent review, as well as [21, 22] for the extension to higher-point maximal U(1)Y -violating
correlators and [23] for the generalisation to integrated four-point correlators involving operators with higher
conformal weights using SL(2,Z) spectral theory.

3To simplify the notation, for these cases we will simply drop the superscript “1” and write B1
GN

(t) =
BGN (t) when discussing GN = SU(N), SO(2N).

4The elements of the congruence subgroup Γ0(2) are given by γ = ( a bc d ) ∈ SL(2,Z) with c ≡ 0 (mod 2).
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For example, for the SU(N) theory, it was conjectured that [17, 18]

BSU(N)(t) =
QSU(N)(t)

(t+ 1)2N+1 , (1.6)

and

QSU(N)(t) =−1
4N(N−1)(1−t)N−1(1+t)N+1{
[3+(8N+3t−6)t]P (1,−2)

N

(1+t2

1−t2
)

+ 1
1+t(3t

2−8Nt−3)P (1,−1)
N

(1+t2

1−t2
)}

,

(1.7)

expressed in terms of Jacobi polynomials P (a,b)
n (x). The integrated correlator satisfies a

Laplace difference equation that takes the form

∆τCSU(N)(τ, τ̄)− 4cSU(N)
[
CSU(N+1)(τ, τ̄)− 2 CSU(N)(τ, τ̄) + CSU(N−1)(τ, τ̄)

]
− (N + 1) CSU(N−1)(τ, τ̄) + (N − 1) CSU(N+1)(τ, τ̄) = 0 , (1.8)

where ∆τ = τ2
2 (∂2

τ1 + ∂2
τ2) is the SL(2,Z)-invariant hyperbolic laplacian and cSU(N) =

(N2 − 1)/4 is the central charge. Upon iteration, this equation relates the integrated
correlator for the theory with gauge group SU(N) to the integrated correlator for the SU(2)
theory (with the boundary condition CSU(1)(τ, τ̄) = 0). Similar Laplace difference equations
were also obtained for the integrated correlators with general classical gauge group GN [19],
with the result that all CGN (τ, τ̄) are determined in terms of CSU(2)(τ, τ̄).

While it is much easier to analyse the dependence of the integrated correlator on
the parameters τ and N starting from (1.2) than from the original expression (1.1), the
dependence on N is not transparent. This will be remedied in the present paper, in which
we will take the further step of introducing a generating function for the N -dependence.
This generating function is defined as

CG(z; τ, τ̄) :=
∞∑
N=1
CGN (τ, τ̄) zN , (1.9)

where the subscript G indicates that this generates the integrated correlator for the GN
gauge group for all values of N . The expression (1.9) may be inverted to give

CGN (τ, τ̄) =
∮
C

CG(z; τ, τ̄)
zN+1

dz

2πi , (1.10)

where C denotes a contour encircling the pole at z = 0 in an anti-clockwise direction and
not encircling other singularities. From (1.2) we can equivalently define the generating
functions for the rational functions Bi

GN
(t)

Bi
G(z; t) :=

∞∑
N=1

Bi
GN

(t) zN , (1.11)

and hence introduce

C1
G(z; τ, τ̄) :=

∑
(m,n)∈Z2

∫ ∞
0

e−t Ymn(τ,τ̄)B1
G(z; t)dt ,

C2
G(z; τ, τ̄) :=

∑
(m,n)∈Z2

∫ ∞
0

e−t Ymn(2τ,2τ̄)B2
G(z; t)dt .

(1.12)
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One of the advantages of introducing a generating function such as CiG(z; τ, τ̄) is that it
has a much simpler form than CiGN (τ, τ̄). This makes CiG(z; τ, τ̄) extremely convenient for
analysing the large-N properties of the integrated correlators.

In section 2 we will determine the generating function BSU (z; t) (which generates
BSU(N)(t) for all N) by relating the integrated correlator to hermitian matrix model integrals
and, in particular, this will lead to a proof of the previously conjectured expression (1.6).
The proof relies on deriving the Laplace difference equation (1.8) from the hermitian matrix
model and utilising the explicit result of the SU(2) correlator in [18], which is the initial
condition for the recursion relation (1.8). Furthermore, we will show that the generating
function BSU (z; t) satisfies a second order partial differential equation which leads to the
Laplace difference equation (1.8). The generating function will streamline the analysis of
properties of the integrated correlator in different regions of parameter space by distorting
the integration contour C in different ways. Some relevant properties of the hermitian
matrix model and its connection to the integrated correlator with SU(N) gauge group are
summarised in appendix A.

As will be demonstrated in section 3, the generating functions CSU (z; τ, τ̄) and BSU (z; t)
lead to an efficient procedure for determining the large-N behaviour of CSU(N)(τ, τ̄). This
is not only a more efficient procedure for determining results that were previously derived
in [18] but also leads to new results. We will see that the large-N expansion consists of
three pieces. The first is a term proportional to N2 with a constant coefficient. The second
piece is an infinite power series in half-integer powers of 1/N with coefficients that are sums
of half-integer non-holomorphic Eisenstein series that depend on τ, τ̄ . These two pieces
simply reproduce the previously determined behaviour of the integrated correlator.

The third novel piece is non-perturbative in N in the large-N limit and has a leading
term proportional to the modular invariant function

N2 ∑
(m,n) 6=(0,0)

exp
(
− 4

√
NYmn(τ, τ̄)

)
= N2

∞∑
`=1

∑
gcd(p,q)=1

exp
(
− 4`

√
Nπ

τ2
|p+ qτ |

)
.

(1.13)
Whereas the power behaved terms in the 1/N expansion holographically correspond to

the α′-expansion of type IIB string amplitudes in AdS5 × S5, the exponentially suppressed
terms displayed in the above equation are related to a sum of (p, q)-string instantons
(i.e. euclidean (p, q)-string world-sheets wrapping a two dimensional manifold). The complete
non-perturbative contribution with leading behaviour (1.13) is given by a sum of new non-
holomorphic modular functions, DN (s; τ, τ̄), which are generalisations of non-holomorphic
Eisenstein series that are exponentially suppressed at large N and fixed τ . Some properties
of these functions are discussed in appendix B.

The formal sum of the asymptotic power series expansion in half-integer powers of 1/N
and these novel non-perturbative terms provides the complete large-N transseries expansion
of the integrated correlator CSU(N)(τ, τ̄). The Borel-Ecalle resummation of this transseries
produces a well-defined and unambiguous analytic continuation for all values of N . In
particular it coincides with the finite N ∈ N results.

The presence of a third, non-perturbative, piece was previously arrived at in the ’t
Hooft limit, in which N →∞ with λ = g2

YM
N fixed, by use of a resurgence argument based

– 4 –
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on the non-summability of the large-λ expansion [18, 25, 26]. In section 4 we demonstrate
how the SL(2,Z)-invariant expression for the non-perturbative contribution reduces to such
an expression in a suitable limit. We also consider the same non-perturbative terms in the
regimes λ = O(N2), or λ = O(1), where a different picture emerges and we retrieve the
large-N non-perturbative expansions obtained in [26] by exploiting resurgence arguments
for the large genus behaviour of the perturbative genus expansion. When λ = O(N2) the
non-perturbative terms take a form that resembles the effects of electric D3-branes that arise
in [27] in the holographic description of Wilson loops. When λ = O(1) the non-perturbative
contributions resemble the magnetic D3-branes also discussed in that reference. Details of
these expressions will be given in appendix C.

The generating functions for the integrated correlators with gauge group SO(n) are
derived in section 5, and analogous large-N properties are found for these more general
gauge groups. In particular, the integrated correlator for the theory with simply-laced group
SO(2N), again receives (p, q)-string instanton corrections. For the non simply-laced gauge
group SO(2N + 1) there are not only SL(2,Z)-invariant contributions from (p, q)-string
world-sheet instantons, but also Γ0(2)-invariant contributions from (p, 2q)-string instantons.
This restriction is due to the fact that N = 4 SYM with gauge group SO(2N + 1) is
only S-duality invariant under a congruence subgroup of SL(2,Z), namely Γ0(2). The
same statements apply to the integrated correlator with gauge group USp(2N), which is
related to the SO(2N + 1) case by GNO duality. A detailed description of the derivation of
the generating function for the integrated correlator with gauge group SO(n) is given in
appendix D.

2 A generating function for all SU(N)

The form of the function BSU(N)(t) given in (1.6) and (1.7) was conjectured in [18, 19] based
on the analysis of the perturbative part of CSU(N)(τ, τ̄) (1.1) and the explicit evaluation
of a variety of non-perturbative instanton contributions for a wide range of values of N .
In this section we will first determine the generating function for SU(N) starting from
the conjectural functional form (1.6)–(1.7) of BSU(N)(t). We will then prove that the
same generating function can be derived from properties of correlation functions in N×N
hermitian matrix models.

To begin with we will determine various properties of the relevant generating func-
tions. The function CSU (z; τ, τ̄) (1.9) can be obtained by substituting the expression for
BSU(N)(t) (1.7) into BSU (z; t) :=

∑∞
N=1BSU(N)(t)zN and making use of the generating

function for Jacobi polynomials,
∞∑
n=0

P (a,b)
n (x)zn = 2a+bR−1(1− z +R)−a(1 + z +R)−b , (2.1)

where R =
√

1− 2xz + z2. The result is the generating function for BSU(N)(t) (1.4),

BSU (z; t) :=
∞∑
N=1

BSU(N)(t)zN = 3tz2 [(t− 3)(3t− 1)(t+ 1)2 − z(t+ 3)(3t+ 1)(t− 1)2]
2(1− z)

3
2 [(t+ 1)2 − (t− 1)2z]

7
2

,

(2.2)

– 5 –
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which leads to
CSU (z; τ, τ̄) :=

∑
(m,n)∈Z2

∫ ∞
0

e−t Ymn(τ,τ̄)BSU (z; t)dt . (2.3)

For future reference we notice that the generating function (2.2) has a branch-cut located
on the interval z ∈

[
1, (t+1)2

(t−1)2
]
.

This generating function satisfies several properties of note,

BSU (z; t) = t−1BSU (z; t−1) , BSU (z; t) = −BSU (z−1;−t) ,∫ ∞
0

BSU (z; t)√
t

dt = 0 ,
∫ ∞

0
BSU (z; t)dt = z2

4(1− z)3 =
∞∑
N=1

N(N − 1)
8 zN .

(2.4)
The first of these equations is an inversion relation that follows automatically from the
lattice sum definition of the integrated correlator (1.2), as was pointed out in [25] where the
lattice sum was re-expressed in terms of a modular invariant spectral representation. The
second equation in (2.4) is an inversion relation in the variable z which relates the SU(N)
correlator with coupling g2

YM
to the SU(−N) correlator with coupling −g2

YM
, as previously

discussed in [19].
The Laplace difference equation (1.8) satisfied by the integrated correlator CSU(N)(τ, τ̄)

translates into a partial differential equation in (z, t) for BSU (z; t),

t∂2
t (tBSU (z; t)) = 2(z−1+1+z)BSU (z; t)+2(z−1)(2z+1)∂zBSU (z; t)+(z−1)2z∂2

zBSU (z; t) ,
(2.5)

or equivalently, in (z, τ, τ̄) for CSU (z; τ, τ̄)

∆τCSU (z;τ, τ̄) = 2(z−1+1+z)CSU (z;τ, τ̄)+2(z−1)(2z+1)∂zCSU (z;τ, τ̄)
+(z−1)2z∂2

zCSU (z;τ, τ̄) .
(2.6)

2.1 Derivation from the hermitian matrix model

We will now prove that the generating function is indeed given by the conjectured form (2.2),
and that the integrated correlator, CGN (τ, τ̄), satisfies the Laplace difference equation (1.8),
using properties of correlation functions in the N×N hermitian matrix model. Our procedure
will be based on the analysis of the perturbative contribution to the integrated correlator
CGN (τ, τ̄). It was argued in [18, 19] (see also [25]) that once the correlator is known to
have the form in (1.2), the functions Bi

GN
(t) are completely determined by the perturbative

contributions to CGN (τ, τ̄). Given complete knowledge of CSU(2)(τ, τ̄) [18], this will uniquely
determine the SL(2,Z) invariant form for CGN (τ, τ̄). Although we will continue to present
the SU(N) case in this section, the results extend straightforwardly to a general classical
gauge group, GN .

As shown in [19], the perturbative terms lead to the relation

BSU(N)(t) = −t
∫ ∞

0
e−xtx

3
2∂x

[
x

3
2∂xISU(N)(x)

]
dx , (2.7)

where the function ISU(N)(x) is defined in (A.12) and determines the perturbative part of
CpertSU(N)(τ, τ̄) via (A.10). The generating function BSU (z; t) can then be expressed as

BSU (z; t) = −t
∫ ∞

0
e−xtx

3
2∂x

[
x

3
2∂xISU (z;x)

]
dx , (2.8)

– 6 –
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where ISU (z;x) :=
∑∞
N=1 ISU(N)(x) zN . As explained in appendix A, ISU(N)(x) can be

obtained from a specific combination of one-point and two-point correlation functions in
the N×N hermitian matrix model [15], as reviewed in (A.11). Using this relation and the
expression for the generating functions of the hermitian matrix model correlators given
in (A.8) and (A.9), we have

ISU (z;x) = z

(1− z)2

[(
1− e−x

)
−
∮∮

z

u1u2(u1u2 − z) exp
(
x

2
u1u2 − 1

(1− u1)(1− u2)

)
du1
2πi

du2
2πi

]
− 1
x2

∮∮
z(u1u2 + z)
(u1u2 − z)3 exp

(
x

2
u1u2 − 1

(1− u1)(1− u2)

)
du1
2πi

du2
2πi ,

where the first line is the contribution arising from the matrix model two-point function and
the second is from the square of the one-point function. Upon performing the u2 contour
integral around u2 = 0 and u2 = z/u1 the result is

ISU (z;x) = z

(1− z)2

[
1−

∮ 1
u1

exp
(
−x u1(z − 1)

(1− u1)(z − u1)

)
du1
2πi

]
−
∮
z(u2

1 − u1xz − z2)
x(u1 − z)4 exp

(
−x u1(z − 1)

(1− u1)(z − u1)

)
du1
2πi .

