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We propose a kinematic algebra for the Bern-Carrasco-Johansson (BCJ) numerators of tree-level
amplitudes and form factors in Yang-Mills theory coupled with biadjoint scalars. The algebraic generators
of the algebra contain two parts: the first part is simply the flavor factor of the biadjoint scalars, and the
second part that maps to nontrivial kinematic structures of the BCJ numerators obeys extended quasishuffle
fusion products. The underlying kinematic algebra allows us to present closed forms for the BCJ
numerators with any number of gluons and two or more scalars for both on-shell amplitudes and form
factors that involve an off-shell operator. The BCJ numerators constructed in this way are manifestly gauge
invariant and obey many novel relations that are inherited from the kinematic algebra.
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I. INTRODUCTION

Gauge and gravity theories play a central role in our
understanding of physical phenomena. The double copy
relation [1–3], which was inspired by Kawai-Lewellen-Tye
relations [4] in string theory, reveals deep relations between
them. The most critical step of the Bern-Carrasco-Johansson
(BCJ) double copy prescription [1–3] is to realize the color-
kinematics duality for gauge theory amplitudes, where the
kinematic numerators (also called the BCJ numerators)
satisfy the same Jacobi relations as the color factors.
The color-kinematics duality discloses the delicate pertur-
bative structures of amplitudes in a large number of gauge
theories [5–15], effective theories [16–26], and can be also
extended to form factors [27–33]. It has led to remarkable
insights and tremendous progress in the comprehension of
amplitudes in both gauge theory and gravity.
An important approach to studying the color-kinematics

duality is to consider the underlying algebraic structures.
Different versions of kinematic algebras have been real-
ized in a variety of arenas—e.g., the self-dual Yang-Mills
(YM) [34], the nonlinear sigma model [17], maximally

helicity-violating (MHV) and next-to-MHV sectors of YM
theory [35,36], and Chern-Simons theory [37].
It was recently found [38,39] that in the heavy-

mass effective theory (HEFT), a quasishuffle Hopf
algebra [40–44] perfectly depicts the color-kinematics
duality structure in the theory. There are three important
ingredients in that algebra: (a) the generators as heavy
source currents, (b) the fusion product merging two lower-
point currents, and (c) the mapping rule turning the
abstract algebraic element to concrete expressions.
Compact closed expressions of the BCJ numerators for
amplitudes of gluons coupled with two heavy particles (as
well as pure gluon amplitudes after taking the decoupling
limit) were obtained. However, there are some restrictions
in this prescription: the number of massive particles has to
be two, the heavy-mass limit is required, and the physical
meaning of the currents and the fusion product is unclear.
To use the kinematic Hopf algebra to study general
amplitudes, we need to circumvent these restrictions.
In this paper, we present an extended version of the

kinematic Hopf algebra which leads to closed-form expres-
sions for amplitudes of any number of scalars without
the requirement of the heavy limit. More importantly, the
physical meaning of the new algebra is transparent: the
generators are physical states, and the fusion product
corresponds to interaction vertices. This understanding
results in a universal description of both scattering ampli-
tudes and form factors, where the latter involve certain off-
shell gauge-invariant operators.
In particular, we will consider the YM-scalar theory with

a biadjoint ϕ3 interaction. This particular theory has played
a vital role in the study of color-kinematics duality and

*g.chen@qmul.ac.uk
†linguandak@pku.edu.cn
‡c.wen@qmul.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, L081701 (2023)
Letter