(2.9)

Substituting the above expression for ISU (z;x) in (2.8) and performing the x integral leads
to an expression that has a pole at t(u1−1)(u1−z)+u1(1−z) = 0. The u1 contour integral
picks up the residue at this pole, and gives the previously conjectured expression (2.2).

The above argument provides a proof that BSU (z; t) obeys the differential equation (2.5).
This proof was based on an analysis of the perturbative terms in the localised integrated
correlator (these are the terms that arise from the one-loop determinant in Pestun’s
analysis [1]). This automatically ensures that the perturbative part of CSU(N)(τ, τ̄) satisfies
the Laplace difference equation (1.8) with the Laplace operator replaced by τ2

2 ∂
2
τ2 , since

perturbation theory is independent of τ1.
Invariance under SL(2,Z) is restored in a unique manner by simply extending the

differential operator τ2
2 ∂

2
τ2 to the Casimir operator ∆τ = τ2

2 (∂2
τ1 + ∂2

τ2) = 4τ2
2 ∂τ∂τ̄ , and the

perturbative Laplace difference equation leads to (1.8). Importantly, in [18] it was explicitly
verified that the initial term CSU(2)(τ, τ̄) is indeed given by (1.2). Therefore, with this
initial condition and the recursion relation (1.8), the SL(2,Z) invariant expression (1.2) for
CSU(N)(τ, τ̄) follows.

2.2 Fourier mode decomposition of the generating function

We will now comment on some properties of the generating function, in particular its Fourier
expansion with respect to τ1. This is obtained by performing a Poisson resummation that
transforms the sum over m in (2.3) into a sum over m̂,5 giving

CSU (z; τ, τ̄) =
∑
k∈Z

e2πikτ1C(k)
SU (z; τ2) =

∑
(m̂,n)∈Z2

e2πim̂nτ1
∫ ∞

0
e−πtn

2τ2−
πm̂2τ2

t

√
τ2BSU (z; t)√

t
dt .

(2.10)
5Recall that Poisson resummation transforms

∑
m∈Z f(m) into

∑
m̂∈Z f̂(m̂) where f̂ denotes the Fourier

transform of f and it is given by f̂(m̂) =
∫
R e
−2πimm̂f(m)dm.

– 7 –
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In order to analyse the large-N expansion it will prove useful to transform (2.10) from an
integral over t in the range (0,∞) to the range (1,∞).

For this purpose we split the t integral into the domains t ∈ (0, 1) and t ∈ (1,∞). The
change of variables t → t−1 maps the (0, 1) interval into (1,∞). We may then rewrite
this integral using the inversion property t−1BSU (z; t−1) = BSU (z; t), together with the
interchange (m̂, n)→ (n, m̂). This results in the following Fourier series,

CSU (z; τ, τ̄) = 2
∑

(m̂,n)∈Z2

e2πim̂nτ1
∫ ∞

1
e−πtn

2τ2−
πm̂2τ2

t

√
τ2BSU (z; t)√

t
dt

= 2
∑

(m,n)∈Z2

∫ ∞
1

e−t Ymn(τ,τ̄)BSU (z; t)dt , (2.11)

where the second line follows from a Poisson resummation back to the original variables
(m̂, n)→ (m,n).

For future reference, we note that the zero Fourier mode of CSU (τ, τ̄) is given by the sum
of two kinds of terms. The first kind consists of a sum of terms in the second line of (2.11)
with m = ` ∈ Z, n = 0. The second kind consists of a sum of terms with m̂ = 0, n = ` ∈ Z
in the first line of (2.11), which is equivalent to a sum over all m ∈ Z and n = ` ∈ Z with
` 6= 0. The resulting zero mode can be expressed as

C(0)
SU (z; τ2) = 2

∫ ∞
1

BSU (z; t)dt+ 4
∞∑
`=1

∫ ∞
1

[
e
−πt`

2
τ2 + e−πt`

2τ2

√
τ2√
t

]
BSU (z; t)dt , (2.12)

where we have used the property∫ ∞
1

√
τ2√
t
BSU (z; t)dt =

∫ 1

0

√
τ2√
t
BSU (z; t)dt = 0 . (2.13)

We also note∫ ∞
1

BSU (z; t)dt=
z
(
1+z−(1−z)

√
1−z

)
8(1−z)3 =

∞∑
N=1

[
N2

8 −
Γ(N+1/2)
4
√
πΓ(N)

]
zN :=

∞∑
N=1

c1(N)zN ,

(2.14)∫ 1

0
BSU (z; t)dt=−

z
(
1−z−(1−z)

√
1−z

)
8(1−z)3 =

∞∑
N=1

[
−N8 + Γ(N+1/2)

4
√
πΓ(N)

]
zN :=

∞∑
N=1

c2(N)zN .

(2.15)

We will return to these expressions when we consider the large-N expansion in the next
two sections.

3 Large-N expansion at fixed τ

The large-N expansion of the integrated four-point correlator has a close relation to the
α′-expansion of the integrated four-graviton amplitude in AdS5×S5. These properties were
elucidated in [3, 5, 16] where the 1/N expansion was considered in both the ’t Hooft limit
(in which λ = g2

YM
N is fixed) and in the limit in which gYM is fixed. In this section we will
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z

0

C

1 (t+1)2

(t−1)2

(a)

0 1 (t+1)2

(t−1)2

C ′

C∞

(b)

z

Figure 1: (a) The contour C encircling the pole at z = 0. (b) The distorted contour C ′

encircles the cut, together with the contour at infinity, C∞, which gives a vanishing contri-
bution.

see that the large-N expansion of CSU(N)(τ, τ̄) is streamlined when expressed in terms of
the integral representation given by the contour integral

CSU(N)(τ, τ̄) = 2
∑

(m,n)∈Z2

∫ ∞
1

e−t Ymn(τ,τ̄)
[ ∮

C

BSU (z; t)
zN+1

dz

2πi

]
dt , (3.1)

as follows from (1.10) and the second line of (2.11). Furthermore, we will see that this
provides a natural procedure for determining the non-perturbative terms that complete the
1/N expansion.

We proceed by splitting the sum in (3.1) into the (m,n) = (0, 0) component and the rest

CSU(N)(τ, τ̄) = 2c1(N) + 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−t Ymn(τ,τ̄)
[ ∮

C

BSU (z; t)
zN+1

dz

2πi

]
dt , (3.2)

where the constant term c1(N) is given in (2.14). The integration contour C, shown in
figure 1(a), can be distorted into the sum of the contour at infinity, C∞, together with the
contour C ′ surrounding the branch cut, as shown in figure 1(b). The contour at infinity does
not contribute since BSU (z; t) = O(1/z2) as |z| → ∞. The resulting integral is given by

CSU(N)(τ, τ̄) = 2c1(N) + 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−t Ymn(τ,τ̄)
[ ∮

C′

BSU (z; t)
zN+1

dz

2πi

]
dt , (3.3)

where the new contour of integration C ′ is a clockwise contour surrounding the branch-cut
located on the interval z ∈ [1, (t+1)2

(t−1)2 ]. The discontinuity across the branch-cut can easily
be computed

DiscBSU (z; t) = lim
ε→0+

[
BSU (z+iε; t)−BSU (z−iε; t)

]
(3.4)

=−2i3tz
2 [(t−3)(t+1)2(3t−1)−(t−1)2(t+3)(3t+1)z

]
2(z−1)

3
2 [(t+1)2−(t−1)2z]

7
2

, z ∈
[
1, (t+1)2

(t−1)2

]
.
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Although we would like to write

BSU(N)(t) =
∮
C′

BSU (z; t)
zN+1

dz

2πi =
∫ (t+1)2

(t−1)2

1

DiscBSU (z; t)
zN+1

dz

2πi , (3.5)

the discontinuity is not quite an integrable function due to the end-point singularities
(z − 1)−

3
2 and (z1 − z)−

7
2 with

z1 := (t+ 1)2

(t− 1)2 . (3.6)

However if we regularise the integral by replacing the singular end-point factors by (z−1)−α

and (z1− z)−β and then take the limit α→ 3/2 and β → 7/2 after integration, the result is

BSU(N)(t) = lim
α→ 3

2 , β→
7
2

∫ z1

1
(−2i)3tz2 [(t− 3)(t+ 1)2(3t− 1)− (t− 1)2(t+ 3)(3t+ 1)z

]
2(z − 1)α [(t+ 1)2 − (t− 1)2z]β zN+1

dz

2πi

= N(N2 − 1)t
4(t− 1)7

[
(t− 1)2(t+ 3)(3t+ 1)2F1

(7
2 , N + 2; 4|1− z1

)
− 2(N + 2)t(t2 + 1)2F1

(7
2 , N + 3; 5|1− z1

)]
. (3.7)

This expression is perfectly regular and it is straightforward to check that it reproduces the
correct answer since it is identical to (1.6) for any value of N ∈ N.

3.1 Saddle-point analysis

In order to analyse the behaviour of CSU(N)(τ, τ̄) at large N we will find it convenient to
consider the distinct contributions of different regions of the z integration. We will see
that the region near the endpoint z ∼ 1 produces the series of terms that are perturbative
in 1/N , while the region near the endpoint z ∼ z1 produces terms that are exponentially
suppressed in N .

To see this it is convenient to perform the change of variables z = eµ and consider

BSU(N)(t) =
∫ z1

1

DiscBSU (z; t)
zN+1

dz

2πi =
∫ log z1

0
e−Nµ

DiscBSU (eµ; t)
2πi dµ . (3.8)

We will separate this integral into the sum of two pieces by writing BSU(N)(t) = BP
SU(N)(t) +

BNP
SU(N)(t) where

BP
SU(N)(t) :=

∫ ∞±iε
0

e−Nµ
DiscBSU (eµ; t)

2πi dµ , (3.9)

and
BNP

SU(N)(t) := −
∫ ∞±iε

log z1
e−Nµ

DiscBSU (eµ; t)
2πi dµ , (3.10)

where the superscripts P and NP indicate the pieces that contain terms perturbative and
non-perturbative in 1/N in the large-N regime.

Note that the discontinuity DiscBSU (z; t) in (3.4) itself has a discontinuity along the
interval z ∈ [z1,∞) with z1 given in (3.6). For this reason, when we extend the upper
limit of the domain of integration from z ∈ [0, z1] → z ∈ [0,∞ ± iε) in (3.9), we have
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to specify on which side of the branch cut we are integrating. Equation (3.9) can be
thought of as a lateral Borel resummation with respect to the complexified parameter N ,
where the integrand DiscBSU (eµ; t)/(2πi) plays the rôle of Borel transform for the large-N
perturbative expansion (see e.g. [28] for a recent introduction to resurgence).

The ±iε deformation in the upper limit of (3.9) will become irrelevant when we only
consider the formal, asymptotic large-N expansion of (3.9). As expected from resurgence
theory, both lateral resummations defined in (3.9) will give rise to the same formal asymptotic
power series in N . However, precisely due to the branch-cut singularity of the integrand
DiscBSU (eµ; t)/(2πi), there is an “ambiguity” in resummation of the perturbative expansion,
reflected by the ±iε in (3.9). This ambiguity in resummation has to be compensated by
the non-perturbative corrections which are fully encoded in (3.10), which in resurgence
language can be related to the Stokes automorphism.

From a resurgence point of view, when we correlate the resummation of the perturbative
expansion, (3.9), with the corresponding non-perturbative corrections, (3.10), we obtain the
unambiguous and exact result (3.8), usually called median resummation. As will become
clear shortly, this is a manifestation of the similar ambiguity and median resummation in
the ’t Hooft coupling resurgent expansion described in [18].

Let us first focus on re-deriving the large-N perturbative expansion, previously derived
in [17, 18]. Rescaling µ → µ/N and then expanding DiscBSU (e

µ
N ; t) around the point

µ/N = 0 (i.e. near z = 1) leads to

DiscBSU
(
e
µ
N ; t

)
= i

3N
3
2
(
t−

3
2 + t

1
2
)

16µ
3
2

+ i
15N

1
2
(
t−

5
2 + t

3
2
)

64µ
1
2

+ i
3µ

1
2
[
105

(
t−

7
2 + t

5
2
)
− 13

(
t−

3
2 + t

1
2
)]

2048N
1
2

+O(N−
3
2 ) .