2470-0010=2023=107(8)=L081701(8) L081701-1 Published by the American Physical Society

https://orcid.org/0000-0002-0748-5026
https://orcid.org/0000-0002-5174-1576
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.L081701&domain=pdf&date_stamp=2023-04-19
https://doi.org/10.1103/PhysRevD.107.L081701
https://doi.org/10.1103/PhysRevD.107.L081701
https://doi.org/10.1103/PhysRevD.107.L081701
https://doi.org/10.1103/PhysRevD.107.L081701
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


double copy [8,11,45–47] (see further comments in the
discussion section). The scalars have an identical mass
m [48] and bear color and flavor indices, denoted as I and a,
respectively. We will consider both on-shell amplitudes and
form factors with the operator Trðϕ2Þ ¼ P

a;Iðϕa;IÞ2 [49].
Unless otherwise stated, amplitudes/form factors in this
paper refer to the color-ordered amplitudes/form factors and
carry flavor indices. Also, we only focus on the single-trace
ones in the flavor sector of the biadjoint scalars, from which
one may obtain multitrace amplitudes using the trans-
mutation operators in Ref. [50].

II. GENERAL FRAMEWORK FROM KINEMATIC
HOPF ALGEBRA

This section provides a systematic approach constructing
amplitudes and form factors via the kinematic Hopf
algebra. Unlike the usual Feynman diagram computations,
the resulting expressions are manifestly gauge invariant
and extremely compact; furthermore, they obey the color-
kinematics duality. The main ingredients for our approach
are algebra generators, fusion products, and the evaluation
map, which we will describe below.
The first ingredient is the algebraic generator for

single-particle external states. There are two types of
single-particle generators:

Ki ¼
(
TðiÞ
ðiÞ for gluons

TðiÞtai for scalars
; ð1Þ

where the T represents the kinematic part and tai denotes
the flavor group generator for the scalars.
Then we combine these single-particle generators

together via the fusion product. For now, let us consider
the simplest examples of (i) the fusion of a single scalar
state and a gluon state becoming a two-particle state; and
(ii) the subsequent fusion of such a two-particle-state fusion
with a gluon state into some three-particle states such as

K1⋆K2 ¼ Tð1Þta1⋆Tð2Þ
ð2Þ ¼ Tð12Þ

ð2Þ t
a1 ;

ðK1⋆K2Þ⋆K3 ¼ Tð12Þ
ð2Þ t

a1⋆Tð3Þ
ð3Þ

¼ ð−Tð123Þ
ð23Þ þ Tð123Þ

ð2Þ;ð3Þ þ Tð123Þ
ð3Þ;ð2ÞÞta1 ; ð2Þ

where on the rhs of these equations, we have the multi-
particle generator

TðαÞ
ðτ1Þ;…;ðτrÞt

ai � � � taj ; ð3Þ

in which the superscript α denotes the order of the particles
in performing the fusion product, while the subscript
denotes the partition of the gluons, and the product of
tai from Eq. (1) composes the flavor structure. Notably, the

fusion product is associative: X⋆ðY⋆ZÞ ¼ ðX⋆YÞ⋆Z for
arbitrary generators X, Y, Z.
The last piece of the construction is the evaluation map

h•i, which is a linear map from an algebra generator to a
gauge-invariant expression appearing in actual amplitudes.
More details on the fusion product and the explicit
expressions for the evaluation map will be given later.
We now show how to use the three ingredients above to

obtain tree-level amplitudes and form factors. This can be
achieved by giving the fusion product a physical meaning.
The interaction vertices in the Lagrangian usually involve
commutators of fields. In our algebraic language, such
commutators are exactly the commutators of the fusion
products, ½X; Y� ¼ X⋆Y − Y⋆X. More concretely, we
express the amplitude as a sum of cubic graphs, and
we regard each cubic graph as a nested commutator, given
the above correspondence between interaction vertices
and commutators. As an example, for the cubic graph

ð4Þ

we can interpret the vertices in the graph with commu-
tators of the generators. The commutators are performed
in an ordering 1; 2;…; n − 1 and lead to the corresponding
nested commutator