(3.11)

We now substitute this expansion into the integral for BP
SU(N)(t) (3.9) taking care to make

the modification µ−
3
2 → µ−α, as explained earlier. Setting α = 3

2 after performing the µ
integral we obtain

BP
SU(N) (t) =−N

1
2

3
(
t−

3
2 +t

1
2
)

16
√
π

+
15
(
t−

5
2 +t

3
2
)

128
√
πN

1
2

+

[
315

(
t−

7
2 +t

5
2
)
−39

(
t−

3
2 +t

1
2
)]

8192
√
πN

3
2

+O(N−
5
2 ) ,

(3.12)
which agrees precisely with equation (5.56) in [18] (allowing for a factor of 2 change in our
normalisation conventions).

Upon substituting this asymptotic expansion into (3.2) we see that the constant term
c1(N), defined in (2.14), combines with a Dirichlet regularisation for the lattice-sum in the
zero-mode sector, thereby reproducing the correct constant N2/4. What is left leads to an
infinite series of terms that contribute to the large-N perturbative terms of CSU(N)(τ, τ̄).
These remaining non-constant terms are power behaved in 1/N and with coefficients given by
finite rational sums of non-holomorphic Eisenstein series of half-integral index, reproducing
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the results of [17, 18]:6

CPSU(N)(τ, τ̄) = 2c1(N) + 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−tYmn(τ,τ̄)BP
SU(N)(t)dt

= N2

4 +
∞∑
r=0

N
1
2−r

br/2c∑
m=0

br,mE( 3
2+δr+2m; τ, τ̄) ,

(3.13)

where δr = 0 for even r and δr = 1 for odd r and the coefficients br,m can be found in those
references, or can be obtained from BP

SU(N)(t) as expanded in (3.12).
As previously mentioned, the large-N expansion of BP

SU(N)(t) produces a purely per-
turbative yet formal, asymptotic power series at large N and it is insensitive to the ±iε
deformation of the contour of integration (3.9). The ambiguity in resumming (3.12) to (3.9),
or equivalently in resumming (3.13), is compensated by the change in non-perturbative
corrections exponentially suppressed in N at large N and fully captured by BNP

SU(N)(t)
in (3.10). This may be exhibited as follows,

BNP
SU(N)(t) =

∫ ∞±iε
z1

DiscBSU (z; t)
zN+1

dz

2πi (3.14)

= (±i) lim
β→ 7

2

∫ ∞
z1

(−2i)3tz2 [(t−3)(t+1)2(3t−1)−(t−1)2(t+3)(3t+1)z
]

2(z−1)
3
2 [−(t+1)2+(t−1)2z]β zN+1

dz

2πi .

Substituting this expression into (3.3) leads to a t integral that is dominated by a saddle
point when N � Ymn(τ, τ̄). This integral has the form∫ ∞

1
h(N, t)e−t Ymn(τ,τ̄)z−N1 dt =

∫ ∞
1

h(N, t) exp
[
− t Ymn(τ, τ̄)− 2N log

(
t+ 1
t− 1

)]
dt ,

(3.15)
where we have expressed BNP

SU(N)(t) as h(N, t)z−N1 (note z1 = (t+1)2

(t−1)2 from (3.6)), and h(N, t)
contains only power-behaved terms at large N . The integrand has two saddle points
located at

t?1 =
√

4N + Ymn(τ, τ̄)√
Ymn(τ, τ̄)

, t?2 = −
√

4N + Ymn(τ, τ̄)√
Ymn(τ, τ̄)

. (3.16)

A simple thimble analysis shows that only the saddle t?1 is connected with the contour of
integration of interest.7 The “on-shell” expression for such a saddle is given by

exp
[
− t?1Ymn(τ, τ̄)− 2N log

(
t?1 + 1
t?1 − 1

) ]
= exp

[
−NA

(√
Ymn(τ, τ̄)

4N

)]
, (3.17)

where the function NA(x) is the saddle-point action and A(x) is given by

A(x) := 4
(
x
√
x2 + 1 + arcsinh(x)

)
. (3.18)

6Note that thanks to the results of section 2.2, the t integral now runs over (1,∞) rather than (0,∞) so
that both the ts and t1−s terms in (3.12) are integrable when multiplied by e−tYmn(τ,τ̄) with (m,n) 6= (0, 0).

7This is a consequence of the fact that the t integral was defined to span the domain (1,∞) as discussed
in section 2.2.
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This expression is identical to that recently found in a resurgence analysis of the Fourier
zero mode of the integrated correlator in [26]. As pointed out in that paper, the function
A(x) coincides with the D3-brane action discussed in [27] in the evaluation of Wilson loops
in large representations of the SU(N) gauge group. We will return to a discussion of this
connection shortly. For now, we note the behaviour of A(x) in the small x is given by,

A(x) = 8x+ 4
3x

3 − 1
5x

5 + . . . . (3.19)

Since the lattice sum over (m,n) in (3.3) is convergent, in the large-N limit with τ fixed
we may expand the summand first. In particular, to leading order we have

exp
[
−NA

(√
Ymn(τ, τ̄)

4N

)]
N→∞∼ exp(−4

√
NYmn(τ, τ̄)) = exp

(
− 4

√
Nπ

τ2
|m+ nτ |

)
.

(3.20)
In order to understand the behaviour more generally we need to determine fluctuations

of the exponent (or the “action”) in (3.15)

S(t) := t Ymn(τ, τ̄) + 2N log
(
t+ 1
t− 1

)
, (3.21)

around the saddle point value t = t?1. Denoting the fluctuation of t by t = t?1 +N
1
4 δ we have

S(t?1 +N
1
4 δ) = S(t?1) + k2δ2 +O(N−

1
4 δ3) , (3.22)

where t?1 is given in (3.16), the on-shell action S(t?1) appears in (3.17), and

k2 =
(
Ymn(τ, τ̄)

) 3
2

2 (1 +O(N−1)) . (3.23)

Upon expanding the exponential of the action in powers of δ and performing gaussian
integrals over δ, we obtain the exponentially suppressed terms in the large-N limit. In
the 1/N expansion, these terms are given by a sum over new non-holomorphic modular
invariant functions DN (s; τ, τ̄),

CNPSU(N)(τ, τ̄) = 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−tYmn(τ,τ̄)BNP
SU(N)(t)dt

= ±i
∞∑
r=0

N2− r2
r∑

m=0
dr,mDN

(
2m− 3r

2 ; τ, τ̄
)
,

(3.24)

where DN (s; τ, τ̄) takes the following form

DN (s; τ, τ̄) :=
∑

(m,n) 6=(0,0)
exp

(
− 4

√
NYmn(τ, τ̄)

)
(Ymn(τ, τ̄))−s

=
∞∑
`=1

∑
gcd(p,q)=1

exp
(
− 4
√
Nπ`

|p+ qτ |
√
τ2

) 1
πs

τ s2
`2s|p+ qτ |2s

.

(3.25)
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Some basic properties of DN (s; τ, τ̄) are discussed in the appendix B. The explicit form of
the first few coefficients dr,m in (3.24) are

d0,0 = −2 ,

d1,0 = 1
3 , d1,1 = −9

4 ,

d2,0 = − 1
36 , d2,1 = 3

8 , d2,2 = −117
64 ,

d3,0 = 1
648 , d3,1 = − 7

160 , d3,2 = − 77
128 , d3,3 = −489

512 .

(3.26)

In fact, once the leading coefficients dr,r are specified all other coefficients are determined
by the Laplace difference equation (1.8).8 This is very similar to the pattern of coefficients
of the perturbative series of N

1
2−r terms in (3.13) for which all br,m are determined by the

Laplace difference equation, except br,br/2c, which has to be specified [18]. In other words
the coefficients of the terms in the second line of (3.29) are all determined once we input
the coefficients with value of m = 0. Furthermore, as was noted in [18], the perturbative
coefficients br,br/2c are determined by the leading N2 term in the ’t Hooft limit. The same
is true for the coefficients dr,r that are also determined by the N2 term in the ’t Hooft limit.
Such a contribution was determined in [18] using resurgence methods,9 and it was shown
(equation (5.39) of [18]) that dr,r is given by

dr,r = − ar
4r+1 , (3.27)

where ar is determined by the following recursion relation,

r(r−4)(r+2)(2r2+2r−9)ar+3(2r4−17r2+9r+39)ar+1+2(r+2)(2r2−2r−9)ar+2 = 0 ,
(3.28)

with a0 = 8, a1 = 36. Given the values of dr,r all the other dr,m are determined by the
Laplace difference equation (1.8).

In conclusion, by summing both the perturbative (3.13) and non-perturbative (3.24)
contributions in the 1/N expansion we find that the large-N expansion of the SU(N)
integrated correlator (1.2) has the following structure,

CSU(N)(τ, τ̄) = N2

4 +
∞∑
r=0

N
1
2−r

br/2c∑
m=0

br,mE( 3
2+δr+2m; τ, τ̄)

± i
∞∑
r=0

N2− r2
r∑

m=0
dr,mDN

(
2m− 3r

2 ; τ, τ̄
)
.

(3.29)

This expression has to be understood as the formal yet complete large-N transseries
expansion of the integrated correlator CSU(N)(τ, τ̄). The first line of (3.29) is an asymptotic
series in the large-N expansion, which was obtained in [5, 18]. The second line gives the
exponential corrections that are discussed in this paper and encoded in BNP

SU(N)(t). It should

8The action of Laplace operator on the modular function DN (s; τ, τ̄) is given in (B.7).
9The ’t Hooft limit of (3.24) is discussed in details in section 4 and appendix C.
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be stressed that the apparent ±i ambiguity in (3.29), i.e. the jump in the Stokes constant,
has to be understood from a resummation point of view. The first line of (3.29) is a formal
asymptotic power series which can be resummed using (3.9), while the seemingly ambiguous
non-perturbative terms given by the second line of (3.29) can be resummed using (3.10).
The sum of these two resummations produces our unambiguous starting equation (3.8), i.e.

CSU(N)(τ, τ̄) = CPSU(N)(τ, τ̄) + CNPSU(N)(τ, τ̄)

= 2c1(N) + 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−tYmn(τ,τ̄)BP
SU(N)(t)dt

+ 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−tYmn(τ,τ̄)BNP
SU(N)(t)dt

= 2
∑

(m,n) 6=(0,0)

∫ ∞
1

e−tYmn(τ,τ̄)BSU(N)(t)dt . (3.30)

Note that although the transseries has been obtained at large-N , its Borel-Ecalle resum-
mation does indeed provide a well-defined analytic continuation for all values of N in the
complex wedge ReN > 0, and, in particular, it does coincide with equation (1.10) for
finite N ∈ N.

Finally, it would be interesting to re-derive the non-perturbative corrections in (3.29)
from the large-N expansion of the spectral decomposition of (1.2) discussed in [25]. Presum-
ably, the large-N expansion of the spectral overlaps {CSU(N), Es} of the integrated correla-
tor (1.2) with the Eisenstein series Es = E(s; τ, τ̄), contains terms which are exponentially
suppressed in N and are responsible for the novel modular invariant functions DN (s; τ, τ̄).

3.2 Holographic interpretation

We will now briefly discuss the holographic interpretation of the terms that are exponentially
suppressed in the large-N limit. This is the large-N limit in which contributions of Yang-Mills
instantons, which are of order e−2πkτ2 , are not suppressed, whereas they are exponentially
suppressed in N in the ’t Hooft limit. Such contributions arise in the non-zero Fourier
modes of the Eisenstein series in the first line of the expression for CSU(N)(τ, τ̄) in (3.29),
and are dual to the contributions of D-instantons to terms in the low energy expansion of
the holographically dual string theory.

Contributions to the integrated correlator in the large-N limit with fixed g2
YM

of the
form (3.17) are exponentially suppressed in the large-N limit. The holographic string
theory interpretation of such contributions uses the identifications g2

YM
= 4πgs = 4π/τ2 and√

g2
YM
N = L2/α′, where gs is the string coupling constant, α′ is the square of the string

length scale, and L is the scale of the AdS5 × S5 space [29–31]. Therefore, the large-N
expansion of the correlators with fixed gYM translates into the small-α′ expansion of string
amplitudes with fixed gs. The existence of the terms that are exponentially suppressed in
N reflects the fact that the α′ expansion of string amplitudes with fixed string coupling is
an asymptotic series.
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After these replacements the expression (1.13) has the form of a sum over instanton
contributions that correspond to ` coincident euclidean world-sheets of (p, q)-strings (with
gcd(p, q) = 1) wrapped on a two dimensional manifold of volume L2. Here we are identifying
the tension of a (p, q)-string [32, 33] with

Tp,q := TF |p+ qτ | , (3.31)

where gcd(p, q) = 1 and T1,0 = TF := 1/(2πα′) is the fundamental string tension. Translating
to string theory parameters, the exponential terms in (1.13), or equivalently (3.24), become

∞∑
`=1

∑
gcd(p,q)=1

exp
(
− 4πL2`

|p+ qτ |
2πα′

)
=
∞∑
`=1

∑
gcd(p,q)=1

exp(−4πL2` Tp,q) . (3.32)

The sums in this expression include a sum over multiple copies (indexed by `) of euclidean
(p, q)-string world-sheets. When gs � 1 (i.e. near the cusp τ2 � 1) the fundamental string
world-sheets dominate while other (p, q)-string instantons dominate for other values of gs
obtained by the appropriate action of SL(2,Z) on τ . The complete exponentially suppressed
contributions are given in (3.29) in a modular invariant form.

We have not evaluated the contribution of these instantons explicitly from string theory,
but the factor of 4πL2 in the exponent in (3.32) suggests the contribution of ` coincident
(p, q)-string euclidean world-sheets wrapping a great two-sphere, S2, on the equator of the
five-sphere, S5. Although it is not obvious how such configurations would be stabilised, it
is notable that their contribution to the integrated correlator (3.29) has an overall factor of
i, which is characteristic of a negative fluctuation mode (more generally, an odd number
of negative modes). Indeed, a two-sphere on the equator of the five-sphere would provide
a saddle point that is reminiscent, from a resurgence point of view, of uniton solutions in
the principal chiral model [34, 35]. The semi-classical origin of such contributions certainly
deserves further study.

Similarly, it would be interesting to develop a more detailed understanding of the
holographic interpretation of the saddle-point action NA(

√
Ymn/4N) that arose in (3.17)

with A(x) defined in (3.18). As pointed out in [26] the same function appeared in the
analysis [27] of multiply-wrapped Wilson loops in N = 4 SU(N) SYM in the ’t Hooft limit,
which is holographically described in terms of a minimal surface bordering the loop and
embedded in AdS5. In that case the argument of A(x) was given by x = k

√
λ

4N with k being
the winding number of a wound Wilson loop. According to [27], such a multiply wound
Wilson loop can be effectively described by a four-dimensional embedded euclidean D3-brane
carrying electric flux, with an action given by NA(x). In the present context the holographic
connection with the contribution of a D3-brane is hinted at by a naive application of the
AdS/CFT dictionary, which includes the identification N = L4/(4πα′2gs) = 2π2L4TD3,
with TD3 the D3-brane tension. This suggests that when x is a fixed constant, the quantity
NA(x) should be identified with the action of a euclidean D3 world-volume wrapped on a
four-manifold.

We now turn to consider special large-N limits in which the ’t Hooft coupling λ = g2
YM
N

is chosen as the independent coupling so g2
YM

may depend on N . In this way we will see
how the non-perturbative results that were previously obtained by resurgence techniques
in [18, 25] and [26] can be viewed as special limits of the SL(2,Z)-invariant expression (3.24).
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4 Correspondence with resurgence results

We will now consider the large-N expansion in which λ = Ng2
YM

= 4πN/τ2 is an independent
parameter in the range 1� λ� N , which is the familiar strongly coupled ’t Hooft limit.
In this case, the contributions of Yang-Mills instantons with instanton number k are
O(e−2πkN/λ). In other words, in this regime Yang-Mills instantons, which are present at
every order in the 1/N expansion, are exponentially suppressed in N . However, order
by order in 1/N , the large λ perturbative expansion is not Borel summable, but can be
completed via a resurgence argument. In [18] this argument was shown to give rise to
further exponentially suppressed contributions of order O(e−2

√
λ).

Here we will see that this completion follows very simply from the SL(2,Z)-invariant
expression obtained in the previous section. For λ in the range 1� λ� N the dominant
contributions to the exponentially suppressed terms are those associated with the m = `,
n = 0 terms (the (`, 0) terms) in (3.24). In the holographic interpretation (3.32) these
correspond to the contribution of ` coincident (1, 0)-string (i.e. fundamental string) world-
sheet instantons. Since q = 0 for these contributions they are independent of τ1 and only
receive contributions from the zero mode of the integrated correlator, C(0)

SU(N)(τ2), which can
be extracted from the zN term in (2.12). As emphasised earlier, the (`, 0) terms contribute
the first term in parentheses in (2.12). The non-perturbative contribution of this term is
given by (3.24) upon substituting p = 1, q = 0 into the definition of DN (s; τ, τ̄) in (3.25).
The zero mode of this piece of DN (s; τ, τ̄) is D(0),i

N (s; τ2), which is defined in (B.10).
In this range of λ, we can rearrange these terms to take the form

CNP,FSU(N)(τ2) = 4
∞∑
`=1

∫ ∞
1

e
−πt`

2
τ2 BNP

SU(N)(t)dt =
∞∑
g=0

N2−2g∆C(g)(λ) , (4.1)

where the superscript F indicates that here we are considering only F -string (i.e. (1, 0)-
string) world-sheet instantons. The functions ∆C(g)(λ) (denoted by ±i∆G(g)(λ)/2 in [18])
contain all the exponentially suppressed large-λ terms of the form

∆C(g)(λ) = ±i
∞∑
`=1

e−2`
√
λfg(`

√
λ) , (4.2)

where fg(`
√
λ) is a perturbative series in 1/

√
λ.

The second term in parentheses in (2.12) is the remaining contribution to the zero
Fourier mode of the modular function CNPSU(N)(τ, τ̄) appearing in (3.24). This involves the
zero-mode termD

(0),ii
N (s; τ2) defined in (B.13). As emphasised before (2.12) this contribution

is obtained by the zero mode of the sum over all values of (m,n) with the exception of terms
with n = 0 or, in other words, by the zero mode of the infinite sum over all the multiple
copies of (p, q)-strings with q 6= 0. We will now see that this contribution is proportional to
e−8π`N/

√
λ with ` ∈ N and ` 6= 0.

These remaining terms can be rewritten as

CNP,RSU(N)(τ2) = 4
∞∑
`=1

∫ ∞
1

e−πt`
2τ2

√
τ2√
t
BNP
SU (z; t)dt =

∞∑
g=0

N1−2g∆C̃(g)(λ̃) , (4.3)
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where we have defined the “dual” ’t Hooft coupling λ̃ = (4πN)2/λ. The superscript R
denotes the sum of the contribution of all terms that remain in the zero mode of the
non-perturbative completion (3.24) apart from the (`, 0) sector.

The functions ∆C̃(g)(λ̃) (denoted ±i∆G̃(g)(λ̃)/2 in [26]) contain all the terms that are
exponentially suppressed in the “dual” ’t Hooft coupling, which have the form e−2`

√
λ̃ =

e−8π`N/
√
λ with ` ∈ N and ` 6= 0.10 By contrast with the (1, 0)-string case, these remaining

non-perturbative terms do not have a simple holographic interpretation since they arise
from the zero-mode contribution of the infinite sum over all the multiple copies (labelled by
`) of (p, q)-strings with q 6= 0. The contributions (4.1) to the zero mode were also found
in [18, 26] from resurgence arguments at large-λ, while the terms (4.3) were found in [26]
from similar reasoning at large-λ̃, i.e. 1� λ̃� N or equivalently N � λ� N2.11

However, it should be stressed that the non-zero Fourier modes, which depend on τ1,
cannot be determined easily by resurgence. These contributions are suppressed relative
to the (1, 0)-string instanton contribution, CNP,FSU(N)(τ2), but they contribute with the same

magnitude as CNP,RSU(N)(τ2) ∼ e−2
√
λ̃ defined in (4.3). This is illustrated in (B.20).

Up to now we have considered approximations in which the saddle-point action NA(x)
has been expanded in small fluctuations of its argument (3.19). However, in the regimes λ =
O(N2) (i.e. λ̃ = O(1)) and λ = O(1) (i.e. λ̃ = O(N2)) the non-perturbative completion (3.24)
of the integrated correlator can be rearranged to produce different expansions. We focus
again on the zero-mode contributions discussed above and start by considering the non-
perturbative F terms in the regime λ = O(N2) (i.e. λ̃ = O(1)). This is the regime in
which the on-shell saddle-point action A(x) should not be expanded for x small as in (3.20).
Schematically we obtain

CNP,FSU(N)(τ2) = ±i
∞∑
k=0

N2−k
∞∑
`=1

e
−NA( π`√

λ̃
)
Fk(

π`√
λ̃

) , λ = O(N2) , (4.4)

where the precise details of the expansion coefficients Fk(x) are presented in (C.14).
A similar analysis applies to the remaining contribution to the zero Fourier mode

when λ = O(1) (i.e λ̃ = O(N2)). In that case the non-perturbative R contribution can be
rearranged to give the expansion

CNP,RSU(N)(τ2) = ±i
∞∑
k=0

N
5
2−k

∞∑
`=1

e
−NA( π`√

λ
)
F̃k(

π`√
λ

) , λ = O(1) , (4.5)

where details of the coefficients F̃k(x) are presented in (C.23).
In these regimes, the two zero-mode contributions to (3.24) expanded as in (4.4) and (4.5)

become identical to the expressions in [26], which were obtained from the asymptotic
behaviour at large order of the large-N genus expansion in the large-λ̃ or large-λ regimes
respectively, i.e. from the large-g behaviour of (4.3) and (4.1) respectively.

10The existence of such non-perturbative terms were first predicted in [25].
11The exponential factor e−2

√
λ̃ coincides with the leading factor contributing to a (0, 1)-string world-sheet

instanton when τ1 = 0, This coincidence may be the reason that these contributions are referred to as
“D-string instantons” in [25, 26].
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In [26] the non-perturbative factors e−NA(`π/
√
λ̃) and e−NA(`π/

√
λ) in (4.4) and (4.5)

were called “electric” and “magnetic” D3-brane instanton contributions in analogy with
the results for multiply wound electric Wilson loop and magnetic ’t Hooft loop derived
in [27]. However, although the first zero-mode contribution (4.4) does indeed come from
the complete sum overl ` coincident (1, 0)-string instantons, the second term arises as
the zero-mode contribution from the infinite sum over ` coincident dyoonic (p, q)-string
instantons with q 6= 0.

Finally, more generally there are contributions from the non-zero modes that are also
exponentially suppressed. In particular, the non-zero Fourier modes of DN (s; τ, τ̄) are given
in (B.13) and (B.19). These are the contributions from (p, q)-string instantons for which
the exponential suppression is consistent with S-duality. We will not discuss these explicitly
since their analysis involves a straightforward extension of the zero-mode analysis.

5 Integrated correlators with other classical gauge groups

The expression for the SU(N) integrated correlator, CSU(N), was extended to correlators
for theories with general classical gauge groups GN = USp(2N) and GN = SO(n) (with
n = 2N, 2N + 1) in [19]. Recall that S-duality (Montinen-Olive duality) in the SU(N) case
is generalised to Goddard-Nuyts-Olive (GNO) duality [24] for general Lie groups. The
correlators considered here are only sensitive to local properties of S-duality and not to
global features that involve the centre of the gauge groups and their duals. Such global
properties are an essential feature of more general considerations, but here we only need to
consider transformations associated with the Lie algebras. These duality transformations
correspond to the following interchanges,

su(N)↔ su(N) , so(2N)↔ so(2N) , so(2N + 1)↔ usp(2N) , (5.1)

which relate the expressions for the integrated correlators in [19] to each other, so we
need only focus on SO(n) gauge groups (in addition to the SU(N) case described earlier).
Furthermore, recall that GNO duality implies invariance under the action of SL(2,Z) on
the complexified coupling τ in the correlators with SU(N) and SO(2N) gauge groups, while
in the SO(2N + 1) and USp(2N) cases the correlators are invariant under Γ0(2), which is a
congruence subgroup of SL(2,Z).

The corresponding generating functions are defined by

B1
SO(z; t) :=

∞∑
n=1

B1
SO(n)(t)z

n , B2
SO(z; t) :=

∞∑
n=1

B2
SO(n)(t)z

n , (5.2)

where B1
SO(n)(t) and B

2
SO(n)(t) are related to CSO(n) in (1.2). In this section (and appendix D),

we will derive the generating functions B1
SO(z; t) and B2

SO(z; t), and study the large-N
properties of the integrated correlators.

5.1 Generating functions for other classical gauge groups

We begin by considering the generating function B2
SO(z; t). Recall, that B2

SO(2N)(t) = 0,
so we will focus on SO(2N + 1) gauge groups. As shown in [19], B2

SO(2N+1)(t) can be
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expressed as

B2
SO(2N+1)(t) = − t2

∫ ∞
0

e−xtx
3
2∂x

[
x

3
2∂xI

2
SO(2N+1)(x)

]
dx , (5.3)

where

I2
SO(2N+1)(x) := e−x

N∑
i=1

L2i−1(2x) , (5.4)

and Lj is the Laguerre polynomial. To proceed, we use the contour integral representation
of the Laguerre polynomial,

Lj(x) =
∮
C

e−xt1/(1−t1)

(1− t1)tj+1
1

dt1
2πi , (5.5)

where the contour C circles the origin once in a counterclockwise direction. We can then
perform the integration over x in (5.3), which leads to

B2
SO(2N+1)(t) = −

∮
C

3t−2N
1

(
t2N1 − 1

)
[t(t1 − 1) + t1 + 1]

2[t1(1− t) + t+ 1]4
dt1
2πi ,

(5.6)

and the generating function is given by

B2
SO(z; t) :=

∞∑
N=1

B2
SO(2N+1)(t)z

2N+1 =
∮
C

3
(
t21 − 1

)
z3[t(t1 − 1) + t1 + 1]

2 (z2 − 1) [t1(1− t) + t+ 1]4
(
t21 − z2) dt12πi .

(5.7)
The relevant poles are located at t1 = ±z, and the sum of their residues gives the final result

B2
SO(z; t) = 3t(t+ 1)z3 [(t+ 1)2(3t2 − 10t+ 3)− 2(t− 1)2(t2 + 10t+ 1)z2 − (t− 1)4z4]

2 [(t+ 1)2 − (t− 1)2z2]4
.