N̂ ð½1; 2;…; n − 1�Þ ¼ ½� � � ½K1;K2�;…;Kn−1�: ð5Þ

Then, the contribution to amplitude is obtained by taking
the evaluation map and combining with the propagators

hN̂ ð½1; 2;…; n − 1�Þi
d½1;2;…;n−1�

; ð6Þ

where d½1;2;…;n−1� denotes the product of propagators that
is associated with the graph.
Note that for convenience, we set the nth particle to be a

scalar, labeled by n̄ (characterized by the bar). And in the
algebraic construction above, we do not need the generator
Kn, since pn can be removed by the momentum conserva-
tion. For a generic cubic diagram, the contribution takes a
similar form to Eq. (6), except that the commutator
structure is determined by the specific cubic graph. As a
result, the amplitude is expressed as
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ð7Þ

where Rσ represents the cubic diagrams that respect the

ordering σ; the Rð2Þ
σ denotes all the inequivalent graphs with

color ordering σ and two components as cubic graphs Γ1,
Γ2; and dΓ denotes the products of the propagators
associated with a given cubic graph Γ. Importantly, by

construction the numerators hN̂ ðΓÞi obey Jacobi relations,
and they are precisely the BCJ numerator of the graph Γ.
We will then consider the color-kinematics duality in

form factors [51]. Let us first present the construction, then
briefly explain the significance. Graphically, the difference
is to replace the interaction vertex involving the nth scalar in
Eq. (7) with a colorless operator Trðϕ2Þ. Here, we assign a
fusion product rather than a commutator to the operator. The
form factor also has a novel representation that is very
analogous to Eq. (7):

ð8Þ

Finally, dΓi
(i ¼ 1, 2) is the product of propagators in each

cubic graph Γi, including the propagator connecting Γi with
the operator (i.e. the red-box vertex).
Importantly, when comparing Eqs. (7) and (8), we have

Operator vertex Cubic vertex

Color factor Single trace Structure constant

Algebraic rule X⋆Y ½X; Y�

Note that the structure constant is essentially a commutator.
Then it is understandable to establish the equivalence
between the algebraic rule and the physical color structure.
See more evidence in the Supplemental Material [52],
including the extension to form factors of operators like
trðϕhÞ with h > 2.
In the above, we have sketched the algebraic framework

and how to obtain the physical observables from it. In the
next section, we will spell out the details of the construction.

III. EXPLICIT REALIZATION: FUSION PRODUCT
AND MAPPING RULE

We first explain the fusion-product rule at length, which
is a non-Abelian generalization of the previous quasishuffle
product [38].
As given in Eq. (3), the generators are in general

products of the kinematic part and the flavor part. These
two parts are commutative and can be treated separately in
the fusion product: (i) The fusion products of the flavor part
are simply the product of the standard Lie algebra gen-
erators, which is generally not an Abelian product. (ii) The
kinematic part obeys the non-Abelian quasishuffle product

TðαÞ
ðτ1Þ;…;ðτrÞ⋆TðβÞ

ðω1Þ;…;ðωsÞ ¼
X

πjτ¼fðτ1Þ;…;ðτrÞg
πjω¼fðω1Þ;…;ðωsÞg

ð−1Þt−r−sTðαβÞ
ðπ1Þ;…;ðπtÞ;

ð9Þ

where πjτ (or πjω) means a restriction to the elements of π in
τ (or ω)—e.g., fð235Þ; ð4Þ; ð678Þgjf2;3;4;8g ¼ fð23Þ; ð4Þ;
ð8Þg. For example,

Tð12Þ
ð1Þ;ð2Þ⋆Tð345Þ

ð34Þ ¼ −Tð12345Þ
ð1Þ;ð234Þ − Tð12345Þ

ð134Þ;ð2Þ þ Tð12345Þ
ð1Þ;ð2Þ;ð34Þ

þ Tð12345Þ
ð1Þ;ð34Þ;ð2Þ þ Tð12345Þ

ð34Þ;ð1Þ;ð2Þ: ð10Þ

Compared with the fusion product rules for the amplitudes
in HEFT [38], we see that Eq. (9) has a similar basic form
but contains a new superscript, also marking its non-
Abelian nature.
Equipped with the above rules, we calculate the follow-

ing fusion product of single-particle generators in an
ordering α, which are ubiquitous when expanding the
commutators like in Eq. (7):