(5.8)
As mentioned earlier, B2

SO(n)(t) vanishes for n = 2N . This is reflected in the above expression
for B2

SO(z; t), which is an odd function of z, and therefore only receives contributions from
SO(2N + 1). It will prove important that the singularity structure of B2

SO(z; t) is rather
simple, with just two poles in z located at

z = ±(t+ 1)
(t− 1) , (5.9)

with equal and opposite residues since B2
SO(z; t) = −B2

SO(−z; t).
We will now consider B1

SO(z; t) :=
∑∞
n=1B

1
SO(n)(t)z

n, where B1
SO(n)(t) is given by [19]

B1
SO(n)(t) = − t2

∫ ∞
0

e−xtx
3
2∂x

[
x

3
2∂xI

1
SO(n)(x)

]
dx , (5.10)

and

I1
SO(2N)(x) := e−x

N∑
i,j=1

(
L2i−2(x)L2j−2(x)− L2j−2i

2i−2 (x)L2i−2j
2j−2 (x)

)
,

I1
SO(2N+1)(x) := e−x

N∑
i,j=1

(
L2i−1(x)L2j−1(x)− L2j−2i

2i−1 (x)L2i−2j
2j−1 (x)

)
.

(5.11)
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Using combinations of the relations between sums of bilinears of Laguerre polynomials given
in (D.11) and making use of the contour integral representations of Laguerre polynomials
leads to the generating function

B1
SO(z; t) = 1

2BSU (z; t) + F1(z; t) + t−1F1(z; t−1) + F2(z; t) + t−1F2(z; t−1) , (5.12)

where BSU (z; t) is the generating function of the SU(N) integrated correlator given in (2.2),
and the functions F1(z; t) and F2(z; t) are given by,

F1(z; t) := −3tz2 [t(z − 1) + 2(z + 1)]
2x4 , (5.13)

and

F2(z; t) :=

3z2

2[(t+1)2−(t−1)2z]
7
2

[
8(z+1)2(1−z) 5

2

x4 −
2
(
31z3+81z2+81z+31

)
(1−z) 1

2

x3

+
(
211z4+556z3+706z2+556z+211

)
(1−z) 3

2x2
−

7
(
59z5+123z4+138z3+138z2+123z+59

)
(1−z) 7

2x

− 1
4z(1−z) 7

2

(
x5−4(7z+2)x4+2

(
106z2+125z+12

)
x3−2

(
383z3+797z2+451z+17

)
x2

+
(
1583z4+4286z3+4446z2+1758z+23

)
x−2

(
1013z5+2813z4+3752z3+2888z2+1051z+3

))]
,

(5.14)

where x = t(1 − z) + 2(z + 1). Given the above expressions, it is easy to see what the
singularity structure of (5.12) is. There are two poles located at

z = (t+ 2)
(t− 2) , z = (1 + 2t)

(1− 2t) , (5.15)

as well as the same branch points as for the SU(N) case, located at

z = 1 , z = z1 =
(
t+ 1
t− 1

)2
. (5.16)

It is straightforward to verify that B2
SO(z; t) satisfies the following homogenous differ-

ential equation,

t ∂2
t

(
tB2

SO(z; t)
)
− 1

4

[
z2∂2

z

(
B2
SO(z; t)

(
z − z−1

)2
)]

= 0 , (5.17)

while B1
SO(z; t) obeys an inhomogeneous differential equation given by

t ∂2
t

(
tB1

SO(z; t)
)
− 1

4

[
z2∂2

z

(
B1
SO(z; t)

(
z − z−1

)2
)]

−
[
z2∂z

(
z−1BSU (z; t)

)
− z∂z (zBSU (z; t))

]
= 0 ,

(5.18)
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where BSU (z; t) is the generating function of the SU(N) correlator given in (2.2). These
differential equations imply a Laplace difference equation for the integrated correlator12

CSO(n)(τ, τ̄) (with ‘source terms’ CSU(n)(τ, τ̄)) as found in [19]

∆τCSO(n)(τ, τ̄)− 2cSO(n)
[
CSO(n+2)(τ, τ̄)− 2 CSO(n)(τ, τ̄) + CSO(n−2)(τ, τ̄)

]
− n CSU(n−1)(τ, τ̄) + (n− 1) CSU(n)(τ, τ̄) = 0 , (5.19)

where the central charge is cSO(n) = n(n − 1)/8, and a similar equation for USp(n)
(with n = 2N)

∆τCUSp(n)(τ, τ̄)− 2cUSp(n)
[
CUSp(n+2)(τ, τ̄)− 2 CUSp(n)(τ, τ̄) + CUSp(n−2)(τ, τ̄)

]
+ n CSU(n+1)(2τ, 2τ̄)− (n+ 1) CSU(n)(2τ, 2τ̄) = 0 , (5.20)

with central charge cUSp(n) = n(n+ 1)/8. The above Laplace difference equation uniquely
determines CSO(n)(τ, τ̄) and CUSp(n)(τ, τ̄) for any n in terms of CSU(2)(τ, τ̄) [19]. Just as
we argued previously in section 2.1 for the SU(N) case, this ultimately leads to the
expression (1.2) for the integrated correlator with SO(n) and USp(2N) gauge groups.

5.2 Large-N expansion for other classical gauge groups

It is well known that N = 4 SYM with SO(n) gauge group is dual to type IIB string
theories in an orientifold with background AdS5 × (S5/Z2) [36, 37]. In considering the
large-n expansion of the integrated correlators with SO(n) gauge group, it was seen in [19]
that it is important to consider the expansion in inverse powers of the combination

Ñ := 1
4(2n− 1) , (5.21)

which is the total RR flux in the holographic dual theory, and we have (L/`s)4 = 2g2
YM
Ñ

(where `s is the string length scale). It is easy to see that the contribution from B2
SO(n)(t)

decays exponentially in the large-Ñ limit [19]. Powers of 1/Ñ arise only from the large-Ñ
expansion of B1

SO(n)(t), and were obtained in [19] (see also [4]). They take exactly the
same form as in the large-N expansion of the SU(N) correlator (3.13) but with N replaced
by 2Ñ ,

2CPSO(n)(τ, τ̄) = (2Ñ)2

4 +
∞∑
r=0

(2Ñ)
1
2−r

br/2c∑
m=0

b̃r,mE( 3
2+δr+2m; τ, τ̄) , (5.22)

where, again, δr = 0 for even r and δr = 1 for odd r and the superscript P indicates that
these are the perturbative contributions in 1/Ñ . This expression can be derived from the
generating function B1

SO(z; t) following the procedure given in section 3 for the SU(N) case.
The coefficients b̃r,m are also determined by the Laplace difference equation (5.19), and
some examples of them can be found in [19]; in fact b̃r,br/2c is identical to br,br/2c of the
SU(N) correlator in (3.29), as emphasised in [4, 19].

12Note that for the special case SO(3), the integrated correlator is given by CSO(3)(τ/2, τ̄/2) rather than
CSO(3)(τ, τ̄) [19].
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We will now focus only on terms that decay exponentially and, since the analysis is
very similar to that of the SU(N) correlator, we will only list the results. Repeating the
argument leading to (3.3) from (3.1), we proceed by closing the z contour of integration, C,
at infinity and collect the various contributions from the singular points of Bi

SO(z; t) in the
complex z-plane. We begin with the contribution from B2

SO(z; t) given in (5.8), which has
two poles in z located at z = ± (t+1)

(t−1) as shown in (5.9). In the large-Ñ expansion, this leads
to exponentially decaying terms of the form

C2,NP
SO(n)(τ, τ̄) = [1− (−1)n]

√
π√
2

∞∑
r=0

Ñ
7
4−

r
2

r∑
m=0

d̃r,mDÑ

(
2m− 3r

2 −
3
4; 2τ, 2τ̄

)
, (5.23)

where n = 2N or 2N + 1 and the superscript NP indicates that these are non-perturbative
terms in Ñ at large Ñ . We see that C2,NP

SO(2N)(τ, τ̄) vanishes as expected. Importantly,
the non-holomorphic functions that appear in C2,NP

SO(2N+1)(τ, τ̄) have arguments 2τ and
2τ̄ , which means that they are only invariant under the congruence subgroup Γ0(2) of
SL(2,Z), as expected from GNO duality. Correspondingly, the exponential factor in
DÑ (2m − 3r

2 −
3
4 ; 2τ, 2τ̄) has the form exp(−2

√
2`
√

Ñπ
τ2
|p + 2qτ |) and so only the (p, 2q)-

string world-sheet instantons contribute.
We have evaluated the d̃r,m coefficients to very high orders. The following are some

low-order examples,

d̃0,0 = 2 ,

d̃1,0 = − 9
24 , d̃1,1 = −1

3 ,

d̃2,0 = − 39
210 , d̃2,1 = 15

25 , d̃2,2 = 1
36 ,

d̃3,0 = 45
215 , d̃3,1 = 357

211 , d̃3,2 = − 37
640 , d̃3,3 = − 1

648 .

(5.24)

It is straightforward to show that C2,NP
SO(n)(τ, τ̄) obeys the homogenous Laplace difference

equation,

∆τC2,NP
SO(n)(τ, τ̄)− 2cSO(n)

[
C2,NP

SO(n+2)(τ, τ̄)− 2 C2,NP
SO(n)(τ, τ̄) + C2,NP

SO(n−2)(τ, τ̄)
]

= 0 , (5.25)

which can be used to determine the coefficients d̃r,m once the leading coefficients d̃r,r
are given.

The second contribution B1
SO(z; t) (5.12) contains both poles located at z = (t+2)

(t−2)

and at z = (1+2t)
(1−2t) , as well as two branch points, located at z = 1 and z = z1 (recall

z1 = (t+1)2

(t−1)2 ). Just as in the SU(N) case, the expansion near the branch point z = 1
produces the perturbative asymptotic expansion in 1/Ñ with coefficients given by finite
rational linear combinations of Eisenstein series of half-integer index, i.e. (5.22) previously
derived in [4, 19].

The non-perturbative terms are captured by the expansions near the other singular
points. Let us begin with the pole contributions. From the first pole at z = (t+2)

(t−2) we find

C1,NP
SO(n)(τ, τ̄)

∣∣∣
z∼ (t+2)

(t−2)

=
√
π
∞∑
r=0

Ñ
7
4−

r
2

r∑
m=0

22m− r2 + 5
4 d̃r,mDÑ

(
2m− 3r

2 −
3
4; τ, τ̄

)
, (5.26)
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where interestingly the coefficients d̃r,m are precisely the one we found from C2,NP
SO(n)(2τ, 2τ̄)

as given in (5.24). From the second pole at z = (1+2t)
(1−2t) we obtain

C1,NP
SO(n)(τ, τ̄)

∣∣∣
z∼ (1+2t)

(1−2t)

= (−1)n
√
π
∞∑
r=0

Ñ
7
4−

r
2

r∑
m=0

2
r
2−2m− 5

4 d̃r,mD Ñ
2

(
2m− 3r

2 −
3
4; τ, τ̄

)
,

(5.27)
where again the coefficients d̃r,m are given by (5.24). Furthermore, just as in the case of
C2,NP

SO(n)(τ, τ̄), the pole contributions given in (5.26) and (5.27) obey the homogenous Laplace
difference equation (5.25).

Finally, just as in (3.14), in the case of SU(N) gauge groups, the discontinuity of the
Borel transform (5.12) along z ∈ [1, z1] has a branch-cut of its own along z ∈ (z1,∞) and
this contribution takes exactly the same form as for the SU(N) correlator (3.24)

2 C1,NP
SO(n)(τ, τ̄)

∣∣∣
z∼z1

= ±i
∞∑
r=0

(2Ñ)2− r2
r∑

m=0
d′r,mD2Ñ

(
2m− 3r

2 ; τ, τ̄
)
, (5.28)

which obeys the inhomogenous Laplace difference equation (5.19). A few examples of the
coefficients are given by

d′0,0 = −2 ,

d′1,0 = 7
3 , d′1,1 = −9

4 ,

d′2,0 = −37
36 , d′2,1 = −15

8 , d′2,2 = −117
64 ,

d′3,0 = 887
3240 , d′3,1 = 293

160 , d′3,2 = − 35
128 , d′3,3 = −489

512 .

(5.29)

Furthermore the particular coefficients d′r,r appearing in the above equation are identical
to the coefficients dr,r of CNPSU(N)(τ, τ̄) as given in (3.24)–(3.26). This phenomenon should
be compared with the perturbative terms given in the second line of (3.13) for SU(N) and
in (5.22) for SO(n), for which we have an analogous relation between the coefficients b̃r,br/2c
and br,br/2c, namely b̃r,br/2c = br,br/2c.

Summing (5.26), (5.27) and (5.28), we obtain the complete non-perturbative
contributions:

C1,NP
SO(n)(τ, τ̄) = C1,NP

SO(n)(τ, τ̄)|
z∼ (t+2)

(t−2)
+ C1,NP

SO(n)(τ, τ̄)
∣∣∣
z∼ (1+2t)

(1−2t)

+ C1,NP
SO(n)(τ, τ̄)

∣∣∣
z∼z1

. (5.30)

The leading large-Ñ non-perturbative contributions to C1,NP
SO(n) come from (5.27), and are

schematically of the form

exp
(
− 2`

√
2Ñπ
τ2
|p+ qτ |

)
= exp

(
− 2πL2`

|p+ qτ |
2πα′

)
= exp(−2πL2`Tp,q) , (5.31)

with Tp,q the (p, q)-string tension defined in (3.31), and where we have generalised the
holographic dictionary to the case of SO(n), so that τ2 = 4π/g2

YM and
√

2g2
YM
Ñ = L2/α′.

We see that the exponent in (5.31) is half that of the SU(N) result (3.32). This can be
understood by recalling that the SO(2N) and SO(2N + 1) (and USp(2N)) theories are
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holographic duals of the type IIB string in an orientifold background AdS5 × (S5/Z2) that
emerges from the near horizon geometry of N coincident parallel D3-branes coincident with
a parallel orientifold 3-plane (O3-plane). Hence, just as the SU(N) result (3.32) can be
understood in terms of ` (p, q)-string world-sheets wrapping an equatorial S2 inside S5, (5.31)
should correspond to ` (p, q)-string world-sheets wrapping a maximal S2 inside S5/Z2. Given
the explicit expressions (5.23), (5.26) and (5.27), the semi-classical configurations responsible
for such non-perturbative corrections should have different semi-classical origins. They may
be local minima of the action or saddle points with an odd or even number of negative
eigenvalues associated with the one-loop determinants.

Starting from the preceding large-Ñ , fixed τ results we can extract the large-Ñ limit with
fixed λSO(n) = 2g2

YM Ñ = 8πÑ/τ2. The argument is similar to one we provided for the SU(N)
case in the preceding section and appendix C.1. The result is that the leading exponential
terms contributing to the saddle-point approximation to CNPSO(n) = C1,NP

SO(n) + C2,NP
SO(n) are given

by the zero-mode contribution D
(0),i
N of equations (5.23), (5.26), (5.27) and (5.28) and

their leading behaviour takes the form e−
√
λSO(n) , e−

√
2λSO(n) , e−

√
λSO(n) and e−2

√
λSO(n) ,

respectively. We can also define the “dual” ’t Hooft coupling λ̃SO(n) = 4(4πÑ)2/λSO(n) =
8Ñπτ2, and consider the contributions from D

(0),ii
N in the large-Ñ limit with fixed λ̃SO(n)

as discussed in appendix C.2. There are again four contributions, which are given by13

e−2
√
λ̃SO(n) , e−

√
2λ̃SO(n) , e−

√
λ̃SO(n) and e−2

√
λ̃SO(n) , respectively.

As stressed earlier, since these results were obtained starting from the manifestly
duality-invariant large-Ñ limit with fixed τ , these different non-perturbative corrections
are just facets of the sum over (p, q)-strings when expanded in different corners of the
double-scaling limit of the parameter space (Ñ , τ).
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A Hermitian matrix model and the integrated correlator

We will here review a few basic properties of correlators of the N×N hermitian matrix model
and their connections with the integrated correlator [15]. Following [38],14 the connected

13Note that the non-perturbative term C2,NP
SO(n)(τ, τ̄) in (5.23) is the only term that is not invariant under

SL(2,Z), although it is invariant under Γ0(2). The fact that λ̃SO(n) is related to λSO(n) by τ2 → 1/τ2, which
is a transformation not contained in Γ0(2), accounts for the fact that the large-λSO(n) behaviour and the
large-λ̃SO(n) behaviour of C2,NP

SO(n)(τ, τ̄) are different.
14We are grateful to Matteo Beccaria and Arkady Tseytlin for pointing out this reference.
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m-point correlation functions of the matrix model are defined by,

Ki1,...,im(N) := 〈trφi1 · · · trφim〉conn

=
∫

exp
(
−1

2trφ2
)

tr(φi1) · · · tr(φim)dφ− disconnected parts ,
(A.1)

where the integration is over the space of N×N hermitian matrices, and the measure is
normalised such that 〈1〉 = 1. One may introduce a partition function,

ZN ({tk}) :=
∫

exp
(
−1

2trφ2 +
∑
k

tkφ
k

)
dφ , (A.2)

in terms of which Ki1,...,im(N) is given by

Ki1,...,im(N) = ∂m

∂ti1 . . . ∂tim
logZN ({tk})

∣∣∣
{tk}→{0}

. (A.3)

Following [39], it is convenient to introduce a generating functions for Ki1,...,im(N) of
the form

eN (x1, . . . , xn) :=
∞∑

i1,...,im=0
Ki1,...,im(N)x

i1
1 . . . x

im
m

i1! . . . im! . (A.4)

It is known that eN obeys Toda equations [38]. For example, eN (x1) and eN (x1, x2) satisfy

eN+1(x1)−2eN (x1)+eN−1(x1) = x2
1
N
eN (x1) ,

eN+1(x1,x2)−2eN (x1,x2)+eN−1(x1,x2) = (x1+x2)2

N
eN (x1,x2)−x1x2

N2 eN (x1)eN (x2) ,
(A.5)

where the initial (N=1) values are

e1(x1) = exp
(
x2

1
2

)
, e1(x1, x2) = exp

(
x2

1 + x2
2

2

)
(ex1x2 − 1) . (A.6)

It is useful to introduce a generating function for the N -dependence of eN (x1, . . . , xn) [38,
40] that is given by

e(x1, . . . , xn; z) :=
∞∑
N=0

eN (x1, . . . , xn)zN . (A.7)

The one-point function eN (x1) was first obtained by Zagier and Harer [39], and the generating
function e(x1; z) is also known explicitly, [38, 40]

e(x1; z) = z

(1− z)2 exp
(
x2

1
2

1 + z

1− z

)
. (A.8)

The generating function for the two-point function e(x1, x2; z) is given by an inte-
gral representation,

e(x1,x2;z) = z

(1−z)2

{
exp

(
z(x1+x2)2

1−z

)
e1(x1,x2) (A.9)

−
∫ z

0

[∮ ∮ 1
(t−u1u2)2 exp

((x1+x2)2(z−t)
(1−z)(1−t) +x

2
1

2
1+u1

1−u1
+x

2
2

2
1+u2

1−u2

)
du1

2πi
du2

2πi

]
dt

}
.

The contour is around the poles at u1 = 0 and u2 = 0 after expanding e(x1, x2; z) as a
polynomial in z.
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We will now discuss the connection between the perturbative part of the integrated
correlator and the matrix model correlators. The perturbative contribution to the integrated
correlator (1.2) of the SU(N) theory can be expressed in the form

CpertSU(N)(y) = −
∫ ∞

0

ω

2 sinh2 ω
y2∂2

y ISU(N)

(
ω2

y

)
dω , (A.10)

where y = πτ2. Importantly, it is known from [15] that ISU(N)
(
ω2

y

)
is related to the matrix

model two-point and one-point functions introduced above by,15

ISU(N)

(
ω2

y

)
= eN

(
i
w
√
y
,−i w√

y

)
+ eN

(
i
w
√
y

)2

, (A.11)

a relation that enters in (2.9) in the main text. Using the recursion relations (A.5) for
eN
(
iwy

)
and eN

(
iwy ,−i

w
y

)
and the initial N=1 conditions (A.6) results in the expression,

ISU(N)

(
ω2

y

)
= 2 e−

ω2
y

N∑
i=1

(N − i)
[
Li−1

(
ω2

y

)
Li

(
ω2

y

)
+ L1

i−1

(
ω2

y

)
L−1
i

(
ω2

y

)]
,

(A.12)
where Lji (x) is the generalised Laguerre polynomial. Interestingly, the above expression for
ISU(N) has a simpler form than the expression that was previously determined in [15, 16]
(see, for example, equation (A.39) in [16]).

B Some properties of DN(s; τ, τ̄ )

In this appendix we will study some basic properties of the non-holomorphic modular invari-
ant functions DN (s; τ, τ̄), defined in (3.25), which enter into the exponentially suppressed
terms that complete the large-N expansion. Recall DN (s; τ, τ̄) is defined as16

DN (s; τ, τ̄) :=
∑

(m,n) 6=(0,0)
exp

(
− 4

√
NYmn(τ, τ̄)

)
Ymn(τ, τ̄)−s (B.1)

=
∞∑
`=1

∑
gcd(p,q)=1

exp
(
−4
√
Nπ`

|p+ qτ |
√
τ2

)
1
πs

τ s2
`2s|p+ qτ |2s

. (B.2)

It follows from the second line of this equation, (B.2), that the function DN (s; τ, τ̄) can be
expressed as the Poincaré sum

DN (s; τ, τ̄) =
∑

γ∈B(Z)\SL(2,Z)
dN (s; γ · τ, γ · τ) , (B.3)

where the seed function is given by

dN (s; τ, τ̄) :=
(τ2
π

)s
Li2s

(
e
−4
√

Nπ
τ2

)
, (B.4)

15The matrix model one- and two-point functions eN (x1), eN (x1, x2) also have interesting applications to
circular Wilson loops in N = 4 SYM [41, 42].

16Non-holomorphic modular invariant functions analogous to DN (s; τ, τ̄) have recently appeared in
another context [43].
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with Lis(x) =
∑∞
`=1 x

`/`s denoting the polylogarithm function and τ2 = Im τ . This seed
function satisfies the periodicity relation dN (s; τ + n, τ̄ + n) = dN (s; τ, τ̄) for all n ∈ Z.
Consequently the sum in (B.3) is over SL(2,Z)

γ =
(
a b

c d

)
∈ SL(2,Z) , γ · τ = aτ + b

cτ + d
, (B.5)

modulo the Borel stabiliser

B(Z) :=
{(
±1 n

0 ±1

) ∣∣∣n ∈ Z
}
⊂ SL(2,Z) . (B.6)

It is well known that the coset space B(Z)\SL(2,Z) is isomorphic to {(p, q) ∈ Z2 | gcd(p, q) =
1} so that (B.2) equals the Poincaré sum (B.3).

It is straightforward to show that DN (s; τ, τ̄) obeys the Laplace equation,

∆τDN (s; τ, τ̄)− s(s− 1)DN (s; τ, τ̄) = (4s− 3)
√
NDN (s− 1

2 ; τ, τ̄) + 4NDN (s− 1; τ, τ̄) .
(B.7)

When N = 0, DN (s; τ, τ̄) reduces to the non-holomorphic Eisenstein series E(s; τ, τ̄) and
the above differential equation reduces to

∆τE(s; τ, τ̄)− s(s− 1)E(s; τ, τ̄) = 0 , (B.8)

which is the well-known Laplace eigenvalue equations for the non-holomorphic Eisenstein
series. For N > 0, the exponential part plays the rôle of a regulator, which ensures that the
lattice sum (B.1) is convergent for all s.

We will now consider the Fourier mode decomposition

DN (s; τ, τ̄) =
∑
k∈Z

e2πikτ1D
(k)
N (s; τ2) , (B.9)

and focus on the zero mode, D(0)
N (s; τ2). There are standard methods (see e.g. [44, 45]),

that allow us to derive the Fourier modes of a Poincaré sum (B.3) in terms of an integral
transform of its seed function (B.4), but we will follow a different route here.

To obtain the Fourier decomposition of (B.1) we first separate the sum over
(m,n) 6= (0, 0) into two terms:

(i) The sum over (m, 0) with m 6= 0;

(ii) The sum over (m,n 6= 0) for m ∈ Z.

Case (i) is straightforward, giving

D
(0),i
N (s;τ2) =

∑
m 6=0,n=0

∫ 1
2

− 1
2

exp
(
−4
√
NYmn(τ, τ̄)

)
Ymn(τ, τ̄)−sdτ1 = 2

∞∑
m=1

e
−4m

√
Nπ
τ2

( τ2

πm2

)s
,

(B.10)

since when n = 0 the variable Ymn(τ, τ̄) reduces to πm2/τ2 which is independent of τ1.
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In order to consider case (ii), it is useful to eliminate the square root in (B.1) by
introducing an integral representation for DN (s; τ, τ̄),

DN (s;τ, τ̄) =
∑

(m,n) 6=(0,0)

∫ ∞
0
e−tYmn(τ,τ̄)

[
ts−1

1F1
(
1−s; 1

2 |−
4N
t

)
Γ(s) −

4
√
Nts−

3
2 1F1

(
3
2−s;

3
2 |−

4N
t

)
Γ
(
s− 1

2

) ]
dt .

(B.11)

We can now use standard Poisson resummation to obtain the Fourier series for case (ii),
which takes the form

Dii
N (s;τ, τ̄) = (B.12)

√
τ2

∑
m̂∈Z,n 6=0

e2πim̂nτ1
∫ ∞

0
e
−πτ2

(
m̂2
t

+n2t

)[
ts−

3
2 1F1(1−s; 1

2 |−
4N
t

)
Γ(s) − 4

√
Nts−2

1F1( 3
2−s;

3
2 |−

4N
t

)
Γ(s− 1

2 )

]
dt .

The zero mode is given by setting m̂ = 0, giving

D
(0),ii
N (s;τ2) = 2

√
τ2

∞∑
n=1

∫ ∞
0

e−πτ2n
2t

[
ts−

3
2 1F1(1−s; 1

2 |−
4N
t

)
Γ(s) − 4

√
Nts−2

1F1( 3
2−s;

3
2 |−

4N
t

)
Γ(s− 1

2 )

]
dt .

(B.13)

Note that this second contribution can equally well be obtained from the zero-mode
contribution of the sum over all the remaining terms (m,n) with m,n ∈ Z and n 6= 0, i.e.