N̂ ðαÞ≡ Kαð1Þ⋆Kαð2Þ⋆…⋆KαðjαjÞ

¼ tη
Xjαj−jηj
r¼1

X
τ∈PðrÞ

fτg

ð−1Þjαj−jηj−rTðαÞ
ðτ1Þ;…;ðτrÞ; ð11Þ

where tη is the product of flavor group generators, and PðrÞ
fτg

represents all the ordered partitions dividing the gluon
ordering fτg into r sets. The total number of terms is the
Fubini number Fjαj−jηj. Let us consider a simple example for
illustration:

K1⋆K2⋆K3⋆K4 ¼ ta1ta4Tð1Þ⋆Tð2Þ
ð2Þ⋆Tð3Þ

ð3Þ⋆Tð4Þ

¼ ta1ta4ðTð1234Þ
ð2Þ;ð3Þ þ Tð1234Þ

ð3Þ;ð2Þ − Tð1234Þ
ð23Þ Þ: ð12Þ

The next ingredient of our construction is the map
from abstract algebraic generators to functions of physical
kinematics and flavor variables,
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tηTðαÞ
ðτ1Þ;…;ðτrÞ ⟶

h•i
map

(
trðtηtanÞhTðαÞ

ðτ1Þ;…;ðτrÞim amplitude

trðtηÞhTðαÞ
ðτ1Þ;…;ðτrÞiq form factor

;

ð13Þ

in which hTðαÞ
ðτ1Þ;…;ðτrÞim is defined as follows:

ð14Þ

where pX ¼ P
i∈X pi and Fτi represents the product of

linearized field strengths Fμν
j ¼ pμ

jε
ν
j − εμjp

ν
j for all j ∈ τi.

Again, the dependence of the nth scalar has been removed
via the momentum conservation. Here we have assumed
k > 2. The special case k ¼ 2 (i.e., the amplitudes
with two scalars) is discussed in the Supplemental
Material [52], for which the evaluation map requires a
minor modification. For form factors, the mapping rule is
identical, except that m2 in the denominator is replaced
by q2, the momentum square of the off-shell operator:

hTðαÞ
ðτ1Þ;…;ðτrÞiq ¼ hTðαÞ

ðτ1Þ;…;ðτrÞimjm2→q2 .

To further clarify ΘðαÞ
L;R, it is illustrative to introduce the

“musical diagram” as the following steps: (i) we embed the
scalars (denoted as η) as well as the partitions of gluons τ1
to τr into different levels: η lives on the bottom line, τ1 is
above it, then τ2, until τr. (ii) we require that when
projecting the elements in all the levels onto the bottom
line, the ordering should be exactly α—the color ordering
of all the external particles. These requirements uniquely
fix the relative positions in both the vertical and the

horizontal directions in the “musical diagram.” ΘðαÞ
L;RðτiÞ

are just collections of all the lower-left/lower-right indices
of τi in the musical diagram. As an example, we consider

Tð156729834Þ
ð578Þ;ð69Þ with the corresponding musical diagram

ð15Þ

where we denote gluons by discs and scalars with boxes.
Then we have, e.g., pΘðαÞ

L ðτ2Þ ¼ p1 þ p5 ≡ p15 and

pΘðαÞ
R ðτ2Þ ¼ p348, so that

hTð156729834Þ
ð578Þ;ð69Þ im ¼ 4p1 · F578 · p34p15 · F69 · p348

ðp2
1234 −m2Þðp2

1234578 −m2Þ : ð16Þ

As a corollary, ifΘðαÞ
L ðτiÞ orΘðαÞ

R ðτiÞ is empty, we then have
pΘðαÞ

L;R
¼ 0, which leads to the vanishing condition

hTðαÞ
ðτ1Þ;…;ðτrÞim ¼ 0: ð17Þ

This is the case if α starts or ends with gluons.
Given these explanations, we are now ready to spell out a

few examples to illustrate the algebraic construction above.
The first example is a four-point amplitude:

Að1̄; 2̄; 3; 4̄Þ ¼ h½½K1;K2�;K3�i
p2
12 −m2

þ h½K1; ½K2;K3��i
p2
23 −m2

: ð18Þ

Here and in the following, we denote scalars by ī. So in the
above case, particles 1, 2, and 4 are scalars, and 3 is a gluon.
Expanding the commutators and using the fusion rules
together with the mapping rules, we arrive at

Að1̄; 2̄; 3; 4̄Þ ¼
hTð231Þ

ð3Þ imtrð½ta1ta2 �ta4Þ
p2
23 −m2

¼ 2p2 · F3 · p1

ðp2
12 −m2Þðp2

23 −m2Þ f
a1a2a4 : ð19Þ

The final expression agrees with the correct amplitude. In
this example, only the second term in Eq. (18) contributes,
because the BCJ numerator for the first one vanishes as a
consequence of Eq. (17). The second example is a three-
point form factor

F ð1̄; 3; 2̄Þ ¼ h½K1;K3�⋆K2i
p2
13 −m2

þ hK1⋆½K3;K2�i
p2
23 −m2

; ð20Þ

which can be simplified to

F ð1̄; 3; 2̄Þ ¼
�

δa1a2

p2
13 −m2

þ δa1a2

p2
23 −m2

�
2p2 · F3 · p1

p2
12 − q2

: ð21Þ

The expression agrees with known results [51]. We have
checked our proposal up to all seven-point amplitudes and
six-point form factors, as well as eight- and nine-point ones
with two or three scalars. More examples and computation
details are given in Sec. C of the Supplemental Material [52]
and a Mathematica notebook, which can be found
at Ref. [53].

IV. NOVEL PROPERTIES OF BCJ NUMERATORS

The algebraic construction—in particular, the map h•i—
has advantages more than just giving gauge-invariant and
duality-satisfying numerators. Other interesting properties
are presented below.
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We first start from the following symmetry properties of
the map:
(1) Exchange symmetry: The exchange symmetry for

the indices of adjacent scalars i, j:

hTð…ij…Þ
ðτ1Þ;…;ðτrÞim ¼ hTð…ji…Þ

ðτ1Þ;…;ðτrÞim: ð22Þ

(2) “Antipode” symmetry: The antipode symmetry re-
verses the ordering of particles:

hTðαÞ
ðτ1Þ;…;ðτrÞim ¼ ð−1ÞjτjhTðα−1Þ

ðτ−1
1
Þ;…;ðτ−1r Þim; ð23Þ

where α−1 means reversing all the elements in α and
the same for τ−1i , and jτj denotes the total number of
gluons.

Stemming from these symmetries, we have the following
three properties of numerators:

1. We find that the prenumerator, defined as the map of
Eq. (7), is invariant under the antipode action

hN̂ ð12…n − 1Þijta→I ¼ hSðN̂ ð12…n − 1ÞÞijta→I;

ð24Þ

where S is the antipode as an antihomomorphism
SðX⋆YÞ ¼ SðYÞ⋆SðXÞ. The antipode acts on the

generators as SðTðiÞÞ ¼ TðiÞ; SðTðjÞ
ðjÞÞ ¼ −TðjÞ

ðjÞ. Then
Eq. (24) follows from Eq. (23). More details on the
antipode can be found in Ref. [54] and in Sec. B of
the Supplemental Material [52].