D
(0),ii
N (s; τ2) =

∑
n 6=0

∑
m∈Z

∫ 1
2

− 1
2

exp
(
− 4

√
NYmn(τ, τ̄)

)
Ymn(τ, τ̄)−sdτ1 . (B.14)

As an example we can consider s = 0 and perform the t integral to obtain,

D
(0),ii
N (0; τ2) = 2

∞∑
n=1

2nτ2K1(4n
√
Nπτ2) , (B.15)

which, in the large-N limit this is O(e−4
√
πNτ2). More generally, using the asymptotic

properties of 1F1, we see that

D
(0),ii
N (s; τ2) = O(e−4

√
πNτ2) . (B.16)

The complete Fourier zero mode is given by

D
(0)
N (s; τ2) = D

(0),i
N (s; τ2) +D

(0),ii
N (s; τ2) . (B.17)

When expressed in terms of the ’t Hooft coupling λ and the “dual” coupling λ̃ = (4πN)2/λ,
the exponential behaviours (B.10) and (B.13) become

e−2
√
λ and e−8πN/

√
λ = e−2

√
λ̃ . (B.18)

Finally, the k-th non-zero Fourier mode, D(k)
N (s; τ2), is determined by considering

k = m̂n (with m̂, n 6= 0) in (B.12). For example, when s = 0 we find

D
(k)
N (0; τ2) = 2

∑
n|k

4n2τ2

√
N

4n2N + k2πτ2
K1
(
2
√
πτ2(4n2N + k2πτ2)

)
, (B.19)

– 29 –



J
H
E
P
0
4
(
2
0
2
3
)
1
1
4

where the sum runs over the positive divisors n of k. Here we have assumed k > 0 since
D

(k)
N (s; τ2) = D

(−k)
N (s; τ2) given that DN (s; τ, τ̄), defined in (B.1), is real-analytic. At large

N and fixed τ we have that

D
(k)
N (s; τ2) = O(e−4

√
πNτ2) , (B.20)

which for fixed λ in the regime 1� λ� N becomes O(e−8πN/
√
λ) = O(e−2

√
λ̃), so it is of

the same order as D(0),ii
N (s; τ2).

Finally, it is straightforward to enlarge the space of non-holomorphic modular functions
DN (s; τ, τ̄) to the space of modular forms with holomorphic and anti-holomorphic weights
(w,w′), by acting on DN (s; τ, τ̄) with appropriate covariant derivatives. This is analogous
to the construction of non-holomorphic Eisenstein modular forms that entered in the
expressions for maximal U(1)Y -violating correlators considered in [22]. In that case the
relevant forms had weights (w,−w). We would therefore expect that the large-N expansions
in that reference should require a non-perturbative completion by a series of weight (w,−w)
modular forms D(w)

N (s; τ, τ̄). Following [22], a weight (w,−w) modular form D
(w)
N (s; τ, τ̄)

is obtained by applying a chain of w covariant derivatives of the form D
(w)
N (s; τ, τ̄) =

Dw−1 . . .D0DN (s; τ, τ̄), where the covariant derivative acting on a weight (w,w′) form is
defined by

Dw = i

(
τ2
∂

∂τ
− iw2

)
, (B.21)

and transforms it into a (w + 1, w′ − 1) form.

C Saddle-point analysis of contributions to the zero mode

This appendix presents details of the saddle-point analysis of the contributions to the
zero mode,

C(0)
SU(N)(τ2) =

∫ 1
2

− 1
2

CSU(N)(τ, τ̄)dτ1 , (C.1)

in the ’t Hooft limit in which N → ∞ with 1 � λ � N . As remarked in the main text
the expression for the zero mode of the generating function, (2.12), consists of two types
of terms:

(i) the sum over m = ` ∈ Z, n = 0, which is holographically dual to ` coincident
(1, 0)-string world-sheet instantons;

(ii) the zero mode of the sum over m ∈ Z and n = ` 6= 0 ∈ Z, i.e. the zero mode of the
infinite sum over all the multiple copies (labelled by `) of (p, q)-strings with q 6= 0.
This is equivalent to setting m̂ = 0 and summing over n = ` contributions, where m̂
is the integer conjugate to m in the Poisson summation.

We stress that, unlike the (1, 0)-string sector (i), the zero-mode contribution (ii) does not
have a simple holographic interpretation although it was called the D-string instanton sector
in [25, 26]. Since the D-string is usually defined to be the (0, 1)-string and depends on τ1 in
an essential way (3.32), this designation does not seem appropriate.
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C.1 The (1, 0)-string world-sheet instanton contribution

We now turn to details of the exponentially suppressed behaviour of the first non-constant
term in the zero-mode integral (2.12), which corresponds to the contribution of the (1, 0)-
string (or F -string) world-sheet instanton. In order to consider the large-N contributions
we need to consider the saddle-point contribution to the contour integral

CNP,FSU(N)(τ2) := 4
∞∑
`=1

∫ ∞
1

e
−πt`

2
τ2 BNP

SU(N)(t)dt

= 4
∞∑
`=1

∫ ∞
1

e
−πt`

2
τ2

[∫ ∞±iε
z1

DiscBSU (z; t)
zN+1

dz

2πi

]
dt , (C.2)

where the superscript F denotes the contribution of the F -string instantons. We will see
that the large-N expansion of this contribution at large ’t Hooft coupling λ, produces a
genus expansion N2−2g, with g ≥ 0, of exponentially suppressed corrections at large λ.
These were identified in [18] by applying resurgence analysis to the asymptotic large-λ
perturbation expansion of the genus expansion.

The large-N , large-λ expansion of CNP,FSU(N)(τ, τ̄) is controlled by a saddle point which, in
the regime 1� λ� N , is located at

t = t?1 =
√

16N2 + `2λ

|`|
√
λ

∼ 4N
|`|
√
λ

+ . . . , (C.3)

and with an exponentiated action given by

e−S
F(t∗1) = exp

[
− πt?1`

2

τ2
− 2N log

(
t?1 + 1
t?1 − 1

)]
= exp

[
−NA

(
|`|
√

π

4Nτ2

)]
= exp

[
−NA

( |`|√λ
4N

)]
∼ exp

(
− 2|`|

√
λ

)
,

(C.4)
where we have substituted the saddle-point action NA(x) that was defined in (3.18). Note
that this is precisely the exponential of the on-shell action (3.21) evaluated for (m,n) = (`, 0).
In the second line we have further used the definition of the ’t Hooft coupling and kept the
leading term of A(x) = 8x+O(x3) in the large-N limit under consideration.

In order to consider the fluctuations around the saddle point we write t = t?1 + N
λ3/4 δ

and expand the saddle-point action (C.4) in powers of δ, and using the expression (2.2) for
BSU (z; t) into (C.2) and the integration over δ leads to the final expression order by order
in the 1/N expansion. At leading order, we obtain

N2∆C(0)(λ) = ± i2N
2
∞∑
`=1

e−2`
√
λ
[
8 + 18

`
√
λ

+ 117
4`2λ + 489

16`3λ
3
2

+ 3915
256`4λ2 + . . .

]
(C.5)

= ± i2N
2
∞∑
`=1

a`−1(2
√
λ)1−` Li`−1(e−2

√
λ) .

This is identical to the expression for ±i∆G(0)(λ)/2 found in equation (5.39) in [18] and the
coefficients ar, with r ≥ 0, are precisely related to the leading coefficients dr,r = −2−2(r+1)ar
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in (3.24). According to the holographic correspondence such a term corresponds to a
contribution to tree-level string theory associated with F -string world-sheet instantons,
and the higher order terms in 1/

√
λ correspond to the α′-expansion in string theory. It

is straightforward to extend the above analysis and determine the next term in the 1/N
expansion, which is a term of order N0. Following the same logic as above we arrive at

N0∆C(1)(λ) =± i2N
0
∞∑
`=1

e−2`
√
λ

[
−`

3λ
3
2

6 − 3`2λ
8 + 77`

√
λ

64 − 127
28 + 927

212`
√
λ
− 3897

214`2λ
+. . .

]
,

(C.6)
which again agrees with the resurgence result ±i∆G(1)(λ)/2 found in [18].17

We therefore see that the N2 and N0 terms in the large-N expansion of the zero mode
of CSU(N)(τ, τ̄) that are non-perturbative in λ are consistent with a topological expansion
of the form

CNP,FSU(N)(τ2) = 4
∞∑
`=1

∫ ∞
1

e−
t`2λ
4N
[ ∫ ∞±iε

z1

DiscBSU (z; t)
zN+1

dz

2πi
]
dt =

∞∑
g=0

N2−2g∆C(g)(λ) ,

(C.7)
with ∆C(g)(λ) (denoted by ±i∆G(g)(λ)/2 in [18]) containing the exponentially suppressed
large-λ terms of the form

∆C(g)(λ) = ±i
∞∑
`=1

e−2`
√
λfg(`

√
λ) , (C.8)

where fg(`
√
λ) is a perturbative series in 1/

√
λ. Combining these terms with the perturbative

large-λ expansion obtained from (3.13) one obtains the transseries expansion

CSU(N)(τ, τ̄) ∼ C(λ) =
∞∑
g=0

N2−2g[C(g)(λ) + ∆C(g)(λ)
]
, (C.9)

where all the non-perturbative contributions ∆C(g)(λ) can be found from a resurgent analysis
argument applied to the large-λ expansion of C(g)(λ) as discussed in [18], or equivalently
using (C.7). Equation (C.9) ignores corrections that are exponentially suppressed in N at
large N , which will be discussed shortly.

For fixed λ, the large-N expansion of correlators corresponds to the genus expansion of
string amplitudes. Therefore the exact expression A

(
|`|
√
λ

4N

)
for the on-shell action (C.4) can

be interpreted as the result of resumming the genus expansion around the minimal surface.
As discussed earlier, exactly the same function appears in the study of Wilson loops [27],
and once again higher order terms in A(x) can be thought as genus expansions around the
minimal surface formed by the Wilson loop. Furthermore, in the case of Wilson loops, the
parameter x is proportional to the electric charge k of the Wilson loop, which may be tuned
to scale with N . Therefore in the region where x is not small, higher-order contributions
to the expansion of A(x) become important. In this case the string world-sheet thickens
and an alternative description of A(x) in terms of euclidean D3-brane instantons is more
appropriate [27].18

17The first three terms in the parenthesis were missed in [18], as pointed out in [26], see in particular
equation (4.44) of [26].

18The present parameter x is synonymous with the parameter κ in the Wilson loop calculation in [27].
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This transition between the small-x and finite-x descriptions is illuminated by expressing
x in terms of the fundamental string (or F -string) and D3-brane tensions,

x = |`|
√
λ

4N = |`| TF
4πL2TD3

, (C.10)

where TF =
√
λ/(2πL2)� TD3 = N/(2π2L4) is the fundamental string tension.

We can perform a similar saddle-point analysis by considering the regime where the
argument x (C.10) of the on-shell action (C.4) is kept constant in the large-N limit. This
means considering the regime λ = O(N2) or equivalently the regime where the dual ’t Hooft
coupling λ̃ = 4πNτ2 = (4πN)2

λ is kept fixed (i.e. λ̃ = O(1)) as N becomes large. In this case
x = |`|

√
λ

4N = π|`|/
√
λ̃ is also O(1) and the saddle point (C.3) is modified to

t?1 =
√

1 + x2

x
. (C.11)

The fluctuations around the saddle point are obtained by writing t = t?1 + N−
1
2 δ and

expanding the saddle-point action (C.4) in powers of δ

SF(t?1 +N−
1
2 δ) = NA(x) + 4x3

√
1 + x2δ2 +O(N−

1
2 δ3) . (C.12)

Upon expanding both the effective action and the integrand of (C.4) at large-N , or
equivalently small δ, and performing gaussian integrals over δ, we arrive at what can be
called the “electric” D3-brane expansion:

CNP,FSU(N)(τ2) =
∞∑
`=1

G(ele)
(
N,

π`√
λ̃

)
, (C.13)

G(ele)(N, x) := ±8i e−NA(x)
∞∑
k=0

N2−k hk(x)
[8x(1 + x2)

3
2 ]k

. (C.14)

The expressions (C.13)–(C.14) coincide with the results of [26] (where x was called y). In
particular the coefficients hk(x), which are polynomials of order 4k in x, were presented
in [26] for k ≤ 3. Higher-order polynomials can be determined straightforwardly from the
saddle-point expansion. For example, the k = 4 term is given by

h4(x) = −28256x16

1215 − 56512x14

405 − 10808x12

45 − 13664x10

45 − 549x8

5 + 340x6 + 3185x4

8

+ 1407x2

8 + 3915
128 . (C.15)

Higher order corrections, hk≥5(x), can easily be computed from our saddle-point expansion.
We stress that in the impressive analysis of [26], the equations (C.13) and (C.14), together
with the expressions for hk≤3(x), were obtained from the asymptotic behaviour at large
genus of the large-N genus expansion in the large-λ̃ regime. From our discussion, it is
now manifest that the electric D3-instanton reduces to the world-sheet instanton in the
’ Hooft limit.
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C.2 The remaining zero-mode contributions

The second non-constant contribution to the zero mode in (2.12) is given by

CNP,RSU(N)(τ2) := 4
∞∑
`=1

∫ ∞
1

e−πt`
2τ2

√
τ2√
t
BNP
SU (z; t)dt

= 4
∞∑
`=1

∫ ∞
1

e−πt`
2τ2

√
τ2√
t

[ ∫ ∞±iε
z1

DiscBSU (z; t)
zN+1

dz

2πi
]
dt , (C.16)

where the superscript R denotes the remaining terms in the non-perturbative zero-mode
contribution once the (m, 0) terms have been subtracted out. As we have seen, this
corresponds to the summand in (3.2) after performing a Poisson summation that replaces
m by m̂ and then setting (m̂, n) = (0, `).