2. There is a nontrivial relation between the numerator
of the cubic graph corresponding to the left-nested
commutator and the corresponding fusion product,

ð25Þ

which are known as the BCJ numerator and prenumerator,
respectively [55]. The flavor factors of the two numerators
are trð½tη�tanÞ and trðtηtanÞ, respectively, where tη denotes
the product of the flavor generators tai for i ∈ η, and ½tη�
represents the nest commutator of these generators.
Magically, the kinematic part of the BCJ numerator and
the prenumerator are identical:

hN̂ ð½α�Þijfabc→1 ¼ hN̂ ðαÞijta→I: ð26Þ

A simple example is

hN ð1̄; 2̄; 3; 4̄Þi ¼ hK1⋆K2⋆K3⋆K4i

¼ 2p12 · F3 · p4

p2
124 −m2

trðta1ta2ta4ta5Þ; ð27Þ

hN ð½1̄; 2̄; 3; 4̄�Þi ¼ h½K1;K2�⋆K3⋆K4 þ K4⋆K3⋆½K1;K2�i

¼ 2p12 · F3 · p4

p2
124 −m2

trð½½ta1 ; ta2 �; ta4 �ta5Þ: ð28Þ

3. For form factors of Trðϕ2Þ, another relation arises
[56]:

ð29Þ

Here, the j line can be either a gluon or scalar.
When the j line is a gluon, the identity is manifest
according to the vanishing condition in Eq. (17). If the
j line is a scalar, the identity becomes highly nontrivial;
e.g., hN̂ ð½1̄; 2�Þ⋆N̂ ð½3̄; 4̄�Þ − N̂ ð½½1̄; 2�; 3̄�Þ⋆N̂ ð4̄Þi is eval-
uated as

−hK1⋆K2⋆K4⋆K3iþhK3⋆½K1;K2�⋆K4i¼ trðta1ta4ta3Þ�
−
p1 ·F2 ·p34

p2
134−q2

þp13 ·F2 ·p4

p2
134−q2

−
p3 ·F2 ·p14

p2
134−q2

�
¼ 0; ð30Þ

which implies

hN̂ ð½1̄; 2�Þ⋆N̂ ð½3̄; 4̄�Þi ¼ hN̂ ð½½1̄; 2�; 3̄�Þ⋆N̂ ð4̄Þi: ð31Þ

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a kinematic algebra for the
BCJ numerators in YMSþ ϕ3 theory. The underlying
algebraic structures lead to extremely compact expressions
for the BCJ numerators in both amplitudes and form factors,
and they reveal intriguing relations among them. Besides
manifestly obeying the Jacobi identities, the numerators
constructed in this way also enjoy many other remarkable
properties such as crossing symmetry, manifest gauge
invariance, and antipode symmetry.
The amplitudes and BCJ numerator in the YMSþ ϕ3

theory have important application to constructing the
gravitational amplitudes via double copy and studying
the gravitational physics. For example, when double
copied with pure YM amplitudes, Einstein-Yang-Mills
and Einstein-Maxwell amplitudes can be obtained, which
are useful in the case of gravitational scattering of photons
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from a black hole [58–60]. Moreover, when double copied
with the amplitudes of (massive) spinning particles
coupled to gluons, the resulting amplitudes are involved
in the study of black hole scattering with spin effects [61];
see Refs. [72–88].
One more application is as follows: The color-kinematic

duality and double copy have also been studied in some
effective theories with higher-dimensional interactions
[21–24,26]. As a step in such a direction, one may consider
form factors with the insertion of higher-dimensional
operators. In the Supplemental Material [52], we show
that the algebraic construction also works directly for form
factors with such operators. Interestingly, novel relations
beyond the Jacobi identity are deduced naturally from the
kinematic algebra.
We now give some outlooks. First, at tree-level, one can

extend the applicable scope of the Hopf algebra to more
general theories; giving a proof also deserves considerations.
Second, a feasible direction is to explore the kinematic
algebra at the level of loop integrands. The physical picture
of the fusion products (especially when involving the
internal lines) suggests that they can be readily generalized
to off-shell particles. Third, it would be fascinating to find
connections between our construction and other approaches
in the literature, such as the Lagrangian and geometric

understanding of the color-kinematics duality [17,89–103],
especially regarding the close relation between quasishuffle
algebra and the permutohedron geometry [104,105] (see also
Refs. [106–110]).
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