The leading factor in the saddle-point analysis of this contribution is obtained by noting
that the saddle-point solution t∗1 in (3.16) now takes the form

t?1 =
√

4N + π`2τ2√
π`2τ2

=
√
λ+ `2π2

|`|π
. (C.17)

The exponentiated saddle-point action is given by

e−S
R(t∗1) = exp

[
− πt?1`2τ2 − 2N log

(
t?1 + 1
t?1 − 1

)]
= exp

[
−NA

(
|`|
√
πτ2
4N

)]

= exp
[
−NA

( |`|√λ̃
4N

)]
∼ exp

(
− 2|`|

√
λ̃

)
,

(C.18)

where, following [25, 26], we have introduced the parameter λ̃ = (4πN)2/λ = 4πNτ2 and
consider the regime in which 1� λ̃� N .

Higher order corrections can be obtained straightforwardly resulting in the expansion

CNP,RSU(N)(τ2) = 4
∞∑
`=1

∫ ∞
1

e−πt`
2τ2

√
τ2√
t
BNP
SU (z; t)dt =

∞∑
g=0

N1−2g∆C̃(g)(λ̃) . (C.19)

The functions ∆C̃(g)(λ) are analogous to (C.5) and (C.6) and contain all the exponentially
suppressed terms in the “dual” ’t Hooft coupling of the form e−2`

√
λ̃ = e−8π`N/

√
λ with

` ∈ N and ` 6= 0. In particular, these results precisely agree with the function ∆C̃(g)(λ)
obtained in [26] (and denoted by ±i∆G̃(g)(λ̃)/2 in this reference) by resumming, order by
order in 1/N , the asymptotic large-λ̃ expansion using resurgent analysis.

Just as in the discussion in section C.1, we can consider a saddle-point analysis in the
regime where the argument x̃ = |`|

√
λ̃

4N = π|`|/
√
λ of the saddle-point action (C.18) is kept

O(1) in the large-N limit. This means that we are here considering the regime in which
λ̃ = O(N2), or equivalently, λ = O(1). The saddle point (C.17) can then be rewritten as

t?1 =
√

1 + x̃2

x̃
, (C.20)

and the quadratic fluctuations are obtained from the large-N expansion, or equivalently
small-δ expansion of the effective action

SR(t?1 +N−
1
2 δ) = NA(x̃) + 4x̃3

√
1 + x̃2δ2 +O(N−

1
2 δ3) . (C.21)
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These expressions are similar to the “electric” results (C.11)–(C.12) upon exchanging x̃→ x.
However, we see that (C.16) contains an important additional factor of

√
τ2/t resulting

from the Poisson summation over m. Expanding the saddle-point action at large-N and
performing gaussian integrals over δ, produces the expression

CNP,RSU(N)(τ2) =
∞∑
`=1

G̃

(
N,

π`√
λ

)
, (C.22)

G̃(N, x̃) := ±16i x̃
3
2

√
π(1 + x̃2)

1
4
e−NA(x̃)

∞∑
k=0

N
5
2−k

gk(x̃)
[8x̃(1 + x̃2)

3
2 ]k

, (C.23)

which is a different expansion from the “electric” case (C.13)–(C.14). The expressions (C.22)–
(C.23) again coincide with the results of the [26] (modulo renaming x̃ by x and G̃ by
G(mag)).19 The coefficients gk(x̃) are polynomials of order 4k in x̃ that were determined
in [26] for k ≤ 3. Higher-order terms can again be determined straightforwardly. For
example, the k = 4 term is given by

g4(x̃) = −28256x̃16

1215 − 56512x̃14

405 − 32188x̃12

135 − 1504x̃10

3 − 102233x̃8

240 + 181x̃6

16 + 27909x̃4

256

+ 1815x̃2

32 + 343035
32768 . (C.24)

As in the “electric” case, in [26] these expressions were determined by analysis of
the asymptotic behaviour of the large-N genus expansion at high genus in the large-λ
regime and they reduce to (C.19) in the regime N � λ � N2, i.e. the “dual” ’t Hooft
regime 1� λ̃� N .

To conclude this section, we emphasise that the two distinct non-perturbative terms,
(C.4) and (C.18), are the two parts (B.10) and (B.13) of the zero Fourier mode of the
SL(2,Z) invariant function DN (s; τ, τ̄). Indeed, (C.5) and (C.6) can be obtained directly
from (3.24) by replacing DN (s; τ, τ̄) with its zero mode (B.10). Similarly, the expansion for
the non-perturbative terms at large-λ̃ (C.18), derived in [26], is recovered from (3.24) by
replacing DN (s; τ, τ̄) with the remaining zero-mode contribution (B.13).

Therefore, the sum (3.24) contains all the non-perturbative terms obtained by resurgence
at large-λ and large-λ̃ in [17, 18, 25, 26], and from resurgence at large N in [26]. We see that
despite the fact that the manifest S-duality of (3.24) is obscured in considering the different
large-N ’t Hooft limits of the F -string (C.4)–(C.13) and of the zero mode of the sum over
all remaining (p, q)-strings with q 6= 0 (C.18)–(C.22), these results contain remnants of the
relations implied by SL(2,Z).

D Generating functions for general classical groups

This appendix presents some of the details used in deriving the generating functions for
the integrated correlators for theories with general classical groups given in section 5. The
methods used in the SU(N) case in appendix A and section 2.1 do not generalise to general
classical groups in an obvious manner so we will use a method that applies to all cases.

19In [26] these non-perturbative terms e−NA(x̃) were called “magnetic D3-brane instantons”. However,
since these terms arise as the zero mode of the infinite sum over all multiple copies (labelled by `) of
(p, q)-string instantons with q 6= 0, the nomenclature “magnetic D3-brane” does not seem appropriate.
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In order to evaluate the generating functions it is necessary to reduce the double
sums in (5.11) to single sums. This can be achieved by using a representation of Laguerre
polynomials in terms of creation and annihilation operators (as in [46]),

〈
i
∣∣∣e√x(a+a†)

∣∣∣ j〉 =
〈
j
∣∣∣e√x(a+a†)

∣∣∣ i〉 =
√
i!
j!e

x
2 x

j−i
2 L

(j−i)
i (−x) , (D.1)

where

[
a, a†

]
= 1, a|0〉 = 0, |k〉 =

(
a†
)k

√
k!
|0〉 . (D.2)

We begin by inserting the projector (1± (−1)i)/2 in (5.11), which leads to

I1
SO(2N)(x) = 1

4e
−x

2N−1∑
i,j=0

[
1 + 2(−1)i + (−1)i−j

] (
Li(x)Lj(x)− Lj−ii (x)Li−jj (x)

)
,

I1
SO(2N+1)(x) = 1

4e
−x

2N−1∑
i,j=0

[
1− 2(−1)i + (−1)i−j

] (
Li(x)Lj(x)− Lj−ii (x)Li−jj (x)

)
.

(D.3)
Each term in the above equations can be simplified by using (D.1). For example,

√
−xe−x

n−1∑
i,j=0

Lj−i
i (x)Li−j

j (x) =
N−1∑
i,j=0

〈
i
∣∣∣√−xe√−x(a+a†)

∣∣∣j〉〈j ∣∣∣e√−x(a+a†)
∣∣∣ i〉 (D.4)

=
N−1∑
i,j=0

〈
i
∣∣∣[a,e√−x(a+a†)

]∣∣∣j〉〈j ∣∣∣e√−x(a+a†)
∣∣∣ i〉

=
N−1∑
j=0

(
N−1∑
i=0

〈
i+1

∣∣∣e√−x(a+a†)
∣∣∣j〉〈j ∣∣∣e√−x(a+a†)

∣∣∣ i〉−(i→ i−1)
)
,

where we have utilised the symmetric property of the inner products and the follow-
ing relation,

√
xe
√
x(a+a†) =

[
a, e
√
x(a+a†)] =

[
e
√
x(a+a†), a†

]
. (D.5)

This leads to an expression with one less summation index to be summed

√
−xe−x

N−1∑
i,j=0

Lj−ii (x)Li−jj (x) = e−x
N−1∑
i=0

N√
−x

Li−NN (x)LN−1−i
i (x) . (D.6)

Focussing now on the term with the alternating sign (−1)i,

e−x
N−1∑
i,j=0

(−1)iLj−ii (x)Li−jj (x) =
N−1∑
i,j=0

(−1)i
〈
i
∣∣∣e√−x(a+a†)

∣∣∣ j〉〈j ∣∣∣e√−x(a+a†)
∣∣∣ i〉 , (D.7)
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we can consider the x derivative of this double sum,

−∂x

e−x
N−1∑
i,j=0

(−1)iLj−i
i (x)Li−j

j (x)

=
N−1∑
i,j=0

(−1)i

√
−x

〈
i
∣∣∣e√−x(a+a†)

(
a+a†

)∣∣∣j〉〈j ∣∣∣e√−x(a+a†)
∣∣∣ i〉

=
N−1∑
i,j=0

(−1)i

√
−x

[√
i
〈
i
∣∣∣e√−x(a+a†)

∣∣∣j〉〈j ∣∣∣e√−x(a+a†)
∣∣∣ i−1

〉
+
√
i+1

〈
i
∣∣∣e√−x(a+a†)

∣∣∣j〉〈j ∣∣∣e√−x(a+a†)
∣∣∣ i+1

〉]
.

(D.8)
The sum over i is now straightforward and leads to the expression,

∂x

e−x N−1∑
i,j=0

(−1)iLj−ii (x)Li−jj (x)

 = e−x
N−1∑
i=0

(−1)N−1N

x
Li−NN (x)LN−1−i

i (x) . (D.9)

Similarly, we have

e−x
N−1∑
i,j=0

L2i(x)L2j(x) = 1
4 e
−x

2N−1∑
i,j=0

(
Li(x)Lj(x)+2(−1)iLi(x)Lj(x)+(−1)i−jLi(x)Lj(x)

)

= 1
4

[
e−x

(
L1

2N−1(x)
)2
−2e−x/2L1

2N−1(x)
∫ x e−x

′/2

2 L1
2N−1(x′)dx′

+
(∫ x ex

′/2

2 L1
2N−1(x′)dx′

)2]

= 1
4

[∫ x

e−x
′/2L2

2n−2(x′)dx′
]2
, (D.10)

where we have used the recurrence relation for Laguerre polynomials Lαn = Lα+1
n − Lα+1

n−1,
and completed the square.

The above considerations lead to the following simplified relations that are useful for
evaluating generating functions in the main text,

e−x
N−1∑
i,j=0

L2i+δ(x)L2j+δ(x) = 1
4

[∫ x

e−x
′/2L2

2N−2+δ(x′) dx′
]2
,

e−x
N−1∑
i,j=0

Lj−ii (x)Li−jj (x) = e−x
N−1∑
i=0

N

x
LN−1−i
i (x)Li−NN (x) ,

e−x
N−1∑
i,j=0

(−1)iLj−ii (x)Li−jj (x) =
∫ x

e−x
′
N−1∑
i=0

(−1)N−1N

x′
LN−1−i
i (x′)Li−NN (x′) dx′ ,

e−x
N−1∑
i,j=0

(−1)i−jLj−ii (x)Li−jj (x) =
∫ x

e−x
′
N−1∑
i=0

(−1)N−1+iN

x′
LN−1−i
i (x′)Li−NN (x′) dx′ ,

(D.11)
where δ is either 0 or 1. In order to determine the generating function B1

SO(z; t), we need
to evaluate the integral (5.10) for each term given in (D.3). For example, for the last term
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in (D.11), we have to compute

∞∑
N=1
−t
∫ ∞

0
e−tx

x
3
2

2 ∂x

{
x

3
2∂x

∫ x

e−x
′
N−1∑
i=0

(−1)N−1+iN

x′
LN−1−i
i (x′)Li−NN (x′) dx′

}
zNdx .

(D.12)
We start by making use of the last expression in (D.11) and the relation

LN−1−i
i (x)Li−NN (x) =

∮ ∮ exp
(
−x

(
t1

1−t1 + t2
1−t2

))
(1− t1)N−iti+1

1 (1− t2)i−N+1tN+1
2

dt1
2πi

dt2
2πi ,

(D.13)

which follows from the contour integral representation of Laguerre polynomials (5.5). The
summations over i and N and the integration over x in (D.12) are all elementary, leading to∮ ∮

dt1dt2
t(t1−1)2(t2−1)2z(t(t1−1)(t2−1)+3t1t2−3)

(
t21(t2−1)t2+t1z2−z2)

4(t(t1−1)(t2−1)−t1t2+1)3(z−t1t2)2(z−t1(t2+z−1))2
dt1
2πi

dt2
2πi .

(D.14)
The contour integrals are performed as follows. We first perform the contour integral over t1
around the pole at t1 = z/t2. This leaves a contour integral over t2, for which the relevant
poles are at t(t2 − 1)(t2 − z) + t2(z − 1) = 0. The resulting residues at these poles lead to
the final expression for (D.12), which is given by

3tz
(
t4(z−1)3−2t3(z−1)2(z+1)+14t2(z−1)z+2t

(
z3−5z2−5z+1

)
−z3−3z2+3z+1

)
2(z−1)

3
2 [(t−1)2z−(t+1)2]

7
2

.

(D.15)
Similarly, one can determine all the other contributions in (D.3) to the generating function
B1
SO(z; t). We have also rederived the function BSU (z; t) using this method.
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